Sample records for grazing-angle x-ray diffraction

  1. Micro X-ray diffraction analysis of thin films using grazing-exit conditions.

    PubMed

    Noma, T; Iida, A

    1998-05-01

    An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.

  2. Grazing-incidence X-ray diffraction from a crystal with subsurface defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaevskii, A. Yu., E-mail: transilv@mail.ru; Golentus, I. E.

    2015-03-15

    The diffraction of X rays incident on a crystal surface under grazing angles under conditions of total external reflection has been investigated. An approach is proposed in which exact solutions to the dynamic problem of grazing-incidence diffraction in an ideal crystal are used as initial functions to calculate the diffuse component of diffraction in a crystal with defects. The diffuse component of diffraction is calculated for a crystal with surface defects of a dilatation-center type. Exact formulas of the continuum theory which take into account the mirror-image forces are used for defect-induced atomic displacements. Scattering intensity maps near Bragg peaksmore » are constructed for different scan modes, and the conditions for detecting primarily the diffuse component are determined. The results of dynamic calculations of grazing-incidence diffraction in defect-containing crystals are compared with calculations in the kinematic approximation.« less

  3. Agglomeration dynamics of germanium islands on a silicon oxide substrate: A grazing incidence small-angle x-ray scattering study

    NASA Astrophysics Data System (ADS)

    Cheynis, F.; Leroy, F.; Passanante, T.; Müller, P.

    2013-04-01

    Grazing-incidence small-angle X-ray scattering (GISAXS) and grazing-incidence X-ray diffraction techniques are used to characterise the thermally induced solid-state dewetting of Ge(001) thin films leading to the formation of 3D Ge islands. A quantitative analysis based on the Kolmogorov-Johnson-Mehl-Avrami model is derived. The main physical parameters controlling the dewetting (activation energy and kinetic pre-factors) are determined. Assuming that the dewetting is driven by surface/interface minimisation and limited by surface diffusion, the Ge surface self-diffusion reads as Ds ,0c0 e-Ea/(kBT) ˜3×1018 e-2.6±0.3eV/(kBT) nm2/s. GISAXS technique enables to reconstruct the mean Ge-island shape, including facets.

  4. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  5. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves.

    PubMed

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J R; Krenner, Hubert J; Wixforth, Achim; Salditt, Tim

    2014-10-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length).

  6. Crystalline Stratification in Semiconducting Polymer Thin Film Quantified by Grazing Incidence X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Gann, Eliot; Caironi, Mario; Noh, Yong-Young; Kim, Yun-Hi; McNeill, Christopher R.

    The depth dependence of crystalline structure within thin films is critical for many technological applications, but has been impossible to measure directly using common techniques. In this work, by monitoring diffraction peak intensity and location and utilizing the highly angle-dependent waveguiding effects of X-rays near grazing incidence we quantitatively measure the thickness, roughness and orientation of stratified crystalline layers within thin films of a high-performance semiconducting polymer. In particular, this diffractive X-ray waveguiding reveals a self-organized 5-nm-thick crystalline surface layer with crystalline orientation orthogonal to the underlying 65-nm-thick layer. While demonstrated for an organic semiconductor film, this approach is applicable to any thin film material system where stratified crystalline structure and orientation can influence important interfacial processes such as charge injection and field-effect transport.

  7. X-ray diffraction analysis of residual stresses in textured ZnO thin films

    NASA Astrophysics Data System (ADS)

    Dobročka, E.; Novák, P.; Búc, D.; Harmatha, L.; Murín, J.

    2017-02-01

    Residual stresses are commonly generated in thin films during the deposition process and can influence the film properties. Among a number of techniques developed for stress analysis, X-ray diffraction methods, especially the grazing incidence set-up, are of special importance due to their capability to analyze the stresses in very thin layers as well as to investigate the depth variation of the stresses. In this contribution a method combining multiple {hkl} and multiple χ modes of X-ray diffraction stress analysis in grazing incidence set-up is used for the measurement of residual stress in strongly textured ZnO thin films. The method improves the precision of the stress evaluation in textured samples. Because the measurements are performed at very low incidence angles, the effect of refraction of X-rays on the measured stress is analyzed in details for the general case of non-coplanar geometry. It is shown that this effect cannot be neglected if the angle of incidence approaches the critical angle. The X-ray stress factors are calculated for hexagonal fiber-textured ZnO for the Reuss model of grain-interaction and the effect of texture on the stress factors is analyzed. The texture in the layer is modelled by Gaussian distribution function. Numerical results indicate that in the process of stress evaluation the Reuss model can be replaced by much simpler crystallite group method if the standard deviation of Gaussian describing the texture is less than 6°. The results can be adapted for fiber-textured films of various hexagonal materials.

  8. Near-surface density profiling of Fe ion irradiated Si (100) using extremely asymmetric x-ray diffraction by variation of the wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U.; Facsko, S.

    2014-10-20

    In this work, we report on correlations between surface density variations and ion parameters during ion beam-induced surface patterning process. The near-surface density variations of irradiated Si(100) surfaces were investigated after off-normal irradiation with 5 keV Fe ions at different fluences. In order to reduce the x-ray probing depth to a thickness below 5 nm, the extremely asymmetrical x-ray diffraction by variation of wavelength was applied, exploiting x-ray refraction at the air-sample interface. Depth profiling was achieved by measuring x-ray rocking curves as function of varying wavelengths providing incidence angles down to 0°. The density variation was extracted from the deviationsmore » from kinematical Bragg angle at grazing incidence angles due to refraction of the x-ray beam at the air-sample interface. The simulations based on the dynamical theory of x-ray diffraction revealed that while a net near-surface density decreases with increasing ion fluence which is accompanied by surface patterning, there is a certain threshold of ion fluence to surface density modulation. Our finding suggests that the surface density variation can be relevant with the mechanism of pattern formation.« less

  9. Borman effect in resonant diffraction of X-rays

    NASA Astrophysics Data System (ADS)

    Oreshko, A. P.

    2013-08-01

    A dynamic theory of resonant diffraction (occurring when the energy of incident radiation is close to the energy of the absorption edge of an element in the composition of a given substance) of synchronous X-rays is developed in the two-wave approximation in the coplanar Laue geometry for large grazing angles in perfect crystals. A sharp decrease in the absorption coefficient in the substance with simultaneously satisfied diffraction conditions (Borman effect) is demonstrated, and the theoretical and first experimental results are compared. The calculations reveal the possibility of applying this approach in analyzing the quadrupole-quadrupole contribution to the absorption coefficient.

  10. Ionic depletion at the crystalline Gibbs layer of PEG-capped gold nanoparticle brushes at aqueous surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Zhang, Honghu; Mallapragada, Surya; Travesset, Alex; Vaknin, David

    2017-12-01

    In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol-capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs2SO4 ) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. By taking advantage of element specificity with the GIXFS method, we find that the cation Cs+ concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film compared with that in the bulk.

  11. Ionic depletion at the crystalline Gibbs layer of PEG-capped gold nanoparticle brushes at aqueous surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenjie; Zhang, Honghu; Mallapragada, Surya

    In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol–capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs 2SO 4) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. In conclusion, by taking advantage of element specificity with the GIXFS method, we find that the cation Cs + concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film comparedmore » with that in the bulk.« less

  12. Ionic depletion at the crystalline Gibbs layer of PEG-capped gold nanoparticle brushes at aqueous surfaces

    DOE PAGES

    Wang, Wenjie; Zhang, Honghu; Mallapragada, Surya; ...

    2017-12-14

    In situ surface-sensitive x-ray diffraction and grazing incidence x-ray fluorescence spectroscopy (GIXFS) methods are combined to determine the ionic distributions across the liquid/vapor interfaces of thiolated-polyethylene-glycol–capped gold nanoparticle (PEG-AuNP) solutions. Induced by the addition of salts (i.e., Cs 2SO 4) to PEG-AuNPs solutions, two-dimensional hexagonal lattices of PEG-AuNPs form spontaneously at the aqueous surfaces, as is demonstrated by x-ray reflectivity and grazing incidence small-angle x-ray scattering. In conclusion, by taking advantage of element specificity with the GIXFS method, we find that the cation Cs + concentration at the crystalline film is significantly reduced in parts of the PEG-AuNP film comparedmore » with that in the bulk.« less

  13. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.

    2016-07-27

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs viamore » numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4{sup th} or 5{sup th} order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.« less

  14. Extracting the pair distribution function of liquids and liquid-vapor surfaces by grazing incidence x-ray diffraction mode.

    PubMed

    Vaknin, David; Bu, Wei; Travesset, Alex

    2008-07-28

    We show that the structure factor S(q) of water can be obtained from x-ray synchrotron experiments at grazing angle of incidence (in reflection mode) by using a liquid surface diffractometer. The corrections used to obtain S(q) self-consistently are described. Applying these corrections to scans at different incident beam angles (above the critical angle) collapses the measured intensities into a single master curve, without fitting parameters, which within a scale factor yields S(q). Performing the measurements below the critical angle for total reflectivity yields the structure factor of the top most layers of the water/vapor interface. Our results indicate water restructuring at the vapor/water interface. We also introduce a new approach to extract g(r), the pair distribution function (PDF), by expressing the PDF as a linear sum of error functions whose parameters are refined by applying a nonlinear least square fit method. This approach enables a straightforward determination of the inherent uncertainties in the PDF. Implications of our results to previously measured and theoretical predictions of the PDF are also discussed.

  15. The measurement capabilities of cross-sectional profile of Nanoimprint template pattern using small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Yamanaka, Eiji; Taniguchi, Rikiya; Itoh, Masamitsu; Omote, Kazuhiko; Ito, Yoshiyasu; Ogata, Kiyoshi; Hayashi, Naoya

    2016-05-01

    Nanoimprint lithography (NIL) is one of the most potential candidates for the next generation lithography for semiconductor. It will achieve the lithography with high resolution and low cost. High resolution of NIL will be determined by a high definition template. Nanoimprint lithography will faithfully transfer the pattern of NIL template to the wafer. Cross-sectional profile of the template pattern will greatly affect the resist profile on the wafer. Therefore, the management of the cross-sectional profile is essential. Grazing incidence small angle x-ray scattering (GI-SAXS) technique has been proposed as one of the method for measuring cross-sectional profile of periodic nanostructure pattern. Incident x-rays are irradiated to the sample surface with very low glancing angle. It is close to the critical angle of the total reflection of the x-ray. The scattered x-rays from the surface structure are detected on a two-dimensional detector. The observed intensity is discrete in the horizontal (2θ) direction. It is due to the periodicity of the structure, and diffraction is observed only when the diffraction condition is satisfied. In the vertical (β) direction, the diffraction intensity pattern shows interference fringes reflected to height and shape of the structure. Features of the measurement using x-ray are that the optical constant for the materials are well known, and it is possible to calculate a specific diffraction intensity pattern based on a certain model of the cross-sectional profile. The surface structure is estimated by to collate the calculated diffraction intensity pattern that sequentially while changing the model parameters with the measured diffraction intensity pattern. Furthermore, GI-SAXS technique can be measured an object in a non-destructive. It suggests the potential to be an effective tool for product quality assurance. We have developed a cross-sectional profile measurement of quartz template pattern using GI-SAXS technique. In this report, we will report the measurement capabilities of GI-SAXS technique as a cross-sectional profile measurement tool of NIL quartz template pattern.

  16. Refraction effects in soft x-ray multilayer blazed gratings.

    PubMed

    Voronov, D L; Salmassi, F; Meyer-Ilse, J; Gullikson, E M; Warwick, T; Padmore, H A

    2016-05-30

    A 2500 lines/mm Multilayer Blazed Grating (MBG) optimized for the soft x-ray wavelength range was fabricated and tested. The grating coated with a W/B4C multilayer demonstrated a record diffraction efficiency in the 2nd blazed diffraction order in the energy range from 500 to 1200 eV. Detailed investigation of the diffraction properties of the grating demonstrated that the diffraction efficiency of high groove density MBGs is not limited by the normal shadowing effects that limits grazing incidence x-ray grating performance. Refraction effects inherent in asymmetrical Bragg diffraction were experimentally confirmed for MBGs. The refraction affects the blazing properties of the MBGs and results in a shift of the resonance wavelength of the gratings and broadening or narrowing of the grating bandwidth depending on diffraction geometry. The true blaze angle of the MBGs is defined by both the real structure of the multilayer stack and by asymmetrical refraction effects. Refraction effects can be used as a powerful tool in providing highly efficient suppression of high order harmonics.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazuritskiy, M. I., E-mail: mazurmik@gmail.com; Lerer, A. M.; Makhno, P. V.

    The angular distribution of the X-ray intensity at the exit of microchannel plates at grazing incidence of monochromatic radiation on the walls of microcapillaries has been investigated. The angles and energies of the primary radiation quanta at which the synchrotron beam excites X-ray fluorescence propagating inside polycapillary structures have been determined. The angular dependences of the intensity distribution of X-rays transmitted through the microcapillaries have been studied theoretically and experimentally for energies corresponding to the region of anomalous dispersion near the L{sub 2,3} absorption edges of silicon. The propagation of waves in hollow polycapillary waveguides, the excitation of X-ray fluorescence,more » and the X-ray diffraction at the exit of microchannel plates have been modeled mathematically. The mathematical model takes into account the presence of a transition layer on the microchannel surface.« less

  18. RHEED-TRAXS as a tool for in-situ stoichiometry control.

    NASA Astrophysics Data System (ADS)

    Chandril, Sandeep; Keenan, Cameron; Myers, Thomas; Lederman, David

    2008-03-01

    RHEED-total reflection x-ray spectroscopy (-TRAXS) is an in-situ chemical and structural characterization technique which is highly surface sensitive. This consists of a grazing-angle electron beam from which characteristic x-rays from the sample are measured also at grazing angles. We have demonstrated that monolayer sensitivity in Y and Mn films on GaN can be achieved. We have also developed a theoretical model for the angular dependence of the x-ray Kα peaks for the thin films, based on Parratt's formalism for x-ray reflectivity and the electron trajectory simulation software CASINO, to correct for grazing angle electron beam as a source for x-rays. As the angular dependence is highly dependent upon the film thickness and the smoothness of the film, it can be used to determine the deposition rate of individual elements as well as the interface chemical roughness

  19. Grazing incidence x-ray diffraction analysis of zeolite NaA membranes on porous alumina tubes.

    PubMed

    Kyotani, Tomohiro

    2006-07-01

    Zeolite NaA-type membranes hydrothermally synthesized on porous alumina tubes, for dehydration process, were characterized by grazing incidence 2 theta scan X-ray diffraction analysis (GIXRD). The fine structure of the membrane was studied fractionally for surface layer and for materials embedded in the porous alumina tube. The thickness of the surface layer on the porous alumina tube in the membranes used in this study was approximately 2-3 microm as determined from transmission electron microscopy with focused ion beam thin-layer specimen preparation technique (FIB-TEM). To discuss the effects of the membrane surface morphology on the GIXRD measurements, CaA-type membrane prepared by ion exchange from the NaA-type membrane and surface-damaged NaA-type membrane prepared by water leaching were also studied. For the original NaA-type membrane, 2 theta scan GIXRD patterns could be clearly measured at X-ray incidence angles (alpha) ranging from 0.1 to 2.0 deg in increments of 0.1 deg. The surface layers of the 2 - 3 microm on the porous alumina tube correspond to the alpha values up to ca. 0.2 deg. For the CaA-type and the surface-damaged NaA-type membranes, however, diffraction patterns from the surface layer could not be successfully detected and the others were somewhat broad. For all the three samples, diffraction intensities of both zeolite and alumina increased with depth (X-ray incidence angle, alpha) in the porous alumina tube region. The depth profile analysis of the membranes based on the GIXRD first revealed that amount of zeolite crystal embedded in the porous alumina tube is much larger than that in the surface layer. Thus, the 2 theta scan GIXRD is a useful method to study zeolite crystal growth mechanism around (both inside and outside) the porous alumina support during hydrothermal synthesis and to study water permeation behavior in the dehydration process.

  20. Effect of Ar9+ irradiation on Zr-1Nb-1Sn-0.1Fe alloy characterized by Grazing Incidence X-ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Dutta, Argha; Das, Kalipada; Gayathri, N.; Menon, Ranjini; Nabhiraj, P. Y.; Mukherjee, Paramita

    2018-03-01

    The microstructural parameters such as domain size and microstrain have been estimated from Grazing Incidence X-ray Diffraction (GIXRD) data for Ar9+ irradiated Zr-1Nb-1Sn-0.1Fe sample as a function of dpa (dose). Detail studies using X-ray Diffraction Line Profile Analysis (XRDLPA) from GIXRD data has been carried out to characterize the microstructural parameters like domain size and microstrain. The reorientation of the grains due to effect of irradiation at high dpa (dose) has been qualitatively assessed by the texture parameter P(hkl).

  1. A look inside epitaxial cobalt-on-fluorite nanoparticles with three-dimensional reciprocal space mapping using GIXD, RHEED and GISAXS.

    PubMed

    Suturin, S M; Fedorov, V V; Korovin, A M; Valkovskiy, G A; Konnikov, S G; Tabuchi, M; Sokolov, N S

    2013-08-01

    In this work epitaxial growth of cobalt on CaF 2 (111), (110) and (001) surfaces has been extensively studied. It has been shown by atomic force microscopy that at selected growth conditions stand-alone faceted Co nanoparticles are formed on a fluorite surface. Grazing-incidence X-ray diffraction (GIXD) and reflection high-energy electron diffraction (RHEED) studies have revealed that the particles crystallize in the face-centered cubic lattice structure otherwise non-achievable in bulk cobalt under normal conditions. The particles were found to inherit lattice orientation from the underlying CaF 2 layer. Three-dimensional reciprocal space mapping carried out using X-ray and electron diffraction has revealed that there exist long bright 〈111〉 streaks passing through the cobalt Bragg reflections. These streaks are attributed to stacking faults formed in the crystal lattice of larger islands upon coalescence of independently nucleated smaller islands. Distinguished from the stacking fault streaks, crystal truncation rods perpendicular to the {111} and {001} particle facets have been observed. Finally, grazing-incidence small-angle X-ray scattering (GISAXS) has been applied to decouple the shape-related scattering from that induced by the crystal lattice defects. Particle faceting has been verified by modeling the GISAXS patterns. The work demonstrates the importance of three-dimensional reciprocal space mapping in the study of epitaxial nanoparticles.

  2. A look inside epitaxial cobalt-on-fluorite nanoparticles with three-dimensional reciprocal space mapping using GIXD, RHEED and GISAXS

    PubMed Central

    Suturin, S. M.; Fedorov, V. V.; Korovin, A. M.; Valkovskiy, G. A.; Konnikov, S. G.; Tabuchi, M.; Sokolov, N. S.

    2013-01-01

    In this work epitaxial growth of cobalt on CaF2(111), (110) and (001) surfaces has been extensively studied. It has been shown by atomic force microscopy that at selected growth conditions stand-alone faceted Co nanoparticles are formed on a fluorite surface. Grazing-incidence X-ray diffraction (GIXD) and reflection high-energy electron diffraction (RHEED) studies have revealed that the particles crystallize in the face-centered cubic lattice structure otherwise non-achievable in bulk cobalt under normal conditions. The particles were found to inherit lattice orientation from the underlying CaF2 layer. Three-dimensional reciprocal space mapping carried out using X-ray and electron diffraction has revealed that there exist long bright 〈111〉 streaks passing through the cobalt Bragg reflections. These streaks are attributed to stacking faults formed in the crystal lattice of larger islands upon coalescence of independently nucleated smaller islands. Distinguished from the stacking fault streaks, crystal truncation rods perpendicular to the {111} and {001} particle facets have been observed. Finally, grazing-incidence small-angle X-ray scattering (GISAXS) has been applied to decouple the shape-related scattering from that induced by the crystal lattice defects. Particle faceting has been verified by modeling the GISAXS patterns. The work demonstrates the importance of three-dimensional reciprocal space mapping in the study of epitaxial nanoparticles. PMID:24046491

  3. Damage thresholds for blaze diffraction gratings and grazing incidence optics at an X-ray free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krzywinski, Jacek; Conley, Raymond; Moeller, Stefan

    The Linac Coherent Light Source is upgrading its machine to high repetition rate and to extended ranges. Novel coatings, with limited surface oxidation, which are able to work at the carbon edge, are required. In addition, high-resolution soft X-ray monochromators become necessary. One of the big challenges is to design the mirror geometry and the grating profile to have high reflectivity (or efficiency) and at the same time survive the high peak energy of the free-electron laser pulses. For these reasons the experimental damage threshold, at 900 eV, of two platinum-coated gratings with different blazed angles has been investigated. The gratingsmore » were tested at 1° grazing incidence. To validate a model for which the damage threshold on the blaze grating can be estimated by calculating the damage threshold of a mirror with an angle of incidence identical to the angle of incidence on the grating plus the blaze angle, tests on Pt-coated substrates have also been performed. The results confirmed the prediction. Uncoated silicon, platinum and SiB 3 (both deposited on a silicon substrate) were also investigated. In general, the measured damage threshold at grazing incidence is higher than that calculated under the assumption that there is no energy transport from the volume where the photons are absorbed. However, it was found that, for the case of the SiB 3 coating, the grazing incidence condition did not increase the damage threshold, indicating that the energy transport away from the extinction volume is negligible.« less

  4. Damage thresholds for blaze diffraction gratings and grazing incidence optics at an X-ray free-electron laser

    DOE PAGES

    Krzywinski, Jacek; Conley, Raymond; Moeller, Stefan; ...

    2018-01-01

    The Linac Coherent Light Source is upgrading its machine to high repetition rate and to extended ranges. Novel coatings, with limited surface oxidation, which are able to work at the carbon edge, are required. In addition, high-resolution soft X-ray monochromators become necessary. One of the big challenges is to design the mirror geometry and the grating profile to have high reflectivity (or efficiency) and at the same time survive the high peak energy of the free-electron laser pulses. For these reasons the experimental damage threshold, at 900 eV, of two platinum-coated gratings with different blazed angles has been investigated. The gratingsmore » were tested at 1° grazing incidence. To validate a model for which the damage threshold on the blaze grating can be estimated by calculating the damage threshold of a mirror with an angle of incidence identical to the angle of incidence on the grating plus the blaze angle, tests on Pt-coated substrates have also been performed. The results confirmed the prediction. Uncoated silicon, platinum and SiB 3 (both deposited on a silicon substrate) were also investigated. In general, the measured damage threshold at grazing incidence is higher than that calculated under the assumption that there is no energy transport from the volume where the photons are absorbed. However, it was found that, for the case of the SiB 3 coating, the grazing incidence condition did not increase the damage threshold, indicating that the energy transport away from the extinction volume is negligible.« less

  5. Novel micro-reactor flow cell for investigation of model catalysts using in situ grazing-incidence X-ray scattering

    PubMed Central

    Kehres, Jan; Pedersen, Thomas; Masini, Federico; Andreasen, Jens Wenzel; Nielsen, Martin Meedom; Diaz, Ana; Nielsen, Jane Hvolbæk; Hansen, Ole

    2016-01-01

    The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing-incidence small-angle X-ray scattering (GISAXS) in transmission through 10 µm-thick entrance and exit windows by using micro-focused beams. An additional thinning of the Pyrex glass reactor lid allows simultaneous acquisition of the grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ experiments at synchrotron facilities are performed utilizing the micro-reactor and a designed transportable gas feed and analysis system. The feasibility of simultaneous in situ GISAXS/GIWAXS experiments in the novel micro-reactor flow cell was confirmed with CO oxidation over mass-selected Ru nanoparticles. PMID:26917133

  6. Reconstitution of SNARE proteins into solid-supported lipid bilayer stacks and X-ray structure analysis.

    PubMed

    Xu, Yihui; Kuhlmann, Jan; Brennich, Martha; Komorowski, Karlo; Jahn, Reinhard; Steinem, Claudia; Salditt, Tim

    2018-02-01

    SNAREs are known as an important family of proteins mediating vesicle fusion. For various biophysical studies, they have been reconstituted into supported single bilayers via proteoliposome adsorption and rupture. In this study we extended this method to the reconstitution of SNAREs into supported multilamellar lipid membranes, i.e. oriented multibilayer stacks, as an ideal model system for X-ray structure analysis (X-ray reflectivity and diffraction). The reconstitution was implemented through a pathway of proteomicelle, proteoliposome and multibilayer. To monitor the structural evolution in each step, we used small-angle X-ray scattering for the proteomicelles and proteoliposomes, followed by X-ray reflectivity and grazing-incidence small-angle scattering for the multibilayers. Results show that SNAREs can be successfully reconstituted into supported multibilayers, with high enough orientational alignment for the application of surface sensitive X-ray characterizations. Based on this protocol, we then investigated the effect of SNAREs on the structure and phase diagram of the lipid membranes. Beyond this application, this reconstitution protocol could also be useful for X-ray analysis of many further membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Characterization of ion beam sputtered deposited W/Si multilayers by grazing incidence x-ray diffraction and x-ray reflectivity technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhawan, Rajnish, E-mail: rajnish@rrcat.gov.in; Rai, Sanjay

    2016-05-23

    W/Si multilayers four samples have been deposited on silicon substrate using ion beam sputtering system. Thickness of tungsten (W) varies from around 10 Å to 40 Å while the silicon (Si) thickness remains constant at around 30 Å in multilayers [W-Si]{sub x4}. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity technique (XRR). GIXRD study shows the crystalline behaviour of W/Si multilayer by varying W thickness and it is found that above 20 Å the W film transform from amorphous to crystalline phase and X-ray reflectivity data shows that the roughnesses of W increases onmore » increasing the W thicknesses in W/Si multilayers.« less

  8. Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics.

    PubMed

    Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben

    2014-09-01

    X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.

  9. Development of a Grazing Incidence X-Ray Interferometer

    NASA Technical Reports Server (NTRS)

    Shipley, Ann; Cash, Webster; Osterman, Steve; Joy, Marshall; Carter, James

    1999-01-01

    A grazing incidence x-ray interferometer design capable of micro-arcsecond level resolution is discussed. This practical design employs a Michelson Stellar interferometer approach to create x-ray interference fringes without the use of Wolter style optics or diffraction crystals. Design solutions accommodating alignment, vibration, and thermal constraints are reviewed. We present the development and demonstration of a working experiment along with tolerance studies, data analysis, and results.

  10. X-ray measurements of the strain and shape of dielectric/metallic wrap-gated InAs nanowires

    NASA Astrophysics Data System (ADS)

    Eymery, J.; Favre-Nicolin, V.; Fröberg, L.; Samuelson, L.

    2009-03-01

    Wrap-gate (111) InAs nanowires (NWs) were studied after HfO2 dielectric coating and Cr metallic deposition by a combination of grazing incidence x-ray techniques. In-plane and out-of-plane x-ray diffraction (crystal truncation rod analysis) allow determining the strain tensor. The longitudinal contraction, increasing with HfO2 and Cr deposition, is significantly larger than the radial dilatation. For the Cr coating, the contraction along the growth axis is quite large (-0.95%), and the longitudinal/radial deformation ratio is >10, which may play a role on the NW transport properties. Small angle x-ray scattering shows a smoothening of the initial hexagonal bare InAs NW shape and gives the respective core/shell thicknesses, which are compared to flat surface values.

  11. Study of multilayered SiGe semiconductor structures by X-ray diffractometry, grazing-incidence X-ray reflectometry, and secondary-ion mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunin, P. A., E-mail: yunin@ipmras.ru; Drozdov, Yu. N.; Drozdov, M. N.

    2013-12-15

    In this publication, we report the results of studying a multilayerd nonperiodic SiGe/Si structure by the methods of X-ray diffractometry, grazing-angle X-ray reflectometry, and secondary-ion mass spectrometry (SIMS). Special attention is paid to the processing of the component distribution profile using the SIMS method and to consideration of the most significant experimental distortions introduced by this method. A method for processing the measured composition distribution profile with subsequent consideration of the influence of matrix effects, variation in the etching rate, and remnants of ion sputtering is suggested. The results of such processing are compared with a structure model obtained uponmore » combined analysis of X-ray diffractometry and grazing-angle reflectometry data. Good agreement between the results is established. It is shown that the combined use of independent techniques makes it possible to improve the methods of secondary-ion mass spectrometry and grazing-incidence reflectometry as applied to an analysis of multilayered heteroepitaxial structures (to increase the accuracy and informativity of these methods)« less

  12. Efficiency of a Grazing-incidence Off-plane Grating in the Soft-x-ray Region

    NASA Technical Reports Server (NTRS)

    Seely, J. F.; Laming, J. M.; Goray, L. I.; Kjornrattanawanich, B.; Holland, G. E.; Flanagan, K. A.; Heilmann, R. K.; Chang, C.-H.; Schattenburg, M. L.; Rasmussen, A. P.

    2006-01-01

    Efficiency measurements of a grazing-incidence diffraction grating in the off-plane mount were performed using polarized synchrotron radiation. The grating had 5000 grooves/mm, an effective blaze angle of 14 deg., and was gold coated. The efficiencies in the two polarization orientations (TM and TE) were measured in the 1.5-5.O nm wavelength range and were compared with the efficiencies calculated using the PCGrate-SX code. The TM and TE efficiencies differ, offering the possibility of performing unique science studies of astrophysical, solar, and laboratory sources by exploiting the polarization sensitivity of the off-plane grating.

  13. Three mirror glancing incidence system for X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, R. B. (Inventor)

    1974-01-01

    A telescope suitable for soft X-ray astronomical observations consists of a paraboloid section for receiving rays at a grazing angle and a hyperboloid section which receives reflections from the paraboloid at a grazing angle and directs them to a predetermined point of focus. A second hyperboloid section is centrally located from the other two surfaces and positioned to reflect from its outer surface radiation which was not first reflected by the paraboloid. A shutter is included to assist in calibration.

  14. High efficiency spectrographs for the EUV and soft X-rays

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1983-01-01

    The use of grazing incidence optics and reflection grating designs is shown to be a method that improves the performance of spectrographs at wavelengths shorter than 1200 A. Emphasis is laid on spectroscopic designs for X ray and EUV astronomy, with sample designs for an objective reflection grating spectrograph (ORGS) and an echelle spectrograph for wavelengths longer than 100 A. Conical diffraction allows operations at grazing incidence in the echelle spectrograph. In ORGS, the extreme distance of X ray objects aids in collimating the source radiation, which encounters conical diffraction within the instrument, proceeds parallel to the optical axis, and arrives at the detector. A series of gratings is used to achieve the effect. A grazing echelle is employed for EUV observations, and offers a resolution of 20,000 over a 300 A bandpass.

  15. A novel multi-detection technique for three-dimensional reciprocal-space mapping in grazing-incidence X-ray diffraction.

    PubMed

    Schmidbauer, M; Schäfer, P; Besedin, S; Grigoriev, D; Köhler, R; Hanke, M

    2008-11-01

    A new scattering technique in grazing-incidence X-ray diffraction geometry is described which enables three-dimensional mapping of reciprocal space by a single rocking scan of the sample. This is achieved by using a two-dimensional detector. The new set-up is discussed in terms of angular resolution and dynamic range of scattered intensity. As an example the diffuse scattering from a strained multilayer of self-assembled (In,Ga)As quantum dots grown on GaAs substrate is presented.

  16. An extreme ultraviolet telescope with no soft X-ray response

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.

    1986-01-01

    While EUV grazing incidence telescopes of conventional design exhibit a substantial X-ray response as well as an extreme UV response, and existing bandpass filters for the transmission of radiation longward of 400 A also transmit soft X-rays, the grazing incidence telescope presented suppresses this soft X-ray throughput through the incorporation of a Wolter Schwarzschild Type II mirror with large graze angles. The desirable features of an EUV photometric survey telescope are retained. An instrument of this design will be flown on the EUE mission, in order to make a survey of the sky at wavelengths longer than 400 A.

  17. Part I: an x-ray scattering study of cholera toxin penetration and induced phase transformations in lipid membranes.

    PubMed

    Miller, C E; Majewski, J; Watkins, E B; Kuhl, T L

    2008-07-01

    Cholera toxin is a highly efficient biotoxin, which is frequently used as a tool to investigate protein-membrane interactions and as a reporter for membrane rafts. Cholera toxin binds selectively to gangliosides with highest affinity to GM(1). However, the mechanism by which cholera toxin crosses the membrane remains unresolved. Using x-ray reflectivity and grazing incidence diffraction, we have been able to monitor the binding and penetration of cholera toxin into a model lipid monolayer containing the receptor GM(1) at the air-water interface. Very high toxin coverage was obtained allowing precise measurements of how toxin binding alters lipid packing. Grazing incidence x-ray diffraction revealed the coexistence of two monolayer phases after toxin binding. The first was identical to the monolayer before toxin binding. In regions where toxin was bound, a second membrane phase exhibited a decrease in order as evidenced by a larger area per molecule and tilt angle with concomitant thinning of the monolayer. These results demonstrate that cholera toxin binding induces the formation of structurally distinct, less ordered domains in gel phases. Furthermore, the largest decrease in lateral order to the monolayer occurred at low pH, supporting a low endosomal pH in the infection pathway. Surprisingly, at pH = 8 toxin penetration by the binding portion of the toxin, the B(5) pentamer, was also observed.

  18. Determination of line profiles on nano-structured surfaces using EUV and x-ray scattering

    NASA Astrophysics Data System (ADS)

    Soltwisch, Victor; Wernecke, Jan; Haase, Anton; Probst, Jürgen; Schoengen, Max; Krumrey, Michael; Scholze, Frank; Pomplun, Jan; Burger, Sven

    2014-09-01

    Non-imaging techniques like X-ray scattering are supposed to play an important role in the further development of CD metrology for the semiconductor industry. Grazing Incidence Small Angle X-ray Scattering (GISAXS) provides directly assessable information on structure roughness and long-range periodic perturbations. The disadvantage of the method is the large footprint of the X-ray beam on the sample due to the extremely shallow angle of incidence. This can be overcome by using wavelengths in the extreme ultraviolet (EUV) spectral range, EUV small angle scattering (EUVSAS), which allows for much steeper angles of incidence but preserves the range of momentum transfer that can be observed. Generally, the potentially higher momentum transfer at shorter wavelengths is counterbalanced by decreasing diffraction efficiency. This results in a practical limit of about 10 nm pitch for which it is possible to observe at least the +/- 1st diffraction orders with reasonable efficiency. At the Physikalisch-Technische Bundesanstalt (PTB), the available photon energy range extends from 50 eV up to 10 keV at two adjacent beamlines. PTB commissioned a new versatile Ellipso-Scatterometer which is capable of measuring 6" square substrates in a clean, hydrocarbon-free environment with full flexibility regarding the direction of the incident light polarization. The reconstruction of line profiles using a geometrical model with six free parameters, based on a finite element method (FEM) Maxwell solver and a particle swarm based least-squares optimization yielded consistent results for EUV-SAS and GISAXS. In this contribution we present scatterometry data for line gratings and consistent reconstruction results of the line geometry for EUV-SAS and GISAXS.

  19. High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage

    DTIC Science & Technology

    2012-08-28

    diffraction angle 0 into crystal lattice spacing d by the Bragg condition, mX = 2d sin 0. Here X is the x - ray wavelength... angle x - ray diffraction (GAXRD) measurements, which were made at a fixed shallow incidence angle of 0.5°. Detector scans were done to measure the...was finished with 200 hafnia cycles m the fmal half period rather than 400. Crystallinity was measured by x - ray diffraction (XRD) with

  20. Fluorescence X-ray absorption spectroscopy using a Ge pixel array detector: application to high-temperature superconducting thin-film single crystals.

    PubMed

    Oyanagi, H; Tsukada, A; Naito, M; Saini, N L; Lampert, M O; Gutknecht, D; Dressler, P; Ogawa, S; Kasai, K; Mohamed, S; Fukano, A

    2006-07-01

    A Ge pixel array detector with 100 segments was applied to fluorescence X-ray absorption spectroscopy, probing the local structure of high-temperature superconducting thin-film single crystals (100 nm in thickness). Independent monitoring of pixel signals allows real-time inspection of artifacts owing to substrate diffractions. By optimizing the grazing-incidence angle theta and adjusting the azimuthal angle phi, smooth extended X-ray absorption fine structure (EXAFS) oscillations were obtained for strained (La,Sr)2CuO4 thin-film single crystals grown by molecular beam epitaxy. The results of EXAFS data analysis show that the local structure (CuO6 octahedron) in (La,Sr)2CuO4 thin films grown on LaSrAlO4 and SrTiO3 substrates is uniaxially distorted changing the tetragonality by approximately 5 x 10(-3) in accordance with the crystallographic lattice mismatch. It is demonstrated that the local structure of thin-film single crystals can be probed with high accuracy at low temperature without interference from substrates.

  1. Operando Grazing Incidence Small-Angle X-ray Scattering/X-ray Diffraction of Model Ordered Mesoporous Lithium-Ion Battery Anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaway, Sarang M.; Qiang, Zhe; Xia, Yanfeng

    Emergent lithium-ion (Li +) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li +, but in many cases these nanostructures evolve during electrochemical charging–discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporousmore » NiCo 2O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge–discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Anodes with larger ordered mesopores (17–28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. Furthermore, this preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; but, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge–discharge cycles leads to capacity decay in battery performance. We translate these multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge–discharge cycles.« less

  2. Operando Grazing Incidence Small-Angle X-ray Scattering/X-ray Diffraction of Model Ordered Mesoporous Lithium-Ion Battery Anodes

    DOE PAGES

    Bhaway, Sarang M.; Qiang, Zhe; Xia, Yanfeng; ...

    2017-02-07

    Emergent lithium-ion (Li +) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li +, but in many cases these nanostructures evolve during electrochemical charging–discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporousmore » NiCo 2O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge–discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Anodes with larger ordered mesopores (17–28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. Furthermore, this preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; but, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge–discharge cycles leads to capacity decay in battery performance. We translate these multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge–discharge cycles.« less

  3. Operando Grazing Incidence Small-Angle X-ray Scattering/X-ray Diffraction of Model Ordered Mesoporous Lithium-Ion Battery Anodes.

    PubMed

    Bhaway, Sarang M; Qiang, Zhe; Xia, Yanfeng; Xia, Xuhui; Lee, Byeongdu; Yager, Kevin G; Zhang, Lihua; Kisslinger, Kim; Chen, Yu-Ming; Liu, Kewei; Zhu, Yu; Vogt, Bryan D

    2017-02-28

    Emergent lithium-ion (Li + ) batteries commonly rely on nanostructuring of the active electrode materials to decrease the Li + ion diffusion path length and to accommodate the strains associated with the insertion and de-insertion of Li + , but in many cases these nanostructures evolve during electrochemical charging-discharging. This change in the nanostructure can adversely impact performance, and challenges remain regarding how to control these changes from the perspective of morphological design. In order to address these questions, operando grazing-incidence small-angle X-ray scattering and X-ray diffraction (GISAXS/GIXD) were used to assess the structural evolution of a family of model ordered mesoporous NiCo 2 O 4 anode films during battery operation. The pore dimensions were systematically varied and appear to impact the stability of the ordered nanostructure during the cycling. For the anodes with small mesopores (≈9 nm), the ordered nanostructure collapses during the first two charge-discharge cycles, as determined from GISAXS. This collapse is accompanied by irreversible Li-ion insertion within the oxide framework, determined from GIXD and irreversible capacity loss. Conversely, anodes with larger ordered mesopores (17-28 nm) mostly maintained their nanostructure through the first two cycles with reversible Li-ion insertion. During the second cycle, there was a small additional deformation of the mesostructure. This preservation of the ordered structure lead to significant improvement in capacity retention during these first two cycles; however, a gradual loss in the ordered nanostructure from continuing deformation of the ordered structure during additional charge-discharge cycles leads to capacity decay in battery performance. These multiscale operando measurements provide insight into how changes at the atomic scale (lithium insertion and de-insertion) are translated to the nanostructure during battery operation. Moreover, small changes in the nanostructure can build up to significant morphological transformations that adversely impact battery performance through multiple charge-discharge cycles.

  4. Penetration Depth and Defect Image Contrast Formation in Grazing-Incidence X-ray Topography of 4H-SiC Wafers

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Guo, Jianqiu; Goue, Ouloide Yannick; Kim, Jun Gyu; Raghothamachar, Balaji; Dudley, Michael; Chung, Gill; Sanchez, Edward; Manning, Ian

    2018-02-01

    Synchrotron x-ray topography in grazing-incidence geometry is useful for discerning defects at different depths below the crystal surface, particularly for 4H-SiC epitaxial wafers. However, the penetration depths measured from x-ray topographs are much larger than theoretical values. To interpret this discrepancy, we have simulated the topographic contrast of dislocations based on two of the most basic contrast formation mechanisms, viz. orientation and kinematical contrast. Orientation contrast considers merely displacement fields associated with dislocations, while kinematical contrast considers also diffraction volume, defined as the effective misorientation around dislocations and the rocking curve width for given diffraction vector. Ray-tracing simulation was carried out to visualize dislocation contrast for both models, taking into account photoelectric absorption of the x-ray beam inside the crystal. The results show that orientation contrast plays the key role in determining both the contrast and x-ray penetration depth for different types of dislocation.

  5. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  6. Combination of grazing incidence x-ray fluorescence with x-ray reflectivity in one table-top spectrometer for improved characterization of thin layer and implants on/in silicon wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingerle, D.; Schiebl, M.; Streli, C.

    2014-08-15

    As Grazing Incidence X-ray Fluorescence (GIXRF) analysis does not provide unambiguous results for the characterization of nanometre layers as well as nanometre depth profiles of implants in silicon wafers by its own, the approach of providing additional information using the signal from X-ray Reflectivity (XRR) was tested. As GIXRF already uses an X-ray beam impinging under grazing incidence and the variation of the angle of incidence, a GIXRF spectrometer was adapted with an XRR unit to obtain data from the angle dependent fluorescence radiation as well as data from the reflected beam. A θ-2θ goniometer was simulated by combining amore » translation and tilt movement of a Silicon Drift detector, which allows detecting the reflected beam over 5 orders of magnitude. HfO{sub 2} layers as well as As implants in Silicon wafers in the nanometre range were characterized using this new setup. A just recently published combined evaluation approach was used for data evaluation.« less

  7. X-Ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy

    NASA Technical Reports Server (NTRS)

    Park, Yoonjoon; Choi, Sang Hyouk; King, Glen C.; Elliott, James R.; Dimarcantonio, Albert L.

    2010-01-01

    A new X-ray diffraction (XRD) method is provided to acquire XY mapping of the distribution of single crystals, poly-crystals, and twin defects across an entire wafer of rhombohedral super-hetero-epitaxial semiconductor material. In one embodiment, the method is performed with a point or line X-ray source with an X-ray incidence angle approximating a normal angle close to 90 deg, and in which the beam mask is preferably replaced with a crossed slit. While the wafer moves in the X and Y direction, a narrowly defined X-ray source illuminates the sample and the diffracted X-ray beam is monitored by the detector at a predefined angle. Preferably, the untilted, asymmetric scans are of {440} peaks, for twin defect characterization.

  8. High-efficiency collector design for extreme-ultraviolet and x-ray applications.

    PubMed

    Zocchi, Fabio E

    2006-12-10

    A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double- reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications.

  9. X-ray diffraction from shock-loaded polycrystals.

    PubMed

    Swift, Damian C

    2008-01-01

    X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.

  10. Quantitative determination of the lateral density and intermolecular correlation between proteins anchored on the membrane surfaces using grazing incidence small-angle X-ray scattering and grazing incidence X-ray fluorescence.

    PubMed

    Abuillan, Wasim; Vorobiev, Alexei; Hartel, Andreas; Jones, Nicola G; Engstler, Markus; Tanaka, Motomu

    2012-11-28

    As a physical model of the surface of cells coated with densely packed, non-crystalline proteins coupled to lipid anchors, we functionalized the surface of phospholipid membranes by coupling of neutravidin to biotinylated lipid anchors. After the characterization of fine structures perpendicular to the plane of membrane using specular X-ray reflectivity, the same membrane was characterized by grazing incidence small angle X-ray scattering (GISAXS). Within the framework of distorted wave Born approximation and two-dimensional Percus-Yevick function, we can analyze the form and structure factors of the non-crystalline, membrane-anchored proteins for the first time. As a new experimental technique to quantify the surface density of proteins on the membrane surface, we utilized grazing incidence X-ray fluorescence (GIXF). Here, the mean intermolecular distance between proteins from the sulfur peak intensities can be calculated by applying Abelé's matrix formalism. The characteristic correlation distance between non-crystalline neutravidin obtained by the GISAXS analysis agrees well with the intermolecular distance calculated by GIXF, suggesting a large potential of the combination of GISAXS and GIXF in probing the lateral density and correlation of non-crystalline proteins displayed on the membrane surface.

  11. Structural investigations in helium charged titanium films using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Wan, Chubin; Zhou, Xiaosong; Wang, Yuting; Li, Shina; Ju, Xin; Peng, Shuming

    2014-01-01

    The crystal structure and local atomic arrangements surrounding Ti atoms were determined for He-charged hexagonal close-packed (hcp) Ti films and measured at glancing angles by synchrotron radiation X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively. The charged specimens were prepared by direct current magnetron sputtering with a He/Ar mixture. He atoms with a relatively medium concentration (He/Ti atomic ratio as high as 17 at.%) were incorporated evenly in the deposited films. XRD results showed the changes in the peak intensities in Ti films with different He contents. EXAFS Fourier Transform analysis indicated that the average Ti-Ti distance decreased significantly, and proved the existence of phase transition.

  12. The Marshall Grazing Incidence X-ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Kobayashi, Ken; Winebarger, Amy R.; Savage, Sabrina; Champey, Patrick; Cheimets, Peter N.; Hertz, Edward; Bruccoleri, Alexander R.; Golub, Leon; Ramsey, Brian; Ranganathan, Jaganathan; Marquez, Vanessa; Allured, Ryan; Parker, Theodore; Heilmann, Ralf K.; Schattenburg, Mark L.

    2017-08-01

    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument designed to obtain spatially resolved soft X-ray spectra of the solar atmosphere in the 6-24 Å (0.5-2.0 keV) range. The instrument consists of a single shell Wolter Type-I telescope, a slit, and a spectrometer comprising a matched pair of grazing incidence parabolic mirrors and a planar varied-line space diffraction grating. The instrument is designed to achieve a 50 mÅ spectral resolution and 5 arcsecond spatial resolution along a +/-4-arcminute long slit, and launch is planned for 2019. We report on the status and our approaches for fabrication and alignment for this novel optical system. The telescope and spectrometer mirrors are replicated nickel shells, and are currently being fabricated at the NASA Marshall Space Flight Center. The diffraction grating is currently under development by the Massachusetts Institute of Technology (MIT); because of the strong line spacing variation across the grating, it will be fabricated through e-beam lithography.

  13. Measuring helium bubble diameter distributions in tungsten with grazing incidence small angle x-ray scattering (GISAXS)

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.

    2016-02-01

    Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.

  14. JMFA2—a graphically interactive Java program that fits microfibril angle X-ray diffraction data

    Treesearch

    Steve P. Verrill; David E. Kretschmann; Victoria L. Herian

    2006-01-01

    X-ray diffraction techniques have the potential to decrease the time required to determine microfibril angles dramatically. In this paper, we discuss the latest version of a curve-fitting toll that permits us to reduce the time required to evaluate MFA X-ray diffraction patterns. Further, because this tool reflects the underlying physics more accurately than existing...

  15. X-ray Interferometry with Transmissive Beam Combiners for Ultra-High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Skinner, G. K.; Krismanic, John F.

    2009-01-01

    Abstract Interferometry provides one of the possible routes to ultra-high angular resolution for X-ray and gamma-ray astronomy. Sub-micro-arc-second angular resolution, necessary to achieve objectives such as imaging the regions around the event horizon of a super-massive black hole at the center of an active galaxy, can be achieved if beams from parts of the incoming wavefront separated by 100s of meters can be stably and accurately brought together at small angles. One way of achieving this is by using grazing incidence mirrors. We here investigate an alternative approach in which the beams are recombined by optical elements working in transmission. It is shown that the use of diffractive elements is a particularly attractive option. We report experimental results from a simple 2-beam interferometer using a low-cost commercially available profiled film as the diffractive elements. A rotationally symmetric filled (or mostly filled) aperture variant of such an interferometer, equivalent to an X-ray axicon, is shown to offer a much wider bandpass than either a Phase Fresnel Lens (PFL) or a PFL with a refractive lens in an achromatic pair. Simulations of an example system are presented.

  16. Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data for improved profiling of ultra-shallow depth distributions☆

    PubMed Central

    Ingerle, D.; Meirer, F.; Pepponi, G.; Demenev, E.; Giubertoni, D.; Wobrauschek, P.; Streli, C.

    2014-01-01

    The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted elements with drastically increased confidence level. Silicon wafers implanted with Arsenic at different implantation energies were measured by XRR and GIXRF using a combined, simultaneous measurement and data evaluation procedure. The data were processed using a self-developed software package (JGIXA), designed for simultaneous fitting of GIXRF and XRR data. The results were compared with depth profiles obtained by Secondary Ion Mass Spectrometry (SIMS). PMID:25202165

  17. Experiment and application of soft x-ray grazing incidence optical scattering phenomena

    NASA Astrophysics Data System (ADS)

    Chen, Shuyan; Li, Cheng; Zhang, Yang; Su, Liping; Geng, Tao; Li, Kun

    2017-08-01

    For short wavelength imaging systems,surface scattering effects is one of important factors degrading imaging performance. Study of non-intuitive surface scatter effects resulting from practical optical fabrication tolerances is a necessary work for optical performance evaluation of high resolution short wavelength imaging systems. In this paper, Soft X-ray optical scattering distribution is measured by a soft X-ray reflectometer installed by my lab, for different sample mirrors、wavelength and grazing angle. Then aim at space solar telescope, combining these scattered light distributions, and surface scattering numerical model of grazing incidence imaging system, PSF and encircled energy of optical system of space solar telescope are computed. We can conclude that surface scattering severely degrade imaging performance of grazing incidence systems through analysis and computation.

  18. He and Au ion radiation damage in sodalite, Na4Al3Si3O12Cl

    NASA Astrophysics Data System (ADS)

    Vance, Eric R.; Gregg, Daniel J.; Karatchevtseva, Inna; Davis, Joel; Ionescu, Mihail

    2014-10-01

    Sodalite, a candidate ceramic for the immobilisation of pyroprocessing nuclear waste, showed no observable lattice dilatation in grazing incidence X-ray diffraction when irradiated with up to 1017 5 MeV He ions/cm2. However micro-Raman scattering showed considerable spectral broadening characteristic of radiation damage near the end of the ∼22 μm He range. Partial amorphism plus nepheline formation was observed in grazing incidence X-ray diffraction when sodalite was irradiated by 1016 12 MeV Au ions/cm2. Nepheline appeared less susceptible to 12 MeV Au ion damage than sodalite, with ∼25% less amorphous fraction at 1016 ions/cm2.

  19. AEGIS: An Astrophysics Experiment for Grating and Imaging Spectroscopy---a Soft X-ray, High-resolution Spectrometer

    NASA Astrophysics Data System (ADS)

    Huenemoerder, David; Bautz, M. W.; Davis, J. E.; Heilmann, R. K.; Houck, J. C.; Marshall, H. L.; Neilsen, J.; Nicastro, F.; Nowak, M. A.; Schattenburg, M. L.; Schulz, N. S.; Smith, R. K.; Wolk, S.; AEGIS Team

    2012-01-01

    AEGIS is a concept for a high-resolution soft X-ray spectroscopic observatory developed in response to NASA's request for definitions of the next X-ray astronomy mission. At a small fraction of the cost of the once-planned International X-ray Observatory (IXO), AEGIS has capabilities that surpass IXO grating spectrometer requirements, and which are far superior to those of existing soft X-ray spectrometers. AEGIS incorporates innovative technology in X-ray optics, diffraction gratings and detectors. The mirror uses high area-to-mass ratio segmented glass architecture developed for IXO, but with smaller aperture and larger graze angles optimized for high-throughput grating spectroscopy with low mass and cost. The unique Critical Angle Transmission gratings combine low mass and relaxed figure and alignment tolerances of Chandra transmission gratings but with high diffraction efficiency and resolving power of blazed reflection gratings. With more than an order of magnitude better performance over Chandra and XMM grating spectrometers, AEGIS can obtain high quality spectra of bright AGN in a few hours rather than 10 days. Such high resolving power allows detailed kinematic studies of galactic outflows, hot gas in galactic haloes, and stellar accretion flows. Absorption line spectroscopy will be used to study large scale structure, cosmic feedback, and growth of black holes in thousands of sources to great distances. AEGIS will enable powerful multi-wavelength investigations, for example with Hubble/COS in the UV to characterize the intergalactic medium. AEGIS will be the first observatory with sufficient resolution below 1 keV to resolve thermally-broadened lines in hot ( 10 MK) plasmas. Here we describe key science investigations enable by Aegis, its scientific payload and mission plan. Acknowledgements: Support was provided in part by: NASA SAO contract SV3-73016 to MIT for the Chandra X-ray Center and Science Instruments; NASA grant NNX08AI62G; and the MKI Instrumentation Development Fund.

  20. Structural analysis of polymer thin films using GISAXS in the tender X-ray region: Concept and design of GISAXS experiments using the tender X-ray energy at BL-15A2 at the Photon Factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takagi, H., E-mail: takagih@post.kek.jp; Igarashi, N.; Mori, T.

    If small angle X-ray scattering (SAXS) utilizing the soft X-ray region is available, advanced and unique experiments, which differ from traditional SAXS methods, can be realized. For example, grazing-incidence small angle X-ray scattering (GISAXS) using hard X-ray is a powerful tool for understanding the nanostructure in both vertical and lateral directions of thin films, while GISAXS utilizing the tender X-ray region (SX-GISAXS) enables depth-resolved analysis as well as a standard GISAXS analysis in thin films. Thus, at BL-15A2 at the Photon Factory, a dedicated diffractometer for SX-GISAXS (above 2.1 keV) was constructed. This diffractometer is composed of four vacuum chambers andmore » can be converted into the vacuum state from the sample chamber in front of the detector surface. Diffractions are clearly observed until 12th peak when measuring collagen by SAXS with an X-ray energy of 2.40 keV and a camera length of 825 mm. Additionally, we conducted the model experiment using SX-GISAXS with an X-ray energy of 2.40 keV to confirm that a poly(methyl methacrylate)-poly(n-butyl acrylate) block copolymer thin film has a microphase-separated structure in the thin film, which is composed of lamellae aligned both parallel and perpendicular to the substrate surface. Similarly, in a polystyrene-poly(methyl methacrylate) block copolymer thin film, SX-GISAXS with 3.60 keV and 5.73 keV revealed that hexagonally packed cylinders are aligned parallel to the substrate surface. The incident angle dependence of the first order peak position of the q{sub z} direction obtained from experiments at various incident X-ray energies agrees very well with the theoretical one calculated from the distorted wave Born approximation.« less

  1. The Fabrication of Replicated Optics for Hard X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Speegle, C. O.; Ramsey, B. D.; Engelhaupt, D.

    2000-01-01

    We describe the fabrication process for producing shallow-graze-angle mirrors for hard x-ray astronomy. This presentation includes the generation of the necessary super-polished mandrels, their metrology, and the subsequent mirror shell electroforming and testing.

  2. Method of Generating X-Ray Diffraction Data for Integral Detection of Twin Defects in Super-Hetero-Epitaxial Materials

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2009-01-01

    A method provides X-ray diffraction (XRD) data suitable for integral detection of a twin defect in a strained or lattice-matched epitaxial material made from components having crystal structures having symme try belonging to different space groups. The material is mounted in a n X-ray diffraction (XRD) system. In one embodiment, the XRD system's goniometer angle Omega is set equal to (Theta(sub B)-Beta) where The ta(sub B) is a Bragg angle for a designated crystal plane of the allo y that is disposed at a non-perpendicular orientation with respect to the {111) crystal plane, and Beta is the angle between the designate d crystal plane and a { 111 } crystal plane of one of the epitaxial components. The XRD system's detector angle is set equal to (Theta(su b B)+Beta). The material can be rotated through an angle of azimuthal rotation Phi about the axis aligned with the material. Using the det ector, the intensity of the X-ray diffraction is recorded at least at the angle at which the twin defect occurs.

  3. Portable mini-chamber for temperature dependent studies using small angle and wide angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Dev, Arun Singh; Kumar, Dileep; Potdar, Satish; Pandit, Pallavi; Roth, Stephan V.; Gupta, Ajay

    2018-04-01

    The present work describes the design and performance of a vacuum compatible portable mini chamber for temperature dependent GISAXS and GIWAXS studies of thin films and multilayer structures. The water cooled body of the chamber allows sample annealing up to 900 K using ultra high vacuum compatible (UHV) pyrolytic boron nitride heater, thus making it possible to study the temperature dependent evolution of structure and morphology of two-dimensional nanostructured materials. Due to its light weight and small size, the chamber is portable and can be accommodated at synchrotron facilities worldwide. A systematic illustration of the versatility of the chamber has been demonstrated at beamline P03, PETRA-III, DESY, Hamburg, Germany. Temperature dependent grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) measurements were performed on oblique angle deposited Co/Ag multilayer structure, which jointly revealed that the surface diffusion in Co columns in Co/Ag multilayer enhances by increasing temperature from RT to ˜573 K. This results in a morphology change from columnar tilted structure to densely packed morphological isotropic multilayer.

  4. Development of Thin Films as Potential Structural Cathodes to Enable Multifunctional Energy-Storage Structural Composite Batteries for the U.S. Army’s Future Force

    DTIC Science & Technology

    2011-09-01

    glancing angle X - ray diffraction (GAXRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and electrochemical...Emission SEM FWHM full width at half maximum GAXRD glancing angle X - ray diffraction H3COCH2CH2OH 2-methoxyethanol LiMn2O4 lithium manganese oxide...were characterized by scanning electron microscopy (SEM), X - ray diffraction (XRD), and atomic force microscopy (AFM). In addition,

  5. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE PAGES

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; ...

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, overmore » a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  6. Enhanced Crystalline Phase Purity of CH3NH3PbI3-xClx Film for High-Efficiency Hysteresis-Free Perovskite Solar Cells.

    PubMed

    Yang, Yingguo; Feng, Shanglei; Xu, Weidong; Li, Meng; Li, Li; Zhang, Xingmin; Ji, Gengwu; Zhang, Xiaonan; Wang, Zhaokui; Xiong, Yimin; Cao, Liang; Sun, Baoquan; Gao, Xingyu

    2017-07-12

    Despite rapid successful developments toward promising perovskite solar cells (PSCs) efficiency, they often suffer significant hysteresis effects. Using synchrotron-based grazing incidence X-ray diffraction (GIXRD) with different probing depths by varying the incident angle, we found that the perovskite films consist of dual phases with a parent phase dominant in the interior and a child phase with a smaller (110) interplanar space (d (110) ) after rapid thermal annealing (RTA), which is a widely used post treatment to improve the crystallization of solution-processed perovskite films for high-performance planar PSCs. In particular, the child phase composition gradually increases with decreasing depth till it becomes the majority on the surface, which might be one of the key factors related to hysteresis in fabricated PSCs. We further improve the crystalline phase purity of the solution-processed CH 3 NH 3 PbI 3-x Cl x perovskite film (referred as g-perovskite) by using a facile gradient thermal annealing (GTA), which shows a uniformly distributed phase structure in pinhole-free morphology with less undercoordinated Pb and I ions determined by synchrotron-based GIXRD, grazing incidence small-angle X-ray scattering, scanning electron microscopy, and X-ray photoelectron spectroscopy. Regardless of device structures (conventional and inverted types), the planar heterojunction PSCs employing CH 3 NH 3 PbI 3-x Cl x g-perovskite films exhibit negligible hysteresis with a champion power conversion efficiency of 17.04% for TiO 2 -based conventional planar PSCs and 14.83% for poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate) (PEDOT:PSS)-based inverted planar PSCs. Our results indicate that the crystalline phase purity in CH 3 NH 3 PbI 3-x Cl x perovskite film, especially in the surface region, plays a crucial role in determining the hysteresis effect and device performance.

  7. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    DOE PAGES

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in themore » soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.« less

  8. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    PubMed Central

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed. PMID:25610632

  9. Fabrication and testing of a newly designed slit system for depth-resolved X-ray diffraction measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit

    2016-10-06

    A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials andin situandoperandodiffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range ofmore » diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less

  10. The approach to reflection x-ray microscopy below the critical angles

    NASA Astrophysics Data System (ADS)

    Artyukov, Igor A.; Busarov, Alexander; Popov, Nikolay L.; Vinogradov, Alexander V.

    2017-05-01

    There is a quest for new knowledge and methods to study various materials and processes on surfaces and interfaces at the nanoscale. It concerns ablation, phase transitions, physical and chemical transformations, dissolution, selforganization etc. Obviously, to achieve an appropriate resolution it is necessary to use a corresponding wavelength . Higher resolution can be obtained with shorter wavelengths. On the other hand, in surface modification, ablation, study of buried interfaces etc. the penetration length of radiation into the materials, which depends on the wavelength and angle of incidence, plays important role... Considering these factors the experimental studies in nano-physics and nanotechnology are usually carried out using X-ray radiation with a photon energy of 0.1-10 keV. As far as surfaces and films are investigated, it is reasonable to use an X-ray microscope operating in the reflection mode. However, in this spectral range a substantial portion of the radiation is reflected only at small grazing angles (e.g. <= 10°). Thus, the idea of grazing incidence reflection-mode X-ray microscope has been developed. In this paper, we consider one of possible schemes of such an X-ray microscope. Our analysis and simulation is based on the extension of the Fresnel propagation theory to tilted object problems.

  11. In situ grazing incidence small-angle X-ray scattering investigation of polystyrene nanoparticle spray deposition onto silicon.

    PubMed

    Herzog, Gerd; Benecke, Gunthard; Buffet, Adeline; Heidmann, Berit; Perlich, Jan; Risch, Johannes F H; Santoro, Gonzalo; Schwartzkopf, Matthias; Yu, Shun; Wurth, Wilfried; Roth, Stephan V

    2013-09-10

    We investigated the spray deposition and subsequent self-assembly during drying of a polystyrene nanoparticle dispersion with in situ grazing incidence small-angle X-ray scattering at high time resolution. During the fast deposition of the dispersion and the subsequent evaporation of the solvent, different transient stages of nanoparticle assembly can be identified. In the first stage, the solvent starts to evaporate without ordering of the nanoparticles. During the second stage, large-scale structures imposed by the breakup of the liquid film are observable. In this stage, the solvent evaporates further and nanoparticle ordering starts. In the late third drying stage, the nanoparticles self-assemble into the final layer structure.

  12. Grazing incidence X-ray absorption characterization of amorphous Zn-Sn-O thin film

    NASA Astrophysics Data System (ADS)

    Moffitt, S. L.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2016-05-01

    We report a surface structure study of an amorphous Zn-Sn-O (a-ZTO) transparent conducting film using the grazing incidence X-ray absorption spectroscopy technique. By setting the measuring angles far below the critical angle at which the total external reflection occurs, the details of the surface structure of a film or bulk can be successfully accessed. The results show that unlike in the film where Zn is severely under coordinated (N < 4), it is fully coordinated (N = 4) near the surface while the coordination number around Sn is slightly smaller near the surface than in the film. Despite a 30% Zn doping, the local structure in the film is rutile-like.

  13. Grazing-incidence small angle x-ray scattering studies of nanoscale polymer gratings

    NASA Astrophysics Data System (ADS)

    Doxastakis, Manolis; Suh, Hyo Seon; Chen, Xuanxuan; Rincon Delgadillo, Paulina A.; Wan, Lingshu; Williamson, Lance; Jiang, Zhang; Strzalka, Joseph; Wang, Jin; Chen, Wei; Ferrier, Nicola; Ramirez-Hernandez, Abelardo; de Pablo, Juan J.; Gronheid, Roel; Nealey, Paul

    2015-03-01

    Grazing-Incidence Small Angle X-ray Scattering (GISAXS) offers the ability to probe large sample areas, providing three-dimensional structural information at high detail in a thin film geometry. In this study we exploit the application of GISAXS to structures formed at one step of the LiNe (Liu-Nealey) flow using chemical patterns for directed self-assembly of block copolymer films. Experiments conducted at the Argonne National Laboratory provided scattering patterns probing film characteristics at both parallel and normal directions to the surface. We demonstrate the application of new computational methods to construct models based on scattering measured. Such analysis allows for extraction of structural characteristics at unprecedented detail.

  14. Anomalous x-ray diffraction on InAs/GaAs quantum dot systems

    NASA Astrophysics Data System (ADS)

    Schulli, T. U.; Sztucki, M.; Chamard, V.; Metzger, T. H.; Schuh, D.

    2002-07-01

    Free-standing InAs quantum dots on a GaAs (001) substrate have been investigated using grazing incidence x-ray diffraction. To suppress the strong scattering contribution from the GaAs substrate, we performed anomalous diffraction experiments at the superstructure (200) reflection, showing that the relative intensities from the dots and the substrate undergo a significant change with the x-ray energy below and above the As K edge. Since the signal from the substrate material can essentially be suppressed, this method is ideally suited for the investigation of strain, shape, and interdiffusion of buried quantum dots and quantum dots embedded in heteroepitaxial multilayers. In addition, we show that it can be used as a tool for studying wetting layers.

  15. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    PubMed

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  16. Preliminary small-angle X-ray scattering and X-ray diffraction studies of the BTB domain of lola protein from Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Dorovatovskii, P. V.; Popov, V. O.

    2017-11-01

    The Drosophila genome has several dozens of transcription factors (TTK group) containing BTB domains assembled into octamers. The LOLA protein belongs to this family. The purification, crystallization, and preliminary X-ray diffraction and small-angle X-ray scattering (SAXS) studies of the BTB domain of this protein are reported. The crystallization conditions were found by the vapor-diffusion technique. A very low diffraction resolution (8.7 Å resolution) of the crystals was insufficient for the determination of the threedimensional structure of the BTB domain. The SAXS study demonstrated that the BTB domain of the LOLA protein exists as an octamer in solution.

  17. Oriented polyvinylidene fluoride–trifluoroethylene (P(VDF–TrFE)) films by Langmuir–Blodgett deposition: A synchrotron X-ray diffraction study

    DOE PAGES

    Lindemann, W. R.; Philiph, R. L.; Chan, D. W. W.; ...

    2015-10-07

    Langmuir–Blodgett films of polyvinylidene fluoride trifluoroethylene – P(VDF–TrFE)-copolymers possess substantially improved electrocaloric and pyroelectric properties, when compared with conventionally spin-cast films. In order to rationalize this, we prepared single-layered films of P(VDF–TrFE) (70:30) using both deposition techniques. Grazing incidence wide-angle X-ray scattering (GIWAXS), reveals that Langmuir–Blodgett deposited films have a higher concentration of the ferroelectric β-phase crystals, and that these films are highly oriented with respect to the substrate. Based on these observations, we suggest alternative means of deposition, which may substantially enhance the electrocaloric effect in P(VDF–TrFE) films. As a result, this development has significant implications for the potentialmore » use of P(VDF–TrFE) in solid-state refrigeration.« less

  18. CARNAÚBA: The Coherent X-Ray Nanoprobe Beamline for the Brazilian Synchrotron SIRIUS/LNLS

    NASA Astrophysics Data System (ADS)

    Tolentino, Hélio C. N.; Soares, Márcio M.; Perez, Carlos A.; Vicentin, Flávio C.; Abdala, Dalton B.; Galante, Douglas; Teixeira, Verônica de C.; de Araújo, Douglas H. C.; Westfahl, Harry, Jr.

    2017-06-01

    The CARNAÚBA beamline is the tender-to-hard X-ray (2 - 15 keV) scanning nanoprobe planned for the 4th generation storage ring SIRIUS at the LNLS. CARNAÚBA uses an undulator source with vertical linear polarization in a low-beta straight section and grazing incidence-focusing mirrors to create a nanoprobe at 143 m from the source. The beamline optic is based on KB mirrors and provides high brilliance at an achromatic focal spot down to the diffraction limit diameter of ˜30 nm with a working distance of ˜6 cm. These characteristics are crucial for studying nanometric samples in experiments involving complex stages and environments. The CARNAÚBA beamline aims to perform raster scans using x-ray fluorescence, x-ray absorption spectroscopy, x-ray diffraction and coherent x-ray imaging techniques. Computed tomography will extend these methods to three dimensions.

  19. EUV-angle resolved scatter (EUV-ARS): a new tool for the characterization of nanometre structures

    NASA Astrophysics Data System (ADS)

    Fernández Herrero, Analía.; Mentzel, Heiko; Soltwisch, Victor; Jaroslawzew, Sina; Laubis, Christian; Scholze, Frank

    2018-03-01

    The advance of the semiconductor industry requires new metrology methods, which can deal with smaller and more complex nanostructures. Particularly for inline metrology a rapid, sensitive and non destructive method is needed. Small angle X-ray scattering under grazing incidence has already been investigated for this application and delivers significant statistical information which tracks the profile parameters as well as their variations, i.e. roughness. However, it suffers from the elongated footprint at the sample. The advantage of EUV radiation, with its longer wavelengths, is that larger incidence angles can be used, resulting in a significant reduction of the beam footprint. Targets with field sizes of 100 μm and smaller are accessible with our experimental set-up. We present a new experimental tool for the measurement of small structures based on the capabilities of soft X-ray and EUV scatterometry at the PTB soft X-ray beamline at the electron storage ring BESSY II. PTB's soft X-ray radiometry beamline uses a plane grating monochromator, which covers the spectral range from 0.7 nm to 25 nm and was especially designed to provide highly collimated radiation. An area detector covers the scattered radiation from a grazing exit angle up to an angle of 30° above the sample horizon and the fluorescence emission can be detected with an energy dispersive X-ray silicon drift detector. In addition, the sample can be rotated and linearly moved in vacuum. This new set-up will be used to explore the capabilities of EUV-scatterometry for the characterization of nanometre-sized structures.

  20. Transmission X-ray scattering as a probe for complex liquid-surface structures

    DOE PAGES

    Fukuto, Masafumi; Yang, Lin; Nykypanchuk, Dmytro; ...

    2016-01-28

    The need for functional materials calls for increasing complexity in self-assembly systems. As a result, the ability to probe both local structure and heterogeneities, such as phase-coexistence and domain morphologies, has become increasingly important to controlling self-assembly processes, including those at liquid surfaces. The traditional X-ray scattering methods for liquid surfaces, such as specular reflectivity and grazing-incidence diffraction, are not well suited to spatially resolving lateral heterogeneities due to large illuminated footprint. A possible alternative approach is to use scanning transmission X-ray scattering to simultaneously probe local intermolecular structures and heterogeneous domain morphologies on liquid surfaces. To test the feasibilitymore » of this approach, transmission small- and wide-angle X-ray scattering (TSAXS/TWAXS) studies of Langmuir films formed on water meniscus against a vertically immersed hydrophilic Si substrate were recently carried out. First-order diffraction rings were observed in TSAXS patterns from a monolayer of hexagonally packed gold nanoparticles and in TWAXS patterns from a monolayer of fluorinated fatty acids, both as a Langmuir monolayer on water meniscus and as a Langmuir–Blodgett monolayer on the substrate. The patterns taken at multiple spots have been analyzed to extract the shape of the meniscus surface and the ordered-monolayer coverage as a function of spot position. These results, together with continual improvement in the brightness and spot size of X-ray beams available at synchrotron facilities, support the possibility of using scanning-probe TSAXS/TWAXS to characterize heterogeneous structures at liquid surfaces.« less

  1. Soft x-ray transmission grating spectrometer for X-ray Surveyor and smaller missions with high resolving power

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander; Schattenburg, Mark; Kolodziejczak, jeffery; Gaskin, Jessica; O'Dell, Stephen L.

    2017-01-01

    A number of high priority subjects in astrophysics are addressed by a state-of-the-art soft x-ray grating spectrometer, e.g. the role of Active Galactic Nuclei in galaxy and star formation, characterization of the WHIM and the “missing baryon” problem, characterization of halos around the Milky Way and nearby galaxies, and stellar coronae and surrounding winds and disks. An Explorer-scale, large-area (A > 1,000 cm2), high resolving power (R > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology, even for telescopes with angular resolution of 5-10 arcsec. Significantly higher performance could be provided by a CAT grating spectrometer on an X-ray-Surveyor-type mission (A > 4,000 cm2, R > 5,000). CAT gratings combine advantages of blazed reflection gratings (high efficiency, use of higher orders) with those of transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimal mission resource requirements. Blazing is achieved through grazing-incidence reflection off the smooth silicon grating bar sidewalls. Silicon is well matched to the soft x-ray band, and 30% absolute diffraction efficiency has been acheived with clear paths for further improvement. CAT gratings with sidewalls made of high-Z elements allow extension of blazing to higher energies and larger dispersion angles, enabling higher resolving power at shorter wavelengths. X-ray data from CAT gratings coated with a thin layer of platinum using atomic layer deposition demonstrate efficient blazing to higher energies and much larger blaze angles than possible with silicon alone. Measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing optic from GSFC and CAT gratings, taken at the MSFC Stray Light Facility, have demonstrated resolving power > 10,000. Thus currently fabricated CAT gratings are compatible with the most advanced grating spectrometer instrument designs for future soft x-ray spectroscopy missions. We will review the most recent CAT grating fabrication and x-ray test results.

  2. [Study on bamboo treated with gamma rays by X-ray diffraction].

    PubMed

    Sun, Feng-Bo; Fei, Ben-Hua; Jiang, Ze-Hui; Yu, Zi-Xuan; Tian, Gen-Lin; Yang, Quan-Wen

    2011-06-01

    The microfibril angle and crystallinity of bamboo treated with gamma rays were tested by X-ray diffraction (XRD). The result indicated that crystallinity in bamboo increased when irradiation dose was less than 100 kGy, while the irradiation dose was raised to about 100 kGy, crystallinity in bamboo reduced. But during the whole irradiation process, the influence on microfibril angle was not obvious, so it was not the dominant factors on variation in physical-mechanical properties of bamboo during the process of irradiation.

  3. Resolution enhancement in coherent x-ray diffraction imaging by overcoming instrumental noise.

    PubMed

    Kim, Chan; Kim, Yoonhee; Song, Changyong; Kim, Sang Soo; Kim, Sunam; Kang, Hyon Chol; Hwu, Yeukuang; Tsuei, Ku-Ding; Liang, Keng San; Noh, Do Young

    2014-11-17

    We report that reference objects, strong scatterers neighboring weak phase objects, enhance the phase retrieval and spatial resolution in coherent x-ray diffraction imaging (CDI). A CDI experiment with Au nano-particles exhibited that the reference objects amplified the signal-to-noise ratio in the diffraction intensity at large diffraction angles, which significantly enhanced the image resolution. The interference between the diffracted x-ray from reference objects and a specimen also improved the retrieval of the phase of the diffraction signal. The enhancement was applied to image NiO nano-particles and a mitochondrion and confirmed in a simulation with a bacteria phantom. We expect that the proposed method will be of great help in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  4. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1 μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. Utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less

  5. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. In conclusion, utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less

  6. Environmentally induced chemical and morphological heterogeneity of zinc oxide thin films

    DOE PAGES

    Jiang, Hua; Chou, Kang Wei; Petrash, Stanislas; ...

    2016-09-02

    Zinc oxide (ZnO) thin films have been reported to suffer from degradation in electrical properties, when exposed to elevated heat and humidity, often leading to failures of electronic devices containing ZnO films. This degradation appears to be linked to water and oxygen penetration into the ZnO film. However, a direct observation in the ZnO film morphological evolution detailing structural and chemical changes has been lacking. Here, we systematically investigated the chemical and morphological heterogeneities of ZnO thin films caused by elevated heat and humidity, simulating an environmental aging. X-ray fluorescence microscopy, X-ray absorption spectroscopy, grazing incidence small angle and widemore » angle X-ray scattering, scanning electron microscopy (SEM), ultra-high-resolution SEM, and optical microscopy were carried out to examine ZnO and Al-doped ZnO thin films on two different substrates—silicon wafers and flexible polyethylene terephthalate (PET) films. In the un-doped ZnO thin film, the simulated environmental aging is resulting in pin-holes. In the Al-doped ZnO thin films, significant morphological changes occurred after the treatment, with an appearance of platelet-shaped structures that are 100–200 nm wide by 1μm long. Synchrotron x-ray characterization further confirmed the heterogeneity in the aged Al-doped ZnO, showing the formation of anisotropic structures and disordering. X-ray diffraction and X-ray absorption spectroscopy indicated the formation of a zinc hydroxide in the aged Al-doped films. In conclusion, utilizing advanced characterization methods, our studies provided information with an unprecedented level of details and revealed the chemical and morphologically heterogeneous nature of the degradation in ZnO thin films.« less

  7. PREFACE: Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques

    NASA Astrophysics Data System (ADS)

    Sakurai, Kenji

    2010-12-01

    This special issue is devoted to describing recent applications of x-ray and neutron scattering techniques to the exploration of surfaces and buried interfaces of various functional materials. Unlike many other surface-sensitive methods, these techniques do not require ultra high vacuum, and therefore, a variety of real and complicated surfaces fall within the scope of analysis. It must be particularly emphasized that the techniques are capable of seeing even buried function interfaces as well as the surface. Furthermore, the information, which ranges from the atomic to mesoscopic scale, is highly quantitative and reproducible. The non-destructive nature of the techniques is another important advantage of using x-rays and neutrons, when compared with other atomic-scale analyses. This ensures that the same specimen can be measured by other techniques. Such features are fairly attractive when exploring multilayered materials with nanostructures (dots, tubes, wires, etc), which are finding applications in electronic, magnetic, optical and other devices. The Japan Applied Physics Society has established a group to develop the research field of studying buried function interfaces with x-rays and neutrons. As the methods can be applied to almost all types of materials, from semiconductor and electronic devices to soft materials, participants have fairly different backgrounds but share a common interest in state-of-the-art x-ray and neutron techniques and sophisticated applications. A series of workshops has been organized almost every year since 2001. Some international interactions have been continued intensively, although the community is part of a Japanese society. This special issue does not report the proceedings of the recent workshop, although all the authors are in some way involved in the activities of the above society. Initially, we intended to collect quite long overview papers, including the authors' latest and most important original results, as well as updates on recent progress and global trends in the field. We planned to cover quite a wide area of surface and buried interface science with x-rays and neutrons. Following a great deal of discussion during the editing process, we have decided to change direction. As we intend to publish similar special issues on a frequent basis, we will not insist on editing this issue as systematic and complete collections of research. Many authors decided to write an ordinary research paper rather than an article including systematic accounts. Due to this change in policy, some authors declined to contribute, and the number of papers is now just 12. However, readers will find that the special issue gives an interesting collection of new original research in surface and buried interface studies with x-rays and neutrons. The 12 papers cover the following research topics: (1) polymer analysis by diffuse scattering; (2) discussion of the electrochemical solid--liquid interface by synchrotron x-ray diffraction; (3) analysis of capped nanodots by grazing incidence small-angle x-ray scattering (GISAXS); (4) discussion of the strain distribution in silicon by high-resolution x-ray diffraction; (5) study of mesoporous structures by a combination of x-ray reflectivity and GISAXS; (6) discussion of energy-dispersive x-ray reflectometry and its applications; (7) neutron reflectivity studies on hydrogen terminated silicon interface; (8) the fabrication and performance of a special mirror for water windows; (9) depth selective analysis by total-reflection x-ray diffraction; (10) nanoparticle thin films prepared by a gas deposition technique; (11) discussion of crystal truncation rod (CTR) scattering of semiconductor nanostructures; (12) magnetic structure analysis of thin films by polarized neutron reflectivity. While not discussed in the present special issue, x-ray and neutron techniques have made great progress. The most important steps forward have been in 2D/3D real-space imaging, and realtime measurement. Advances in such technologies are bringing with them new opportunities in surface and buried interface science. In the not too distant future, we will publish a special issue or a book detailing such progress. Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques contents Lateral uniformity in chemical composition along a buried reaction front in polymers using off-specular reflectivity Kristopher A Lavery, Vivek M Prabhu, Sushil Satija and Wen-li Wu Orientation dependence of Pd growth on Au electrode surfaces M Takahasi, K Tamura, J Mizuki, T Kondo and K Uosaki A grazing incidence small-angle x-ray scattering analysis on capped Ge nanodots in layer structures Hiroshi Okuda, Masayuki Kato, Keiji Kuno, Shojiro Ochiai, Noritaka Usami, Kazuo Nakajima and Osami Sakata High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer Kazuhiko Omote X-ray analysis of mesoporous silica thin films templated by Brij58 surfactant S Fall, M Kulij and A Gibaud Review of the applications of x-ray refraction and the x-ray waveguide phenomenon to estimation of film structures Kouichi Hayashi Epitaxial growth of largely mismatched crystals on H-terminated Si(111) surfaces Hidehito Asaoka Novel TiO2/ZnO multilayer mirrors at 'water-window' wavelengths fabricated by atomic layer epitaxy H Kumagai, Y Tanaka, M Murata, Y Masuda and T Shinagawa Depth-selective structural analysis of thin films using total-external-reflection x-ray diffraction Tomoaki Kawamura and Hiroo Omi Structures of Yb nanoparticle thin films grown by deposition in He and N2 gas atmospheres: AFM and x-ray reflectivity studies Martin Jerab and Kenji Sakurai Ga and As composition profiles in InP/GaInAs/InP heterostructures—x-ray CTR scattering and cross-sectional STM measurements Yoshikazu Takeda, Masao Tabuchi and Arao Nakamura Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system Naoki Awaji, Toyoo Miyajima, Shuuichi Doi and Kenji Nomura

  8. Development of variable-magnification X-ray Bragg optics.

    PubMed

    Hirano, Keiichi; Yamashita, Yoshiki; Takahashi, Yumiko; Sugiyama, Hiroshi

    2015-07-01

    A novel X-ray Bragg optics is proposed for variable-magnification of an X-ray beam. This X-ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X-ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X-ray diffraction. The feasibility of the variable-magnification X-ray Bragg optics was verified at the vertical-wiggler beamline BL-14B of the Photon Factory. For X-ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M ≥ 1.0), X-ray images of a nylon mesh were observed with an air-cooled X-ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption-contrast but also edge-contrast due to Fresnel diffraction was observed in the magnified images.

  9. Infrastructure development for radioactive materials at the NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, D. J.; Weidner, R.; Ghose, S. K.

    2018-02-01

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  10. Infrastructure development for radioactive materials at the NSLS-II

    DOE PAGES

    Sprouster, David J.; Weidner, R.; Ghose, S. K.; ...

    2017-11-04

    The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this paper, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. Finally, we describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less

  11. Resonance energy shifts during nuclear Bragg diffraction of x rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, J.; Brown, G.S.; Brown, D.E.

    1989-10-09

    We have observed dramatic changes in the time distribution of synchrotron x rays resonantly scattered from {sup 57}Fe nuclei in a crystal of yttrium iron garnet, which depend on the deviation angle of the incident radiation from the Bragg angle. These changes are caused by small shifts in the effective energies of the hyperfine-split nuclear resonances, an effect of dynamical diffraction for the coherently excited nuclei in the crystal. The very high brightness of the synchro- tron x-ray source allows this effect to be observed in a 15-min measurement.

  12. Observation of the strain field near the Si(111) 7 x 7 surface with a new X-ray diffraction technique.

    PubMed

    Emoto, T; Akimoto, K; Ichimiya, A

    1998-05-01

    A new X-ray diffraction technique has been developed in order to measure the strain field near a solid surface under ultrahigh vacuum (UHV) conditions. The X-ray optics use an extremely asymmetric Bragg-case bulk reflection. The glancing angle of the X-rays can be set near the critical angle of total reflection by tuning the X-ray energy. Using this technique, rocking curves for Si surfaces with different surface structures, i.e. a native oxide surface, a slightly oxide surface and an Si(111) 7 x 7 surface, were measured. It was found that the widths of the rocking curves depend on the surface structures. This technique is efficient in distinguishing the strain field corresponding to each surface structure.

  13. Diffraction effects on angular response of X-ray collimators

    NASA Technical Reports Server (NTRS)

    Blake, R. L.; Barrus, D. M.; Fenimore, E.

    1976-01-01

    Angular responses have been measured for X-ray collimators with half-widths ranging from minutes of arc down to 10 arcsec. In the seconds-of-arc range, diffraction peaks at off-axis angles can masquerade as side lobes of the collimator angular response. Measurements and qualitative physical arguments lead to a rule of thumb for collimator design; namely, the angle of first minimum in the Fraunhofer single-slit diffraction pattern should be less than one-fourth of the collimator geometrical full-width at half-maximum intensity.

  14. An Automated, High-Throughput System for GISAXS and GIWAXS Measurements of Thin Films

    NASA Astrophysics Data System (ADS)

    Schaible, Eric; Jimenez, Jessica; Church, Matthew; Lim, Eunhee; Stewart, Polite; Hexemer, Alexander

    Grazing incidence small-angle X-ray scattering (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) are important techniques for characterizing thin films. In order to meet rapidly increasing demand, the SAXSWAXS beamline at the Advanced Light Source (beamline 7.3.3) has implemented a fully automated, high-throughput system to conduct SAXS, GISAXS and GIWAXS measurements. An automated robot arm transfers samples from a holding tray to a measurement stage. Intelligent software aligns each sample in turn, and measures each according to user-defined specifications. Users mail in trays of samples on individually barcoded pucks, and can download and view their data remotely. Data will be pipelined to the NERSC supercomputing facility, and will be available to users via a web portal that facilitates highly parallelized analysis.

  15. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering

    NASA Astrophysics Data System (ADS)

    Renaud, Gilles

    Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having important physical properties such as superconductivity or magnetism is also briefly reviewed. The strengths and limitations of the technique, such as the need for single crystals and surfaces of high crystalline quality are discussed. Finally, an outlook of future prospects in the field is given, such as the study of more complex oxide surfaces, vicinal surfaces, reactive metal/oxide interfaces, metal oxidation processes, the use of surfactants to promote wetting of a metal deposited on an oxide surface or the study of oxide/liquid interfaces in a non-UHV environment.

  16. Si Nanoribbons on Ag(110) Studied by Grazing-Incidence X-Ray Diffraction, Scanning Tunneling Microscopy, and Density-Functional Theory: Evidence of a Pentamer Chain Structure.

    PubMed

    Prévot, Geoffroy; Hogan, Conor; Leoni, Thomas; Bernard, Romain; Moyen, Eric; Masson, Laurence

    2016-12-30

    We report a combined grazing incidence x-ray diffraction (GIXD), scanning tunneling microscopy (STM), and density-functional theory (DFT) study which clearly elucidates the atomic structure of the Si nanoribbons grown on the missing-row reconstructed Ag(110) surface. Our study allows us to discriminate between the theoretical models published in the literature, including the most stable atomic configurations and those based on a missing-row reconstructed Ag(110) surface. GIXD measurements unambiguously validate the pentamer model grown on the reconstructed surface, obtained from DFT. This pentamer atomistic model accurately matches the high-resolution STM images of the Si nanoribbons adsorbed on Ag(110). Our study closes the long-debated atomic structure of the Si nanoribbons grown on Ag(110) and definitively excludes a honeycomb structure similar to that of freestanding silicene.

  17. A study of X-ray multiple diffraction by means of section topography.

    PubMed

    Kohn, V G; Smirnova, I A

    2015-09-01

    The results of theoretical and experimental study are presented for the question of how the X-ray multiple diffraction in a silicon single crystal influences the interference fringes of section topography for the 400 reflection in the Laue case. Two different cases of multiple diffraction are discovered for zero and very small values of the azimuthal angle for the sample in the form of a plate with the surface normal to the 001 direction. The cases are seen on the same topogram without rotation of the crystal. Accurate computer simulations of the section topogram for the case of X-ray multiple diffraction are performed for the first time. It is shown that the structure of interference fringes on the section topogram in the region of multiple diffraction becomes more complicated. It has a very sharp dependence on the azimuthal angle. The experiment is carried out using a laboratory source under conditions of low resolution over the azimuthal angle. Nevertheless, the characteristic inclination of the interference fringes on the tails of the multiple diffraction region is easily seen. This phenomenon corresponds completely to the computer simulations.

  18. Wolter Optics for Neutron Focusing

    NASA Technical Reports Server (NTRS)

    Mildner, D. F. R.; Gubarev, M. V.

    2010-01-01

    Focusing optics based on Wolter optical geometries developed for x-ray grazing incidence beams can be designed for neutron beams. Wolter optics are formed by grazing incidence reflections from two concentric conic sections (for example, a paraboloid and a hyperboloid). This has transformed observational X-ray astronomy by increasing the sensitivity by many orders of magnitude for research in astrophysics and cosmology. To increase the collection area, many reflecting mirrors of different diameters are nested with a common focal plane. These mirrors are fabricated using nickel-electroformed replication techniques. We apply these ideas to neutron focusing using nickel mirrors. We show an initial test of a conical mirror using a beam of cold neutrons. key words: electroformed nickel replication, focusing optics, grazing angle incidence, mirror reflection, neutron focusing, Wolter optics

  19. Influence of palmitic acid and hexadecanol on the phase transition temperature and molecular packing of dipalmitoylphosphatidyl-choline monolayers at the air-water interface

    NASA Astrophysics Data System (ADS)

    Lee, Ka Yee C.; Gopal, Ajaykumar; von Nahmen, Anja; Zasadzinski, Joseph A.; Majewski, Jaroslaw; Smith, Gregory S.; Howes, Paul B.; Kjaer, Kristian

    2002-01-01

    Palmitic acid (PA) and 1-hexadecanol (HD) strongly affect the phase transition temperature and molecular packing of dipalmitoylphosphatidylcholine (DPPC) monolayers at the air-water interface. The phase behavior and morphology of mixed DPPC/PA as well as DPPC/HD monolayers were determined by pressure-area-isotherms and fluorescence microscopy. The molecular organization was probed by synchrotron grazing incidence x-ray diffraction using a liquid surface diffractometer. Addition of PA or HD to DPPC monolayers increases the temperature of the liquid-expanded to condensed phase transition. X-ray diffraction shows that DPPC forms mixed crystals both with PA and HD over a wide range of mixing ratios. At a surface pressure (π) of 40 mN/m, increasing the amount of the single chain surfactant leads to a reduction in tilt angle of the aliphatic chains from nearly 30° for pure DPPC to almost 0° in a 1:1 molar ratio of DPPC and PA or HD. At this composition we also find closest packing of the aliphatic chains. Further increase of the amount of PA or HD does not change the lattice or the tilt.

  20. Thermal oxidation and nitridation of Si nanowalls prepared by metal assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Behera, Anil K.; Viswanath, R. N.; Lakshmanan, C.; Polaki, S. R.; Sarguna, R. M.; Mathews, Tom

    2018-04-01

    Silicon nanowalls with controlled orientation have been prepared using metal assisted chemical etching process. Thermal oxidation and nitridation processes have been carried out on the prepared silicon nanowalls under a control flow of oxygen/nitrogen gases independently at 1050°C for 900s. The morphology and structural properties of the as-prepared, oxidized and nitridated silicon nanowalls have been studied using the scanning electron microscopy and the Grazing incident X-ray diffraction techniques. The results obtained from the analysis of X-ray diffraction patterns and the microscopy images are discussed.

  1. Combining experiment and optical simulation in coherent X-ray nanobeam characterization of Si/SiGe semiconductor heterostructures

    DOE PAGES

    Tilka, J. A.; Park, J.; Ahn, Y.; ...

    2016-07-06

    Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less

  2. Micromirror-based manipulation of synchrotron x-ray beams

    NASA Astrophysics Data System (ADS)

    Walko, D. A.; Chen, Pice; Jung, I. W.; Lopez, D.; Schwartz, C. P.; Shenoy, G. K.; Wang, Jin

    2017-08-01

    Synchrotron beamlines typically use macroscopic, quasi-static optics to manipulate x-ray beams. We present the use of dynamic microelectromechanical systems-based optics (MEMS) to temporally modulate synchrotron x-ray beams. We demonstrate this concept using single-crystal torsional MEMS micromirrors oscillating at frequencies of 75 kHz. Such a MEMS micromirror, with lateral dimensions of a few hundred micrometers, can interact with x rays by operating in grazing-incidence reflection geometry; x rays are deflected only when an x-ray pulse is incident on the rotating micromirror under appropriate conditions, i.e., at an angle less than the critical angle for reflectivity. The time window for such deflections depends on the frequency and amplitude of the MEMS rotation. We demonstrate that reflection geometry can produce a time window of a few microseconds. We further demonstrate that MEMS optics can isolate x rays from a selected synchrotron bunch or group of bunches. With ray-trace simulations we explain the currently achievable time windows and suggest a path toward improvements.

  3. Diamond-anvil cell for radial x-ray diffraction.

    PubMed

    Chesnut, G N; Schiferl, D; Streetman, B D; Anderson, W W

    2006-06-28

    We have designed a new diamond-anvil cell capable of radial x-ray diffraction to pressures of a few hundred GPa. The diffraction geometry allows access to multiple angles of Ψ, which is the angle between each reciprocal lattice vector g(hkl) and the compression axis of the cell. At the 'magic angle', Ψ≈54.7°, the effects of deviatoric stresses on the interplanar spacings, d(hkl), are significantly reduced. Because the systematic errors, which are different for each d(hkl), are significantly reduced, the crystal structures and the derived equations of state can be determined reliably. At other values of Ψ, the effects of deviatoric stresses on the diffraction pattern could eventually be used to determine elastic constants.

  4. Does cholesterol preferentially pack in lipid domains with saturated sphingomyelin over phosphatidylcholine? A comprehensive monolayer study combined with grazing incidence X-ray diffraction and Brewster angle microscopy experiments.

    PubMed

    Wydro, Paweł; Flasiński, Michał; Broniatowski, Marcin

    2013-05-01

    In this work, the Langmuir monolayers were used as a model for the analysis of the influence of cholesterol on 1,2-distearoyl-sn-glycero-3-phosphocholine - DSPC and stearoyl sphingomyelin - SSM, as well as their equimolar mixture. The aim of these studies was to compare the affinity of cholesterol to sphingomyelin and phosphatidylcholine and discuss the effectiveness of cholesterol packing with these phospholipids. The experiments involved the registration of the surface pressure-area isotherms combined with the application of Brewster angle microscopy (BAM) images and grazing incidence X-ray diffraction methods. We have performed a thorough analysis of the properties of both one-component DSPC and SSM films as well as their 1:1 mixture. Next, the effect of cholesterol on these systems was verified based on the results for 2:1 SSM/Chol, 2:1 DSPC/Chol, and 1:1:1 DSPC/SSM/Chol mixtures. It was found that both phospholipids form highly condensed monolayers, however, they differ in the orientation of acyl chains, namely the acyl chains are more tilted in DSPC film as compared to SSM monolayer as well as DSPC/SSM mixture. Furthermore, the area contraction provoked by the addition of cholesterol was found to be more pronounced for DSPC monolayer than in DSPC/SSM and SSM films. However, all the collected results allow one to postulate that the ability of cholesterol to form ordered domains with DSPC and SSM is similar and is predominantly driven by hydrophobic forces between molecules. The differences in the area condensation induced by cholesterol on the studied phospholipids films results from differences in molecular organization of pure phospholipids films rather than specific cholesterol-phospholipid interactions. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. X-ray diffraction gratings: Precise control of ultra-low blaze angle via anisotropic wet etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, Dmitriy L.; Naulleau, Patrick; Gullikson, Eric M.

    2016-07-25

    Diffraction gratings are used from micron to nanometer wavelengths as dispersing elements in optical instruments. At shorter wavelengths, crystals can be used as diffracting elements, but due to the 3D nature of the interaction with light are wavelength selective rather than wavelength dispersing. There is an urgent need to extend grating technology into the x-ray domain of wavelengths from 1 to 0.1 nm, but this requires the use of gratings that have a faceted surface in which the facet angles are very small, typically less than 1°. Small facet angles are also required in the extreme ultra-violet and soft x-ray energymore » ranges in free electron laser applications, in order to reduce power density below a critical damage threshold. In this work, we demonstrate a technique based on anisotropic etching of silicon designed to produce very small angle facets with a high degree of perfection.« less

  6. Arcus: An Overview of the Soft X-ray Grating Explorer

    NASA Astrophysics Data System (ADS)

    Smith, Randall; Arcus Collaboration

    2018-01-01

    The Arcus MIDEX Explorer, which NASA selected for a Phase A study in August 2017, provides high-resolution soft X-ray spectroscopy in the 12-50Å bandpass with unprecedented sensitivity. Its capabilities include spectral resolution >2500 and effective areas in the range 200-600 cm^2. The three top science goals for Arcus are (1) to measure the effects of structure formation imprinted upon the hot baryons that are predicted to lie in extended halos around galaxies, groups, and clusters, (2) to trace the propagation of outflowing mass, energy, and momentum from the vicinity of the black hole to extragalactic scales as a measure of their feedback and (3) to explore how stars, circumstellar disks and exoplanet atmospheres form and evolve. Arcus relies upon the same 12m focal length grazing-incidence silicon pore X-ray optics (SPO) that ESA has developed for the Athena mission; the focal length is achieved on orbit via an extendable optical bench. The focused X-rays from these optics are diffracted by high-efficiency Critical-Angle Transmission (CAT) gratings, and the results are imaged with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest and mission operations are straightforward, as most observations will be long (~100 ksec), uninterrupted, and pre-planned.

  7. Effect of calcium concentration on the structure of casein micelles in thin films.

    PubMed

    Müller-Buschbaum, P; Gebhardt, R; Roth, S V; Metwalli, E; Doster, W

    2007-08-01

    The structure of thin casein films prepared with spin-coating is investigated as a function of the calcium concentration. Grazing incidence small-angle x-ray scattering and atomic force microscopy are used to probe the micelle structure. For comparison, the corresponding casein solutions are investigated with dynamic light-scattering experiments. In the thin films with added calcium three types of casein structures, aggregates, micelles, and mini-micelles, are observed in coexistence with atomic force microscopy and grazing incidence small-angle x-ray scattering. With increasing calcium concentration, the size of the aggregates strongly increases, while the size of micelles slightly decreases and the size of the mini-micelles increases. This effect is explained in the framework of the particle-stabilizing properties of the hairy layer of kappa-casein surrounding the casein micelles.

  8. Effect of Calcium Concentration on the Structure of Casein Micelles in Thin Films

    PubMed Central

    Müller-Buschbaum, P.; Gebhardt, R.; Roth, S. V.; Metwalli, E.; Doster, W.

    2007-01-01

    The structure of thin casein films prepared with spin-coating is investigated as a function of the calcium concentration. Grazing incidence small-angle x-ray scattering and atomic force microscopy are used to probe the micelle structure. For comparison, the corresponding casein solutions are investigated with dynamic light-scattering experiments. In the thin films with added calcium three types of casein structures, aggregates, micelles, and mini-micelles, are observed in coexistence with atomic force microscopy and grazing incidence small-angle x-ray scattering. With increasing calcium concentration, the size of the aggregates strongly increases, while the size of micelles slightly decreases and the size of the mini-micelles increases. This effect is explained in the framework of the particle-stabilizing properties of the hairy layer of κ-casein surrounding the casein micelles. PMID:17496032

  9. Mapping the structural order of laser-induced periodic surface structures in thin polymer films by microfocus beam grazing incidence small-angle X-ray scattering.

    PubMed

    Martín-Fabiani, Ignacio; Rebollar, Esther; García-Gutiérrez, Mari Cruz; Rueda, Daniel R; Castillejo, Marta; Ezquerra, Tiberio A

    2015-02-11

    In this work we present an accurate mapping of the structural order of laser-induced periodic surface structures (LIPSS) in spin-coated thin polymer films, via a microfocus beam grazing incidence small-angle X-ray scattering (μGISAXS) scan, GISAXS modeling, and atomic force microscopy imaging all along the scanned area. This combined study has allowed the evaluation of the effects on LIPSS formation due to nonhomogeneous spatial distribution of the laser pulse energy, mapping with micrometric resolution the evolution of the period and degree of structural order of LIPSS across the laser beam diameter in a direction perpendicular to the polarization vector. The experiments presented go one step further toward controlling nanostructure formation in LIPSS through a deep understanding of the parameters that influence this process.

  10. Investigating Polymer–Metal Interfaces by Grazing Incidence Small-Angle X-Ray Scattering from Gradients to Real-Time Studies

    PubMed Central

    Schwartzkopf, Matthias; Roth, Stephan V.

    2016-01-01

    Tailoring the polymer–metal interface is crucial for advanced material design. Vacuum deposition methods for metal layer coating are widely used in industry and research. They allow for installing a variety of nanostructures, often making use of the selective interaction of the metal atoms with the underlying polymer thin film. The polymer thin film may eventually be nanostructured, too, in order to create a hierarchy in length scales. Grazing incidence X-ray scattering is an advanced method to characterize and investigate polymer–metal interfaces. Being non-destructive and yielding statistically relevant results, it allows for deducing the detailed polymer–metal interaction. We review the use of grazing incidence X-ray scattering to elucidate the polymer–metal interface, making use of the modern synchrotron radiation facilities, allowing for very local studies via in situ (so-called “stop-sputter”) experiments as well as studies observing the nanostructured metal nanoparticle layer growth in real time. PMID:28335367

  11. Determination of surface morphology of TiO2 nanostructure using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Das, Gangadhar; Kumar, Manoj; Biswas, A. K.; Khooha, Ajay; Mondal, Puspen; Tiwari, M. K.

    2017-05-01

    Nanostructures of Titanium oxide (TiO2) are being studied for many promising applications, e.g., solar photovoltaics, solar water splitting for H2 fuel generation etc., due to their excellent photo-catalytic properties. We have synthesized low-dimensional TiO2 nanoparticles by gas phase CW CO2 laser pyrolysis. The laser synthesis process has been optimized for the deposition of highly pure, nearly mono-dispersed TiO2 nanoparticles on silicon substrates. Hard x-ray standing wave-field (XSW) measurements in total reflection geometry were carried out on the BL-16 beamline of Indus-2 synchrotron radiation facility in combination with x-ray reflectivity and grazing incidence x-ray fluorescence measurements for the determination of surface morphology of the deposited TiO2 nanostructures. The average particle size of TiO2 nanostructure estimated using transmission electron microscopy (TEM) was found to closely agree with the XSW and grazing incidence x-ray diffraction (GIXRD) results.

  12. JGIXA - A software package for the calculation and fitting of grazing incidence X-ray fluorescence and X-ray reflectivity data for the characterization of nanometer-layers and ultra-shallow-implants

    NASA Astrophysics Data System (ADS)

    Ingerle, D.; Pepponi, G.; Meirer, F.; Wobrauschek, P.; Streli, C.

    2016-04-01

    Grazing incidence XRF (GIXRF) is a very surface sensitive, nondestructive analytical tool making use of the phenomenon of total external reflection of X-rays on smooth polished surfaces. In recent years the method experienced a revival, being a powerful tool for process analysis and control in the fabrication of semiconductor based devices. Due to the downscaling of the process size for semiconductor devices, junction depths as well as layer thicknesses are reduced to a few nanometers, i.e. the length scale where GIXRF is highly sensitive. GIXRF measures the X-ray fluorescence induced by an X-ray beam incident under varying grazing angles and results in angle dependent intensity curves. These curves are correlated to the layer thickness, depth distribution and mass density of the elements in the sample. But the evaluation of these measurements is ambiguous with regard to the exact distribution function for the implants as well as for the thickness and density of nanometer-thin layers. In order to overcome this ambiguity, GIXRF can be combined with X-ray reflectometry (XRR). This is straightforward, as both techniques use similar measurement procedures and the same fundamental physical principles can be used for a combined data evaluation strategy. Such a combined analysis removes ambiguities in the determined physical properties of the studied sample and, being a correlative spectroscopic method, also significantly reduces experimental uncertainties of the individual techniques. In this paper we report our approach to a correlative data analysis, based on a concurrent calculation and fitting of simultaneously recorded GIXRF and XRR data. Based on this approach we developed JGIXA (Java Grazing Incidence X-ray Analysis), a multi-platform software package equipped with a user-friendly graphic user interface (GUI) and offering various optimization algorithms. Software and data evaluation approach were benchmarked by characterizing metal and metal oxide layers on Silicon as well as Arsenic implants in Silicon. The results of the different optimization algorithms have been compared to test the convergence of the algorithms. Finally, simulations for Iron nanoparticles on bulk Silicon and on a W/C multilayer are presented, using the assumption of an unaltered X-ray Standing Wave above the surface.

  13. Part II: diffraction from two-dimensional cholera toxin crystals bound to their receptors in a lipid monolayer.

    PubMed

    Miller, C E; Majewski, J; Watkins, E B; Weygand, M; Kuhl, T L

    2008-07-01

    The structure of cholera toxin (CTAB(5)) bound to its putative ganglioside receptor, galactosyl-N-acetylgalactosaminyl (N-acetyl-neuraminyl) galactosylglucosylceramide (GM(1)), in a lipid monolayer at the air-water interface has been studied utilizing grazing incidence x-ray diffraction. Cholera toxin is one of very few proteins to be crystallized in two dimensions and characterized in a fully hydrated state. The observed grazing incidence x-ray diffraction Bragg peaks indicated cholera toxin was ordered in a hexagonal lattice and the order extended 600-800 A. The pentameric binding portion of cholera toxin (CTB(5)) improved in-plane ordering over the full toxin (CTAB(5)) especially at low pH. Disulfide bond reduction (activation of the full toxin) also increased the protein layer ordering. These findings are consistent with A-subunit flexibility and motion, which cause packing inefficiencies and greater disorder of the protein layer. Corroborative out-of-plane diffraction (Bragg rod) analysis indicated that the scattering units in the cholera layer with CTAB(5) shortened after disulfide bond reduction of the A subunit. These studies, together with Part I results, revealed key changes in the structure of the cholera toxin-lipid system under different pH conditions.

  14. Sub-arcsec X-Ray Telescope for Imaging The Solar Corona In the 0.25 - 1.2 keV Band

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis; Cash, Webster; Jelsma, Schuyler; Farmer, Jason

    1996-01-01

    We have developed an X-ray telescope that uses a new technique for focusing X-rays with grazing incidence optics. The telescope was built with spherical optics for all of its components, utilizing the high quality surfaces obtainable when polishing spherical (as opposed to aspherical) optics. We tested the prototype X-ray telescope in the 300 meter vacuum pipe at White Sands Missile Range, NM. The telescope features 2 degee graze angles with tungsten coatings, yielding a bandpass of 0.25-1.5 keV with a peak effective area of 0.8 sq cm at 0.83 keV. Results from X-ray testing at energies of 0.25 keV and 0.93 keV (C-K and Cu-L) verify 0.5 arcsecond performance at 0.93 keV. Results from modeling the X-ray telescope's response to the Sun show that the current design would be capable of recording 10 half arcsecond images of a solar active region during a 300 second NASA sounding rocket flight.

  15. Dark-field phase retrieval under the constraint of the Friedel symmetry in coherent X-ray diffraction imaging.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2014-11-17

    Coherent X-ray diffraction imaging (CXDI) is a lensless imaging technique that is suitable for visualizing the structures of non-crystalline particles with micrometer to sub-micrometer dimensions from material science and biology. One of the difficulties inherent to CXDI structural analyses is the reconstruction of electron density maps of specimen particles from diffraction patterns because saturated detector pixels and a beam stopper result in missing data in small-angle regions. To overcome this difficulty, the dark-field phase-retrieval (DFPR) method has been proposed. The DFPR method reconstructs electron density maps from diffraction data, which are modified by multiplying Gaussian masks with an observed diffraction pattern in the high-angle regions. In this paper, we incorporated Friedel centrosymmetry for diffraction patterns into the DFPR method to provide a constraint for the phase-retrieval calculation. A set of model simulations demonstrated that this constraint dramatically improved the probability of reconstructing correct electron density maps from diffraction patterns that were missing data in the small-angle region. In addition, the DFPR method with the constraint was applied successfully to experimentally obtained diffraction patterns with significant quantities of missing data. We also discuss this method's limitations with respect to the level of Poisson noise in X-ray detection.

  16. From X-Ray Telescopes to Neutron Focusing

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.; Khaykovich, B.; Ramsey, B.; Moncton, D. E.

    2011-01-01

    In the case of neutrons the refractive index is slightly less than unity for most elements and their isotopes. Consequently, thermal and cold neutrons can be reflected from smooth surfaces at grazing-incidence angles. Hence, the optical technologies developed for x-ray astronomy can be applied for neutron focusing. The focusing capabilities of grazing incidence neutron imaging optics have been successfully demonstrated using nickel mirrors. The mirrors were fabricated using an electroformed nickel replication process at Marshall Space Flight Center. Results of the neutron optics experiments will be presented. Challenges of the neutron imaging optics as well as possible applications of the optics will be discussed.

  17. X ray reflection masks: Manufacturing, characterization and first tests

    NASA Astrophysics Data System (ADS)

    Rahn, Stephen

    1992-09-01

    SXPL (Soft X-ray Projection Lithography) multilayer mirrors are characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors with a 2d in the region of 14 nm were characterized by Cu-k(alpha) grazing incidence as well as soft X-ray normal incidence reflectivity measurements. The multilayer mirrors were patterned by reactive ion etching with CF4 using a photoresist as etch mask, thus producing X-ray reflection masks. The masks were tested at the synchrotron radiation laboratory of the electron accelerator ELSA. A double crystal X-ray monochromator was modified so as to allow about 0.5 sq cm of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto a resist and structure sizes down to 8 micrometers were nicely reproduced. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  18. A new silica-infiltrated Y-TZP obtained by the sol-gel method.

    PubMed

    Campos, T M B; Ramos, N C; Machado, J P B; Bottino, M A; Souza, R O A; Melo, R M

    2016-05-01

    The aim of this study was to evaluate silica infiltration into dental zirconia (VITA In-Ceram 2000 YZ, Vita Zahnfabrik) and its effects on zirconia's surface characteristics, structural homogeneity and bonding to a resin cement. Infiltration was performed by immersion of the pre-sintered zirconia specimens in silica sols for five days (ZIn). Negative (pure zirconia specimens, ZCon-) and positive controls (specimens kept in water for 5 days, ZCon+) were also performed. After sintering, the groups were evaluated by X-ray diffraction (XRD), grazing angle X-ray diffraction (DRXR), scanning electron microscopy (SEM), contact angle measurements, optical profilometry, biaxial flexural test and shear bonding test. Weibull analysis was used to determine the Weibull modulus (m) and characteristic strength (σ0) of all groups. There were no major changes in strength for the infiltrated group, and homogeneity (m) was also increased. A layer of ZrSiO4 was formed on the surface. The bond strength to resin cement was improved after zirconia infiltration, acid conditioning and the use of an MDP primer. The sol-gel method is an efficient and simple method to increase the homogeneity of zirconia. Infiltration also improved bonding to resin cement. The performance of a zirconia infiltrated by silica gel improved in at least two ways: structural homogeneity and bonding to resin cement. The infiltration is simple to perform and can be easily managed in a prosthesis laboratory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Chemical Doping Effects in Multilayer MoS2 and its Application in Complementary Inverter.

    PubMed

    Yoo, Hocheon; Hong, Seongin; On, Sungmin; Ahn, Hyungju; Lee, Han-Koo; Hong, Young Ki; Kim, Sunkook; Kim, Jae-Joon

    2018-06-19

    Multilayer MoS2 has been gaining interests as a new semiconducting material for flexible displays, memory devices, chemical/bio sensors, and photodetectors. However, conventional multilayer MoS2 devices have exhibited limited performances due to the Schottky barrier (SB) and defects. Here, we demonstrate PDPP3T doping effects in multilayer MoS2, which results in improved electrical characteristics (~3.2X mobility compared to the baseline and a high current on/off ratio of 106). Synchrotron-based study using X-ray photoelectron spectroscopy (XPS) and grazing-incidence wide-angle X-ray diffraction (GIWAXD) provides mechanisms that align the edge-on crystallites (97.5 %) of the PDPP3T as well as a larger interaction with MoS2 that leads to dipole and charge transfer effects (at annealing temperature of 300 °C), which support the observed enhancement of the electrical characteristics. Furthermore, we demonstrate a hybrid CMOS inverter using the PDPP3T-doped MoS2 and organic DNTT transistors as n- and p-channels, respectively. The proposed hybrid inverter offers an ultra-high voltage gain of ~205 V/V.

  20. Thermal effects of laser marking on microstructure and corrosion properties of stainless steel.

    PubMed

    Švantner, M; Kučera, M; Smazalová, E; Houdková, Š; Čerstvý, R

    2016-12-01

    Laser marking is an advanced technique used for modification of surface optical properties. This paper presents research on the influence of laser marking on the corrosion properties of stainless steel. Processes during the laser beam-surface interaction cause structure and color changes and can also be responsible for reduction of corrosion resistance of the surface. Corrosion tests, roughness, microscopic, energy dispersive x-ray, grazing incidence x-ray diffraction, and ferrite content analyses were carried out. It was found that increasing heat input is the most crucial parameter regarding the degradation of corrosion resistance of stainless steel. Other relevant parameters include the pulse length and pulse frequency. The authors found a correlation between laser processing parameters, grazing incidence x-ray measurement, ferrite content, and corrosion resistance of the affected surface. Possibilities and limitations of laser marking of stainless steel in the context of the reduction of its corrosion resistance are discussed.

  1. Interfacial binding of divalent cations to calixarene-based Langmuir monolayers

    DOE PAGES

    Tulli, Ludovico G.; Wang, Wenjie; Lindemann, William R.; ...

    2015-02-20

    The interactions of Langmuir monolayers produced through the self-assembly of an amphiphilic p-carboxycalix[4]arene with a series of divalent, fourth-period transition metals, at the air-water interface, were investigated. Changes in the interfacial behavior of 1 in response to the presence of CuCl 2, CoCl 2, MnCl 2, and NiCl 2 were studied by means of Langmuir compression isotherms and Brewster angle microscopy (BAM). The measurements revealed that the self-assembly properties of 1 are significantly affected by Cu 2+ ions. The interactions of 1-based monolayers with Co 2+ and Cu 2+ ions were further investigated by means of synchrotron radiation-based X-ray reflectivitymore » (XRR), X-ray near-total-reflection fluorescence (XNTRF), and grazing incidence X-ray diffraction (GIXD). XNTRF and XRR analyses revealed that the monolayer of 1 binds more strongly to Cu 2+ than Co 2+ ions. In the presence of relatively high concentrations of Cu 2+ ions in the subphase (1.4 × 10 -3 M), XNTRF exhibited anomalous depth profile behavior and GIXD measurements showed considerably strong diffuse scattering. Furthermore, both measurements suggest the formation of Cu 2+ clusters contiguous to the monolayer of 1.« less

  2. Zintl Clusters as Wet-Chemical Precursors for Germanium Nanomorphologies with Tunable Composition.

    PubMed

    Bentlohner, Manuel M; Waibel, Markus; Zeller, Patrick; Sarkar, Kuhu; Müller-Buschbaum, Peter; Fattakhova-Rohlfing, Dina; Fässler, Thomas F

    2016-02-12

    [Ge9](4-) Zintl clusters are used as soluble germanium source for a bottom-up fabrication of Ge nanomorphologies such as inverse opal structures with tunable composition. The method is based on the assembly and oxidation of [Ge9 ](4-) clusters in a template mold using SiCl4 , GeCl4 , and PCl3 leading to Si and P-containing Ge phases as shown by X-ray diffraction, Raman spectroscopy, and energy-dispersive X-ray analysis. [Ge9](4-) clusters are retained using ethylenediamine (en) as a transfer medium to a mold after removal of the solvent if water is thoroughly excluded, but are oxidized to amorphous Ge in presence of water traces. (1)H NMR spectroscopy reveals the oxidative deprotonation of en by [Ge9](4-). Subsequent annealing leads to crystalline Ge. As an example for wet-chemical synthesis of complex Ge nanomorphologies, we describe the fabrication of undoped and P-doped inverse opal-structured Ge films with a rather low oxygen contents. The morphology of the films with regular volume porosity is characterized by SEM, TEM, and grazing incidence small-angle X-ray scattering. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Integration of Ganglioside GT1b Receptor into DPPE and DPPC Phospholipid Monolayers: An X-Ray Reflectivity and Grazing-Incidence Diffraction Study

    PubMed Central

    Miller, C. E.; Busath, D. D.; Strongin, B.; Majewski, J.

    2008-01-01

    Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structures of mixed-ganglioside GT1b-phospholipid monolayers were investigated at the air-liquid interface and compared with monolayers of the pure components. The receptor GT1b is involved in the binding of lectins and toxins, including botulinum neurotoxin, to cell membranes. Monolayers composed of 20 mol % ganglioside GT1b, the phospholipid dipalmitoyl phosphatidylethanolamine (DPPE), and the phospholipid dipalmitoyl phosphatidylcholine (DPPC) were studied in the gel phase at 23°C and at surface pressures of 20 and 40 mN/m, and at pH 7.4 and 5. Under these conditions, the two components did not phase-separate, and no evidence of domain formation was observed. The x-ray scattering measurements revealed that GT1b was intercalated within the host DPPE/DPPC monolayers, and slightly expanded DPPE but condensed the DPPC matrix. The oligosaccharide headgroups extended normally from the monolayer surfaces into the subphase. This study demonstrated that these monolayers can serve as platforms for investigating toxin membrane binding and penetration. PMID:18599631

  4. Imaging Research With Non-Periodic Multilayers for Inertial Confinement Fusion Diagnostic Experiments

    NASA Astrophysics Data System (ADS)

    L. Wang, F.; Mu, B. Z.; Wang, Z. S.; Gu, C. S.; Zhang, Z.; Qin, S. J.; Chen, L. Y.

    A grazing Kirkpatrick-Baez (K-B) microscope was designed for hard x-ray (8keV; Cu Ka radiation) imaging in Inertial Confinement Fusion (ICF) diagnostic experiments. Ray tracing software was used to simulate optical system performance. The optimized theoretical resolution of K-B microscope was about 2 micron and better than 10 micron in 200 micron field of view. Tungsten and boron carbide were chosen as multilayer materials and the multilayer was deposited onto the silicon wafer substrate and the reflectivity was measured by x-ray diffraction (XRD). The reflectivity of supermirror was about 20 % in 0.3 % of bandwidth. 8keV Cu target x-ray tube source was used in x-ray imaging experiments and the magnification of 1x and 2x x-ray images were obtained.

  5. Multiple film plane diagnostic for shocked lattice measurements (invited)

    NASA Astrophysics Data System (ADS)

    Kalantar, Daniel H.; Bringa, E.; Caturla, M.; Colvin, J.; Lorenz, K. T.; Kumar, M.; Stölken, J.; Allen, A. M.; Rosolankova, K.; Wark, J. S.; Meyers, M. A.; Schneider, M.; Boehly, T. R.

    2003-03-01

    Laser-based shock experiments have been conducted in thin Si and Cu crystals at pressures above the Hugoniot elastic limit. In these experiments, static film and x-ray streak cameras recorded x rays diffracted from lattice planes both parallel and perpendicular to the shock direction. These data showed uniaxial compression of Si(100) along the shock direction and three-dimensional compression of Cu(100). In the case of the Si diffraction, there was a multiple wave structure observed, which may be due to a one-dimensional phase transition or a time variation in the shock pressure. A new film-based detector has been developed for these in situ dynamic diffraction experiments. This large-angle detector consists of three film cassettes that are positioned to record x rays diffracted from a shocked crystal anywhere within a full π steradian. It records x rays that are diffracted from multiple lattice planes both parallel and at oblique angles with respect to the shock direction. It is a time-integrating measurement, but time-resolved data may be recorded using a short duration laser pulse to create the diffraction source x rays. This new instrument has been fielded at the OMEGA and Janus lasers to study single-crystal materials shock compressed by direct laser irradiation. In these experiments, a multiple wave structure was observed on many different lattice planes in Si. These data provide information on the structure under compression.

  6. DynAMITe: a prototype large area CMOS APS for breast cancer diagnosis using x-ray diffraction measurements

    NASA Astrophysics Data System (ADS)

    Konstantinidis, A.; Anaxagoras, T.; Esposito, M.; Allinson, N.; Speller, R.

    2012-03-01

    X-ray diffraction studies are used to identify specific materials. Several laboratory-based x-ray diffraction studies were made for breast cancer diagnosis. Ideally a large area, low noise, linear and wide dynamic range digital x-ray detector is required to perform x-ray diffraction measurements. Recently, digital detectors based on Complementary Metal-Oxide- Semiconductor (CMOS) Active Pixel Sensor (APS) technology have been used in x-ray diffraction studies. Two APS detectors, namely Vanilla and Large Area Sensor (LAS), were developed by the Multidimensional Integrated Intelligent Imaging (MI-3) consortium to cover a range of scientific applications including x-ray diffraction. The MI-3 Plus consortium developed a novel large area APS, named as Dynamically Adjustable Medical Imaging Technology (DynAMITe), to combine the key characteristics of Vanilla and LAS with a number of extra features. The active area (12.8 × 13.1 cm2) of DynaMITe offers the ability of angle dispersive x-ray diffraction (ADXRD). The current study demonstrates the feasibility of using DynaMITe for breast cancer diagnosis by identifying six breast-equivalent plastics. Further work will be done to optimize the system in order to perform ADXRD for identification of suspicious areas of breast tissue following a conventional mammogram taken with the same sensor.

  7. Note: Comparison of grazing incidence small angle x-ray scattering of a titania sponge structure at the beamlines BW4 (DORIS III) and P03 (PETRA III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawolle, M.; Koerstgens, V.; Ruderer, M. A.

    2012-10-15

    Grazing incidence small angle x-ray scattering (GISAXS) is a powerful technique for morphology investigation of nanostructured thin films. GISAXS measurements at the newly installed P03 beamline at the storage ring PETRA III in Hamburg, Germany, are compared to the GISAXS data from the beamline BW4 at the storage ring DORIS III, which had been used extensively for GISAXS investigations in the past. As an example, a titania thin film sponge structure is investigated. Compared to BW4, at beamline P03 the resolution of larger structures is slightly improved and a higher incident flux leads to a factor of 750 in scatteredmore » intensity. Therefore, the acquisition time in GISAXS geometry is reduced significantly at beamline P03.« less

  8. Development of an x-ray prism for analyzer based imaging systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bewer, Brian; Chapman, Dean

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP)more » was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.« less

  9. Development of an x-ray prism for analyzer based imaging systems

    NASA Astrophysics Data System (ADS)

    Bewer, Brian; Chapman, Dean

    2010-08-01

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.

  10. Development of an x-ray prism for analyzer based imaging systems.

    PubMed

    Bewer, Brian; Chapman, Dean

    2010-08-01

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.

  11. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  12. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  13. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.

    PubMed

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  14. Influence of gamma ray irradiation on stoichiometry of hydrothermally synthesized bismuth telluride nanoparticles

    NASA Astrophysics Data System (ADS)

    Abishek, N. S.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth telluride (Bi2Te3) nanoparticles were synthesized by the hydrothermal method at 200 °C for 24 h. The synthesized Bi2Te3 nanoparticles were irradiated with gamma rays at doses of 50 kGy and 100 kGy. The structural characterization of the pre-irradiated and post-irradiated samples was carried out by X-ray diffraction technique and was found to have rhombohedral phase having R3 ¯m (166) space group. The X-ray diffraction peaks were found to shift towards lower diffraction angle with gamma ray irradiation. The morphologies and compositions of the grown Bi2Te3 nanoparticles were studied using Field Emission Scanning Electron Microscope and X-ray energy dispersive analysis, respectively. The possible cause for the shift in the X-ray diffraction peaks with gamma ray irradiation has been discussed in the present work.

  15. Grazing incidence synchrotron X-ray diffraction of marbles consolidated with diammonium hydrogen phosphate treatments: non-destructive probing of buried minerals

    NASA Astrophysics Data System (ADS)

    Possenti, Elena; Colombo, Chiara; Conti, Claudia; Gigli, Lara; Merlini, Marco; Plaisier, Jasper Rikkert; Realini, Marco; Gatta, G. Diego

    2018-05-01

    Diammonium hydrogen phosphate (DAP)-based consolidating treatments react with carbonatic stones and form calcium phosphates phases, whose composition depends on the availability of free calcium ions. In this work, an innovative non-destructive approach based on grazing incidence X-ray diffraction (GIXRD) with synchrotron radiation (SR) is used to investigate DAP-treated Carrara marble specimens and to study the influence of the substrate composition on the crystallization of calcium phosphate phases. The outcomes indicate that the presence of compositional micro-heterogeneity of Carrara marble favours the formation of specific phases. Dicalcium phosphate dihydrate, a calcium phosphate with a low Ca/P molar ratio, is formed on carbonatic phases with a low Ca amount, such as dolomite grains and Mg-containing veins. Furthermore, this study highlights the potentialities of SR-GIXRD as a powerful non-destructive tool for the diagnostic of Cultural Heritage objects since it allows investigating the conservation history of stone materials and their interaction with the environment.

  16. Polarized vacuum ultraviolet and X-radiation

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1978-01-01

    The most intense source of polarized vacuum UV and X radiation is synchrotron radiation, which exhibits a degree of partially polarized light between about 80-100%. However, the radiation transmitted by vacuum UV monochromators can also be highly polarized. The Seya-Namioka type of monochromator can produce partially polarized radiation between 50-80%. For certain experiments it is necessary to know the degree of polarization of the radiation being used. Also, when synchrotron radiation and a monochromator are combined the polarization characteristic of both should be known in order to make full use of these polarization properties. The polarizing effect of monochromators (i.e., diffraction gratings) have been measured at the Seya angle and at grazing angles for various spectral orders. Experimental evidence is presented which shows that the reciprocity law holds for polarization by reflection where the angle of incidence and diffraction are unequal. These results are reviewed along with the techniques for measuring the degree of polarization.

  17. Electroform replication used for multiple X-ray mirror production

    NASA Technical Reports Server (NTRS)

    Kowalski, M. P.; Ulmer, M. P.; Purcell, W. R., Jr.; Loughlin, J. E. A.

    1984-01-01

    The electroforming technique for producing X-ray mirrors is described, and results of X-ray tests performed on copies made from a simple conical mandrel are reported. The design of the mandrel is depicted and the total reflectivity as well as the full-wave half modulation resolution are shown as a function of energy. The reported work has improved on previous studies by providing smaller grazing angles, making measurements at higher energies, producing about four times as many replicas from one mandrel, and obtaining better angular resolution.

  18. Influence of RF excitation during pulsed laser deposition in oxygen atmosphere on the structural properties and luminescence of nanocrystalline ZnO:Al thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meljanac, Daniel, E-mail: dmeljan@irb.hr; Plodinec, Milivoj; Siketić, Zdravko

    2016-03-15

    Thin ZnO:Al layers were deposited by pulsed laser deposition in vacuum and in oxygen atmosphere at gas pressures between 10 and 70 Pa and by applying radio-frequency (RF) plasma. Grazing incidence small angle x-ray scattering and grazing incidence x-ray diffraction (GIXRD) data showed that an increase in the oxygen pressure leads to an increase in the roughness, a decrease in the sample density, and changes in the size distribution of nanovoids. The nanocrystal sizes estimated from GIXRD were around 20 nm, while the sizes of the nanovoids increased from 1 to 2 nm with the oxygen pressure. The RF plasma mainly influenced themore » nanostructural properties and point defects dynamics. The photoluminescence consisted of three contributions, ultraviolet (UV), blue emission due to Zn vacancies, and red emission, which are related to an excess of oxygen. The RF excitation lowered the defect level related to blue emission and narrowed the UV luminescence peak, which indicates an improvement of the structural ordering. The observed influence of the deposition conditions on the film properties is discussed as a consequence of two main effects: the variation of the energy transfer from the laser plume to the growing film and changes in the growth chemistry.« less

  19. Effect of Backbone Chemistry on the Structure of Polyurea Films Deposited by Molecular Layer Deposition

    DOE PAGES

    Bergsman, David S.; Closser, Richard G.; Tassone, Christopher J.; ...

    2017-01-01

    An experimental investigation into the growth of polyurea films by molecular layer deposition was performed by examining trends in the growth rate, crystallinity, and orientation of chains as a function of backbone flexibility. Growth curves obtained for films containing backbones of aliphatic and phenyl groups indicate that an increase in backbone flexibility leads to a reduction in growth rate from 4 to 1 Å/cycle. Crystallinity measurements collected using grazing incidence X-ray diffraction and Fourier transform infrared spectroscopy suggest that some chains form paracrystalline, out-of-plane stacks of polymer segments with packing distances ranging from 4.4 to 3.7 Å depending on themore » monomer size. Diffraction intensity is largely a function of the homogeneity of the backbone. Near-edge X-ray absorption fine structure measurements for thin and thick samples show an average chain orientation of ~25° relative to the substrate across all samples, suggesting that changes in growth rate are not caused by differences in chain angle but instead may be caused by differences in the frequency of chain terminations. In conclusion, these results suggest a model of molecular layer deposition-based chain growth in which films consist of a mixture of upward growing chains and horizontally aligned layers of paracrystalline polymer segments.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, Kohki, E-mail: nagata.koki@iri-tokyo.jp; School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571; Ogura, Atsushi

    The effects of the fabrication process conditions on the microstructure of silicon dioxide thin films of <10 nm thickness are presented. The microstructure was investigated using grazing-incidence wide and small-angle X-ray scattering methods with synchrotron radiation. The combination of a high brilliance light source and grazing incident configuration enabled the observation of very weak diffuse X-ray scattering from SiO{sub 2} thin films. The results revealed different microstructures, which were dependent on oxidizing species or temperature. The micro-level properties differed from bulk properties reported in the previous literature. It was indicated that these differences originate from inner stress. The detailed structure inmore » an amorphous thin film was not revealed owing to detection difficulties.« less

  1. Development of an X-ray prism for a combined diffraction enhanced imaging and fluorescence imaging system

    NASA Astrophysics Data System (ADS)

    Bewer, Brian E.

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These X-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing a large change in intensity for a small angle change introduced by the X-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultra small angle X-ray scattering (USAXS) contrast thus improving visualization and extending the utility of X-ray imaging. To improve on the current DEI technique this body of work describes the design of an X-ray prism (XRP) included in the imaging system which allows the analyzer crystal to be aligned anywhere on the rocking curve without moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from muradians for direct mechanical movement of the analyzer crystal to milliradian control for movement the XRP angle. In addition to using an XRP for the traditional DEI acquisition method of two scans on opposite sides of the rocking curve preliminary tests will be presented showing the potential of using an XRP to scan quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single fast measurement thus removing the occurrence of motion artifacts for each point or line used during a scan. The XRP design is also intended to be compatible with combined imaging systems where more than one technique is used to investigate a sample. Candidates for complimentary techniques are investigated and measurements from a combined X-ray imaging system are presented.

  2. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  3. Nanofiber-Based Bulk-Heterojunction Organic Solar Cells Using Coaxial Electrospinning

    DTIC Science & Technology

    2012-01-01

    chains are likely oriented with the [010] direction, perpendicular to the substrate, in the fi lm device. Glancing incidence X - ray diffraction (GIXD...Electron and X - ray diffraction measurements were per- formed in order to study the structural order in annealed fi bers and devices. For reference... angle X - ray scattering (SAXS/WAXS) beamline 7.3.3 of the Advanced Light Source at Lawrence Berkeley National Laboratory at 10 keV (1.24 Å) from a bend

  4. Peculiarities of section topograms for the multiple diffraction of X rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohn, V. G., E-mail: kohnvict@yandex.ru; Smirnova, I. A.

    The distortion of interference fringes on the section topograms of single crystal due to the multiple diffraction of X rays has been investigated. The cases of the 220 and 400 reflections in a silicon crystal in the form of a plate with a surface oriented normally to the [001] direction are considered both theoretically and experimentally. The same section topogram exhibits five cases of multiple diffraction at small azimuthal angles for the 400 reflection and MoK{sub α} radiation, while the topogram for the 220 reflection demonstrates two cases of multiple diffraction. All these cases correspond to different combinations of reciprocalmore » lattice vectors. Exact theoretical calculations of section topograms for the aforementioned cases of multiple diffraction have been performed for the first time. The section topograms exhibit two different distortion regions. The distortions in the central region of the structure are fairly complex and depend strongly on the azimuthal angle. In the tails of the multiple diffraction region, there is a shift of two-beam interference fringes, which can be observed even with a laboratory X-ray source.« less

  5. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGES

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; ...

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  6. Enhancing resolution in coherent x-ray diffraction imaging.

    PubMed

    Noh, Do Young; Kim, Chan; Kim, Yoonhee; Song, Changyong

    2016-12-14

    Achieving a resolution near 1 nm is a critical issue in coherent x-ray diffraction imaging (CDI) for applications in materials and biology. Albeit with various advantages of CDI based on synchrotrons and newly developed x-ray free electron lasers, its applications would be limited without improving resolution well below 10 nm. Here, we review the issues and efforts in improving CDI resolution including various methods for resolution determination. Enhancing diffraction signal at large diffraction angles, with the aid of interference between neighboring strong scatterers or templates, is reviewed and discussed in terms of increasing signal-to-noise ratio. In addition, we discuss errors in image reconstruction algorithms-caused by the discreteness of the Fourier transformations involved-which degrade the spatial resolution, and suggest ways to correct them. We expect this review to be useful for applications of CDI in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.

  7. X-ray mirror development and testing for the ATHENA mission

    NASA Astrophysics Data System (ADS)

    Della Monica Ferreira, Desiree; Jakobsen, Anders C.; Massahi, Sonny; Christensen, Finn E.; Shortt, Brian; Garnæs, Jørgen; Torras-Rosell, Antoni; Krumrey, Michael; Cibik, Levent; Marggraf, Stefanie

    2016-07-01

    This study reports development and testing of coatings on silicon pore optics (SPO) substrates including pre and post coating characterisation of the x-ray mirrors using Atomic Force Microscopy (AFM) and X-ray reflectometry (XRR) performed at the 8 keV X-ray facility at DTU Space and with synchrotron radiation in the laboratory of PTB at BESSY II. We report our findings on surface roughness and coating reflectivity of Ir/B4C coatings considering the grazing incidence angles and energies of ATHENA and long term stability of Ir/B4C, Pt/B4C, W/Si and W/B4C coatings.

  8. Transmission grating spectroscopy and the Advanced X-ray Astrophysics Facility (AXAF)

    NASA Technical Reports Server (NTRS)

    Schattenburg, M. L.; Canizares, C. R.; Dewey, D.; Levine, A. M.; Markert, T. H.

    1988-01-01

    The use of transmission gratings with grazing-incidence telescopes in celestial X-ray astrononmy is reviewed. The basic properties of transmission grating spectrometers and the use of 'phased' gratings to enhance the diffraction efficiency are outlined. The fabrication of the gratings is examined, giving special attention to the AXAF High Energy Transmission Grating. The performance of finite-period thick gratings is briefly discussed, and the performance of the transmission grating spectrometers planned for SPECTROSAT and AXAF are examined.

  9. Development of W/C soft x-ray multilayer mirror by ion beam sputtering (IBS) system for below 50A wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, A.; Bhattacharyya, D.

    A home-made Ion Beam Sputtering (IBS) system has been developed in our laboratory. Using the IBS system single layer W and single layer C film has been deposited at 1000eV Ar ion energy and 10mA ion current. The W-film has been characterized by grazing Incidence X-ray reflectrometry (GIXR) technique and Atomic Force Microscope technique. The single layer C-film has been characterized by Spectroscopic Ellipsometric technique. At the same deposition condition 25-layer W/C multilayer film has been deposited which has been designed for using as mirror at 30 Degree-Sign grazing incidence angle around 50A wavelength. The multilayer sample has been characterizedmore » by measuring reflectivity of CuK{alpha} radiation and soft x-ray radiation around 50A wavelength.« less

  10. Effects of interfaces on the thermal conductivity in Si/Si0.75Ge0.25 multilayer with varying Au layers

    NASA Astrophysics Data System (ADS)

    Hu, Yangsen; Wu, Zhenghua; Ye, Fengjie; Hu, Zhiyu

    2018-02-01

    The manoeuvre of thermal transport property across multilayer films with inserted metal layers through controlling the metal-nonmetal interfaces is of fundamental interest. In this work, amorphous Si/Si0.75Ge0.25 multilayer films inserted with varying Au layers were fabricated by magnetron sputtering. The structure and sharp interface of multilayers films were characterized by low angle x-ray diffraction (LAXRD), grazing incidence small angle x-ray scattering (GISAXS) and scanning electron microscopy (SEM). A differential 3ω method was applied to measure the effective thermal conductivity. The measurements show that thermal conductivity has changed as varying Au layers. Thermal conductivity increased from 0.94 to 1.31 Wm-1K-1 while Si0.75Ge0.25 layer was replaced by different Au layers, which was attributed to the strong electron-phonon coupling and interface thermal resistance in a metal-nonmetal multilayered system. Theoretical calculation combined with experimental results indicate that the thermal conductivity of the multilayer film could be facilely controlled by introducing different number of nanoconstructed metal-nonmetal interfaces, which provide a more insightful understanding of the thermal transport manipulation mechanism of the thin film system with inserting metal layers.

  11. Neutron Reflectivity and Grazing Angle Diffraction

    PubMed Central

    Ankner, J. F.; Majkrzak, C. F.; Satija, S. K.

    1993-01-01

    Over the last 10 years, neutron reflectivity has emerged as a powerful technique for the investigation of surface and interfacial phenomena in many different fields. In this paper, a short review of some of the work on neutron reflectivity and grazing-angle diffraction as well as a description of the current and planned neutron rcflectometers at NIST is presented. Specific examples of the characterization of magnetic, superconducting, and polymeric surfaces and interfaces are included. PMID:28053457

  12. Diffracted diffraction radiation and its application to beam diagnostics

    NASA Astrophysics Data System (ADS)

    Goponov, Yu. A.; Shatokhin, R. A.; Sumitani, K.; Syshchenko, V. V.; Takabayashi, Y.; Vnukov, I. E.

    2018-03-01

    We present theoretical considerations for diffracted diffraction radiation and also propose an application of this process to diagnosing ultra-relativistic electron (positron) beams for the first time. Diffraction radiation is produced when relativistic particles move near a target. If the target is a crystal or X-ray mirror, diffraction radiation in the X-ray region is expected to be diffracted at the Bragg angle and therefore be detectable. We present a scheme for applying this process to measurements of the beam angular spread, and consider how to conduct a proof-of-principle experiment for the proposed method.

  13. Grazing-incidence coherent x-ray imaging in true reflection geometry

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Jiang, Zhang; Strzalka, Joseph; Wang, Jin

    2012-02-01

    The development of the 3^rd and 4^th generation synchrotrons has stimulated extensive research activities in x-ray imaging techniques. Among all, coherent diffractive imaging (CDI) shows great promise, as its resolution is only limited by the wavelength of the source. Most of the CDI work reported thus far used transmission geometry, which however is not suitable for samples on opaque substrates or in which only the surfaces are the regions of interest. Even though two groups have performed CDI experiments (using laser or x-ray) in reflection geometry and succeeded in reconstructing the planar image of the surface, the theoretical underpinnings and analysis approaches of their techniques are essentially identical to transmission CDI. Most importantly, they couldn't obtain the structural information along sample thickness direction. Here, we introduce a reflection CDI technique that works at grazing-incidence geometry. By visualizing Au nanostructures fabricated on Si substrate, we demonstrate that this innovative imaging technique is capable of obtaining both 2D and 3D information of surfaces or buried structures in the samples. In the meanwhile, we will also explain the grazing-incidence-scattering based-algorithm developed for 3D phase retrieval.

  14. Materials for x-ray refractive lenses minimizing wavefront distortions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Thomas; Alianelli, Lucia; Lengeler, Daniel

    2017-06-09

    Refraction through curved surfaces, reflection from curved mirrors in grazing incidence, and diffraction from Fresnel zone plates are key hard x-ray focusing mechanisms. In this article, we present materials used for refractive x-ray lenses. Important properties of such x-ray lenses include focusing strength, shape, and the material’s homogeneity and absorption coefficient. Both the properties of the initial material and the fabrication process result in a lens with imperfections, which can lead to unwanted wavefront distortions. Different fabrication methods for one-dimensional and two-dimensional focusing lenses are presented, together with the respective benefits and inconveniences that are mostly due to shape fidelity.more » Different materials and material grades have been investigated in terms of their homogeneity and the absence of inclusions. Single-crystalline materials show high homogeneity, but suffer from unwanted diffracted radiation, which can be avoided using amorphous materials. Lastly, we show that shape imperfections can be corrected using a correction lens.« less

  15. Risk and benefit of diffraction in Energy Dispersive X-ray fluorescence mapping

    NASA Astrophysics Data System (ADS)

    Nikonow, Wilhelm; Rammlmair, Dieter

    2016-11-01

    Energy dispersive X-ray fluorescence mapping (μ-EDXRF) is a fast and non-destructive method for chemical quantification and therefore used in many scientific fields. The combination of spatial and chemical information is highly valuable for understanding geological processes. Problems occur with crystalline samples due to diffraction, which appears according to Bragg's law, depending on the energy of the X-ray beam, the incident angle and the crystal parameters. In the spectra these peaks can overlap with element peaks suggesting higher element concentrations. The aim of this study is to investigate the effect of diffraction, the possibility of diffraction removal and potential geoscientific applications for X-ray mapping. In this work the μ-EDXRF M4 Tornado from Bruker was operated with a Rh-tube and polychromatic beam with two SDD detectors mounted each at ± 90° to the tube. Due to the polychromatic beam the Bragg condition fits for several mineral lattice planes. Since diffraction depends on the angle, it is shown that a novel correction approach can be applied by measuring from two different angles and calculating the minimum spectrum of both detectors gaining a better limit of quantification for this method. Furthermore, it is possible to use the diffraction information for separation of differently oriented crystallites within a monomineralic aggregate and obtain parameters like particle size distribution for the sample, as it is done by thin section image analysis in cross-polarized light. Only with μ-EDXRF this can be made on larger samples without preparation of thin sections.

  16. Radiation damage in polymer films from grazing-incidence X-ray scattering measurements

    DOE PAGES

    Vaselabadi, Saeed Ahmadi; Shakarisaz, David; Ruchhoeft, Paul; ...

    2016-02-16

    Grazing-incidence X-ray scattering (GIXS) is widely used to analyze the crystallinity and nanoscale structure in thin polymer films. However, ionizing radiation will generate free radicals that initiate cross-linking and/or chain scission, and structural damage will impact the ordering kinetics, thermodynamics, and crystallinity in many polymers. We report a simple methodology to screen for beam damage that is based on lithographic principles: films are exposed to patterns of x-ray radiation, and changes in polymer structure are revealed by immersing the film in a solvent that dissolves the shortest chains. The experiments are implemented with high throughput using the standard beam linemore » instrumentation and a typical GIXS configuration. The extent of damage (at a fixed radiation dose) depends on a range of intrinsic material properties and experimental variables, including the polymer chemistry and molecular weight, exposure environment, film thickness, and angle of incidence. The solubility switch for common polymers is detected within 10-60 sec at ambient temperature, and we verified that this first indication of damage corresponds with the onset of network formation in glassy polystyrene and a loss of crystallinity in polyalkylthiophenes. Therefore, grazing-incidence x-ray patterning offers an efficient approach to determine the appropriate data acquisition times for any GIXS experiment.« less

  17. HERO: Program Status and Fist Images from a Balloon-Borne Focusing Hard-X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; Alexander, C. D.; Apple, J. A.; Benson, C. M.; Dietz, K. L.; Elsner, R. F.; Engelhaupt. D. E.; Ghosh, K. K.; Kolodziejczak, J. J.; ODell, S. L.; hide

    2001-01-01

    HERO is a balloon payload featuring shallow-graze angle replicated optics for hard-x-ray imaging. When completed, the instrument will offer unprecedented sensitivity in the hard-x-ray region, giving thousands of sources to choose from for detailed study on long flights. A recent proof-of-concept flight captured the first hard-x-ray focused images of the Crab Nebula, Cygnus X-1 and GRS 1915+105. Full details of the HERO program are presented, including the design and performance of the optics, the detectors and the gondola. Results from the recent proving flight are discussed together with expected future performance when the full science payload is completed.

  18. CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules

    NASA Astrophysics Data System (ADS)

    Sarangi, S. N.; Sahu, S. N.; Nozaki, S.

    2018-03-01

    CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of <220>. Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.

  19. Argon-ion-induced formation of nanoporous GaSb layer: Microstructure, infrared luminescence, and vibrational properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, D. P.; Som, T., E-mail: tsom@iopb.res.in; Kanjilal, A.

    2014-07-21

    Room temperature implantation of 60 keV Ar{sup +}-ions in GaSb to the fluences of 7 × 10{sup 16} to 3 × 10{sup 18} ions cm{sup −2} is carried out at two incidence angles, viz 0° and 60°, leading to formation of a nanoporous layer. As the ion fluence increases, patches grow on the porous layer under normal ion implantation, whereas the porous layer gradually becomes embedded under a rough top surface for oblique incidence of ions. Grazing incidence x-ray diffraction and cross-sectional transmission electron microscopy studies reveal the existence of nanocrystallites embedded in the ion-beam amorphized GaSb matrix up to the highest fluence used inmore » our experiment. Oxidation of the nanoporous layers becomes obvious from x-ray photoelectron spectroscopy and Raman mapping. The correlation of ion-beam induced structural modification with photoluminescence signals in the infrared region has further been studied, showing defect induced emission of additional peaks near the band edge of GaSb.« less

  20. Yes, one can obtain better quality structures from routine X-ray data collection.

    PubMed

    Sanjuan-Szklarz, W Fabiola; Hoser, Anna A; Gutmann, Matthias; Madsen, Anders Østergaard; Woźniak, Krzysztof

    2016-01-01

    Single-crystal X-ray diffraction structural results for benzidine dihydrochloride, hydrated and protonated N,N,N,N-peri(dimethylamino)naphthalene chloride, triptycene, dichlorodimethyltriptycene and decamethylferrocene have been analysed. A critical discussion of the dependence of structural and thermal parameters on resolution for these compounds is presented. Results of refinements against X-ray data, cut off to different resolutions from the high-resolution data files, are compared to structural models derived from neutron diffraction experiments. The Independent Atom Model (IAM) and the Transferable Aspherical Atom Model (TAAM) are tested. The average differences between the X-ray and neutron structural parameters (with the exception of valence angles defined by H atoms) decrease with the increasing 2θmax angle. The scale of differences between X-ray and neutron geometrical parameters can be significantly reduced when data are collected to the higher, than commonly used, 2θmax diffraction angles (for Mo Kα 2θmax > 65°). The final structural and thermal parameters obtained for the studied compounds using TAAM refinement are in better agreement with the neutron values than the IAM results for all resolutions and all compounds. By using TAAM, it is still possible to obtain accurate results even from low-resolution X-ray data. This is particularly important as TAAM is easy to apply and can routinely be used to improve the quality of structural investigations [Dominiak (2015 ▸). LSDB from UBDB. University of Buffalo, USA]. We can recommend that, in order to obtain more adequate (more accurate and precise) structural and displacement parameters during the IAM model refinement, data should be collected up to the larger diffraction angles, at least, for Mo Kα radiation to 2θmax = 65° (sin θmax/λ < 0.75 Å(-1)). The TAAM approach is a very good option to obtain more adequate results even using data collected to the lower 2θmax angles. Also the results of translation-libration-screw (TLS) analysis and vibrational entropy values are more reliable for 2θmax > 65°.

  1. Correct interpretation of diffraction properties of quartz crystals for X-ray optics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xian-Rong; Gog, Thomas; Kim, Jungho

    Quartz has hundreds of strong Bragg reflections that may offer a great number of choices for making fixed-angle X-ray analyzers and polarizers at virtually any hard X-ray energies with selectable resolution. However, quartz crystals, unlike silicon and germanium, are chiral and may thus appear in two different forms of handedness that are mirror images. Furthermore, because of the threefold rotational symmetry along thecaxis, the {h 1h 2h 3L} and {h 2h 1h 3L} Bragg reflections may have quite different Darwin bandwidth, reflectivity and angular acceptance, although they have the same Bragg angle. The design of X-ray optics from quartz crystalsmore » therefore requires unambiguous determination of the orientation, handedness and polarity of the crystals. The Laue method and single-axis diffraction technique can provide such information, but the variety of conventions used in the literature to describe quartz structures has caused widespread confusion. The current studies give detailed guidelines for design and fabrication of quartz X-ray optics, with special emphasis on the correct interpretation of Laue patterns in terms of the crystallography and diffraction properties of quartz. Meanwhile, the quartz crystals examined were confirmed by X-ray topography to have acceptably low densities of dislocations and other defects, which is the foundation for developing high-resolution quartz-based X-ray optics.« less

  2. SMART-X: Square Meter, Arcsecond Resolution Telescope for X-rays

    NASA Astrophysics Data System (ADS)

    Vikhlinin, Alexey; SMART-X Collaboration

    2013-04-01

    SMART-X is a concept for a next-generation X-ray observatory with large-area, 0.5" angular resolution grazing incidence adjustable X-ray mirrors, high-throughput critical angle transmission gratings, and X-ray microcalorimeter and CMOS-based imager in the focal plane. High angular resolution is enabled by new technology based on controlling the shape of mirror segments using thin film piezo actuators deposited on the back surface. Science applications include observations of growth of supermassive black holes since redshifts of ~10, ultra-deep surveys over 10's of square degrees, galaxy assembly at z=2-3, as well as new opportunities in the high-resolution X-ray spectroscopy and time domains. We also review the progress in technology development, tests, and mission design over the past year.

  3. Geant4 simulations of soft proton scattering in X-ray optics. A tentative validation using laboratory measurements

    NASA Astrophysics Data System (ADS)

    Fioretti, Valentina; Mineo, Teresa; Bulgarelli, Andrea; Dondero, Paolo; Ivanchenko, Vladimir; Lei, Fan; Lotti, Simone; Macculi, Claudio; Mantero, Alfonso

    2017-12-01

    Low energy protons (< 300 keV) can enter the field of view of X-ray telescopes, scatter on their mirror surfaces at small incident angles, and deposit energy on the detector. This phenomenon can cause intense background flares at the focal plane decreasing the mission observing time (e.g. the XMM-Newton mission) or in the most extreme cases, damaging the X-ray detector. A correct modelization of the physics process responsible for the grazing angle scattering processes is mandatory to evaluate the impact of such events on the performance (e.g. observation time, sensitivity) of future X-ray telescopes as the ESA ATHENA mission. The Remizovich model describes particles reflected by solids at glancing angles in terms of the Boltzmann transport equation using the diffuse approximation and the model of continuous slowing down in energy. For the first time this solution, in the approximation of no energy losses, is implemented, verified, and qualitatively validated on top of the Geant4 release 10.2, with the possibility to add a constant energy loss to each interaction. This implementation is verified by comparing the simulated proton distribution to both the theoretical probability distribution and with independent ray-tracing simulations. Both the new scattering physics and the Coulomb scattering already built in the official Geant4 distribution are used to reproduce the latest experimental results on grazing angle proton scattering. At 250 keV multiple scattering delivers large proton angles and it is not consistent with the observation. Among the tested models, the single scattering seems to better reproduce the scattering efficiency at the three energies but energy loss obtained at small scattering angles is significantly lower than the experimental values. In general, the energy losses obtained in the experiment are higher than what obtained by the simulation. The experimental data are not completely representative of the soft proton scattering experienced by current X-ray telescopes because of the lack of measurements at low energies (< 200 keV) and small reflection angles, so we are not able to address any of the tested models as the one that can certainly reproduce the scattering behavior of low energy protons expected for the ATHENA mission. We can, however, discard multiple scattering as the model able to reproduce soft proton funnelling, and affirm that Coulomb single scattering can represent, until further measurements at lower energies are available, the best approximation of the proton scattered angular distribution at the exit of X-ray optics.

  4. Use of a miniature diamond-anvil cell in high-pressure single-crystal neutron Laue diffraction

    PubMed Central

    Binns, Jack; Kamenev, Konstantin V.; McIntyre, Garry J.; Moggach, Stephen A.; Parsons, Simon

    2016-01-01

    The first high-pressure neutron diffraction study in a miniature diamond-anvil cell of a single crystal of size typical for X-ray diffraction is reported. This is made possible by modern Laue diffraction using a large solid-angle image-plate detector. An unexpected finding is that even reflections whose diffracted beams pass through the cell body are reliably observed, albeit with some attenuation. The cell body does limit the range of usable incident angles, but the crystallographic completeness for a high-symmetry unit cell is only slightly less than for a data collection without the cell. Data collections for two sizes of hexamine single crystals, with and without the pressure cell, and at 300 and 150 K, show that sample size and temperature are the most important factors that influence data quality. Despite the smaller crystal size and dominant parasitic scattering from the diamond-anvil cell, the data collected allow a full anisotropic refinement of hexamine with bond lengths and angles that agree with literature data within experimental error. This technique is shown to be suitable for low-symmetry crystals, and in these cases the transmission of diffracted beams through the cell body results in much higher completeness values than are possible with X-rays. The way is now open for joint X-ray and neutron studies on the same sample under identical conditions. PMID:27158503

  5. Tunable hard X-ray spectrometer utilizing asymmetric planes of a quartz transmission crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seely, John F., E-mail: seelyjf@gmail.com; Feldman, Uri; Henins, Albert

    2016-05-15

    A Cauchois type hard x-ray spectrometer was developed that utilizes the (301) diffraction planes at an asymmetric angle of 23.51° to the normal to the surface of a cylindrically curved quartz transmission crystal. The energy coverage is tunable by rotating the crystal and the detector arm, and spectra were recorded in the 8 keV to 20 keV range with greater than 2000 resolving power. The high resolution results from low aberrations enabled by the nearly perpendicular angle of the diffracted rays with the back surface of the crystal. By using other asymmetric planes of the same crystal and rotating tomore » selected angles, the spectrometer can operate with high resolution up to 50 keV.« less

  6. Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources.

    PubMed

    Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas

    2017-09-01

    Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu K α wavelength with a photon flux of up to 10 9 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source.

  7. Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources

    PubMed Central

    Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas

    2017-01-01

    Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu Kα wavelength with a photon flux of up to 109 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source. PMID:28795079

  8. Geant4 simulations of a wide-angle x-ray focusing telescope

    NASA Astrophysics Data System (ADS)

    Zhao, Donghua; Zhang, Chen; Yuan, Weimin; Zhang, Shuangnan; Willingale, Richard; Ling, Zhixing

    2017-06-01

    The rapid development of X-ray astronomy has been made possible by widely deploying X-ray focusing telescopes on board many X-ray satellites. Geant4 is a very powerful toolkit for Monte Carlo simulations and has remarkable abilities to model complex geometrical configurations. However, the library of physical processes available in Geant4 lacks a description of the reflection of X-ray photons at a grazing incident angle which is the core physical process in the simulation of X-ray focusing telescopes. The scattering of low-energy charged particles from the mirror surfaces is another noteworthy process which is not yet incorporated into Geant4. Here we describe a Monte Carlo model of a simplified wide-angle X-ray focusing telescope adopting lobster-eye optics and a silicon detector using the Geant4 toolkit. With this model, we simulate the X-ray tracing, proton scattering and background detection. We find that: (1) the effective area obtained using Geant4 is in agreement with that obtained using Q software with an average difference of less than 3%; (2) X-rays are the dominant background source below 10 keV; (3) the sensitivity of the telescope is better by at least one order of magnitude than that of a coded mask telescope with the same physical dimensions; (4) the number of protons passing through the optics and reaching the detector by Firsov scattering is about 2.5 times that of multiple scattering for the lobster-eye telescope.

  9. X-ray diffraction-based electronic structure calculations and experimental x-ray analysis for medical and materials applications

    NASA Astrophysics Data System (ADS)

    Mahato, Dip Narayan

    This thesis includes x-ray experiments for medical and materials applications and the use of x-ray diffraction data in a first-principles study of electronic structures and hyperfine properties of chemical and biological systems. Polycapillary focusing lenses were used to collect divergent x rays emitted from conventional x-ray tubes and redirect them to form an intense focused beam. These lenses are routinely used in microbeam x-ray fluorescence analysis. In this thesis, their potential application to powder diffraction and focused beam orthovoltage cancer therapy has been investigated. In conventional x-ray therapy, very high energy (˜ MeV) beams are used, partly to reduce the skin dose. For any divergent beam, the dose is necessarily highest at the entry point, and decays exponentially into the tissue. To reduce the skin dose, high energy beams, which have long absorption lengths, are employed, and rotated about the patient to enter from different angles. This necessitates large expensive specialized equipment. A focused beam could concentrate the dose within the patient. Since this is inherently skin dose sparing, lower energy photons could be employed. A primary concern in applying focused beams to therapy is whether the focus would be maintained despite Compton scattering within the tissue. To investigate this, transmission and focal spot sizes as a function of photon energy of two polycapillary focusing lenses were measured. The effects of tissue-equivalent phantoms of different thicknesses on the focal spot size were studied. Scatter fraction and depth dose were calculated. For powder diffraction, the polycapillary optics provide clean Gaussian peaks, which result in angular resolution that is much smaller than the peak width due to the beam convergence. Powder diffraction (also called coherent scatter) without optics can also be used to distinguish between tissue types that, because they have different nanoscale structures, scatter at different angles. Measurements were performed on the development of coherent scatter imaging to provide tissue type information in mammography. Atomic coordinates from x-ray diffraction data were used to study the nuclear quadrupole interactions and nature of molecular binding in DNA/RNA nucleobases and molecular solid BF3 systems.

  10. Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells.

    PubMed

    Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U-Ser; Lin, Hao-Wu

    2015-09-04

    The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.

  11. Insight into Evolution, Processing and Performance of Multi-length-scale Structures in Planar Heterojunction Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Ching; Tsao, Cheng-Si; Cho, Yi-Ju; Chen, Kuan-Chen; Chiang, Kai-Ming; Hsiao, Sheng-Yi; Chen, Chang-Wen; Su, Chun-Jen; Jeng, U.-Ser; Lin, Hao-Wu

    2015-09-01

    The structural characterization correlated to the processing control of hierarchical structure of planar heterojunction perovskite layer is still incomplete due to the limitations of conventional microscopy and X-ray diffraction. This present study performed the simultaneously grazing-incidence small-angle scattering and wide-angle scattering (GISAXS/GIWAXS) techniques to quantitatively probe the hierarchical structure of the planar heterojunction perovskite solar cells. The result is complementary to the currently microscopic study. Correlation between the crystallization behavior, crystal orientation, nano- and meso-scale internal structure and surface morphology of perovskite film as functions of various processing control parameters is reported for the first time. The structural transition from the fractal pore network to the surface fractal can be tuned by the chloride percentage. The GISAXS/GIWAXS measurement provides the comprehensive understanding of concurrent evolution of the film morphology and crystallization correlated to the high performance. The result can provide the insight into formation mechanism and rational synthesis design.

  12. Investigation of solid phase composition on tablet surfaces by grazing incidence X-ray diffraction.

    PubMed

    Koradia, Vishal; Tenho, Mikko; Lopez de Diego, Heidi; Ringkjøbing-Elema, Michiel; Møller-Sonnergaard, Jørn; Salonen, Jarno; Lehto, Vesa-Pekka; Rantanen, Jukka

    2012-01-01

    To investigate solid state transformations of drug substances during compaction using grazing incidence X-ray diffraction (GIXD). The solid forms of three model drugs-theophylline (TP), nitrofurantoin (NF) and amlodipine besylate (AMB)-were compacted at different pressures (from 100 to 1000 MPa); prepared tablets were measured using GIXD. After the initial measurements of freshly compacted tablets, tablets were subjected to suitable recrystallization treatment, and analogous measurements were performed. Solid forms of TP, NF and AMB showed partial amorphization as well as crystal disordering during compaction; the extent of these effects generally increased as a function of pressure. The changes were most pronounced at the outer surface region. The different solid forms showed difference in the formation of amorphicity/crystal disordering. Dehydration due to compaction was observed for the TP monohydrate, whereas hydrates of NF and AMB were stable towards dehydration. With GIXD measurements, it was possible to probe the solid form composition at the different depths of the tablet surfaces and to obtain depth-dependent information on the compaction-induced amorphization, crystal disordering and dehydration.

  13. A Microbeam Small-Angle X-ray Scattering Study on Enamel Crystallites in Subsurface Lesion

    NASA Astrophysics Data System (ADS)

    Yagi, N.; Ohta, N.; Matsuo, T.; Tanaka, T.; Terada, Y.; Kamasaka, H.; Kometani, T.

    2010-10-01

    The early caries lesion in bovine tooth enamel was studied by two different X-ray diffraction systems at the SPring-8 third generation synchrotron radiation facility. Both allowed us simultaneous measurement of the small and large angle regions. The beam size was 6μm at BL40XU and 50μm at BL45XU. The small-angle scattering from voids in the hydroxyapatite crystallites and the wide-angle diffraction from the hydroxyapatite crystals were observed simultaneously. At BL40XU an X-ray image intensifier was used for the small-angle and a CMOS flatpanel detector for the large-angle region. At BL45XU, a large-area CCD detector was used to cover both regions. A linear microbeam scan at BL40XU showed a detailed distribution of voids and crystals and made it possible to examine the structural details in the lesion. The two-dimensional scan at BL45XU showed distribution of voids and crystals in a wider region in the enamel. The simultaneous small- and wide-angle measurement with a microbeam is a powerful tool to elucidate the mechanisms of demineralization and remineralization in the early caries lesion.

  14. A Grazing Incidence Spectrograph as Applied to Vacuum Ultraviolet, Soft X-Ray, Pulsed Plasma Sources.

    DTIC Science & Technology

    A 2.2-meter variable angle of incidence grazing incidence spectrograph is described for photographic recording of spectra down to 10A. Also a method for determining the absolute total fluence from a pulsed plasma source, knowing the absolute sensitivity of the instrument, is described. Spectra are presented from a low-inductance sliding spark gap and a 20-kj dense plasma focus . A program for spectram analysis is included. (Modified author abstract)

  15. High-pressure Irreversible Amorphization of La1/3NbO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    I Halevy; A Hen; A Broide

    2011-12-31

    The crystallographic structure of La{sub 1/3}NbO{sub 3} perovskite was studied at high pressures using a diamond-anvil cell and synchrotron radiation. High-pressure energy dispersive (EDS) x-ray diffraction and high-pressure angle dispersive (ADS) x-ray diffraction revealed an irreversible amorphization at {approx}10 GPa. A large change in the bulk modulus accompanied the high-pressure amorphization.

  16. Two-dimensional time-resolved X-ray diffraction study of liquid/solid fraction and solid particle size in Fe-C binary system with an electrostatic levitator furnace

    NASA Astrophysics Data System (ADS)

    Yonemura, M.; Okada, J.; Watanabe, Y.; Ishikawa, T.; Nanao, S.; Shobu, T.; Toyokawa, H.

    2013-03-01

    Liquid state provides functions such as matter transport or a reaction field and plays an important role in manufacturing processes such as refining, forging or welding. However, experimental procedures are significantly difficult for an observation of solidification process of iron and iron-based alloys in order to identify rapid transformations subjected to fast temperature evolution. Therefore, in order to study the solidification in iron and iron-based alloys, we considered a combination of high energy X-ray diffraction measurements and an electrostatic levitation method (ESL). In order to analyze the liquid/solid fraction, the solidification of melted spherical specimens was measured at a time resolution of 0.1 seconds during rapid cooling using the two-dimensional time-resolved X-ray diffraction. Furthermore, the observation of particle sizes and phase identification was performed on a trial basis using X-ray small angle scattering with X-ray diffraction.

  17. Theoretical calculation of coherent Laue-case conversion between x-rays and ALPs for an x-ray light-shining-through-a-wall experiment

    NASA Astrophysics Data System (ADS)

    Yamaji, T.; Yamazaki, T.; Tamasaku, K.; Namba, T.

    2017-12-01

    Single crystals have high atomic electric fields as much as 1 011 V /m , which correspond to magnetic fields of ˜103 T . These fields can be utilized to convert x-rays into axionlike particles (ALPs) coherently similar to x-ray diffraction. In this paper, we perform the first theoretical calculation of the Laue-case conversion in crystals based on the Darwin dynamical theory of x-ray diffraction. The calculation shows that the Laue-case conversion has longer interaction length than the Bragg case, and that ALPs in the keV range can be resonantly converted by tuning an incident angle of x-rays. ALPs with mass up to O (10 keV ) can be searched by light-shining-through-a-wall (LSW) experiments at synchrotron x-ray facilities.

  18. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M.

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorptionmore » near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.« less

  20. Oxygen "getter" effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors.

    PubMed

    Hennek, Jonathan W; Smith, Jeremy; Yan, Aiming; Kim, Myung-Gil; Zhao, Wei; Dravid, Vinayak P; Facchetti, Antonio; Marks, Tobin J

    2013-07-24

    In oxide semiconductors, such as those based on indium zinc oxide (IXZO), a strong oxygen binding metal ion ("oxygen getter"), X, functions to control O vacancies and enhance lattice formation, hence tune carrier concentration and transport properties. Here we systematically study, in the IXZO series, the role of X = Ga(3+) versus the progression X = Sc(3+) → Y(3+) → La(3+), having similar chemical characteristics but increasing ionic radii. IXZO films are prepared from solution over broad composition ranges for the first time via low-temperature combustion synthesis. The films are characterized via thermal analysis of the precursor solutions, grazing incidence angle X-ray diffraction (GIAXRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging. Excellent thin-film transistor (TFT) performance is achieved for all X, with optimal compositions after 300 °C processing exhibiting electron mobilities of 5.4, 2.6, 2.4, and 1.8 cm(2) V(-1) s(-1) for Ga(3+), Sc(3+), Y(3+), and La(3+), respectively, and with I(on)/I(off) = 10(7)-10(8). Analysis of the IXZO TFT positive bias stress response shows X = Ga(3+) to be superior with mobilities (μ) retaining >95% of the prestress values and threshold voltage shifts (ΔV(T)) of <1.6 V, versus <85% μ retention and ΔV(T) ≈ 20 V for the other trivalent ions. Detailed microstructural analysis indicates that Ga(3+) most effectively promotes oxide lattice formation. We conclude that the metal oxide lattice formation enthalpy (ΔH(L)) and metal ionic radius are the best predictors of IXZO oxygen getter efficacy.

  1. A new device for high-temperature in situ GISAXS measurements

    NASA Astrophysics Data System (ADS)

    Fritz-Popovski, Gerhard; Bodner, Sabine C.; Sosada-Ludwikowska, Florentyna; Maier, Günther A.; Morak, Roland; Chitu, Livia; Bruegemann, Lutz; Lange, Joachim; Krane, Hans-Georg; Paris, Oskar

    2018-03-01

    A heating stage originally designed for diffraction experiments is implemented into a Bruker NANOSTAR instrument for in situ grazing incidence small-angle x-ray scattering experiments. A controlled atmosphere is provided by a dome separating the sample environment from the evacuated scattering instrument. This dome is double shelled in order to enable cooling water to flow through it. A mesoporous silica film templated by a self-assembled block copolymer system is investigated in situ during step-wise heating in air. The GISAXS pattern shows the structural development of the ordered lattice of parallel cylindrical pores. The deformation of the elliptical pore-cross section perpendicular to the film surface was studied with increasing temperature. Moreover, the performance of the setup was tested by controlled in situ heating of a copper surface under controlled oxygen containing atmosphere.

  2. Small Angle X-ray Scattering for Nanoparticle Research

    DOE PAGES

    Li, Tao; Senesi, Andrew J.; Lee, Byeongdu

    2016-04-07

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution,more » shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.« less

  3. Small Angle X-ray Scattering for Nanoparticle Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tao; Senesi, Andrew J.; Lee, Byeongdu

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution,more » shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.« less

  4. New software to model energy dispersive X-ray diffraction in polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Ghammraoui, B.; Tabary, J.; Pouget, S.; Paulus, C.; Moulin, V.; Verger, L.; Duvauchelle, Ph.

    2012-02-01

    Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.

  5. The molecular and crystal structure of dextrans: a combined electron and X-ray diffraction study. II. A low temperature, hydrated polymorph.

    PubMed

    Guizard, C; Chanzy, H; Sarko, A

    1985-06-05

    The crystal and molecular structure of a dextran hydrate has been determined through combined electron and X-ray diffraction analysis, aided by stereochemical model refinement. A total of 65 hk0 electron diffraction intensities were measured on frozen single crystals held at the temperature of liquid nitrogen, to a resolution limit of 1.6 A. The X-ray intensities were measured from powder patterns recorded from collections of the single crystals. The structure crystallizes in a monoclinic unit cell with parameters a = 25.71 A, b = 10.21 A, c (chain axis) = 7.76 A and beta = 91.3 degrees. The space group is P2(1) with b axis unique. The unit cell contains six chains and eight water molecules, with three chains of the same polarity and four water molecules constituting the asymmetric unit. Along the chain direction the asymmetric unit is a dimer residue; however, the individual glucopyranose residues are very nearly related by a molecular 2-fold screw axis. The conformation of the chain is very similar to that in the anhydrous structure, but the chain packing differs in the two structures in that the rotational positions of the chains about the helix axes (the chain setting angles) are considerably different. The chains still pack in the form of sheets that are separated by water molecules. The difference in the chain setting angles between the anhydrous and hydrate structures corresponds to the angle between like unit cell axes observed in the diffraction diagrams recorded from hybrid crystals containing both polymorphs. Despite some beam damage effects, the structure was determined to a satisfactory degree of agreement, with the residuals R''(electron diffraction) = 0.258 and R(X-ray) = 0.127.

  6. Room temperature magnetization in Co-doped anatase phase of TiO2

    NASA Astrophysics Data System (ADS)

    Karimipour, Masoud; Mageto, Maxwel Joel; Etefagh, Reyhaneh; Azhir, Elahe; Mwamburi, Mghendi; Topalian, Zareh

    2013-01-01

    CoxTi1-xO2 films were deposited by spray pyrolysis technique on Si(1 0 0) substrates at 475 °C. A hydro-alcoholic solution containing titanium (iv) isopropoxide and Co(NO3)2 with various Co doping levels from x = 0-0.015 in solution was used as spray solution. Grazing incident angle of X-ray diffraction illustrates that the CoxTi1-xO2 films are single phase and polycrystal with mixed orientations. Study of surface morphology of the films by atomic force microscope reveals that the annealing atmosphere does not significantly affect the grain size and the microstructure of the films. This study provides further insight into the importance of annealing atmosphere on magnetization of the films. Room temperature magneto-optical Kerr measurement was employed in polar mode. A hysteresis loop and a paramagnetic behavior have been recorded for samples annealed in H2 ambient gas and air, respectively. Chemical composition analysis by X-ray photo-electron spectroscopy showed that Co atoms are bounded to oxygen and no metallic clusters are present. Moreover, it indicates the formation of high spin Co2+ for the sample x = 0.008 annealed in H2 ambient gas. The origin of magnetization can be attributed to the contribution of oxygen vacancies in the spin polarization of the structure.

  7. Structural characterization of nano-oxide layers in PtMn based specular spin valves

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Chen, Lifan; Diao, Zhitao; Park, Chang-Man; Huai, Yiming

    2005-05-01

    A systematic structure characterization of nano-oxide layers (NOLs) and specular spin valves using x-ray diffraction and high-resolution transmission electron microscopy (HRTEM) has been studied. High-angle x-ray diffraction data show almost identical fcc textures for both natural and plasma NOL spin-valves. Low-angle x-ray reflectivity spectrum shows more deteriorated Kiessig fringes at high incident angles for natural oxide sample, indicating rougher interfaces in natural oxidation than in plasma oxidation. Oxygen exposure plays an important role in NOLs process. Fabricating NOLs without any crystal structure degradation is critical to obtain high MR ratio. HRTEM reveals that oxide clusters mixing with insufficiently oxidized CoFe layers prevailed in natural NOL, and the natural oxidation was inhomogeneous. In contrast, plasma NOL has a thinner, more homogeneously oxidized CoFe layers with sharp interfaces. In plasma NOLs, the structures still maintain CoFe crystal structure. The structures and magnetic correlation of the NOL specular spin valves are discussed.

  8. Calculation of effective penetration depth in X-ray diffraction for pharmaceutical solids.

    PubMed

    Liu, Jodi; Saw, Robert E; Kiang, Y-H

    2010-09-01

    The use of the glancing incidence X-ray diffraction configuration to depth profile surface phase transformations is of interest to pharmaceutical scientists. The Parratt equation has been used to depth profile phase changes in pharmaceutical compacts. However, it was derived to calculate 1/e penetration at glancing incident angles slightly below the critical angle of condensed matter and is, therefore, applicable to surface studies of materials such as single crystalline nanorods and metal thin films. When the depth of interest is 50-200 microm into the surface, which is typical for pharmaceutical solids, the 1/e penetration depth, or skin depth, can be directly calculated from an exponential absorption law without utilizing the Parratt equation. In this work, we developed a more relevant method to define X-ray penetration depth based on the signal detection limits of the X-ray diffractometer. Our definition of effective penetration depth was empirically verified using bilayer compacts of varying known thicknesses of mannitol and lactose.

  9. Conceptual Design for Time-Resolved X-ray Diffraction in a Single Laser-Driven Compression Experiment

    NASA Astrophysics Data System (ADS)

    Benedetti, Laura Robin; Eggert, J. H.; Kilkenny, J. D.; Bradley, D. K.; Bell, P. M.; Palmer, N. E.; Rygg, J. R.; Boehly, T. R.; Collins, G. W.; Sorce, C.

    2017-06-01

    Since X-ray diffraction is the most definitive method for identifying crystalline phases of a material, it is an important technique for probing high-energy-density materials during laser-driven compression experiments. We are developing a design for collecting several x-ray diffraction datasets during a single laser-driven experiment, with a goal of achieving temporal resolution better than 1ns. The design combines x-ray streak cameras, for a continuous temporal record of diffraction, with fast x-ray imagers, to collect several diffraction patterns with sufficient solid angle range and resolution to identify crystalline texture. Preliminary experiments will be conducted at the Omega laser and then implemented at the National Ignition Facility. We will describe the status of the conceptual design, highlighting tradeoffs in the design process. We will also discuss the technical issues that must be addressed in order to develop a successful experimental platform. These include: Facility-specific geometric constraints such as unconverted laser light and target alignment; EMP issues when electronic diagnostics are close to the target; X-ray source requirements; and detector capabilities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-725146.

  10. Monochromator for continuous spectrum x-ray radiation

    DOEpatents

    Staudenmann, J.L.; Liedl, G.L.

    1983-12-02

    A monochromator for use with synchrotron x-ray radiation comprises two diffraction means which can be rotated independently and independent means for translationally moving one diffraction means with respect to the other. The independence of the rotational and translational motions allows Bragg angles from 3.5/sup 0/ to 86.5/sup 0/, and facilitates precise and high-resolution monochromatization over a wide energy range. The diffraction means are removably mounted so as to be readily interchangeable, which allows the monochromator to be used for both non-dispersive and low dispersive.

  11. Monochromator for continuous spectrum x-ray radiation

    DOEpatents

    Staudenmann, Jean-Louis; Liedl, Gerald L.

    1987-07-07

    A monochromator for use with synchrotron x-ray radiation comprises two diffraction means which can be rotated independently and independent means for translationally moving one diffraction means with respect to the other. The independence of the rotational and translational motions allows Bragg angles from 3.5.degree. to 86.5.degree., and facilitates precise and high-resolution monochromatization over a wide energy range. The diffraction means are removably mounted so as to be readily interchangeable, which allows the monochromator to be used for both non-dispersive and low dispersive work.

  12. Structure of a monolayer of molecular rotors on aqueous subphase from grazing-incidence X-ray diffraction.

    PubMed

    Kaleta, Jiří; Wen, Jin; Magnera, Thomas F; Dron, Paul I; Zhu, Chenhui; Michl, Josef

    2018-03-23

    In situ grazing-incidence X-ray scattering shows that a monolayer of artificial rod-shaped dipolar molecular rotors produced on the surface of an aqueous subphase in a Langmuir trough has a structure conducive to a 2D ferroelectric phase. The axes of the rotors stand an average of 0.83 nm apart in a triangular grid, perpendicular to the surface within experimental error. They carry 2,3-dichlorophenylene rotators near rod centers, between two decks of interlocked triptycenes installed axially on the rotor axle. The analysis is based first on simultaneous fitting of observed Bragg rods and second on fitting the reflectivity curve with only three adjustable parameters and the calculated rotor electron density, which also revealed the presence of about seven molecules of water near each rotator. Dependent on preparation conditions, a minor and variable amount of a different crystal phase may also be present in the monolayer.

  13. Evaluation of the residual stresses in 95wt%Al2O3-5wt% SiC wear protection coating using X-Ray diffraction technique

    NASA Astrophysics Data System (ADS)

    Mahmoud, Adel K.; Hammoudi, Zaid S.; Student Samah Rasheed, M. Sc.

    2018-02-01

    This paper aims to measuring the residual stresses practically in wear protection coatings using the sin2ψ method according to X-ray diffraction technique. The wear protection coatings used in this study was composite coating 95wt% Al2O3-5wt% SiC, while bond coat was AlNi alloy produced by using flame spraying technique on the mild steel substrate. The diffraction angle, 2θ, is measured experimentally and then the lattice spacing is calculated from the diffraction angle, and the known X-ray wavelength using Bragg’s Law. Once the dspacing values are known, they can be plotted versus sin2ψ, (ψ is the tilt angle). In this paper, stress measurement of the samples that exhibit a linear behavior as in the case of a homogenous isotropic sample in a biaxial stress state is included. The plot of dspacing versus sin2ψ is a straight line which slope is proportional to stress. On the other hand, the second set of samples showed oscillatory dspacing versus sin2ψ behaviour. The oscillatory behaviour indicates the presence of inhomogeneous stress distribution. In this case the X-ray elastic constants must be used instead of Young’s modulus (E) and Poisson ratio (ν)values. These constants can be obtained from the literature for a given material and reflection combination. The value of the residual stresses for the present coating calculated was compressive stresses (-325.6758MPa).

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Min-Cherl; Zhang, Dongrong; Nikiforov, Gueorgui O.

    Ultrathin (<6 nm) polycrystalline films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-P) are deposited with a two-step spin-coating process. The influence of spin-coating conditions on morphology of the resulting film was examined by atomic force microscopy. Film thickness and RMS surface roughness were in the range of 4.0–6.1 and 0.6–1.1 nm, respectively, except for small holes. Polycrystalline structure was confirmed by grazing incidence x-ray diffraction measurements. Near-edge x-ray absorption fine structure measurements suggested that the plane through aromatic rings of TIPS-P molecules was perpendicular to the substrate surface.

  15. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, David S.; Ruud, Clay O.

    1998-01-01

    A method and apparatus for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided.

  16. Instrumentation on Multi-Scaled Scattering of Bio-Macromolecular Solutions

    PubMed Central

    Chu, Benjamin; Fang, Dufei; Mao, Yimin

    2015-01-01

    The design, construction and initial tests on a combined laser light scattering and synchrotron X-ray scattering instrument can cover studies of length scales from atomic sizes in Angstroms to microns and dynamics from microseconds to seconds are presented. In addition to static light scattering (SLS), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD), the light scattering instrument is being developed to carry out studies in mildly turbid solutions, in the presence of multiple scattering. Three-dimensional photon cross correlation function (3D-PCCF) measurements have been introduced to couple with synchrotron X-ray scattering to study the structure, size and dynamics of macromolecules in solution. PMID:25946340

  17. Design optimization of ultra-precise elliptical mirrors for hard x-ray nanofocusing at Nanoscopium

    NASA Astrophysics Data System (ADS)

    Kewish, Cameron M.; Polack, François; Signorato, Riccardo; Somogyi, Andrea

    2013-09-01

    The design and implementation of a pair of 100 mm-long grazing-incidence total-reflection mirrors for the hard X-ray beamline Nanoscopium at Synchrotron Soleil is presented. A vertically and horizontally nanofocusing mirror pair, oriented in Kirkpatrick-Baez geometry, has been designed and fabricated with the aim of creating a diffraction-limited high-intensity 5 - 20 keV beam with a focal spot size as small as 50 nm. We describe the design considerations, including wave-optical calculations of figures-of-merit that are relevant for spectromicroscopy, such as the focal spot size, depth of field and integrated intensity. The mechanical positioning tolerance in the pitch angle that is required to avoid introducing high-intensity features in the neighborhood of the focal spot is demonstrated with simulations to be of the order of microradians, becoming tighter for shorter focal lengths and therefore directly affecting all nanoprobe mirror systems. Metrology results for the completed mirrors are presented, showing that better than 1.5 °A-rms figure error has been achieved over the full mirror lengths with respect to the designed elliptical surfaces, with less than 60 nrad-rms slope errors.

  18. Adjustable Grazing-Incidence X-Ray Optics

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Reid, Paul B.

    2015-01-01

    With its unique subarcsecond imaging performance, NASA's Chandra X-ray Observatory illustrates the importance of fine angular resolution for x-ray astronomy. Indeed, the future of x-ray astronomy relies upon x-ray telescopes with comparable angular resolution but larger aperture areas. Combined with the special requirements of nested grazing-incidence optics, mass, and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. The goal of this technology research is to enable the cost-effective fabrication of large-area, lightweight grazing-incidence x-ray optics with subarcsecond resolution. Toward this end, the project is developing active x-ray optics using slumped-glass mirrors with thin-film piezoelectric arrays for correction of intrinsic or mount-induced distortions.

  19. Real-Time Grazing Incidence Small Angle X-Ray Scattering Studies of the Growth Kinetics of Sputter-Deposited Silicon Thin Films

    NASA Astrophysics Data System (ADS)

    Demasi, Alexander; Erdem, Gozde; Chinta, Priya; Headrick, Randall; Ludwig, Karl

    2012-02-01

    The fundamental kinetics of thin film growth remains an active area of investigation. In this study, silicon thin films were grown at room temperature on silicon substrates via both on-axis and off-axis plasma sputter deposition, while the evolution of surface morphology was measured in real time with in-situ grazing incidence small angle x-ray scattering (GISAXS) at the National Synchrotron Light Source. GISAXS is a surface-sensitive, non-destructive technique, and is therefore ideally suited to a study of this nature. In addition to investigating the effect of on-axis versus off-axis bombardment, the effect of sputter gas partial pressure was examined. Post-facto, ex-situ atomic force microscopy (AFM) was used to measure the final surface morphology of the films, which could subsequently be compared with the surface morphology determined by GISAXS. Comparisons are made between the observed surface evolution during growth and theoretical predictions. This work was supported by the Department of Energy, Office of Basic Energy Sciences.

  20. Three-Dimensional Morphology Control Yielding Enhanced Hole Mobility in Air-Processed Organic Photovoltaics: Demonstration with Grazing-Incidence Wide-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Levi M. J.; Bhattacharya, Mithun; Wu, Qi

    Polymer organic photovoltaic (OPV) device performance is defined by the three-dimensional morphology of the phase-separated domains in the active layer. Here, we determine the evolution of morphology through different stages of tailored solvent vapor and thermal annealing techniques in air-processed poly(3-hexylthiophene-2,5-diyl)/phenyl-C61-butyric acid methyl ester-based OPV blends. A comparative evaluation of the effect of solvent type used for vapor annealing was performed using grazing-incidence wide-angle X-ray scattering, atomic force microscopy, and UV–vis spectroscopy to probe the active-layer morphology. A nonhalogenated orthogonal solvent was found to impart controlled morphological features within the exciton diffusion length scales, enhanced absorbance, greater crystallinity, increased paracrystallinemore » disorder, and improved charge-carrier mobility. Low-boiling, fast-diffusing isopropanol allowed the greatest control over the nanoscale structure of the solvents evaluated and yielded a cocontinuous morphology with narrowed domains and enhanced paths for the charge carrier to reach the anode.« less

  1. Coherent convergent-beam time-resolved X-ray diffraction

    PubMed Central

    Spence, John C. H.; Zatsepin, Nadia A.; Li, Chufeng

    2014-01-01

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic laser radiation of a free-electron X-ray laser is unsuitable. We discuss the possibility of obtaining single-shot, angle-integrated rocking curves from CCB patterns, and the dependence of the resulting patterns on the focused beam coordinate when the beam diameter is larger or smaller than a nanocrystal, or smaller than one unit cell. We show how structure factor phase information is provided at overlapping interfering orders and how a common phase origin between different shots may be obtained. Their use in refinement of the phase-sensitive intensity between overlapping orders is suggested. PMID:24914153

  2. Methods for reducing ghost rays on the Wolter-I focusing figures of the FOXSI rocket payload

    NASA Astrophysics Data System (ADS)

    Buitrago-Casas, Juan Camilo; Glesener, Lindsay; Christe, Steven; Ramsey, Brian; Elsner, Ronald; Courtade, Sasha; Vievering, Juliana; Subramania, Athiray; Krucker, Sam; Bale, Stuart

    2017-08-01

    In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload which uses seven sets of nested Wolter-I figured mirrors that, together with seven high-sensitive semiconductor detectors, observes the Sun in hard X-rays by direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in summer 2018.The Wolter-I geometry consists of two consecutive mirrors, one paraboloid, and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect twice, once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a pattern of single-bounce photons, or ‘ghost rays’ that can limit the sensitivity of the observation of focused X-rays. Understanding and cutting down the ghost rays on the FOXSI optics will maximize the instrument’s sensitivity of the solar faintest sources for future flights. We present an analysis of the FOXSI ghost rays based on ray-tracing simulations, as well as the effectiveness of different physical strategies to reduce them.

  3. Methods for Reducing Singly Reflected Rays on the Wolter-I Focusing Figures of the FOXSI Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Buitrago-Casas, Juan Camilo; Glesener, Lindsay; Christe, Steven; Elsner, Ronald; Ramsey, Brian; Courtade, Sasha; Ishikawa, Shin-nosuke; Narukage, Noriyuki; Vievering, Juliana; Subramania, Athiray; hide

    2017-01-01

    In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload which uses seven sets of nested Wolter-I figured mirrors that, together with seven high-sensitivity semiconductor detectors, observes the Sun in hard X-rays by direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in Summer 2018. The Wolter-I geometry consists of two consecutive mirrors, one paraboloid, and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect twice, once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a pattern of single-bounce photons that can limit the sensitivity of the observation of faint focused X-rays. Understanding and cutting down the singly reflected rays on the FOXSI optics will maximize the instrument's sensitivity of the faintest solar sources for future flights. We present an analysis of the FOXSI singly reflected rays based on ray-tracing simulations, as well as the effectiveness of different physical strategies to reduce them.

  4. Hydrothermal formation of tobermorite studied by in situ X-ray diffraction under autoclave condition.

    PubMed

    Kikuma, Jun; Tsunashima, Masamichi; Ishikawa, Tetsuji; Matsuno, Shin-ya; Ogawa, Akihiro; Matsui, Kunio; Sato, Masugu

    2009-09-01

    Hydrothermal formation of tobermorite from a pre-cured cake has been investigated by transmission X-ray diffraction (XRD) using high-energy X-rays from a synchrotron radiation source in combination with a newly designed autoclave cell. The autoclave cell has a large and thin beryllium window for wide-angle X-ray diffraction; nevertheless, it withstands a steam pressure of more than 1.2 MPa, which enables in situ XRD measurements in a temperature range of 373 to 463 K under a saturated steam pressure. Formation and/or decomposition of several components has been successfully observed during 7.5 h of reaction time. From the intensity changes of the intermediate materials, namely non-crystalline C-S-H and hydroxylellestadite, two pathways for tobermorite formation have been confirmed. Thus, the newly developed autoclave cell can be used for the analyses of reaction mechanisms under specific atmospheres and temperatures.

  5. Silicon pore optics development for ATHENA

    NASA Astrophysics Data System (ADS)

    Collon, Maximilien J.; Vacanti, Giuseppe; Günther, Ramses; Yanson, Alex; Barrière, Nicolas; Landgraf, Boris; Vervest, Mark; Chatbi, Abdelhakim; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Haneveld, Jeroen; Koelewijn, Arenda; Leenstra, Anne; Wijnperle, Maurice; van Baren, Coen; Müller, Peter; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Conconi, Paolo; Christensen, Finn E.

    2015-09-01

    The ATHENA mission, a European large (L) class X-ray observatory to be launched in 2028, will essentially consist of an X-ray lens and two focal plane instruments. The lens, based on a Wolter-I type double reflection grazing incidence angle design, will be very large (~ 3 m in diameter) to meet the science requirements of large effective area (1-2 m2 at a few keV) at a focal length of 12 m. To meet the high angular resolution (5 arc seconds) requirement the X-ray lens will also need to be very accurate. Silicon Pore Optics (SPO) technology has been invented to enable building such a lens and thus enabling the ATHENA mission. We will report in this paper on the latest status of the development, including details of X-ray test campaigns.

  6. X-Ray Diffraction Study of the Internal Structure of Supercooled Water

    NASA Technical Reports Server (NTRS)

    Dorsch, Robert G.; Boyd, Bemrose

    1951-01-01

    A Bragg X-ray spectrometer equipped with a volume-sensitive Geiger counter and Soller slits and employing filtered molybdenum Ka radiation was used to obtain a set of diffracted intensity curves as a Punction of angle for supercooled water. Diffracted intensity curves in the temperature region of 21 to -16 C were obtained. The minimum between the two main diffraction peaks deepened continuously with lowering temperature, indicating a gradual change in the internal structure of the water. No discontinuity in this trend was noted at the melting point. The internal structure of supercooled water was concluded to become progressively more ice-like as the temperature is lowered.

  7. Crystallographic Determination of Molecular Parameters for K2SiF6: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Loehlin, James H.; Norton, Alexandra P.

    1988-01-01

    Describes a crystallography experiment using both diffraction-angle and diffraction-intensity information to determine the lattice constant and a lattice independent molecular parameter, while still employing standard X-ray powder diffraction techniques. Details the method, experimental details, and analysis for this activity. (CW)

  8. Naphthodipyrrolidone (NDP) based conjugated polymers with high electron mobility and ambipolar transport properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haichang; Zhang, Shuo; Mao, Yifan

    Two novel donor–acceptor π-conjugated polymers based on naphthodipyrrolidone (NDP) were synthesized and characterized. The polymers possess low band gaps and suitable molecular orbital levels as ambipolar semiconductors. The thin film organic field effect transistor of NDP polymers exhibited ambipolar transport properties with a high electron mobility up to 0.67 cm 2 V –1 s –1. The grazing-incidence wide-angle X-ray scattering (GIWAXS) studies demonstrated that the polymer molecules pack into a long-range-ordered lamellar structure with isotropically oriented crystalline domains. Thermal annealing promoted edge-on lamellar stacking as evidenced by the increased diffraction intensity along the out-of-plane direction. In conclusion, the polymer withmore » NDP and bithiophene units achieved the best edge-on lamellar stacking after thermal annealing, which yielded the best electron transport performance in this work.« less

  9. Naphthodipyrrolidone (NDP) based conjugated polymers with high electron mobility and ambipolar transport properties

    DOE PAGES

    Zhang, Haichang; Zhang, Shuo; Mao, Yifan; ...

    2017-05-12

    Two novel donor–acceptor π-conjugated polymers based on naphthodipyrrolidone (NDP) were synthesized and characterized. The polymers possess low band gaps and suitable molecular orbital levels as ambipolar semiconductors. The thin film organic field effect transistor of NDP polymers exhibited ambipolar transport properties with a high electron mobility up to 0.67 cm 2 V –1 s –1. The grazing-incidence wide-angle X-ray scattering (GIWAXS) studies demonstrated that the polymer molecules pack into a long-range-ordered lamellar structure with isotropically oriented crystalline domains. Thermal annealing promoted edge-on lamellar stacking as evidenced by the increased diffraction intensity along the out-of-plane direction. In conclusion, the polymer withmore » NDP and bithiophene units achieved the best edge-on lamellar stacking after thermal annealing, which yielded the best electron transport performance in this work.« less

  10. The crystalline structure of copper phthalocyanine films on ZnO(1100).

    PubMed

    Cruickshank, Amy C; Dotzler, Christian J; Din, Salahud; Heutz, Sandrine; Toney, Michael F; Ryan, Mary P

    2012-09-05

    The structure of copper phthalocyanine (CuPc) thin films (5-100 nm) deposited on single-crystal ZnO(1100) substrates by organic molecular beam deposition was determined from grazing-incidence X-ray diffraction reciprocal space maps. The crystal structure was identified as the metastable polymorph α-CuPc, but the molecular stacking was found to vary depending on the film thickness: for thin films, a herringbone arrangement was observed, whereas for films thicker than 10 nm, coexistence of both the herringbone and brickstone arrangements was found. We propose a modified structure for the herringbone phase with a larger monoclinic β angle, which leads to intrastack Cu-Cu distances closer to those in the brickstone phase. This structural basis enables an understanding of the functional properties (e.g., light absorption and charge transport) of (opto)electronic devices fabricated from CuPc/ZnO hybrid systems.

  11. Strain dynamics during La{sub 2}O{sub 3}/Lu{sub 2}O{sub 3} superlattice and alloy formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proessdorf, André; Niehle, Michael; Grosse, Frank

    The dynamics of strain relaxation and intermixing during molecular beam epitaxy of La{sub 2}O{sub 3} and Lu{sub 2}O{sub 3} superlattices and alloys consisting of both binaries on Si(111) have been studied by real-time in situ grazing incidence x-ray diffraction and high resolution transmission electron microscopy. The presence of both hexagonal and cubic polymorphs of La{sub 2}O{sub 3} influences the epitaxial formation within the superlattice. The process of strain relaxation is closely related to the presence of a (La,Lu){sub 2}O{sub 3} alloy adopting a cubic symmetry. It is formed by interdiffusion of La and Lu atoms reducing internal lattice mismatch withinmore » the superlattice. An interface thickness dominated by interdiffusion regions of about 3 monolayers is determined by high-angle annular dark field scanning transmission electron microscopy.« less

  12. Relationship between electrical properties and crystallization of indium oxide thin films using ex-situ grazing-incidence wide-angle x-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, G. B.; Okasinski, J. S.; Buchholz, D. B.

    Grazing-incidence, wide-angle x-ray scattering measurements were conducted on indium oxide thin films grown on silica substrates via pulsed laser deposition. Growth temperatures (T G) in this study ranged from -50 °C to 600 °C, in order to investigate the thermal effects on the film structure and its spatial homogeneity, as well as their relationship to electrical properties. Films grown below room temperature were amorphous, while films prepared at T G = 25 °C and above crystallized in the cubic bixbyite structure, and their crystalline fraction increased with deposition temperature. The electrical conductivity (σ) and electrical mobility (μ) were strongly enhancedmore » at low deposition temperatures. For T G = 25 °C and 50 °C, a strong < 100 > preferred orientation (texture) occurred, but it decreased as the deposition temperature, and consequential crystallinity, increased. Higher variations in texture coefficients and in lattice parameters were measured at the film surface compared to the interior of the film, indicating strong microstructural gradients. At low crystallinity, the in-plane lattice spacing expanded, while the out-of-plane spacing contracted, and those values merged at T G = 400 °C, where high μ was measured. This directional difference in lattice spacing, or deviatoric strain, was linear as a function of both deposition temperature and the degree of crystallinity. The crystalline sample with T G = 100 °C had the lowest mobility, as well as film diffraction peaks which split into doublets. The deviatoric strains from these doublet peaks differ by a factor of four, supporting the presence of both a microstructure and strain gradient in this film. More isotropic films exhibit larger l values, indicating that the microstructure directly correlates with electrical properties. Lastly, these results provide valuable insights that can help to improve the desirable properties of indium oxide, as well as other transparent conducting oxides.« less

  13. Relationship between electrical properties and crystallization of indium oxide thin films using ex-situ grazing-incidence wide-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    González, G. B.; Okasinski, J. S.; Buchholz, D. B.; Boesso, J.; Almer, J. D.; Zeng, L.; Bedzyk, M. J.; Chang, R. P. H.

    2017-05-01

    Grazing-incidence, wide-angle x-ray scattering measurements were conducted on indium oxide thin films grown on silica substrates via pulsed laser deposition. Growth temperatures (TG) in this study ranged from -50 °C to 600 °C, in order to investigate the thermal effects on the film structure and its spatial homogeneity, as well as their relationship to electrical properties. Films grown below room temperature were amorphous, while films prepared at TG = 25 °C and above crystallized in the cubic bixbyite structure, and their crystalline fraction increased with deposition temperature. The electrical conductivity (σ) and electrical mobility (μ) were strongly enhanced at low deposition temperatures. For TG = 25 °C and 50 °C, a strong ⟨100⟩ preferred orientation (texture) occurred, but it decreased as the deposition temperature, and consequential crystallinity, increased. Higher variations in texture coefficients and in lattice parameters were measured at the film surface compared to the interior of the film, indicating strong microstructural gradients. At low crystallinity, the in-plane lattice spacing expanded, while the out-of-plane spacing contracted, and those values merged at TG = 400 °C, where high μ was measured. This directional difference in lattice spacing, or deviatoric strain, was linear as a function of both deposition temperature and the degree of crystallinity. The crystalline sample with TG = 100 °C had the lowest mobility, as well as film diffraction peaks which split into doublets. The deviatoric strains from these doublet peaks differ by a factor of four, supporting the presence of both a microstructure and strain gradient in this film. More isotropic films exhibit larger μ values, indicating that the microstructure directly correlates with electrical properties. These results provide valuable insights that can help to improve the desirable properties of indium oxide, as well as other transparent conducting oxides.

  14. Relationship between electrical properties and crystallization of indium oxide thin films using ex-situ grazing-incidence wide-angle x-ray scattering

    DOE PAGES

    González, G. B.; Okasinski, J. S.; Buchholz, D. B.; ...

    2017-05-25

    Grazing-incidence, wide-angle x-ray scattering measurements were conducted on indium oxide thin films grown on silica substrates via pulsed laser deposition. Growth temperatures (T G) in this study ranged from -50 °C to 600 °C, in order to investigate the thermal effects on the film structure and its spatial homogeneity, as well as their relationship to electrical properties. Films grown below room temperature were amorphous, while films prepared at T G = 25 °C and above crystallized in the cubic bixbyite structure, and their crystalline fraction increased with deposition temperature. The electrical conductivity (σ) and electrical mobility (μ) were strongly enhancedmore » at low deposition temperatures. For T G = 25 °C and 50 °C, a strong < 100 > preferred orientation (texture) occurred, but it decreased as the deposition temperature, and consequential crystallinity, increased. Higher variations in texture coefficients and in lattice parameters were measured at the film surface compared to the interior of the film, indicating strong microstructural gradients. At low crystallinity, the in-plane lattice spacing expanded, while the out-of-plane spacing contracted, and those values merged at T G = 400 °C, where high μ was measured. This directional difference in lattice spacing, or deviatoric strain, was linear as a function of both deposition temperature and the degree of crystallinity. The crystalline sample with T G = 100 °C had the lowest mobility, as well as film diffraction peaks which split into doublets. The deviatoric strains from these doublet peaks differ by a factor of four, supporting the presence of both a microstructure and strain gradient in this film. More isotropic films exhibit larger l values, indicating that the microstructure directly correlates with electrical properties. Lastly, these results provide valuable insights that can help to improve the desirable properties of indium oxide, as well as other transparent conducting oxides.« less

  15. Results from a Grazing Incidence X-Ray Interferometer

    NASA Technical Reports Server (NTRS)

    Joy, Marshall K.; Shipley, Ann; Cash, Webster; Carter, James

    2000-01-01

    A prototype grazing incidence interferometer has been built and tested at EUV and X-ray wavelengths using a 120 meter long vacuum test facility at Marshall Space Flight Center. We describe the design and construction of the interferometer, the EUV and x-ray sources, the detector systems, and compare the interferometric fringe measurements with theoretical predictions. We also describe the next-generation grazing incidence system which is designed to provide laboratory demonstration of key technologies that will be needed for a space-based x-ray interferometer.

  16. The structural properties of flower-like ZnO nanostructures on porous silicon

    NASA Astrophysics Data System (ADS)

    Eswar, Kevin Alvin; Suhaimi, Mohd Husairi Fadzillah; Guliling, Muliyadi; Mohamad, Maryam; Khusaimi, Zuraida; Rusop, M.; Abdullah, Saifollah

    2018-05-01

    The flower-like zinc oxide (ZnO) were successfully synthesized on porous silicon (PSi) via hydrothermal method. The characteristic of ZnO nanostructures was investigated using field emission scanning microscopy (FESEM) and X-ray diffraction (X-Ray). The FESEM images show the flower-like ZnO nanostructures composed ZnO nanoparticles. The X-ray diffraction shows that strong intensity of (100), (002) and (101) peaks. The structural analysis revealed that the peaks angles were shifted due to the stress or imperfection of the crystalline of ZnO nanostructures. The crystalline sizes in range of 42.60 to 54.09 nm were produced.

  17. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    DOE PAGES

    Lawrence, Robert M.; Conrad, Chelsie E.; Zatsepin, Nadia A.; ...

    2015-08-20

    Serial femtosecond crystallography (SFX) using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ~700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ~40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is a pertinent step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  18. Surface morphology of vacuum-evaporated pentacene film on Si substrate studied by in situ grazing-incidence small-angle X-ray scattering: I. The initial stage of formation of pentacene film

    NASA Astrophysics Data System (ADS)

    Hirosawa, Ichiro; Watanabe, Takeshi; Koganezawa, Tomoyuki; Kikuchi, Mamoru; Yoshimoto, Noriyuki

    2018-03-01

    The progress of the surface morphology of a growing sub-monolayered pentacene film on a Si substrate was studied by in situ grazing-incidence small angle X-ray scattering (GISAXS). The observed GISAXS profiles did not show sizes of pentacene islands but mainly protuberances on the boundaries around pentacene film. Scattering of X-ray by residual pits in the pentacene film was also detected in the GISAXS profiles of an almost fully covered film. The average radius of pentacene protuberances increased from 13 to 24 nm as the coverage increased to 0.83 monolayer, and the most frequent radius was almost constant at approximately 9 nm. This result suggests that the population of larger protuberances increase with increasing lengths of boundaries of the pentacene film. It can also be considered that the detected protuberances were crystallites of pentacene, since the average size of protuberances was nearly equal to crystallite sizes of pentacene films. The almost constant characteristic distance of 610 nm and amplitudes of pair correlation functions at low coverages suggest that the growth of pentacene films obeyed the diffusion-limited aggregation (DLA) model, as previously reported. It is also considered that the sites of islands show a triangular distribution for small variations of estimated correlation distances.

  19. Characterization of the shape and line-edge roughness of polymer gratings with grazing incidence small-angle X-ray scattering and atomic force microscopy

    DOE PAGES

    Suh, Hyo Seon; Chen, Xuanxuan; Rincon-Delgadillo, Paulina A.; ...

    2016-04-22

    Grazing-incidence small-angle X-ray scattering (GISAXS) is increasingly used for the metrology of substrate-supported nanoscale features and nanostructured films. In the case of line gratings, where long objects are arranged with a nanoscale periodicity perpendicular to the beam, a series of characteristic spots of high-intensity (grating truncation rods, GTRs) are recorded on a two-dimensional detector. The intensity of the GTRs is modulated by the three-dimensional shape and arrangement of the lines. Previous studies aimed to extract an average cross-sectional profile of the gratings, attributing intensity loss at GTRs to sample imperfections. Such imperfections are just as important as the average shapemore » when employing soft polymer gratings which display significant line-edge roughness. Herein are reported a series of GISAXS measurements of polymer line gratings over a range of incident angles. Both an average shape and fluctuations contributing to the intensity in between the GTRs are extracted. Lastly, the results are critically compared with atomic force microscopy (AFM) measurements, and it is found that the two methods are in good agreement if appropriate corrections for scattering from the substrate (GISAXS) and contributions from the probe shape (AFM) are accounted for.« less

  20. A graphite crystal polarimeter for stellar X-ray astronomy.

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Berthelsdorf, R.; Epstein, G.; Linke, R.; Mitchell, D.; Novick, R.; Wolff, R. S.

    1972-01-01

    The first crystal X-ray polarimeter to be used for X-ray astronomy is described. Polarization is measured by modulation of the X rays diffracted at an average 45 deg glancing angle from large, curved graphite crystal panels as these rotate about an axis parallel to the incident X-ray flux. Arrangement of the crystal panels, the design of the detector, and the signal-processing circuitry were optimized to minimize systematic effects produced by off-axis pointing of the rocket and cosmic ray induced events. The in-flight performance of the instrument in relation to the observed background signal is discussed.

  1. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation.

    PubMed

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F H; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibilities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  2. Grazing-incidence small-angle X-ray scattering (GISAXS) on small periodic targets using large beams

    PubMed Central

    Soltwisch, Victor; Probst, Jürgen; Scholze, Frank; Krumrey, Michael

    2017-01-01

    Grazing-incidence small-angle X-ray scattering (GISAXS) is often used as a versatile tool for the contactless and destruction-free investigation of nano­structured surfaces. However, due to the shallow incidence angles, the footprint of the X-ray beam is significantly elongated, limiting GISAXS to samples with typical target lengths of several millimetres. For many potential applications, the production of large target areas is impractical, and the targets are surrounded by structured areas. Because the beam footprint is larger than the targets, the surrounding structures contribute parasitic scattering, burying the target signal. In this paper, GISAXS measurements of isolated as well as surrounded grating targets in Si substrates with line lengths from 50 µm down to 4 µm are presented. For the isolated grating targets, the changes in the scattering patterns due to the reduced target length are explained. For the surrounded grating targets, the scattering signal of a 15 µm × 15 µm target grating structure is separated from the scattering signal of 100 µm × 100 µm nanostructured surroundings by producing the target with a different orientation with respect to the predominant direction of the surrounding structures. As virtually all litho­graphically produced nanostructures have a predominant direction, the described technique allows GISAXS to be applied in a range of applications, e.g. for characterization of metrology fields in the semiconductor industry, where up to now it has been considered impossible to use this method due to the large beam footprint. PMID:28875030

  3. Grazing-incidence small-angle X-ray scattering (GISAXS) on small periodic targets using large beams.

    PubMed

    Pflüger, Mika; Soltwisch, Victor; Probst, Jürgen; Scholze, Frank; Krumrey, Michael

    2017-07-01

    Grazing-incidence small-angle X-ray scattering (GISAXS) is often used as a versatile tool for the contactless and destruction-free investigation of nano-structured surfaces. However, due to the shallow incidence angles, the footprint of the X-ray beam is significantly elongated, limiting GISAXS to samples with typical target lengths of several millimetres. For many potential applications, the production of large target areas is impractical, and the targets are surrounded by structured areas. Because the beam footprint is larger than the targets, the surrounding structures contribute parasitic scattering, burying the target signal. In this paper, GISAXS measurements of isolated as well as surrounded grating targets in Si substrates with line lengths from 50 µm down to 4 µm are presented. For the isolated grating targets, the changes in the scattering patterns due to the reduced target length are explained. For the surrounded grating targets, the scattering signal of a 15 µm × 15 µm target grating structure is separated from the scattering signal of 100 µm × 100 µm nanostructured surroundings by producing the target with a different orientation with respect to the predominant direction of the surrounding structures. As virtually all litho-graphically produced nanostructures have a predominant direction, the described technique allows GISAXS to be applied in a range of applications, e.g.  for characterization of metrology fields in the semiconductor industry, where up to now it has been considered impossible to use this method due to the large beam footprint.

  4. A new highly automated sputter equipment for in situ investigation of deposition processes with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Döhrmann, Ralph; Botta, Stephan; Buffet, Adeline; Santoro, Gonzalo; Schlage, Kai; Schwartzkopf, Matthias; Bommel, Sebastian; Risch, Johannes F. H.; Mannweiler, Roman; Brunner, Simon; Metwalli, Ezzeldin; Müller-Buschbaum, Peter; Roth, Stephan V.

    2013-04-01

    HASE (Highly Automated Sputter Equipment) is a new mobile setup developed to investigate deposition processes with synchrotron radiation. HASE is based on an ultra-high vacuum sputter deposition chamber equipped with an in-vacuum sample pick-and-place robot. This enables a fast and reliable sample change without breaking the vacuum conditions and helps to save valuable measurement time, which is required for experiments at synchrotron sources like PETRA III at DESY. An advantageous arrangement of several sputter guns, mounted on a rotative flange, gives the possibility to sputter under different deposition angles or to sputter different materials on the same substrate. The chamber is also equipped with a modular sample stage, which allows for the integration of different sample environments, such as a sample heating and cooling device. The design of HASE is unique in the flexibility. The combination of several different sputtering methods like standard deposition, glancing angle deposition, and high pressure sputter deposition combined with heating and cooling possibil-ities of the sample, the large exit windows, and the degree of automation facilitate many different grazing incidence X-ray scattering experiments, such as grazing incidence small and wide angle X-ray scattering, in one setup. In this paper we describe in detail the design and the performance of the new equipment and present the installation of the HASE apparatus at the Micro and Nano focus X-ray Scattering beamline (MiNaXS) at PETRA III. Furthermore, we describe the measurement options and present some selected results. The HASE setup has been successfully commissioned and is now available for users.

  5. [Study of selegiline and related compounds with x-ray diffraction].

    PubMed

    Simon, K; Böcskei, Z; Török, Z

    1992-09-01

    Selegiline and its parent compounds were studied by X-ray diffraction. It was established that the racemates of primary and secondary amines (p-fluoro-amphetamine, methamphetamine, p-fluoro-methamphetamine) hydrochloride do not form racemic compounds but crystalline as conglomerates, at the same time tertiary amines like selegiline and p-fluoro-selegiline hydrochlorides do. The crystalline structure of five enantiomeric hydrochlorides were determined, the CPhe-C-C-N torsion angle is anti-periplanar in all cases but in p-fluoro-amphetamine where it is gauche.

  6. Local texture and strongly linked conduction in spray-pyrolyzed TlBa2Ca2Cu3O(8+x) deposits

    NASA Astrophysics Data System (ADS)

    Kroeger, D. M.; Goyal, A.; Specht, E. D.; Wang, Z. L.; Tkaczyk, J. E.; Sutliff, J. A.; Deluca, J. A.

    Local texture in polycrystalline TlBa2Ca2 Cu3O(8+x) deposits has been determined from transmission electron microscopy, electron backscatter diffraction patterns and x-ray diffraction. The small-grained deposits had excellent c-axis alignment and contained colonies of grains with similar but not identical a-axis orientations. Most grain boundaries within a colony have small misorientation angles and should not be weak links. It is proposed that long range conduction utilizes a percolative network of small angle grain boundaries at colony intersections.

  7. X-ray diffraction study of the caged magnetic compound DyFe 2 Zn 20 at low temperatures

    NASA Astrophysics Data System (ADS)

    Ohashi, M.; Ohashi, K.; Sawabu, M.; Miyagawa, M.; Maeta, K.; Isikawa, Y.

    2018-05-01

    We have carried out high-angle X-ray powder diffraction measurements of the caged magnetic compound DyFe2Zn20 at low temperature between 14 and 300 K. Even though a strong magnetic anisotropy exists in the magnetization and magnetic susceptibility due to strong exchange interaction between Fe and Dy, almost all X-ray powder diffraction peaks correspond to Bragg reflections of the cubic structural models not only at room temperature paramagnetic state but also at low temperature magnetic ordering state. The Debye temperature is obtained to be 227 K from the results of the volumetric thermal expansion coefficient, which is approximately coincident with that of CeRu2Zn20 (245 K) and that of pure Zn metal (235 K).

  8. Determining and Controlling the Magnesium Composition in CdTe/CdMgTe Heterostructures

    DOE PAGES

    LeBlanc, E. G.; Edirisooriya, M.; Ogedengbe, O. S.; ...

    2017-06-05

    The relationships between Mg composition, band gap, and lattice characteristics are investigated for Cd 1-xMg xTe barrier layers using a combination of cathodoluminescence, energy dispersive x-ray spectroscopy, variable angle spectral ellipsometry, and atom probe tomography. The use of a simplified, yet accurate, variable angle spectral ellipsometry analysis is shown to be appropriate for fast determination of composition in thin Cd 1-xMg xTe layers. The validity of using high-resolution x-ray diffraction for CdTe/Cd 1-xMg xTe double heterostructures is discussed. Furthermore, the stability of CdTe/Cd 1-xMg xTe heterostructures are investigated with respect to thermal processing.

  9. Determining and Controlling the Magnesium Composition in CdTe/CdMgTe Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBlanc, E. G.; Edirisooriya, M.; Ogedengbe, O. S.

    The relationships between Mg composition, band gap, and lattice characteristics are investigated for Cd 1-xMg xTe barrier layers using a combination of cathodoluminescence, energy dispersive x-ray spectroscopy, variable angle spectral ellipsometry, and atom probe tomography. The use of a simplified, yet accurate, variable angle spectral ellipsometry analysis is shown to be appropriate for fast determination of composition in thin Cd 1-xMg xTe layers. The validity of using high-resolution x-ray diffraction for CdTe/Cd 1-xMg xTe double heterostructures is discussed. Furthermore, the stability of CdTe/Cd 1-xMg xTe heterostructures are investigated with respect to thermal processing.

  10. Synchrotron X-ray reciprocal-space mapping, topography and diffraction resolution studies of macromolecular crystal quality.

    PubMed

    Boggon, T J; Helliwell, J R; Judge, R A; Olczak, A; Siddons, D P; Snell, E H; Stojanoff, V

    2000-07-01

    A comprehensive study of microgravity and ground-grown chicken egg-white lysozyme crystals is presented using synchrotron X-ray reciprocal-space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed reduced intrinsic mosaicities on average, but no differences in terms of strain over their ground-grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the ground-control case only a small volume of the crystal contributed to the intensity at the diffraction peak. The techniques prove to be highly complementary, with the reciprocal-space mapping providing a quantitative measure of the crystal mosaicity and strain (or variation in lattice spacing) and the topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out at the synchrotron.

  11. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  12. Incorporation of Tin on copper clad laminate to increase the interface adhesion for signal loss reduction of high-frequency PCB lamination

    NASA Astrophysics Data System (ADS)

    Wang, Chong; Wen, Na; Zhou, Guoyun; Wang, Shouxu; He, Wei; Su, Xinhong; Hu, Yongsuan

    2017-11-01

    A novel method of improving the adhesion between copper and prepreg in high frequency PCB was proposed and studied in this work. This process which aimed to decrease the IEP (isoelectric point) of the copper to obtain higher adhesion, was achieved by depositing a thin tin layer with lower IEP on copper. It was characterized by scanning electron microscopy (SEM), 3D microscope, peel strength test, X-Ray thickness test, grazing incidence X-ray diffraction (GXRD), X-ray photoelectron spectroscopy (XPS), Agilent vector network analyzer (VNA), which confirmed its excellent adhesion performance and outstanding electrical properties in high-frequency signal transmission compared with traditional brown oxide method. Moreover, the mechanism of achieving high adhesion for this method was also investigated.

  13. X-ray probe of GaN thin films grown on InGaN compliant substrates

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Li, Yang; Liu, Jianming; Wei, Hongyuan; Liu, Xianglin; Yang, Shaoyan; Wang, Zhanguo; Wang, Huanhua

    2013-04-01

    GaN thin films grown on InGaN compliant substrates were characterized by several X-ray technologies: X-ray reciprocal space mapping (RSM), grazing incidence X-ray diffraction (GIXRD), and X-ray photoemission spectrum (XPS). Narrow Lorentz broadening and stress free state were observed for GaN grown on InGaN compliant substrate, while mosaic structure and large tensile stress were observed at the presence of residual indium atoms. RSM disclosed the mosaicity, and the GIXRD was conducted to investigate the depth dependences of crystal quality and strain states. XPS depth profile of indium contents indicated that residual indium atoms deteriorated the crystal quality of GaN not only by producing lattice mismatch at the interface of InGaN and GaN but also by diffusing into GaN overlayers. Accordingly, two solutions were proposed to improve the efficiency of self-patterned lateral epitaxial overgrowth method. This research goes a further step in resolving the urgent substrate problem in GaN fabrication.

  14. Novel adhesive properties of poly(ethylene-oxide) adsorbed nanolayers

    NASA Astrophysics Data System (ADS)

    Zeng, Wenduo

    Solid-polymer interfaces play crucial roles in the multidisciplinary field of nanotechnology and are the confluence of physics, chemistry, biology, and engineering. There is now growing evidence that polymer chains irreversibly adsorb even onto weakly attractive solid surfaces, forming a nanometer-thick adsorbed polymer layer ("adsorbed polymer nanolayers"). It has also been reported that the adsorbed layers greatly impact on local structures and properties of supported polymer thin films. In this thesis, I aim to clarify adhesive and tribological properties of adsorbed poly(ethylene-oxide) (PEO) nanolayers onto silicon (Si) substrates, which remain unsolved so far. The adsorbed nanolayers were prepared by the established protocol: one has to equilibrate the melt or dense solution against a solid surface; the unadsorbed chains can be then removed by a good solvent, while the adsorbed chains are assumed to maintain the same conformation due to the irreversible freezing through many physical solid-segment contacts. I firstly characterized the formation process and the surface/film structures of the adsorbed nanolayers by using X-ray reflectivity, grazing incidence X-ray diffraction, and atomic force microscopy. Secondly, to compare the surface energy of the adsorbed layers with the bulk, static contact angle measurements with two liquids (water and glycerol) were carried out using a optical contact angle meter equipped with a video camera. Thirdly, I designed and constructed a custom-built adhesion-testing device to quantify the adhesive property. The experimental results provide new insight into the microscopic structure - macroscopic property relationship at the solid-polymer interface.

  15. Ultrasensitive hydrogen sensor based on Pt-decorated WO₃ nanorods prepared by glancing-angle dc magnetron sputtering.

    PubMed

    Horprathum, M; Srichaiyaperk, T; Samransuksamer, B; Wisitsoraat, A; Eiamchai, P; Limwichean, S; Chananonnawathorn, C; Aiempanakit, K; Nuntawong, N; Patthanasettakul, V; Oros, C; Porntheeraphat, S; Songsiriritthigul, P; Nakajima, H; Tuantranont, A; Chindaudom, P

    2014-12-24

    In this work, we report an ultrasensitive hydrogen (H2) sensor based on tungsten trioxide (WO3) nanorods decorated with platinum (Pt) nanoparticles. WO3 nanorods were fabricated by dc magnetron sputtering with a glancing angle deposition (GLAD) technique, and decorations of Pt nanoparticles were performed by normal dc sputtering on WO3 nanorods with varying deposition time from 2.5 to 15 s. Crystal structures, morphologies, and chemical information on Pt-decorated WO3 nanorods were characterized by grazing-incident X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and photoelectron spectroscopy, respectively. The effect of the Pt nanoparticles on the H2-sensing performance of WO3 nanorods was investigated over a low concentration range of 150-3000 ppm of H2 at 150-350 °C working temperatures. The results showed that the H2 response greatly increased with increasing Pt-deposition time up to 10 s but then substantially deteriorated as the deposition time increased further. The optimally decorated Pt-WO3 nanorod sensor exhibited an ultrahigh H2 response from 1530 and 214,000 to 150 and 3000 ppm of H2, respectively, at 200 °C. The outstanding gas-sensing properties may be attributed to the excellent dispersion of fine Pt nanoparticles on WO3 nanorods having a very large effective surface area, leading to highly effective spillover of molecular hydrogen through Pt nanoparticles onto the WO3 nanorod surface.

  16. Measurement of strain in Al-Cu interconnect lines with x-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Solak, H. H.; Vladimirsky, Y.; Cerrina, F.; Lai, B.; Yun, W.; Cai, Z.; Ilinski, P.; Legnini, D.; Rodrigues, W.

    1999-07-01

    We report measurement of strain in patterned Al-Cu interconnect lines with x-ray microdiffraction technique with a ˜1 μm spatial resolution. Monochromatized x rays from an undulator were focused on the sample using a phase fresnel zone plate and diffracted light was collected by an area detector in a symmetric, angle dispersive x-ray diffraction geometry. Measurements were made before and after the line sample was stressed for electromigration. Results show an increase in inter- and intra-grain strain variation after the testing. Differences in strain behavior of grains with (111) and (200) crystallographic planes parallel to the substrate surface were observed. A position dependent variation of strain after the testing was measured whereas no such dependence was found before the testing.

  17. Complexation and Structure Elucidation of the Axial Conformers of Mono- and (±)-trans-1,2-Disubstituted Cyclohexanes by Enantiopure Alleno-Acetylenic Cage Receptors.

    PubMed

    Gropp, Cornelius; Trapp, Nils

    2018-04-25

    Single crystal X-ray diffraction is a powerful method to unambiguously characterize the structure of molecules with atomic resolution. Herein, we review the molecular recognition of the (di)axial conformers of Mono- and (±)-trans-1,2-disubstituted cyclohexanes by enantiopure alleno-acetylenic cage receptors in solution and in the solid state. Single crystals of the host-guest complexes suitable for X-ray diffraction allow for the first time to study the dihedral angles of a series of Mono- and (±)-trans-1,2-disubstituted cyclohexanes in their (di)axial chair conformation. Theoretical studies indicate negligible influence of the host structure on the guest conformation, suggesting that the structural information obtained from the host-guest complexes give insight into the innate structures of Mono- and (±)-trans-1,2-disubstituted cyclohexanes. Strong deviation of the dihedral angles a,a(X-C(1)-C(2)-X) from the idealized 180° are observed, accompanied by substantial flattening of the ring dihedral angles ρ(X-C(1)-C(2)-C(3)).

  18. X-ray lithography using holographic images

    DOEpatents

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  19. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm S.; Jacobsen, Chris

    1997-01-01

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  20. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, D.S.; Ruud, C.O.

    1998-03-03

    A method and apparatus for x-ray measurement of certain properties of a solid material are disclosed. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  1. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, D.S.; Ruud, C.O.

    1998-07-21

    A method and apparatus are disclosed for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  2. Grating-based holographic diffraction methods for X-rays and neutrons: phase object approximation and dynamical theory

    DOE PAGES

    Feng, Hao; Ashkar, Rana; Steinke, Nina; ...

    2018-02-01

    A method dubbed grating-based holography was recently used to determine the structure of colloidal fluids in the rectangular grooves of a diffraction grating from X-ray scattering measurements. Similar grating-based measurements have also been recently made with neutrons using a technique called spin-echo small-angle neutron scattering. The analysis of the X-ray diffraction data was done using an approximation that treats the X-ray phase change caused by the colloidal structure as a small perturbation to the overall phase pattern generated by the grating. In this paper, the adequacy of this weak phase approximation is explored for both X-ray and neutron grating holography.more » Additionally, it is found that there are several approximations hidden within the weak phase approximation that can lead to incorrect conclusions from experiments. In particular, the phase contrast for the empty grating is a critical parameter. Finally, while the approximation is found to be perfectly adequate for X-ray grating holography experiments performed to date, it cannot be applied to similar neutron experiments because the latter technique requires much deeper grating channels.« less

  3. Effective increase in beam emittance by phase-space expansion using asymmetric Bragg diffraction.

    PubMed

    Chu, Chia-Hung; Tang, Mau-Tsu; Chang, Shih-Lin

    2015-08-24

    We propose an innovative method to extend the utilization of the phase space downstream of a synchrotron light source for X-ray transmission microscopy. Based on the dynamical theory of X-ray diffraction, asymmetrically cut perfect crystals are applied to reshape the position-angle-wavelength space of the light source, by which the usable phase space of the source can be magnified by over one hundred times, thereby "phase-space-matching" the source with the objective lens of the microscope. The method's validity is confirmed using SHADOW code simulations, and aberration through an optical lens such as a Fresnel zone plate is examined via matrix optics for nano-resolution X-ray images.

  4. Transmission-geometry electrochemical cell for in-situ scattering and spectroscopy investigations

    DOEpatents

    Chupas, Peter J.; Chapman, Karena W.; Kurtz, Charles A.; Borkiewicz, Olaf J.; Wiaderek, Kamila Magdelena; Shyam, Badri

    2015-05-05

    The present invention relates to a test chamber that can be used to perform a variety of X-ray and neutron spectroscopy experiments including powder diffraction, small-angle scattering, X-ray absorption spectroscopy, and pair distribution functions, such chamber comprising a first electrode with an X-ray transparent window; a second electrode with an X-ray transparent window; a plurality of insulating gaskets providing a hermetic seal around the sample and preventing contact between said first and second electrodes; and an insulating housing into which the first electrode is secured.

  5. X-ray diffraction patterns and diffracted intensity of Kα spectral lines of He-like ions

    NASA Astrophysics Data System (ADS)

    Goyal, Arun; Khatri, Indu; Singh, A. K.; Sharma, Rinku; Mohan, Man

    2017-09-01

    In the present paper, we have calculated fine-structure energy levels related to the configurations 1s2s, 1s2p, 1s3s and 1s3p by employing GRASP2K code. We have also computed radiative data for transitions from 1s2p 1 P1o, 1s2p 3 P2o, 1s2p 3 P1o and 1s2s 3S1 to the ground state 1s2. We have made comparisons of our presented energy levels and transition wavelengths with available results compiled by NIST and good agreement is achieved. We have also provided X-ray diffraction (XRD) patterns of Kα spectral lines, namely w, x, y and z of Cu XXVIII, Kr XXXV and Mo with diffraction angle and maximum diffracted intensity which is not published elsewhere in the literature. We believe that our presented results may be beneficial in determination of the order parameter, X-ray crystallography, solid-state drug analysis, forensic science, geological and medical applications.

  6. Crystallization dynamics and interface stability of strontium titanate thin films on silicon.

    PubMed

    Hanzig, Florian; Hanzig, Juliane; Mehner, Erik; Richter, Carsten; Veselý, Jozef; Stöcker, Hartmut; Abendroth, Barbara; Motylenko, Mykhaylo; Klemm, Volker; Novikov, Dmitri; Meyer, Dirk C

    2015-04-01

    Different physical vapor deposition methods have been used to fabricate strontium titanate thin films. Within the binary phase diagram of SrO and TiO 2 the stoichiometry ranges from Ti rich to Sr rich, respectively. The crystallization of these amorphous SrTiO 3 layers is investigated by in situ grazing-incidence X-ray diffraction using synchrotron radiation. The crystallization dynamics and evolution of the lattice constants as well as crystallite sizes of the SrTiO 3 layers were determined for temperatures up to 1223 K under atmospheric conditions applying different heating rates. At approximately 473 K, crystallization of perovskite-type SrTiO 3 is initiated for Sr-rich electron beam evaporated layers, whereas Sr-depleted sputter-deposited thin films crystallize at 739 K. During annealing, a significant diffusion of Si from the substrate into the SrTiO 3 layers occurs in the case of Sr-rich composition. This leads to the formation of secondary silicate phases which are observed by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy.

  7. High Ms Fe16N2 thin film with Ag under layer on GaAs substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allard Jr, Lawrence Frederick

    2016-01-01

    (001) textured Fe16N2 thin film with Ag under layer is successfully grown on GaAs substrate using a facing target sputtering (FTS) system. After post annealing, chemically ordered Fe16N2 phase is formed and detected by X-ray diffraction (XRD). High saturation magnetization (Ms) is measured by a vibrating sample magnetometer (VSM). In comparison with Fe16N2 with Ag under layer on MgO substrate and Fe16N2 with Fe under layer on GaAs substrate, the current layer structure shows a higher Ms value, with a magnetically softer feature in contrast to the above cases. In addition, X-ray photoelectron spectroscopy (XPS) is performed to characterize themore » binding energy of N atoms. To verify the role of strain that the FeN layer experiences in the above three structures, Grazing Incidence X-ray Diffraction (GIXRD) is conducted to reveal a large in-plane lattice constant due to the in-plane biaxial tensile strain. INTRODUCTION« less

  8. Evaluation of Argon ion irradiation hardening of ferritic/martensitic steel-T91 using nanoindentation, X-ray diffraction and TEM techniques

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, N.; Tewari, R.; Mukherjee, P.; Gayathri, N.; Durgaprasad, P. V.; Taki, G. S.; Krishna, J. B. M.; Sinha, A. K.; Pant, P.; Revally, A. K.; Dutta, B. K.; Dey, G. K.

    2017-08-01

    In the present study, microstructures of Ferritic-martensitic T-91 steel irradiated at room temperature for 5, 10 and 20 dpa using 315 KeV Ar+9 ions have been characterized by grazing incident X-ray diffraction (GIXRD) and by transmission electron microscopy (TEM). Line profiles of GIXRD patterns have shown that the size of domain continuously reduced with increasing dose of radiation. TEM investigations of irradiated samples have shown the presence of black dots, the number density of which decreases with increasing dose. Microstructures of irradiated samples have also revealed the presence of point defect clusters, such as dislocation loops and bubbles. In addition, dissolution of precipitates due to irradiation was also observed. Nano-indentation studies on the irradiated samples have shown saturation behavior in hardness as a function of dose which could be correlated with the changes in the yield strength of the alloy.

  9. Influence of BN fiber coatings on the interfacial structure of sapphire fiber reinforced NiAl composites

    NASA Astrophysics Data System (ADS)

    Reichert, K.; Wen, K.; Cremer, R.; Hu, W.; Neuschütz, D.; Gottstein, G.

    2001-07-01

    A new concept for a tailored fiber-matrix interface for sapphire fiber reinforced NiAl matrix composites is proposed, consisting of an initial hexagonal boron nitride (hBN) fiber coating. For this, single crystal Al 2O 3 fibers were coated with hBN by chemical vapor deposition (CVD). Following a comprehensive characterization of the CVD coating as to composition and structure by means of X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray diffraction (GIXRD), the fiber reinforced NiAl matrix composites were fabricated by diffusion bonding at 1400°C. The interfaces NiAl/BN and BN/Al 2O 3 were analyzed by scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and selected area diffraction (SAD). An interfacial reaction between NiAl and hBN to form AlN was revealed using these analytical techniques.

  10. Measurement of UO2 surface oxidation using grazing-incidence x-ray diffraction: Implications for nuclear forensics

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Chen, Chien-Hung; Park, Sulgiye; Davisson, M. Lee; Ewing, Rodney C.

    2018-04-01

    Nuclear forensics involves determination of the origin and history of interdicted nuclear materials based on the detection of signatures associated with their production and trafficking. The surface oxidation undergone by UO2 when exposed to air is a potential signature of its atmospheric exposure during handling and transport. To assess the sensitivity of this oxidation to atmospheric parameters, surface sensitive grazing-incidence x-ray diffraction (GIXRD) measurements were performed on UO2 samples exposed to air of varying relative humidity (34%, 56%, and 95% RH) and temperature (room temperature, 50 °C, and 100 °C). Near-surface unit cell contraction was observed following exposure, indicating oxidation of the surface and accompanying reduction of the uranium cation ionic radii. The extent of unit cell contraction provides a measure of the extent of oxidation, allowing for comparison of the effects of various exposure conditions. No clear influence of relative humidity on the extent of oxidation was observed, with samples exhibiting similar degrees of unit cell contraction at all relative humidities investigated. In contrast, the thickness of the oxidized layers increased substantially with increasing temperature, such that differences on the order of 10 °C yielded readily observable crystallographic signatures of the exposure conditions.

  11. Femtosecond laser ablation of enamel

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-06-01

    The surface topographical, compositional, and structural modifications induced in human enamel by femtosecond laser ablation is studied. The laser treatments were performed using a Yb:KYW chirped-pulse-regenerative amplification laser system (560 fs and 1030 nm) and fluences up to 14 J/cm2. The ablation surfaces were studied by scanning electron microscopy, grazing incidence x-ray diffraction, and micro-Raman spectroscopy. Regardless of the fluence, the ablation surfaces were covered by a layer of resolidified material, indicating that ablation is accompanied by melting of hydroxyapatite. This layer presented pores and exploded gas bubbles, created by the release of gaseous decomposition products of hydroxyapatite (CO2 and H2O) within the liquid phase. In the specimen treated with 1-kHz repetition frequency and 14 J/cm2, thickness of the resolidified material is in the range of 300 to 900 nm. The micro-Raman analysis revealed that the resolidified material contains amorphous calcium phosphate, while grazing incidence x-ray diffraction analysis allowed detecting traces of a calcium phosphate other than hydroxyapatite, probably β-tricalcium phosphate Ca3), at the surface of this specimen. The present results show that the ablation of enamel involves melting of enamel's hydroxyapatite, but the thickness of the altered layer is very small and thermal damage of the remaining material is negligible.

  12. Arcus: exploring the formation and evolution of clusters, galaxies, and stars

    NASA Astrophysics Data System (ADS)

    Smith, R. K.; Abraham, M.; Allured, R.; Bautz, M.; Bookbinder, J.; Bregman, J.; Brenneman, L.; Brickhouse, N. S.; Burrows, D.; Burwitz, V.; Cheimets, P. N.; Costantini, E.; Dawson, S.; DeRoo, C.; Falcone, A.; Foster, A. R.; Gallo, L.; Grant, C. E.; Günther, H. M.; Heilmann, R. K.; Hertz, E.; Hine, B.; Huenemoerder, D.; Kaastra, J. S.; Kreykenbohm, I.; Madsen, K. K.; McEntaffer, R.; Miller, E.; Miller, J.; Morse, E.; Mushotzky, R.; Nandra, K.; Nowak, M.; Paerels, F.; Petre, R.; Poppenhaeger, K.; Ptak, A.; Reid, P.; Sanders, J.; Schattenburg, M.; Schulz, N.; Smale, A.; Temi, P.; Valencic, L.; Walker, S.; Willingale, R.; Wilms, J.; Wolk, S. J.

    2017-08-01

    Arcus, a Medium Explorer (MIDEX) mission, was selected by NASA for a Phase A study in August 2017. The observatory provides high-resolution soft X-ray spectroscopy in the 12-50Å bandpass with unprecedented sensitivity: effective areas of >450 cm2 and spectral resolution >2500. The Arcus key science goals are (1) to measure the effects of structure formation imprinted upon the hot baryons that are predicted to lie in extended halos around galaxies, groups, and clusters, (2) to trace the propagation of outflowing mass, energy, and momentum from the vicinity of the black hole to extragalactic scales as a measure of their feedback and (3) to explore how stars, circumstellar disks and exoplanet atmospheres form and evolve. Arcus relies upon the same 12m focal length grazing-incidence silicon pore X-ray optics (SPO) that ESA has developed for the Athena mission; the focal length is achieved on orbit via an extendable optical bench. The focused X-rays from these optics are diffracted by high-efficiency Critical-Angle Transmission (CAT) gratings, and the results are imaged with flight-proven CCD detectors and electronics. The power and telemetry requirements on the spacecraft are modest. Mission operations are straightforward, as most observations will be long ( 100 ksec), uninterrupted, and pre-planned, although there will be capabilities to observe sources such as tidal disruption events or supernovae with a 3 day turnaround. Following the 2nd year of operation, Arcus will transition to a proposal-driven guest observatory facility.

  13. Structure of a two-dimensional crystal in a Langmuir monolayer: grazing incidence X-ray diffraction and macroscopic properties

    NASA Astrophysics Data System (ADS)

    Flament, C.; Gallet, F.; Graner, F.; Goldmann, M.; Peterson, I.; Renault, A.

    1994-06-01

    Grazing incidence X-ray diffraction is performed on a Langmuir monolayer made of pure fluorescent NBD-stearic acid, spread at the free surface of water. It shows several intense narrow peaks in the solid phase, at the same wavevectors as the brightest peaks observed earlier by electron diffraction, for a monolayer transferred onto an amorphous polymer substrate. Thus the solid phase has the same crystalline structure on water and on solid substrate. The relative peak intensities are comparable in both experiments, and in the proposed model for the molecular structure. This model also accounts for the very large anisotropy of the crystalline phase and its optical properties. This phase could be ferroelectric, as previously assumed in order to explain the elongated shape of the crystals. Une monocouche de Langmuir, composée d'acide NBD-stéarique fluorescent pur, déposée à la surface libre de l'eau, est analysée par diffraction de rayons X sous incidence rasante. On détecte plusieurs pics étroits et intenses dans la phase solide, aux mêmes vecteurs d'onde que les pics les plus brillants précédemment observés par diffraction électronique, pour une monocouche transférée sur un substrat de polymère amorphe. La phase solide a donc la même structure cristalline sur l'eau et sur substrat solide. Les intensités relatives des pics sont comparables dans les deux expériences, ainsi que dans le modèle proposé pour la structure moléculaire. Ce modèle rend également compte de l'anisotropie très importante de la phase cristalline et de ses propriétés optiques. Il pourrait s'agir d'une phase ferroélectrique, comme cela avait été précédemment supposé pour expliquer la forme allongée des cristaux.

  14. Effect of borax concentration on the structure of Poly(Vinyl Alcohol) gels

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2012-06-01

    Poly(Vinyl Alcohol) hydrogels cross-linked with varying concentrations of borax have been studied using Small-Angle Neutron Scattering and X-Ray Diffraction. The intensity of scattering increases with borax concentration from 1 mg/ml up to 2 mg/ml and falls thereafter for 4 mg/ml, increasing again for a concentration of 10 mg/ml. The mesoscopic structural changes that cause these trends in the SANS data are in keeping with the variations in the X-ray diffraction patterns pertaining to structures within the PVA chains.

  15. The Effects of Stoichiometry on the Mechanical Properties of Icosahedral Boron Carbide Under Loading

    DTIC Science & Technology

    2012-11-19

    ranging from 10% to 20% C using glancing incidence x - ray diffraction and similar experimental studies of structure as a function of stoichiometry were...blue) positions. it has been suggested that x - ray diffraction analysis of a series of boron-rich materials indicates a distinct change in the c lattice...Angstroms, angles in degrees, volume in cubic Angstroms). Structure Formula % C a b c α β γ Volume Experiment37 B5.6C 15.2 5.19 5.19 5.19 65.18 65.18

  16. Purification, crystallization, small-angle X-ray scattering and preliminary X-ray diffraction analysis of the SH2 domain of the Csk-homologous kinase.

    PubMed

    Gunn, Natalie J; Gorman, Michael A; Dobson, Renwick C J; Parker, Michael W; Mulhern, Terrence D

    2011-03-01

    The C-terminal Src kinase (Csk) and Csk-homologous kinase (CHK) are endogenous inhibitors of the proto-oncogenic Src family of protein tyrosine kinases (SFKs). Phosphotyrosyl peptide binding to their Src-homology 2 (SH2) domains activates Csk and CHK, enhancing their ability to suppress SFK signalling; however, the detailed mechanistic basis of this activation event is unclear. The CHK SH2 was expressed in Escherichia coli and the purified protein was characterized as monomeric by synchrotron small-angle X-ray scattering in-line with size-exclusion chromatography. The CHK SH2 crystallized in 0.2 M sodium bromide, 0.1 M bis-Tris propane pH 6.5 and 20% polyethylene glycol 3350 and the best crystals diffracted to ∼1.6 Å resolution. The crystals belonged to space group P2, with unit-cell parameters a=25.8, b=34.6, c=63.2 Å, β=99.4°.

  17. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise.

    PubMed

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; Ramebäck, Henrik; Marie, Olivier; Ravat, Brice; Delaunay, François; Young, Emma; Blagojevic, Ned; Hester, James R; Thorogood, Gordon; Nelwamondo, Aubrey N; Ntsoane, Tshepo P; Roberts, Sarah K; Holliday, Kiel S

    2018-01-01

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2 , U 3 O 8 and an intermediate species U 3 O 7 in the third material.

  18. Alignment monitoring system for ASTRO-H

    NASA Astrophysics Data System (ADS)

    Grandmont, Frédéric; Dupont, Fabien; Moreau, Louis; Larouche, Martin; Bibeau, Louis-Philippe; Laplante, Sylvio

    2017-11-01

    High Energy Astrophysics (HEA) encompasses a broad range of astrophysical science, with sources that include stars and stellar clusters, compact objects (black holes, neutron stars, and white dwarfs), supernova remnants, the interstellar medium, galaxies and clusters of galaxies, Active Galactic Nuclei (AGN), and gamma ray bursters, as well as a variety of fundamental physical processes. The physics involved includes extremes of gravity, density and magnetic field and is often inaccessible via any other waveband. HEA investigates and answers crucial questions in all fields of contemporary astrophysics. Unlike the focusing of radio and optical light, X-rays are brought to focus through shallow, grazing incident angles. The analogy of skimming a stone across a pond is appropriate in describing how X-rays are focused. The higher the energy of the X-ray photon the shallower the incident angle must be, thereby introducing the requirement of longer focal lengths for focusing high-energy X-rays (E > 10 keV). This technical challenge has hindered scientific advancement in the high-energy regime, while at lower X-ray energies the community has prospered immensely with spectacular data from focusing observatories like XMM-Newton, Chandra, and Suzaku. Now, with ASTRO-H, the community will reap similar rewards from the tremendous improvement in spatial and spectral resolution at high energies. ASTRO-H is a JAXA mission. More information can be found on the ASTRO-H web site [1]. Because of the grazing-angle optics, high-energy X-ray instruments have a long focal length. The Hard X-ray Imager (HXI) of ASTRO-H has its detector housed in a boom that will extend by about 6 m in orbit so that a focal length of 12 m can be achieved for that instrument. This long structure will inevitably oscillate and flex, especially when passing across the orbital day/night boundary. In order to retain the essential imaging resolution, it is important that the boom has a metrology system that measures this flexion in order to allow post-acquisition compensation in generating the science images. In the current paper, we describe a possible Alignment Monitoring System (AMS) to measure in real time the relative position of the boom. The AMS will be an important element to guaranty that the ASTRO-H observatory will meet its performance requirements. The Canadian Space Agency has the intention of providing the AMS to the ASTRO-H mission. The current paper reports a study that was conducted to support that intention.

  19. New insights into microstructural evolution of epitaxial Ni-Mn-Ga films on MgO (1 0 0) substrate by high-resolution X-ray diffraction and orientation imaging investigations

    NASA Astrophysics Data System (ADS)

    Sharma, Amit; Mohan, Sangeneni; Suwas, Satyam

    2018-04-01

    In this work, a detailed investigation has been performed on hetero-epitaxial growth and microstructural evolution in highly oriented Ni-Mn-Ga (1 0 0) films grown on MgO (1 0 0) substrate using high-resolution X-ray diffraction and orientation imaging microscopy. Mosaicity of the films has been analysed in terms of tilt angle, twist angle, lateral and vertical coherence length and threading dislocation densities by performing rocking curve measurements and reciprocal space mapping. Density of edge dislocations is found to be an order of magnitude higher than the density of screw dislocations, irrespective of film thickness. X-ray pole figure measurements have revealed an orientation relationship of ? || (1 0 0)MgO; ? || [0 0 1]MgO between the film and substrate. Microstructure predicted by X-ray diffraction is in agreement with that obtained from electron microscopy and atomic force microscopy. The evolution of microstructure in the film with increasing thickness has been explained vis-à-vis dislocation generation and growth mechanisms. Orientation imaging microscopy observations indicate evolutionary growth of film by overgrowth mechanism. Decrease in coercivity with film thickness has been explained as an interplay between stress field developed due to crystal defects and magnetic domain pinning due to surface roughness.

  20. Methods for reducing singly reflected rays on the Wolter-I focusing mirrors of the FOXSI rocket experiment

    NASA Astrophysics Data System (ADS)

    Buitrago-Casas, Juan Camilo; Elsner, Ronald; Glesener, Lindsay; Christe, Steven; Ramsey, Brian; Courtade, Sasha; Ishikawa, Shin-nosuke; Narukage, Noriyuki; Turin, Paul; Vievering, Juliana; Athiray, P. S.; Musset, Sophie; Krucker, Säm.

    2017-08-01

    In high energy solar astrophysics, imaging hard X-rays by direct focusing offers higher dynamic range and greater sensitivity compared to past techniques that used indirect imaging. The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket payload that uses seven sets of nested Wolter-I figured mirrors together with seven high-sensitivity semiconductor detectors to observe the Sun in hard X-rays through direct focusing. The FOXSI rocket has successfully flown twice and is funded to fly a third time in summer 2018. The Wolter-I geometry consists of two consecutive mirrors, one paraboloid and one hyperboloid, that reflect photons at grazing angles. Correctly focused X-rays reflect once per mirror segment. For extended sources, like the Sun, off-axis photons at certain incident angles can reflect on only one mirror and still reach the focal plane, generating a background pattern of singly reflected rays (i.e., ghost rays) that can limit the sensitivity of the observation to faint, focused sources. Understanding and mitigating the impact of the singly reflected rays on the FOXSI optical modules will maximize the instruments' sensitivity to background-limited sources. We present an analysis of the FOXSI singly reflected rays based on ray-tracing simulations and laboratory measurements, as well as the effectiveness of different physical strategies to reduce them.

  1. Probing multi-scale mechanical damage in connective tissues using X-ray diffraction.

    PubMed

    Bianchi, Fabio; Hofmann, Felix; Smith, Andrew J; Thompson, Mark S

    2016-11-01

    The accumulation of microstructural collagen damage following repetitive loading is linked to painful and debilitating tendon injuries. As a hierarchical, semi-crystalline material, collagen mechanics can be studied using X-ray diffraction. The aim of the study was to describe multi-structural changes in tendon collagen following controlled plastic damage (5% permanent strain). We used small angle X-ray scattering (SAXS) to interrogate the spacing of collagen molecules within a fibril, and wide angle X-ray scattering (WAXS) to measure molecular strains under macroscopic loading. Simultaneous recordings of SAXS and WAXS patterns, together with whole-tissue strain in physiologically hydrated rat-tail tendons were made during increments of in situ tensile loading. Results showed that while tissue level modulus was unchanged, fibril modulus decreased significantly, and molecular modulus significantly increased. Further, analysis of higher order SAXS peaks suggested structural changes in the gap and overlap regions, possibly localising the damage to molecular cross-links. Our results provide new insight into the fundamental damage processes at work in collagenous tissues and point to new directions for their mitigation and repair. This article reports the first in situ loading synchrotron studies on mechanical damage in collagenous tissues. We provide new insight into the nano- and micro-structural mechanisms of damage processes. Pre-damaged tendons showed differential alteration of moduli at macro, micro and nano-scales as measured using X-ray scattering techniques. Detailed analysis of higher order diffraction peaks suggested damage is localised to molecular cross-links. The results are consistent with previous X-ray scattering studies of tendons and also with recent thermal stability studies on damaged material. Detailed understanding of damage mechanisms is essential in the development of new therapies promoting tissue repair. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Metrology and Alignment of Light Weight Grazing Incidence X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Zhang, William; Content, David; Petre, Robert; Saha, Timo

    2000-01-01

    Metrology and alignment of light weight X-ray optics have been a challenge for two reasons: (1) that the intrinsic mirror quality and distortions caused by handling can not be easily separated, and (2) the diffraction limits of the visible light become a severe problem at the order of one arc-minute. Traditional methods of using a normal incident pencil or small parallel beam which monitors a tiny fraction of the mirror in question at a given time can not adequately monitor those distortions. We are developing a normal incidence setup that monitors a large fraction, if not the whole, of the mirror at any given time. It will allow us to align thin X-ray mirrors to-an accuracy of a few arc seconds or to a limit dominated by the mirror intrinsic quality.

  3. Shear induced weakening of the hydrogen bonding lattice of the energetic material 5,5'-Hydrazinebistetrazole at high-pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciezak-Jenkins, Jennifer A.; Jenkins, Timothy A.

    5,5'-Hydrazinebistetrazole (HBTA) has been studied by in-situ x-ray diffraction and vibrational spectroscopy to pressures near 25 GPa at room temperature. Analysis of the x-ray diffraction pattern of HBTA collected at ambient pressure and temperature revealed a monoclinic structure consistent with that previously reported. Under compression, the x-ray diffraction reveals little evidence of a phase transition over the pressure range studied. Slight anisotropy in response to compression was noted and the β angle decreased moderately, suggesting geometry modifications occur in the hydrogen bonding lattice and between neighboring HBTA molecules as a result of compression along the c axis. Blue shifts inmore » the Infrared active N-H stretching modes were observed, implying a weakening of the hydrogen bond with compression. The weakening of the hydrogen bonding lattice with pressure may lead to an increase in the bending angle of the C-N=N-C bridge between the tetrazole rings and an increased overlap between the π-bonding orbitals. The Raman spectra showed a number of modes associated with H-N=N-H motions of the bridge become more prominent in the spectra under compression. Additionally, the possibility that the increased bend in the angle of the C-N=N-C bridge results from a shearing deformation is discussed.« less

  4. Surface complexation studied via combined grazing-incidence EXAFS and surface diffraction: Arsenate on hematite (0001) and (10-12)

    USGS Publications Warehouse

    Waychunas, G.; Trainor, T.; Eng, P.; Catalano, J.; Brown, G.; Davis, J.; Rogers, J.; Bargar, J.

    2005-01-01

    X-ray diffraction [crystal-truncation-rod (CTR)] studies of the surface structure of moisture-equilibrated hematite reveal sites for complexation not present on the bulk oxygen-terminated surface, and impose constraints on the types of inner-sphere sorption topologies. We have used this improved model of the hematite surface to analyze grazing-incidence EXAFS results for arsenate sorption on the c(0001) and r(10-12) surfaces measured in two electric vector polarizations. This work shows that the reconfiguration of the surface under moist conditions is responsible for an increased adsorption density of arsenate complexes on the (0001) surface relative to predicted ideal termination, and an abundance of "edge-sharing" bidentate complexes on both studied surfaces. We consider possible limitations on combining the methods due to differing surface sensitivities, and discuss further analysis possibilities using both methods. ?? Springer-Verlag 2005.

  5. Investigation of Thermally Induced Degradation in CH3NH3PbI3 Perovskite Solar Cells using In-situ Synchrotron Radiation Analysis.

    PubMed

    Kim, Nam-Koo; Min, Young Hwan; Noh, Seokhwan; Cho, Eunkyung; Jeong, Gitaeg; Joo, Minho; Ahn, Seh-Won; Lee, Jeong Soo; Kim, Seongtak; Ihm, Kyuwook; Ahn, Hyungju; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan

    2017-07-05

    In this study, we employ a combination of various in-situ surface analysis techniques to investigate the thermally induced degradation processes in MAPbI 3 perovskite solar cells (PeSCs) as a function of temperature under air-free conditions (no moisture and oxygen). Through a comprehensive approach that combines in-situ grazing-incidence wide-angle X-ray diffraction (GIWAXD) and high-resolution X-ray photoelectron spectroscopy (HR-XPS) measurements, we confirm that the surface structure of MAPbI 3 perovskite film changes to an intermediate phase and decomposes to CH 3 I, NH 3 , and PbI 2 after both a short (20 min) exposure to heat stress at 100 °C and a long exposure (>1 hour) at 80 °C. Moreover, we observe clearly the changes in the orientation of CH 3 NH 3 + organic cations with respect to the substrate in the intermediate phase, which might be linked directly to the thermal degradation processes in MAPbI 3 perovskites. These results provide important progress towards improved understanding of the thermal degradation mechanisms in perovskite materials and will facilitate improvements in the design and fabrication of perovskite solar cells with better thermal stability.

  6. Structural investigations in helium implanted cubic zirconia using grazing incidence XRD and EXAFS spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuri, G.; Degueldre, C.; Bertsch, J.; Döbeli, M.

    2010-06-01

    The crystal structure and local atom arrangements surrounding Zr atoms were determined for a helium implanted cubic stabilized zirconia (CSZ) using X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy, respectively, measured at glancing angles. The implanted specimen was prepared at a helium fluence of 2 × 10 16 cm -2 using He + beams at two energies (2.54 and 2.74 MeV) passing through a 8.0 μm Al absorber foil. XRD results identified the formation of a new rhombohedral phase in the helium embedded layer, attributed to internal stress as a result of expansion of the CSZ-lattice. Zr K-edge EXAFS data suggested loss of crystallinity in the implanted lattice and disorder of the Zr atoms environment. EXAFS Fourier transforms analysis showed that the average first-shell radius of the Zr sbnd O pair in the implanted sample was slightly larger than that of the CSZ standard. Common general disorder features were explained by rhombohedral type short-range ordered clusters. The average structural parameters estimated from the EXAFS data of unimplanted and implanted CSZ are compared and discussed. Potential of EXAFS as a local probe of atomic-scale structural modifications induced by helium implantation in CSZ is demonstrated.

  7. Assessment of surface roughness by use of soft x-ray scattering

    NASA Astrophysics Data System (ADS)

    Meng, Yan-li; Wang, Yong-gang; Chen, Shu-yan; Chen, Bo

    2009-08-01

    A soft x-ray reflectometer with laser produced plasma source has been designed, which can work from wavelength 8nm to 30 nm and has high performance. Using the soft x-ray reflectometer above, the scattering light distribution of silicon and zerodur mirrors which have super-smooth surfaces could be measured at different incidence angle and different wavelength. The measurement when the incidence angle is 2 degree and the wavelength is 11nm has been given in this paper. A surface scattering theory of soft x-ray grazing incidence optics based on linear system theory and an inverse scattering mathematical model is introduced. The vector scattering theory of soft x-ray scattering also is stated in detail. The scattering data are analyzed by both the methods above respectively to give information about the surface profiles. On the other hand, both the two samples are measured by WYKO surface profiler, and the surface roughness of the silicon and zerodur mirror is 1.3 nm and 1.5nm respectively. The calculated results are in quantitative agreement with those measured by WYKO surface profiler, which indicates that soft x-ray scattering is a very useful tool for the evaluation of highly polished surfaces. But there still some difference among the results of different theory and WYKO, and the possible reasons of such difference have been discussed in detail.

  8. A Compact X-Ray System for Support of High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Gubarev, Mikhail; Gibson, Walter M.; Joy, Marshall K.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Standard x-ray systems for crystallography rely on massive generators coupled with optics that guide X-ray beams onto the crystal sample. Optics for single-crystal diffractometry include total reflection mirrors, polycapillary optics or graded multilayer monochromators. The benefit of using polycapillary optic is that it can collect x-rays over tile greatest solid angle, and thus most efficiently, utilize the greatest portion of X-rays emitted from the Source, The x-ray generator has to have a small anode spot, and thus its size and power requirements can be substantially reduced We present the design and results from the first high flux x-ray system for crystallography that combine's a microfocus X-ray generator (40microns FWHM Spot size at a power of 45 W) and a collimating, polycapillary optic. Diffraction data collected from small test crystals with cell dimensions up to 160A (lysozyme and thaumatin) are of high quality. For example, diffraction data collected from a lysozyme crystal at RT yielded R=5.0% for data extending to 1.70A. We compare these results with measurements taken from standard crystallographic systems. Our current microfocus X-ray diffraction system is attractive for supporting crystal growth research in the standard crystallography laboratory as well as in remote, automated crystal growth laboratory. Its small volume, light-weight, and low power requirements are sufficient to have it installed in unique environments, i.e.. on-board International Space Station.

  9. High Rate Deposition of Thick CrN and Cr2N Coatings Using Modulated Pulse Power (MPP) Magnetron Sputtering

    DTIC Science & Technology

    2010-12-01

    in the conventional Bragg-Bentano mode. The residual stress of the coatings was measured by glancing incident angle XRD (GIXRD) in the same X - ray ...micro-analysis (EPMA), x - ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), nanoindentation, scratch test, and ball-on...the coatings was determined by XRD using a SIEMENS X - ray diffractometer (Model KRISTALLOFLEX-810) operated with K-alpha Cu radiation (30 kV and 20 mA

  10. Absolute Effective Area of the Chandra High-Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Schwartz, D. A.; David, L. P.; Donnelly, R. H.; Edgar, R. J.; Gaetz, T. J.; Jerius, D.; Juda, M.; Kellogg, E. M.; McNamara, B. R.; Dewey, D.

    2000-01-01

    The Chandra X-ray Observatory was launched in July 1999, and is returning exquisite sub-arcsecond x-ray images of star groups, supernova remnants, galaxies, quasars, and clusters of galaxies. In addition to being the premier X-ray observatory in terms of angular and spectral resolution, Chandra is the best calibrated X-ray facility ever flown. We discuss here the calibration of the effective area of the High Resolution Mirror Assembly. Because we do not know the absolute X-ray flux density of any celestial source, this must be based primarily on ground measurements and on modeling. In particular, we must remove the calibrated modeled responses of the detectors and gratings to obtain the mirror area. For celestial sources which may be assumed to have smoothly varying spectra, such as the Crab Nebula, we may verify the continuity of the area calibration as a function of energy. This is of significance in energy regions such as the Ir M-edges, or near the critical grazing angle cutoff of the various mirror shells.

  11. Direct measurement of the propagation velocity of defects using coherent X-rays

    DOE PAGES

    Ulbrandt, Jeffrey G.; Rainville, Meliha G.; Wagenbach, Christa; ...

    2016-03-28

    The properties of artificially grown thin films are often strongly affected by the dynamic relationships between surface growth processes and subsurface structure. Coherent mixing of X-ray signals promises to provide an approach to better understand such processes. Here, we demonstrate the continuously variable mixing of surface and bulk scattering signals during realtime studies of sputter deposition of a-Si and a-WSi2 films by controlling the X-ray penetration and escape depths in coherent grazing-incidence small-angle X-ray scattering. Under conditions where the X-ray signal comes from both the growth surface and the thin film bulk, oscillations in temporal correlations arise from coherent interferencemore » between scattering from stationary bulk features and from the advancing surface. We also observe evidence that elongated bulk features propagate upwards at the same velocity as the surface. Moreover, a highly surface-sensitive mode is demonstrated that can access the surface dynamics independently of the subsurface structure.« less

  12. Magnetic field effects on ultrafast lattice compression dynamics of Si(111) crystal when excited by linearly-polarized femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hatanaka, Koji; Odaka, Hideho; Ono, Kimitoshi; Fukumura, Hiroshi

    2007-03-01

    Time-resolved X-ray diffraction measurements of Si (111) single crystal are performed when excited by linearly-polarized femtosecond laser pulses (780 nm, 260 fs, negatively-chirped, 1 kHz) under a magnetic field (0.47 T). Laser fluence on the sample surface is 40 mJ/cm^2, which is enough lower than the ablation threshold at 200 mJ/cm^2. Probing X-ray pulses of iron characteristic X-ray lines at 0.193604 and 0.193998 nm are generated by focusing femtosecond laser pulses onto audio-cassette tapes in air. Linearly-polarized femtosecond laser pulse irradiation onto Si(111) crystal surface induces transient lattice compression in the picosecond time range, which is confirmed by transient angle shift of X-ray diffraction to higher angles. Little difference of compression dynamics is observed when the laser polarization is changed from p to s-pol. without a magnetic field. On the other hand, under a magnetic field, the lattice compression dynamics changes when the laser is p-polarized which is vertical to the magnetic field vector. These results may be assigned to photo-carrier formation and energy-band distortion.

  13. Achieving diffraction-limited nanometer-scale X-ray point focus with two crossed multilayer Laue lenses: alignment challenges

    DOE PAGES

    Yan, Hanfei; Huang, Xiaojing; Bouet, Nathalie; ...

    2017-10-16

    In this article, we discuss misalignment-induced aberrations in a pair of crossed multilayer Laue lenses used for achieving a nanometer-scale x-ray point focus. We thoroughly investigate the impacts of two most important contributions, the orthogonality and the separation distance between two lenses. We find that misalignment in the orthogonality results in astigmatism at 45º and other inclination angles when coupled with a separation distance error. Theoretical explanation and experimental verification are provided. We show that to achieve a diffraction-limited point focus, accurate alignment of the azimuthal angle is required to ensure orthogonality between two lenses, and the required accuracy ismore » scaled with the ratio of the focus size to the aperture size.« less

  14. Test method for telescopes using a point source at a finite distance

    NASA Technical Reports Server (NTRS)

    Griner, D. B.; Zissa, D. E.; Korsch, D.

    1985-01-01

    A test method for telescopes that makes use of a focused ring formed by an annular aperture when using a point source at a finite distance is evaluated theoretically and experimentally. The results show that the concept can be applied to near-normal, as well as grazing incidence. It is particularly suited for X-ray telescopes because of their intrinsically narrow annular apertures, and because of the largely reduced diffraction effects.

  15. Magnetic topology of Co-based inverse opal-like structures

    NASA Astrophysics Data System (ADS)

    Grigoryeva, N. A.; Mistonov, A. A.; Napolskii, K. S.; Sapoletova, N. A.; Eliseev, A. A.; Bouwman, W.; Byelov, D. V.; Petukhov, A. V.; Chernyshov, D. Yu.; Eckerlebe, H.; Vasilieva, A. V.; Grigoriev, S. V.

    2011-08-01

    The magnetic and structural properties of a cobalt inverse opal-like crystal have been studied by a combination of complementary techniques ranging from polarized neutron scattering and superconducting quantum interference device (SQUID) magnetometry to x-ray diffraction. Microradian small-angle x-ray diffraction shows that the inverse opal-like structure (OLS) synthesized by the electrochemical method fully duplicates the three-dimensional net of voids of the template artificial opal. The inverse OLS has a face-centered cubic (fcc) structure with a lattice constant of 640±10 nm and with a clear tendency to a random hexagonal close-packed structure along the [111] axes. Wide-angle x-ray powder diffraction shows that the atomic cobalt structure is described by coexistence of 95% hexagonal close-packed and 5% fcc phases. The SQUID measurements demonstrate that the inverse OLS film possesses easy-plane magnetization geometry with a coercive field of 14.0 ± 0.5 mT at room temperature. The detailed picture of the transformation of the magnetic structure under an in-plane applied field was detected with the help of small-angle diffraction of polarized neutrons. In the demagnetized state the magnetic system consists of randomly oriented magnetic domains. A complex magnetic structure appears upon application of the magnetic field, with nonhomogeneous distribution of magnetization density within the unit element of the OLS. This distribution is determined by the combined effect of the easy-plane geometry of the film and the crystallographic geometry of the opal-like structure with respect to the applied field direction.

  16. USAF Summer Research Program - 1993 High School Apprenticeship Program Final Reports, Volume 15, Wright Laboratory

    DTIC Science & Technology

    1993-12-01

    of the films. One is x - ray diffraction which is used to determine the crystallographic orientation of the films. No phases other than the YBa 2Cu3O 7...x were observed in any of the films. The x - ray data for the films with high critical current densities show strong peaks of reflections indicating a...Solving for x ca = (p/2 Now, if we look at a close-up of the prism face at the input ray (FIGURE 7), we want to solve for the angle between the rays

  17. Scanning electron microscopy, x-ray diffraction, and electron microprobe analysis of calcific deposits on intrauterine contraceptive devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, S.R.; Wilkinson, E.J.

    Deposits found on intrauterine contraceptive devices (IUDs) were studied by scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray microanalysis. All seven devices, including five plastic and two copper IUDs, were coated with a crust containing cellular, acellular, and fibrillar material. The cellular material was composed of erythrocytes, leukocytes, cells of epithelial origin, sperm, and bacteria. Some of the bacteria were filamentous, with acute-angle branching. The fibrillar material appeared to be fibrin. Most of the acellular material was amorphous; calcite was identified by x-ray diffraction, and x-ray microanalysis showed only calcium. Some of the acellular material, particularly that on themore » IUD side of the crust, was organized in spherulitic crystals and was identified as calcium phosphate by x-ray microanalysis. The crust was joined to the IUD surface by a layer of fibrillar and amorphous material. It is suggested that the initial event in the formation of calcific deposits on IUD surfaces is the deposition of an amorphous and fibrillar layer. Various types of cells present in the endometrial environment adhere to this layer and then calcify. Thus, the deposition of calcific material on the IUDs is a calcification phenomenon, not unlike the formation of plaque on teeth.« less

  18. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Thor, Jasper J.; Madsen, Anders

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF,more » in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less

  19. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    DOE PAGES

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF,more » in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.« less

  20. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    PubMed Central

    van Thor, Jasper J.; Madsen, Anders

    2015-01-01

    In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL) operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI) must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe”) which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse. PMID:26798786

  1. Multifunctional Metallosupramolecular Materials

    DTIC Science & Technology

    2011-02-28

    supramolecular polymers based on 16 and Zn(NTf2)2 using small- angle X - ray scattering (SAXS) and transmission electron microscopy (TEM), carried out by...The SAXS data (Figure 13a) show multiple strong Bragg diffraction maxima at integer multiples of the scattering vector of the primary diffraction ...a minor amount of residual double bonds in the poly(ethylene-co-butylene) core. The metallopolymers 16·[Zn(NTf2)2] x exhibit similar traces, but do

  2. X-ray diffraction study of nanocrystalline and amorphous structure within major and minor ampullate dragline spider silks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampath, Sujatha; Isdebski, Thomas; Jenkins, Janelle E.

    Synchrotron X-ray micro-diffraction experiments were carried out on Nephila clavipes (NC) and Argiope aurantia (AA) major (MA) and minor ampullate (MiA) fibers that make up dragline spider silk. The diffraction patterns show a semi-crystalline structure with {beta}-poly(L-alanine) nanocrystallites embedded in a partially oriented amorphous matrix. A superlattice reflection 'S' diffraction ring is observed, which corresponds to a crystalline component larger in size and is poorly oriented, when compared to the {beta}-poly(L-alanine) nanocrystallites that are commonly observed in dragline spider silks. Crystallite size, crystallinity and orientation about the fiber axis have been determined from the wide-angle X-ray diffraction (WAXD) patterns. Inmore » both NC and AA, the MiA silks are found to be more highly crystalline, when compared with the corresponding MA silks. Detailed analysis on the amorphous matrix shows considerable differences in the degree of order of the oriented amorphous component between the different silks studied and may play a crucial role in determining the mechanical properties of the silks.« less

  3. Microgravity

    NASA Image and Video Library

    2001-06-06

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceglio, N.M.; George, E.V.; Brooks, K.M.

    The first successful demonstration of high resolution, tomographic imaging of a laboratory plasma using coded imaging techniques is reported. ZPCI has been used to image the x-ray emission from laser compressed DT filled microballoons. The zone plate camera viewed an x-ray spectral window extending from below 2 keV to above 6 keV. It exhibited a resolution approximately 8 ..mu..m, a magnification factor approximately 13, and subtended a radiation collection solid angle at the target approximately 10/sup -2/ sr. X-ray images using ZPCI were compared with those taken using a grazing incidence reflection x-ray microscope. The agreement was excellent. In addition,more » the zone plate camera produced tomographic images. The nominal tomographic resolution was approximately 75 ..mu..m. This allowed three dimensional viewing of target emission from a single shot in planar ''slices''. In addition to its tomographic capability, the great advantage of the coded imaging technique lies in its applicability to hard (greater than 10 keV) x-ray and charged particle imaging. Experiments involving coded imaging of the suprathermal x-ray and high energy alpha particle emission from laser compressed microballoon targets are discussed.« less

  5. A multi-cone x-ray imaging Bragg crystal spectrometer

    DOE PAGES

    Bitter, M.; Hill, K. W.; Gao, Lan; ...

    2016-08-26

    This article describes a new x-ray imaging Bragg crystal spectrometer, which—in combination with a streak camera or a gated strip detector—can be used for time-resolved measurements of x-ray line spectra at the National Ignition Facility and other high power laser facilities. The main advantage of this instrument is that it produces perfect images of a point source for each wavelength in a selectable spectral range and that the detector plane can be perpendicular to the crystal surface or inclined by an arbitrary angle with respect to the crystal surface. Furthermore, these unique imaging properties are obtained by bending the x-raymore » diffracting crystal into a certain shape, which is generated by arranging multiple cones with different aperture angles on a common nodal line.« less

  6. Diamond sensors and polycapillary lenses for X-ray absorption spectroscopy.

    PubMed

    Ravel, B; Attenkofer, K; Bohon, J; Muller, E; Smedley, J

    2013-10-01

    Diamond sensors are evaluated as incident beam monitors for X-ray absorption spectroscopy experiments. These single crystal devices pose a challenge for an energy-scanning experiment using hard X-rays due to the effect of diffraction from the crystalline sensor at energies which meet the Bragg condition. This problem is eliminated by combination with polycapillary lenses. The convergence angle of the beam exiting the lens is large compared to rocking curve widths of the diamond. A ray exiting one capillary from the lens meets the Bragg condition for any reflection at a different energy from the rays exiting adjacent capillaries. This serves to broaden each diffraction peak over a wide energy range, allowing linear measurement of incident intensity over the range of the energy scan. Extended X-ray absorption fine structure data are measured with a combination of a polycapillary lens and a diamond incident beam monitor. These data are of comparable quality to data measured without a lens and with an ionization chamber monitoring the incident beam intensity.

  7. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less

  8. Comparing results of X-ray diffraction, µ-Raman spectroscopy and neutron diffraction when identifying chemical phases in seized nuclear material, during a comparative nuclear forensics exercise

    DOE PAGES

    Rondahl, Stina Holmgren; Pointurier, Fabien; Ahlinder, Linnea; ...

    2018-01-24

    This work presents the results for identification of chemical phases obtained by several laboratories as a part of an international nuclear forensic round-robin exercise. In this work powder X-ray diffraction (p-XRD) is regarded as the reference technique. Neutron diffraction produced a superior high-angle diffraction pattern relative to p-XRD. Requiring only small amounts of sample, µ-Raman spectroscopy was used for the first time in this context as a potentially complementary technique to p-XRD. The chemical phases were identified as pure UO 2 in two materials, and as a mixture of UO 2, U 3O 8 and an intermediate species U 3Omore » 7 in the third material.« less

  9. Instrument and method for focusing x rays, gamma rays, and neutrons

    DOEpatents

    Smither, R.K.

    1981-04-20

    A crystal diffraction instrument is described which has an improved crystalline structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg angle and thereby increasing the usable area and acceptance angle. The increased planar spacing is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structure with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques.

  10. High-energy synchrotron x-ray techniques for studying irradiated materials

    DOE PAGES

    Park, Jun-Sang; Zhang, Xuan; Sharma, Hemant; ...

    2015-03-20

    High performance materials that can withstand radiation, heat, multiaxial stresses, and corrosive environment are necessary for the deployment of advanced nuclear energy systems. Nondestructive in situ experimental techniques utilizing high energy x-rays from synchrotron sources can be an attractive set of tools for engineers and scientists to investigate the structure–processing–property relationship systematically at smaller length scales and help build better material models. In this paper, two unique and interconnected experimental techniques, namely, simultaneous small-angle/wide-angle x-ray scattering (SAXS/WAXS) and far-field high-energy diffraction microscopy (FF-HEDM) are presented. Finally, the changes in material state as Fe-based alloys are heated to high temperatures ormore » subject to irradiation are examined using these techniques.« less

  11. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  12. Langmuir-Blodgett nanotemplates for protein crystallography.

    PubMed

    Pechkova, Eugenia; Nicolini, Claudio

    2017-12-01

    The new generation of synchrotrons and microfocused beamlines has enabled great progress in X-ray protein crystallography, resulting in new 3D atomic structures for proteins of high interest to the pharmaceutical industry and life sciences. It is, however, often still challenging to produce protein crystals of sufficient size and quality (order, intensity of diffraction, radiation stability). In this protocol, we provide instructions for performing the Langmuir-Blodgett (LB) nanotemplate method, a crystallization approach that can be used for any protein (including membrane proteins). We describe how to produce highly ordered 2D LB protein monolayers at the air-water interface and deposit them on glass slides. LB-film formation can be observed by surface-pressure measurements and Brewster angle microscopy (BAM), although its quality can be characterized by atomic force microscopy (AFM) and nanogravimetry. Such films are then used as a 2D template for triggering 3D protein crystal formation by hanging-drop vapor diffusion. The procedure for forming the 2D template takes a few minutes. Structural information about the protein reorganization in the LB film during the crystallization process on the nano level can be obtained using an in situ submicron GISAXS (grazing-incidence small-angle X-ray scattering) method. MicroGISAXS spectra, measured directly at the interface of the LB films and protein solution in real time, as described in this protocol, can be interpreted in terms of the buildup of layers, islands, or holes. In our experience, the obtained LB crystals take 1-10 d to prepare and they are more ordered and radiation stable as compared with those produced using other crystallization methods.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takagi, H., E-mail: takagih@post.kek.jp; Igarashi, N.; Mori, T.

    BL-6A has been operational since 2011 as a small angle X-ray scattering (SAXS) beamline at the Photon Factory (PF), and beginning in 2013 its old components and systems, which were mainly inside the experimental hutch, have been extensively updated. Both the vacuum-passes located between the sample stage and the detector and the fixed surface plate have been replaced by a new semi-automatic diffractometer. These upgrades allow simultaneous SAXS/WAXS experiments and grazing-incidence small angle X-ray scattering (GISAXS) measurements to be conducted. The hybrid pixel detector PILATUS3 1M is installed for SAXS, and PILATUS 100K is available as a WAXS detector. Additionally,more » a pinhole equipped with a micro-ion chamber is available to realize a lower-background and higher-resolution of low angles. Moreover, in a simultaneous SAXS/WAXS experiment, we developed a new beam stop with an embedded photodiode. Thus, BL-6A has evolved into a multipurpose beamline capable of dealing with various types of samples and experimental techniques.« less

  14. Effects of high pressure nitrogen annealing on ferroelectric Hf0.5Zr0.5O2 films

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Park, Jinsung; Cheong, Byoung-Ho; Jeon, Sanghun

    2018-02-01

    The effect of high-pressure nitrogen annealing at up to 50 atmospheres (atm) on Hf0.5Zr0.5O2 films at relatively low temperatures (450 °C) is analyzed using polarization-electric field curves, bipolar switching endurance measurements, grazing angle incidence X-ray diffraction, and piezoelectric force microscopy. Hf0.5Zr0.5O2 films annealed at 450 °C/50 atm have excellent characteristics, including remanent polarizations greater than 20 μC/cm2, a switching speed of 200 ns, and reliability, measured by sustained performance after 1010 bipolar switching cycles. The enhanced device features are attributed to the transition to the orthorhombic-phase from the tetragonal-phase of Hf0.5Zr0.5O2 at high pressure, which is also consistent with the results of "wake-up" analysis, and the variations of the pure polarization curves, extracted from the total displacement field under pressure.

  15. Nitridation of porous GaAs by an ECR ammonia plasma

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Hullavarad, S. S.; Ganesan, V.; Bhoraskar, S. V.

    2006-02-01

    The effect of surface porosity of GaAs on the nature of growth of GaN, by use of plasma nitridation of GaAs, has been investigated. Porous GaAs samples were prepared by anodic etching of n-type (110) GaAs wafers in HCl solution. Nitridation of porous GaAs samples were carried out by using an electron-cyclotron resonance-induced ammonia plasma. The formation of mixed phases of GaN was investigated using the grazing angle x-ray diffraction method. A remarkable improvement in the intensity of photoluminescence (PL) compared with that of GaN synthesized by direct nitriding of GaAs surface has been observed. The PL intensity of nitrided porous GaAs at the temperature of 380 °C was found to be about two orders of magnitude higher as compared with the directly nitrided GaAs at the temperature of 500 °C. The changes in the morphology of nitrided porous GaAs have been investigated using both scanning electron microscopy and atomic force microscopy.

  16. Naphtho[2,1-b:3,4-b']dithiophene-based bulk heterojunction solar cells: how molecular structure influences nanoscale morphology and photovoltaic properties.

    PubMed

    Kim, Yu Jin; Cheon, Ye Rim; Back, Jang Yeol; Kim, Yun-Hi; Chung, Dae Sung; Park, Chan Eon

    2014-11-10

    Organic bulk heterojunction photovoltaic devices based on a series of three naphtho[2,1-b:3,4-b']dithiophene (NDT) derivatives blended with phenyl-C71-butyric acid methyl ester were studied. These three derivatives, which have NDT units with various thiophene-chain lengths, were employed as the donor polymers. The influence of their molecular structures on the correlation between their solar-cell performances and their degree of crystallization was assessed. The grazing-incidence angle X-ray diffraction and atomic force microscopy results showed that the three derivatives exhibit three distinct nanoscale morphologies. We correlated these morphologies with the device physics by determining the J-V characteristics and the hole and electron mobilities of the devices. On the basis of our results, we propose new rules for the design of future generations of NDT-based polymers for use in bulk heterojunction solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Ion irradiation induced nucleation and growth of nanoparticles in amorphous silicon carbide at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, Limin; Jiang, Weilin; Ai, Wensi; Chen, Liang; Wang, Tieshan

    2018-07-01

    Ion irradiation induced crystallization in as-deposited amorphous SiC films is investigated using grazing-angle incidence x-ray diffraction (GIXRD), transmission electron microscopy (TEM) and Raman spectroscopy. Irradiation with 5 MeV Xe to fluence of 1.15 × 1016 Xe/cm2 at 700 K results in a homogenous distribution of 3C-SiC grains with an average crystallite size of ∼5.7 nm over the entire film thickness (∼1 μm). The nucleation and growth processes exhibit a weak dependence on dose in displacements per atom (dpa) in the range from ∼6 dpa at the film surface to ∼20 dpa at the SiC/Si interface. A transformation of homonuclear C-C bonds from sp3 to sp2 hybridization is observed in the irradiated films, which may be partly responsible for the observed grain size saturation. The results from this study may have a significant impact on applications of SiC as structural components of advanced nuclear energy systems.

  18. Ion irradiation induced nucleation and growth of nanoparticles in amorphous silicon carbide at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Limin; Jiang, Weilin; Ai, Wensi

    Ion irradiation induced crystallization in as-deposited amorphous SiC films is investigated using grazing-angle incidence x-ray diffraction (GIXRD), transmission electron microscopy (TEM) and Raman spectroscopy. Irradiation with 5 MeV Xe to fluence of 115 Xe/nm2 at 700 K results in a homogenous distribution of 3C-SiC grains with an average crystallite size of ~5.7 nm over the entire film thickness (~1 μm). The nucleation and growth processes exhibit a weak dependence on dose in displacements per atom (dpa) in the dose range from 6 to 20 dpa. A transformation of homonuclear C-C bonds from sp3 to sp2 hybridization is observed in themore » irradiated films, which may be partly responsible for the observed grain size saturation. The results from this study may have a significant impact on synthesis of nanograins in amorphous SiC and other similar materials with effective control of grain size and density by ion irradiation.« less

  19. Sucrose lyophiles: a semi-quantitative study of residual water content by total X-ray diffraction analysis.

    PubMed

    Bates, S; Jonaitis, D; Nail, S

    2013-10-01

    Total X-ray Powder Diffraction Analysis (TXRPD) using transmission geometry was able to observe significant variance in measured powder patterns for sucrose lyophilizates with differing residual water contents. Integrated diffraction intensity corresponding to the observed variances was found to be linearly correlated to residual water content as measured by an independent technique. The observed variance was concentrated in two distinct regions of the lyophilizate powder pattern, corresponding to the characteristic sucrose matrix double halo and the high angle diffuse region normally associated with free-water. Full pattern fitting of the lyophilizate powder patterns suggested that the high angle variance was better described by the characteristic diffraction profile of a concentrated sucrose/water system rather than by the free-water diffraction profile. This suggests that the residual water in the sucrose lyophilizates is intimately mixed at the molecular level with sucrose molecules forming a liquid/solid solution. The bound nature of the residual water and its impact on the sucrose matrix gives an enhanced diffraction response between 3.0 and 3.5 beyond that expected for free-water. The enhanced diffraction response allows semi-quantitative analysis of residual water contents within the studied sucrose lyophilizates to levels below 1% by weight. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Coherent X-ray diffraction from collagenous soft tissues

    PubMed Central

    Berenguer de la Cuesta, Felisa; Wenger, Marco P. E.; Bean, Richard J.; Bozec, Laurent; Horton, Michael A.; Robinson, Ian K.

    2009-01-01

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60–70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the ‘speckled’ nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques. PMID:19706395

  1. Coherent X-ray diffraction from collagenous soft tissues.

    PubMed

    Berenguer de la Cuesta, Felisa; Wenger, Marco P E; Bean, Richard J; Bozec, Laurent; Horton, Michael A; Robinson, Ian K

    2009-09-08

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patterns from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.

  2. Synchrotron X-ray topography of electronic materials.

    PubMed

    Tuomi, T

    2002-05-01

    Large-area transmission, transmission section, large-area back-reflection, back-reflection section and grazing-incidence topography are the geometries used when recording high-resolution X-ray diffraction images with synchrotron radiation from a bending magnet, a wiggler or an undulator of an electron or a positron storage ring. Defect contrast can be kinematical, dynamical or orientational even in the topographs recorded on the same film at the same time. In this review article limited to static topography experiments, examples of defect studies on electronic materials cover the range from voids and precipitates in almost perfect float-zone and Czochralski silicon, dislocations in gallium arsenide grown by the liquid-encapsulated Czochralski technique, the vapour-pressure controlled Czochralski technique and the vertical-gradient freeze technique, stacking faults and micropipes in silicon carbide to misfit dislocations in epitaxic heterostructures. It is shown how synchrotron X-ray topographs of epitaxic laterally overgrown gallium arsenide layer structures are successfully explained by orientational contrast.

  3. Hard X-ray Optics Technology Development for Astronomy at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Kilaru, Kiranmayee

    2009-01-01

    Grazing-incidence telescopes based on Wolter 1 geometry have delivered impressive advances in astrophysics at soft-x-ray wavelengths, while the hard xray region remains relatively unexplored at fine angular resolution and high sensitivities. The ability to perform ground-breaking science in the hard-x-ray energy range had been the motivation for technology developments aimed at fabricating low-cost, light-weight, high-quality x-ray mirrors. Grazing-incidence x-ray optics for high-energy astrophysical applications is being developed at MSFC using the electroform-nickel replication process.

  4. Visualization of Individual Images in Patterned Organic-Inorganic Multilayers Using GISAXS-CT.

    PubMed

    Ogawa, Hiroki; Nishikawa, Yukihiro; Takenaka, Mikihito; Fujiwara, Akihiko; Nakanishi, Yohei; Tsujii, Yoshinobu; Takata, Masaki; Kanaya, Toshiji

    2017-05-16

    Using grazing-incidence small-angle scattering (GISAXS) with computed tomography (CT), we have individually reconstructed the spatial distribution of a thin gold (Au) layer buried under a thin poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) layer. Owing to the difference between total reflection angles of Au and PS-b-P2VP, the scattering profiles for Au nanoparticles and self-assembled nanostructures of PS-b-P2VP could be independently obtained by changing the X-ray angle of incidence. Reconstruction of scattering profiles allows one to separately characterize spatial distributions in Au and PS-b-P2VP nanostructures.

  5. Three-energy focusing Laue monochromator for the diamond light source x-ray pair distribution function beamline I15-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter, John P., E-mail: john.sutter@diamond.ac.uk; Chater, Philip A.; Hillman, Michael R.

    2016-07-27

    The I15-1 beamline, the new side station to I15 at the Diamond Light Source, will be dedicated to the collection of atomic pair distribution function data. A Laue monochromator will be used consisting of three silicon crystals diffracting X-rays at a common Bragg angle of 2.83°. The crystals use the (1 1 1), (2 2 0), and (3 1 1) planes to select 40, 65, and 76 keV X-rays, respectively, and will be bent meridionally to horizontally focus the selected X-rays onto the sample. All crystals will be cut to the same optimized asymmetry angle in order to eliminate imagemore » broadening from the crystal thickness. Finite element calculations show that the thermal distortion of the crystals will affect the image size and bandpass.« less

  6. Spatial imaging in the soft x-ray region (20--304 A) utilizing the astigmatism of a grazing incidence concave grating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nudelfuden, A.; Solanki, R.; Moos, H.W.

    1985-03-15

    Soft x-ray (20--304--A) astigmatic line shapes were measured in order to evaluate the spatial imaging properties of a Rowland mounted concave grating in grazing incidence. The practicability of coarse 1-D spatial imaging in the soft x-ray region is demonstrated. Spatial resolution equivalent to approx.4 cm at a source distance of 2 m can be achieved with practical parameters (e.g., sensitivity and time resolution) for a fusion diagnostic spectrograph. The results are compared to computer-generated ray tracings and found to be in good agreement. The ray tracing program which models the grazing incidence optics is discussed.

  7. The Nature of the Torus in the Heavily Obscured AGN Markarian 3: an X-Ray Study

    NASA Technical Reports Server (NTRS)

    Guainazzi, M.; Risaliti, G.; Awaki, H.; Arevalo, P.; Bauer, F. E.; Bianchi, S.; Boggs, S.E; Brandt, W. N.; Brightman, M.; Christensen, F. E.; hide

    2016-01-01

    In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMMNewton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N(sub H) approx. 0.8-1.1 x 10(exp 24)/sq cm). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle approx. 66deg, and is seen at a grazing angle through its upper rim (inclination angle approx. 70deg). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17 +/- 5) and individual column density, [approx. (4.9 +/- 1.5) x 10(exp 22)/ sq cm]. The comparison of IR and X-ray spectroscopic results with state-of-the art torus models suggests that at least two-thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterized by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber.

  8. Performance of NICER flight x-ray concentrator

    NASA Astrophysics Data System (ADS)

    Okajima, Takashi; Soong, Yang; Balsamo, Erin R.; Enoto, Teruaki; Olsen, Larry; Koenecke, Richard; Lozipone, Larry; Kearney, John; Fitzsimmons, Sean; Numata, Ai; Kenyon, Steven J.; Arzoumanian, Zaven; Gendreau, Keith

    2016-07-01

    Neutron star Interior Composition ExploreR (NICER) is a NASA instrument to be onboard International Space Station, which is equipped with 56 pairs of an X-ray concentrator (XRC) and a silicon drift detector for high timing observations. The XRC is based on an epoxy replicated thin aluminum foil X-ray mirror, similar to those of Suzaku and ASTRO-H (Hitomi), but only a single stage parabolic grazing incidence optic. Each has a focal length of 1.085m and a diameter of 105 mm, with 24 confocally aligned parabolic shells. Grazing incident angles to individual shells range from 0.4 to 1.4 deg. The flight 56 XRCs have been completed and successfully delivered to the payload integration. All the XRC was characterized at the NASA/GSFC 100-m X-ray beamline using 1.5 keV X-rays (some of them are also at 4.5 keV). The XRC performance, effective area and point spread function, was measured by a CCD camera and a proportional counter. The average effective area is about 44 cm2 at 1.5 keV and about 18 cm2 at 4.5 keV, which is consistent with a micro-roughness of 0.5nm from individual shell reflectivity measurements. The XRC focuses about 91% of X-rays into a 2mm aperture at the focal plane, which is the NICER detector window size. Each XRC weighs only 325 g. These performance met the project requirement. In this paper, we will present summary of the flight XRC performance as well as co-alignment results of the 56 XRCs on the flight payload as it is important to estimate the total effective for astronomical observations.

  9. Ballistic Deposition of Nanoclusters.

    NASA Astrophysics Data System (ADS)

    Ulbrandt, Jeffrey; Li, Yang; Headrick, Randall

    Nanoporous thin-films are an important class of materials, possessing a large surface area to volume ratio, with applications ranging from thermoelectric and photovoltaic materials to supercapacitors. In-Situ X-ray Reflectivity and Grazing Incidence Small Angle X-Ray Scattering (GISAXS) were used to monitor thin-films grown from Tungsten Silicide (WSi2) and Copper (Cu) nanoclusters. The nanoclusters ranged in size from 2 nm to 6 nm diameter and were made by high-pressure magnetron sputtering via plasma gas condensation (PGC). X-Ray Reflectivity (XRR) measurements of the films at various stages of growth reveal that the resulting films exhibit very low density, approaching 15% of bulk density. This is consistent with a simple off-lattice ballistic deposition model where particles stick at the point of first contact without further restructuring. DOE Office of Basic Energy Sciences under contract DE-FG02-07ER46380.

  10. Laser-pump/X-ray-probe experiments with electrons ejected from a Cu(111) target: space-charge acceleration.

    PubMed

    Schiwietz, G; Kühn, D; Föhlisch, A; Holldack, K; Kachel, T; Pontius, N

    2016-09-01

    A comprehensive investigation of the emission characteristics for electrons induced by X-rays of a few hundred eV at grazing-incidence angles on an atomically clean Cu(111) sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation (high peak current of photoemission) on the properties of Auger and photoelectrons liberated by a probe X-ray beam is investigated in time-resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space-charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical results.

  11. Imaging performance of a normal incidence soft X-ray telescope

    NASA Technical Reports Server (NTRS)

    Henry, J. P.; Spiller, E.; Weisskopf, M.

    1982-01-01

    Measurements are presented of the imaging performance of a normal incidence spherical soft X-ray mirror at BK-alpha (67.6 A). The reflector was a 124-layer coating consisting of alternating Re-W alloy and C layers with a protective C overcoat 34 A thick deposited on a Zerodur substrate. Measurements made at an angle of 1.5 deg off axis with the prototype of the Einstein Observatory high resolution imager reveal the resolution of the mirror to be about 1 arcsec FWHM, with 50% of the reflected power within the detector field of 512 arcsec contained within a diameter of 5 arcsec. The data demonstrate the practicality and potential good performance of normal-incidence soft X-ray optics, and show that the scattering performances of such devices may be as good or better than the best grazing incidence devices.

  12. An Optimized Table-Top Small-Angle X-ray Scattering Set-up for the Nanoscale Structural Analysis of Soft Matter

    NASA Astrophysics Data System (ADS)

    Sibillano, T.; de Caro, L.; Altamura, D.; Siliqi, D.; Ramella, M.; Boccafoschi, F.; Ciasca, G.; Campi, G.; Tirinato, L.; di Fabrizio, E.; Giannini, C.

    2014-11-01

    The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amemiya, Kenta; Toyoshima, Akio; Kikuchi, Takashi

    The design and commissioning of a new soft X-ray beamline, BL-16A, at the Photon Factory is presented. The beamline consists of a pre-focusing mirror, an entrance slit, a variable-included-angle varied-line-spacing plane grating monochromator, and a post-focusing system as usual, and provides circularly and linearly polarized soft X rays in the energy range 200-1500 eV with an APPLE-II type undulator. The commissioning procedure for the beamline optics is described in detail, especially the check of the focal position for the zero-th order and diffracted X rays.

  14. Anomalous X-Ray yields under surface wave resonance during reflection high energy electron diffraction and adatom site determination

    PubMed

    Yamanaka; Ino

    2000-05-08

    In L x-ray emissions from a Si(111)-sqrt[3]xsqrt[3]-In surface induced by electron beam irradiation were measured as functions of the incident glancing angle. Under surface wave resonance conditions, anomalous x-ray intensities were clearly observed. Using dynamical calculations, these intensities are well explained as changes in density of the electron wave field at adatom positions. From these intensities, the adatom site was analyzed, and it was found that the T4 model is better than the H3 model.

  15. X-ray structural investigation of nonsymmetrically and symmetrically alkylated [1]benzothieno[3,2-b]benzothiophene derivatives in bulk and thin films.

    PubMed

    Gbabode, Gabin; Dohr, Michael; Niebel, Claude; Balandier, Jean-Yves; Ruzié, Christian; Négrier, Philippe; Mondieig, Denise; Geerts, Yves H; Resel, Roland; Sferrazza, Michele

    2014-08-27

    A detailed structural study of the bulk and thin film phases observed for two potential high-performance organic semiconductors has been carried out. The molecules are based on [1]benzothieno[3,2-b]benzothiophene (BTBT) as conjugated core and octyl side groups, which are anchored either symmetrically at both sides of the BTBT core (C8-BTBT-C8) or nonsymmetrically at one side only (C8-BTBT). Thin films of different thickness (8-85 nm) have been prepared by spin-coating for both systems and analyzed by combining specular and grazing incidence X-ray diffraction. In the case of C8-BTBT-C8, the known crystal structure obtained from single-crystal investigations is observed within all thin films, down to a film thickness of 9 nm. In the case of C8-BTBT, the crystal structure of the bulk phase has been determined from X-ray powder diffraction data with a consistent matching of experimental and calculated X-ray diffraction patterns (Rwp = 5.8%). The packing arrangement of C8-BTBT is similar to that of C8-BTBT-C8, that is, consisting of a lamellar structure with molecules arranged in a "herringbone" fashion, yet with lamellae composed of two head-to-head (or tail-to-tail as the structure is periodic) superimposed molecules instead of only one molecule for C8-BTBT-C8. As for C8-BTBT-C8, we demonstrate that the same phase is observed in bulk and thin films for C8-BTBT whatever the film thickness investigated.

  16. Magnetic and structural characterization of ultra-thin Fe (222) films

    NASA Astrophysics Data System (ADS)

    Loving, Melissa G.; Brown, Emily E.; Rizzo, Nicholas D.; Ambrose, Thomas F.

    2018-05-01

    Varied thickness body centered cubic (BCC) ultrathin Fe films (10-50Å) have been sputter deposited onto Si (111) substrates. BCC Fe with the novel (222) texture was obtained by H- terminating the Si (111) starting substrate then immediately depositing the magnetic films. Structural results derived from grazing incidence x-ray diffraction and x-ray reflectivity confirm the crystallographic texture, film thickness, and interface roughness. Magnetic results indicate that Fe (222) exhibits soft magnetic switching (easy axis), high anisotropy (hard axis), which is maintained across the thickness range, and a positive magnetostriction (for the thicker film layers). The observed soft magnetic switching in this system makes it an ideal candidate for future magnetic memory development as well as other microelectronics applications that utilize magnetic materials.

  17. Comparison of trimethylgallium and triethylgallium as “Ga” source materials for the growth of ultrathin GaN films on Si (100) substrates via hollow-cathode plasma-assisted atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alevli, Mustafa, E-mail: mustafaalevli@marmara.edu.tr; Haider, Ali; Kizir, Seda

    2016-01-15

    GaN films grown by hollow cathode plasma-assisted atomic layer deposition using trimethylgallium (TMG) and triethylgallium (TEG) as gallium precursors are compared. Optimized and saturated TMG/TEG pulse widths were used in order to study the effect of group-III precursors. The films were characterized by grazing incidence x-ray diffraction, atomic force microscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry. Refractive index follows the same trend of crystalline quality, mean grain, and crystallite sizes. GaN layers grown using TMG precursor exhibited improved structural and optical properties when compared to GaN films grown with TEG precursor.

  18. Structure of n-alkyltrichlorosilane mono layers on Si(100)/SiO 2

    DOE PAGES

    H. -G. Steinruck; Ocko, B.; Will, J.; ...

    2015-10-05

    The structure of n-alkyltrichlorosilane self-assembled monolayers (SAMs) of alkyl chain lengths n = 12, 14, 18, and 22 formed on the amorphous native oxide of silicon (100) has been investigated via angstrom-resolution surface X-ray scattering techniques, with particular focus on the proliferation of lateral order along the molecules’ long axis. Grazing incidence diffraction shows that the monolayer is composed of hexagonally packed crystalline-like domains for n = 14, 18, and 22 with a lateral size of about 60 Å. However, Bragg rod analysis shows that ~12 of the CH 2 units are not included in the crystalline-like domains. We assignmore » this, and the limited lateral crystallites’ size, to strain induced by the size mismatch between the optimal chain–chain and headgroup–headgroup spacings. Lastly, analysis of X-ray reflectivity profiles for n = 12, 14, and 22 shows that the density profile used to successfully model n = 18 provides an excellent fit where the analysis-derived parameters provide complementary structural information to the grazing incidence results.« less

  19. Nanoscale femtosecond imaging of transient hot solid density plasmas with elemental and charge state sensitivity using resonant coherent diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluge, T., E-mail: t.kluge@hzdr.de; Bussmann, M.; Huang, L. G., E-mail: lingen.huang@hzdr.de

    Here, we propose to exploit the low energy bandwidth, small wavelength, and penetration power of ultrashort pulses from XFELs for resonant Small Angle Scattering (SAXS) on plasma structures in laser excited plasmas. Small angle scattering allows to detect nanoscale density fluctuations in forward scattering direction. Typically, the SAXS signal from laser excited plasmas is expected to be dominated by the free electron distribution. We propose that the ionic scattering signal becomes visible when the X-ray energy is in resonance with an electron transition between two bound states (resonant coherent X-ray diffraction). In this case, the scattering cross-section dramatically increases somore » that the signal of X-ray scattering from ions silhouettes against the free electron scattering background which allows to measure the opacity and derived quantities with high spatial and temporal resolution, being fundamentally limited only by the X-ray wavelength and timing. Deriving quantities such as ion spatial distribution, charge state distribution, and plasma temperature with such high spatial and temporal resolution will make a vast number of processes in shortpulse laser-solid interaction accessible for direct experimental observation, e.g., hole-boring and shock propagation, filamentation and instability dynamics, electron transport, heating, and ultrafast ionization dynamics.« less

  20. Spherical mirror grazing incidence x-ray optics

    NASA Technical Reports Server (NTRS)

    Cash, Jr., Webster C. (Inventor)

    1997-01-01

    An optical system for x-rays combines at least two spherical or near spherical mirrors for each dimension in grazing incidence orientation to provide the functions of a lens in the x-ray region. To focus x-ray radiation in both the X and the Y dimensions, one of the mirrors focusses the X dimension, a second mirror focusses the Y direction, a third mirror corrects the X dimension by removing comatic aberration and a fourth mirror corrects the Y dimension. Spherical aberration may also be removed for an even better focus. The order of the mirrors is unimportant.

  1. The path for long range conduction in high J(sub c) TlBa2Ca2Cu3O(8+x) spray-pyrolyzed deposits

    NASA Astrophysics Data System (ADS)

    Kroeger, D. M.; Goyal, A.; Specht, E. D.; Wang, Z. L.; Tkaczyk, J. E.; Sutliff, J. A.; Deluca, J. A.

    Grain boundary misorientations and local texture in polycrystalline TlBa2Ca2Cu3O(8+x) deposits prepared by thallination of spray-pyrolyzed precursor deposits on yttria-stabilized zirconia have been determined from transmission electron microscopy, electron backscatter diffraction patterns, and x ray diffraction. The deposits were polycrystalline, had small grains, and excellent c-axis alignment. The deposits contained colonies of grains with similar but not identical a-axis orientations. Most grain boundaries within a colony have small misorientation angles and should not be weak links. It is proposed that long range current flow occurs through a percolative network of small angle grain boundaries at colony intersections.

  2. Characterization of low thermal conductivity PAN-based carbon fibers

    NASA Technical Reports Server (NTRS)

    Katzman, Howard A.; Adams, P. M.; Le, T. D.; Hemminger, Carl S.

    1992-01-01

    The microstructure and surface chemistry of eight low thermal conductivity (LTC) PAN-based carbon fibers were determined and compared with PAN-based fibers heat treated to higher temperatures. Based on wide-angle x ray diffraction, the LTC PAN fibers all appear to have a similar turbostratic structure with large 002 d-spacings, small crystallite sizes, and moderate preferred orientation. Limited small-angle x ray scattering (SAXS) results indicate that, with the exception of LTC fibers made by BASF, the LTC fibers do not have well developed pores. Transmission electron microscopy shows that the texture of the two LTC PAN-based fibers studied (Amoco T350/23X and /25X) consists of multiple sets of parallel, wavy, bent layers that interweave with each other forming a complex three dimensional network oriented randomly around the fiber axis. X ray photoelectron spectroscopy (XPS) analysis finds correlations between heat treated temperatures and the surface composition chemistry of the carbon fiber samples.

  3. Investigation of the Structural Stability of Ion-Implanted Gd 2Ti 2-xSn xO 7 Pyrochlore-Type Oxides by Glancing Angle X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aluri, Esther Rani; Hayes, John R.; Walker, James D.S.

    2016-03-24

    Rare-earth titanate and stannate pyrochlore-type oxides have been investigated in the past for the sequestration of nuclear waste elements because of their resistance to radiation-induced structural damage. In order to enhance this property, it is necessary to understand the effect of radioactive decay of the incorporated actinide elements on the local chemical environment. In this study, Gd 2Ti 2–xSn xO 7 materials have been implanted with Au– ions to simulate radiation-induced structural damage. Glancing angle X-ray absorption near-edge spectroscopy (GA-XANES), glancing angle X-ray absorption fine structure (GA-EXAFS) analysis, and powder X-ray diffraction have been used to investigate changes in themore » local coordination environment of the metal atoms in the damaged surface layer. Examination of GA-XANES/EXAFS spectra from the implanted Gd 2Ti 2–xSn xO 7 materials collected at various glancing angles allowed for an investigation of how the local coordination environment around the absorbing atoms changed at different depths in the damaged surface layer. This study has shown the usefulness of GA-XANES to the examination of ion-implanted materials and has suggested that Gd 2Ti 2–xSn xO 7 becomes more susceptible to ion-beam-induced structural damage with increasing Sn concentration.« less

  4. THz-pump and X-ray-probe sources based on an electron linac

    NASA Astrophysics Data System (ADS)

    Setiniyaz, Sadiq; Park, Seong Hee; Kim, Hyun Woo; Vinokurov, Nikolay A.; Jang, Kyu-Ha; Lee, Kitae; Baek, In Hyung; Jeong, Young Uk

    2017-11-01

    We describe a compact THz-pump and X-ray-probe beamline, based on an electron linac, for ultrafast time-resolved diffraction applications. Two high-energy electron (γ > 50) bunches, 5 ns apart, impinge upon a single-foil or multifoil radiator and generate THz radiation and X-rays simultaneously. The THz pulse from the first bunch is synchronized to the X-ray beam of the second bunch by using an adjustable optical delay of a THz pulse. The peak power of THz radiation from the multifoil radiator is estimated to be 0.14 GW for a 200 pC well-optimized electron bunch. GEANT4 simulations show that a carbon foil with a thickness of 0.5-1.0 mm has the highest yield of 10-20 keV hard X-rays for a 25 MeV beam, which is approximately 103 photons/(keV pC-electrons) within a few degrees of the polar angle. A carbon multifoil radiator with 35 foils (25 μm thick each) can generate close to 103 hard X-rays/(keV pC-electrons) within a 2° acceptance angle. With 200 pC charge and a 100 Hz repetition rate, we can generate 107 X-rays per 1 keV energy bin per second or 105 X-rays per 1 keV energy bin per pulse. The longitudinal time profile of an X-ray pulse ranges from 400 to 600 fs depending on the acceptance angle. The broadening of the time duration of an X-ray pulse is observed owing to its diverging effect. A double-crystal monochromator will be used to select and transport the desired X-rays to the sample. The heating of the radiators by an electron beam is negligible because of the low beam current.

  5. The Scherrer equation and the dynamical theory of X-ray diffraction.

    PubMed

    Muniz, Francisco Tiago Leitão; Miranda, Marcus Aurélio Ribeiro; Morilla Dos Santos, Cássio; Sasaki, José Marcos

    2016-05-01

    The Scherrer equation is a widely used tool to determine the crystallite size of polycrystalline samples. However, it is not clear if one can apply it to large crystallite sizes because its derivation is based on the kinematical theory of X-ray diffraction. For large and perfect crystals, it is more appropriate to use the dynamical theory of X-ray diffraction. Because of the appearance of polycrystalline materials with a high degree of crystalline perfection and large sizes, it is the authors' belief that it is important to establish the crystallite size limit for which the Scherrer equation can be applied. In this work, the diffraction peak profiles are calculated using the dynamical theory of X-ray diffraction for several Bragg reflections and crystallite sizes for Si, LaB6 and CeO2. The full width at half-maximum is then extracted and the crystallite size is computed using the Scherrer equation. It is shown that for crystals with linear absorption coefficients below 2117.3 cm(-1) the Scherrer equation is valid for crystallites with sizes up to 600 nm. It is also shown that as the size increases only the peaks at higher 2θ angles give good results, and if one uses peaks with 2θ > 60° the limit for use of the Scherrer equation would go up to 1 µm.

  6. Thiolated poly(ɛ-caprolactone) macroligand with vacant coordination sites on gold substrate: Synthesis and surface characterization

    NASA Astrophysics Data System (ADS)

    Farah, Abdiaziz A.; Zheng, Susan H.; Morin, Sylvie; Bensebaa, Farid; Pietro, William J.

    2007-04-01

    Surface-confined telechelic poly(ɛ-caprolactone) macroligand with two distinct functional groups per polymeric chain has been synthesized and characterized. The molecular microstructure of the macroligand with regard to the properties of the end-capped functionalities and with those on surface substrate has been studied by solution and surface analytical methods (i.e., X-ray photoelectron spectroscopy (XPS), grazing angle reflectance-Fourier transform IR spectroscopy (GA-FTIR), water contact angle measurements, and atomic force microscopy (AFM)) to elucidate the structure and properties of such multifunctional polymer on gold (1 1 1) substrate.

  7. X-Ray Optics at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; hide

    2015-01-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  8. Design of the Extreme Ultraviolet Explorer long-wavelength grazing incidence telescope optics

    NASA Technical Reports Server (NTRS)

    Finley, David S.; Jelinsky, Patrick; Bowyer, Stuart; Malina, Roger F.

    1988-01-01

    Designing optics for photometry in the long-wavelength portion of the EUV spectrum (400-900) A) poses different problems from those arising for optics, operating shortward of 400 A. The available filter materials which transmit radiation longward of 400 A are also highly transparent at wavelengths shortward of 100 A. Conventional EUV optics, with grazing engles of less than about 10 deg, have very high throughput in the EUV, which persists to wavelengths shortward of 100 A. Use of such optics with the longer-wavelength EUV filters thus results in an unacceptably large soft X-ray leak. This problem is overcome by developing a mirror design with larger graze angles of not less than 20 deg, which has high throughput at wavelengths longer than 400 A but at the same time very little throughput shortward of 100 A.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Hao; Ashkar, Rana; Steinke, Nina

    A method dubbed grating-based holography was recently used to determine the structure of colloidal fluids in the rectangular grooves of a diffraction grating from X-ray scattering measurements. Similar grating-based measurements have also been recently made with neutrons using a technique called spin-echo small-angle neutron scattering. The analysis of the X-ray diffraction data was done using an approximation that treats the X-ray phase change caused by the colloidal structure as a small perturbation to the overall phase pattern generated by the grating. In this paper, the adequacy of this weak phase approximation is explored for both X-ray and neutron grating holography.more » Additionally, it is found that there are several approximations hidden within the weak phase approximation that can lead to incorrect conclusions from experiments. In particular, the phase contrast for the empty grating is a critical parameter. Finally, while the approximation is found to be perfectly adequate for X-ray grating holography experiments performed to date, it cannot be applied to similar neutron experiments because the latter technique requires much deeper grating channels.« less

  10. Lattice-Preferred Orientation in Deformed Novaculite - Comparison of in-situ Results Using BEARTEX and Post-Mortem EBSD Analyses

    NASA Astrophysics Data System (ADS)

    Willenweber, A.; Thomas, S.; Burnley, P. C.

    2012-12-01

    The Berkeley Texture Package BEARTEX is a Windows-based computer software that combines various algorithms to analyze lattice-preferred orientation in polycrystalline materials. BEARTEX was initially designed to interpret diffraction intensity data from pole figure goniometers. Recently it has been successfully used to process synthetic forsterite powder diffraction data from in-situ synchrotron X-ray diffraction taken during deformation (Bollinger et al. 2012). Our study aims to test the practicability of using BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz (novaculite) during deformation. In-situ X-ray diffraction data was collected during the deformation of novaculite at 2.5 GPa and up to 1000 °C in a D-DIA apparatus using the ten-element energy-dispersive detector at the NSLS beamline X17B2. Diffraction intensities are a function of crystal orientation, expressed in azimuth angle η and pole distance ψ. The latter is the angle between the normal of a given diffraction plane and the vertical direction of the D-DIA apparatus - our principal stress direction during compression. Orientation-dependent diffraction intensities were corrected for different responses of the single detectors and x-ray absorption effects of the anvils. Orientation distributions (ODs) and inverse pole figures were calculated using BEARTEX. In addition, electron backscatter diffraction (EBSD) analyses were carried out on the deformed novaculite samples. Generated pole figures were compared with those derived from BEARTEX. Textural properties of our novaculite starting material complicated the BEARTEX analyses. The relatively strong variation of grain sizes in our natural specimens caused non-random diffraction intensity distributions. Those lead to non-random distributions of crystal orientations when analyzed with BEARTEX, although pole figures from EBSD data clearly show random crystal orientations. In an attempt to solve this problem, we employed a scanning routine when recording in-situ synchrotron X-ray diffraction and so collected diffraction from multiple sample volumes rather than from one single spot. Here, we will present a comparison of pole figures derived from independent BEARTEX and EBSD analyses for a series of novaculite experiments and discuss the practicability of BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz. REFERENCES C. BOLLINGER, S. MERKEL AND P. RATERRON (2012): In situ quantitative analysis of stress and texture development in forsterite aggregates deformed at 6 GPa and 1373 K. J. Appl. Cryst., 45, 263-271.

  11. Determination of the size and phase composition of silver nanoparticles in a gel film of bacterial cellulose by small-angle X-ray scattering, electron diffraction, and electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, V. V.; Klechkovskaya, V. V., E-mail: klechvv@ns.crys.ras.ru; Shtykova, E. V.

    2009-03-15

    The nanoscale structural features in a composite (gel film of Acetobacter Xylinum cellulose with adsorbed silver nanoparticles, stabilized by N-polyvinylpyrrolidone) have been investigated by small-angle X-ray scattering. The size distributions of inhomogeneities in the porous structure of the cellulose matrix and the size distributions of silver nanoparticles in the composite have been determined. It is shown that the sizes of synthesized nanoparticles correlate with the sizes of inhomogeneities in the gel film. Particles of larger size (with radii up to 100 nm) have also been found. Electron microscopy of thin cross sections of a dried composite layer showed that largemore » particles are located on the cellulose layer surface. Electron diffraction revealed a crystal structure of silver nanoparticles in the composite.« less

  12. Physical properties of new binary antiferroelectric liquid crystal mixtures

    NASA Astrophysics Data System (ADS)

    Fitas, Jakub; Jaworska-Gołąb, Teresa; Deptuch, Aleksandra; Tykarska, Marzena; Kurp, Katarzyna; Żurowska, Magdalena; Marzec, Monika

    2018-02-01

    Three newly prepared binary mixtures exhibiting chiral tilted smectic phases have been studied using differential scanning calorimetry, dielectric spectroscopy and electro-optic method, as well as X-ray diffraction. Broad temperature range of ferroelectric and antiferroelectric phases was detected in these mixtures and temperature dependence of spontaneous polarization, tilt angle and switching time were measured for all of them. It's occurred that all of the studied mixtures are orthoconic antiferroelectric liquid crystals. Based on the X-ray diffraction results, the temperature dependence of layer thickness in the paraelectric, ferroelectric and antiferroelectric phases was found. By using dielectric spectroscopy, Goldstone mode was identified in the ferroelectric phase, while antiphase fluctuations of azimuthal angle have been found in the antiferroelectric phase. Based on the results of the complementary methods, the transition temperatures were found as well as the order of the para-ferroelectric phase transition was determined as non-continuous one with critical parameter β equal to ca. 0.25.

  13. PREFACE: XTOP 2004 -- 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging

    NASA Astrophysics Data System (ADS)

    Holý, Vaclav

    2005-05-01

    The 7th Biennial Conference on High Resolution X-Ray Diffraction and Imaging (XTOP 2004) was held in the Prague suburb of Pruhonice, Czech Republic, during 7-10 September 2004. It was organized by the Czech and Slovak Crystallographic Association in cooperation with the Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Masaryk University, Brno, and Charles University, Prague. XTOP 2004 took place just after EPDIC IX (European Powder Diffraction Conference) organised in Prague by the same Association during 2-5 September 2004. The Organizing Committee was supported by an International Programme Committee including about 20 prominent scientists from several European and overseas countries, whose helpful suggestions for speakers are acknowledged. The conference was sponsored by the International Union of Crystallography and by several industrial sponsors; this sponsorship allowed us to support about 20 students and young scientists. In total, 147 official delegates and 8 accompanying persons from 16 countries of three continents attended our conference. The scientific programme of the conference was divided into 11 half-day sessions and 2 poster sessions. The participants presented 147 accepted contributions; of these 9 were 45-minute long invited talks, 34 were 20-minute oral presentations and 104 were posters. All posters were displayed for the whole meeting to ensure maximum exposure and interaction between delegates. We followed the very good experience from the previous conference, XTOP 2002, and also organized pre-conference tutorial lectures presented by experts in the field: `Imaging with hard synchrotron radiation' (J Härtwig, Grenoble), `High-resolution x-ray diffractometry: determination of strain and composition' (J Stangl, Linz), `X-ray grazing-incidence scattering from surfaces and nanostructures' (U Pietsch, Potsdam) and `Hard x-ray optics' (J Hrdý, Prague). According to the recommendation of the International Program Committee, the invited lectures covered a broader field than the original conference subject, namely coherent speckle diffraction (I Robinson, Urbana), scattering from soft-matter films (W de Jeu, Amsterdam), femtosecond diffraction (J Wark, Oxford), magnetic soft x-ray microscopy (P Fischer, Stuttgart), x-ray standing-wave imaging (J Zegenhagen, Grenoble), new trends in hard x-ray imaging (J Baruchel, Grenoble), anomalous x-ray scattering from nanostructures, (T Schülli, Grenoble), in-situ x-ray scattering (G Renaud, Grenoble) and x-ray waveguides (W Jark, Trieste). The topics of the oral presentations and posters can be divided into two large groups, namely x-ray imaging and x-ray diffraction. In the first group, the contributions concentrated on new developments in methods and instrumentation, including in-situ imaging, phase-contrast imaging and three-dimensional imaging. In the second group, attention was paid to anomalous scattering methods and scattering from thin films and nanostructures. The full list of all contributions together with their abstracts are available at the website http://www.xray.cz/xtop. During one session, Professor Andrew Lang, one of the pioneers of x-ray topography who gave his name to the popular topographic technique, and honorary guest of XTOP 2004, celebrated his 80th birthday. In a celebration address Professor A Authier reviewed Professor Lang's career and his invaluable contribution to the development of our field. We continue the tradition of previous XTOPs and publish a selection of original contributions from the conference in this special issue of Journal of Physics D: Applied Physics. The papers have been subject to peer review according to the normal practice of the journal. Generally, we observed that a new generation of young and very talented scientists has appeared, who are publishing very interesting and important papers. Therefore, the future prospects of x-ray imaging and high-resolution diffraction are bright and we all look forward to the next XTOP conference, organized by Tilo Baumbach and his group, which will take place in Karlsruhe, Germany, in 2006.

  14. Structural changes in shock compressed silicon observed using time-resolved x-ray diffraction at the Dynamic Compression Sector

    NASA Astrophysics Data System (ADS)

    Turneaure, Stefan; Zdanowicz, E.; Sinclair, N.; Graber, T.; Gupta, Y. M.

    2015-06-01

    Structural changes in shock compressed silicon were observed directly using time-resolved x-ray diffraction (XRD) measurements at the Dynamic Compression Sector at the Advanced Photon Source. The silicon samples were impacted by polycarbonate impactors accelerated to velocities greater than 5 km/s using a two-stage light gas gun resulting in impact stresses of about 25 GPa. The 23.5 keV synchrotron x-ray beam passed through the polycarbonate impactor, the silicon sample, and an x-ray window (polycarbonate or LiF) at an angle of 30 degrees relative to the impact plane. Four XRD frames (~ 100 ps snapshots) were obtained with 153.4 ns between frames near the time of impact. The XRD measurements indicate that in the peak shocked state, the silicon samples completely transformed to a high-pressure phase. XRD results for both shocked polycrystalline silicon and single crystal silicon will be presented and compared. Work supported by DOE/NNSA.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaya, Andrew J.; Pathak, Harshad; Modak, Viraj P.

    Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r ≈ 10 nm) at ~225 K. The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 μs of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, χ, in the range of 0.78 ±more » 0.05. The cubicity value determined here is higher than those determined in experiments with micron-sized drops but comparable to those found in molecular dynamics simulations. Lastly, the high cubicity is most likely caused by the extremely low freezing temperatures and by the rapid freezing, which occurs on a ~1 μs time scale in single nanodroplets.« less

  16. How Cubic Can Ice Be?

    DOE PAGES

    Amaya, Andrew J.; Pathak, Harshad; Modak, Viraj P.; ...

    2017-06-28

    Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r ≈ 10 nm) at ~225 K. The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 μs of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, χ, in the range of 0.78 ±more » 0.05. The cubicity value determined here is higher than those determined in experiments with micron-sized drops but comparable to those found in molecular dynamics simulations. Lastly, the high cubicity is most likely caused by the extremely low freezing temperatures and by the rapid freezing, which occurs on a ~1 μs time scale in single nanodroplets.« less

  17. Anisotropic x-ray scattering and orientation fields in cardiac tissue cells

    NASA Astrophysics Data System (ADS)

    Bernhardt, M.; Nicolas, J.-D.; Eckermann, M.; Eltzner, B.; Rehfeldt, F.; Salditt, T.

    2017-01-01

    X-ray diffraction from biomolecular assemblies is a powerful technique which can provide structural information about complex architectures such as the locomotor systems underlying muscle contraction. However, in its conventional form, macromolecular diffraction averages over large ensembles. Progress in x-ray optics has now enabled to probe structures on sub-cellular scales, with the beam confined to a distinct organelle. Here, we use scanning small angle x-ray scattering (scanning SAXS) to probe the diffraction from cytoskeleton networks in cardiac tissue cells. In particular, we focus on actin-myosin composites, which we identify as the dominating contribution to the anisotropic diffraction patterns, by correlation with optical fluorescence microscopy. To this end, we use a principal component analysis approach to quantify direction, degree of orientation, nematic order, and the second moment of the scattering distribution in each scan point. We compare the fiber orientation from micrographs of fluorescently labeled actin fibers to the structure orientation of the x-ray dataset and thus correlate signals of two different measurements: the native electron density distribution of the local probing area versus specifically labeled constituents of the sample. Further, we develop a robust and automated fitting approach based on a power law expansion, in order to describe the local structure factor in each scan point over a broad range of the momentum transfer {q}{{r}}. Finally, we demonstrate how the methodology shown for freeze dried cells in the first part of the paper can be translated to alive cell recordings.

  18. Diffractive-refractive optics: X-ray splitter.

    PubMed

    Hrdý, Jaromír

    2010-01-01

    The possibility of splitting a thin (e.g. undulator) X-ray beam based on diffraction-refraction effects is discussed. The beam is diffracted from a crystal whose diffracting surface has the shape of a roof with the ridge lying in the plane of diffraction. The crystal is cut asymmetrically. One half of the beam impinges on the left-hand part of the roof and the other half impinges on the right-hand side of the roof. Owing to refraction the left part of the beam is deviated to the left whereas the right part is deviated to the right. The device proposed consists of two channel-cut crystals with roof-like diffraction surfaces; the crystals are set in a dispersive position. The separation of the beams after splitting is calculated at a distance of 10 m from the crystals for various asymmetry and inclination angles. It is shown that such a splitting may be utilized for long beamlines. Advantages and disadvantages of this method are discussed.

  19. Instrument and method for focusing X-rays, gamma rays and neutrons

    DOEpatents

    Smither, Robert K.

    1984-01-01

    A crystal diffraction instrument or diffraction grating instrument with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal diffraction case.

  20. Instrument and method for focusing x rays, gamma rays, and neutrons

    DOEpatents

    Smither, R.K.

    1982-03-25

    A crystal-diffraction instrument or diffraction-grating instrument is described with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the line structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam, or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal-diffraction case.

  1. Development of Grazing Incidence Optics for Neutron Imaging and Scattering

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.; Khaykovich, B.; Liu, D.; Ramsey, B. D.; Zavlin, V. E.; Kilaru, K.; Romaine, S.; Rosati, R. E.; Bruni, R.; Moncton, D. E.

    2012-01-01

    Because of their wave nature, thermal and cold neutrons can be reflected from smooth surfaces at grazing incidence angles, be reflected by multilayer coatings or be refracted at boundaries of different materials. The optical properties of materials are characterized by their refractive indices which are slightly less than unity for most elements and their isotopes in the case of cold and thermal neutrons as well as for x-rays. The motivation for the optics use for neutrons as well as for x-rays is to increase the signal rate and, by virtue of the optic's angular resolution, to improve the signal-to-noise level by reducing the background so the efficiency of the existing neutron sources use can be significantly enhanced. Both refractive and reflective optical techniques developed for x-ray applications can be applied to focus neutron beams. Typically neutron sources have lower brilliance compared to conventional x-ray sources so in order to increase the beam throughput the neutron optics has to be capable of capturing large solid angles. Because of this, the replicated optics techniques developed for x-ray astronomy applications would be a perfect match for neutron applications, so the electroformed nickel optics under development at the Marshall Space Flight Center (MSFC) can be applied to focus neutron beams. In this technique, nickel mirror shells are electroformed onto a figured and superpolished nickel-plated aluminum cylindrical mandrel from which they are later released by differential thermal contraction. Cylindrical mirrors with different diameters, but the same focal length, can be nested together to increase the system throughput. The throughput can be increased further with the use of the multilayer coatings deposited on the reflectivr surface of the mirror shells. While the electroformed nickel replication technique needs to be adopted for neutron focusing, the technology to coat the inside of cylindrical mirrors with neutron multilayers has to be developed. The availability of these technologies would bring new capabilities to neutron instrumentation and, hence, lead to new scientific breakthroughs. We have established a program to adopt the electroformed nickel replication optics technique for neutron applications and to develop the neutron multilayer replication technology.

  2. High proton conductivity in the molecular interlayer of a polymer nanosheet multilayer film.

    PubMed

    Sato, Takuma; Hayasaka, Yuta; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2015-05-12

    High proton conductivity was achieved in a polymer multilayer film with a well-defined two-dimensional lamella structure. The multilayer film was prepared by deposition of poly(N-dodecylacryamide-co-acrylic acid) (p(DDA/AA)) monolayers onto a solid substrate using the Langmuir-Blodgett technique. Grazing-angle incidence X-ray diffraction measurement of a 30-layer film of p(DDA/AA) showed strong diffraction peaks in the out-of-plane direction at 2θ = 2.26° and 4.50°, revealing that the multilayer film had a highly uniform layered structure with a monolayer thickness of 2.0 nm. The proton conductivity of the p(DDA/AA) multilayer film parallel to the layer plane direction was 0.051 S/cm at 60 °C and 98% relative humidity with a low activation energy of 0.35 eV, which is comparable to perfluorosulfonic acid membranes. The high conductivity and low activation energy resulted from the formation of uniform two-dimensional proton-conductive nanochannels in the hydrophilic regions of the multilayer film. The proton conductivity of the multilayer film perpendicular to the layer plane was determined to be 2.1 × 10(-13) S/cm. Therefore, the multilayer film showed large anisotropic conductivity with an anisotropic ratio of 2.4 × 10(11).

  3. Evidence for the suppression of incident beam effects in Auger electron diffraction

    NASA Astrophysics Data System (ADS)

    Davoli, I.; Gunnella, R.; Bernardini, R.; De Crescenzi, M.

    1998-01-01

    Auger electron diffraction (AED) of the Cu(100) surface has been studied through the anisotropy of the elastic backdiffused beam electrons, the L 2,3M 4,5M 4,5 (LVV) and the M 2,3M 4,5M 4,5 (MVV) transitions in polar scan along the two main directions [001], [011] and in azimuth scan at normal emission. The intensity anisotropies of the low and high kinetic energy Auger lines are in antiphase to each other as in experiments in which these transitions are excited by X-ray photons. This behaviour has been exploited to single out the origin of the physical mechanisms accompanying the diffraction of the emitted electrons. Incident beam effects appear to be sizeable only when the collection of the AED spectra are made with an angle integrating electron analyser (cylindrical mirror analyser or low electron energy diffraction apparatus), but they appear negligible when electron collection is performed through a small solid-angle detector. The conclusions reached by our measurements are supported by good agreement with experimental and theoretical X-ray photoelectron diffraction data and demonstrate that, when the incident beam energy is sufficiently higher than the kinetic energy of the Auger electron detected, the influence of the incident beam on AED is negligible.

  4. Critical CuI buffer layer surface density for organic molecular crystal orientation change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Kwangseok; Kim, Jong Beom; Lee, Dong Ryeol, E-mail: drlee@ssu.ac.kr

    We have determined the critical surface density of the CuI buffer layer inserted to change the preferred orientation of copper phthalocyanine (CuPc) crystals grown on the buffer layer. X-ray reflectivity measurements were performed to obtain the density profiles of the buffer layers and out-of-plane and 2D grazing-incidence X-ray diffraction measurements were performed to determine the preferred orientations of the molecular crystals. Remarkably, it was found that the preferred orientation of the CuPc film is completely changed from edge-on (1 0 0) to face-on (1 1 −2) by a CuI buffer layer with a very low surface density, so low thatmore » a large proportion of the substrate surface is bare.« less

  5. High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography

    DOE PAGES

    Hruszkewycz, S. O.; Allain, M.; Holt, M. V.; ...

    2016-11-21

    Coherent X-ray microscopy by phase retrieval of Bragg diffraction intensities enables lattice distortions within a crystal to be imaged at nanometre-scale spatial resolutions in three dimensions. While this capability can be used to resolve structure–property relationships at the nanoscale under working conditions, strict data measurement requirements can limit the application of current approaches. Here, in this work, we introduce an efficient method of imaging three-dimensional (3D) nanoscale lattice behaviour and strain fields in crystalline materials with a methodology that we call 3D Bragg projection ptychography (3DBPP). This method enables 3D image reconstruction of a crystal volume from a series ofmore » two-dimensional X-ray Bragg coherent intensity diffraction patterns measured at a single incident beam angle. Structural information about the sample is encoded along two reciprocal-space directions normal to the Bragg diffracted exit beam, and along the third dimension in real space by the scanning beam. Finally, we present our approach with an analytical derivation, a numerical demonstration, and an experimental reconstruction of lattice distortions in a component of a nanoelectronic prototype device.« less

  6. Microstructural investigation of nickel silicide thin films and the silicide-silicon interface using transmission electron microscopy.

    PubMed

    Bhaskaran, M; Sriram, S; Mitchell, D R G; Short, K T; Holland, A S; Mitchell, A

    2009-01-01

    This article discusses the results of transmission electron microscopy (TEM)-based investigation of nickel silicide (NiSi) thin films grown on silicon. Nickel silicide is currently used as the CMOS technology standard for local interconnects and in electrical contacts. Films were characterized with a range of TEM-based techniques along with glancing angle X-ray diffraction. The nickel silicide thin films were formed by vacuum annealing thin films of nickel (50 nm) deposited on (100) silicon. The cross-sectional samples indicated a final silicide thickness of about 110 nm. This investigation studied and reports on three aspects of the thermally formed thin films: the uniformity in composition of the film using jump ratio maps; the nature of the interface using high resolution imaging; and the crystalline orientation of the thin films using selected-area electron diffraction (SAED). The analysis highlighted uniform composition in the thin films, which was also substantiated by spectroscopy techniques; an interface exhibiting the desired abrupt transition from silicide to silicon; and desired and preferential crystalline orientation corresponding to stoichiometric NiSi, supported by glancing angle X-ray diffraction results.

  7. Systems and methods for detecting an image of an object using multi-beam imaging from an X-ray beam having a polychromatic distribution

    DOEpatents

    Parham, Christopher A; Zhong, Zhong; Pisano, Etta; Connor, Jr., Dean M

    2015-03-03

    Systems and methods for detecting an image of an object using a multi-beam imaging system from an x-ray beam having a polychromatic energy distribution are disclosed. According to one aspect, a method can include generating a first X-ray beam having a polychromatic energy distribution. Further, the method can include positioning a plurality of monochromator crystals in a predetermined position to directly intercept the first X-ray beam such that a plurality of second X-ray beams having predetermined energy levels are produced. Further, an object can be positioned in the path of the second X-ray beams for transmission of the second X-ray beams through the object and emission from the object as transmitted X-ray beams. The transmitted X-ray beams can each be directed at an angle of incidence upon one or more crystal analyzers. Further, an image of the object can be detected from the beams diffracted from the analyzer crystals.

  8. Systems and methods for detecting an image of an object by use of an X-ray beam having a polychromatic distribution

    DOEpatents

    Parham, Christopher; Zhong, Zhong; Pisano, Etta; Connor, Dean; Chapman, Leroy D.

    2010-06-22

    Systems and methods for detecting an image of an object using an X-ray beam having a polychromatic energy distribution are disclosed. According to one aspect, a method can include detecting an image of an object. The method can include generating a first X-ray beam having a polychromatic energy distribution. Further, the method can include positioning a single monochromator crystal in a predetermined position to directly intercept the first X-ray beam such that a second X-ray beam having a predetermined energy level is produced. Further, an object can be positioned in the path of the second X-ray beam for transmission of the second X-ray beam through the object and emission from the object as a transmitted X-ray beam. The transmitted X-ray beam can be directed at an angle of incidence upon a crystal analyzer. Further, an image of the object can be detected from a beam diffracted from the analyzer crystal.

  9. Fluence thresholds for grazing incidence hard x-ray mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, A.; Ozkan, C.; Sinn, H.

    2015-06-15

    X-ray Free Electron Lasers (XFELs) have the potential to contribute to many fields of science and to enable many new avenues of research, in large part due to their orders of magnitude higher peak brilliance than existing and future synchrotrons. To best exploit this peak brilliance, these XFEL beams need to be focused to appropriate spot sizes. However, the survivability of X-ray optical components in these intense, femtosecond radiation conditions is not guaranteed. As mirror optics are routinely used at XFEL facilities, a physical understanding of the interaction between intense X-ray pulses and grazing incidence X-ray optics is desirable. Wemore » conducted single shot damage threshold fluence measurements on grazing incidence X-ray optics, with coatings of ruthenium and boron carbide, at the SPring-8 Angstrom compact free electron laser facility using 7 and 12 keV photon energies. The damage threshold dose limits were found to be orders of magnitude higher than would naively be expected. The incorporation of energy transport and dissipation via keV level energetic photoelectrons accounts for the observed damage threshold.« less

  10. Deformational characteristics of thermoplastic elastomers

    NASA Astrophysics Data System (ADS)

    Indukuri, Kishore K.

    This thesis focuses primarily on the structure-property relationships of poly (styrene-ethylene-butylene-styrene) triblock copolymer TPEs. First evidence for strain-induced crystallization occurring in certain SEBS block copolymers has been established using unique techniques like deformation calorimetry, combined in-situ small angle X-ray and wide angle X-ray diffraction (SAXD/WAXD). Also the ramifications of such strain-induced crystallization on the mechanical properties like cyclic hysteresis, stress relaxation/creep retention of these SEBS systems have been studied. In addition, the structural changes in the morphology of these systems on deformation have been investigated using combined SAXD/WAXD setup. Small angle X-ray diffraction probed the changes at the nano-scale of polystyrene (PS) cylinders, while wide angle X-ray diffraction probed the changes at molecular length scales of the amorphous/crystalline domains of the elastomeric mid-block in these systems. New structural features at both these length scales have been observed and incorporated into the overall deformation mechanisms of the material. Continuous processing techniques like extrusion have been used to obtain ultra long-range order and orientation in these SEBS systems. Thus well ordered crystal like hexagonal packing of cylinders, where in each element in this hexagonal lattice can be individually addressed without any grain boundaries can be realized using these robust techniques. The effect of long-range order/orientation on the mechanical properties has been studied. In addition, these well ordered systems serve as model systems for evaluating deformation mechanisms of these SEBS systems, where the relative contributions of each of the phases can be estimated. EPDM/i-PP thermoplastic vulcanizates (TPVs) have micron size scale phase separated morphologies of EPDM rubber dispersed in a semicrystalline i-PP matrix as a result of the dynamic vulcanization process. Confocal microscopy studies, along with scanning electron microscopy (SEM) studies show that the morphology of these EPDM/i-PP systems resembles a microcellular "filled" foam in which i-PP occupies the strut regions and EPDM the inner core. Based on this, an analytical model has been developed that takes into account composition information, molecular weight, cure state and morphology into account.

  11. Nanoporous active carbons at ambient conditions: a comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption

    NASA Astrophysics Data System (ADS)

    Shiryaev, A. A.; Voloshchuk, A. M.; Volkov, V. V.; Averin, A. A.; Artamonova, S. D.

    2017-05-01

    Furfural-derived sorbents and activated carbonaceous fibers were studied using Small- and Wide-angle X-ray scattering (SWAXS), X-ray diffraction and multiwavelength Raman spectroscopy after storage at ambient conditions. Correlations between structural features with degree of activation and with sorption parameters are observed for samples obtained from a common precursor and differing in duration of activation. However, the correlations are not necessarily applicable to the carbons obtained from different precursors. Using two independent approaches we show that treatment of SWAXS results should be performed with careful analysis of applicability of the Porod law to the sample under study. In general case of a pore with rough/corrugated surface deviations from the Porod law may became significant and reflect structure of the pore-carbon interface. Ignorance of these features may invalidate extraction of closed porosity values. In most cases the pore-matrix interface in the studied samples is not atomically sharp, but is characterized by 1D or 2D fluctuations of electronic density responsible for deviations from the Porod law. Intensity of the pores-related small-angle scattering correlates positively with SBET values obtained from N2 adsorption.

  12. Polymer/Nanocrystal Hybrid Solar Cells: Influence of Molecular Precursor Design on Film Nanomorphology, Charge Generation and Device Performance

    PubMed Central

    MacLachlan, Andrew J; Rath, Thomas; Cappel, Ute B; Dowland, Simon A; Amenitsch, Heinz; Knall, Astrid-Caroline; Buchmaier, Christine; Trimmel, Gregor; Nelson, Jenny; Haque, Saif A

    2015-01-01

    In this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3-hexylthiophene-2,5-diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide-angle X-ray scattering) and GISAXS (grazing incidence small-angle X-ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy). These measurements show that there is a strong relationship between precursor structure and heterojunction nanomorphology. A combination of TAS (transient absorption spectroscopy) and photovoltaic device performance measurements is used to show the intricate balance required between charge photogeneration and percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. This study presents a strong case for xanthate complexes as a useful route to designing optimal heterojunction morphologies for use in the emerging field of hybrid organic/inorganic solar cells, due to the fact that the nanomorphology can be tuned via careful design of these precursor materials. PMID:25866496

  13. In situ monitoring of laser-induced periodic surface structures formation on polymer films by grazing incidence small-angle X-ray scattering.

    PubMed

    Rebollar, Esther; Rueda, Daniel R; Martín-Fabiani, Ignacio; Rodríguez-Rodríguez, Álvaro; García-Gutiérrez, Mari-Cruz; Portale, Giuseppe; Castillejo, Marta; Ezquerra, Tiberio A

    2015-04-07

    The formation of laser-induced periodic surface structures (LIPSS) on model spin-coated polymer films has been followed in situ by grazing incidence small-angle X-ray scattering (GISAXS) using synchrotron radiation. The samples were irradiated at different repetition rates ranging from 1 up to 10 Hz by using the fourth harmonic of a Nd:YAG laser (266 nm) with pulses of 8 ns. Simultaneously, GISAXS patterns were acquired during laser irradiation. The variation of both the GISAXS signal with the number of pulses and the LIPSS period with laser irradiation time is revealing key kinetic aspects of the nanostructure formation process. By considering LIPSS as one-dimensional paracrystalline lattice and using a correlation found between the paracrystalline disorder parameter, g, and the number of reflections observed in the GISAXS patterns, the variation of the structural order of LIPSS can be assessed. The role of the laser repetition rate in the nanostructure formation has been clarified. For high pulse repetition rates (i.e., 10 Hz), LIPSS evolve in time to reach the expected period matching the wavelength of the irradiating laser. For lower pulse repetition rates LIPSS formation is less effective, and the period of the ripples never reaches the wavelength value. Results support and provide information on the existence of a feedback mechanism for LIPSS formation in polymer films.

  14. X-ray Spectropolarimetry of Z-pinch Plasmas with a Single-Crystal Technique

    NASA Astrophysics Data System (ADS)

    Wallace, Matt; Haque, Showera; Neill, Paul; Pereira, Nino; Presura, Radu

    2017-10-01

    When directed beams of energetic electrons exist in a plasma the resulting x-rays emitted by the plasma can be partially polarized. This makes plasma x-ray polarization spectroscopy, spectropolarimetry, useful for revealing information about the anisotropy of the electron velocity distribution. X-ray spectropolarimetry has indeed been used for this in both space and laboratory plasmas. X-ray polarization measurements are typically performed employing two crystals, both at a 45° Bragg angle. A single-crystal spectropolarimeter can replace two crystal schemes by utilizing two matching sets of internal planes for polarization-splitting. The polarization-splitting planes diffract the incident x-rays into two directions that are perpendicular to each other and the incident beam as well, so the two sets of diffracted x-rays are linearly polarized perpendicularly to each other. An X-cut quartz crystal with surface along the [11-20] planes and a paired set of [10-10] planes in polarization-splitting orientation is now being used on aluminum z-pinches at the University of Nevada, Reno. Past x-ray polarization measurements have been reserved for point-like sources. Recently a slotted collimating aperture has been used to maintain the required geometry for polarization-splitting enabling the spectropolarimetry of extended sources. The design of a single-crystal x-ray spectropolarimeter and experimental results will be presented. Work was supported by U.S. DOE, NNSA Grant DE-NA0001834 and cooperative agreement DE-FC52-06NA27616.

  15. Compact Kirkpatrick–Baez microscope mirrors for imaging laser-plasma x-ray emission

    DOE PAGES

    Marshall, F. J.

    2012-07-18

    Compact Kirkpatrick–Baez microscope mirror components for use in imaging laser-plasma x-ray emission have been manufactured, coated, and tested. A single mirror pair has dimensions of 14 × 7 × 9 mm and a best resolution of ~5 μm. The mirrors are coated with Ir providing a useful energy range of 2-8 keV when operated at a grazing angle of 0.7°. The mirrors can be circularly arranged to provide 16 images of the target emission a configuration best suited for use in combination with a custom framing camera. As a result, an alternative arrangement of the mirrors would allow alignment ofmore » the images with a fourstrip framing camera.« less

  16. Characterization of an in-vacuum PILATUS 1M detector.

    PubMed

    Wernecke, Jan; Gollwitzer, Christian; Müller, Peter; Krumrey, Michael

    2014-05-01

    A dedicated in-vacuum X-ray detector based on the hybrid pixel PILATUS 1M detector has been installed at the four-crystal monochromator beamline of the PTB at the electron storage ring BESSY II in Berlin, Germany. Owing to its windowless operation, the detector can be used in the entire photon energy range of the beamline from 10 keV down to 1.75 keV for small-angle X-ray scattering (SAXS) experiments and anomalous SAXS at absorption edges of light elements. The radiometric and geometric properties of the detector such as quantum efficiency, pixel pitch and module alignment have been determined with low uncertainties. The first grazing-incidence SAXS results demonstrate the superior resolution in momentum transfer achievable at low photon energies.

  17. Coherent assembly of heterostructures in ternary and quaternary carbonitrides

    NASA Astrophysics Data System (ADS)

    Caicedo, J. C.; Aperador, W.; Saldarriaga, W.

    2018-05-01

    In this study, ternary and quaternary carbonitride heterostructure systems were grown on silicon (100) substrates in order to investigate coherent assembly in TiCN/TiNbCN. The heterostructure films were grown using the reactive r. f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n), while maintaining a constant total coating thickness (∼3 μm). The heterostructures were characterized by high angle X-ray diffraction (HA-XRD) and low angle X-ray diffraction, while the TiCN and TiNbCN layers were analyzed by X-ray photoelectron spectroscopy and transmission electron microscopy. The HA-XRD results indicated preferential growth in the face-centered cubic (111) crystal structure for the [TiCN/TiNbCN]n heterostructures. The maximum coherent assembly was observed with the presence of satellite peaks. Thus, ternary and quaternary carbonitride films were designed and deposited on Si (100) substrates with bilayer periods (Λ) in a broad range from nanometers to hundreds of nanometers in order to study the structural evolution and coherent assembly progress as the bilayer thickness decreased. We determined physical properties comprising the critical angle (θc) (0.362°), electronic density (ρe) (0.521 × 1033 el/m3), dispersion coefficient (δ) (0.554 el/m3), and refractive index (n) (0.999944) as functions of the number of bilayers (n).

  18. Toward Active X-ray Telescopes II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; hide

    2012-01-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.

  19. Irena : tool suite for modeling and analysis of small-angle scattering.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilavsky, J.; Jemian, P.

    2009-04-01

    Irena, a tool suite for analysis of both X-ray and neutron small-angle scattering (SAS) data within the commercial Igor Pro application, brings together a comprehensive suite of tools useful for investigations in materials science, physics, chemistry, polymer science and other fields. In addition to Guinier and Porod fits, the suite combines a variety of advanced SAS data evaluation tools for the modeling of size distribution in the dilute limit using maximum entropy and other methods, dilute limit small-angle scattering from multiple non-interacting populations of scatterers, the pair-distance distribution function, a unified fit, the Debye-Bueche model, the reflectivity (X-ray and neutron)more » using Parratt's formalism, and small-angle diffraction. There are also a number of support tools, such as a data import/export tool supporting a broad sampling of common data formats, a data modification tool, a presentation-quality graphics tool optimized for small-angle scattering data, and a neutron and X-ray scattering contrast calculator. These tools are brought together into one suite with consistent interfaces and functionality. The suite allows robust automated note recording and saving of parameters during export.« less

  20. Characterization of biogenic ferrihydrite nanoparticles by means of SAXS, SRD and IBA methods

    NASA Astrophysics Data System (ADS)

    Balasoiu, M.; Kichanov, S.; Pantelica, A.; Pantelica, D.; Stolyar, S.; Iskhakov, R.; Aranghel, D.; Ionescu, P.; Badita, C. R.; Kurkin, S.; Orelovich, O.; Tiutiunikov, S.

    2018-03-01

    Investigations of biogenic ferrihydrite nanoparticles produced by bacteria Klebsiella oxytoca by applying small angle X-ray scattering, synchrotron radiation diffraction and ion beam analysis methods are reviewed. Different experimental data processing methods are used and analyzed.

  1. Membrane Cholesterol Modulates Superwarfarin Toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but notmore » warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.« less

  2. Grazing Incidence Nickel Replicated Optics for Hard X-ray Telescopes

    NASA Technical Reports Server (NTRS)

    Peturzzo, J. J., III; Elsner, R. F.; Joy, M. K.; ODell, S. L.; Weisskopf, M. C.

    1997-01-01

    The requirements for future hard x-ray (up to 50 keV) telescopes are lightweight, high angular resolution optics with large collecting areas. Grazing incidence replicated optics are an excellent candidate for this, type of mission, providing better angular resolution, comparable area/unit mass, and simpler fabrication than multilayer-coated foils. Most importantly, the technology to fabricate the required optics currently exists. A comparison of several hard x-ray telescope designs will be presented.

  3. Pulsed Laser Deposited Ferromagnetic Chromium Dioxide thin Films for Applications in Spintronics

    NASA Astrophysics Data System (ADS)

    Dwivedi, S.; Jadhav, J.; Sharma, H.; Biswas, S.

    Stable rutile type tetragonal chromium dioxide (CrO2) thin films have been deposited on lattice-matched layers of TiO2 by KrF excimer laser based pulsed laser deposition (PLD) technique using Cr2O3 target. The TiO2 seed layer was deposited on oxidized Si substrates by the same PLD process followed by annealing at 1100 °C for 4 h. The lattice-matched interfacial layer is required for the stabilization of Cr (IV) phase in CrO2, since CrO2 behaves as a metastable compound under ambient conditions and readily converts into its stable phase of Cr (III) oxide, Cr2O3. Analyses with X-ray diffraction (XRD), Glancing-angle XRD (GIXRD), Raman spectroscopy and grazing-angle Fourier transform infra-red (FTIR) spectroscopy confirm the presence of tetragonal CrO2 phase in the as-deposited films. Microstructure and surface morphology in the films were studied with field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). Electrical and magnetic characterizations of the films were performed at room temperature. Such type of stable half-metallic CrO2 thin films with low field magnetoresistive switching behaviour are in demand for applications as diverse as spin-FETs, magnetic sensors, and magneto-optical devices.

  4. Photoelectron diffraction from single oriented molecules: Towards ultrafast structure determination of molecules using x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Kazama, Misato; Fujikawa, Takashi; Kishimoto, Naoki; Mizuno, Tomoya; Adachi, Jun-ichi; Yagishita, Akira

    2013-06-01

    We provide a molecular structure determination method, based on multiple-scattering x-ray photoelectron diffraction (XPD) calculations. This method is applied to our XPD data on several molecules having different equilibrium geometries. Then it is confirmed that, by our method, bond lengths and bond angles can be determined with a resolution of less than 0.1 Å and 10∘, respectively. Differently from any other scenario of ultrafast structure determination, we measure the two- or three-dimensional XPD of aligned or oriented molecules in the energy range from 100 to 200 eV with a 4π detection velocity map imaging spectrometer. Thanks to the intense and ultrashort pulse properties of x-ray free-electron lasers, our approach exhibits the most probable method for obtaining ultrafast real-time structural information on small to medium-sized molecules consisting of light elements, i.e., a “molecular movie.”

  5. Advancing X-ray scattering metrology using inverse genetic algorithms.

    PubMed

    Hannon, Adam F; Sunday, Daniel F; Windover, Donald; Kline, R Joseph

    2016-01-01

    We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real space structure in periodic gratings measured using critical dimension small angle X-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real space structure of our nanogratings. The study shows that for X-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.

  6. X-ray absorption fine structure and x-ray diffraction studies of crystallographic grains in nanocrystalline FePd:Cu thin films

    NASA Astrophysics Data System (ADS)

    Krupinski, M.; Perzanowski, M.; Polit, A.; Zabila, Y.; Zarzycki, A.; Dobrowolska, A.; Marszalek, M.

    2011-03-01

    FePd alloys have recently attracted considerable attention as candidates for ultrahigh density magnetic storage media. In this paper we investigate FePd thin alloy film with a copper admixture composed of nanometer-sized grains. [Fe(0.9 nm)/Pd(1.1 nm)/Cu(d nm)]×5 multilayers were prepared by thermal deposition at room temperature in UHV conditions on Si(100) substrates covered by 100 nm SiO2. The thickness of the copper layer has been changed from 0 to 0.4 nm. After deposition, the multilayers were rapidly annealed at 600 °C in a nitrogen atmosphere, which resulted in the creation of the FePd:Cu alloy. The structure of alloy films obtained this way was determined by x-ray diffraction (XRD), glancing angle x-ray diffraction, and x-ray absorption fine structure (EXAFS). The measurements clearly showed that the L10 FePd:Cu nanocrystalline phase has been formed during the annealing process for all investigated copper compositions. This paper concentrates on the crystallographic grain features of FePd:Cu alloys and illustrates that the EXAFS technique, supported by XRD measurements, can help to extend the information about grain size and grain shape of poorly crystallized materials. We show that, using an appropriate model of the FePd:Cu grains, the comparison of EXAFS and XRD results gives a reasonable agreement.

  7. Triaxial X-Ray Diffraction Method and its Application to Monitor Residual Stress in Surface Layers after High-Feed Milling

    NASA Astrophysics Data System (ADS)

    Zaušková, Lucia; Czán, Andrej; Šajgalík, Michal; Pobijak, Jozef; Mikloš, Matej

    2017-10-01

    High-feed milling is a milling method characteristic with shallow depth of cut and high feed rate to maximize the amount of removed metal from a part, generating residual stresses in the surface and subsurface layers of the machined parts. The residual stress has a large influence on the functional properties of the components. The article is focused on the application of triaxial x-ray diffraction method to monitor residual stresses after high feed milling. Significance of triaxial measuring method is the capability of measuring in different angles so it is possible to acquire stress tensor containing normal and shear stress components.

  8. Alternate Multilayer Gratings with Enhanced Diffraction Efficiency in the 500-5000 eV Energy Domain

    NASA Astrophysics Data System (ADS)

    Polack, François; Lagarde, Bruno; Idir, Mourad; Cloup, Audrey Liard; Jourdain, Erick; Roulliay, Marc; Delmotte, Franck; Gautier, Julien; Ravet-Krill, Marie-Françoise

    2007-01-01

    An alternate multilayer (AML) grating is a 2 dimensional diffraction structure formed on an optical surface, having a 0.5 duty cycle in the in-plane and in the in-depth direction. It can be made by covering a shallow depth laminar grating with a multilayer stack. We show here that their 2D structure confer AML gratings a high angular and energetic selectivity and therefore enhanced diffraction properties, when used in grazing incidence. In the tender X-ray range (500eV - 5000 eV) they behave much like blazed gratings. Over 15% efficiency has been measured on a 1200 lines/mm Mo/Si AML grating in the 1.2 - 1.5 keV energy range. Computer simulations show that selected multilayer materials such as Cr/C should allow diffraction efficiency over 50% at photon energies over 3 keV.

  9. Telescope for x ray and gamma ray studies in astrophysics

    NASA Technical Reports Server (NTRS)

    Weaver, W. D.; Desai, Upendra D.

    1993-01-01

    Imaging of x-rays has been achieved by various methods in astrophysics, nuclear physics, medicine, and material science. A new method for imaging x-ray and gamma-ray sources avoids the limitations of previously used imaging devices. Images are formed in optical wavelengths by using mirrors or lenses to reflect and refract the incoming photons. High energy x-ray and gamma-ray photons cannot be reflected except at grazing angles and pass through lenses without being refracted. Therefore, different methods must be used to image x-ray and gamma-ray sources. Techniques using total absorption, or shadow casting, can provide images in x-rays and gamma-rays. This new method uses a coder made of a pair of Fresnel zone plates and a detector consisting of a matrix of CsI scintillators and photodiodes. The Fresnel zone plates produce Moire patterns when illuminated by an off-axis source. These Moire patterns are deconvolved using a stepped sine wave fitting or an inverse Fourier transform. This type of coder provides the capability of an instantaneous image with sub-arcminute resolution while using a detector with only a coarse position-sensitivity. A matrix of the CsI/photodiode detector elements provides the necessary coarse position-sensitivity. The CsI/photodiode detector also allows good energy resolution. This imaging system provides advantages over previously used imaging devices in both performance and efficiency.

  10. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V.; Morrison, Gregory Y.; Marcus, Matthew A.

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4–17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows formore » precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ~10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry ( e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape ( e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength ( in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ~0.05 eV, is described.« less

  11. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2

    PubMed Central

    Yashchuk, Valeriy V.; Morrison, Gregory Y.; Marcus, Matthew A.; Domning, Edward E.; Merthe, Daniel J.; Salmassi, Farhad; Smith, Brian V.

    2015-01-01

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4–17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows for precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ∼10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry (e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape (e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength (in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ∼0.05 eV, is described. PMID:25931083

  12. Performance optimization of a bendable parabolic cylinder collimating X-ray mirror for the ALS micro-XAS beamline 10.3.2

    DOE PAGES

    Yashchuk, Valeriy V.; Morrison, Gregory Y.; Marcus, Matthew A.; ...

    2015-04-08

    The Advanced Light Source (ALS) beamline (BL) 10.3.2 is an apparatus for X-ray microprobe spectroscopy and diffraction experiments, operating in the energy range 2.4–17 keV. The performance of the beamline, namely the spatial and energy resolutions of the measurements, depends significantly on the collimation quality of light incident on the monochromator. In the BL 10.3.2 end-station, the synchrotron source is imaged 1:1 onto a set of roll slits which form a virtual source. The light from this source is collimated in the vertical direction by a bendable parabolic cylinder mirror. Details are presented of the mirror design, which allows formore » precision assembly, alignment and shaping of the mirror, as well as for extending of the mirror operating lifetime by a factor of ~10. Assembly, mirror optimal shaping and preliminary alignment were performed ex situ in the ALS X-ray Optics Laboratory (XROL). Using an original method for optimal ex situ characterization and setting of bendable X-ray optics developed at the XROL, a root-mean-square (RMS) residual surface slope error of 0.31 µrad with respect to the desired parabola, and an RMS residual height error of less than 3 nm were achieved. Once in place at the beamline, deviations from the designed optical geometry ( e.g. due to the tolerances for setting the distance to the virtual source, the grazing incidence angle, the transverse position) and/or mirror shape ( e.g. due to a heat load deformation) may appear. Due to the errors, on installation the energy spread from the monochromator is typically a few electron-volts. Here, a new technique developed and successfully implemented for at-wavelength ( in situ) fine optimal tuning of the mirror, enabling us to reduce the collimation-induced energy spread to ~0.05 eV, is described.« less

  13. Transmission Grating and Optics Technology Development for the Arcus Explorer Mission

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf; Arcus Team

    2018-01-01

    Arcus is a high-resolution x-ray spectroscopy MIDEX mission selected for a Phase A concept study. It is designed to explore structure formation through measurements of hot baryon distributions, feedback from black holes, and the formation and evolution of stars, disks, and exoplanet atmospheres. The design provides unprecedented sensitivity in the 1.2-5 nm wavelength band with effective area above 450 sqcm and spectral resolution R > 2500. The Arcus technology is based on 12 m-focal length silicon pore optics (SPO) developed for the European Athena mission, and critical-angle transmission (CAT) x-ray diffraction gratings and x-ray CCDs developed at MIT. The modular design consists of four parallel channels, each channel holding an optics petal, followed by a grating petal. CAT gratings are lightweight, alignment insensitive, high-efficiency x-ray transmission gratings that blaze into high diffraction orders, leading to high spectral resolution. Each optics petal represents an azimuthal sub-aperture of a full Wolter optic. The sub-aperturing effect increases spectral resolving power further. Two CCD readout strips receive photons from each channel, including higher-energy photons in 0th order. Each optics petal holds 34 SPO modules. Each grating petal holds 34 grating windows, and each window holds 4-6 grating facets. A grating facet consists of a silicon grating membrane, bonded to a flexure frame that interfaces with the grating window. We report on a sequence of tests with increasing complexity that systematically increase the Technology Readiness Level (TRL) for the combination of CAT gratings and SPOs towards TLR 6. CAT gratings have been evaluated in x rays for diffraction efficiency (> 30% at 2.5 nm) and for resolving power (R> 10,000). A CAT grating/SPO combination was measured at R ~ 3100 at blaze angles smaller than design values, exceeding Arcus requirements. Efficiency and resolving power were not impacted by vibration and thermal testing of gratings. A pair of large (32 mm x 32 mm) gratings was aligned using laser metrology, and alignment was verified under x rays. We present results on simultaneous illumination of the aligned grating pair, and describe our progress towards further tests.

  14. Temperature-Dependent Evolution of the Oxidation States of Cobalt and Platinum in Co 1–xPt x Clusters under H 2 and CO + H 2 Atmospheres

    DOE PAGES

    Yang, Bing; Khadra, Ghassan; Tuaillon-Combes, Juliette; ...

    2016-08-25

    In this study, Co 1–xPt x clusters of 2.9-nm size with a range of atomically precise Pt/Co atomic ratios (x = 0, 0.25, 0.5, 0.75, 1) were synthesized using the mass-selected low-energy cluster beam deposition (LECBD) technique and soft-landed onto an amorphous alumina thin film prepared by atomic layer deposition (ALD). Utilizing ex situ X-ray photoemission spectroscopy (XPS), the oxidation state of the as-made clusters supported on Al 2O 3 was determined after both a 1-h-long exposure to air and aging for several weeks while exposed to air. Next, the aged cluster samples were characterized by grazing-incidence X-ray absorption spectroscopymore » (GIXAS) and then pretreated with diluted hydrogen and further exposed to the mixture of diluted CO and H 2 up to 225°C at atmospheric pressure, and the temperature-dependent evolutions of the particle size/shape and the oxidation states of the individual metal components within the clusters were monitored using in situ grazing-incidence small-angle X-ray scattering and X-ray absorption spectroscopy (GISAXS/GIXAS). The changes in the oxidation states of Co and Pt exhibited a nonlinear dependence on the Pt/Co atomic ratio of the clusters. For example, a low Pt/Co ratio (x ≤ 0.5) facilitates the formation of Co(OH) 2, whereas a high Pt/Co ratio (x = 0.75) stabilizes the Co 3O 4 composition instead through the formation of a Co–Pt core–shell structure where the platinum shell inhibits the reduction of cobalt in the core of the Co 1–xPt x alloy clusters. Finally, the obtained results indicate methods for optimizing the composition and structure of binary alloy clusters for catalysis.« less

  15. Simultaneous measurements of X-ray reflectivity and grazing incidence fluorescence at BL-16 beamline of Indus-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Gangadhar; Kane, S. R.; Khooha, Ajay

    2015-05-15

    A new multipurpose x-ray reflectometer station has been developed and augmented at the microfocus beamline (BL-16) of Indus-2 synchrotron radiation source to facilitate synchronous measurements of specular x-ray reflectivity and grazing incidence x-ray fluorescence emission from thin layered structures. The design and various salient features of the x-ray reflectometer are discussed. The performance of the reflectometer has been evaluated by analyzing several thin layered structures having different surface interface properties. The results reveal in-depth information for precise determination of surface and interface properties of thin layered materials demonstrating the immense potential of the combined measurements of x-ray reflectivity and grazingmore » incidence fluorescence on a single reflectometer.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giri, R. P., E-mail: rajendra.giri@saha.ac.in; Mukhopadhyay, M. K.

    The spontaneous surface aggregation of diblock copolymer, containing polystyrene-polydimethylsiloxane or PS-PDMS, have been studied at air-water interface using Brewster’s angle microscopy (BAM) and grazing incidence small angle x-ray scattering (GISAXS) technique. Pronounced differences in the molecular weight and solvent dependence of the size of aggregation on the water surface are observed. Structural characterization is done using atomic force microscopy (AFM) for a monolayer transferred to Si substrate. It shows that, individual polymer chains coalesce to form some disc like micelle aggregation on the Si surface which is also evident from the BAM image of the water floated monolayer. GISAXS studymore » is also corroborating the same result.« less

  17. Explosive vessel for coupling dynamic experiments to the X-ray beam at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Owens, Charles; Sanchez, Nathaniel; Sorensen, Christian; Jensen, Brian

    2017-06-01

    Recent experiments at the Advanced Photon Source have been successful in coupling gun systems to the synchrotron to take advantage of the advanced X-ray diagnostics available including X-ray diffraction and X-ray phase contrast imaging (PCI) to examine matter at extreme conditions. There are many experiments that require explosive loading capabilities, e.g. detonator and initiator dynamics, small angle X-ray scattering (SAXS), ejecta formation, and explosively driven flyer experiments. The current work highlights a new explosive vessel that was designed specifically for use at a synchrotron facility with requirements to confine up to 15 grams of explosives (TNT equivalent), couple the vessel to the X-ray beam line, and reliably position samples remotely. A description of the system and capability will be provided along with the results from qualification testing to bring the system into service (LA-UR-17-21381).

  18. Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges

    PubMed Central

    Neutze, Richard; Moffat, Keith

    2012-01-01

    X-ray free electron lasers (XFELs) are potentially revolutionary X-ray sources because of their very short pulse duration, extreme peak brilliance and high spatial coherence, features that distinguish them from today’s synchrotron sources. We review recent time-resolved Laue diffraction and time-resolved wide angle X-ray scattering (WAXS) studies at synchrotron sources, and initial static studies at XFELs. XFELs have the potential to transform the field of time-resolved structural biology, yet many challenges arise in devising and adapting hardware, experimental design and data analysis strategies to exploit their unusual properties. Despite these challenges, we are confident that XFEL sources are poised to shed new light on ultrafast protein reaction dynamics. PMID:23021004

  19. Quasi-resonant enhancement of a grazing diffracted wave and deep suppression of specular reflection on shallow metal gratings in terahertz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tymchenko, M., E-mail: mtymchenko@utexas.edu; Gavrikov, V. K.; Spevak, I. S.

    2015-06-29

    We report on a previously unexamined anomaly at diffraction of THz radiation on metal gratings. This anomaly consists in a nearly complete redirection of energy to a non-specular homogeneous diffraction order propagating at a specific grazing angle and deep suppression of the specular reflection. We show that this anomaly is located far enough from the well-known one caused by the resonant excitation of the surface plasmon-polariton. The effect under consideration is of general nature and can exist in all spectrum regions; however, it is especially pronounced in THz region, where it should be taken into account when analyzing relevant experimentalmore » results.« less

  20. Influence of ceramide on the internal structure and hydration of the phospholipid bilayer studied by neutron and X-ray scattering

    NASA Astrophysics Data System (ADS)

    Kiselev, M. A.; Zemlyanaya, E. V.; Ryabova, N. Y.; Hauss, T.; Almasy, L.; Funari, S. S.; Zbytovska, J.; Lombardo, D.

    2014-07-01

    Small angle neutron scattering (SANS), neutron diffraction and X-ray powder diffraction were used to investigate influence of N-stearoyl phytosphingosine (CER[NP]) and α-hydroxy- N-stearoyl phytosphingosine (CER[AP]) on the internal structure and hydration of DMPC membrane in fully and partly hydrated states at T = 30 °C. Application of Fourier analysis for diffraction data and model calculations for the SANS data evidence that addition of both CER[NP] and CER[AP] in small concentrations promotes significant changes in the organization of DMPC bilayers, such as the increase of the hydrophobic core region. SANS data evidence a decrease in the average radius and polydispersity of the vesicles that can be ascribed to hydrogen bonds interactions that favor tight lipid packing with a compact, more rigid character.

  1. Structure, Nanomechanics and Dynamics of Dispersed Surfactant-Free Clay Nanocomposite Films

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Zhao, Jing; Snyder, Chad; Karim, Alamgir; National Institute of Standards; Technology Collaboration

    Natural Montmorillonite particles were dispersed as tactoids in thin films of polycaprolactone (PCL) through a flow coating technique assisted by ultra-sonication. Wide angle X-ray scattering (WAXS), Grazing-incidence wide angle X-ray scattering (GI-WAXS), and transmission electron microscopy (TEM) were used to confirm the level of dispersion. These characterization techniques are in conjunction with its nanomechanical properties via strain-induced buckling instability for modulus measurements (SIEBIMM), a high throughput technique to characterize thin film mechanical properties. The linear strengthening trend of the elastic modulus enhancements was fitted with Halpin-Tsai (HT) model, correlating the nanoparticle geometric effects and mechanical behaviors based on continuum theories. The overall aspect ratio of dispersed tactoids obtained through HT model fitting is in reasonable agreement with digital electron microscope image analysis. Moreover, glass transition behaviors of the composites were characterized using broadband dielectric relaxation spectroscopy. The segmental relaxation behaviors indicate that the associated mechanical property changes are due to the continuum filler effect rather than the interfacial confinement effect.

  2. Effect of RF power density on micro- and macro-structural properties of PECVD grown hydrogenated nanocrystalline silicon thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokdogan, Gozde Kahriman, E-mail: gozdekahriman@gmail.com; Anutgan, Tamila, E-mail: tamilaanutgan@karabuk.edu.tr

    2016-03-25

    This contribution provides the comparison between micro- and macro-structure of hydrogenated nanocrystalline silicon (nc-Si:H) thin films grown by plasma enhanced chemical vapor deposition (PECVD) technique under different RF power densities (P{sub RF}: 100−444 mW/cm{sup 2}). Micro-structure is assessed through grazing angle X-ray diffraction (GAXRD), while macro-structure is followed by surface and cross-sectional morphology via field emission scanning electron microscopy (FE-SEM). The nanocrystallite size (∼5 nm) and FE-SEM surface conglomerate size (∼40 nm) decreases with increasing P{sub RF}, crystalline volume fraction reaches maximum at 162 mW/cm{sup 2}, FE-SEM cross-sectional structure is columnar except for the film grown at 162 mW/cm{sup 2}. The dependence of previously determinedmore » ‘oxygen content–refractive index’ correlation on obtained macro-structure is investigated. Also, the effect of P{sub RF} is discussed in the light of plasma parameters during film deposition process and nc-Si:H film growth models.« less

  3. Ion irradiation induced nucleation and growth of nanoparticles in amorphous silicon carbide at elevated temperatures

    DOE PAGES

    Zhang, Limin; Jiang, Weilin; Ai, Wensi; ...

    2018-04-04

    Ion irradiation induced crystallization in as-deposited amorphous SiC films is investigated using grazing-angle incidence x-ray diffraction (GIXRD), transmission electron microscopy (TEM) and Raman spectroscopy. Irradiation with 5 MeV Xe to fluence of 1.15 ×10 16 Xe/cm 2 at 700 K results in a homogenous distribution of 3C-SiC grains with an average crystallite size of ~5.7 nm over the entire film thickness (~1 μm). The nucleation and growth processes exhibit a weak dependence on dose in displacements per atom (dpa) in the range from ~6 dpa at the film surface to ~20 dpa at the SiC/Si interface. A transformation of homonuclearmore » C-C bonds from sp 3 to sp 2 hybridization is observed in the irradiated films, which may be partly responsible for the observed grain size saturation. Lastly, the results from this study may have a significant impact on applications of SiC as structural components of advanced nuclear energy systems.« less

  4. Model Lung Surfactant Films: Why Composition Matters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selladurai, Sahana L.; Miclette Lamarche, Renaud; Schmidt, Rolf

    Lung surfactant replacement therapies, Survanta and Infasurf, and two lipid-only systems both containing saturated and unsaturated phospholipids and one containing additional palmitic acid were used to study the impact of buffered saline on the surface activity, morphology, rheology, and structure of Langmuir monolayer model membranes. Isotherms and Brewster angle microscopy show that buffered saline subphases induce a film expansion, except when the cationic protein, SP-B, is present in sufficient quantities to already screen electrostatic repulsion, thus limiting the effect of changing pH and adding counterions. Grazing incidence X-ray diffraction results indicate an expansion not only of the liquid expanded phasemore » but also an expansion of the lattice of the condensed phase. The film expansion corresponded in all cases with a significant reduction in the viscosity and elasticity of the films. The viscoelastic parameters are dominated by liquid expanded phase properties and do not appear to be dependent on the structure of the condensed phase domains in a phase separated film. The results highlight that the choice of subphase and film composition is important for meaningful interpretations of measurements using model systems.« less

  5. Ion irradiation induced nucleation and growth of nanoparticles in amorphous silicon carbide at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Limin; Jiang, Weilin; Ai, Wensi

    Ion irradiation induced crystallization in as-deposited amorphous SiC films is investigated using grazing-angle incidence x-ray diffraction (GIXRD), transmission electron microscopy (TEM) and Raman spectroscopy. Irradiation with 5 MeV Xe to fluence of 1.15 ×10 16 Xe/cm 2 at 700 K results in a homogenous distribution of 3C-SiC grains with an average crystallite size of ~5.7 nm over the entire film thickness (~1 μm). The nucleation and growth processes exhibit a weak dependence on dose in displacements per atom (dpa) in the range from ~6 dpa at the film surface to ~20 dpa at the SiC/Si interface. A transformation of homonuclearmore » C-C bonds from sp 3 to sp 2 hybridization is observed in the irradiated films, which may be partly responsible for the observed grain size saturation. Lastly, the results from this study may have a significant impact on applications of SiC as structural components of advanced nuclear energy systems.« less

  6. Polymeric and Molecular Materials for Advanced Organic Electronics

    DTIC Science & Technology

    2014-10-20

    x - ray reflectivity, grazing incidence x - ray scattering, cyclic voltam- metry...6). ix These materials are characterized by AFM, conducting AFM, XPS, x - ray reflectivity (XRR), standing wave x - ray reflectivity (SWXRR), x - ray ...radiation hard - ness measurements, and quantum chemical computation of dielectric constants. Remark- ably, for semiconductors as diverse

  7. THz-pump and X-ray-probe sources based on an electron linac.

    PubMed

    Setiniyaz, Sadiq; Park, Seong Hee; Kim, Hyun Woo; Vinokurov, Nikolay A; Jang, Kyu-Ha; Lee, Kitae; Baek, In Hyung; Jeong, Young Uk

    2017-11-01

    We describe a compact THz-pump and X-ray-probe beamline, based on an electron linac, for ultrafast time-resolved diffraction applications. Two high-energy electron (γ > 50) bunches, 5 ns apart, impinge upon a single-foil or multifoil radiator and generate THz radiation and X-rays simultaneously. The THz pulse from the first bunch is synchronized to the X-ray beam of the second bunch by using an adjustable optical delay of a THz pulse. The peak power of THz radiation from the multifoil radiator is estimated to be 0.14 GW for a 200 pC well-optimized electron bunch. GEANT4 simulations show that a carbon foil with a thickness of 0.5-1.0 mm has the highest yield of 10-20 keV hard X-rays for a 25 MeV beam, which is approximately 10 3 photons/(keV pC-electrons) within a few degrees of the polar angle. A carbon multifoil radiator with 35 foils (25 μm thick each) can generate close to 10 3 hard X-rays/(keV pC-electrons) within a 2° acceptance angle. With 200 pC charge and a 100 Hz repetition rate, we can generate 10 7 X-rays per 1 keV energy bin per second or 10 5 X-rays per 1 keV energy bin per pulse. The longitudinal time profile of an X-ray pulse ranges from 400 to 600 fs depending on the acceptance angle. The broadening of the time duration of an X-ray pulse is observed owing to its diverging effect. A double-crystal monochromator will be used to select and transport the desired X-rays to the sample. The heating of the radiators by an electron beam is negligible because of the low beam current.

  8. Off-plane x-ray reflection grating fabrication

    NASA Astrophysics Data System (ADS)

    Peterson, Thomas J.; DeRoo, Casey T.; Marlowe, Hannah; McEntaffer, Randall L.; Miles, Drew M.; Tutt, James H.; Schultz, Ted B.

    2015-09-01

    Off-plane X-ray diffraction gratings with precision groove profiles at the submicron scale will be used in next generation X-ray spectrometers. Such gratings will be used on a current NASA suborbital rocket mission, the Off-plane Grating Rocket Experiment (OGRE), and have application for future grating missions. The fabrication of these gratings does not come without challenges. High performance off-plane gratings must be fabricated with precise radial grating patterns, optically at surfaces, and specific facet angles. Such gratings can be made using a series of common micro-fabrication techniques. The resulting process is highly customizable, making it useful for a variety of different mission architectures. In this paper, we detail the fabrication method used to produce high performance off-plane gratings and report the results of a preliminary qualification test of a grating fabricated in this manner. The grating was tested in the off-plane `Littrow' configuration, for which the grating is most efficient for a given diffraction order, and found to achieve 42% relative efficiency in the blaze order with respect to all diffracted light.

  9. Status of Mirror Development for the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

    NASA Astrophysics Data System (ADS)

    Champey, P. R.; Winebarger, A. R.; Kobayashi, K.; Savage, S. L.; Ramsey, B.; Kolodziejczak, J.; Speegle, C.; Young, M.; Kester, T.; Cheimets, P.; Hertz, E.

    2017-12-01

    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument designed to observe soft X-ray emissions at 0.5 - 2.0 keV energies (24 - 6 Å) from a solar active region. MaGIXS will, for the first time, obtain spatially resolved spectra of high-temperature, low-emission plasma within an active region core. The unique optical design includes a Wolter I telescope and a 3-optic grazing incidence spectrograph. The spectrograph consists of a finite conjugate, stigmatic mirror pair and a planar varied line space grating. The grazing incidence mirrors are being developed at NASA Marshall Space Flight Center (MSFC) and are produced using electroform nickel-replication techniques, employing the same facilities developed for HERO, FOXSI, ART-XC and IXPE. The MaGIXS mirror mandrels have been fabricated, figured, and have completed the first phase of polishing. A set of three test shells were replicated and exposed to X-rays in the Stray Light Facility (SLF) at MSFC. Here we present results from mandrel metrology and X-ray testing at the SLF. We also discuss the development of a new polishing technique for the MaGIXS mirror mandrels, where we plan to use the Zeeko polishing machine.

  10. Mechanical response of longleaf pine to variation in microfibril angle, chemistry associated wavelengths, density, and radial position

    Treesearch

    B. K. Via; C. L. So; T. F. Shupe; L. H. Groom; J. Wikaira

    2009-01-01

    The composite structure of the S2 layer in the wood cell wall is defined by the angle of the cellulose microfibrils and concentration of polymers and this structure impacts strength and stiffness. The objective of this study was to use near infrared spectroscopy and X-ray diffraction to determine the effect of lignin and cellulose associated wavelengths,...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Himanshu; Ganguli, Tapas; Deb, S. K.

    Growth of CuO nanowires by annealing method has been studied in-situ by grazing incidence Energy Dispersive X-ray Diffraction (EDXRD) technique on Indus-2. It was observed that Cu slowly oxidized to Cu{sub 2}O and finally to CuO. The data was taken as a function of time at two annealing temperatures 500 Degree-Sign C where nanowires form and 300 Degree-Sign C where nanowires don't form. We found that the strain in the CuO layer may be a principal factor for the spontaneous growth of nanowires in annealing method.

  12. X-ray characterization of Ge dots epitaxially grown on nanostructured Si islands on silicon-on-insulator substrates.

    PubMed

    Zaumseil, Peter; Kozlowski, Grzegorz; Yamamoto, Yuji; Schubert, Markus Andreas; Schroeder, Thomas

    2013-08-01

    On the way to integrate lattice mismatched semiconductors on Si(001), the Ge/Si heterosystem was used as a case study for the concept of compliant substrate effects that offer the vision to be able to integrate defect-free alternative semiconductor structures on Si. Ge nanoclusters were selectively grown by chemical vapour deposition on Si nano-islands on silicon-on-insulator (SOI) substrates. The strain states of Ge clusters and Si islands were measured by grazing-incidence diffraction using a laboratory-based X-ray diffraction technique. A tensile strain of up to 0.5% was detected in the Si islands after direct Ge deposition. Using a thin (∼10 nm) SiGe buffer layer between Si and Ge the tensile strain increases to 1.8%. Transmission electron microscopy studies confirm the absence of a regular grid of misfit dislocations in such structures. This clear experimental evidence for the compliance of Si nano-islands on SOI substrates opens a new integration concept that is not only limited to Ge but also extendable to semiconductors like III-V and II-VI materials.

  13. Structural Mineral Physics at Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Chariton, S.; Dubrovinsky, L. S.; Dubrovinskaia, N.

    2017-12-01

    Laser heating techniques in diamond anvil cells (DACs) cover a wide pressure-temperature range - above 300 GPa and up to 5000 K. Recent advantages in on-line laser heating techniques resulted in a significant improvement of reliability of in situ X-ray powder diffraction studies in laser-heated DACs, which have become routine at a number of synchrotron facilities including specialized beam-lines at the 3rd generation synchrotrons. However, until recently, existing DAC laser-heating systems could not be used for structural X-ray diffraction studies aimed at structural refinements, i.e. measuring of the diffraction intensities, and not only at determining of lattice parameters. The reason is that in existing DAC laser-heating facilities the laser beam enters the cell at a fixed angle, and a partial rotation of the DAC, as required in monochromatic structural X-ray diffraction experiments, results in a loss of the target crystal and may be even dangerous if the powerful laser light starts to scatter in arbitrary directions by the diamond anvils. In order to overcome this problem we have develop a portable laser heating system and implement it at different diffraction beam lines. We demonstrate the application of this system for simultaneous high-pressure and high-temperature powder and single crystal diffraction studies using examples of studies of chemical and phase relations in the Fe-O system, transition metals carbonates, and silicate perovskites.

  14. Protein crystal structure from non-oriented, single-axis sparse X-ray data

    DOE PAGES

    Wierman, Jennifer L.; Lan, Ti-Yen; Tate, Mark W.; ...

    2016-01-01

    X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that aremore » kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using theEMCalgorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ~200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using theEMCalgorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. In conclusion, this suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of theEMCalgorithm even in cases where the data are sparse.« less

  15. Protein crystal structure from non-oriented, single-axis sparse X-ray data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierman, Jennifer L.; Lan, Ti-Yen; Tate, Mark W.

    X-ray free-electron lasers (XFELs) have inspired the development of serial femtosecond crystallography (SFX) as a method to solve the structure of proteins. SFX datasets are collected from a sequence of protein microcrystals injected across ultrashort X-ray pulses. The idea behind SFX is that diffraction from the intense, ultrashort X-ray pulses leaves the crystal before the crystal is obliterated by the effects of the X-ray pulse. The success of SFX at XFELs has catalyzed interest in analogous experiments at synchrotron-radiation (SR) sources, where data are collected from many small crystals and the ultrashort pulses are replaced by exposure times that aremore » kept short enough to avoid significant crystal damage. The diffraction signal from each short exposure is so `sparse' in recorded photons that the process of recording the crystal intensity is itself a reconstruction problem. Using theEMCalgorithm, a successful reconstruction is demonstrated here in a sparsity regime where there are no Bragg peaks that conventionally would serve to determine the orientation of the crystal in each exposure. In this proof-of-principle experiment, a hen egg-white lysozyme (HEWL) crystal rotating about a single axis was illuminated by an X-ray beam from an X-ray generator to simulate the diffraction patterns of microcrystals from synchrotron radiation. Millions of these sparse frames, typically containing only ~200 photons per frame, were recorded using a fast-framing detector. It is shown that reconstruction of three-dimensional diffraction intensity is possible using theEMCalgorithm, even with these extremely sparse frames and without knowledge of the rotation angle. Further, the reconstructed intensity can be phased and refined to solve the protein structure using traditional crystallographic software. In conclusion, this suggests that synchrotron-based serial crystallography of micrometre-sized crystals can be practical with the aid of theEMCalgorithm even in cases where the data are sparse.« less

  16. Damage threshold of coating materials on x-ray mirror for x-ray free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyama, Takahisa, E-mail: koyama@spring8.or.jp; Yumoto, Hirokatsu; Tono, Kensuke

    2016-05-15

    We evaluated the damage threshold of coating materials such as Mo, Ru, Rh, W, and Pt on Si substrates, and that of uncoated Si substrate, for mirror optics of X-ray free electron lasers (XFELs). Focused 1 μm (full width at half maximum) XFEL pulses with the energies of 5.5 and 10 keV, generated by the SPring-8 angstrom compact free electron laser (SACLA), were irradiated under the grazing incidence condition. The damage thresholds were evaluated by in situ measurements of X-ray reflectivity degradation during irradiation by multiple pulses. The measured damage fluences below the critical angles were sufficiently high compared withmore » the unfocused SACLA beam fluence. Rh coating was adopted for two mirror systems of SACLA. One system was a beamline transport mirror system that was partially coated with Rh for optional utilization of a pink beam in the photon energy range of more than 20 keV. The other was an improved version of the 1 μm focusing mirror system, and no damage was observed after one year of operation.« less

  17. Temperature-Dependent Evolution of the Oxidation States of Cobalt and Platinum in Co 1–x Pt x Clusters under H 2 and CO + H 2 Atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Bing; Khadra, Ghassan; Tuaillon-Combes, Juliette

    2016-09-29

    Co1-xPtx clusters of 2.9-nm size with a range of atomically precise Pt/Co atomic ratios (x = 0, 0.25, 0.5, 0.75, 1) were synthesized using the mass-selected low-energy cluster beam deposition (LECBD) technique and soft-landed onto an amorphous alumina thin film prepared by atomic layer deposition (ALD). Utilizing ex situ X-ray photoemission spectroscopy (XPS), the oxidation state of the as-made clusters supported on Al2O3 was determined after both a 1-h-long exposure to air and aging for several weeks while exposed to air. Next, the aged duster samples were characterized by grazing-incidence X-ray absorption spectroscopy (GIXAS) and then pretreated with diluted hydrogenmore » and further exposed to the mixture of diluted CO and H-2 up to 225 degrees C at atmospheric pressure, and the temperature-dependent evolutions of the particle size/shape and the oxidation states of the individual metal components within the dusters were monitored using in situ grazing-incidence small-angle X-ray scattering and X-ray absorption spectroscopy (GISAXS/GIXAS). The changes in the oxidation states of Co and Pt exhibited a nonlinear dependence on the Pt/Co atomic ratio of the dusters. For example, a low Pt/Co ratio (x <= 0.5) facilitates the formation of Co(OH)(2), whereas a high Pt/Co ratio (x = 0.75) stabilizes the Co3O4 composition instead through the formation of a Co-Pt core-shell structure where the platinum shell inhibits the reduction of cobalt in the core of the Co1-xPtx alloy dusters. The obtained results indicate methods for optimizing the composition and structure of binary alloy clusters for catalysis.« less

  18. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  19. Grazing incidence relay optics

    NASA Technical Reports Server (NTRS)

    Chase, R. C.; Davis, J. M.; Krieger, A. S.; Underwood, J. H.

    1982-01-01

    The necessity to work in the focal plane of the primary mirrors has been one of the factors limiting the utility of grazing incidence telescopes in X-ray astronomy. In connection with the reported investigation, computer ray tracing programs have been used to study the performance of several grazing incidence relay optics (GIRO) systems used together with a large nested solar X-ray telescope. It was found that GIRO magnifiers are useful to map appropriate sized regions of the sun onto available CCD detectors. GIRO collimators can be used together with an X-ray spectrometer to study the X-ray spectrum from very small regions on the sun. Attention is given to the stationary mode, the tracking mode, and the size of GIRO elements. It is found that for a given GIRO size and magnification a use of the diverging system has the advantage of reducing the overall length of the main telescope-GIRO combination. However, the resolution provided by the diverging GIRO may not be as good as that obtained with the corresponding converging GIRO.

  20. Mass density images from the diffraction enhanced imaging technique.

    PubMed

    Hasnah, M O; Parham, C; Pisano, E D; Zhong, Z; Oltulu, O; Chapman, D

    2005-02-01

    Conventional x-ray radiography measures the projected x-ray attenuation of an object. It requires attenuation differences to obtain contrast of embedded features. In general, the best absorption contrast is obtained at x-ray energies where the absorption is high, meaning a high absorbed dose. Diffraction-enhanced imaging (DEI) derives contrast from absorption, refraction, and extinction. The refraction angle image of DEI visualizes the spatial gradient of the projected electron density of the object. The projected electron density often correlates well with the projected mass density and projected absorption in soft-tissue imaging, yet the mass density is not an "energy"-dependent property of the object, as is the case of absorption. This simple difference can lead to imaging with less x-ray exposure or dose. In addition, the mass density image can be directly compared (i.e., a signal-to-noise comparison) with conventional radiography. We present the method of obtaining the mass density image, the results of experiments in which comparisons are made with radiography, and an application of the method to breast cancer imaging.

  1. Propagation of waves from an arbitrary shaped surface-A generalization of the Fresnel diffraction integral

    NASA Astrophysics Data System (ADS)

    Feshchenko, R. M.; Vinogradov, A. V.; Artyukov, I. A.

    2018-04-01

    Using the method of Laplace transform the field amplitude in the paraxial approximation is found in the two-dimensional free space using initial values of the amplitude specified on an arbitrary shaped monotonic curve. The obtained amplitude depends on one a priori unknown function, which can be found from a Volterra first kind integral equation. In a special case of field amplitude specified on a concave parabolic curve the exact solution is derived. Both solutions can be used to study the light propagation from arbitrary surfaces including grazing incidence X-ray mirrors. They can find applications in the analysis of coherent imaging problems of X-ray optics, in phase retrieval algorithms as well as in inverse problems in the cases when the initial field amplitude is sought on a curved surface.

  2. A simple and low temperature process for super-hydrophilic rutile TiO 2 thin films growth

    NASA Astrophysics Data System (ADS)

    Mane, R. S.; Joo, Oh-Shim; Min, Sun-Ki; Lokhande, C. D.; Han, Sung-Hwan

    2006-11-01

    We investigate an environmentally friendly aqueous solution system for rutile TiO2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.

  3. Development of graphite/copper composites utilizing engineered interfaces. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.

    1991-01-01

    In situ measurements of graphite/copper alloy contact angles were made using the sessile drop method. The interfacial energy values obtained from these measurements were then applied to a model for the fiber matrix interfacial debonding phenomenon found in graphite/copper composites. The formation obtained from the sessile drop tests led to the development of a copper alloy that suitably wets graphite. Characterization of graphite/copper alloy interfaces subjected to elevated temperatures was conducted using Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Auger Electron Spectroscopy, and X Ray Diffraction analyses. These analyses indicated that during sessile drop tests conducted at 1130 C for 1 hour, copper alloys containing greater than 0.98 at pct chromium form continuous reaction layers of approx. 10 microns in thickness. The reaction layers are adherent to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 deg or less. X ray diffraction results indicate that the reaction layer is Cr3C2.

  4. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Xueming; Duan, Yonghao; He, Lilin

    A systematic study was done to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110 °C for 3 h at biomass loadings of 5, 10, 15, 20 and 25 wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ~25 to 625 Å, enabling assessment of contributions of pores with different sizes to increased porositymore » after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role.« less

  5. Characterization of white poplar and eucalyptus after ionic liquid pretreatment as a function of biomass loading using X-ray diffraction and small angle neutron scattering.

    PubMed

    Yuan, Xueming; Duan, Yonghao; He, Lilin; Singh, Seema; Simmons, Blake; Cheng, Gang

    2017-05-01

    A systematic study was performed to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110°C for 3h at biomass loadings of 5, 10, 15, 20 and 25wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ∼25 to 625Å, enabling assessment of contributions of pores with different sizes to increased porosity after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Differential Deposition to Correct Surface Figure Deviations in Astronomical Grazing-Incidence X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.

    2011-01-01

    A coating technique is being developed to correct the surface figure deviations in reflective-grazing-incidence X-ray optics. These optics are typically designed to have precise conic profiles, and any deviation in this profile, as a result of fabrication, results in a degradation of the imaging performance. To correct the mirror profiles, physical vapor deposition has been utilized to selectively deposit a filler material inside the mirror shell. The technique, termed differential deposition, has been implemented as a proof of concept on miniature X-ray optics developed at MSFC for medical-imaging applications. The technique is now being transferred to larger grazing-incidence optics suitable for astronomy and progress to date is reported.

  7. In-situ synchrotron wide-angle X-ray diffraction as a rapid method for cocrystal/salt screening.

    PubMed

    Dong, Pin; Lin, Ling; Li, Yongcheng; Huang, Zhengwei; Lang, Tianqun; Wu, Chuanbin; Lu, Ming

    2015-12-30

    The purpose of this work was to explore in-situ synchrotron wide-angle X-ray diffraction (WAXD) as a rapid and accurate tool to screen and monitor the formation of cocrystal/salts during heating. The active pharmaceutical ingredients (caffeine, carbamazepine and lamotrigine) were respectively mixed with the coformer (saccharin), and then heated by the hot stage. Real-time process monitoring was performed using synchrotron WAXD to assess cocrystal formation and subsequently compared to differential scanning calorimetry (DSC) measurements. The effect of heating rates and cocrystal growth behavior were investigated. Synchrotron WAXD was fast and sensitive to detect cocrystal formation with the appearance of characteristic diffraction rings, even at the heating rate of 30°C/min, while DSC curves showed overlapped peaks. Unlike the indirect characterization of DSC on endo/exothermic peaks, synchrotron WAXD can directly and qualitatively determine cocrystal by diffraction peaks. The diffraction intensity-temperature curves and the corresponding first-derivative curves clearly exhibited the growth behavior of cocrystal upon heating, providing useful information to optimize the process temperature of hot melt extrusion to continuously manufacture cocrystal. The study suggests that in-situ synchrotron WAXD could provide a one-step process to screen cocrystal at high efficiency and reveal the details of cocrystal/salts growth behavior. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Systems engineering analysis of five 'as-manufactured' SXI telescopes

    NASA Astrophysics Data System (ADS)

    Harvey, James E.; Atanassova, Martina; Krywonos, Andrey

    2005-09-01

    Four flight models and a spare of the Solar X-ray Imager (SXI) telescope mirrors have been fabricated. The first of these is scheduled to be launched on the NOAA GOES- N satellite on July 29, 2005. A complete systems engineering analysis of the "as-manufactured" telescope mirrors has been performed that includes diffraction effects, residual design errors (aberrations), surface scatter effects, and all of the miscellaneous errors in the mirror manufacturer's error budget tree. Finally, a rigorous analysis of mosaic detector effects has been included. SXI is a staring telescope providing full solar disc images at X-ray wavelengths. For wide-field applications such as this, a field-weighted-average measure of resolution has been modeled. Our performance predictions have allowed us to use metrology data to model the "as-manufactured" performance of the X-ray telescopes and to adjust the final focal plane location to optimize the number of spatial resolution elements in a given operational field-of-view (OFOV) for either the aerial image or the detected image. The resulting performance predictions from five separate mirrors allow us to evaluate and quantify the optical fabrication process for producing these very challenging grazing incidence X-ray optics.

  9. Depth-resolved magnetic and structural analysis of relaxing epitaxial Sr 2 CrReO 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucy, J. M.; Hauser, A. J.; Liu, Y.

    2015-03-01

    Structural relaxation in a Sr2CrReO6 epitaxial film, which exhibits strong spin-orbit coupling, leads to depth-dependent magnetism. We combine two depth-resolved synchrotron x-ray techniques, two-dimensional reciprocal space mapping and x-ray magnetic circular dichroism, to quantitatively determine this effect. An 800 nm thick film of Sr2CrReO6, grown with tensile epitaxial strain on SrCr0:5Nb0:5O3(225 nm)/LSAT, relaxes away from the Sr2CrReO6/SrCr0:5Nb0:5O3 interface to its bulk lattice parameters, with much of the film being fully relaxed. Grazing incidence xray diffraction measurements of the film elucidate the in-plane strain relaxation near the film- substrate interface while depth-resolved x-ray magnetic circular dichroism at the Re L edgemore » reveals the magnetic contributions of the Re site. The smooth relaxation of the film near the interface correlates with changes in the magnetic anisotropy. This provides a systematic and powerful way to probe the depth-varying structural and magnetic properties of a complex oxide with synchrotronsource x-ray techniques.« less

  10. Comparison of the Morphology Development of Polymer-Fullerene and Polymer-Polymer Solar Cells during Solution-Shearing Blade Coating

    DOE PAGES

    Gu, Xiaodan; Yan, Hongping; Kurosawa, Tadanori; ...

    2016-08-22

    Here in this work, the detailed morphology studies of polymer poly(3-hexylthiophene-2,5-diyl) (P3HT):fullerene(PCBM) and polymer(P3HT):polymer naphthalene diimide thiophene (PNDIT) solar cell are presented to understand the challenge for getting high performance all-polymer solar cells. The in situ X-ray scattering and optical interferometry and ex situ hard and soft X-ray scattering and imaging techniques are used to characterize the bulk heterojunction (BHJ) ink during drying and in dried state. The crystallization of P3HT polymers in P3HT:PCBM bulk heterojunction shows very different behavior compared to that of P3HT:PNDIT BHJ due to different mobilities of P3HT in the donor:acceptor glass. Supplemented by the exmore » situ grazing incidence X-ray diffraction and soft X-ray scattering, PNDIT has a lower tendency to form a mixed phase with P3HT than PCBM, which may be the key to inhibit the donor polymer crystallization process, thus creating preferred small phase separation between the donor and acceptor polymer.« less

  11. Grazing Incidence Optics for X-rays Interferometry

    NASA Technical Reports Server (NTRS)

    Shipley, Ann; Zissa, David; Cash, Webster; Joy, Marshall

    1999-01-01

    Grazing incidence mirror parameters and constraints for x-ray interferometry are described. We present interferometer system tolerances and ray trace results used to define mirror surface accuracy requirements. Mirror material, surface figure, roughness, and geometry are evaluated based on analysis results. We also discuss mirror mount design constraints, finite element analysis, environmental issues, and solutions. Challenges associated with quantifying high accuracy mirror surface quality are addressed and test results are compared with theoretical predictions.

  12. X-ray diffraction evidence for myelin disorder in brain from humans with Alzheimer's disease.

    PubMed

    Chia, L S; Thompson, J E; Moscarello, M A

    1984-09-05

    Wide-angle X-ray diffraction studies revealed that the lipid phase transition temperature of myelin from brain tissue of humans with Alzheimer's disease was about 12 degrees C lower than that of normal age-matched controls, indicating differences in the physical organization of the myelin lipid bilayer. Elevated levels of malondialdehyde and conjugated diene were found in brain tissue from humans with Alzheimer's disease, indicating an increased amount of lipid peroxidation over the controls. An increase in myelin disorder and in lipid peroxidation can both be correlated with aging in human brain, but the changes in myelin from humans with Alzheimer's disease are more pronounced than in normal aging. These changes might represent severe or accelerated aging.

  13. Evidence of monotropic hexatic tilted smectic phase in the phase sequence of ferroelectric liquid crystal

    NASA Astrophysics Data System (ADS)

    Różycka, Anna; Deptuch, Aleksandra; Jaworska-Gołąb, Teresa; Węgłowska, Dorota; Marzec, Monika

    2018-02-01

    Physical properties of a new ferroelectric liquid crystal have been studied by complementary methods: differential scanning calorimetry, polarizing optical microscopy, dielectric and X-ray diffraction. It was found that next to enantiotropic ferroelectric smectic C* phase, the monotropic smectic phase appears at cooling. X-ray diffraction measurements allowed to identify this phase as hexatic tilted smectic. Temperature dependence of spontaneous polarization, tilt angle of molecules and switching time were found in both liquid crystalline phases at cooling. Based on the dielectric results, the dielectric processes were identified as Goldstone mode in the smectic C* phase, whereas as the bond-orientation-like phason and the bulk domain mode in the monotropic hexatic tilted smectic phase.

  14. Rotator Phases of n-Heptane under High Pressure: Raman Scattering and X-ray Diffraction Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C Ma; Q Zhou; F Li

    2011-12-31

    We performed high-pressure Raman scattering and angle-dispersive synchrotron X-ray diffraction measurements on n-heptane at room temperature. It has been found that n-heptane undergoes a liquid to rotator phase III (R{sub III}) transition at 1.2 GPa and then transforms into another rotator phase R{sub IV} at about 3 GPa. As the pressure reaches 7.5 GPa, a transition from an orientationally disordered R{sub IV} phase to an ordered crystalline state starts and is completed around 14.5 GPa. Our results clearly present the high-pressure phase transition sequence (liquid-R{sub III}-R{sub IV}-crystal) of n-heptane, similar to that of normal alkanes.

  15. Polyethylene-Glycol-Mediated Self-Assembly of Magnetite Nanoparticles at the Liquid/Vapor Interface

    DOE PAGES

    Vaknin, David; Wang, Wenjie; Islam, Farhan; ...

    2018-03-23

    It is shown that magnetite nanoparticles (MagNPs) grafted with polyethylene glycol (PEG) self-assemble and short-range-order as 2D films at surfaces of aqueous suspensions by manipulating salt concentrations. Synchrotron X-ray reflectivity and grazing-incidence small angle X-ray scattering studies reveal that K 2CO 3 induces the migration of the PEG-MagNPs to the liquid/vapor interface to form a Gibbs layer of monoparticle in thickness. As the salt concentration and/or nanoparticle concentration increase, the surface-adsorbed nanoparticles become more organized. And further increase in salt concentration leads to the growth of an additional incomplete nanoparticle layer contiguous to the first one at the vapor/liquid interfacemore » that remains intact.« less

  16. Fluorescence XAS using Ge PAD: Application to High-Temperature Superconducting Thin Film Single Crystals

    NASA Astrophysics Data System (ADS)

    Oyanagi, H.; Tsukada, A.; Naito, M.; Saini, N. L.; Zhang, C.

    2007-02-01

    A Ge pixel array detector (PAD) with 100 segments was used in fluorescence x-ray absorption spectroscopy (XAS) study, probing local structure of high temperature superconducting thin film single crystals. Independent monitoring of individual pixel outputs allows real-time inspection of interference of substrates which has long been a major source of systematic error. By optimizing grazing-incidence angle and azimuthal orientation, smooth extended x-ray absorption fine structure (EXAFS) oscillations were obtained, demonstrating that strain effects can be studied using high-quality data for thin film single crystals grown by molecular beam epitaxy (MBE). The results of (La,Sr)2CuO4 thin film single crystals under strain are related to the strain dependence of the critical temperature of superconductivity.

  17. Assembling Bare Au Nanoparticles at Positively Charged Templates

    DOE PAGES

    Wang, Wenjie; Zhang, Honghu; Kuzmenko, Ivan; ...

    2016-05-26

    In-situ X-ray reflectivity (XRR) and grazing incidence X-ray small-angle scattering (GISAXS) reveal that unfunctionalized (bare) gold nanoparticles (AuNP) spontaneously adsorb to a cationic lipid template formed by a Langmuir monolayer of DPTAP (1,2-dihexadecanoyl-3-trimethylammonium-propane) at vapor/aqueous interfaces. Analysis of the XRR yields the electron density profile across the charged-interfaces along the surface normal showing the AuNPs assemble with vertical thickness comparable to the particle size. The GISAXS analysis indicates that the adsorbed mono-particle layer exhibits short-range in-plane correlations. By contrast, single-stranded DNA-functionalized AuNPs, while attracted to the positively charged surface (more efficiently with the addition of salt to the solution), displaymore » less in-plane regular packing compared to bare AuNPs.« less

  18. Polyethylene-Glycol-Mediated Self-Assembly of Magnetite Nanoparticles at the Liquid/Vapor Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaknin, David; Wang, Wenjie; Islam, Farhan

    It is shown that magnetite nanoparticles (MagNPs) grafted with polyethylene glycol (PEG) self-assemble and short-range-order as 2D films at surfaces of aqueous suspensions by manipulating salt concentrations. Synchrotron X-ray reflectivity and grazing-incidence small angle X-ray scattering studies reveal that K 2CO 3 induces the migration of the PEG-MagNPs to the liquid/vapor interface to form a Gibbs layer of monoparticle in thickness. As the salt concentration and/or nanoparticle concentration increase, the surface-adsorbed nanoparticles become more organized. And further increase in salt concentration leads to the growth of an additional incomplete nanoparticle layer contiguous to the first one at the vapor/liquid interfacemore » that remains intact.« less

  19. Spider Silk: From Protein-Rich Gland Fluids to Diverse Biopolymer Fibers

    DTIC Science & Technology

    2016-01-06

    characterize the protein-rich fluid in the various spider silk producing glands. We have been using a battery of magnetic resonance methods including...solution and solid-state nuclear magnetic resonance (NMR) and micro imaging (MRI) in combination with wide angle and small angle X-ray diffraction...range of magnetic resonance methods. We successfully developed magnetic resonance imaging (MRI) techniques with localized spectroscopy to probe the silk

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berenguer de la Cuesta, Felisa; Wenger, Marco P.E.; Bean, Richard J.

    Coherent X-ray diffraction has been applied in the imaging of inorganic materials with great success. However, its application to biological specimens has been limited to some notable exceptions, due to the induced radiation damage and the extended nature of biological samples, the last limiting the application of most part of the phasing algorithms. X-ray ptychography, still under development, is a good candidate to overcome such difficulties and become a powerful imaging method for biology. We describe herein the feasibility of applying ptychography to the imaging of biological specimens, in particular collagen rich samples. We report here speckles in diffraction patternsmore » from soft animal tissue, obtained with an optimized small angle X-ray setup that exploits the natural coherence of the beam. By phasing these patterns, dark field images of collagen within tendon, skin, bone, or cornea will eventually be obtained with a resolution of 60-70 nm. We present simulations of the contrast mechanism in collagen based on atomic force microscope images of the samples. Simulations confirmed the 'speckled' nature of the obtained diffraction patterns. Once inverted, the patterns will show the disposition and orientation of the fibers within the tissue, by enhancing the phase contrast between protein and no protein regions of the sample. Our work affords the application of the most innovative coherent X-ray diffraction tools to the study of biological specimens, and this approach will have a significant impact in biology and medicine because it overcomes many of the limits of current microscopy techniques.« less

  1. Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers

    USDA-ARS?s Scientific Manuscript database

    Stable aqueous suspensions of cellulose nano-crystals (CNCs) were fabricated from both native and mercerized cotton fibers by sulfuric acid hydrolysis, followed by high-pressure homogenization. Fourier Transform Infrared Spectrometry and Wide-angle X-Ray Diffraction data showed that the fibers had b...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathyalakshmi, R.; Bhagavannarayana, G.; Ramasamy, P.

    L-(+)-Glutamic acid hydro bromide, an isomorphic salt of L-glutamic acid hydrochloride, was synthesized and the synthesis was confirmed using Fourier transform infrared analysis. Solubility of the material in water was determined. L-Glutamic acid hydro bromide crystals were grown by low temperature solution growth using the solvent evaporation technique. Single crystal X-ray diffraction studies were carried out and the cell parameters, atomic co-ordinates, bond lengths and bond angles were reported. High-resolution X-ray diffraction studies were carried out and good crystallinity for the grown crystal was observed from the diffraction curve. The grown crystals were subjected to dielectric studies. Ultraviolet-visible-near infrared spectralmore » analysis shows good optical transmission in the visible and infrared region of the grown crystals. The second harmonic generation efficiency of L-glutamic acid hydro bromide crystal was determined using the Kurtz powder test and it was found that it had efficiency comparable with that of the potassium di-hydrogen phosphate crystal.« less

  3. Magnetic x-ray dichroism in ultrathin epitaxial films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, J.G.; Goodman, K.W.; Cummins, T.R.

    1997-04-01

    The authors have used Magnetic X-ray Linear Dichroism (MXLD) and Magnetic X-ray Circular Dichroism (MXCD) to study the magnetic properties of epitaxial overlayers in an elementally specific fashion. Both MXLD and MXCD Photoelectron Spectroscopy were performed in a high resolution mode at the Spectromicroscopy Facility of the ALS. Circular Polarization was obtained via the utilization of a novel phase retarder (soft x-ray quarter wave plate) based upon transmission through a multilayer film. The samples were low temperature Fe overlayers, magnetic alloy films of NiFe and CoNi, and Gd grown on Y. The authors results include a direct comparison of highmore » resolution angle resolved Photoelectron Spectroscopy performed in MXLD and MXCD modes as well as structural studies with photoelectron diffraction.« less

  4. An instrument for 3D x-ray nano-imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holler, M.; Raabe, J.; Diaz, A.

    We present an instrument dedicated to 3D scanning x-ray microscopy, allowing a sample to be precisely scanned through a beam while the angle of x-ray incidence can be changed. The position of the sample is controlled with respect to the beam-defining optics by laser interferometry. The instrument achieves a position stability better than 10 nm standard deviation. The instrument performance is assessed using scanning x-ray diffraction microscopy and we demonstrate a resolution of 18 nm in 2D imaging of a lithographic test pattern while the beam was defined by a pinhole of 3 {mu}m in diameter. In 3D on amore » test object of copper interconnects of a microprocessor, a resolution of 53 nm is achieved.« less

  5. Real-time x-ray diffraction measurements of shocked polycrystalline tin and aluminum.

    PubMed

    Morgan, Dane V; Macy, Don; Stevens, Gerald

    2008-11-01

    A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35 ns pulse. The characteristic K(alpha) lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K(beta) line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3 x 6 mm(2) spot and 1 degrees full width half maximum angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5 degrees . A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device camera through a coherent fiber-optic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1 mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic aluminum lattice with no phase transformation.

  6. Vibrational cross-angles in condensed molecules: a structural tool.

    PubMed

    Chen, Hailong; Zhang, Yufan; Li, Jiebo; Liu, Hongjun; Jiang, De-En; Zheng, Junrong

    2013-09-05

    The fluctuations of three-dimensional molecular conformations of a molecule in different environments play critical roles in many important chemical and biological processes. X-ray diffraction (XRD) techniques and nuclear magnetic resonance (NMR) methods are routinely applied to monitor the molecular conformations in condensed phases. However, some special requirements of the methods have prevented them from exploring many molecular phenomena at the current stage. Here, we introduce another method to resolve molecular conformations based on an ultrafast MIR/T-Hz multiple-dimensional vibrational spectroscopic technique. The model molecule (4'-methyl-2'-nitroacetanilide, MNA) is prepared in two of its crystalline forms and liquid samples. Two polarized ultrafast infrared pulses are then used to determine the cross-angles of vibrational transition moment directions by exciting one vibrational band and detecting the induced response on another vibrational band of the molecule. The vibrational cross-angles are then converted into molecular conformations with the aid of calculations. The molecular conformations determined by the method are supported by X-ray diffraction and molecular dynamics simulation results. The experimental results suggest that thermodynamic interactions with solvent molecules are not altering the molecular conformations of MNA in the solutions to control their ultimate conformations in the crystals.

  7. Multiple image x-radiography for functional lung imaging

    NASA Astrophysics Data System (ADS)

    Aulakh, G. K.; Mann, A.; Belev, G.; Wiebe, S.; Kuebler, W. M.; Singh, B.; Chapman, D.

    2018-01-01

    Detection and visualization of lung tissue structures is impaired by predominance of air. However, by using synchrotron x-rays, refraction of x-rays at the interface of tissue and air can be utilized to generate contrast which may in turn enable quantification of lung optical properties. We utilized multiple image radiography, a variant of diffraction enhanced imaging, at the Canadian light source to quantify changes in unique x-ray optical properties of lungs, namely attenuation, refraction and ultra small-angle scatter (USAXS or width) contrast ratios as a function of lung orientation in free-breathing or respiratory-gated mice before and after intra-nasal bacterial endotoxin (lipopolysaccharide) instillation. The lung ultra small-angle scatter and attenuation contrast ratios were significantly higher 9 h post lipopolysaccharide instillation compared to saline treatment whereas the refraction contrast decreased in magnitude. In ventilated mice, end-expiratory pressures result in an increase in ultra small-angle scatter contrast ratio when compared to end-inspiratory pressures. There were no detectable changes in lung attenuation or refraction contrast ratio with change in lung pressure alone. In effect, multiple image radiography can be applied towards following optical properties of lung air-tissue barrier over time during pathologies such as acute lung injury.

  8. Grating angle magnification enhanced angular sensor and scanner

    NASA Technical Reports Server (NTRS)

    Sun, Ke-Xun (Inventor); Byer, Robert L. (Inventor)

    2009-01-01

    An angular magnification effect of diffraction is exploited to provide improved sensing and scanning. This effect is most pronounced for a normal or near-normal incidence angle in combination with a grazing diffraction angle, so such configurations are preferred. Angular sensitivity can be further enhanced because the width of the diffracted beam can be substantially less than the width of the incident beam. Normal incidence configurations with two symmetric diffracted beams are preferred, since rotation and vertical displacement can be readily distinguished. Increased sensitivity to vertical displacement can be provided by incorporating an interferometer into the measurement system. Quad cell detectors can be employed to provide sensitivity to rotation about the grating surface normal. A 2-D grating can be employed to provide sensitivity to angular displacements in two different planes (e.g., pitch and yaw). Combined systems can provide sensitivity to vertical displacement and to all three angular degrees of freedom.

  9. High-resolution study of dynamical diffraction phenomena accompanying the Renninger (222/113) case of three-beam diffraction in silicon

    PubMed Central

    Kazimirov, A.; Kohn, V. G.

    2010-01-01

    X-ray optical schemes capable of producing a highly monochromatic beam with high angular collimation in both the vertical and horizontal planes have been evaluated and utilized to study high-resolution diffraction phenomena in the Renninger (222/113) case of three-beam diffraction in silicon. The effect of the total reflection of the incident beam into the nearly forbidden reflected beam was observed for the first time with the maximum 222 reflectivity at the 70% level. We have demonstrated that the width of the 222 reflection can be varied many times by tuning the azimuthal angle by only a few µrad in the vicinity of the three-beam diffraction region. This effect, predicted theoretically more than 20 years ago, is explained by the enhancement of the 222 scattering amplitude due to the virtual two-stage 000 113 222 process which depends on the azimuthal angle. PMID:20555185

  10. Synthesis and synchrotron characterisation of novel dual-template of hydroxyapatite scaffolds with controlled size porous distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Thiago A. R. M.; Ilavsky, Jan; Hammons, Joshua

    Hydroxyapatite (HAP) scaffolds with a hierarchical porous architecture were prepared by a new dual-template (corn starch and cetyltrimethylammonium bromide (CTAB) surfactant) used to cast HAP nanoparticles and development scaffolds with size hierarchical porous distribution. The Powder X-Ray diffraction (XRD) results showed that only the HAP crystalline phase is present in the samples after calcination; the Scanning Electron Microscopy (SEM) combined with Small Angle (SAXS) and Ultra-Small Angle X-ray Scattering (USAXS) techniques showed that the porous arrangement is promoted by needle-like HAP nanoparticles, and that the pore size distributions depend on the drip-order of the calcium and the phosphate solutions duringmore » the template preparation stage.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willey, Trevor M.; Lauderbach, Lisa; Gagliardi, Franco

    HMX-based explosives LX-10 and PBX-9501 were heated through the β-δ phase transition. Ultra-small angle x-ray scattering (USAXS) and molecular diffraction were simultaneously recorded as the HMX was heated. Mesoscale voids and structure dramatically change promptly with the β-δ phase transition, rather than with other thermal effects. Also, x-ray induced damage, observed in the USAXS, occurs more readily at elevated temperatures; as such, the dose was reduced to mitigate this effect. Optical microscopy performed during a similar heating cycle gives an indication of changes on longer length scales, while x-ray microtomography, performed before and after heating, shows the character of extensivemore » microstructural damage resulting from the temperature cycle and solid-state phase transition.« less

  12. An in situ grazing incidence x-ray scattering study of block copolymer thin films during solvent vapor annealing

    NASA Astrophysics Data System (ADS)

    Gu, Xiaodan; Gunkel, Ilja; Hexemer, Alexander; Russell, Thomas

    2014-03-01

    Although solvent vapor annealing (SVA) has been widely applied to block copolymer (BCP) thin films to obtain well-ordered microdomains, the mechanism of enhancing lateral order is not well understood. Here, we used real time in situ grazing-incidence small-angle x-ray scattering (in situGISAXS) to study the self-assembly of PS-b-P2VP BCP BCPs with different molecular weights thin films in THF vapor, a near neutral solvent for both blocks. Both swelling and deswelling behavior of BCP thin films were examined. The extent of swellingand the solvent removal rate not only affect the domain spacing of BCPs but also dictate the extent of lateral ordering of the BCP microdomains. Larger grains were observed at higher values of the swelling ratio (close to disordering). To preserve the maximal lateral ordering of the microdomains in the swollen state, the fastest solvent removal rate is required to freeze in the ordered microdomain structure of the swollen BCP film. We thanks support from U.S. Department of Energy BES under contract BES-DE-FG02-96ER45612 and ALS doctoral fellowship.

  13. Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space.

    PubMed

    Rebollar, Esther; Pérez, Susana; Hernández, Jaime J; Martín-Fabiani, Ignacio; Rueda, Daniel R; Ezquerra, Tiberio A; Castillejo, Marta

    2011-05-03

    In this work we evaluate the potential of grazing incidence X-ray scattering techniques in the investigation of laser-induced periodic surface structures (LIPSSs) in a series of strongly absorbing model spin-coated polymer films which are amorphous, such as poly(ethylene terephthalate), poly(trimethylene terephthalate), and poly(carbonate bisphenol A), and in a weaker absorbing polymer, such as semicrystalline poly(vinylidene fluoride), over a narrow range of fluences. Irradiation was performed with pulses of 6 ns at 266 nm, and LIPSSs with period lengths similar to the laser wavelength and parallel to the laser polarization direction are formed by devitrification of the film surface at temperatures above the characteristic glass transition temperature of the polymers. No crystallization of the surface is induced by laser irradiation, and crystallinity of the material prevents LIPSS formation. The structural information obtained by both atomic force microscopy and grazing incidence small-angle X-ray scattering (GISAXS) correlates satisfactorily. Comparison of experimental and simulated GISAXS patterns suggests that LIPSSs can be well described considering a quasi-one-dimensional paracrystalline lattice and that irradiation parameters have an influence on the order of such a lattice.

  14. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source.

    PubMed

    Rupp, Daniela; Monserud, Nils; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; J Vrakking, Marc; Fennel, Thomas; Rouzée, Arnaud

    2017-09-08

    Coherent diffractive imaging of individual free nanoparticles has opened routes for the in situ analysis of their transient structural, optical, and electronic properties. So far, single-shot single-particle diffraction was assumed to be feasible only at extreme ultraviolet and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using extreme ultraviolet pulses from a femtosecond-laser-driven high harmonic source. We obtain bright wide-angle scattering patterns, that allow us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.Diffraction imaging studies of free individual nanoparticles have so far been restricted to XUV and X-ray free - electron laser facilities. Here the authors demonstrate the possibility of using table-top XUV laser sources to image prolate shapes of superfluid helium droplets.

  15. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range.

    PubMed

    Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V; Huang, Qiushi; Wang, Zhanshan

    2017-01-01

    Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1-4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order.

  16. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range

    PubMed Central

    Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V.; Huang, Qiushi; Wang, Zhanshan

    2017-01-01

    Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1–4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order. PMID:28009556

  17. Reintroducing electrostatics into macromolecular crystallographic refinement: application to neutron crystallography and DNA hydration.

    PubMed

    Fenn, Timothy D; Schnieders, Michael J; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S; Brunger, Axel T

    2011-04-13

    Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints, and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here, we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen-bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Reintroducing Electrostatics into Macromolecular Crystallographic Refinement: Application to Neutron Crystallography and DNA Hydration

    PubMed Central

    Fenn, Timothy D.; Schnieders, Michael J.; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S.; Brunger, Axel T.

    2011-01-01

    Summary Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms. PMID:21481775

  19. Glancing-incidence X-ray diffraction of Ag nanoparticles in gold lustre decoration of Italian Renaissance pottery

    NASA Astrophysics Data System (ADS)

    Bontempi, E.; Colombi, P.; Depero, L. E.; Cartechini, L.; Presciutti, F.; Brunetti, B. G.; Sgamellotti, A.

    2006-06-01

    Lustre is known as one of the most significant decorative techniques of Medieval and Renaissance pottery in the Mediterranean basin, characterized by brilliant gold and red metallic reflections and iridescence effects. Previous studies by various techniques (SEM-EDS and TEM, UV-VIS, XRF, RBS and EXAFS) demonstrated that lustre consists of a heterogeneous metal-glass composite film, formed by Cu and Ag nanoparticles dispersed within the outer layer of a tin-opacified lead glaze. In the present work the investigation of an original gold lustre sample from Deruta has been carried out by means of glancing-incidence X-ray diffraction techniques (GIXRD). The study was aimed at providing information on structure and depth distribution of Ag nanoparticles. Exploiting the capability of controlling X-ray penetration in the glaze by changing the incidence angle, we used GIXRD measurements to estimate non-destructively thickness and depth of silver particles present in the first layers of the glaze.

  20. Digital Image Correlation of 2D X-ray Powder Diffraction Data for Lattice Strain Evaluation

    PubMed Central

    Zhang, Hongjia; Sui, Tan; Daisenberger, Dominik; Fong, Kai Soon

    2018-01-01

    High energy 2D X-ray powder diffraction experiments are widely used for lattice strain measurement. The 2D to 1D conversion of diffraction patterns is a necessary step used to prepare the data for full pattern refinement, but is inefficient when only peak centre position information is required for lattice strain evaluation. The multi-step conversion process is likely to lead to increased errors associated with the ‘caking’ (radial binning) or fitting procedures. A new method is proposed here that relies on direct Digital Image Correlation analysis of 2D X-ray powder diffraction patterns (XRD-DIC, for short). As an example of using XRD-DIC, residual strain values along the central line in a Mg AZ31B alloy bar after 3-point bending are calculated by using both XRD-DIC and the conventional ‘caking’ with fitting procedures. Comparison of the results for strain values in different azimuthal angles demonstrates excellent agreement between the two methods. The principal strains and directions are calculated using multiple direction strain data, leading to full in-plane strain evaluation. It is therefore concluded that XRD-DIC provides a reliable and robust method for strain evaluation from 2D powder diffraction data. The XRD-DIC approach simplifies the analysis process by skipping 2D to 1D conversion, and opens new possibilities for robust 2D powder diffraction data analysis for full in-plane strain evaluation. PMID:29543728

  1. A protocol for searching the most probable phase-retrieved maps in coherent X-ray diffraction imaging by exploiting the relationship between convergence of the retrieved phase and success of calculation.

    PubMed

    Sekiguchi, Yuki; Hashimoto, Saki; Kobayashi, Amane; Oroguchi, Tomotaka; Nakasako, Masayoshi

    2017-09-01

    Coherent X-ray diffraction imaging (CXDI) is a technique for visualizing the structures of non-crystalline particles with size in the submicrometer to micrometer range in material sciences and biology. In the structural analysis of CXDI, the electron density map of a specimen particle projected along the direction of the incident X-rays can be reconstructed only from the diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction, relying entirely on the computational procedure, sometimes fails because diffraction patterns miss the data in small-angle regions owing to the beam stop and saturation of the detector pixels, and are modified by Poisson noise in X-ray detection. To date, X-ray free-electron lasers have allowed us to collect a large number of diffraction patterns within a short period of time. Therefore, the reconstruction of correct electron density maps is the bottleneck for efficiently conducting structure analyses of non-crystalline particles. To automatically address the correctness of retrieved electron density maps, a data analysis protocol to extract the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a single diffraction pattern is proposed. Through monitoring the variations of the phase values during PR calculations, the tendency for the PR calculations to succeed when the retrieved phase sets converged on a certain value was found. On the other hand, if the phase set was in persistent variation, the PR calculation tended to fail to yield the correct electron density map. To quantify this tendency, here a figure of merit for the variation of the phase values during PR calculation is introduced. In addition, a PR protocol to evaluate the similarity between a map of the highest figure of merit and other independently reconstructed maps is proposed. The protocol is implemented and practically examined in the structure analyses for diffraction patterns from aggregates of gold colloidal particles. Furthermore, the feasibility of the protocol in the structure analysis of organelles from biological cells is examined.

  2. Solid-State Spun Fibers from 1 mm Long Carbon Nanotube Forests Synthesized by Water-Assisted Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Zhang, Shanju; Zhu, Lingbo; Minus, Marilyn L.; Chae, han Gi; Jagannathan, Sudhakar; Wong, Ching-Ping; Kowalik, Janusz; Roberson, Luke B.; Kumar, Satish

    2007-01-01

    In this work, we report continuous carbon nanotube fibers dry-drawn directly from water-assisted CVD grown forests with millimeter scale length. As-drawn nanotube fibers exist as aerogel and can be transformed into more compact fibers through twisting or densification with a volatile liquid. Nanotube fibers are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman microscopy and wide-angle X-ray diffraction (WAXD). Mechanical behavior and electrical conductivity of the post-treated nanotube fibers are investigated.

  3. Nanoscale interfacial mixing of Au/Bi layers using MeV ion beams

    NASA Astrophysics Data System (ADS)

    Prusty, Sudakshina; Siva, V.; Ojha, S.; Kabiraj, D.; Sahoo, P. K.

    2017-05-01

    We have studied nanoscale mixing of thermally deposited double bilayer films of Au/Bi after irradiating them by 1.5 MeV Au2+ ions. Post irradiation effects on the morphology and elemental identification in these films are studied by Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS). Glancing angle X-ray diffraction (GAXRD) of the samples indicate marginal changes in the irradiated samples due to combined effect of nuclear and electronic energy loss. The interfacial mixing is studied by Rutherford backscattering (RBS).

  4. Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers.

    PubMed

    Neutze, Richard

    2014-07-17

    X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time structure, providing X-ray pulses of a few tens of femtoseconds in duration; and their extreme peak brilliance, delivering approximately 10(12) X-ray photons per pulse and facilitating sub-micrometre focusing, distinguish XFEL sources from synchrotron radiation. In this opinion piece, I argue that these properties of XFEL radiation will facilitate new discoveries in life science. I reason that time-resolved serial femtosecond crystallography and time-resolved wide angle X-ray scattering are promising areas of scientific investigation that will be advanced by XFEL capabilities, allowing new scientific questions to be addressed that are not accessible using established methods at storage ring facilities. These questions include visualizing ultrafast protein structural dynamics on the femtosecond to picosecond time-scale, as well as time-resolved diffraction studies of non-cyclic reactions. I argue that these emerging opportunities will stimulate a renaissance of interest in time-resolved structural biochemistry.

  5. X-ray diffraction and infrared spectroscopy studies of Ba(Fe1/2Nb1/2)O3-(Na1/2Bi1/2)TiO3 ceramics

    NASA Astrophysics Data System (ADS)

    Chandra, K. P.; Yadav, Anjana; Prasad, K.

    2018-05-01

    Ceramics (1-x)Ba(Fe1/2Nb1/2)O3-x(Na1/2Bi1/2)TiO3; 0≤x≤1.0 were prepared by conventional ceramic synthesis technique. Rietveld refinements of X-ray diffraction data of these ceramics were carried out using FullProf software and determined their crystal symmetry, space group and unit cell dimensions. Rietveld refinement revealed that Ba(Fe1/2Nb1/2)O3 has cubic structure with space group Pm 3 ¯ m and Na1/2Bi1/2)TiO3 has rhombohedral structure with space group R3c. Addition of (Na1/2Bi1/2)TiO3 to Ba(Fe1/2Nb1/2)O3 resulted in the change of unit cell structure from cubic to tetragonal (P4/mmm) for x = 0.75 and the X-Ray diffraction peaks slightly shift towards higher Bragg's angle, suggesting slight decrease in unit cell volume. SEM studies were carried out in order to access the quality of the prepared ceramics which showed a change in grain shapes with the increase of (Na1/2Bi1/2)TiO3 content. FTIR spectra confirmed the formation of perovskite type solid solutions.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenjie; Zhang, Honghu; Feng, Shuren

    Surface-sensitive X-ray scattering and spectroscopy techniques reveal significant adsorption of iron ions and iron-hydroxide (Fe(III)) complexes to a charge-neutral zwitterionic template of phosphatidylcholine (PC). The PC template is formed by a Langmuir monolayer of dipalmitoyl-PC (DPPC) that is spread on the surface of 2 to 40 μM FeCl 3 solutions at physiological levels of KCl (100 mM). At 40 μM of Fe(III) as many as ~3 iron atoms are associated with each PC group. Grazing incidence X-ray diffraction measurements indicate a significant disruption in the in-plane ordering of DPPC molecules upon iron adsorption. The binding of iron-hydroxide complexes to amore » neutral PC surface is yet another example of nonelectrostatic, presumably covalent bonding to a charge-neutral organic template. Furthermore, the strong binding and the disruption of in-plane lipid structure has biological implications on the integrity of PC-derived lipid membranes, including those based on sphingomyelin.« less

  7. Chemical lift-off and direct wafer bonding of GaN/InGaN P-I-N structures grown on ZnO

    NASA Astrophysics Data System (ADS)

    Pantzas, K.; Rogers, D. J.; Bove, P.; Sandana, V. E.; Teherani, F. H.; El Gmili, Y.; Molinari, M.; Patriarche, G.; Largeau, L.; Mauguin, O.; Suresh, S.; Voss, P. L.; Razeghi, M.; Ougazzaden, A.

    2016-02-01

    p-GaN/i-InGaN/n-GaN (PIN) structures were grown epitaxially on ZnO-buffered c-sapphire substrates by metal organic vapor phase epitaxy using the industry standard ammonia precursor for nitrogen. Scanning electron microscopy revealed continuous layers with a smooth interface between GaN and ZnO and no evidence of ZnO back-etching. Energy Dispersive X-ray Spectroscopy revealed a peak indium content of just under 5 at% in the active layers. The PIN structure was lifted off the sapphire by selectively etching away the ZnO buffer in an acid and then direct bonded onto a glass substrate. Detailed high resolution transmission electron microscoy and grazing incidence X-ray diffraction studies revealed that the structural quality of the PIN structures was preserved during the transfer process.

  8. Structural Properties Characterized by the Film Thickness and Annealing Temperature for La2O3 Films Grown by Atomic Layer Deposition.

    PubMed

    Wang, Xing; Liu, Hongxia; Zhao, Lu; Fei, Chenxi; Feng, Xingyao; Chen, Shupeng; Wang, Yongte

    2017-12-01

    La 2 O 3 films were grown on Si substrates by atomic layer deposition technique with different thickness. Crystallization characteristics of the La 2 O 3 films were analyzed by grazing incidence X-ray diffraction after post-deposition rapid thermal annealing treatments at several annealing temperatures. It was found that the crystallization behaviors of the La 2 O 3 films are affected by the film thickness and annealing temperatures as a relationship with the diffusion of Si substrate. Compared with the amorphous La 2 O 3 films, the crystallized films were observed to be more unstable due to the hygroscopicity of La 2 O 3 . Besides, the impacts of crystallization characteristics on the bandgap and refractive index of the La 2 O 3 films were also investigated by X-ray photoelectron spectroscopy and spectroscopic ellipsometry, respectively.

  9. Modification of Salmonella Lipopolysaccharides Prevents the Outer Membrane Penetration of Novobiocin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobre, Thatyane M.; Martynowycz, Michael W.; Andreev, Konstantin

    Small hydrophilic antibiotics traverse the outer membrane of Gram-negative bacteria through porin channels. Large lipophilic agents traverse the outer membrane through its bilayer, containing a majority of lipopolysaccharides in its outer leaflet. Genes controlled by the two-component regulatory system PhoPQ modify lipopolysaccharides. We isolate lipopolysaccharides from isogenic mutants of Salmonella sp., one lacking the modification, the other fully modified. These lipopolysaccharides were reconstituted asmonolayers at the air-water interface, and their properties, aswell as their interaction with a large lipophilic drug, novobiocin, was studied. X-ray reflectivity showed that the drug penetrated the monolayer of the unmodified lipopolysaccharides reaching the hydrophobic region,butwasmore » prevented fromthis penetration intothemodified lipopolysaccharides.Results correlatewith behavior of bacterial cells, which become resistant to antibiotics after PhoPQ-regulated modifications. Grazing incidence x-ray diffraction showed that novobiocin produced a striking increase in crystalline coherence length, and the size of the near-crystalline domains.« less

  10. Self-buckled effect of cubic Cu3N film: Surface stoichiometry

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Arun Kumar; Roy, Avishek; Das, Sadhan Chandra; Wulff, Harm; Hippler, Rainer; Majumdar, Abhijit

    2018-05-01

    We report the surface stoichiometry of cubic Cu3N films as function of nitrogen concentration (N/Cu). The film is deposited at 1Pa showing self-buckled (surface peels off) effect as it is exposed to ambient air at atmospheric pressure whereas at 5 Pa, the film shows no such effect. The spectroscopic (X-ray photoelectron spectroscopy (XPS)) analysis suggests that the presence of nitride layer is not the prime cause but the surface oxidation playing a major role for the self-buckling effect. Grazing incidence X-ray diffraction (GIXRD) confirms the formation of a crystalline Cu3N phase of the film. Atomic force microscopic (AFM) study reveals that the 1Pa film shows a lower roughness as compared to 5 Pa films and furthermore, Fast Fourier Transform (FFT) analysis shows a fourfold symmetric structure (both modes of pattern-orientation) in both the deposited films.

  11. Effect of calcium chloride solution immersion on surface hardness of restorative glass ionomer cements.

    PubMed

    Shiozawa, Maho; Takahashi, Hidekazu; Iwasaki, Naohiko; Uo, Motohiro

    2013-01-01

    The objective of this study was to evaluate the effect of the concentration of calcium chloride (CaCl2) solution on the surface hardness of restorative glass ionomer cements (GICs). Two high-viscosity GICs, Fuji IX GP and GlasIonomer FX-II, were immersed in several concentrations of CaCl2 solution for 1 day and 1 week. The immersed specimen surfaces were evaluated using microhardness testing, grazing incidence X-ray diffraction, and energy-dispersive X-ray spectroscopy. Immersion in a higher concentration of CaCl2 solution produced a greater increase in the surface hardness. No crystalline substance was observed on the immersed surface. Calcium ions were selectively absorbed in the matrix of the GIC surface after immersion. They reacted with the non-reacted carboxylic acid groups remaining in the cement matrix. These reactions were considered to cause an increase in the surface hardness of the GICs.

  12. Pulsed laser deposition for the synthesis of monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Mohammed, A.; Nakamura, H.; Wochner, P.; Ibrahimkutty, S.; Schulz, A.; Müller, K.; Starke, U.; Stuhlhofer, B.; Cristiani, G.; Logvenov, G.; Takagi, H.

    2017-08-01

    Atomically thin films of WSe2 from one monolayer up to 8 layers were deposited on an Al2O3 r-cut ( 1 1 ¯ 02 ) substrate using a hybrid-Pulsed Laser Deposition (PLD) system where a laser ablation of pure W is combined with a flux of Se. Specular X-ray reflectivities of films were analysed and were consistent with the expected thickness. Raman measurement and atomic force microscopy confirmed the formation of a WSe2 monolayer and its spatial homogeneity over the substrate. Grazing-incidence X-ray diffraction uncovered an in-plane texture in which WSe2 [ 10 1 ¯ 0 ] preferentially aligned with Al2O3 [ 11 2 ¯ 0 ]. These results present a potential to create 2D transition metal dichalcogenides by PLD, where the growth kinetics can be steered in contrast to common growth techniques like chemical vapor deposition and molecular beam epitaxy.

  13. Unusual Thermal Stability of High-Entropy Alloy Amorphous Structure

    DTIC Science & Technology

    2012-06-20

    incident angle X - ray diffractometer (GIAXRD, RIGAKU D/MAX2500) with Cu Kα radiation and at the incident angle of 1°. The surface morphology and...microanalyzer (EPMA, JEOL JAX-8800). The crystallographic structures of as-deposited and annealed metallic films were characterized utilizing a glancing ...field image and selected-area- diffraction (SAD) patterns of (a) 800 °C-, (b) 850 °C- and (c) 900 °C-annealed alloy thin films, respectively. Both

  14. Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) Slit-Jaw Imaging System

    NASA Astrophysics Data System (ADS)

    Wilkerson, P.; Champey, P. R.; Winebarger, A. R.; Kobayashi, K.; Savage, S. L.

    2017-12-01

    The Marshall Grazing Incidence X-ray Spectrometer is a NASA sounding rocket payload providing a 0.6 - 2.5 nm spectrum with unprecedented spatial and spectral resolution. The instrument is comprised of a novel optical design, featuring a Wolter1 grazing incidence telescope, which produces a focused solar image on a slit plate, an identical pair of stigmatic optics, a planar diffraction grating and a low-noise detector. When MaGIXS flies on a suborbital launch in 2019, a slit-jaw camera system will reimage the focal plane of the telescope providing a reference for pointing the telescope on the solar disk and aligning the data to supporting observations from satellites and other rockets. The telescope focuses the X-ray and EUV image of the sun onto a plate covered with a phosphor coating that absorbs EUV photons, which then fluoresces in visible light. This 10-week REU project was aimed at optimizing an off-axis mounted camera with 600-line resolution NTSC video for extremely low light imaging of the slit plate. Radiometric calculations indicate an intensity of less than 1 lux at the slit jaw plane, which set the requirement for camera sensitivity. We selected a Watec 910DB EIA charge-coupled device (CCD) monochrome camera, which has a manufacturer quoted sensitivity of 0.0001 lux at F1.2. A high magnification and low distortion lens was then identified to image the slit jaw plane from a distance of approximately 10 cm. With the selected CCD camera, tests show that at extreme low-light levels, we achieve a higher resolution than expected, with only a moderate drop in frame rate. Based on sounding rocket flight heritage, the launch vehicle attitude control system is known to stabilize the instrument pointing such that jitter does not degrade video quality for context imaging. Future steps towards implementation of the imaging system will include ruggedizing the flight camera housing and mounting the selected camera and lens combination to the instrument structure.

  15. Portable X-ray diffractometer equipped with XRF for archaeometry

    NASA Astrophysics Data System (ADS)

    Uda, M.; Ishizaki, A.; Satoh, R.; Okada, K.; Nakajima, Y.; Yamashita, D.; Ohashi, K.; Sakuraba, Y.; Shimono, A.; Kojima, D.

    2005-09-01

    A portable X-ray diffractometer equipped with an X-ray fluorescence spectrometer was improved so as to get a diffraction pattern and a fluorescence spectrum simultaneously in air from one and the same small area on a specimen. Here, diffraction experiments were performed in two modes, i.e. an angle rotation mode and an energy dispersive mode. In the latter a diffraction pattern and a fluorescence spectrum were simultaneously recorded in a short time, 100 s or less, on one display. The diffractometer was tested in the field to confirm its performance. Targets chosen for this purpose were a bronze mirror from the Eastern Han Dynasty (25-220), and a stupa and its pedestal which are part of the painted statue of "Tamonten holding a stupa" from the Heian Period (794-1192), enshrined in the Engyouji temple founded in 996. The bronze mirror was identified as a product of the Han Dynasty from its chemical composition and the existence of the δ phase in the Cu-Sn alloy. The stupa and its pedestal were decorated with gold powder and gold leaf, respectively. From the XRF data of the pedestal, the underlying layer of gold leaf seems to have been painted with emerald green.

  16. In Situ Ramp Anneal X-ray Diffraction Study of Atomic Layer Deposited Ultrathin TaN and Ta 1-x Al x N y Films for Cu Diffusion Barrier Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consiglio, S.; Dey, S.; Yu, K.

    2016-01-01

    Ultrathin TaN and Ta 1-xAl xN y films with x = 0.21 to 0.88 were deposited by atomic layer deposition (ALD) and evaluated for Cu diffusion barrier effectiveness compared to physical vapor deposition (PVD) grown TaN. Cu diffusion barrier effectiveness was investigated using in-situ ramp anneal synchrotron X-ray diffraction (XRD) on Cu/1.8 nm barrier/Si stacks. A Kissinger-like analysis was used to assess the kinetics of Cu 3Si formation and determine the effective activation energy (E a) for Cu silicidation. Compared to the stack with a PVD TaN barrier, the stacks with the ALD films exhibited a higher crystallization temperature (Tmore » c) for Cu silicidation. The Ea values of Cu 3Si formation for stacks with the ALD films were close to the reported value for grain boundary diffusion of Cu whereas the Ea of Cu 3Si formation for the stack with PVD TaN is closer to the reported value for lattice diffusion. For 3 nm films, grazing incidence in-plane XRD showed evidence of nanocrystallites in an amorphous matrix with broad peaks corresponding to high density cubic phase for the ALD grown films and lower density hexagonal phase for the PVD grown film further elucidating the difference in initial failure mechanisms due to differences in barrier crystallinity and associated phase.« less

  17. Differential Deposition for Surface Figure Corrections in Grazing Incidence X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Kilaru, Kiranmayee; Atkins, Carolyn; Gubarev, Mikhail V.; Broadway, David M.

    2015-01-01

    Differential deposition corrects the low- and mid- spatial-frequency deviations in the axial figure of Wolter-type grazing incidence X-ray optics. Figure deviations is one of the major contributors to the achievable angular resolution. Minimizing figure errors can significantly improve the imaging quality of X-ray optics. Material of varying thickness is selectively deposited, using DC magnetron sputtering, along the length of optic to minimize figure deviations. Custom vacuum chambers are built that can incorporate full-shell and segmented Xray optics. Metrology data of preliminary corrections on a single meridian of full-shell x-ray optics show an improvement of mid-spatial frequencies from 6.7 to 1.8 arc secs HPD. Efforts are in progress to correct a full-shell and segmented optics and to verify angular-resolution improvement with X-ray testing.

  18. Correcting intensity loss errors in the absence of texture-free reference samples during pole figure measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Ahmed A., E-mail: asaleh@uow.edu.au

    Even with the use of X-ray polycapillary lenses, sample tilting during pole figure measurement results in a decrease in the recorded X-ray intensity. The magnitude of this error is affected by the sample size and/or the finite detector size. These errors can be typically corrected by measuring the intensity loss as a function of the tilt angle using a texture-free reference sample (ideally made of the same alloy as the investigated material). Since texture-free reference samples are not readily available for all alloys, the present study employs an empirical procedure to estimate the correction curve for a particular experimental configuration.more » It involves the use of real texture-free reference samples that pre-exist in any X-ray diffraction laboratory to first establish the empirical correlations between X-ray intensity, sample tilt and their Bragg angles and thereafter generate correction curves for any Bragg angle. It will be shown that the empirically corrected textures are in very good agreement with the experimentally corrected ones. - Highlights: •Sample tilting during X-ray pole figure measurement leads to intensity loss errors. •Texture-free reference samples are typically used to correct the pole figures. •An empirical correction procedure is proposed in the absence of reference samples. •The procedure relies on reference samples that pre-exist in any texture laboratory. •Experimentally and empirically corrected textures are in very good agreement.« less

  19. Optimizing X-Ray Optical Prescriptions for Wide-Field Applications

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2010-01-01

    X-ray telescopes with spatial resolution optimized over the field of view (FOV) are of special interest for missions, such as WFXT, focused on moderately deep and deep surveys of the x-ray sky, and for solar x-ray observations. Here we report on the present status of an on-going study of the properties of Wolter I and polynominal grazing incidence designs with a view to gain a deeper insight into their properties and simply the design process. With these goals in mind, we present some results in the complementary topics of (1) properties of Wolter I x-ray optics and polynominal x-ray optic ray tracing. Of crucial importance for the design of wide-field x-ray optics is the optimization criteria. Here we have adopted the minimization of a merit function, M, which measures the spatial resolution averaged over the FOV: M= ((integral of d phi) between the limits of 0 and 2 pi) (integral of d theta theta w(theta) sigma square (theta,phi) between the limits of 0 and theta(sub FOV)) (integral of d phi between the limits of 0 and phi/4) (Integral of d theta theta w(theta) between the limits of 0 and theta(sub FOV) where w(theta(sub 1) is a weighting function and Merit function: sigma-square (theta, phi) = summation of (x,y,z) [-<(x,y,z)> (exp 2)] is the spatial variance for a point source on the sky at polar and azimuthal off-axis angles (theta,phi).

  20. Evaluation of the molecular lipid organization in millimeter-sized stratum corneum by synchrotron X-ray diffraction.

    PubMed

    Suzuki, T; Uchino, T; Hatta, I; Miyazaki, Y; Kato, S; Sasaki, K; Kagawa, Y

    2018-04-29

    The aim of this study was to investigate whether the lamellar and lateral structure of intercellular lipid of stratum corneum (SC) can be evaluated from millimeter-sized SC (MSC) by X-ray diffraction. A 12 mm × 12 mm SC sheet from hairless mouse was divided into 16 pieces measuring 3 mm × 3 mm square. From another sheet, 4 pieces of ultramillimeter-sized SC (USC:1.5 mm × 1.5 mm square) were prepared. Small and wide-angle X-ray diffraction (SAXD and WAXD) measurements were performed on each piece. For MSC and USC, changes in the lamellar and lateral structure after the application of d-limonene were measured. The intensity of SAXD peaks due to the lamellar phase of long periodicity phase (LPP) and WAXD peaks due to the lateral hydrocarbon chain-packing structures varied in MSC and USC pieces, although over the 12 mm × 12 mm SC sheet. These results indicated that the intercellular lipid components and their proportion appeared nearly uniform. Application of d-limonene on MSC and USC piece with strong peaks in SAXD and the WAXD resulted in the disappearance of peaks due to the lamellar phase of LPP and decrease in peak intensity for the lateral hydrocarbon chain-packing structures. These changes are consistent with normal-sized sample results. We found that the selection of a sample piece with strong diffraction peaks due to the lamellar and lateral structure enabled evaluation of the SC structure in small-sized samples by X-ray diffraction. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Quick measurement of crystal truncation rod profiles in simultaneous multi-wavelength dispersive mode

    NASA Astrophysics Data System (ADS)

    Matsushita, T.; Takahashi, T.; Shirasawa, T.; Arakawa, E.; Toyokawa, H.; Tajiri, H.

    2011-11-01

    To conduct time-resolved measurements in the wide momentum transfer (q = 4π sinθ/λ, θ: the glancing angle of the x-ray beam, λ: x-ray wavelength) range of interest, we developed a method that can simultaneously measure the whole profile of x-ray diffraction and crystal truncation rod scattering of interest with no need of rotation of the specimen, detector, and monochromator crystal during the measurement. With a curved crystal polychromator (Si 111 diffraction), a horizontally convergent x-ray beam having a one-to-one correlation between wavelength (energy: 16.24-23.0 keV) and direction is produced. The convergent x-ray beam components of different wavelengths are incident on the specimen in a geometry where θ is the same for all the x-ray components and are diffracted within corresponding vertical scattering planes by a specimen ([GaAs(12ML)/AlAs(8 ML)]50 on GaAs(001) substrate) placed at the focal point. Although θ is the same for all the directions, q continuously varies because λ changes as a function of direction. The normalized horizontal intensity distribution across the beam, as measured using a two-dimensional pixel array detector downstream of the specimen, represents the reflectivity curve profile both near to and far from the Bragg point. As for the crystal truncation rod scattering around the 002 reflection, the diffraction profile from the Bragg peak down to reflectivity of 1.0 × 10-9 was measured with a sufficient data collection time (1000-2000 s). With data collection times of 100, 10, 1.0, and 0.1 s, profiles down to a reflectivity of ˜6 × 10-9, ˜2 × 10-8, ˜8 × 10-8, and ˜8 × 10-7 were measured, respectively. To demonstrate the time-resolving capability of the system, reflectivity curves were measured with time resolutions of 1.0 s while rotating the specimen. We have also measured the diffraction profile around the 113 reflection in the non-specular reflection geometry.

  2. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting.

    PubMed

    Perez, Louis A; Chou, Kang Wei; Love, John A; van der Poll, Thomas S; Smilgies, Detlef-M; Nguyen, Thuc-Quyen; Kramer, Edward J; Amassian, Aram; Bazan, Guillermo C

    2013-11-26

    Solvent additive processing can lead to drastic improvements in the power conversion efficiency (PCE) in solution processable small molecule (SPSM) bulk heterojunction solar cells. In situ grazing incidence wide-angle X-ray scattering is used to investigate the kinetics of crystallite formation during and shortly after spin casting. The additive is shown to have a complex effect on structural evolution invoking polymorphism and enhanced crystalline quality of the donor SPSM. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Manufacturing and characterization of Ni-free N-containing ODS austenitic alloy

    NASA Astrophysics Data System (ADS)

    Mori, A.; Mamiya, H.; Ohnuma, M.; Ilavsky, J.; Ohishi, K.; Woźniak, Jarosław; Olszyna, A.; Watanabe, N.; Suzuki, J.; Kitazawa, H.; Lewandowska, M.

    2018-04-01

    Ni-free N-containing oxide dispersion strengthened (ODS) austenitic alloys were manufactured by mechanical alloying (MA) followed by spark plasma sintering (SPS). The phase evolutions during milling under a nitrogen atmosphere and after sintering were studied by X-ray diffraction (XRD). Transmission electron microcopy (TEM) and alloy contrast variation analysis (ACV), including small-angle neutron scattering (SANS) and ultra-small-angle X-ray scattering (USAXS), revealed the existence of nanoparticles with a diameter of 3-51 nm for the samples sintered at 950 °C. Sintering at 1000 °C for 5 and 15 min caused slight growth and a significant coarsening of the nanoparticles, up to 70 nm and 128 nm, respectively. The ACV analysis indicated the existence of two populations of Y2O3, ε-martensite and MnO. The dispersive X-ray spectrometry (EDS) confirmed two kinds of nanoparticles, Y2O3 and MnO. The material was characterized by superior micro-hardness, of above 500 HV0.1.

  4. X-ray Diffraction Crystal Calibration and Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael J. Haugh; Richard Stewart; Nathan Kugland

    2009-06-05

    National Security Technologies’ X-ray Laboratory is comprised of a multi-anode Manson type source and a Henke type source that incorporates a dual goniometer and XYZ translation stage. The first goniometer is used to isolate a particular spectral band. The Manson operates up to 10 kV and the Henke up to 20 kV. The Henke rotation stages and translation stages are automated. Procedures have been developed to characterize and calibrate various NIF diagnostics and their components. The diagnostics include X-ray cameras, gated imagers, streak cameras, and other X-ray imaging systems. Components that have been analyzed include filters, filter arrays, grazing incidencemore » mirrors, and various crystals, both flat and curved. Recent efforts on the Henke system are aimed at characterizing and calibrating imaging crystals and curved crystals used as the major component of an X-ray spectrometer. The presentation will concentrate on these results. The work has been done at energies ranging from 3 keV to 16 keV. The major goal was to evaluate the performance quality of the crystal for its intended application. For the imaging crystals we measured the laser beam reflection offset from the X-ray beam and the reflectivity curves. For the curved spectrometer crystal, which was a natural crystal, resolving power was critical. It was first necessary to find sources of crystals that had sufficiently narrow reflectivity curves. It was then necessary to determine which crystals retained their resolving power after being thinned and glued to a curved substrate.« less

  5. Refractive optics to compensate x-ray mirror shape-errors

    NASA Astrophysics Data System (ADS)

    Laundy, David; Sawhney, Kawal; Dhamgaye, Vishal; Pape, Ian

    2017-08-01

    Elliptically profiled mirrors operating at glancing angle are frequently used at X-ray synchrotron sources to focus X-rays into sub-micrometer sized spots. Mirror figure error, defined as the height difference function between the actual mirror surface and the ideal elliptical profile, causes a perturbation of the X-ray wavefront for X- rays reflecting from the mirror. This perturbation, when propagated to the focal plane results in an increase in the size of the focused beam. At Diamond Light Source we are developing refractive optics that can be used to locally cancel out the wavefront distortion caused by figure error from nano-focusing elliptical mirrors. These optics could be used to correct existing optical components on synchrotron radiation beamlines in order to give focused X-ray beam sizes approaching the theoretical diffraction limit. We present our latest results showing measurement of the X-ray wavefront error after reflection from X-ray mirrors and the translation of the measured wavefront into a design for refractive optical elements for correction of the X-ray wavefront. We show measurement of the focused beam with and without the corrective optics inserted showing reduction in the size of the focus resulting from the correction to the wavefront.

  6. Prototyping iridium coated mirrors for x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Emmerich, Florian; Stehlíková, Veronika; Inneman, Adolf

    2017-05-01

    X-ray astronomy uses space-based telescopes to overcome the disturbing absorption of the Earth's atmosphere. The telescope mirrors are operating at grazing incidence angles and are coated with thin metal films of high-Z materials to get sufficient reflectivity for the high-energy radiation to be observed. In addition the optical payload needs to be light-weighted for launcher mass constrains. Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. The X-ray telescopes currently developed within this Bavarian- Czech project are of Lobster eye type optical design. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The deposition of the iridium films is based on a magnetron sputtering process. Sputtering with different parameters, especially by variation of the argon gas pressure, leads to iridium films with different properties. In addition to investigations of the uncoated mirror substrates the achieved surface roughness has been studied. Occasional delamination of the iridium films due to high stress levels is prevented by chromium sublayers. Thereby the sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.

  7. Simulation of the Simbol-X Telescope

    NASA Astrophysics Data System (ADS)

    Chauvin, M.; Roques, J. P.

    2009-05-01

    We have developed a simulation tool for a Wolter I telescope operating in formation flight. The aim is to understand and predict the behavior of the Simbol-X instrument. As the geometry is variable, formation flight introduces new challenges and complex implications. Our code, based on Monte Carlo ray tracing, computes the full photon trajectories up to the detector plane, along with the relative drifts of the two spacecrafts. It takes into account angle and energy dependent interactions of the photons with the mirrors and applies to any grazing incidence telescope. The resulting images of simulated sources from 0.1 keV to 100 keV allow us to optimize the configuration of the instrument and to assess the performance of the Simbol-X telescope.

  8. Effect of surface roughness and subsurface damage on grazing-incidence x-ray scattering and specular reflectance.

    PubMed

    Lodha, G S; Yamashita, K; Kunieda, H; Tawara, Y; Yu, J; Namba, Y; Bennett, J M

    1998-08-01

    Grazing-incidence specular reflectance and near-specular scattering were measured at Al-K(alpha) (1.486-keV, 8.34-?) radiation on uncoated dielectric substrates whose surface topography had been measured with a scanning probe microscope and a mechanical profiler. Grazing-incidence specular reflectance was also measured on selected substrates at the Cu-K(alpha) (8.047-keV, 1.54-?) wavelength. Substrates included superpolished and conventionally polished fused silica; SiO(2) wafers; superpolished and precision-ground Zerodur; conventionally polished, float-polished, and precision-ground BK-7 glass; and superpolished and precision-ground silicon carbide. Roughnesses derived from x-ray specular reflectance and scattering measurements were in good agreement with topographic roughness values measured with a scanning probe microscope (atomic force microscope) and a mechanical profiler that included similar ranges of surface spatial wavelengths. The specular reflectance was also found to be sensitive to the density of polished surface layers and subsurface damage down to the penetration depth of the x rays. Density gradients and subsurface damage were found in the superpolished fused-silica and precision-ground Zerodur samples. These results suggest that one can nondestructively evaluate subsurface damage in transparent materials using grazing-incidence x-ray specular reflectance in the 1.5-8-keV range.

  9. Electron paramagnetic resonance, scanning electron microscopy with energy dispersion X-ray spectrometry, X-ray powder diffraction, and NMR characterization of iron-rich fired clays.

    PubMed

    Presciutti, Federica; Capitani, Donatella; Sgamellotti, Antonio; Brunetti, Brunetto Giovanni; Costantino, Ferdinando; Viel, Stéphane; Segre, Annalaura

    2005-12-01

    The aim of this study is to clarify the structure of an iron-rich clay and the structural changes involved in the firing process as a preliminary step to get information on ancient ceramic technology. To this purpose, illite-rich clay samples fired at different temperatures were characterized using a multitechnique approach, i.e., by electron paramagnetic resonance, scanning electron microscopy with electron dispersion X-ray spectrometry, X-ray powder diffraction, magic angle spinning and multiple quantum magic angle spinning NMR. During firing, four main reaction processes occur: dehydration, dehydroxylation, structural breakdown, and recrystallization. When the results are combined from all characterization methods, the following conclusions could be obtained. Interlayer H2O is located close to aluminum in octahedral sites and is driven off at temperatures lower than 600 degrees C. Between 600 and 700 degrees C dehydroxylation occurs whereas, between 800 and 900 degrees C, the aluminum in octahedral sites disappears, due to the breakdown of the illite structure, and all iron present is oxidized to Fe3+. In samples fired at 1000 and 1100 degrees C iron clustering was observed as well as large single crystals of iron with the occurrence of ferro- or ferrimagnetic effects. Below 900 degrees C the aluminum in octahedral sites presents a continuous distribution of chemical shift, suggesting the presence of slightly distorted sites. Finally, over the whole temperature range, the presence of at least two tetrahedral aluminum sites was revealed, characterized by different values of the quadrupolar coupling constant.

  10. X-ray characterization of Ge dots epitaxially grown on nanostructured Si islands on silicon-on-insulator substrates

    PubMed Central

    Zaumseil, Peter; Kozlowski, Grzegorz; Yamamoto, Yuji; Schubert, Markus Andreas; Schroeder, Thomas

    2013-01-01

    On the way to integrate lattice mismatched semiconductors on Si(001), the Ge/Si heterosystem was used as a case study for the concept of compliant substrate effects that offer the vision to be able to integrate defect-free alternative semiconductor structures on Si. Ge nanoclusters were selectively grown by chemical vapour deposition on Si nano-islands on silicon-on-insulator (SOI) substrates. The strain states of Ge clusters and Si islands were measured by grazing-incidence diffraction using a laboratory-based X-ray diffraction technique. A tensile strain of up to 0.5% was detected in the Si islands after direct Ge deposition. Using a thin (∼10 nm) SiGe buffer layer between Si and Ge the tensile strain increases to 1.8%. Transmission electron microscopy studies confirm the absence of a regular grid of misfit dislocations in such structures. This clear experimental evidence for the compliance of Si nano-islands on SOI substrates opens a new integration concept that is not only limited to Ge but also extendable to semiconductors like III–V and II–VI materials. PMID:24046490

  11. Diffraction properties of multilayer Laue lenses with an aperture of 102 µm and WSi 2/Al bilayers

    DOE PAGES

    Kubec, Adam; Kujala, Naresh; Conley, Raymond; ...

    2015-01-01

    Here, we report on the characterization of a multilayer Laue lens (MLL) with large acceptance, made of a novel WSi2/Al bilayer system. Fabrication of multilayers with large deposition thickness is required to obtain MLL structures with sufficient apertures capable of accepting the full lateral coherence length of x-rays at typical nanofocusing beamlines. To date, the total deposition thickness has been limited by stress-buildup in the multilayer. We were able to grow WSi2/Al with low grown-in stress, and asses the degree of stress reduction. X-ray diffraction experiments were conducted at beamline 1-BM at the Advanced Photon Source. We used monochromatic x-raysmore » with a photon energy of 12 keV and a bandwidth of ΔE/E=5.4 ∙ 10 -4. The MLL was grown with parallel layer interfaces, and was designed to have a large focal length of 9.6 mm. The mounted lens was 2.7 mm in width. We found and quantified kinks and bending of sections of the MLL. Sections with bending were found to partly have a systematic progression in the interface angles. We also observed kinking in some, but not all, areas. The measurements are compared with dynamic diffraction calculations made with Coupled Wave Theory. Finally our data are plotted showing the diffraction efficiency as a function of the external tilting angle of the entire mounted lens. This way of plotting the data was found to provide an overview into the diffraction properties of the whole lens, and enabled the following layer tilt analyses.« less

  12. Local texture and grain boundary misorientations in high H(C) oxide superconductors

    NASA Astrophysics Data System (ADS)

    Kroeger, D. M.; Goyal, A.; Specht, E. D.; Tkaczyk, J. E.; Sutliff, J.; Deluca, J. A.; Wang, Z. L.; Riley, G. N., Jr.

    The orientations of hundreds of contiguous grains in high J(C) TlBa2Ca2Cu3O(x) deposits and (Bi, Pb)2 Sr2Ca2Cu3O(y) powder-in-tube tapes have been determined from electron back scatter diffraction patterns (EBSP). The misorientation angles and axes of rotation (angle/axis pairs) for grain boundaries connecting these grains were calculated. For both materials the population of low angle boundaries was found to be much larger than expected from calculations based on the macroscopic texture. The TlBa2Ca2Cu3O(x) deposits exhibit pronounced local texture which has been defined by EBSP and x-ray diffraction. Locally grains show significant in-plane (a-axis) alignment even though macroscopically a-axes are random, indicating the presence of colonies of grains with similar a-axis orientations. In (Bi, Pb)2 Sr2Ca2Cu3O(x) tapes no local texture was observed. In both materials the existence of connected networks of small angle grain boundaries can be inferred. Coincident site lattice (CSL) grain boundaries are also present in higher than expected numbers. Grain boundary energy thus appears to play a significant role in enhancing the population of potentially strongly-linked boundaries. We propose that long range strongly-linked conduction occurs through a percolative network small angle (and perhaps CSL) grain boundaries.

  13. Wave-optical assessment of alignment tolerances in nano-focusing with ellipsoidal mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yumoto, Hirokatsu, E-mail: yumoto@spring8.or.jp; Koyama, Takahisa; Matsuyama, Satoshi

    2016-01-28

    High-precision ellipsoidal mirrors, which can efficiently focus X-rays to the nanometer dimension with a mirror, have not been realized because of the difficulties in the fabrication process. The purpose of our study was to develop nano-focusing ellipsoidal mirrors in the hard X-ray region. We developed a wave-optical focusing simulator for investigating alignment tolerances in nano-focusing with a designed ellipsoidal mirror, which produce a diffraction-limited focus size of 30 × 35 nm{sup 2} in full width at half maximum at an X-ray energy of 7 keV. The simulator can calculate focusing intensity distributions around the focal point under conditions of misalignment. Themore » wave-optical simulator enabled the calculation of interference intensity distributions, which cannot be predicted by the conventional ray-trace method. The alignment conditions with a focal length error of ≲ ±10 µm, incident angle error of ≲ ±0.5 µrad, and in-plane rotation angle error of ≲ ±0.25 µrad must be satisfied for nano-focusing.« less

  14. Anomalous Thermal Expansion of HoCo0.5Cr0.5O3 Probed by X-ray Synchrotron Powder Diffraction.

    PubMed

    Hreb, Vasyl; Vasylechko, Leonid; Mykhalichko, Vitaliya; Prots, Yurii

    2017-12-01

    Mixed holmium cobaltite-chromite HoCo 0.5 Cr 0.5 O 3 with orthorhombic perovskite structure (structure type GdFeO 3 , space group Pbnm) was obtained by solid state reaction of corresponding oxides in air at 1373 K. Room- and high-temperature structural parameters were derived from high-resolution X-ray synchrotron powder diffraction data collected in situ in the temperature range of 300-1140 K. Analysis of the results obtained revealed anomalous thermal expansion of HoCo 0.5 Cr 0.5 O 3 , which is reflected in a sigmoidal temperature dependence of the unit cell parameters and in abnormal increase of the thermal expansion coefficients with a broad maxima near 900 K. Pronounced anomalies are also observed for interatomic distances and angles within Co/CrO 6 octahedra, tilt angles of octahedra and atomic displacement parameters. The observed anomalies are associated with the changes of spin state of Co 3+ ions and insulator-metal transition occurring in HoCo 0.5 Cr 0.5 O 3 .

  15. Anomalous Thermal Expansion of HoCo0.5Cr0.5O3 Probed by X-ray Synchrotron Powder Diffraction

    NASA Astrophysics Data System (ADS)

    Hreb, Vasyl; Vasylechko, Leonid; Mykhalichko, Vitaliya; Prots, Yurii

    2017-07-01

    Mixed holmium cobaltite-chromite HoCo0.5Cr0.5O3 with orthorhombic perovskite structure (structure type GdFeO3, space group Pbnm) was obtained by solid state reaction of corresponding oxides in air at 1373 K. Room- and high-temperature structural parameters were derived from high-resolution X-ray synchrotron powder diffraction data collected in situ in the temperature range of 300-1140 K. Analysis of the results obtained revealed anomalous thermal expansion of HoCo0.5Cr0.5O3, which is reflected in a sigmoidal temperature dependence of the unit cell parameters and in abnormal increase of the thermal expansion coefficients with a broad maxima near 900 K. Pronounced anomalies are also observed for interatomic distances and angles within Co/CrO6 octahedra, tilt angles of octahedra and atomic displacement parameters. The observed anomalies are associated with the changes of spin state of Co3+ ions and insulator-metal transition occurring in HoCo0.5Cr0.5O3.

  16. Interdiffusion in nanometer-scale multilayers investigated by in situ low-angle x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Hua; Bai, Hai Yang; Zhang, Ming; Zhao, J. H.; Zhang, X. Y.; Wang, W. K.

    1999-04-01

    An in situ low-angle x-ray diffraction technique is used to investigate interdiffusion phenomena in various metal-metal and metal-amorphous Si nanometer-scale compositionally modulated multilayers (ML's). The temperature-dependent interdiffusivities are obtained by accurately monitoring the decay of the first-order modulation peak as a function of annealing time. Activation enthalpies and preexponential factors for the interdiffusion in the Fe-Ti, Ag-Bi, Fe-Mo, Mo-Si, Ni-Si, Nb-Si, and Ag-Si ML's are determined. Activation enthalpies and preexponential factors for the interdiffusion in the ML's are very small compared with that in amorphous alloys and crystalline solids. The relation between the atomic-size difference and interdiffusion in the ML's are investigated. The observed interdiffusion characteristics are compared with that in amorphous alloys and crystalline α-Zr, α-Ti, and Si. The experimental results suggest that a collective atomic-jumping mechanism govern the interdiffusion in the ML's, the collective proposal involving 8-15 atoms moving between extended nonequilibrium defects by thermal activation. The role of the interdiffusion in the solid-state reaction in the ML's is also discussed.

  17. Analysis of energy dispersive x-ray diffraction profiles for material identification, imaging and system control

    NASA Astrophysics Data System (ADS)

    Cook, Emily Jane

    2008-12-01

    This thesis presents the analysis of low angle X-ray scatter measurements taken with an energy dispersive system for substance identification, imaging and system control. Diffraction measurements were made on illicit drugs, which have pseudo- crystalline structures and thus produce diffraction patterns comprising a se ries of sharp peaks. Though the diffraction profiles of each drug are visually characteristic, automated detection systems require a substance identification algorithm, and multivariate analysis was selected as suitable. The software was trained with measured diffraction data from 60 samples covering 7 illicit drugs and 5 common cutting agents, collected with a range of statistical qual ities and used to predict the content of 7 unknown samples. In all cases the constituents were identified correctly and the contents predicted to within 15%. Soft tissues exhibit broad peaks in their diffraction patterns. Diffraction data were collected from formalin fixed breast tissue samples and used to gen erate images. Maximum contrast between healthy and suspicious regions was achieved using momentum transfer windows 1.04-1.10 and 1.84-1.90 nm_1. The resulting images had an average contrast of 24.6% and 38.9% compared to the corresponding transmission X-ray images (18.3%). The data was used to simulate the feedback for an adaptive imaging system and the ratio of the aforementioned momentum transfer regions found to be an excellent pa rameter. Investigation into the effects of formalin fixation on human breast tissue and animal tissue equivalents indicated that fixation in standard 10% buffered formalin does not alter the diffraction profiles of tissue in the mo mentum transfer regions examined, though 100% unbuffered formalin affects the profile of porcine muscle tissue (a substitute for glandular and tumourous tissue), though fat is unaffected.

  18. 1-Pentyl-3-(4-methoxy-1-naphthoyl)indole and 2-(2-methoxy-phenyl)-1-(1-pentyl-1 H-indol-3-yl)-ethanone: X-ray structures and computational studies

    NASA Astrophysics Data System (ADS)

    Nycz, Jacek E.; Malecki, Grzegorz; Zawiazalec, Marcin; Pazdziorek, Tadeusz; Skop, Patrycja

    2010-12-01

    1-Pentyl-3-(4-methoxy-1-naphthoyl)indole (shortly named JWH-081) ( 1) and 2-(2-methoxy-phenyl)-1-(1-pentyl-1 H-indol-3-yl)-ethanone (shortly named JWH-250) ( 2), are examples of cannabinoids which were characterized by FTIR, UV-Vis, multinuclear NMR spectroscopy and single crystal X-ray diffraction method. The geometries of the studied compounds were optimized in singlet states using the density functional theory (DFT) method with B3LYP functional. Electronic spectra were calculated by TDDFT method. In general, the predicted bond lengths and angles are in a good agreement with the values based on the X-ray crystal structure data.

  19. Enhancement of soft X-ray reflectivity and interface stability in nitridated Pd/Y multilayer mirrors.

    PubMed

    Xu, Dechao; Huang, Qiushi; Wang, Yiwen; Li, Pin; Wen, Mingwu; Jonnard, Philippe; Giglia, Angelo; Kozhevnikov, Igor V; Wang, Kun; Zhang, Zhong; Wang, Zhanshan

    2015-12-28

    Pd/Y multilayer mirrors operating in the soft X-ray region are characterized by a high theoretical reflectance, reaching 65% at normal incidence in the 8-12 nm wavelength range. However, a severe intermixing of neighboring Pd and Y layers results in an almost total disappearance of the interfaces inside the multilayer structures fabricated by direct current magnetron sputtering and thus a dramatic reflectivity decrease. Based on grazing incidence X-ray reflectometry and X-ray photoelectron spectroscopy, we demonstrate that the stability of the interfaces in Pd/Y multilayer structures can be essentially improved by adding a small amount of nitrogen (4-8%) to the working gas (Ar). High resolution transmission electron microscopy shows that the interlayer width is only 0.9 nm and 0.6 nm for Y(N)-on-Pd(N) and Pd(N)-on-Y(N) interfaces, respectively. A well-defined crystalline texture of YN (200) is observed on the electron diffraction pattern. As a result, the measured reflectance of the Pd(N)/Y(N) multilayer achieves 30% at λ = 9.3 nm. The peak reflectivity value is limited by the remaining interlayers and the formation of the YN compound inside the yttrium layers, resulting in an increased absorption.

  20. Measuring Three-Dimensional Strain and Structural Defects in a Single InGaAs Nanowire Using Coherent X-ray Multiangle Bragg Projection Ptychography

    DOE PAGES

    Hill, Megan O.; Calvo-Almazan, Irene; Allain, Marc; ...

    2018-01-08

    III - As nanowires are candidates for near-infrared light emitters and detectors that can be directly integrated onto silicon. However, nanoscale to microscale variations in structure, composition, and strain within a given nanowire, as well as variations between nanowires, pose challenges to correlating microstructure with device performance. In this work, we utilize coherent nanofocused X-rays to characterize stacking defects and strain in a single InGaAs nanowire supported on Si. By reconstructing diffraction patterns from the 2110 Bragg peak, we show that the lattice orientation varies along the length of the wire, while the strain field along the cross-section is largelymore » unaffected, leaving the band structure unperturbed. Diffraction patterns from the 0110 Bragg peak are reproducibly reconstructed to create three-dimensional images of stacking defects and associated lattice strains, revealing sharp planar boundaries between different crystal phases of wurtzite (WZ) structure that contribute to charge carrier scattering. Phase retrieval is made possible by developing multiangle Bragg projection ptychography (maBPP) to accommodate coherent nanodiffraction patterns measured at arbitrary overlapping positions at multiple angles about a Bragg peak, eliminating the need for scan registration at different angles. The penetrating nature of X-ray radiation, together with the relaxed constraints of maBPP, will enable the in operando imaging of nanowire devices.« less

  1. Production of thick uniform-coating films containing rectorite on nanofibers through the use of an automated coating machine.

    PubMed

    Wu, Yang; Li, Xueyong; Shi, Xiaowen; Zhan, Yingfei; Tu, Hu; Du, Yumin; Deng, Hongbing; Jiang, Linbin

    2017-01-01

    When an efficient automated coating machine is used to process layer-by-layer (LBL) deposited nanofibrous mats, it causes an obvious planar effect on the surface of the mats, which can be eliminated through ultimate immersion. During this process, chitosan (CS) - rectorite (REC) intercalated composite films are built on the surface of cellulose acetate (CA) nanofibrous mats by a coating machine. Then, the immersion process is utilized to allow positively charged CS or CS-REC intercalated composites to uniformly assemble on the surface of negatively charged CA nanofibers. An investigation into the morphology of the resultant scaffolds confirms that the uniquely small pore size, high specific surface area and typically three-dimensional (3D) structure of nanofibrous mats remain present. The results of Fourier transform infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS) indicate that it is feasible to assemble nanofibrous mats using a coating machine. The intercalated structure of CS-REC is confirmed by the results of small-angle X-ray diffraction (SAXRD) and wide-angle X-ray diffraction (WAXRD). The results of the cell experiment and antibacterial test demonstrate that the addition of REC not only has little impact on the cytocompatibility of the mats but also enhances their ability to inhibit bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Measuring Three-Dimensional Strain and Structural Defects in a Single InGaAs Nanowire Using Coherent X-ray Multiangle Bragg Projection Ptychography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Megan O.; Calvo-Almazan, Irene; Allain, Marc

    III - As nanowires are candidates for near-infrared light emitters and detectors that can be directly integrated onto silicon. However, nanoscale to microscale variations in structure, composition, and strain within a given nanowire, as well as variations between nanowires, pose challenges to correlating microstructure with device performance. In this work, we utilize coherent nanofocused X-rays to characterize stacking defects and strain in a single InGaAs nanowire supported on Si. By reconstructing diffraction patterns from the 2110 Bragg peak, we show that the lattice orientation varies along the length of the wire, while the strain field along the cross-section is largelymore » unaffected, leaving the band structure unperturbed. Diffraction patterns from the 0110 Bragg peak are reproducibly reconstructed to create three-dimensional images of stacking defects and associated lattice strains, revealing sharp planar boundaries between different crystal phases of wurtzite (WZ) structure that contribute to charge carrier scattering. Phase retrieval is made possible by developing multiangle Bragg projection ptychography (maBPP) to accommodate coherent nanodiffraction patterns measured at arbitrary overlapping positions at multiple angles about a Bragg peak, eliminating the need for scan registration at different angles. The penetrating nature of X-ray radiation, together with the relaxed constraints of maBPP, will enable the in operando imaging of nanowire devices.« less

  3. X-ray studies of dynamic aging in an aluminum alloy subjected to severe plastic deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitdikov, V.D., E-mail: svil@mail.rb.ru; Laboratory for Mechanics of Bulk Nanomaterials, Saint Petersburg State University, 28 Universitetsky pr., Saint Petersburg 198504; Chizhov, P.S.

    In this work, X-ray scattering methods were applied for a quantitative characterization of the microstructure of an aluminum alloy of the Al–Mg–Si system during dynamic aging realized through the high pressure torsion technique. A qualitative and quantitative phase analysis of the alloy was performed, together with Al alloy lattice parameter determination. From the reflections broadening the effective size of the coherent scattering domains and the lattice microstrain were determined in the framework of the Halder–Wagner approach. Using the method of small-angle X-ray scattering, the quantitative characteristics of the size, shape and spatial distribution of the secondary phase particles formed inmore » the Al alloy during dynamic aging were established. In order to validate the obtained results, the method of small-angle X-ray scattering was preliminarily tested on similar samples after artificial aging and compared with the results from small-angle neutron diffraction widely known in literature. - Highlights: • Spherical fcc β-Mg2Si precipitates formed in Al 6201 alloy during dynamic aging in the course of severe plastic deformation. • The size, shape and distribution of the precipitates due to artificial and dynamic aging were revealed by SAXS method. • Monoclinic needle-like β' precipitates and Al5FeSi intermetallic phase were detected in 6201 alloy after T6 treatment.« less

  4. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.

    2016-08-15

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from themore » sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.« less

  5. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold

    PubMed Central

    Makhotkin, Igor A.; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W. E.; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han-Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut

    2018-01-01

    The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface. PMID:29271755

  6. Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold.

    PubMed

    Makhotkin, Igor A; Sobierajski, Ryszard; Chalupský, Jaromir; Tiedtke, Kai; de Vries, Gosse; Störmer, Michael; Scholze, Frank; Siewert, Frank; van de Kruijs, Robbert W E; Milov, Igor; Louis, Eric; Jacyna, Iwanna; Jurek, Marek; Klinger, Dorota; Nittler, Laurent; Syryanyy, Yevgen; Juha, Libor; Hájková, Věra; Vozda, Vojtěch; Burian, Tomáš; Saksl, Karel; Faatz, Bart; Keitel, Barbara; Plönjes, Elke; Schreiber, Siegfried; Toleikis, Sven; Loch, Rolf; Hermann, Martin; Strobel, Sebastian; Nienhuys, Han Kwang; Gwalt, Grzegorz; Mey, Tobias; Enkisch, Hartmut

    2018-01-01

    The durability of grazing- and normal-incidence optical coatings has been experimentally assessed under free-electron laser irradiation at various numbers of pulses up to 16 million shots and various fluence levels below 10% of the single-shot damage threshold. The experiment was performed at FLASH, the Free-electron LASer in Hamburg, using 13.5 nm extreme UV (EUV) radiation with 100 fs pulse duration. Polycrystalline ruthenium and amorphous carbon 50 nm thin films on silicon substrates were tested at total external reflection angles of 20° and 10° grazing incidence, respectively. Mo/Si periodical multilayer structures were tested in the Bragg reflection condition at 16° off-normal angle of incidence. The exposed areas were analysed post-mortem using differential contrast visible light microscopy, EUV reflectivity mapping and scanning X-ray photoelectron spectroscopy. The analysis revealed that Ru and Mo/Si coatings exposed to the highest dose and fluence level show a few per cent drop in their EUV reflectivity, which is explained by EUV-induced oxidation of the surface.

  7. Electroform replication of grazing incidence X-ray optics. [spaceborne telescopes

    NASA Technical Reports Server (NTRS)

    Ulmer, M. P.; Purcell, W. R.; Bedford, D.; Simnett, G. R.

    1985-01-01

    Work to produce mirrors via electroform replication is reported. Work on small (6 cm by 9 cm) cylindrical pieces and on 40 cm long by 12 cm wide Wolter shaped mirrors is summarized. It is shown that electroforming is a viable technique for producing relatively inexpensive grazing incidence X-ray optics, as long as modest resolution (1 min of arc) and size (12 cm diameter by 40 cm long) are specified.

  8. Structural, Morphological, Optical and Photocatalytic Properties of Y, N-Doped and Codoped TiO2 Thin Films

    PubMed Central

    Hamden, Zeineb; Conceição, David; Boufi, Sami; Vieira Ferreira, Luís Filipe; Bouattour, Soraa

    2017-01-01

    Pure TiO2, Y-N single-doped and codoped TiO2 powders and thin films deposited on glass beads were successfully prepared using dip-coating and sol-gel methods. The samples were analyzed using grazing angle X-ray diffraction (GXRD), Raman spectroscopy, time resolved luminescence, ground state diffuse reflectance absorption and scanning electron microscopy (SEM). According to the GXRD patterns and micro-Raman spectra, only the anatase form of TiO2 was made evident. Ground state diffuse reflectance absorption studies showed that doping with N or codoping with N and Y led to an increase of the band gap. Laser induced luminescence analysis revealed a decrease in the recombination rate of the photogenerated holes and electrons. The photocatalytic activity of supported catalysts, toward the degradation of toluidine, revealed a meaningful enhancement upon codoping samples at a level of 2% (atomic ratio). The photocatalytic activity of the material and its reactivity can be attributed to a reduced, but significant, direct photoexcitation of the semiconductor by the halogen lamp, together with a charge-transfer-complex mechanism, or with the formation of surface oxygen vacancies by the N dopant atoms. PMID:28772962

  9. Structural, Morphological, Optical and Photocatalytic Properties of Y, N-Doped and Codoped TiO₂ Thin Films.

    PubMed

    Hamden, Zeineb; Conceição, David; Boufi, Sami; Vieira Ferreira, Luís Filipe; Bouattour, Soraa

    2017-05-31

    Pure TiO₂, Y-N single-doped and codoped TiO₂ powders and thin films deposited on glass beads were successfully prepared using dip-coating and sol-gel methods. The samples were analyzed using grazing angle X-ray diffraction (GXRD), Raman spectroscopy, time resolved luminescence, ground state diffuse reflectance absorption and scanning electron microscopy (SEM). According to the GXRD patterns and micro-Raman spectra, only the anatase form of TiO₂ was made evident. Ground state diffuse reflectance absorption studies showed that doping with N or codoping with N and Y led to an increase of the band gap. Laser induced luminescence analysis revealed a decrease in the recombination rate of the photogenerated holes and electrons. The photocatalytic activity of supported catalysts, toward the degradation of toluidine, revealed a meaningful enhancement upon codoping samples at a level of 2% (atomic ratio). The photocatalytic activity of the material and its reactivity can be attributed to a reduced, but significant, direct photoexcitation of the semiconductor by the halogen lamp, together with a charge-transfer-complex mechanism, or with the formation of surface oxygen vacancies by the N dopant atoms.

  10. Topography, wetting, and corrosion responses of electrodeposited hydroxyapatite and fluoridated hydroxyapatite on magnesium.

    PubMed

    Assadian, Mahtab; Jafari, Hassan; Ghaffari Shahri, Seyed Morteza; Idris, Mohd Hasbullah; Almasi, Davood

    2016-08-12

    In this study, different types of calcium-phosphate phases were coated on NaOH pre-treated pure magnesium. The coating was applied by electrodeposition method in order to provide higher corrosion resistance and improve biocompatibility for magnesium. Thickness, surface morphology and topography of the coatings were analyzed using optical, scanning electron and atomic-force microscopies, respectively. Composition and chemical bonding, crystalline structures and wettability of the coatings were characterized using energy-dispersive and attenuated total reflectance-Fourier transform infrared spectroscopies, grazing incidence X-ray diffraction and contact angle measurement, respectively. Degradation behavior of the coated specimens was also investigated by potentiodynamic polarization and immersion tests. The experiments proved the presence of a porous coating dominated by dicalcium-phosphate dehydrate on the specimens. It was also verified that the developed hydroxyapatite was crystallized by alkali post-treatment. Addition of supplemental fluoride to the coating electrolyte resulted in stable and highly crystallized structures of fluoridated hydroxyapatite. The coatings were found effective to improve biocompatibility combined with corrosion resistance of the specimens. Noticeably, the fluoride supplemented layer was efficient in lowering corrosion rate and increasing surface roughness of the specimens compared to hydroxyapatite and dicalcium-phosphate dehydrates layers.

  11. Advanced High Brilliance X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gibson, Walter M.

    1998-01-01

    The possibility to dramatically increase the efficiency of laboratory based protein structure measurements through the use of polycapillary X-ray optics was investigated. This project initiated April 1, 1993 and concluded December 31, 1996 (including a no cost extension from June 31, 1996). This is a final report of the project. The basis for the project is the ability to collect X-rays from divergent electron bombardment laboratory X-ray sources and redirect them into quasiparallel or convergent (focused) beams. For example, a 0.1 radian (approx. 6 deg) portion of a divergent beam collected by a polycapillary collimator and transformed into a quasiparallel beam of 3 millradian (0.2 deg) could give a gain of 6(exp 2)/0.2(exp 2) x T for the intensity of a diffracted beam from a crystal with a 0.2 deg diffraction width. T is the transmission efficiency of the polycapillary diffraction optic, and for T=0.5, the gain would be 36/0.04 x O.5=45. In practice, the effective collection angle will depend on the source spot size, the input focal length of the optic (usually limited by the source spot-to-window distance on the x-ray tube) and the size of the crystal relative to the output diameter of the optic. The transmission efficiency, T, depends on the characteristics (fractional open area, surface roughness, shape and channel diameter) of the polycapillary optic and is typically in the range 0.2-0.4. These effects could substantially reduce the expected efficiency gain. During the course of this study, the possibility to use a weakly focused beam (0.5 deg convergence) was suggested which could give an additional 10-20 X efficiency gain for small samples . Weakly focused beams from double focusing mirrors are frequently used for macromolecular crystallography studies. Furthermore the crystals are typically oscillated by as much as 2 deg during each X-ray exposure in order to increase the reciprocal space (number of crystal planes) sampled and use of a slightly convergent beam could, in principle, provide a similar sampling benefit without oscillation. Although more problematic, because of complications in analyzing the diffraction patterns, it was also suggested that even more extreme beam convergence might be used to give another order of magnitude intensity gain and even smaller focused spot size which could make it possible to study smaller protein crystals than can be studied using standard laboratory based X-ray diffraction systems. This project represents the first systematic investigation of these possibilities. As initially proposed, the contract included requirements for design, purchase, evaluation and delivery of three polycapillary lenses to the Laboratory for Structural Biology at MSFC and demonstration of such optics at MSFC for selected protein crystal diffraction applications.

  12. Light in the darkening on Naica gypsum crystals

    NASA Astrophysics Data System (ADS)

    Castillo-Sandoval, I.; Fuentes-Cobas, L. E.; Fuentes-Montero, M. E.; Esparza-Ponce, H. E.; Carreno-Márquez, J.; Reyes-Cortes, M.; Montero-Cabrera, M. E.

    2015-07-01

    Naica mine is located in a semi-desertic region at the central-south of Chihuahua State. The Cave of Swords was discovered in 1910 and the Cave of Crystals 90 years later at Naica mines. It is expected that during the last century the human presence has changed the microclimatic conditions inside the cave, resulting in the deterioration of the crystals and the deposition of impurities on gypsum surfaces. As a contribution to the clarification of the mentioned issues, the present work refers to the use of synchrotron radiation for the identification of phases on these surfaces. All the experiments were performed at the Stanford Synchrotron Radiation Lightsource. Grazing incidence X-ray diffraction (GIXRD) and radiography-aided X-ray diffraction (RAXRD) experiments were performed at beamline 11-3. X-Ray micro-fluorescence (μ-SXRF) and micro-X-ray absorption (μ-XANES) were measured at beamline 2-3. Representative results obtained may be summarized as follows: a) Gypsum, galena, sphalerite, hematite and cuprite at the surface of the gypsum crystals were determined. b) The samples micro-structure is affected by impurities. c) The elemental distributions and correlations (0.6-0.9) of Cu, K, Fe, Mn, Pb, Zn, Ca and S were identified by μ-SXRF. The correlations among elemental contents confirmed the phase identification, with the exception of manganese and potassium due to the amorphous nature of some impurity compounds in these samples. The compounds hematite (Fe2O3), β-MnO2, Mn2O3, MnO and/or MnCO3, PbS, PbCO3 and/or PbSO4, ZnO4, ZnS and/or smithsonite (ZnCO3), CuS + Cu Oxide were identified by XANES. Plausibly, these latter compounds do not form crystalline phases.

  13. Nonequilibrium 2-Hydroxyoctadecanoic Acid Monolayers: Effect of Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lendrum, Conrad D.; Ingham, Bridget; Lin, Binhua

    2012-02-06

    2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position {alpha} to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of {approx}6. Themore » role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase.« less

  14. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  15. Self-standing crystalline TiO2 nanotubes/CNTs heterojunction membrane: synthesis and characterization.

    PubMed

    Hesabi, Zohreh R; Allam, Nageh K; Dahmen, Klaus; Garmestani, Hamid; A El-Sayed, Mostafa

    2011-04-01

    In the present study, we report for the first time synthesis of TiO(2) nanotubes/CNTs heterojunction membrane. Chemical vapor deposition (CVD) of CNTs at 650 °C in a mixture of H(2)/He atmosphere led to in situ detachment of the anodically fabricated TiO(2) nanotube layers from the Ti substrate underneath. Morphological and structural evolution of TiO(2) nanotubes after CNTs deposition were investigated by field- emission scanning electron microscopy (FESEM), glancing angle X-ray diffraction (GAXRD), and X-ray photoelectron spectroscopy (XPS) analyses. © 2011 American Chemical Society

  16. X-ray diffraction of solid tin to 1.2 TPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazicki, A.; Rygg, J. R.; Coppari, F.

    2015-08-12

    In this study, we report direct in situ measurements of the crystal structure of tin between 0.12 and 1.2 TPa, the highest stress at which a crystal structure has ever been observed. Using angle-dispersive powder x-ray diffraction, we find that dynamically compressed Sn transforms to the body-centered-cubic (bcc) structure previously identified by ambient-temperature quasistatic-compression studies and by zero-kelvin density-functional theory predictions between 0.06 and 0.16 TPa. However, we observe no evidence for the hexagonal close-packed (hcp) phase found by those studies to be stable above 0.16 TPa. Instead, our results are consistent with bcc up to 1.2 TPa. We conjecturemore » that at high temperature bcc is stabilized relative to hcp due to differences in vibrational free energy.« less

  17. Crystal Structure of Two V-shaped Ligands with N-Heterocycles

    NASA Astrophysics Data System (ADS)

    Wang, Gao-Feng; Sun, Shu-Wen; Zhang, Xiao; Sun, Shu-Gang

    2017-12-01

    Two V-shaped ligands with N-heterocycles, bis(4-(1 H-imidazol-1-yl) phenyl)methanone ( 1), and bis(4-(1 H-benzo[d]imidazol-1-yl)phenyl)methanone ( 2) have been synthesized and characterized by elemental analyses, IR and 1 H NMR spectroscopy. Crystal structures of 1 and 2 have been determined by X-ray diffraction. The crystal of 1 is monoclinic, sp. gr. P21/ c, Z = 4. The crystal of 2 is orthorhombic, sp. gr. Fdd2, Z = 8. X-ray diffraction analyses show that the V-shaped angles of 1 and 2 are 122.72(15)° and 120.7(4)°, respectively. Intermolecular C-H···O, C-H···N, C-H···π, and π···π interactions link the components into three-dimensional networks in the crystal structures.

  18. Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS

    DOE PAGES

    Lee, Sooheyong; Roseker, W.; Gutt, C.; ...

    2013-10-08

    The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse modemore » $$\\langle$$M s$$\\rangle$$ = 1.1. On the other hand, the speckle contrasts measured at a large wavevector yields information about the longitudinal coherence of the LCLS radiation after a silicon (111) monochromator. The quantitative agreement between our data and the simulation confirms a mean coherence time of 2.2 fs and a x-ray pulse duration of 29 fs. Lastly the observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage.« less

  19. Kirkpatrick-Baez microscope for hard X-ray imaging of fast ignition experiments.

    PubMed

    Friesen, H; Tiedje, H F; Hey, D S; Mo, M Z; Beaudry, A; Fedosejevs, R; Tsui, Y Y; Mackinnon, A; McLean, H S; Patel, P K

    2013-02-01

    A Kirkpatrick-Baez X-ray microscope has been developed for use on the Titan laser facility at the Lawrence Livermore National Laboratory in Fast Ignition experiments. It was developed as a broadband alternative to narrow band Bragg crystal imagers for imaging Kα emission from tracer layers. A re-entrant design is employed which allows for alignment from outside the chamber. The mirrors are coated with Pt and operate at a grazing incident angle of 0.5° providing higher resolution than an equal brightness pinhole and sufficient bandwidth to image thermally shifted characteristic Kα emission from heated Cu tracer layers in Fast Ignition experiments. The superpolished substrates (<1 Å rms roughness) had a final visible wavelength roughness of 1.7 Å after coating, and exhibited a reflectivity corresponding to an X-ray wavelength roughness of 7 ± 1 Å. A unique feature of this design is that during experiments, the unfiltered direct signal along with the one-dimensional reflections are retained on the detector in order to enable a live indication of alignment and incident angle. The broad spectral window from 4 to 9 keV enables simultaneous observation of emission from several spectral regions of interest, which has been demonstrated to be particularly useful for cone-wire targets. An experimentally measured resolution of 15 μm has been obtained at the center of the field of view.

  20. Real-time X-ray Diffraction: Applications to Materials Characterization

    NASA Technical Reports Server (NTRS)

    Rosemeier, R. G.

    1984-01-01

    With the high speed growth of materials it becomes necessary to develop measuring systems which also have the capabilities of characterizing these materials at high speeds. One of the conventional techniques of characterizing materials was X-ray diffraction. Film, which is the oldest method of recording the X-ray diffraction phenomenon, is not quite adequate in most circumstances to record fast changing events. Even though conventional proportional counters and scintillation counters can provide the speed necessary to record these changing events, they lack the ability to provide image information which may be important in some types of experiment or production arrangements. A selected number of novel applications of using X-ray diffraction to characterize materials in real-time are discussed. Also, device characteristics of some X-ray intensifiers useful in instantaneous X-ray diffraction applications briefly presented. Real-time X-ray diffraction experiments with the incorporation of image X-ray intensification add a new dimension in the characterization of materials. The uses of real-time image intensification in laboratory and production arrangements are quite unlimited and their application depends more upon the ingenuity of the scientist or engineer.

Top