Science.gov

Sample records for grb afterglow emission

  1. GRB Off-Axis Afterglows and the Emission from the Accompanying Supernovae

    NASA Astrophysics Data System (ADS)

    Kathirgamaraju, A. K.; Duran, R. B. D.; Giannios, D. G.

    2016-10-01

    I will discuss the prospect of detecting orphan afterglows with upcoming radio surveys. Using simulations generated by the Afterglow Library and using data from 75 GRB afterglows. We also discuss how emission from SNe and other components affect our results.

  2. The Interpretation of the Multi-wavelength Afterglow Emission of Short GRB 140903A

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Jin, Zhi-Ping; Wang, Yuan-Zhu; Wei, Da-Ming

    2017-01-01

    GRB 140903A, a short duration γ-ray burst (SGRB) detected by Swift, is characterized by its long-lasting radio emission among SGRBs. In addition to the ∼ {10}6 s radio afterglow emission, the afterglow of GRB 140903A displays a plateau from 103 s to 7× {10}3 {{s}} in the X-rays. In this work, we attribute the X-ray plateau to the energy injection into the decelerating blast wave and then model the later radio/optical/X-ray afterglow emission within the standard fireball afterglow model. The afterglow emission has been well reproduced with reasonable physical parameters, including a jet half-opening angle of ∼0.05.

  3. GRB off-axis afterglows and the emission from the accompanying supernovae

    NASA Astrophysics Data System (ADS)

    Kathirgamaraju, Adithan; Barniol Duran, Rodolfo; Giannios, Dimitrios

    2016-09-01

    Gamma-ray burst (GRB) afterglows are likely produced in the shock that is driven as the GRB jet interacts with the external medium. Long-duration GRBs are also associated with powerful supernovae (SNe). We consider the optical and radio afterglows of long GRBs for both blasts viewed along the jet axis (`on-axis' afterglows) and misaligned observes (`off-axis' afterglows). Comparing the optical emission from the afterglow with that of the accompanying SN, using SN 1998bw as an archetype, we find that only a few per cent of afterglows viewed off-axis are brighter than the SN. For observable optical off-axis afterglows, the viewing angle is at most twice the half-opening angle of the GRB jet. Radio off-axis afterglows should be detected with upcoming radio surveys within a few hundred Mpc. We propose that these surveys will act as `radio triggers', and that dedicated radio facilities should follow-up these sources. Follow-ups can unveil the presence of the radio SN remnant, if present. In addition, they can probe the presence of a mildly relativistic component, either associated with the GRB jet or the SN ejecta, expected in these sources.

  4. PANCHROMATIC OBSERVATIONS OF THE TEXTBOOK GRB 110205A: CONSTRAINING PHYSICAL MECHANISMS OF PROMPT EMISSION AND AFTERGLOW

    SciTech Connect

    Zheng, W.; Shen, R. F.; Sakamoto, T.; Beardmore, A. P.; De Pasquale, M.; Wu, X. F.; Zhang, B.; Gorosabel, J.; Urata, Y.; Sugita, S.; Pozanenko, A.; Sahu, D. K.; Im, M.; Ukwatta, T. N.; Andreev, M.; Klunko, E. E-mail: rfshen@astro.utoronto.ca; and others

    2012-06-01

    We present a comprehensive analysis of a bright, long-duration (T{sub 90} {approx} 257 s) GRB 110205A at redshift z = 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb, and BOOTES telescopes when the gamma-ray burst (GRB) was still radiating in the {gamma}-ray band, with optical light curve showing correlation with {gamma}-ray data. Nearly 200 s of observations were obtained simultaneously from optical, X-ray, to {gamma}-ray (1 eV to 5 MeV), which makes it one of the exceptional cases to study the broadband spectral energy distribution during the prompt emission phase. In particular, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard synchrotron emission model in the fast cooling regime. Shortly after prompt emission ({approx}1100 s), a bright (R = 14.0) optical emission hump with very steep rise ({alpha} {approx} 5.5) was observed, which we interpret as the reverse shock (RS) emission. It is the first time that the rising phase of an RS component has been closely observed. The full optical and X-ray afterglow light curves can be interpreted within the standard reverse shock (RS) + forward shock (FS) model. In general, the high-quality prompt and afterglow data allow us to apply the standard fireball model to extract valuable information, including the radiation mechanism (synchrotron), radius of prompt emission (R{sub GRB} {approx} 3 Multiplication-Sign 10{sup 13} cm), initial Lorentz factor of the outflow ({Gamma}{sub 0} {approx} 250), the composition of the ejecta (mildly magnetized), the collimation angle, and the total energy budget.

  5. THERMAL EMISSIONS SPANNING THE PROMPT AND THE AFTERGLOW PHASES OF THE ULTRA-LONG GRB 130925A

    SciTech Connect

    Basak, Rupal; Rao, A. R. E-mail: arrao@tifr.res.in

    2015-07-01

    GRB 130925A is an ultra-long gamma-ray burst (GRB), and it shows clear evidence for thermal emission in the soft X-ray data of the Swift/X-ray Telescope (XRT; ∼0.5 keV), lasting until the X-ray afterglow phase. Due to the long duration of the GRB, the burst could be studied in hard X-rays with high-resolution focusing detectors (NuSTAR). The blackbody temperature, as measured by the Swift/XRT, shows a decreasing trend until the late phase (Piro et al.) whereas the high-energy data reveal a significant blackbody component during the late epochs at an order of magnitude higher temperature (∼5 keV) compared to contemporaneous low energy data (Bellm et al.). We resolve this apparent contradiction by demonstrating that a model with two black bodies and a power law (2BBPL) is consistent with the data right from the late prompt emission to the afterglow phase. Both blackbodies show a similar cooling behavior up to late times. We invoke a structured jet, having a fast spine and a slower sheath layer, to identify the location of these blackbodies. Independent of the physical interpretation, we propose that the 2BBPL model is a generic feature of the prompt emission of all long GRBs, and the thermal emission found in the afterglow phase of different GRBs reflects the lingering thermal component of the prompt emission with different timescales. We strengthen this proposal by pointing out a close similarity between the spectral evolutions of this GRB and GRB 090618, a source with significant wide band data during the early afterglow phase.

  6. Soft X-ray emission lines in the afterglow spectrum of GRB 011211: A detailed XMM-Newton analysis

    NASA Astrophysics Data System (ADS)

    Reeves, J. N.; Watson, D.; Osborne, J. P.; Pounds, K. A.; O'Brien, P. T.

    2003-05-01

    We report on an XMM-Newton observation of the X-ray afterglow of the Gamma Ray Burst GRB 011211, originally detected by Beppo-SAX on 11th December 2001. The early afterglow spectrum obtained by XMM-Newton, observed 11 hours after the initial burst, appeared to reveal decaying H-like Kalpha emission lines of Mg, Si, S, Ar and Ca, arising in enriched material with an outflow velocity of order 0.1c (Reeves et al. \\cite{Reeves2002}). This was attributed to matter ejected from a massive stellar progenitor occurring shortly before the burst itself. Here, we present a detailed re-analysis of the XMM-Newton EPIC observations of GRB 011211. In particular, we show that the detection of the soft X-ray line emission appears robust, regardless of detector background, calibration, spectral binning, or the spectral model that is assumed. We demonstrate that thermal emission, from an optically thin plasma, is the most plausible model that can account for the soft X-ray emission, which appears to be the case for at least two burst afterglow spectra observed by XMM-Newton. The X-ray spectrum of GRB 011211 appears to evolve with time after the first 10 ks of the XMM-Newton observation as the Si and S emission lines are only detected during the first 10 ks of observation. The observations suggest that thermal emission is present during the early afterglow spectrum, whilst a power-law component dominates the latter stages. Finally we estimate the mass of the ejected material in GRB 011211 to be of the order 4-20 solar masses.

  7. Panchromatic Observations of the Textbook GRB 110205A: Constraining Physical Mechanisms of Prompt Emission and Afterglow

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Shen, R. F.; Sakamoto, T.; Beardmore, A. P.; De Pasquale, M.; Wu, X. F.; Gorosabel, J.; Urata, Y.; Sugita, S.; Zhang, B.; Pozanenko, A.; Nissinen, M.; Sahu, D. K.; Im, M.; Ukwatta, T. N.; Andreev, M.; Klunko, E.; Volnova, A.; Akerlof, C. W.; Anto, P.; Barthelmy, S. D.; Breeveld, A.; Carsenty, U.; Gehrels, N.; Sonbas, E.

    2011-01-01

    We present a comprehensive analysis of a bright, long duration (T(sub 90) approx. 257 s) GRB 110205A at redshift z = 2.22. The optical prompt emission was detected by Swift/UVOT, ROTSE-IIIb and BOOTES telescopes when the GRB was still radiating in the gamma-ray band. Thanks to its long duration, nearly 200 s of observations were obtained simultaneously from optical, X-ray to gamma-ray (1 eV - 5 MeV), which makes it one of the exceptional cases to study the broadband spectral energy distribution across 6 orders of magnitude in energy during the prompt emission phase. In particular, by fitting the time resolved prompt spectra, we clearly identify, for the first time, an interesting two-break energy spectrum, roughly consistent with the standard GRB synchrotron emission model in the fast cooling regime. Although the prompt optical emission is brighter than the extrapolation of the best fit X/ -ray spectra, it traces the -ray light curve shape, suggesting a relation to the prompt high energy emission. The synchrotron + synchrotron self-Compton (SSC) scenario is disfavored by the data, but the models invoking a pair of internal shocks or having two emission regions can interpret the data well. Shortly after prompt emission (approx. 1100 s), a bright (R = 14.0) optical emission hump with very steep rise ( alpha approx. 5.5) was observed which we interpret as the emission from the reverse shock. It is the first time that the rising phase of a reverse shock component has been closely observed.

  8. Polarization Evolution of the Afterglow of GRB 030329

    NASA Technical Reports Server (NTRS)

    Greiner, Jochen; Klose, Sylvio; Reinsch, Klaus; Schmid, Hans Martin; Sari, Re'em; Hartmann, Dieter H.; Kouveliotou, Chryssa; Rau, Arne; Palazzi, Eliana; Straubmeier, Christian

    2003-01-01

    The association of a supernova with GRB 030329l strongly supports the collapsar model of gamma-ray bursts (GRBs), where a relativistic jet forms after the progenitor star collapses. Such jets cannot be spatially resolved because of their cosmological distances. Their existence is conjectured based on breaks in GRB afterglow light curves and the theoretical desire to reduce the GRB energy requirements. Temporal evolution of polarization may provide independent evidence for the jet structure of the relativistic outflow. Small-level polarization (approx. 1-3%) has been reported for a few bursts, but the temporal evolution of polarization properties could not be established. Here, we report polarimetric observations of the afterglow of GRB 030329 with high signal-to-noise and high sampling frequency. We establish the polarization light curve, detect sustained polarization at the percent level, and find significant variability. The data imply that the afterglow magnetic field has small coherence length and is mostly random, probably generated by turbulence, in contrast with the high polarization detected in the prompt gamma-rays from GRB 02120618. Our results suggest a different structure and origin of the magnetic field in the prompt vs. afterglow emission regions.

  9. GRB 090902B: AFTERGLOW OBSERVATIONS AND IMPLICATIONS

    SciTech Connect

    Pandey, S. B.; Akerlof, C.; McKay, T. A.; Swenson, C. A.; Perley, D. A.; Kleiser, I. K. W.; Guidorzi, C.; Wiersema, K.; Malesani, D.; Ashley, M. C. B.; Bersier, D.; Cano, Z.; Kobayashi, S.; Melandri, A.; Mottram, C. J.; Gomboc, A.; Ilyin, I.; Jakobsson, P.; Kouveliotou, C.; Levan, A. J.

    2010-05-01

    The optical-infrared afterglow of the Large Area Telescope (LAT)-detected long-duration burst, GRB 090902B, has been observed by several instruments. The earliest detection by ROTSE-IIIa occurred 80 minutes after detection by the Gamma-ray Burst Monitor instrument on board the Fermi Gamma-Ray Space Telescope, revealing a bright afterglow and a decay slope suggestive of a reverse shock origin. Subsequent optical-IR observations followed the light curve for 6.5 days. The temporal and spectral behavior at optical-infrared frequencies is consistent with synchrotron fireball model predictions; the cooling break lies between optical and XRT frequencies {approx}1.9 days after the burst. The inferred electron energy index is p = 1.8 {+-} 0.2, which would however imply an X-ray decay slope flatter than observed. The XRT and LAT data have similar spectral indices and the observed steeper value of the LAT temporal index is marginally consistent with the predicted temporal decay in the radiative regime of the forward shock model. Absence of a jet break during the first 6 days implies a collimation-corrected {gamma}-ray energy E{sub {gamma}} > 2.2 x 10{sup 52} erg, one of the highest ever seen in a long-duration gamma-ray bursts. More events combining GeV photon emission with multiwavelength observations will be required to constrain the nature of the central engine powering these energetic explosions and to explore the correlations between energetic quanta and afterglow emission.

  10. X-ray flares in early GRB afterglows.

    PubMed

    Burrows, D N; Falcone, A; Chincarini, G; Morris, D; Romano, P; Hill, J E; Godet, O; Moretti, A; Krimm, H; Osborne, J P; Racusin, J; Mangano, V; Page, K; Perri, M; Stroh, M

    2007-05-15

    The Swift X-ray Telescope (XRT) has discovered that flares are quite common in early X-ray afterglows of gamma-ray bursts (GRBs), being observed in roughly 50% of afterglows with prompt follow-up observations. The flares range in fluence from a few per cent to approximately 100% of the fluence of the prompt emission (the GRB). Repetitive flares are seen, with more than four successive flares detected by the XRT in some afterglows. The rise and fall times of the flares are typically considerably smaller than the time since the burst. These characteristics suggest that the flares are related to the prompt emission mechanism, but at lower photon energies. We conclude that the most likely cause of these flares is late-time activity of the GRB central engine.

  11. The Supercritical Pile GRB Model: The Prompt to Afterglow Evolution

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2008-01-01

    The 'Supercritical Pile' is a very economical gamma ray burst (GRB) model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at an energy sim 1 MeV. We extend this model to include also the evolution of the RBW Lorentz factor Gamma and thus follow the spectral and temporal features of this model into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model can be the sources of rich time evolution which we have begun to explore. In particular, one can this way obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the nu F spectra. Furthermore, the existence of a kinematic threshold in this model provides for a operational distinction of the prompt and afterglow GRB stages; in fact, the afterglow stage sets in when the RBW Lorentz factor cannot anymore fulfill the kinematic condition for pair formation in the photon - proton pair production reactions that constitute the fundamental process for the dissipation of the blast wave kinetic energy. We present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  12. The Supercritical Pile GRB Model: The Prompt to Afterglow Evolution

    NASA Technical Reports Server (NTRS)

    Mastichiadis, A.; Kazanas, D.

    2009-01-01

    The "Supercritical Pile" is a very economical GRB model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at energy approx. 1 MeV. We extend this model to include the evolution of the RBW Lorentz factor Gamma and thus follow its spectral and temporal features into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model can be the sources of rich time evolution which we have began to explore. In particular. one can this may obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the (nu)F(sub nu), spectra. In this note we present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  13. Nonlinear Particle Acceleration and Thermal Particles in GRB Afterglows

    NASA Astrophysics Data System (ADS)

    Warren, Donald C.; Ellison, Donald C.; Barkov, Maxim V.; Nagataki, Shigehiro

    2017-02-01

    The standard model for GRB afterglow emission treats the accelerated electron population as a simple power law, N(E)\\propto {E}-p for p≳ 2. However, in standard Fermi shock acceleration, a substantial fraction of the swept-up particles do not enter the acceleration process at all. Additionally, if acceleration is efficient, then the nonlinear back-reaction of accelerated particles on the shock structure modifies the shape of the nonthermal tail of the particle spectra. Both of these modifications to the standard synchrotron afterglow impact the luminosity, spectra, and temporal variation of the afterglow. To examine the effects of including thermal particles and nonlinear particle acceleration on afterglow emission, we follow a hydrodynamical model for an afterglow jet and simulate acceleration at numerous points during the evolution. When thermal particles are included, we find that the electron population is at no time well fitted by a single power law, though the highest-energy electrons are; if the acceleration is efficient, then the power-law region is even smaller. Our model predicts hard–soft–hard spectral evolution at X-ray energies, as well as an uncoupled X-ray and optical light curve. Additionally, we show that including emission from thermal particles has drastic effects (increases by factors of 100 and 30, respectively) on the observed flux at optical and GeV energies. This enhancement of GeV emission makes afterglow detections by future γ-ray observatories, such as CTA, very likely.

  14. Rapid GRB Afterglow Response With SARA

    NASA Astrophysics Data System (ADS)

    Garimella, K. V.; Homewood, A. L.; Hartmann, D. H.; Riddle, C.; Fuller, S.; Manning, A.; McIntyre, T.; Henson, G.

    2006-05-01

    The Clemson GRB Follow-Up program utilizes the SARA 0.9-m telescope to observe optical afterglows of Gamma Ray Bursts. SARA is not yet robotic; it operates under direct and Target-of-Opportunity (ToO) interrupt modes. To facilitate rapid response and timely reporting of data analysis results, we developed a software suite that operates in two phases: first, to notify observers of a burst and assist in data collection, and second, to quickly analyze the images.

  15. Short GRB Prompt and Afterglow Correlations

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2007-01-01

    The Swift data set on short GRBs has now grown large enough to study correlations of key parameters. The goal is to compare long and short bursts to better understand similarities and differences in the burst origins. In this study we consider the both prompt and afterglow fluxes. It is found that the optical, X-ray and gamma-ray emissions are linearly correlated - stronger bursts tend to have brighter afterglows, and bursts with brighter X-ray afterglow tend to have brighter optical afterglow. Both the prompt and afterglow fluxes are, on average, lower for short bursts than for long. Although there are short GRBs with undetected optical emission, there is no evidence for "dark" short bursts with anomalously low opt/X ratios. The weakest short bursts have a low X-ray/gamma-ray ratio.

  16. Radio Observations Of GRB 100418a: Test Of An Energy Injection Model Explaining Long-Lasting GRB Afterglows

    NASA Astrophysics Data System (ADS)

    Moin, Aquib; Chandra, P.; Miller-Jones, J.; Tingay, S.; Taylor, G. B.; Frail, D. A.; Wang, Z.; Reynolds, C.; Phillips, C.

    2014-01-01

    I will highlight the results of our radio observational campaign on GRB 100418a, for which the Australia Telescope Compact Array (ATCA), Very Large Array (VLA) and the Very Long Baseline Array (VLBA) were used. GRB 100418a was a peculiar GRB with unusual X-ray and optical afterglow profiles featuring a plateau phase with a very shallow rise. This observed plateau phase was believed to be due to a continued energy injection mechanism, which powered the forward shock, giving rise to an unusual and long-lasting afterglow. The radio afterglow of GRB 100418a was detectable several weeks after the prompt emission. We conducted long-term monitoring observations of the afterglow and attempted to test the energy injection model advocating that the continuous energy injection is due to shells of material moving at a wide range of Lorentz factors. We obtained an upper limit of γ < 7 for the expansion rate of the GRB 100418a radio afterglow, indicating that the range-of-Lorentz factor model could only be applicable for relatively slow moving ejecta. A preferred explanation could be that continued activity of the central engine may have powered the long-lasting afterglow.

  17. Radio observations of GRB 100418a: Test of an energy injection model explaining long-lasting GRB afterglows

    SciTech Connect

    Moin, A.; Wang, Z.; Chandra, P.; Miller-Jones, J. C. A.; Tingay, S. J.; Reynolds, C.; Taylor, G. B.; Frail, D. A.; Phillips, C. J.

    2013-12-20

    We present the results of our radio observational campaign of gamma-ray burst (GRB) 100418a, for which we used the Australia Telescope Compact Array, the Very Large Array, and the Very Long Baseline Array. GRB 100418a was a peculiar GRB with unusual X-ray and optical afterglow profiles featuring a plateau phase with a very shallow rise. This observed plateau phase was believed to be due to a continued energy injection mechanism that powered the forward shock, giving rise to an unusual and long-lasting afterglow. The radio afterglow of GRB 100418a was detectable several weeks after the prompt emission. We conducted long-term monitoring observations of the afterglow and attempted to test the energy injection model advocating that the continuous energy injection is due to shells of material moving at a wide range of Lorentz factors. We obtained an upper limit of γ < 7 for the expansion rate of the GRB 100418a radio afterglow, indicating that the range-of-Lorentz factor model could only be applicable for relatively slow-moving ejecta. A preferred explanation could be that continued activity of the central engine may have powered the long-lasting afterglow.

  18. Spectral Energy Distributions and Light Curves of GRB 990123 and its Afterglow

    NASA Technical Reports Server (NTRS)

    Galama, T. J.; Briggs, M. S.; Wijers, R. A. M. J.; Vreeswijk, P. M.; Rol, E.; Band, D.; VanParadijs, J.; Kouveliotou, C.; Preece, R. D.; Bremer, M.

    1999-01-01

    Investigations of the 'fireball' model currently believed to explain the prompt gamma-ray and afterglow emissions of gamma-ray bursts. On January 23 a gamma-ray burst (GRB) occurred for which for the first time prompt optical emission was detected. We here report the results of gamma-ray, optical/infrared, sub-mm, mm and radio observations of this burst and its afterglow, which indicate that the prompt and afterglow emissions from GRB 990123 are associated with three distinct regions in the fireball. The afterglow synchrotron spectrum one day after the burst has a much lower peak frequency than those of previous bursts; this explains the short-lived nature of the radio emission, which is not expected to reappear. We suggest that such differences reflect variations in the magnetic-field strengths in the afterglow emitting regions.

  19. Numerical Simulation of Flares in GRB Afterglow Phase

    NASA Astrophysics Data System (ADS)

    Meliani, Z.; Vlasis, A.; Keppens, R.

    2012-07-01

    We investigate numerically the various evolutionary phases in the interaction of relativistic shells with its surrounding cold interstellar medium (ISM) and shell-shell interaction. We do this for 1D. This is relevant for gamma-ray bursts (GRBs) and the observed flares, and we demonstrate that, thanks to the AMR strategy, we resolve the internal structure of the shocked shell and ISM matter and shell-shell matter, which will leave its imprint on the GRB afterglow. Also, we perform high resolution numerical simulations of late collisions between two ultra-relativistic shells in order to explore the flares in the afterglow phase of GRB. We examine the case where a cold uniform shell collides with a self-similar Blandford and McKee shell in a constant density environment and consider cases with different Lorentz factor and energy for the uniform shell. We produce the corresponding on-axis light curves and emission images for the afterglow phase and examine the occurrence of optical and radio flares assuming a spherical explosion and a hard-edged jet scenario. For our simulations we use the Adaptive Mesh Refinement version of the Versatile Advection Code (AMRVAC) coupled to a linear radiative transfer code to calculate synchrotron emission. We find steeply rising flare like behavior for small jet opening angles and more gradual rebrightenings for large opening angles. Synchrotron self-absorption is found to strongly influence the onset and shape of the radio flare.

  20. Two Early Gamma-ray Bursts Optical Afterglow Detections with TAOS Telescopes--GRB 071010B and GRB 071112C

    SciTech Connect

    Huang, K. Y.; Wang, S. Y.; Urata, Y.

    2009-05-25

    We present on two early detections of GRB afterglows with the Taiwanese-American Occltation Sruvey (TAOS) telescopes. The robotic TAOS system has been devised so that the routine Kuiper Belt Object (KBO) survey is interrupted when a GRB alert is triggered. Our first detection, GRB 071010B was detected by TAOS 62 s after the burst and showed a weak early brightening during the observations. No significant correction with the prompt gamma-ray emission indicated that our optical emission detected is afterglow emission. The second detection of TAOS, GRB 071112C was detected 96 s after the burst, also showed a possible initial raising then followed a steep decay in the R-band light curve.

  1. The ultra-long GRB 111209A. II. Prompt to afterglow and afterglow properties

    SciTech Connect

    Stratta, G.; Gendre, B.; Boër, M.; Atteia, J. L.; Coward, D. M.; Howell, E.; De Pasquale, M.; Oates, S.; Klotz, A.; Piro, L.

    2013-12-10

    The 'ultra-long' gamma-ray burst GRB 111209A at redshift z = 0.677 is the longest GRB ever observed thus far, with a rest frame prompt emission duration of ∼4 hr. In order to explain the burst exceptional longevity, a low-metallicity blue supergiant progenitor was invoked. In this article we further constrain the phenomenology and progenitor properties of this peculiar GRB by performing a multiband temporal and spectral analysis of both the prompt and the afterglow emission. We use proprietary and publicly available data from Swift, Konus WIND, XMM-Newton, and TAROT, as well as from other ground-based optical and radio telescopes. We find some peculiar properties that are possibly connected to the exceptional nature of this burst, namely: (1) an unprecedented large optical delay of 410 ± 50 s between the peak time in gamma-rays and the peak time in the optical of a marked multiwavelength flare; (2) multiwavelength prompt emission spectral modeling requires a certain amount of dust in the circumburst environment. The dust produces a rest frame visual extinction of A{sub V} = 0.3-1.5 mag, and may undergo destruction at late times; and (3) we detect the presence of a hard spectral extra power-law component at the end of the X-ray steep steep decay phase and before the start of the X-ray afterglow, which has never been revealed thus far in past GRBs. The optical afterglow shows more usual properties; it has a flux power-law decay with an index of 1.6 ± 0.1 and a late rebrightening feature observed at ∼1.1 the day after the first Burst Alert Telescope trigger. We discuss our findings in the context of several possible interpretations that have been given thus far of the complex multiband GRB phenomenology and propose a binary channel formation for the blue supergiant progenitor.

  2. The Ultra-long GRB 111209A. II. Prompt to Afterglow and Afterglow Properties

    NASA Astrophysics Data System (ADS)

    Stratta, G.; Gendre, B.; Atteia, J. L.; Boër, M.; Coward, D. M.; De Pasquale, M.; Howell, E.; Klotz, A.; Oates, S.; Piro, L.

    2013-12-01

    The "ultra-long" gamma-ray burst GRB 111209A at redshift z = 0.677 is the longest GRB ever observed thus far, with a rest frame prompt emission duration of ~4 hr. In order to explain the burst exceptional longevity, a low-metallicity blue supergiant progenitor was invoked. In this article we further constrain the phenomenology and progenitor properties of this peculiar GRB by performing a multiband temporal and spectral analysis of both the prompt and the afterglow emission. We use proprietary and publicly available data from Swift, Konus WIND, XMM-Newton, and TAROT, as well as from other ground-based optical and radio telescopes. We find some peculiar properties that are possibly connected to the exceptional nature of this burst, namely: (1) an unprecedented large optical delay of 410 ± 50 s between the peak time in gamma-rays and the peak time in the optical of a marked multiwavelength flare; (2) multiwavelength prompt emission spectral modeling requires a certain amount of dust in the circumburst environment. The dust produces a rest frame visual extinction of AV = 0.3-1.5 mag, and may undergo destruction at late times; and (3) we detect the presence of a hard spectral extra power-law component at the end of the X-ray steep steep decay phase and before the start of the X-ray afterglow, which has never been revealed thus far in past GRBs. The optical afterglow shows more usual properties; it has a flux power-law decay with an index of 1.6 ± 0.1 and a late rebrightening feature observed at ~1.1 the day after the first Burst Alert Telescope trigger. We discuss our findings in the context of several possible interpretations that have been given thus far of the complex multiband GRB phenomenology and propose a binary channel formation for the blue supergiant progenitor.

  3. Afterglows from precursors in gamma-ray bursts. Application to the optical afterglow of GRB 091024

    NASA Astrophysics Data System (ADS)

    Nappo, F.; Ghisellini, G.; Ghirlanda, G.; Melandri, A.; Nava, L.; Burlon, D.

    2014-12-01

    About 15 per cent of gamma-ray bursts have precursors, i.e. emission episodes preceding the main event, whose spectral and temporal properties are similar to the main emission. We propose that precursors have their own fireball, producing afterglow emission due to the dissipation of the kinetic energy via external shock. In the time lapse between the precursor and the main event, we assume that the central engine is not completely turned off, but it continues to eject relativistic material at a smaller rate, whose emission is below the background level. The precursor fireball generates a first afterglow by the interaction with the external circumburst medium. Matter injected by the central engine during the `quasi-quiescent' phase replenishes the external medium with material in relativistic motion. The fireball corresponding to the main prompt emission episode rams into this moving material, producing a second afterglow, and finally catches up and merges with the first precursor fireball. We test this scenario over GRB 091024, an event with a precursor in the prompt light curve and two well-defined bumps in the optical afterglow, obtaining an excellent agreement with the existing data.

  4. GRB 091208B: FIRST DETECTION OF THE OPTICAL POLARIZATION IN EARLY FORWARD SHOCK EMISSION OF A GAMMA-RAY BURST AFTERGLOW

    SciTech Connect

    Uehara, T.; Chiyonobu, S.; Fukazawa, Y.; Ikejiri, Y.; Itoh, R.; Komatsu, T.; Miyamoto, H.; Nagae, O.; Sakimoto, K.; Sasada, M.; Tanaka, H.; Yamanaka, M.; Toma, K.; Kawabata, K. S.; Mizuno, T.; Ohsugi, T.; Uemura, M.; Inoue, T.; Yamashita, T.; Nakaya, H.; and others

    2012-06-10

    We report that the optical polarization in the afterglow of GRB 091208B is measured at t = 149-706 s after the burst trigger, and the polarization degree is P = 10.4( {+-} 2.5%. The optical light curve at this time shows a power-law decay with index -0.75 {+-} 0.02, which is interpreted as the forward shock synchrotron emission, and thus this is the first detection of the early-time optical polarization in the forward shock (rather than that in the reverse shock reported by Steele et al.). This detection disfavors the afterglow model in which the magnetic fields in the emission region are random on the plasma skin depth scales, such as those amplified by the plasma instabilities, e.g., Weibel instability. We suggest that the fields are amplified by the magnetohydrodynamic instabilities, which would be tested by future observations of the temporal changes of the polarization degrees and angles for other bursts.

  5. GRB 030329: 3 years of radio afterglow monitoring.

    PubMed

    van der Horst, A J; Kamble, A; Wijers, R A M J; Resmi, L; Bhattacharya, D; Rol, E; Strom, R; Kouveliotou, C; Oosterloo, T; Ishwara-Chandra, C H

    2007-05-15

    Radio observations of gamma-ray burst (GRB) afterglows are essential for our understanding of the physics of relativistic blast waves, as they enable us to follow the evolution of GRB explosions much longer than the afterglows in any other wave band. We have performed a 3-year monitoring campaign of GRB 030329 with the Westerbork Synthesis Radio Telescopes and the Giant Metrewave Radio Telescope. Our observations, combined with observations at other wavelengths, have allowed us to determine the GRB blast wave physical parameters, such as the total burst energy and the ambient medium density, as well as to investigate the jet nature of the relativistic outflow. Further, by modelling the late-time radio light curve of GRB 030329, we predict that the Low-Frequency Array (30-240 MHz) will be able to observe afterglows of similar GRBs, and constrain the physics of the blast wave during its non-relativistic phase.

  6. GRB 110715A: the peculiar multiwavelength evolution of the first afterglow detected by ALMA

    NASA Astrophysics Data System (ADS)

    Sánchez-Ramírez, R.; Hancock, P. J.; Jóhannesson, G.; Murphy, Tara; de Ugarte Postigo, A.; Gorosabel, J.; Kann, D. A.; Krühler, T.; Oates, S. R.; Japelj, J.; Thöne, C. C.; Lundgren, A.; Perley, D. A.; Malesani, D.; de Gregorio Monsalvo, I.; Castro-Tirado, A. J.; D'Elia, V.; Fynbo, J. P. U.; Garcia-Appadoo, D.; Goldoni, P.; Greiner, J.; Hu, Y.-D.; Jelínek, M.; Jeong, S.; Kamble, A.; Klose, S.; Kuin, N. P. M.; Llorente, A.; Martín, S.; Nicuesa Guelbenzu, A.; Rossi, A.; Schady, P.; Sparre, M.; Sudilovsky, V.; Tello, J. C.; Updike, A.; Wiersema, K.; Zhang, B.-B.

    2017-02-01

    We present the extensive follow-up campaign on the afterglow of GRB 110715A at 17 different wavelengths, from X-ray to radio bands, starting 81 s after the burst and extending up to 74 d later. We performed for the first time a GRB afterglow observation with the ALMA observatory. We find that the afterglow of GRB 110715A is very bright at optical and radio wavelengths. We use the optical and near-infrared spectroscopy to provide further information about the progenitor's environment and its host galaxy. The spectrum shows weak absorption features at a redshift z = 0.8225, which reveal a host-galaxy environment with low ionization, column density, and dynamical activity. Late deep imaging shows a very faint galaxy, consistent with the spectroscopic results. The broad-band afterglow emission is modelled with synchrotron radiation using a numerical algorithm and we determine the best-fitting parameters using Bayesian inference in order to constrain the physical parameters of the jet and the medium in which the relativistic shock propagates. We fitted our data with a variety of models, including different density profiles and energy injections. Although the general behaviour can be roughly described by these models, none of them are able to fully explain all data points simultaneously. GRB 110715A shows the complexity of reproducing extensive multiwavelength broad-band afterglow observations, and the need of good sampling in wavelength and time and more complex models to accurately constrain the physics of GRB afterglows.

  7. The Nature of the Most Extreme Cosmic Explosions: Broadband Studies of Fermi LAT GRB Afterglows

    NASA Astrophysics Data System (ADS)

    Kidd, Lauren; Troja, E.

    2014-01-01

    In the five years since its launch, the Fermi Large Area Telescope (LAT) has revealed a population of gamma-ray bursts (GRBs) that are among the most energetic explosions ever observed. While typical GRB afterglows are observed from radio to X-rays, afterglows of Fermi LAT GRBs are detected up to GeV energies, challenging our understanding of GRB emission mechanisms and central engines. There are now a significant number of LAT-detected GRBs with multi-wavelength afterglow data and measured redshifts that allow us to investigate potential correlations between this high-energy (> 100 MeV) emission and the afterglow parameters and determine if any particular conditions (e.g., weak magnetic field or low density medium) must be met by the progenitor system in order to generate the bright GeV emission. We developed an afterglow fitting code to model and fit the broadband afterglow data in counts space, allowing us to directly test the model predictions on the observed data. The uncertainties in our results were derived using a Markov Chain Monte Carlo analysis, which allows us to uncover degeneracies between the physical parameters of the explosion. Here we present the preliminary results of our study of the population of Fermi LAT-detected GRBs.

  8. The SEDs and Host Galaxies of the Dustiest GRB Afterglows

    NASA Technical Reports Server (NTRS)

    Kruhler, T.; Greiner, J.; Schady, P.; Savaglio, S.; Afonso, P. M. J.; Clemens, C.; Elliott, J.; Filgas, R.; Gruber, D.; Kann, D. A.; Klose, S.; Kupcu-Yoldas, A.; McBreen, S.; Olivares, E.; Pierini, D.; Rau, A.; Rossi, A.; Nardini, M.; Nicuesa Guelbenzu, A.; Sudilovsky, V.; Updike, A. C.

    2011-01-01

    The afterglows and host galaxies of long gamma-ray bursts (GRBs) offer unique opportunities to study star-forming galaxies in the high-z Universe, Until recently, however. the information inferred from GRB follow-up observations was mostly limited to optically bright afterglows. biasing all demographic studies against sight-lines that contain large amounts of dust. Aims. Here we present afterglow and host observations for a sample of bursts that are exemplary of previously missed ones because of high visual extinction (A(sub v) (Sup GRB) approx > 1 mag) along the sight-line. This facilitates an investigation of the properties, geometry and location of the absorbing dust of these poorly-explored host galaxies. and a comparison to hosts from optically-selected samples. Methods. This work is based on GROND optical/NIR and Swift/XRT X-ray observations of the afterglows, and multi-color imaging for eight GRB hosts. The afterglow and galaxy spectral energy distributions yield detailed insight into physical properties such as the dust and metal content along the GRB sight-line as well as galaxy-integrated characteristics like the host's stellar mass, luminosity. color-excess and star-formation rate. Results. For the eight afterglows considered in this study we report for the first time the redshift of GRBs 081109 (z = 0.97S7 +/- 0.0005). and the visual extinction towards GRBs 0801109 (A(sub v) (Sup GRB) = 3.4(sup +0.4) (sub -0.3) mag) and l00621A (A(sub v) (Sup GRB) = 3.8 +/- 0.2 mag), which are among the largest ever derived for GRB afterglows. Combined with non-extinguished GRBs. there is a strong anti-correlation between the afterglow's metals-to-dust ratio and visual extinction. The hosts of the dustiest afterglows are diverse in their properties, but on average redder(((R - K)(sub AB)) approximates 1.6 mag), more luminous ( approximates 0.9 L (sup *)) and massive ((log M(sup *) [M(solar]) approximates 9.8) than the hosts of optically-bright events. We hence probe

  9. Circular polarization in the optical afterglow of GRB 121024A.

    PubMed

    Wiersema, K; Covino, S; Toma, K; van der Horst, A J; Varela, K; Min, M; Greiner, J; Starling, R L C; Tanvir, N R; Wijers, R A M J; Campana, S; Curran, P A; Fan, Y; Fynbo, J P U; Gorosabel, J; Gomboc, A; Götz, D; Hjorth, J; Jin, Z P; Kobayashi, S; Kouveliotou, C; Mundell, C; O'Brien, P T; Pian, E; Rowlinson, A; Russell, D M; Salvaterra, R; di Serego Alighieri, S; Tagliaferri, G; Vergani, S D; Elliott, J; Fariña, C; Hartoog, O E; Karjalainen, R; Klose, S; Knust, F; Levan, A J; Schady, P; Sudilovsky, V; Willingale, R

    2014-05-08

    Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets.

  10. Evidence for an Early High-Energy Afterglow Observed with BATSE from GRB 980923

    NASA Technical Reports Server (NTRS)

    Giblin, T. W.; vanParadijs, J.; Kouveliotou, C.; Connaughton, V.; Wijers, R. A. M. J.; Briggs, M. S.; Preece, R. D.; Fishman, G. J.

    1999-01-01

    In this Letter, we present the first evidence in the BATSE data for a prompt high-energy (25-300 keV) afterglow component from a gamma-ray burst, GRB 980923. The event consists of rapid variability lasting approximately 40 s followed by a smooth power-law emission tail lasting approximately 400 s. An abrupt change in spectral shape is found when the tail becomes noticeable. Our analysis reveals that the spectral evolution in the tail of the burst mimics that of a cooling synchrotron spectrum, similar to the spectral evolution of the low-energy afterglows for gamma-ray bursts. This evidence for a separate emission component is consistent with the internal-external shock scenario in the relativistic fireball picture. In particular, it illustrates that the external shocks can be generated during the gamma-ray emission phase, as in the case of GRB 990123.

  11. The SEDs and host galaxies of the dustiest GRB afterglows

    NASA Astrophysics Data System (ADS)

    Krühler, T.; Greiner, J.; Schady, P.; Savaglio, S.; Afonso, P. M. J.; Clemens, C.; Elliott, J.; Filgas, R.; Gruber, D.; Kann, D. A.; Klose, S.; Küpcü-Yoldaş, A.; McBreen, S.; Olivares, F.; Pierini, D.; Rau, A.; Rossi, A.; Nardini, M.; Nicuesa Guelbenzu, A.; Sudilovsky, V.; Updike, A. C.

    2011-10-01

    Context. The afterglows and host galaxies of long gamma-ray bursts (GRBs) offer unique opportunities to study star-forming galaxies in the high-z Universe. Until recently, however, the information inferred from GRB follow-up observations was mostly limited to optically bright afterglows, biasing all demographic studies against sight-lines that contain large amounts of dust. Aims: Here we present afterglow and host observations for a sample of bursts that are exemplary of previously missed ones because of high visual extinction (AVGRB ≳ 1 mag) along the sight-line. This facilitates an investigation of the properties, geometry, and location of the absorbing dust of these poorly-explored host galaxies, and a comparison to hosts from optically-selected samples. Methods: This work is based on GROND optical/NIR and Swift/XRT X-ray observations of the afterglows, and multi-color imaging for eight GRB hosts. The afterglow and galaxy spectral energy distributions yield detailed insight into physical properties such as the dust and metal content along the GRB sight-line and galaxy-integrated characteristics such as the host's stellar mass, luminosity, color-excess, and star-formation rate. Results: For the eight afterglows considered in this study, we report for the first time the redshift of GRB 081109 (z = 0.9787 ± 0.0005), and the visual extinction towards GRBs 081109 (AVGRB = 3.4-0.3+0.4 mag) and 100621A (AVGRB = 3.8±0.2 mag), which are among the largest ever derived for GRB afterglows. Combined with non-extinguished GRBs, there is a strong anti-correlation between the afterglow's metal-to-dust ratio and visual extinction. The hosts of the dustiest afterglows are diverse in their properties, but on average redder (⟨ (R - K)AB ⟩ ~ 1.6 mag), more luminous (⟨ L ⟩ ~ 0.9 L∗), and massive (⟨ log M∗ [M⊙] ⟩ ~ 9.8) than the hosts of optically-bright events. Hence, we probe a different galaxy population, suggesting that previous host samples miss most of the

  12. GRB afterglows in the nonrelativistic phase

    NASA Astrophysics Data System (ADS)

    Huang, Y. F.; Lu, T.

    2008-10-01

    When discussing the afterglows of gamma-ray bursts analytically, it is usually assumed that the external shock is always ultra-relativisitc, with the bulk Lorentz factor much larger than 1. However, we show that the deceleration of the external shock is actually very quick. The afterglow may typically enter the nonrelativistic phase in several days to teens of days, and may even enter the deep Newtonian phase in tens of days to several months. One thus should be careful in using those familiar analytical expressions that are derived only under the ultra-relativistic assumption. To explain the observed afterglows that typically last for a few weeks to several months, we need to consider the dynamics and radiation in the nonrelativisitic phase.

  13. Early GRB Afterglows from Reverse Shocks in Ultra-relativistic, Long-lasting Winds

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Camilo Jaramillo, Juan

    2017-02-01

    We develop a model of early Gamma-Ray Burst (GRB) afterglows with dominant X-ray contribution from the reverse shock (RS) propagating in highly relativistic (Lorentz factor γw ∼ 106) magnetized wind of a long-lasting central engine. The model reproduces, in a fairly natural way, the overall trends and yet allows for variations in the temporal and spectral evolution of early optical and X-ray afterglows. The high energy and the optical synchrotron emission from the RS particles occurs in the fast cooling regime; the resulting synchrotron power Ls is a large fraction of the wind luminosity, {L}s≈ {L}w/\\sqrt{1+{σ }w} (Lw and σw are wind power and magnetization). Thus, plateaus—parts of afterglow light curves that show slowly decreasing spectral power—are a natural consequence of the RS emission. Contribution from the forward shock (FS) is negligible in the X-rays, but in the optical both FS and RS contribute similarly: FS optical emission is in the slow cooling regime, producing smooth components, while RS optical emission is in the fast cooling regime, and thus can both produce optical plateaus and account for fast optical variability correlated with the X-rays, e.g., due to changes in the wind properties. We discuss how the RS emission in the X-rays and combined FS and RS emission in the optical can explain many puzzling properties of early GRB afterglows.

  14. Detailed Study of the Variable Afterglow of GRB 060526

    SciTech Connect

    Johannesson, G.; Thoene, C. C.; Fynbo, J. P. U.; Kann, D. A.; Selj, J. H.; Jaunsen, A.; Hanlon, L.; French, J.

    2009-05-25

    Using one of the largest photometric datasets ever obtained for a GRB, we investigate the highly variable afterglow light curve of Gamma-Ray Burst 060526. The light curve shows clear deviations from a power-law behaviour which we attribute to energy injections. We fit the data to a numerical model including 6 energy injections which explains the full temporal behaviour of the light curve in many wavebands, ranging from NIR to X-rays.

  15. Spectroscopic Observations of the Bright Afterglow of GRB021004

    NASA Astrophysics Data System (ADS)

    Harrison, Fiona

    2001-09-01

    One of the holy grails of gamma-ray burst research is to detect X-ray line signatures from an afterglow with high statistical significance. Of all possible observations, this perhaps offers the best chance of constraining the GRB mechanism and environment, and could provide the "smoking gun" signature connecting GRBs to massive stellar deaths. In order to accomplish this, we know long observations within one day of the event are necessary.

  16. GRB afterglows: Dust extinction properties from the low to high redshift universe

    NASA Astrophysics Data System (ADS)

    Zafar, Tayyaba

    2016-11-01

    Long-duration Gamma-ray bursts (GRBs) are excellent probes to study dust extinction due to their occurrence in star-forming regions and having simple synchrotron emission spectra. Inclusion of spectroscopic data to the GRB X-ray to the infrared spectral energy distribution (SED) could better define the continuum and confirm extinction feature. A preliminary SED analysis of GRB afterglows targeted with the VLT/X-Shooter spectrograph finds that all the 60% of extinguished bursts fit-well with featureless extinction curves. The longer wavelength coverage from ultraviolet to the near-infrared of X-Shooter helps to derive individual extinction curves and determine the total-to-selective extinction, RV precisely, suggesting extinction curves steeper (with a mean of RV = 2.66 ± 0.10) than the Small Magellanic Cloud. Moreover, addition of more data to the study of dust-to-metals ratios in GRB afterglows, quasar absorbers, and multiply lensed galaxies still shows the dust-to-metals ratios close to the Galactic value (with a mean value of log - 21.2cm-2mag-1), hinting short time delay between metals and dust formation. Such studies demonstrate the strength of using GRB afterglows to study dust origin and its properties the from low to high redshift Universe.

  17. The Supercritical Pile Gamma-Ray Burst Model: The GRB Afterglow Steep Decline and Plateau Phase

    NASA Technical Reports Server (NTRS)

    Sultana, Joseph; Kazanas, D.; Mastichiadis, A.

    2013-01-01

    We present a process that accounts for the steep decline and plateau phase of the Swift X-Ray Telescope (XRT) light curves, vexing features of gamma-ray burst (GRB) phenomenology. This process is an integral part of the "supercritical pile" GRB model, proposed a few years ago to account for the conversion of the GRB kinetic energy into radiation with a spectral peak at E(sub pk) is approx. m(sub e)C(exp 2). We compute the evolution of the relativistic blast wave (RBW) Lorentz factor Gamma to show that the radiation-reaction force due to the GRB emission can produce an abrupt, small (approx. 25%) decrease in Gamma at a radius that is smaller (depending on conditions) than the deceleration radius R(sub D). Because of this reduction, the kinematic criticality criterion of the "supercritical pile" is no longer fulfilled. Transfer of the proton energy into electrons ceases and the GRB enters abruptly the afterglow phase at a luminosity smaller by approx. m(sub p)/m(sub e) than that of the prompt emission. If the radius at which this slow-down occurs is significantly smaller than R(sub D), the RBW internal energy continues to drive the RBW expansion at a constant (new) Gamma and its X-ray luminosity remains constant until R(sub D) is reached, at which point it resumes its more conventional decay, thereby completing the "unexpected" XRT light curve phase. If this transition occurs at R is approx. equal to R(sub D), the steep decline is followed by a flux decrease instead of a "plateau," consistent with the conventional afterglow declines. Besides providing an account of these peculiarities, the model suggests that the afterglow phase may in fact begin before the RBW reaches R is approx. equal to R(sub D), thus providing novel insights into GRB phenomenology.

  18. CALORIMETRY OF GRB 030329: SIMULTANEOUS MODEL FITTING TO THE BROADBAND RADIO AFTERGLOW AND THE OBSERVED IMAGE EXPANSION RATE

    SciTech Connect

    Mesler, Robert A.; Pihlstroem, Ylva M.

    2013-09-01

    We perform calorimetry on the bright gamma-ray burst GRB 030329 by fitting simultaneously the broadband radio afterglow and the observed afterglow image size to a semi-analytic MHD and afterglow emission model. Our semi-analytic method is valid in both the relativistic and non-relativistic regimes, and incorporates a model of the interstellar scintillation that substantially effects the broadband afterglow below 10 GHz. The model is fitted to archival measurements of the afterglow flux from 1 day to 8.3 yr after the burst. Values for the initial burst parameters are determined and the nature of the circumburst medium is explored. Additionally, direct measurements of the lateral expansion rate of the radio afterglow image size allow us to estimate the initial Lorentz factor of the jet.

  19. THE UNUSUAL RADIO AFTERGLOW OF THE ULTRA-LONG GAMMA-RAY BURST GRB 130925A

    SciTech Connect

    Horesh, Assaf; Cenko, S. Bradley; Perley, Daniel A.; Kulkarni, S. R.; Hallinan, Gregg; Bellm, Eric

    2015-10-10

    GRB 130925A is one of the recent additions to the growing family of ultra-long gamma-ray bursts (GRBs; T90 ≳1000 s). While the X-ray emission of ultra-long GRBs have been studied extensively in the past, no comprehensive radio data set has been obtained so far. We report here the early discovery of an unusual radio afterglow associated with the ultra-long GRB 130925A. The radio emission peaks at low-frequencies (∼7 GHz) at early times, only 2.2 days after the burst occurred. More notably, the radio spectrum at frequencies above 10 GHz exhibits a rather steep cut-off, compared to other long GRB radio afterglows. This cut-off can be explained if the emitting electrons are either mono-energetic or originate from a rather steep, dN/dE ∝ E{sup −4}, power-law energy distribution. An alternative electron acceleration mechanism may be required to produce such an electron energy distribution. Furthermore, the radio spectrum exhibits a secondary underlying and slowly varying component. This may hint that the radio emission we observed is comprised of emission from both a reverse and a forward shock. We discuss our results in comparison with previous works that studied the unusual X-ray spectrum of this event and discuss the implications of our findings on progenitor scenarios.

  20. Gamma-Ray Bursts: Afterglow and Prompt Emission Models

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    2008-10-01

    Swift observations have revealed interesting but puzzling data that demand a rethink of the origins of gamma-ray bursts (GRBs) and their afterglows. The chromatic breaks in X-ray/optical afterglow lightcurves stimulated several innovative suggestions, most invoking a non-forward-shock origin of the X-ray afterglows. The status of both the observational facts and the theoretical models is critically reviewed. Besides the late ``internal'' emission from a long-live central engine, most observed X-ray afterglows likely still include the contribution of the traditional forward shock component. The physical nature (e.g. energy dissipation mechanism, emission site, and radiation mechanism) of the GRB prompt emission is currently not identified. The motivations and issues of three proposed prompt emission sites are reviewed. Several independent methods, invoking prompt gamma-ray, X-ray, optical and GeV emission information, respectively, have been applied to constrain the unknown emission site. Tentative evidence suggests a large prompt emission radius. Finally, the implications of the broad band high quality data of the ``naked eye'' GRB 080319B for our understanding of the afterglow and prompt emission mechanisms are discussed.

  1. Evidence for an Early High-Energy Afterglow Observed with BATSE from GRB980923

    NASA Technical Reports Server (NTRS)

    Giblin, Tim; vanParadijs, Jan; Kouveliotou, Chryssa; Connaughton, Valerie; Wijers, Ralph A. M. J.; Fishman, Gerald

    1999-01-01

    In this letter, we present for the first time evidence in the BATSE data for a prompt high-energy (25-300 keV) afterglow component from a Gamma-Ray Burst (GRB), GRB980923. The event ranks third highest in fluence (>25 keV) in the BATSE catalog and consists of a period of rapid variability lasting about 40 s followed by a smooth power law emission tail lasting about 400 s beyond the trigger time. An abrupt change in spectral shape is found when the tail becomes noticeable. Our analysis reveals that the spectral evolution in the tail of the burst mimics that of a cooling synchrotron spectrum, similar to the spectral evolution of the low-energy afterglows for GRBS. This evidence for a separate emission component is consistent with the internal-external shock scenario in the relativistic fireball picture. In particular, it illustrates that the external shocks can be generated during the primary gamma-ray emission phase, as in the case of GRB990123.

  2. GRB 080503 LATE AFTERGLOW RE-BRIGHTENING: SIGNATURE OF A MAGNETAR-POWERED MERGER-NOVA

    SciTech Connect

    Gao, He; Ding, Xuan; Wu, Xue-Feng; Dai, Zi-Gao; Zhang, Bing E-mail: xfwu@pmo.ac.cn E-mail: zhang@physics.unlv.edu

    2015-07-10

    GRB 080503 is a short gamma-ray burst (GRB) detected by Swift and has been classified as a GRB originating from a compact star merger. The soft extended emission and the simultaneous late re-brightening in both the X-ray and optical afterglow light curves raise interesting questions regarding its physical origin. We show that the broadband data of GRB 080503 can be well explained within the framework of the double neutron star merger model, provided that the merger remnant is a rapidly rotating massive neutron star with an extremely high magnetic field (i.e., a millisecond magnetar). We show that the late optical re-brightening is consistent with the emission from a magnetar-powered “merger-nova.” This adds one more case to the growing sample of merger-novae associated with short GRBs. The soft extended emission and the late X-ray excess emission are well connected through a magnetar dipole spin-down luminosity evolution function, suggesting that direct magnetic dissipation is the mechanism to produce these X-rays. The X-ray emission initially leaks from a hole in the merger ejecta pierced by the short GRB jet. The hole subsequently closes after the magnetar spins down and the magnetic pressure drops below ram pressure. The X-ray photons are then trapped behind the merger-nova ejecta until the ejecta becomes optically thin at a later time. This explains the essentially simultaneous re-brightening in both the optical and X-ray light curves. Within this model, future gravitational-wave sources could be associated with a bright X-ray counterpart along with the merger-nova, even if the short GRB jet beams away from Earth.

  3. The 'Supercritical Pile' GRB Model: Afterglows and GRB, XRR, XRF Unification

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    2007-01-01

    We present the general notions and observational consequences of the "Supercritical Pile" GRB model; the fundamental feature of this model is a detailed process for the conversion of the energy stored in relativistic protons in the GRB Relativistic Blast Waves (RBW) into relativistic electrons and then into radiation. The conversion is effected through the $p \\, \\gamma \\rightarrow p \\, e circumflex + e circumflex -$ reaction, whose kinematic threshold is imprinted on the GRB spectra to provide a peak of their emitted luminosity at energy \\Ep $\\sim 1$ MeV in the lab frame. We extend this model to include, in addition to the (quasi--)thermal relativistic post-shock protons an accelerated component of power law form. This component guarantees the production of $e circumflex +e circumflex- - $pairs even after the RBW has slowed down to the point that its (quasi-) thermal protons cannot fulfill the threshold of the above reaction. We suggest that this last condition marks the transition from the prompt to the afterglow GRB phase. We also discuss conditions under which this transition is accompanied by a significant drop in the flux and could thus account for several puzzling, recent observations. Finally, we indicate that the same mechanism applied to the late stages of the GRB evolution leads to a decrease in \\Ep $\\propto \\Gamma circumflex 2(t)\\propto t circumflex {-3/4}$, a feature amenable to future observational tests.

  4. GRB 110731A: Early Afterglow in Stellar Wind Powered By a Magnetized Outflow

    NASA Astrophysics Data System (ADS)

    Fraija, N.

    2015-05-01

    One of the most energetic gamma-ray bursts, GRB 110731A, was observed from an optical to GeV energy range. Previous analysis of the prompt phase revealed similarities between the Large Area Telescope (LAT) bursts observed by Fermi: (1) a delayed onset of the high-energy emission (\\gt 100 MeV), (2) a short-lasting bright peak at later times, and (3) a temporally extended component from this phase, lasting hundreds of seconds. Additionally to the prompt phase, multiwavelength observations over different epochs showed that the spectral energy distribution was better fitted by a wind afterglow model. We present a leptonic model based on an early afterglow that evolves in a stellar wind of its progenitor. We apply this model to interpret the temporally extended LAT emission and the brightest LAT peak exhibited by the prompt phase of GRB 110731A. Additionally, using the same set of parameters, we describe the multiwavelength afterglow observations. The origin of the temporally extended LAT, X-ray, and optical flux is explained through synchrotron radiation from the forward shock (FS) and the brightest LAT peak is described, evoking the synchrotron self-Compton emission from the reverse shock (RS). The bulk Lorentz factor required in this model (Γ ≃ 520) lies in the range of values demanded for most LAT-detected GRBs. We show that the strength of the magnetic field in the RS region is ∼50 times stronger than that in the FS region. This result suggests that, for GRB 110731A, the central engine is likely entrained with strong magnetic fields.

  5. Rapid Identification of GRB Afterglows with Swift/UVOT

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.

    2006-01-01

    As part of the automated response to a new gamma-ray burst (GRB), the Ultraviolet and Optical Telescope (UVOT) instrument on Swift starts a 200-second exposure with the V filter within approximately 100 seconds of the BAT burst trigger. The instrument searches for sources in a 8' x 8' region, and sends the list of sources and a 160" x 160" sub-image centered on the burst position to the ground via Tracking and Data Relay Satellite System (TDRSS). These raw products and additional products calculated on the ground are then distributed through the GCN within a few minutes of the trigger. We describe the sensitivity of these data for detecting afterglows, summarize current results, and outline plans for rapidly distributing future detections.

  6. A possible macronova in the late afterglow of the long-short burst GRB 060614.

    PubMed

    Yang, Bin; Jin, Zhi-Ping; Li, Xiang; Covino, Stefano; Zheng, Xian-Zhong; Hotokezaka, Kenta; Fan, Yi-Zhong; Piran, Tsvi; Wei, Da-Ming

    2015-06-11

    Long-duration (>2 s) γ-ray bursts that are believed to originate from the death of massive stars are expected to be accompanied by supernovae. GRB 060614, that lasted 102 s, lacks a supernova-like emission down to very stringent limits and its physical origin is still debated. Here we report the discovery of near-infrared bump that is significantly above the regular decaying afterglow. This red bump is inconsistent with even the weakest known supernova. However, it can arise from a Li-Paczyński macronova--the radioactive decay of debris following a compact binary merger. If this interpretation is correct, GRB 060614 arose from a compact binary merger rather than from the death of a massive star and it was a site of a significant production of heavy r-process elements. The significant ejected mass favours a black hole-neutron star merger but a double neutron star merger cannot be ruled out.

  7. A possible macronova in the late afterglow of the long-short burst GRB 060614

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Jin, Zhi-Ping; Li, Xiang; Covino, Stefano; Zheng, Xian-Zhong; Hotokezaka, Kenta; Fan, Yi-Zhong; Piran, Tsvi; Wei, Da-Ming

    2015-06-01

    Long-duration (>2 s) γ-ray bursts that are believed to originate from the death of massive stars are expected to be accompanied by supernovae. GRB 060614, that lasted 102 s, lacks a supernova-like emission down to very stringent limits and its physical origin is still debated. Here we report the discovery of near-infrared bump that is significantly above the regular decaying afterglow. This red bump is inconsistent with even the weakest known supernova. However, it can arise from a Li-Paczyński macronova--the radioactive decay of debris following a compact binary merger. If this interpretation is correct, GRB 060614 arose from a compact binary merger rather than from the death of a massive star and it was a site of a significant production of heavy r-process elements. The significant ejected mass favours a black hole-neutron star merger but a double neutron star merger cannot be ruled out.

  8. GRB Discoveries with Swift

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    This brief presentation presents Swift Observatory recordings of gamma ray burst (GRB) activity. Long and short GRBs and afterglows are highlighted. Recordings of GRB emission, afterglow, optical/IR brightness, and flux density are presented. The time structure and current status of short GRB structures is also included.

  9. The puzzling afterglow of GRB 050721: a rebrightening seen in the optical but not in the X-ray

    SciTech Connect

    Antonelli, L. A.; Romano, P.; Testa, V.; D'Elia, V.; Guetta, D.; Torii, K.; Malesani, D.

    2007-08-21

    We present here the analysis of the early and late multiwavelength afterglow emission, as observed by Swift a small robotic telescope, and the VLT. We compare early observations with late afterglow observations obtained with Swift and the VLT and we observe an intense rebrightening in the optical band at about one day after the burst which is not present in the X-ray band. The lack of detection in X-ray of such a strong rebrightening at lower energies may be described with a variable external density profile. In such a scenario, the combined X-ray and optical observations allow us to derive that the matter density located at {approx} 1017 cm from the burst is about a factor of 10 higher than in the inner region. This is the first time in which a rebrightening has been observed in the optical afterglow of a GRB that is clearly absent in the X-ray afterglow.

  10. Swift Late GRB Emission and GLAST

    SciTech Connect

    Butler, Nathaniel

    2007-07-12

    Recent observations of early X-ray afterglows of GRBs by the Swift satellite - prior to t {approx} 103s but well after the end of the burst - show most GRBs to be followed by highly time and energy variable emission. This was unexpected prior to Swift and physical mechanisms remain largely mysterious. The spectra exhibit a strong hard-to-soft evolution which tracks the flux, consistent with a well-established hardness intensity correlation for the prompt Gamma-ray emission. The light curves show dramatic flares or rapid logarithmic time decays. In the simplest interpretation, this emission is GRB-like and indicates a long lived energy source with the possibility of interacting shells of widely varying bulk Lorentz factor. We review the phenomenology in order to ascertain how GLAST observations of this early emission, either detected directly or through the detection of inverse-Compton emission, can help to rule on possible models.

  11. Constraints on an Optical Afterglow and on Supernova Light Following the Short Burst GRB 050813

    NASA Technical Reports Server (NTRS)

    Ferrero, P.; Sanchez, S. F.; Kann, D. A.; Klose, S.; Greiner, J.; Gorosabel, J.; Hartmann, D. H.; Henden, A. A.; Moller, P.; Palazzi, E.; Rau, A.; Stecklum, B.; Castro-Tirado, A. J.; Fynbok J. P. U.; Hjorth, J.; Jakobsson, P.; Kouveliotou, C.; Masetti, N.; Pian, E.; Tanvir, N. R.; Wijers, R. A. M. J.

    2006-01-01

    We report early follow-up observations of the error box of the short burst 050813 using the telescopes at Calar Alto and at Observatorio Sierra Nevada (OSN), followed by deep VLT/FORS2 I-band observations obtained under very good seeing conditions 5.7 and 11.7 days after the event. No evidence for a GRB afterglow was found in our Calar Alto and OSN data, no rising supernova component was detected in our FORS2 images. A potential host galaxy can be identified in our FORS2 images, even though we cannot state with certainty its association with GRB 050813. IN any case, the optical afterglow of GRB 050813 was very faint, well in agreement with what is known so far about the optical properties of afterglows of short bursts. We conclude that all optical data are not in conflict with the interpretation that GRB 050813 was a short burst.

  12. THE PROPERTIES OF THE 2175 A EXTINCTION FEATURE DISCOVERED IN GRB AFTERGLOWS

    SciTech Connect

    Zafar, Tayyaba; Watson, Darach; Eliasdottir, Ardis; Fynbo, Johan P. U.; Kruehler, Thomas; Leloudas, Giorgos; Schady, Patricia; Greiner, Jochen; Jakobsson, Pall; Thoene, Christina C.; Perley, Daniel A.; Morgan, Adam N.; Bloom, Joshua E-mail: darach@dark-cosmology.dk

    2012-07-01

    The unequivocal, spectroscopic detection of the 2175 A bump in extinction curves outside the Local Group is rare. To date, the properties of the bump have been examined in only two gamma-ray burst (GRB) afterglows (GRB 070802 and GRB 080607). In this work, we analyze in detail the detections of the 2175 Angstrom-Sign extinction bump in the optical spectra of two further GRB afterglows: GRB 080605 and 080805. We gather all available optical/near-infrared photometric, spectroscopic, and X-ray data to construct multi-epoch spectral energy distributions (SEDs) for both GRB afterglows. We fit the SEDs with the Fitzpatrick and Massa model with a single or broken power law. We also fit a sample of 38 GRB afterglows, known to prefer a Small Magellanic Cloud (SMC)-type extinction curve, with the same model. We find that the SEDs of GRB 080605 and GRB 080805 at two epochs are fit well with a single power law with a derived extinction of A{sub V} = 0.52{sup +0.13}{sub -0.16} and 0.50{sup +0.13}{sub -0.10}, and 2.1{sup +0.7}{sub -0.6} and 1.5 {+-} 0.2, respectively. While the slope of the extinction curve of GRB 080805 is not well constrained, the extinction curve of GRB 080605 has an unusual very steep far-UV rise together with the 2175 A bump. Such an extinction curve has previously been found in only a small handful of sightlines in the Milky Way. One possible explanation of such an extinction curve may be dust arising from two different regions with two separate grain populations, however we cannot distinguish the origin of the curve. We finally compare the four 2175 A bump sightlines to the larger GRB afterglow sample and to Local Group sightlines. We find that while the width and central positions of the bumps are consistent with what is observed in the Local Group, the relative strength of the detected bump (A{sub bump}) for GRB afterglows is weaker for a given A{sub V} than for almost any Local Group sightline. Such dilution of the bump strength may offer tentative

  13. THE AFTERGLOW AND ENVIRONMENT OF THE SHORT GRB 111117A

    SciTech Connect

    Margutti, R.; Berger, E.; Fong, W.; Zauderer, B. A.; Soderberg, A. M.; Milisavljevic, D.; Sanders, N.; Cenko, S. B.; Greiner, J.; Cucchiara, A.

    2012-09-01

    We present multi-wavelength observations of the afterglow of the short GRB 111117A, and follow-up observations of its host galaxy. From rapid optical and radio observations, we place limits of r {approx}> 25.5 mag at {delta}t Almost-Equal-To 0.55 days and F{sub {nu}}(5.8 GHz) {approx}< 18 {mu}Jy at {delta}t Almost-Equal-To 0.50 days, respectively. However, using a Chandra observation at {delta}t Almost-Equal-To 3.0 days we locate the absolute position of the X-ray afterglow to an accuracy of 0.''22 (1{sigma}), a factor of about six times better than the Swift/XRT position. This allows us to robustly identify the host galaxy and to locate the burst at a projected offset of 1.''25 {+-} 0.''20 from the host centroid. Using optical and near-IR observations of the host galaxy we determine a photometric redshift of z = 1.3{sup +0.3}{sub -0.2}, one of the highest for any short gamma-ray burst (GRB), leading to a projected physical offset for the burst of 10.5 {+-} 1.7 kpc, typical of previous short GRBs. At this redshift, the isotropic {gamma}-ray energy is E{sub {gamma},iso} Almost-Equal-To 3.0 Multiplication-Sign 10{sup 51} erg (rest-frame 23-2300 keV) with a peak energy of E{sub pk} Almost-Equal-To 850-2300 keV (rest-frame). In conjunction with the isotropic X-ray energy, GRB 111117A appears to follow our recently reported E{sub x,iso}-E{sub {gamma},iso}-E{sub pk} universal scaling. Using the X-ray data along with the optical and radio non-detections, we find that for a blastwave kinetic energy of E{sub K,iso} Almost-Equal-To E{sub {gamma},iso} erg, the circumburst density is n{sub 0} Almost-Equal-To 3 Multiplication-Sign 10{sup -4} - 1 cm{sup -3} (for a range of {epsilon}{sub B} = 0.001-0.1). Similarly, from the non-detection of a break in the X-ray light curve at {delta}t {approx}< 3 days, we infer a minimum opening angle for the outflow of {theta}{sub j} {approx}> 3-10 Degree-Sign (depending on the circumburst density). We conclude that Chandra observations of short

  14. Afterglow rebrightenings as a signature of a long-lasting central engine activity?. The emblematic case of GRB 100814A

    NASA Astrophysics Data System (ADS)

    Nardini, M.; Elliott, J.; Filgas, R.; Schady, P.; Greiner, J.; Krühler, T.; Klose, S.; Afonso, P.; Kann, D. A.; Nicuesa Guelbenzu, A.; Olivares E., F.; Rau, A.; Rossi, A.; Sudilovsky, V.; Schmidl, S.

    2014-02-01

    Context. In the past few years the number of well-sampled optical to near-infrared (NIR) light curves of long gamma-ray bursts (GRBs) has greatly increased, particularly due to simultaneous multi-band imagers such as GROND. Combining these densely sampled ground-based data sets with the Swift UVOT and XRT space observations unveils a much more complex afterglow evolution than what was predicted by the most commonly invoked theoretical models. GRB 100814A represents a remarkable example of these interesting well-sampled events, showing a prominent late-time rebrightening in the optical to NIR bands and a complex spectral evolution. This represents a unique laboratory to test the different afterglow emission models. Aims: Here we study the nature of the complex afterglow emission of GRB 100814A in the framework of different theoretical models. Moreover, we compare the late-time chromatic rebrightening with those observed in other well-sampled long GRBs. Methods: We analysed the optical and NIR observations obtained with the seven-channel Gamma-Ray burst Optical and Near-infrared Detector (GROND) at the 2.2 m MPG/ESO telescope together with the X-ray and UV data detected by the instruments onboard the Swift observatory. The broad-band afterglow evolution, achieved by constructing multi-instrument light curves and spectral energy distributions, is discussed in the framework of different theoretical models. Results: We find that the standard models that describe the broad-band afterglow emission within the external shock scenario fail to describe the complex evolution of GRB 100814A, and therefore more complex scenarios must be invoked. The analysis of the very well sampled broad-band light curve of GRB 100814A allowed us to deduce that models invoking late-time activity of the central engine in the observed afterglow emission are the preferred ones for all the different observed features. This late-time activity most likely has the form of a delayed reactivation of the

  15. Study of GRB Light-curve Decay Indices in the Afterglow Phase

    NASA Astrophysics Data System (ADS)

    Del Vecchio, Roberta; Dainotti, Maria Giovanna; Ostrowski, Michał

    2016-09-01

    In this work, we study the distribution of temporal power-law decay indices, α, in the gamma-ray burst (GRB) afterglow phase, fitted for 176 GRBs (139 long GRBs, 12 short GRBs with extended emission, and 25 X-ray flashes) with known redshifts. These indices are compared with the temporal decay index, α W , derived with the light-curve fitting using the Willingale et al. model. This model fitting yields similar distributions of α W to the fitted α, but for individual bursts a difference can be significant. Analysis of (α, L a ) distribution, where L a is the characteristic luminosity at the end of the plateau, reveals only a weak correlation of these quantities. However, we discovered a significant regular trend when studying GRB α values along the Dainotti et al. correlation between L a and the end time of the plateau emission in the rest frame, {T}a* , hereafter LT correlation. We note a systematic variation of the α parameter distribution with luminosity for any selected {T}a* . We analyze this systematics with respect to the fitted LT correlation line, expecting that the presented trend may allow us to constrain the GRB physical models. We also attempted to use the derived correlation of α ({T}a) versus {L}a({T}a) to diminish the luminosity scatter related to the variations of α along the LT distribution, a step forward in the effort of standardizing GRBs. A proposed toy model accounting for this systematics applied to the analyzed GRB distribution results in a slight increase of the LT correlation coefficient.

  16. Spectral Energy Distributions and Light Curves of GRB 990123 and Its Afterglow

    NASA Technical Reports Server (NTRS)

    Galama, T. J.; Briggs, M. S.; Wijers,R. A. M. J.; Vreeswijk, P. M.; Rol, E.; Band, D.; vanParadijs, J.; Kouveliotou, C.; Preece, R. D.

    1999-01-01

    Gamma-ray bursts (GRBs) are thought to result from the interaction of an extremely relativistic outflow interacting with a small amount of material surrounding the site of the explosion. Multi-wavelength observations covering the gamma-ray to radio wavebands allow investigations of this "fireball" model. On 23 January 1999 optical emission was detected while the gamma-ray burst was still underway. Here we report the results of gamma-ray, optical/infra-red, sub-mm, mm and radio observations of this burst and its afterflow, which indicate that the prompt and afterflow emissions from GRB 990123 are associated with three distinct regions in the fireball. The afterglow one day after the burst has a much lower peak frequency than those of previous bursts; this explains the short-lived nature of the radio emission, which is not expected to reapear. We suggest that such differences reflect variations in the magnetic-field strengths in the afterglow emitting regions.

  17. GEMINI SPECTROSCOPY OF THE SHORT-HARD GAMMA-RAY BURST GRB 130603B AFTERGLOW AND HOST GALAXY

    SciTech Connect

    Cucchiara, A.; Prochaska, J. X.; Werk, J.; Cenko, S. B.; Cardwell, A.; Turner, J.; Bloom, J. S.; Cobb, B. E.

    2013-11-10

    We present early optical photometry and spectroscopy of the afterglow and host galaxy of the bright short-duration gamma-ray burst GRB 130603B discovered by the Swift satellite. Using our Target of Opportunity program on the Gemini South telescope, our prompt optical spectra reveal a strong trace from the afterglow superimposed on continuum and emission lines from the z = 0.3568 ± 0.0005 host galaxy. The combination of a relatively bright optical afterglow (r' = 21.52 at Δt = 8.4 hr), together with an observed offset of 0.''9 from the host nucleus (4.8 kpc projected distance at z = 0.3568), allow us to extract a relatively clean spectrum dominated by afterglow light. Furthermore, the spatially resolved spectrum allows us to constrain the properties of the explosion site directly, and compare these with the host galaxy nucleus, as well as other short-duration GRB host galaxies. We find that while the host is a relatively luminous (L∼0.8 L{sup *}{sub B}), star-forming (SFR = 1.84 M{sub ☉} yr{sup –1}) galaxy with almost solar metallicity, the spectrum of the afterglow exhibits weak Ca II absorption features but negligible emission features. The explosion site therefore lacks evidence of recent star formation, consistent with the relatively long delay time distribution expected in a compact binary merger scenario. The star formation rate (SFR; both in an absolute sense and normalized to the luminosity) and metallicity of the host are both consistent with the known sample of short-duration GRB hosts and with recent results which suggest GRB 130603B emission to be the product of the decay of radioactive species produced during the merging process of a neutron-star-neutron-star binary ({sup k}ilonova{sup )}. Ultimately, the discovery of more events similar to GRB 130603B and their rapid follow-up from 8 m class telescopes will open new opportunities for our understanding of the final stages of compact-objects binary systems and provide crucial information

  18. DISCOVERY OF THE VERY RED NEAR-INFRARED AND OPTICAL AFTERGLOW OF THE SHORT-DURATION GRB 070724A

    SciTech Connect

    Berger, E.; Cenko, S. B.; Fox, D. B.; Cucchiara, A.

    2009-10-10

    We report the discovery of the near-infrared and optical afterglow of the short-duration gamma-ray burst GRB 070724A. The afterglow is detected in iJHK{sub s} observations starting 2.3 hr after the burst with K{sub s} = 19.59 +- 0.16 mag and i = 23.79 +- 0.07 mag, but is absent in images obtained 1.3 yr later. Fading is also detected in the K{sub s} band between 2.8 and 3.7 hr at a 4sigma significance level. The optical/near-IR spectral index, beta{sub O,NIR} approx -2, is much redder than expected in the standard afterglow model, pointing to either significant dust extinction, A {sup host} {sub V} approx 2 mag, or a non-afterglow origin for the near-IR emission. The case for extinction is supported by a shallow optical to X-ray spectral index, consistent with the definition for 'dark bursts', and a normal near-IR to X-ray spectral index. Moreover, a comparison to the optical discovery magnitudes of all short GRBs with optical afterglows indicates that the near-IR counterpart of GRB 070724A is one of the brightest to date, while its observed optical emission is one of the faintest. In the context of a non-afterglow origin, the near-IR emission may be dominated by a mini-supernova (mini-SN), leading to an estimated ejected mass of M approx 10{sup -4} M {sub sun} and a radioactive energy release efficiency of f approx 5 x 10{sup -3} (for v approx 0.3c). However, the mini-SN model predicts a spectral peak in the UV rather than near-IR, suggesting that this is either not the correct interpretation or that the mini-SN models need to be revised. Finally, the afterglow coincides with a star-forming galaxy at z = 0.457, previously identified as the host based on its coincidence with the X-ray afterglow position (approx2'' radius). Our discovery of the optical/near-IR afterglow makes this association secure, and furthermore localizes the burst to the outskirts of the galaxy, with an offset of 4.8 +- 0.1 kpc relative to the host center. At such a large offset, the possible

  19. Discovery and Observations of the Optical Afterglow of GRB 071010B

    NASA Astrophysics Data System (ADS)

    Oksanen, A.; Templeton, M.; Henden, A. A.; Kann, D. A.

    2008-06-01

    On 2007 October 10 at 20:45:48 UT, the Swift satellite detected the bright, long-soft gamma-ray burst GRB 071010B in the constellation Ursa Major. Coordinates were automatically distributed via the Gamma-ray Burst Coordinate Network (GCN), and observations were begun by A. Oksanen at the Hankasalmi Observatory in Hankasalmi, Finland, within fifteen minutes of the burst. A previously uncatalogued optical source was detected at R.A. 10h 02m 09.26s, Dec. +45° 43' 50.3'' (J2000) at an unfiltered (R-band calibrated) magnitude of approximately 17.5. Imaging over the following six hours showed that the source faded, indicating that it was likely the optical afterglow of GRB 071010B. The discovery was published via the GCN Circulars, and the coordinates were subsequently used by other major telescope facilities to conduct follow-up photometry and spectroscopy. The discovery of the optical afterglow by A. Oksanen is the first discovery of a GRB afterglow by an amateur astronomer since the discovery of GRB 030725 by L. A. G. Monard in 2003 (Monard 2003). The early detection of this afterglow and subsequent dissemination of coordinates via the GCN has proved very valuable from a scientific standpoint. These data are the earliest available photometry for this burst, enabling the study of the early stages of the GRB optical light. They were also the first localization, and these coordinates were subsequently used by other major optical facilities for their follow-up observations. This burst clearly shows that individual observers still have a role to play in GRB observations even in the era of automated, robotic telescopes, and that the amateur community is an important partner of the professional community in the observation of GRB afterglows.

  20. Late activity in GRB afterglows. A multidimensional approach.

    NASA Astrophysics Data System (ADS)

    Vlasis, A.; Meliani, Z.; Keppens, R.

    A late activity of the central engine of Gamma-Ray Bursts (GRBs) followed by energy injection in the external shock has been proposed in order to explain the strong variability which is often observed in multiwavelength observations in the afterglow. We perform high resolution 1D and 2D numerical simulations of late collisions between two ultra-relativistic shells in order to explore these events. We examine the case where a cold uniform shell collides with a self-similar Blandford and McKee shell in a constant density environment and for the 1D case we produce the corresponding on-axis light curves for the afterglow phase investigating the occurrence of optical and radio flares assuming a spherical explosion and a jet scenario with different opening angles. For our simulations we use the Adaptive Mesh Refinement version of the Versatile Advection Code (MPI-AMRVAC) coupled to a linear radiative transfer code to calculate synchrotron emission. We find steeply rising flare like behavior for small jet opening angles and more gradual rebrightenings for large opening angles. Synchrotron self-absorption is found to strongly influence the onset and shape of the radio flare. Preliminary results of the dynamics from the 2D simulation are also presented in this paper.

  1. VERY HIGH ENERGY gamma-RAY AFTERGLOW EMISSION OF NEARBY GAMMA-RAY BURSTS

    SciTech Connect

    Xue, R. R.; Fan, Y. Z.; Wei, D. M.; Tam, P. H.; Wagner, S. J.; Behera, B. E-mail: phtam@lsw.uni-heidelberg.d

    2009-09-20

    The synchrotron self-Compton (SSC) emission from gamma-ray burst (GRB) forward shock can extend to the very high energy (VHE; E{sub {gamma}} > 100 GeV) range. Such high energy photons are rare and are attenuated by the cosmic infrared background before reaching us. In this work, we discuss the prospect to detect these VHE photons using the current ground-based Cherenkov detectors. Our calculated results are consistent with the upper limits obtained with several Cherenkov detectors for GRB 030329, GRB 050509B, and GRB 060505 during the afterglow phase. For five bursts in our nearby GRB sample (except for GRB 030329), current ground-based Cherenkov detectors would not be expected to detect the modeled VHE signal. Only for those very bright and nearby bursts like GRB 030329, detection of VHE photons is possible under favorable observing conditions and a delayed observation time of {approx}<10 hr.

  2. Evidence for a Canonical GRB Afterglow Light Curve in the Swift/XRT Data

    SciTech Connect

    Nousek, J.A.; Kouveliotou, C.; Grupe, D.; Page, K.; Granot, J.; Ramirez-Ruiz, E.; Patel, S.K.; Burrows, D.N.; Mangano, V.; Barthelmy, S.; Beardmore, A.P.; Campana, S.; Capalbi, M.; Chincarini, G.; Cusumano, G.; Falcone, A.D.; Gehrels, N.; Giommi, P.; Goad, M.; Godet, O.; Hurkett, C.; /Penn State U., Astron. Astrophys. /NASA, Marshall /Leicester U. /KIPAC, Menlo Park /Princeton, Inst. Advanced Study /NASA, Marshall /IASF, Palermo /Brera Observ. /Frascati /Milan Bicocca U. /NASA, Goddard

    2005-08-17

    We present new observations of the early X-ray afterglows of the first 27 gamma-ray bursts (GRBs) detected with the Swift X-ray Telescope (XRT). The early X-ray afterglows show a canonical behavior, where the light curve broadly consists of three distinct power law segments: (1) an initial very steep decay ({infinity} t{sup -a} with 3 {approx}< a{sub 1} {approx}< 5) , followed by (2) a very shallow decay (0.2 {approx}< a{sub 2} {approx}< 0.8), and finally (3) a somewhat steeper decay (1 {approx}< a{sub 3} {approx}< 1.5). These power law segments are separated by two corresponding break times, 300 s {approx}< t{sub break,1} {approx}< 500 s and 10{sup 3} s {approx}< t{sub break,2} {approx}< 10{sup 4} s. On top of this canonical behavior of the early X-ray light curve, many events have superimposed X-ray flares, which are most likely caused by internal shocks due to long lasting sporadic activity of the central engine, up to several hours after the GRB. We find that the initial steep decay is consistent with it being the tail of the prompt emission, from photons that are radiated at large angles relative to our line of sight. The first break in the light curve (t{sub break,1}) takes place when the forward shock emission becomes dominant, with the intermediate shallow flux decay (a{sub 2}) likely caused by the continuous energy injection into the external shock. When this energy injection stops, a second break is then observed in the light curve (t{sub break,2}). This energy injection increases the energy of the afterglow shock by at least a factor of f {approx}> 4, and augments the already severe requirements for the efficiency of the prompt gamma-ray emission.

  3. THE AFTERGLOW AND ULIRG HOST GALAXY OF THE DARK SHORT GRB 120804A

    SciTech Connect

    Berger, E.; Zauderer, B. A.; Margutti, R.; Laskar, T.; Fong, W.; Chornock, R.; Dupuy, T. J.; Levan, A.; Tunnicliffe, R. L.; Mangano, V.; Fox, D. B.; Tanvir, N. R.; Menten, K. M.; Hjorth, J.; Roth, K.

    2013-03-10

    We present the optical discovery and subarcsecond optical and X-ray localization of the afterglow of the short GRB 120804A, as well as optical, near-IR, and radio detections of its host galaxy. X-ray observations with Swift/XRT, Chandra, and XMM-Newton extending to {delta}t Almost-Equal-To 19 days reveal a single power-law decline. The optical afterglow is faint, and comparison to the X-ray flux indicates that GRB 120804A is ''dark'', with a rest-frame extinction of A {sup host}{sub V} Almost-Equal-To 2.5 mag (at z = 1.3). The intrinsic neutral hydrogen column density inferred from the X-ray spectrum, N{sub H,{sub int}}(z = 1.3) Almost-Equal-To 2 Multiplication-Sign 10{sup 22} cm{sup -2}, is commensurate with the large extinction. The host galaxy exhibits red optical/near-IR colors. Equally important, JVLA observations at Almost-Equal-To 0.9-11 days reveal a constant flux density of F{sub {nu}}(5.8 GHz) = 35 {+-} 4 {mu}Jy and an optically thin spectrum, unprecedented for GRB afterglows, but suggestive instead of emission from the host galaxy. The optical/near-IR and radio fluxes are well fit with the scaled spectral energy distribution of the local ultraluminous infrared galaxy (ULIRG) Arp 220 at z Almost-Equal-To 1.3, with a resulting star formation rate of x Almost-Equal-To 300 M{sub Sun} yr{sup -1}. The inferred extinction and small projected offset (2.2 {+-} 1.2 kpc) are also consistent with the ULIRG scenario, as is the presence of a companion galaxy at the same redshift and with a separation of about 11 kpc. The limits on radio afterglow emission, in conjunction with the observed X-ray and optical emission, require a circumburst density of n {approx} 10{sup -3} cm{sup -3}, an isotropic-equivalent energy scale of E{sub {gamma},{sub iso}} Almost-Equal-To E{sub K,{sub iso}} Almost-Equal-To 7 Multiplication-Sign 10{sup 51} erg, and a jet opening angle of {theta}{sub j} {approx}> 11 Degree-Sign . The expected fraction of luminous infrared galaxies in the short GRB

  4. Energy input and response from prompt and early optical afterglow emission in gamma-ray bursts.

    PubMed

    Vestrand, W T; Wren, J A; Wozniak, P R; Aptekar, R; Golentskii, S; Pal'shin, V; Sakamoto, T; White, R R; Evans, S; Casperson, D; Fenimore, E

    2006-07-13

    The taxonomy of optical emission detected during the critical first few minutes after the onset of a gamma-ray burst (GRB) defines two broad classes: prompt optical emission correlated with prompt gamma-ray emission, and early optical afterglow emission uncorrelated with the gamma-ray emission. The standard theoretical interpretation attributes prompt emission to internal shocks in the ultra-relativistic outflow generated by the internal engine; early afterglow emission is attributed to shocks generated by interaction with the surrounding medium. Here we report on observations of a bright GRB that, for the first time, clearly show the temporal relationship and relative strength of the two optical components. The observations indicate that early afterglow emission can be understood as reverberation of the energy input measured by prompt emission. Measurements of the early afterglow reverberations therefore probe the structure of the environment around the burst, whereas the subsequent response to late-time impulsive energy releases reveals how earlier flaring episodes have altered the jet and environment parameters. Many GRBs are generated by the death of massive stars that were born and died before the Universe was ten per cent of its current age, so GRB afterglow reverberations provide clues about the environments around some of the first stars.

  5. GRB 990712: First Detection of Polarization Variability in a Gamma-ray Burst Afterglow

    NASA Technical Reports Server (NTRS)

    Rol, E.; Wijers, R. A. M. J.; Vreeswijk, P. M.; Galama, T. J.; vanParadijs, J.; Kouveliotou, C.; Pian, E.; Palazzi, E.; Frontera, F.

    2000-01-01

    We report the detection of significant polarization in the afterglow of GRB 990712 on three instances 0.44-1.45 days after the gamma-ray burst. This polarization is intrinsic to the afterglow. The degree of polarization is not constant, and smallest at the second measurement. The polarization angle does not vary significantly during these observations. We find that none of the existing models predict such polarization variations constant polarization angle, and discuss ways in which these models might be modified to accommodate the observed behavior of this afterglow.

  6. Towards understanding magnetic field generation in relativistic shocks with GRB afterglow observations and the GRB radiation mechanism with photospheric simulations and the X-ray flare radiation mechanism

    NASA Astrophysics Data System (ADS)

    Santana, Rodolfo

    2015-12-01

    In this thesis, we present three projects on open questions in the Gammaray Burst (GRB) field. In the first project, we used X-ray and optical observations to determine the amount of amplification of the ISM magnetic field needed to explain the GRB afterglow observations. We determined that mild amplification is required, at a level stronger than shock-compression but weaker than predicted by the Weibel mechanism. In the second project, we present a Monte Carlo code we wrote from scratch to perform realistic simulations of the photospheric process, one of the mechanisms considered to explain the GRB gamma-ray emission. We determined that photospheric emission can explain the GRB gamma-ray spectrum above the peak-energy if the photons are taken to have a temperature much smaller than the electron temperature and if the interactions between photons and electrons take place at a large optical depth. In the third project, we used multi-wavelength observations to constrain the X-ray flare radiation mechanism. We determined that synchrotron from a Poynting jet and the Photospheric process are the best candidates to explain the X-ray flare observations.

  7. A possible macronova in the late afterglow of the long–short burst GRB 060614

    PubMed Central

    Yang, Bin; Jin, Zhi-Ping; Li, Xiang; Covino, Stefano; Zheng, Xian-Zhong; Hotokezaka, Kenta; Fan, Yi-Zhong; Piran, Tsvi; Wei, Da-Ming

    2015-01-01

    Long-duration (>2 s) γ-ray bursts that are believed to originate from the death of massive stars are expected to be accompanied by supernovae. GRB 060614, that lasted 102 s, lacks a supernova-like emission down to very stringent limits and its physical origin is still debated. Here we report the discovery of near-infrared bump that is significantly above the regular decaying afterglow. This red bump is inconsistent with even the weakest known supernova. However, it can arise from a Li-Paczyński macronova—the radioactive decay of debris following a compact binary merger. If this interpretation is correct, GRB 060614 arose from a compact binary merger rather than from the death of a massive star and it was a site of a significant production of heavy r-process elements. The significant ejected mass favours a black hole–neutron star merger but a double neutron star merger cannot be ruled out. PMID:26065563

  8. GRB 070125 and the environments of spectral-line poor afterglow absorbers

    NASA Astrophysics Data System (ADS)

    De Cia, A.; Starling, R. L. C.; Wiersema, K.; van der Horst, A. J.; Vreeswijk, P. M.; Björnsson, G.; de Ugarte Postigo, A.; Jakobsson, P.; Levan, A. J.; Rol, E.; Schulze, S.; Tanvir, N. R.

    2011-11-01

    GRB 070125 is among the most energetic bursts detected and the most extensively observed so far. Nevertheless, unresolved issues are still open in the literature on the physics of the afterglow and on the gamma-ray burst (GRB) environment. In particular, GRB 070125 was claimed to have exploded in a galactic halo environment, based on the uniqueness of the optical spectrum and the non-detection of an underlying host galaxy. In this work we collect all publicly available data and address these issues by modelling the near-infrared to X-ray spectral energy distribution (SED) and studying the high signal-to-noise ratio Very Large Telescope/FOcal Reducer/low dispersion Spectrograph afterglow spectrum in comparison with a larger sample of GRB absorbers. The SED reveals a synchrotron cooling break in the ultraviolet, low equivalent hydrogen column density and little reddening caused by a Large Magellanic Cloud type or Small Magellanic Cloud type extinction curve. From the weak Mg II absorption at z= 1.5477 in the spectrum, we derived log N(Mg II) = 12.96+0.13- 0.18 and upper limits on the ionic column density of several metals. These suggest that the GRB absorber is most likely a Lyman limit system with a 0.03 < Z < 1.3 Z⊙ metallicity. The comparison with other GRB absorbers places GRB 070125 at the low end of the absorption-line equivalent width distribution, confirming that weak spectral features and spectral-line poor absorbers are not so uncommon in afterglow spectra. Moreover, we show that the effect of photoionization on the gas surrounding the GRB, combined with a low N(H I) along a short segment of the line of sight within the host galaxy, can explain the lack of spectral features in GRB 070125. Finally, the non-detection of an underlying galaxy is consistent with a faint GRB host galaxy, well within the GRB host brightness distribution. Thus, the possibility that GRB 070125 is simply located in the outskirts of a gas-rich, massive star-forming region inside its

  9. GRB 021211 as a Faint Analogue of GRB 990123: Exploring the Similarities and Differences in the Optical Afterglows

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; Bersier, David; Bloom, J. S.; Garnavich, Peter M.; Caldwell, Nelson; Challis, Peter; Kirshner, Robert; Luhman, Kevin; McLeod, Brian; Stanek, K. Z.

    2004-01-01

    We present BVR(sub c)JHK(sub s) photometry of the optical afterglow of the gamma-ray burst GRB 021211 taken at the Magellan, MMT, and WIYN observatories between 0.7 and 50 days after the burst. We find an intrinsic spectral slope at optical and near-infrared wavelengths of 0.69 +/- 0.14 at 0.87 days. The optical decay during the first day is almost identical to that of GRB 990123 except that GRB 021211's optical afterglow was intrinsically approximately 38 times fainter and the transition from the reverse shock to the forward shock may have occurred earlier than it did for GRB 990123. We find no evidence for a jet break or the cooling break passing through optical frequencies during the first day after the burst. There is weak evidence for a break in the J-band decay between 0.89 and 1.87 days which may be due to a jet. The optical and infrared data are consistent with a relativistic fireball where the shocked electrons are in the slow cooling regime and the electron index is 2.3 +/- 0.1. The burst appears to have occurred in a homogeneous ambient medium. Our analysis suggests that the jet of GRB 021211 may have a small opening angle (1.4 deg-4.4 deg) and that the total gamma-ray energy is much less than the canonical value of 1.33 x 10(exp 51) erg. If, this is the case then most of the energy of the burst may be in another form such as a frozen magnetic field, in supernova ejecta, or in a second jet component. The host galaxy of GRB 021211 is subluminous and has a star formation rate of at least 1 solar mass/yr.

  10. GRB Orphan Afterglows in Present and Future Radio Transient Surveys

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Burlon, D.; Ghisellini, G.; Salvaterra, R.; Bernardini, M. G.; Campana, S.; Covino, S.; D'Avanzo, P.; D'Elia, V.; Melandri, A.; Murphy, T.; Nava, L.; Vergani, S. D.; Tagliaferri, G.

    2014-05-01

    Orphan Afterglows (OA) are slow transients produced by Gamma Ray Bursts seen off-axis that become visible on timescales of days/years at optical/NIR and radio frequencies, when the prompt emission at high energies (X and γ rays) has already ceased. Given the typically estimated jet opening angle of GRBs θjet ~ 3°, for each burst pointing to the Earth there should be a factor ~ 700 more GRBs pointing in other directions. Despite this, no secure OAs have been detected so far. Through a population synthesis code we study the emission properties of the population of OA at radio frequencies. OAs reach their emission peak on year-timescales and they last for a comparable amount of time. The typical peak fluxes (which depend on the observing frequency) are of few μJy in the radio band with only a few OA reaching the mJy level. These values are consistent with the upper limits on the radio flux of SN Ib/c observed at late times. We find that the OA radio number count distribution has a typical slope - 1.7 at high fluxes and a flatter ( - 0.4) slope at low fluxes with a break at a frequency-dependent flux. Our predictions of the OA rates are consistent with the (upper) limits of recent radio surveys and archive searches for radio transients. Future radio surveys like VAST/ASKAP at 1.4 GHz should detect ~ 3 × 10- 3 OA deg- 2 yr- 1, MeerKAT and EVLA at 8.4 GHz should see ~ 3 × 10- 1 OA deg- 2 yr- 1. The SKA, reaching the μJy flux limit, could see up to ~ 0.2 - 1.5 OA deg- 2 yr- 1. These rates also depend on the duration of the OA above a certain flux limit and we discuss this effect with respect to the survey cadence.

  11. DISCOVERY OF SMOOTHLY EVOLVING BLACKBODIES IN THE EARLY AFTERGLOW OF GRB 090618: EVIDENCE FOR A SPINE–SHEATH JET?

    SciTech Connect

    Basak, Rupal; Rao, A. R. E-mail: arrao@tifr.res.in

    2015-10-20

    GRB 090618 is a bright gamma-ray burst (GRB) with multiple pulses. It shows evidence of thermal emission in the initial pulses as well as in the early afterglow phase. Because high-resolution spectral data from the Swift/X-ray Telescope (XRT) are available for the early afterglow, we investigate the shape and evolution of the thermal component in this phase using data from the Swift/Burst Alert Telescope (BAT), the Swift/XRT, and the Fermi/Gamma-ray Burst Monitor detectors. An independent fit to the BAT and XRT data reveals two correlated blackbodies with monotonically decreasing temperatures. Hence, we investigated the combined data with a model consisting of two blackbodies and a power law (2BBPL), a model suggested for several bright GRBs. We elicit the following interesting features of the 2BBPL model: (1) the same model is applicable from the peak of the last pulse in the prompt emission to the afterglow emission, (2) the ratio of temperatures and the fluxes of the two blackbodies remains constant throughout the observations, (3) the blackbody temperatures and fluxes show a monotonic decrease with time, with the BB fluxes dropping about a factor of two faster than that of the power-law (PL) emission, and (4) attributing the blackbody emission to photospheric emissions, we find that the photospheric radii increase very slowly with time, and the lower-temperature blackbody shows a larger emitting radius than that of the higher-temperature blackbody. We find some evidence that the underlying shape of the nonthermal emission is a cutoff power law rather than a PL. We sketch a spine–sheath jet model to explain our observations.

  12. Swift observations of GRB 060614: an anomalous burst with a well behaved afterglow

    NASA Astrophysics Data System (ADS)

    Mangano, V.; Holland, S. T.; Malesani, D.; Troja, E.; Chincarini, G.; Zhang, B.; La Parola, V.; Brown, P. J.; Burrows, D. N.; Campana, S.; Capalbi, M.; Cusumano, G.; Della Valle, M.; Gehrels, N.; Giommi, P.; Grupe, D.; Guidorzi, C.; Mineo, T.; Moretti, A.; Osborne, J. P.; Pandey, S. B.; Perri, M.; Romano, P.; Roming, P. W. A.; Tagliaferri, G.

    2007-07-01

    GRB 060614 is a remarkable gamma-ray burst (GRB) observed by Swift with puzzling properties, which challenge current progenitor models. In particular, the lack of any bright supernova (SN) down to very strict limits and the vanishing spectral lags during the whole burst are typical of short GRBs, strikingly at odds with the long (102 s) duration of this event. Here we present detailed spectral and temporal analysis of the Swift observations of GRB 060614. We show that the burst presents standard optical, ultraviolet and X-ray afterglows, detected beginning 4 ks after the trigger. An achromatic break is observed simultaneously in the optical and X-ray bands, at a time consistent with the break in the R-band light curve measured by the VLT. The achromatic behaviour and the consistent post-break decay slopes make GRB 060614 one of the best examples of a jet break for a Swift burst. The optical and ultraviolet afterglow light curves have also an earlier break at 29.7 ± 4.4 ks, marginally consistent with a corresponding break at 36.6 ± 2.4 ks observed in the X-rays. In the optical, there is strong spectral evolution around this break, suggesting the passage of a break frequency through the optical/ultraviolet band. The very blue spectrum at early times suggests this may be the injection frequency, as also supported by the trend in the light curves: rising at low frequencies, and decaying at higher energies. The early X-ray light curve (from 97 to 480 s) is well interpreted as the X-ray counterpart of the burst extended emission. Spectral analysis of the BAT and XRT data in the ~80 s overlap time interval show that the peak energy of the burst has decreased to as low as 8 keV at the beginning of the XRT observation. Spectral analysis of following XRT data shows that the peak energy of the burst continues to decrease through the XRT energy band and exits it at about 500 s after the trigger. The average peak energy Ep of the burst is likely below the BAT energy band (<24

  13. The Optical Afterglow of GRB 971214: R and J Photometry

    NASA Astrophysics Data System (ADS)

    Diercks, A. H.; Deutsch, E. W.; Castander, F. J.; Corson, C.; Gilmore, G.; Lamb, D. Q.; Tanvir, N.; Turner, E. L.; Wyse, R.

    1998-08-01

    We present an R- and J-band photometry of an optical transient that is likely to be associated with the gamma-ray burst event GRB 971214. Our first measurement took place 13 hr after the gamma-ray event. The brightness decayed with a power-law exponent α=-1.20+/-0.02, which is similar to those of GRB 970228 andGRB 970508, which had exponents of α=-1.10+/-0.04 and α=-1.141+/-0.014, respectively. The transient decayed monotonically during the first 4 days following the gamma-ray event in contrast with the optical transient associated with GRB 970508, which increased in brightness, peaking 2 days after the burst, before settling to a power-law decay.

  14. The Late-time Afterglow of the Extremely Energetic Short Burst GRB 090510 Revisited

    NASA Technical Reports Server (NTRS)

    Guelbenzu, A. Nicuesa; Klose, S.; Kruehler, T.; Greiner, J.; Rossi, A.; Kann, D. A.; Olivares, F.; Rau, A.; Afonso, P. M. J.; Elliott, J.; Filgas, R.; Yoldas, A. Kuepcue; McBreen, S.; Nardini, M.; Schady, P.; Schmidl, S.; Sudilovsky, V.; Updike, A. C.; Yoldas, A.

    2012-01-01

    Context. The Swift discovery of the short burst GRB 090510 has raised considerable attention mainly because of two reasons: first, it had a bright optical afterglow, and second it is among the most energetic events detected so far within the entire GRB population (long plus short). The afterglow of GRB 090510 was observed with Swift/UVOT and Swift/XRT and evidence of a jet break around 1.5 ks after the burst has been reported in the literature, implying that after this break the optical and X-ray light curve should fade with the same decay slope. Aims. As noted by several authors, the post-break decay slope seen in the UVOT data is much shallower than the steep decay in the X-ray band, pointing to a (theoretically hard to understand) excess of optical flux at late times. We assess here the validity of this peculiar behavior. Methods. We reduced and analyzed new afterglow light-curve data obtained with the multichannel imager GROND. These additional g'r'i'z' data were then combined with the UVOT and XRT data to study the behavior of the afterglow at late times more stringently. Results. Based on the densely sampled data set obtained with GROND, we find that the optical afterglow of GRB 090510 did indeed enter a steep decay phase starting around 22 ks after the burst. During this time the GROND optical light curve is achromatic, and its slope is identical to the slope of the X-ray data. In combination with the UVOT data this implies that a second break must have occurred in the optical light curve around 22 ks post burst, which, however, has no obvious counterpart in the X-ray band, contradicting the interpretation that this could be another jet break. Conclusions. The GROND data provide the missing piece of evidence that the optical afterglow of GRB 090510 did follow a post-jet break evolution at late times. The break seen in the optical light curve around 22 ks in combination with its missing counterpart in the X-ray band could be due to the passage of the

  15. The X-shooter sample of GRB afterglow spectra: Properties of the absorption features

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, Antonio

    2015-08-01

    Since its commissioning at ESO's Very Large Telescope in 2009, the X-shooter spectrograph has become the reference instrument in gamma-ray burst (GRB) afterglow spectroscopy. During this time our collaboration has collected more than 70 spectra of GRB afterglows, with redshifts ranging from 0.06 to 6.3. Thanks to their extreme luminosity and simple intrinsic shape, GRB spectra are optimal tools for the study of galactic environments at basically any redshift. Being produced by the death of short-lived massive stars, they are also tracers of star formation.I will present the sample of absorption spectral features identified in X-shooter's GRB spectra describing observation and analysis techniques. The different features are compared with the characteristics of the explosion (duration, spectral shape, energetics, etc.) and with the properties of the host galaxy (mass, age, etc.) to improve our understanding of the nature of the explosions and how they interact with their environments. Using the large redshift range of the spectra collection we perform studies of the evolution of GRB environments across the history of the Universe and their relation with the evolution of star formation.

  16. Linear and circular polarization in ultra-relativistic synchrotron sources - implications to GRB afterglows

    NASA Astrophysics Data System (ADS)

    Nava, Lara; Nakar, Ehud; Piran, Tsvi

    2016-01-01

    Polarization measurements from relativistic outflows are a valuable tool to probe the geometry of the emission region and the microphysics of the particle distribution. Indeed, the polarization level depends on (i) the local magnetic field orientation, (ii) the geometry of the emitting region with respect to the line of sight and (iii) the electron pitch angle distribution. Here we consider optically thin synchrotron emission and we extend the theory of circular polarization from a point source to an extended radially expanding relativistic jet. We present numerical estimates for both linear and circular polarization in such systems. We consider different configurations of the magnetic field, spherical and jetted outflows, isotropic and anisotropic pitch angle distributions, and outline the difficulty in obtaining the reported high level of circular polarization observed in the afterglow of Gamma Ray Burst (GRB) 121024A. We conclude that the origin of the observed polarization cannot be intrinsic to an optically thin synchrotron process, even when the electron pitch angle distribution is extremely anisotropic.

  17. On the afterglow and host galaxy of GRB 021004: A comprehensivestudy with the Hubble Space Telescope1

    SciTech Connect

    Fynbo, J.P.U.; Gorosabel, J.; Smette, A.; Fruchter, A.; Hjorth,J.; Pedersen, K.; Levan, A.; Burud, I.; Sahu, K.; Vreeswijk, P.M.; Bergeron, E.; Kouveliotou1, C.; Tanvir, N.; Thorsett11, S.E.; Wijers,R.A.M.J.; Castro Ceron, J.M.; Castro-Tirado, A.; Garnavich, P.; Holland,S.T.; Jakobsson, P.; Moller, P.; Nugent, P.; Pian, E.; Rhoads, J.; Thomsen, B.; Watson, D.; Woosley, S.

    2004-12-01

    We report on Hubble Space Telescope (HST) observations of the late-time afterglow and host galaxy of GRB 021004 (z = 2.33).Although this gamma-ray burst (GRB) is one of the best observed so far in terms of sampling in the time domain, multi-wavelength coverage and polarimetric observations, there is large disagreement between different measurements and interpretations of this burst in the literature. We have observed the field of GRB 021004 with the HST at multiple epochs from 3 days until almost 10 months after the burst. With STI S prism and G430L spectroscopy we cover the spectral region from about 2000 Angstrom to 5700 Angstrom corresponding to 600 1700 Angstrom in the rest frame. From the limit on the flux recovery bluewards of the Lyman-limit we constrain the H I column density to be above 1 x 1018 cm-2 (5 sigma). Based on ACS and N ICMOS imaging we find that the afterglow evolved a chromatically within the errors (any variation must be less then 5 percent) during the period of HST observations. The color changes observed by other authors during the first four days must be related to a 'noisy' phenomenon superimposed on an afterglow component with a constant spectral shape. This also means that the cooling break has remained on the blue side of the optical part of the spectrum for at least two weeks after the explosion. The optical to X-ray slope OX is consistent with being the same at 1.4 and 52.4 days after the burst. This indicates that the cooling frequency is constant and hence, according to fireball models, that the circumburst medium has a constant density profile. The late-time slope of the light curve (alpha 2, F nu proportional to t-alpha2) is in the range 2 = 1.8-1.9, although inconsistent with a single power-law. This could be due to a late-time flattening caused by the transition to non-relativistic expansion or due to excess emission (a 'bump' in the light curve) about 7 days afterburst. The host galaxy is like most previously studied GRB hosts

  18. The Afterglow and Early-type Host Galaxy of the Short GRB 150101B at z = 0.1343

    NASA Astrophysics Data System (ADS)

    Fong, W.; Margutti, R.; Chornock, R.; Berger, E.; Shappee, B. J.; Levan, A. J.; Tanvir, N. R.; Smith, N.; Milne, P. A.; Laskar, T.; Fox, D. B.; Lunnan, R.; Blanchard, P. K.; Hjorth, J.; Wiersema, K.; van der Horst, A. J.; Zaritsky, D.

    2016-12-01

    We present the discovery of the X-ray and optical afterglows of the short-duration GRB 150101B, pinpointing the event to an early-type host galaxy at z = 0.1343 ± 0.0030. This makes GRB 150101B the most nearby short gamma-ray burst (GRB) with an early-type host galaxy discovered to date. Fitting the spectral energy distribution of the host galaxy results in an inferred stellar mass of ≈ 7× {10}10 {M}⊙ , stellar population age of ≈2-2.5 Gyr, and star formation rate of ≲0.4 M ⊙ yr-1. The host of GRB 150101B is one of the largest and most luminous short GRB host galaxies, with a B-band luminosity of ≈ 4.3{L}* and half-light radius of ≈8 kpc. GRB 150101B is located at a projected distance of 7.35 ± 0.07 kpc from its host center and lies on a faint region of its host rest-frame optical light. Its location, combined with the lack of associated supernova, is consistent with an NS-NS/NS-BH merger progenitor. From modeling the evolution of the broadband afterglow, we calculate isotropic-equivalent gamma-ray and kinetic energies of ≈ 1.3× {10}49 erg and ≈ (6{--}14)× {10}51 erg, respectively, a circumburst density of ≈ (0.8{--}4)× {10}-5 cm-3, and a jet opening angle of ≳9°. Using observations extending to ≈30 days, we place upper limits of ≲ (2{--}4)× {10}41 erg s-1 on associated kilonova emission. We compare searches following previous short GRBs to existing kilonova models and demonstrate the difficulty of performing effective kilonova searches from cosmological short GRBs using current ground-based facilities. We show that at the Advanced LIGO/VIRGO horizon distance of 200 Mpc, searches reaching depths of ≈23-24 AB mag are necessary to probe a meaningful range of kilonova models.

  19. Short GRB 130603B: Discovery of a jet break in the optical and radio afterglows, and a mysterious late-time X-ray excess

    SciTech Connect

    Fong, W.; Berger, E.; Margutti, R.; Chornock, R.; Migliori, G.; Zauderer, B. A.; Lunnan, R.; Laskar, T.; Metzger, B. D.; Foley, R. J.; Desch, S. J.; Meech, K. J.; Sonnett, S.; Dickey, C.; Hedlund, A.; Harding, P.

    2014-01-10

    We present radio, optical/NIR, and X-ray observations of the afterglow of the short-duration Swift and Konus-Wind GRB 130603B, and uncover a break in the radio and optical bands at ≈0.5 day after the burst, best explained as a jet break with an inferred jet opening angle of ≈4°-8°. GRB 130603B is only the third short GRB with a radio afterglow detection to date, and represents the first time that a jet break has been evident in the radio band. We model the temporal evolution of the spectral energy distribution to determine the burst explosion properties and find an isotropic-equivalent kinetic energy of ≈(0.6-1.7) × 10{sup 51} erg and a circumburst density of ≈5 × 10{sup –3}-30 cm{sup –3}. From the inferred opening angle of GRB 130603B, we calculate beaming-corrected energies of E {sub γ} ≈ (0.5-2) × 10{sup 49} erg and E {sub K} ≈ (0.1-1.6) × 10{sup 49} erg. Along with previous measurements and lower limits we find a median opening angle of ≈10°. Using the all-sky observed rate of 10 Gpc{sup –3} yr{sup –1}, this implies a true short GRB rate of ≈20 yr{sup –1} within 200 Mpc, the Advanced LIGO/VIRGO sensitivity range for neutron star binary mergers. Finally, we uncover evidence for significant excess emission in the X-ray afterglow of GRB 130603B at ≳ 1 day and conclude that the additional energy component could be due to fall-back accretion or spin-down energy from a magnetar formed following the merger.

  20. Swift captures the spectrally evolving prompt emission of GRB070616

    NASA Astrophysics Data System (ADS)

    Starling, R. L. C.; O'Brien, P. T.; Willingale, R.; Page, K. L.; Osborne, J. P.; de Pasquale, M.; Nakagawa, Y. E.; Kuin, N. P. M.; Onda, K.; Norris, J. P.; Ukwatta, T. N.; Kodaka, N.; Burrows, D. N.; Kennea, J. A.; Page, M. J.; Perri, M.; Markwardt, C. B.

    2008-02-01

    The origins of gamma-ray burst (GRB) prompt emission are currently not well understood and in this context long, well-observed events are particularly important to study. We present the case of GRB070616, analysing the exceptionally long-duration multipeaked prompt emission, and later afterglow, captured by all the instruments on-board Swift and by Suzaku Wide-Band All-Sky Monitor (WAM). The high-energy light curve remained generally flat for several hundred seconds before going into a steep decline. Spectral evolution from hard to soft is clearly taking place throughout the prompt emission, beginning at 285s after the trigger and extending to 1200s. We track the movement of the spectral peak energy, whilst observing a softening of the low-energy spectral slope. The steep decline in flux may be caused by a combination of this strong spectral evolution and the curvature effect. We investigate origins for the spectral evolution, ruling out a superposition of two power laws and considering instead an additional component dominant during the late prompt emission. We also discuss origins for the early optical emission and the physics of the afterglow. The case of GRB070616 clearly demonstrates that both broad-band coverage and good time resolution are crucial to pin down the origins of the complex prompt emission in GRBs. This paper is dedicated to the memory of Dr Francesca Tamburelli who died during its production. Francesca played a fundamental role within the team which is in charge of the development of the Swift X-Ray Telescope (XRT) data analysis software at the Italian Space Agency's Science Data Centre in Frascati. She is sadly missed. E-mail: rlcs1@star.le.ac.uk

  1. Probing a GRB Progenitor at a Redshift of z=2: A Comprehensive Observing Campaign of the Afterglow of GRB 030226l

    NASA Technical Reports Server (NTRS)

    Klose, S.; Greiner, J.; Rau, A.; Henden, A. A.; Hartmann, D. H.; Zeh, A.; Ries, C.; Masetti, N.; Malesani, D.; Guenther, E.

    2004-01-01

    We report results from a comprehensive optical/near-infrared follow-up observing campaign of the afterglow of GRB 030226, including VLT spectroscopy and polarimetry, supplemented by Chandra X-ray and BOOTES-1 rapid response observations. First observations at ESO started 0.2 days after the burst when the afterglow was at a magnitude of R approx. 19. The multi-color light curve of the afterglow, with a break around 1 day after the burst, is achromatic within the observational uncertainties even during episodes of short-term fluctuations. Close to the break time the degree of linear polarization of the afterglow light was less than 1.1%, consistent with low intrinsic polarization observed in other afterglows. VLT spectra show a foreground absorber of Mg II at a redshift z=1.042 and two absorption line systems at redshifts z=1.962+/-0.001 and at z=1.986+/-0.001, placing the lower limit for the redshift of the GRB close to 2. The kinematics and the composition of the absorbing clouds is very similar to those observed in the afterglow of GRB 021004, supporting the view that at least some GRBs are physically related to the explosion of a Wolf-Rayet star.

  2. Optical light curve of GRB 121011A: a textbook for the onset of GRB afterglow in a mixture of ISM and wind-type medium

    NASA Astrophysics Data System (ADS)

    Xin, Li-Ping; Wei, Jian-Yan; Qiu, Yu-Lei; Deng, Jin-Song; Wang, Jing; Han, Xu-Hui

    2016-01-01

    We report the optical observations of GRB 121011A by the 0.8m TNT facility at Xinglong observatory, China. The light curve of the optical afterglow shows a smooth and featureless bump during the epoch of ˜130 s and ˜5000 s with a rising index of 1.57 ± 0.28 before the break time of 539 ± 44 s, and a decaying index of about 1.29 ± 0.07 up to the end of our observations. Moreover, the X-ray light curve decays in a single power-law with a slope of about 1.51 ± 0.03 observed by XRT onboard Swift from 100 s to about 10 000 s after the burst trigger. The featureless optical light curve could be understood as an onset process under the external-shock model. The typical frequency has been below or near the optical one before the deceleration time, and the cooling frequency is located between the optical and X-ray wavelengths. The external medium density has a transition from a mixed stage of ISM and wind-type medium before the peak time to the ISM at the later phase. The joint-analysis of X-ray and optical light curves shows that the emissions from both frequencies are consistent with the prediction of the standard afterglow model without any energy injections, indicating that the central engine has stopped its activity and does not restart anymore after the prompt phase.

  3. Managing GRB afterglows optical/IR observations in the web 2.0 era

    NASA Astrophysics Data System (ADS)

    Ricci, D.; Nicastro, L.

    2013-07-01

    We present an overview of top internet technologies that can be used to build webtools and rich internet applications for astronomy. The aim is to simplify the data handling, reduction and access, in particular of optical/infrared images collected by traditional, automatic or robotic telescopes. These tools are particularly suitable for real-time management of GRB afterglow observations. Using these technologies we are developing a web-based images database management system. We present available features and discuss further improvements to the mentioned system.

  4. The Achromatic Light Curve of the Optical Afterglow of GRB 030226 at a Redshift of z Approximately 2

    NASA Technical Reports Server (NTRS)

    Klose, S.; Greiner, J.; Rau, A.; Henden, A. A.; Hartmann, D. H.; Zeh, A.; Masetti, N.; Guenther, E.; Stecklum, B.; Lindsay, K.

    2003-01-01

    Abstract. We report on optical and near-infrared (NIR) follow-up observations of the afterglow of GRB 030226, mainly performed with the telescopes at ESO La Silla and Paranal, with additional data obtained at other places. Our first observations started 0.2 days after the burst when the afterglow was at a magnitude of R approximately equal to 19 . One week later the magnitude of the afterglow had fallen to R=25, and at two weeks after the burst it could no longer be detected (R > 26). Our VLT blueband spectra show two absorption line systems at redshifts z = 1.962 +/- 0.001 and at z = 1.986 +/- 0.001, placing the redshift of the burster close to 2. Within our measurement errors no evidence for variations in the line strengths has been found between 0.2 and 1.2 days after the burst. An overabundance of alpha-group elements might indicate that the burst occurred in a chemically young interstellar region shaped by the nucleosynthesis from type II supernovae. The spectral slope of the afterglow shows no signs for cosmic dust along the line of sight in the GRB host galaxy, which itself remained undetected (R > 26.2). At the given redshift no supernova component affected the light from the GRB afterglow, so that the optical transient was essentially only powered by the radiation from the GRB fireball, allowing for a detailed investigation of the color evolution of the afterglow light. In our data set no obvious evidence for color changes has been found before, during, or after the smooth break in the light curve approximately 1 day after the burst. In comparison with investigations by others, our data favor the interpretation that the afterglow began to develop into a homogeneous interstellar medium before the break in the light curve became apparent.

  5. Strategies for Prompt Searches for GRB Afterglows: The Discovery of GRB 001011 Optical/Near-Infrared Counterpart Using Colour-Colour Selection

    NASA Technical Reports Server (NTRS)

    Gorosabel, J.; Fynbo, J. U.; Hjorth, J.; Wolf, C.; Andersen, M. I.; Pedersen, H.; Christensen, L.; Jensen, B. L.; Moller, P.; Afonso, J.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We report the discovery of the optical and near-infrared counterpart to GRB 001011. The GRB 001011 error box determined by Beppo-SAX was simultaneously imaged in the near-infrared by the 3.58-m. New Technology Telescope and in the optical by the 1.54-m Danish Telescope - 8 hr after the gamma-ray event. We implement the colour-colour discrimination technique proposed by Rhoads (2001) and extend it using near-IR data as well. We present the results provided by an automatic colour-colour discrimination pipe-line developed to discern the different populations of objects present in the GRB 001011 error box. Our software revealed three candidates based on single-epoch images. Second-epoch observations carried out approx. 3.2 days after the burst revealed that the most likely candidate had faded thus identifying it with the counterpart to the GRB. In deep R-band images obtained 7 months after the burst a faint (R=25.38 plus or minus 0.25) elongated object, presumably the host galaxy of GRB 001011, was detected at the position of the afterglow. The GRB 001011 afterglow is the first discovered with the assistance of colour-colour diagram techniques. We discuss the advantages of using this method and its application to boxes determined by future missions.

  6. The mysterious optical afterglow spectrum of GRB 140506A at z = 0.889

    NASA Astrophysics Data System (ADS)

    Fynbo, J. P. U.; Krühler, T.; Leighly, K.; Ledoux, C.; Vreeswijk, P. M.; Schulze, S.; Noterdaeme, P.; Watson, D.; Wijers, R. A. M. J.; Bolmer, J.; Cano, Z.; Christensen, L.; Covino, S.; D'Elia, V.; Flores, H.; Friis, M.; Goldoni, P.; Greiner, J.; Hammer, F.; Hjorth, J.; Jakobsson, P.; Japelj, J.; Kaper, L.; Klose, S.; Knust, F.; Leloudas, G.; Levan, A.; Malesani, D.; Milvang-Jensen, B.; Møller, P.; Nicuesa Guelbenzu, A.; Oates, S.; Pian, E.; Schady, P.; Sparre, M.; Tagliaferri, G.; Tanvir, N.; Thöne, C. C.; de Ugarte Postigo, A.; Vergani, S.; Wiersema, K.; Xu, D.; Zafar, T.

    2014-12-01

    Context. Gamma-ray burst (GRB) afterglows probe sightlines to star-forming regions in distant star-forming galaxies. Here we present a study of the peculiar afterglow spectrum of the z = 0.889Swift GRB 140506A. Aims: Our aim is to understand the origin of the very unusual properties of the absorption along the line of sight. Methods: We analyse spectroscopic observations obtained with the X-shooter spectrograph mounted on the ESO/VLT at two epochs 8.8 h and 33 h after the burst, and with imaging from the GROND instrument. We also present imaging and spectroscopy of the host galaxy obtained with the Magellan telescope. Results: The underlying afterglow appears to be a typical afterglow of a long-duration GRB. However, the material along the line of sight has imprinted very unusual features on the spectrum. First, there is a very broad and strong flux drop below 8000 Å (~4000 Å in the rest frame), which seems to be variable between the two spectroscopic epochs. We can reproduce the flux-drops both as a giant 2175 Å extinction bump and as an effect of multiple scattering on dust grains in a dense environment. Second, we detect absorption lines from excited H i and He i. We also detect molecular absorption from CH+. Conclusions: We interpret the unusual properties of these spectra as reflecting the presence of three distinct regions along the line of sight: the excited He i absorption originates from an H ii-region, whereas the Balmer absorption must originate from an associated photodissociation region. The strong metal line and molecular absorption and the dust extinction must originate from a third, cooler region along the line of sight. The presence of at least three separate regions is reflected in the fact that the different absorption components have different velocities relative to the systemic redshift of the host galaxy. Based on observations carried out under prog. ID 093.A-0069(B) with the X-shooter spectrograph installed at the Cassegrain focus of the

  7. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; DePasquale, Massimiliano; Mao, Jirong; Sakamoto, Taka; Shady, Patricia; Covino, Stefano; Yi-Zhong, Fan; Zhi-Ping, Jin; D'Avanzo, Paolo; Antonelli, Angelo; D'Elia, Valerio; Chincarini, Guido; Fiore, Fabrizio; Pandey, Shashi Bhushan

    2011-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet Optical Telescope with ground-based optical and infrared data obtained using the REM and ROTSE telescopes to construct a detailed data set extending from 86 s to approx. 100000 s after the BAT trigger. Our data cover a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 5000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.

  8. A Large Catalog of Homogeneous Ultra-Violet/Optical GRB Afterglows: Temporal and Spectral Evolution

    NASA Astrophysics Data System (ADS)

    Roming, Peter W. A.; Koch, T. Scott; Oates, Samantha R.; Porterfield, Blair L.; Bayless, Amanda J.; Breeveld, Alice A.; Gronwall, Caryl; Kuin, N. P. M.; Page, Mat J.; de Pasquale, Massimiliano; Siegel, Michael H.; Swenson, Craig A.; Tobler, Jennifer M.

    2017-02-01

    We present the second Swift Ultra-Violet/Optical Telescope (UVOT) gamma-ray burst (GRB) afterglow catalog, greatly expanding on the first Swift UVOT GRB afterglow catalog. The second catalog is constructed from a database containing over 120,000 independent UVOT observations of 538 GRBs first detected by Swift, the High Energy Transient Explorer 2 (HETE2), the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL), the Interplanetary Network (IPN), Fermi, and Astro-rivelatore Gamma a Immagini Leggero (AGILE). The catalog covers GRBs discovered from 2005 January 17 to 2010 December 25. Using photometric information in three UV bands, three optical bands, and a “white” or open filter, the data are optimally coadded to maximize the number of detections and normalized to one band to provide a detailed light curve. The catalog provides positional, temporal, and photometric information for each burst, as well as Swift Burst Alert Telescope and X-ray Telescope (XRT) GRB parameters. Temporal slopes are provided for each UVOT filter. The temporal slope per filter of almost half the GRBs are fit with a single power law, but one to three breaks are required in the remaining bursts. Morphological comparisons with the X-ray reveal that ∼ 75 % of the UVOT light curves are similar to one of the four morphologies identified by Evans et al. (2009). The remaining ∼ 25 % have a newly identified morphology. For many bursts, redshift- and extinction-corrected UV/optical spectral slopes are also provided at 2 × 103, 2 × 104, and 2 × 105 s.

  9. X-ray plateaus in the context of the one-zone SSC model for GRB afterglows

    SciTech Connect

    Petropoulou, M.; Mastichiadis, A.

    2010-10-15

    We investigate the impact that the upper cutoff of the electron distribution has on the multiwavelength GRB afterglow spectra and on the corresponding X-ray light curves. We show under which conditions X-ray light curves with a plateau phase can be produced in this picture.

  10. On the Color Indices and Absolute Brightnesses of the Optical Afterglows of GRB

    NASA Astrophysics Data System (ADS)

    Šimon, V.; Hudec, R.; Masetti, N.; Pizzichini, G.

    2003-04-01

    The study of the color indices and luminosities of 17 optical afterglows (OAs) of GRBs, including the most recent one, GRB010222, showed that the color variations during the decline of OAs are quite small during t - T0 < 10 days and allow a comparison among them, even for the less densely sampled OAs. The colors in the observer frame concentrate at (V - R)0 = 0.40+/-0.13, (R - I)0 = 0.46+/-0.18, (B - V)0 = 0.47+/-0.17, except for GRB000131 and GRB980425. However, large scatter is observed in (U - B)0. The color evolution of the OAs is negligible although their brightness declines by several magnitudes during t - T0 < 10 days. Such a strong concentration of the color indices also suggests that the intrinsic reddening (inside their host galaxies) must be quite similar and relatively small for all these events. The absolute brightness of OAs in the observer frame lies within MR0 = -26.5 to -22.2 for (t - T0)rest = 0.25 days. The general decline rate of the OA sample considered here seems to be independent of the absolute optical brightness of the OA, measured at some t - T0 identical for all OAs, and the light curves of all events are almost parallel, when corrected for the redshift-induced time dilation.

  11. GRB 020410: A Gamma-ray burst afterglow discovered by its supernova light

    SciTech Connect

    Levan, Andrew; Nugent, Peter; Fruchter, Andrew; Burud, Ingunn; Branch, David; Rhoads, James; Castro-Tirado, Alberto; Gorosabel, Javier; Ceron, Jose Maria Castro; Thorsett, Stephen E.; Kouveliotou, Chryssa; Golenetskii, Sergey; Fynbo, Johan; Garnavich, Peter; Holland, Stephen; Hjorth, Jens; Moller, Palle; Pian, Elena; Tanvir, Nial; Ulanov, Mihail; Wijers, Ralph; Woosley, Stan

    2004-03-19

    We present the discovery and monitoring of the optical transient (OT) associated with GRB 020410. The fading OT was found by Hubble Space Telescope (HST) observations taken 28 and 65 days after burst at a position consistent with the X-ray afterglow. Subsequent re-examination of early ground based observations revealed that a faint OT was present 6 hours after burst, confirming the source association with GRB 020410. A deep non-detection after one week requires that the OT re-brightened between day 7 and day 28, and further late time HST data taken approximately 100 days after burst imply that it is very red (F{sub nu} proportional to nu-2.7). We compare both the flux and color of the excess with supernova models and show that the data are best explained by the presence of a Type I b/c supernova at a redshift z approx. equal 0.5, which occurred roughly coincident with the day of GRB.

  12. UVES/VLT high resolution absorption spectroscopy of the GRB 080330 afterglow: a study of the GRB host galaxy and intervening absorbers

    NASA Astrophysics Data System (ADS)

    D'Elia, V.; Fiore, F.; Perna, R.; Krongold, Y.; Vergani, S. D.; Campana, S.; Covino, S.; D'Avanzo, P.; Fugazza, D.; Goldoni, P.; Guidorzi, C.; Meurs, E. J. A.; Norci, L.; Piranomonte, S.; Tagliaferri, G.; Ward, P.

    2009-08-01

    Aims: We study the gamma-ray burst (GRB) environment and intervening absorbers by analyzing the optical absorption features produced by gas surrounding the GRB or along its line of sight. Methods: We analyzed high resolution spectroscopic observations (R = 40 000, S/N = 3-6) of the optical afterglow of GRB 080330, taken with UVES at the VLT ~ 1.5 h after the GRB trigger. Results: The spectrum illustrates the complexity of the ISM of the GRB host galaxy at z = 1.51 which has at least four components in the main absorption system. We detect strong FeII, SiII, and NiII excited absorption lines associated with the bluemost component only. In addition to the host galaxy, at least two more absorbers lying along the line of sight to the afterglow have been detected in the redshift range 0.8 < z < 1.1, each exhibiting MgII absorption. For the bluemost component in the host galaxy, we derive information about its distance from the site of the GRB explosion. We do so by assuming that the excited absorption lines are produced by indirect UV pumping, and compare the data with a time dependent photo-excitation code. The distance of this component is found to be ˜ 280+40-50 pc, which is lower than found for other GRBs (1-6 kpc). We identify two additional MgII absorbers, one of them with a rest frame equivalent width larger than 1 Å. Conclusions: The distance between the GRB and the absorber measured in this paper confirms that the power of the GRB radiation can influence the conditions of the interstellar medium up to a distance of at least several hundred pc. For the intervening absorbers, we confirm the trend that on average one strong intervening system is found per afterglow, as has been noted in studies exhibiting an excess of strong MgII absorbers along GRB sightlines compared to quasars. Based on observations collected at the European Southern Observatory, ESO, the VLT/Kueyen telescope, Paranal, Chile, in the framework of programs 080.A-0398.

  13. Happy Birthday Swift: Ultra-long GRB 141121A and Its Broadband Afterglow

    NASA Astrophysics Data System (ADS)

    Cucchiara, A.; Veres, P.; Corsi, A.; Cenko, S. B.; Perley, D. A.; Lien, A.; Marshall, F. E.; Pagani, C.; Toy, V. L.; Capone, J. I.; Frail, D. A.; Horesh, A.; Modjaz, M.; Butler, N. R.; Littlejohns, O. M.; Watson, A. M.; Kutyrev, A. S.; Lee, W. H.; Richer, M. G.; Klein, C. R.; Fox, O. D.; Prochaska, J. X.; Bloom, J. S.; Troja, E.; Ramirez-Ruiz, E.; de Diego, J. A.; Georgiev, L.; González, J.; Román-Zúñiga, C. G.; Gehrels, N.; Moseley, H.

    2015-10-01

    We present our extensive observational campaign on the Swift-discovered GRB 141121A, almost 10 years after its launch. Our observations cover radio through X-rays and extend for more than 30 days after discovery. The prompt phase of GRB 141121A lasted 1410 s and, at the derived redshift of z = 1.469, the isotropic energy is Eγ,iso = 8.0 × 1052 erg. Due to the long prompt duration, GRB 141121A falls into the recently discovered class of ultra-long GRBs (UL-GRBs). Peculiar features of this burst are (1) a flat early-time optical light curve and (2) a radio-to-X-ray rebrightening around three days after the burst. The latter is followed by a steep optical-to-X-ray decay and a much shallower radio fading. We analyze GRB 141121A in the context of the standard forward-reverse shock (FS, RS) scenario and we disentangle the FS and RS contributions. Finally, we comment on the puzzling early-time (t ≲ 3 days) behavior of GRB 141121A, and suggest that its interpretation may require a two-component jet model. Overall, our analysis confirms that the class of UL-GRBs represents our best opportunity to firmly establish the prominent emission mechanisms in action during powerful gamma-ray burst explosions, and future missions (like SVOM, XTiDE, or ISS-Lobster) will provide many more of such objects.

  14. HAPPY BIRTHDAY SWIFT: ULTRA-LONG GRB 141121A AND ITS BROADBAND AFTERGLOW

    SciTech Connect

    Cucchiara, A.; Veres, P.; Corsi, A.; Cenko, S. B.; Marshall, F. E.; Kutyrev, A. S.; Perley, D. A.; Horesh, A.; Lien, A.; Pagani, C.; Toy, V. L.; Capone, J. I.; Frail, D. A.; Modjaz, M.; Butler, N. R.; Littlejohns, O. M.; Watson, A. M.; Lee, W. H.; Richer, M. G.; Klein, C. R.; and others

    2015-10-20

    We present our extensive observational campaign on the Swift-discovered GRB 141121A, almost 10 years after its launch. Our observations cover radio through X-rays and extend for more than 30 days after discovery. The prompt phase of GRB 141121A lasted 1410 s and, at the derived redshift of z = 1.469, the isotropic energy is E{sub γ,iso} = 8.0 × 10{sup 52} erg. Due to the long prompt duration, GRB 141121A falls into the recently discovered class of ultra-long GRBs (UL-GRBs). Peculiar features of this burst are (1) a flat early-time optical light curve and (2) a radio-to-X-ray rebrightening around three days after the burst. The latter is followed by a steep optical-to-X-ray decay and a much shallower radio fading. We analyze GRB 141121A in the context of the standard forward–reverse shock (FS, RS) scenario and we disentangle the FS and RS contributions. Finally, we comment on the puzzling early-time (t ≲ 3 days) behavior of GRB 141121A, and suggest that its interpretation may require a two-component jet model. Overall, our analysis confirms that the class of UL-GRBs represents our best opportunity to firmly establish the prominent emission mechanisms in action during powerful gamma-ray burst explosions, and future missions (like SVOM, XTiDE, or ISS-Lobster) will provide many more of such objects.

  15. VizieR Online Data Catalog: GRB X-ray afterglows light curves analysis (Racusin+, 2016)

    NASA Astrophysics Data System (ADS)

    Racusin, J. L.; Oates, S. R.; de Pasquale, M.; Kocevski, D.

    2016-09-01

    All GRBs discovered with Swift-BAT, with X-ray afterglows detected by Swift-XRT and measured redshifts, between 2004 December and 2014 March are included in the analysis. We include only those X-ray afterglows with at least three light-curve bins (>~60 counts) and T90 measurements are available in the BAT catalogs (Sakamoto+ 2008, J/ApJS/175/179; 2011, J/ApJS/195/2 and Lien+ 2016, arXiv:1606.01956). The final sample includes 237 long-duration GRBs (9 short), 47 of which also appear in the Oates et al. (2012MNRAS.426L..86O; 2015MNRAS.453.4121O) sample for the UVOT correlation (sample only extends through 2010). The redshift measurements come from a convolution of databases and the literature and are listed in Table 1. All light curves were retrieved from the University of Leicester Swift XRT Team GRB repository (Evans et al. 2007A&A...469..379E; 2009, J/MNRAS/397/1177). See section 2.2 for further explanations. (2 data files).

  16. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; De Pasquale, Massimiliano; Mao, Jirong; Sakamoto, Takanori; Schady, Patricia; Covino, Stefano; Fan, Yi-Zhong; Jin, Zhi-Ping; D'Avanzo, Paolo; Antonelli, Angelo; D'Elia, Valerio; Ohincarini, Guido; Fiore, Fabrizio; Pandey, Shashi Bhushan; Cobb, Bethany E.

    2012-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift Ultra Violet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3-m telescopes to construct a detailed data set extending from 86 s to approx.100,000 s after the BAT trigger. Our data covers a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.injection

  17. On the Early-Time X-Ray Spectra of Swift Afterglows. I. Evidence for Anomalous Soft X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Butler, N. R.

    2007-02-01

    We have conducted a thorough and blind search for emission lines in >70 Swift X-ray afterglows of total exposure ~107 s. We find that most afterglows are consistent with pure power laws plus extinction. Significant outliers to the population exist at the 5%-10% level and have anomalously soft, possibly thermal spectra. Four bursts are singled out via possible detections of two to five lines: GRB 060218, GRB 060202, GRB 050822, and GRB 050714B. Alternatively, a blackbody model with kT~0.1-0.5 keV can describe the soft emission in each afterglow. The most significant soft-component detections in the full data set of ~2000 spectra correspond to GRB 060218/SN 2006aj, with line significances ranging up to ~20 σ. A thermal plasma model fit to the data indicates that the flux is primarily due to L-shell transitions of Fe at roughly solar abundance. We associate (>4 σ significant) line triggers in the three other events with K-shell transitions in light metals. We favor a model where the possible line emission in these afterglows arises from the mildly relativistic cocoon of matter surrounding the GRB jet as it penetrates and exits the surface of the progenitor star. The emitting material in each burst is at a similar distance ~1012-1013 cm, a similar density ~1017 cm-3, and subject to a similar flux of ionizing radiation. The lines may correlate with the X-ray flaring. For the blackbody interpretation, the soft flux may arise from breakout of the GRB shock or plasma cocoon from the progenitor stellar wind, as recently suggested for GRB 060218 (Campana et al. 2006). Due to the low z of GRB 060218, bursts faint in gamma rays with fluxes dominated by this soft X-ray component could outnumber classical GRBs 100 to 1.

  18. GRB 080503: IMPLICATIONS OF A NAKED SHORT GAMMA-RAY BURST DOMINATED BY EXTENDED EMISSION

    SciTech Connect

    Perley, D. A.; Metzger, B. D.; Butler, N. R.; Bloom, J. S.; Miller, A. A.; Filippenko, A. V.; Li, W.; Granot, J.; Sakamoto, T.; Gehrels, N.; Ramirez-Ruiz, E.; Bunker, A.; Chen, H.-W.; Glazebrook, K.; Hall, P. B.; Hurley, K. C.; Kocevski, D.; Norris, J.

    2009-05-10

    We report on observations of GRB 080503, a short gamma-ray burst (GRB) with very bright extended emission (about 30 times the gamma-ray fluence of the initial spike) in conjunction with a thorough comparison to other short Swift events. In spite of the prompt-emission brightness, however, the optical counterpart is extraordinarily faint, never exceeding 25 mag in deep observations starting at {approx}1 hr after the Burst Alert Telescope (BAT) trigger. The optical brightness peaks at {approx}1 day and then falls sharply in a manner similar to the predictions of Li and Paczynski (1998) for supernova-like emission following compact binary mergers. However, a shallow spectral index and similar evolution in X-rays inferred from Chandra observations are more consistent with an afterglow interpretation. The extreme faintness of this probable afterglow relative to the bright gamma-ray emission argues for a very low density medium surrounding the burst (a 'naked' GRB), consistent with the lack of a coincident host galaxy down to 28.5 mag in deep Hubble Space Telescope imaging. The late optical and X-ray peak could be explained by a slightly off-axis jet or by a refreshed shock. Our observations reinforce the notion that short GRBs generally occur outside regions of active star formation, but demonstrate that in some cases the luminosity of the extended prompt emission can greatly exceed that of the short spike, which may constrain theoretical interpretation of this class of events. This extended emission is not the onset of an afterglow, and its relative brightness is probably either a viewing-angle effect or intrinsic to the central engine itself. Because most previous BAT short bursts without observed extended emission are too faint for this signature to have been detectable even if it were present at typical level, conclusions based solely on the observed presence or absence of extended emission in the existing Swift sample are premature.

  19. Emission spectrum of a sporadic fireball afterglow

    NASA Astrophysics Data System (ADS)

    Madiedo, J.; Trigo-Rodríguez, J.

    2014-07-01

    A mag. -11 fireball was imaged over southern Spain on April 14, 2013 at 22:35:49.8 ± 0.1s UTC. Its emission spectrum was also obtained. This event was assigned the SPMN code 140413 after the recording date. By the end of its atmospheric path, it exhibited a very bright flare which resulted in a persistent train whose spectrum was recorded. Here we present a preliminary analysis of this event and focus special attention on the evolution of the main emission lines in the spectrum of the afterglow. An array of low-lux CCD video devices (models 902H and 902H Ultimate from Watec Co.) operating from our stations at Sevilla and El Arenosillo was employed to record the SPMN140413 fireball. The operation of these systems is explained in [1,2]. Some of these are configured as spectrographs by attaching holographic diffraction gratings (1000 lines/mm) to the objective lens [3]. To calculate the atmospheric trajectory, radiant, and orbit we have employed our AMALTHEA software, which follows the planes intersection method [4]. The spectrum was analyzed with our CHIMET application [5]. The parent meteoroid impacted the atmosphere with an initial velocity of 28.9 ± 0.3 km/s and the fireball began at a height of 104.4 ± 0.5 km. The event ended at 80.7 ± 0.5 km above the ground level, with the main flare taking place at 83 ± 0.5 km. The calculated radiant and orbital parameters confirm the sporadic nature of the bolide. The calibrated emission spectrum shows that the most important contributions correspond to the Na I-1 (588.9 nm) and Mg I-2 (517.2 nm) multiplets. In the ultraviolet, the contribution from the H and K lines from Ca was also identified. As usual in meteor spectra, most of the lines correspond to Fe I. The train spectrum was recorded during about 0.12 seconds. This provided the evolution with time of the intensity of the emission lines in this signal. The contributions from Mg I, Na I, Ca I, Fe I, Ca II, and O I were identified in the afterglow, with the Na I-1

  20. X-Ray Spectral Components Observed in the Afterglow of GRB 130925A

    NASA Technical Reports Server (NTRS)

    Bellm, Eric C.; Barriere, Nicolas M.; Bhalerao, Varun; Boggs, Steven E.; Cenko, S. Bradley; Christensen, Finn E.; Craig, William W.; Forster, Karl; Fryer, Chris L.; Hailey, Charles J.; Harrison, Fiona A.; Horesh, Assaf; Kouveliotou, Chryssa; Madsen, Kristin K.; Miller, Jon M.; Ofek, Eran O.; Perley, Daniel A.; Rana, Vikram R.; Miller, Jon M.; Stern, Daniel; Tomsick, John A.; Zhang, William W.

    2014-01-01

    We have identified spectral features in the late-time X-ray afterglow of the unusually long, slow-decaying GRB 130925A using NuSTAR, Swift/X-Ray Telescope, and Chandra. A spectral component in addition to an absorbed power law is required at greater than 4 less than 1 significance, and its spectral shape varies between two observation epochs at 2 x 10 (sup 5) and 10 (sup 6) seconds after the burst. Several models can fit this additional component, each with very different physical implications. A broad, resolved Gaussian absorption feature of several kiloelectronvolts width improves the fit, but it is poorly constrained in the second epoch. An additive blackbody or second power-law component provide better fits. Both are challenging to interpret: the blackbody radius is near the scale of a compact remnant (10 (sup 8) centimeters), while the second power-law component requires an unobserved high-energy cutoff in order to be consistent with the non-detection by Fermi/Large Area Telescope.

  1. Probing a Gamma-Ray Burst Progenitor at a Redshift of z = 2: A Comprehensive Observing Campaign Campaign of the Afterglow of GRB 030226

    NASA Technical Reports Server (NTRS)

    Klose, S.; Greiner, J.; Rau, A.; Henden, A. A.; Hartmann, D. H.; Zeh, A.; Ries, C.; Masetti, N.; Malesani, D.; Guenther, E.

    2004-01-01

    We report results from a comprehensive follow-up observing campaign of the afterglow of GRB 030226 including VLT spectroscopy, VLT polarimetry, and Chandra X-ray observations. In addition, we present BOOTES-1 wide-field observations at the time of the occurrence of the burst. First observations at ESO started 0.2 days after the event when the gamma ray burst (GRB) afterglow was at a magnitude of R approximately 19 and continued until the afterglow had faded below the detection threshold (R greater than 26). No underlying host galaxy was found. The optical light curve shows a break around 0.8 days after the burst, which is achromatic within the observational errors, supporting the view that it was due to a jetted explosion. Close to the break time the degree of linear polarization of the afterglow light was less than 1.1%, which favors a uniform-jet model rather than a structured one. VLT spectra show two absorption line systems at redshifts z = 1.962 plus or minus 0.001 and 1.986 plus or minus 0.001, placing the lower limit for the redshift of the GRB close to 2. We emphasize that the kinematics and the composition of the absorbing clouds responsible for these line systems are very similar to those observed in the afterglow of GRB 021004. This corroborates the picture in which at least some GRBs are physically related to the explosion of a Wolf-Rayet star.

  2. The onset of the GeV afterglow of GRB 090510

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Ghisellini, G.; Nava, L.

    2010-02-01

    We study the emission of the short/hard Gamma Ray Burst 090510 at energies >0.1 GeV as observed by the Large Area Telescope (LAT) onboard the Fermi satellite. The GeV flux rises in time as t2 up till 0.2 s after the peak of the MeV pulse detected by the Fermi Gamma Burst Monitor (GBM) after which it decays as t-1.5 up to 200 s. Its energy spectrum is consistent with F(ν)∝ ν-1. The time behavior and the spectrum of the high energy LAT flux are strong evidences of an afterglow origin. We then interpret it as synchrotron radiation produced by the forward shock of a fireball with a bulk Lorentz factor Γ ˜ 2000. The afterglow peak time is independent of energy in the 0.1-30 GeV range and coincides with the arrival time of the highest energy photon (~ 30 GeV). Since the flux detected by the GBM and the LAT have different origins, the delay between these two components is not entirely due to possible violation of the Lorentz invariance. The LAT component alone allows us to set a reliable lower limit on the quantum-gravity mass of 4.7 times the Planck mass.

  3. Phenomenology of reverse-shock emission in the optical afterglows of gamma-ray bursts

    SciTech Connect

    Japelj, J.; Kopač, D.; Gomboc, A.; Kobayashi, S.; Harrison, R.; Virgili, F. J.; Mundell, C. G.; Guidorzi, C.; Melandri, A. E-mail: andreja.gomboc@fmf.uni-lj.si

    2014-04-20

    We use a parent sample of 118 gamma-ray burst (GRB) afterglows, with known redshift and host galaxy extinction, to separate afterglows with and without signatures of dominant reverse-shock (RS) emission and to determine which physical conditions lead to a prominent reverse-shock emission. We identify 10 GRBs with reverse-shock signatures: 990123, 021004, 021211, 060908, 061126, 080319B, 081007, 090102, 090424, and 130427A. By modeling their optical afterglows with reverse- and forward-shock analytic light curves and using Monte Carlo simulations, we estimate the parameter space of the physical quantities describing the ejecta and circumburst medium. We find that physical properties cover a wide parameter space and do not seem to cluster around any preferential values. Comparing the rest-frame optical, X-ray, and high-energy properties of the larger sample of non-RS-dominated GRBs, we show that the early-time (<1 ks) optical spectral luminosity, X-ray afterglow luminosity, and γ-ray energy output of our reverse-shock dominated sample do not differ significantly from the general population at early times. However, the GRBs with dominant reverse-shock emission have fainter than average optical forward-shock emission at late times (>10 ks). We find that GRBs with an identifiable reverse-shock component show a high magnetization parameter R {sub B} = ε{sub B,r}/ε{sub B,f} ∼ 2-10{sup 4}. Our results are in agreement with the mildly magnetized baryonic jet model of GRBs.

  4. High energy polarimetry of prompt GRB emission

    NASA Astrophysics Data System (ADS)

    McConnell, Mark L.

    2017-02-01

    [Evidence] of polarized γ-ray emission (> 50 keV) from Gamma-Ray Bursts (GRBs) has been accumulated in recent years. Measurements have been reported with levels in the range of 30-80%, typically with limited statistical significance. No clear picture has yet emerged with regards to the polarization properties of GRBs. Taken at face value, the data suggest that most GRBs have a relatively large level of polarization (typically, > 50%), which may suggest synchrotron emission associated with an ordered magnetic field structure within the GRB jet. But these results are far from conclusive. Here, we review the observations that have been made, concentrating especially on the instrumental issues and the lessons that might be learned from these data.

  5. DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg{sup 2}: iPTF13bxl AND GRB 130702A

    SciTech Connect

    Singer, Leo P.; Brown, Duncan A.; Bradley Cenko, S.; Gehrels, Neil; McEnery, Julie; Kasliwal, Mansi M.; Mulchaey, John; Perley, Daniel A.; Kulkarni, S. R.; Bellm, Eric; Barlow, Tom; Cao, Yi; Horesh, Assaf; Ofek, Eran O.; Arcavi, Iair; Nugent, Peter E.; Bloom, Joshua S.; Corsi, Alessandra; Frail, Dale A.; Masci, Frank J.; and others

    2013-10-20

    We report the discovery of the optical afterglow of the γ-ray burst (GRB) 130702A, identified upon searching 71 deg{sup 2} surrounding the Fermi Gamma-ray Burst Monitor (GBM) localization. Discovered and characterized by the intermediate Palomar Transient Factory, iPTF13bxl is the first afterglow discovered solely based on a GBM localization. Real-time image subtraction, machine learning, human vetting, and rapid response multi-wavelength follow-up enabled us to quickly narrow a list of 27,004 optical transient candidates to a single afterglow-like source. Detection of a new, fading X-ray source by Swift and a radio counterpart by CARMA and the Very Large Array confirmed the association between iPTF13bxl and GRB 130702A. Spectroscopy with the Magellan and Palomar 200 inch telescopes showed the afterglow to be at a redshift of z = 0.145, placing GRB 130702A among the lowest redshift GRBs detected to date. The prompt γ-ray energy release and afterglow luminosity are intermediate between typical cosmological GRBs and nearby sub-luminous events such as GRB 980425 and GRB 060218. The bright afterglow and emerging supernova offer an opportunity for extensive panchromatic follow-up. Our discovery of iPTF13bxl demonstrates the first observational proof-of-principle for ∼10 Fermi-iPTF localizations annually. Furthermore, it represents an important step toward overcoming the challenges inherent in uncovering faint optical counterparts to comparably localized gravitational wave events in the Advanced LIGO and Virgo era.

  6. Search for VHE emission from GRB with Milagro

    SciTech Connect

    Saz Parkinson, P.M.

    2005-02-21

    The Milagro gamma-ray observatory employs a water Cherenkov detector to observe extensive air showers produced by high-energy particles impacting in the Earth's atmosphere. Milagro is uniquely capable of searching for very high-energy emission from gamma-ray bursts (GRB) during the prompt emission phase because of its wide field of view and high duty cycle, monitoring the northern sky almost continuously in the 100 GeV to 100 TeV energy range. 33 satellite-triggered GRB have occurred within the field of view of Milagro between January 2000 and December 2003. We have searched for counterparts to these GRB and found no significant emission from any of these burst positions. In the case of GRB 010921, the redshift is low enough (0.45) that our upper limit on the fluence places an observational constraint on potential GRB models.

  7. Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A

    SciTech Connect

    Levan, A. J.; Tanvir, N. R.; Wiersema, K.; Fruchter, A. S.; Hounsell, R. A.; Graham, J.; Hjorth, J.; Fynbo, J. P. U.; Pian, E.; Mazzali, P.; Perley, D. A.; Cano, Z.; Cenko, S. B.; Kouveliotou, C.; Misra, K.

    2014-09-10

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E {sub iso} > 10{sup 54} erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ∼17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v {sub ph} ∼ 15, 000 km s{sup –1}). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v {sub ph} ∼ 30, 000 km s{sup –1}), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ∼4 kpc from the nucleus of a moderately star forming (1 M {sub ☉} yr{sup –1}), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  8. Hubble Space Telescope Observations of the Afterglow, Supernova, and Host Galaxy Associated with the Extremely Bright GRB 130427A

    NASA Astrophysics Data System (ADS)

    Levan, A. J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; Cenko, S. B.; Fynbo, J. P. U.; Kouveliotou, C.; Pe'er, A.; Misra, K.; Wiersema, K.

    2014-09-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst (GRB), GRB 130427A. At z = 0.34, this burst affords an excellent opportunity to study the supernova (SN) and host galaxy associated with an intrinsically extremely luminous burst (E iso > 1054 erg): more luminous than any previous GRB with a spectroscopically associated SN. We use the combination of the image quality, UV capability, and invariant point-spread function of HST to provide the best possible separation of the afterglow, host, and SN contributions to the observed light ~17 rest-frame days after the burst, utilizing a host subtraction spectrum obtained one year later. Advanced Camera for Surveys grism observations show that the associated SN, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, v ph ~ 15, 000 km s-1). The positions of the bluer features are better matched by the higher velocity SN 2010bh (v ph ~ 30, 000 km s-1), but this SN is significantly fainter and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated ~4 kpc from the nucleus of a moderately star forming (1 M ⊙ yr-1), possibly interacting disk galaxy. The absolute magnitude, physical size, and morphology of this galaxy, as well as the location of the GRB within it, are also strikingly similar to those of GRB 980425/SN 1998bw. The similarity of the SNe and environment from both the most luminous and least luminous GRBs suggests that broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  9. Very Bright Prompt and Reverse Shock Emission of GRB 140512A

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Li; Xin, Li-Ping; Yi, Shuang-Xi; Zhong, Shu-Qing; Qiu, Yu-Lei; Deng, Jin-Song; Wei, Jian-Yan; Liang, En-Wei

    2016-12-01

    We report our observations of very bright prompt optical and reverse shock (RS) optical emission of GRB 140512A and analyze its multi-wavelength data observed with the Swift and Fermi missions. It is found that the joint optical-X-ray-gamma-ray spectrum with our first optical detection (R = 13.09 mag) at {T}0+136 s during the second episode of the prompt gamma-rays can be fit by a single power law with an index of -1.32 ± 0.01. Our empirical fit to the afterglow light curves indicates that the observed bright optical afterglow with R = 13.00 mag at the peak time is consistent with predictions of the RS and forward shock (FS) emission of external shock models. A joint optical-X-ray afterglow spectrum is well fit with an absorbed single power law, with an index evolving with time from -1.86 ± 0.01 at the peak time to -1.57 ± 0.01 at a late epoch, which could be due to the evolution of the ratio of the RS to FS emission fluxes. We fit the light curves with standard external models, and derive the physical properties of the outflow. It is found that the ratio {R}{{B}}\\equiv {ɛ }{{B},{{r}}}/{ɛ }{{B},{{f}}} is 8187, indicating a high magnetization degree in the RS region. Measuring the relative radiation efficiency with {R}{{e}}\\equiv {ɛ }{{e},{{r}}}/{ɛ }{{e},{{f}}}, we have R e = 0.02, implying that the radiation efficiency of the RS is much lower than that in FS. We also show that the R B of GRBs 990123, 090102, and 130427A are similar to that of GRB 140512A and their apparent difference may be mainly attributed to the difference of the jet kinetic energy, initial Lorentz factor, and medium density among them.

  10. Hubble Space Telescope Observations of the Afterglow, Supernova and Host Galaxy Associated with the Extremely Bright GRB 130427A

    NASA Technical Reports Server (NTRS)

    Levan, A.J.; Tanvir, N. R.; Fruchter, A. S.; Hjorth, J.; Pian, E.; Mazzali, P.; Hounsell, R. A.; Perley, D. A.; Cano, Z.; Graham, J.; Cenko, S. B.; Fynbo, J. P. U.; Kouveliotou, C.; Pe'er, A.; Misra, K.; Wiersema, K.

    2014-01-01

    We present Hubble Space Telescope (HST) observations of the exceptionally bright and luminous Swift gamma-ray burst, GRB 130427A. At z=0.34 this burst affords an excellent opportunity to study the supernova and host galaxy associated with an intrinsically extremely luminous burst (E(sub iso) greater than 10(exp 54) erg): more luminous than any previous GRB with a spectroscopically associated supernova. We use the combination of the image quality, UV capability and and invariant PSF of HST to provide the best possible separation of the afterglow, host and supernova contributions to the observed light approximately 17 rest-frame days after the burst utilising a host subtraction spectrum obtained 1 year later. Advanced Camera for Surveys (ACS) grism observations show that the associated supernova, SN 2013cq, has an overall spectral shape and luminosity similar to SN 1998bw (with a photospheric velocity, vph approximately 15,000 kilometers per second). The positions of the bluer features are better matched by the higher velocity SN 2010bh (vph approximately 30,000 kilometers per second), but SN 2010bh (vph approximately 30,000 kilometers per second but this SN is significantly fainter, and fails to reproduce the overall spectral shape, perhaps indicative of velocity structure in the ejecta. We find that the burst originated approximately 4 kpc from the nucleus of a moderately star forming (1 Solar Mass yr(exp-1)), possibly interacting disc galaxy. The absolute magnitude, physical size and morphology of this galaxy, as well as the location of the GRB within it are also strikingly similar to those of GRB980425SN 1998bw. The similarity of supernovae and environment from both the most luminous and least luminous GRBs suggests broadly similar progenitor stars can create GRBs across six orders of magnitude in isotropic energy.

  11. EARLY-TIME VLA OBSERVATIONS AND BROADBAND AFTERGLOW ANALYSIS OF THE FERMI/LAT DETECTED GRB 130907A

    SciTech Connect

    Veres, Péter; Corsi, Alessandra; Frail, Dale A.; Cenko, S. Bradley; Perley, Daniel A.

    2015-09-01

    We present multi-wavelength observations of the hyper-energetic gamma-ray burst (GRB) 130907A, a Swift-discovered burst with early radio observations starting at ≈4 hr after the γ-ray trigger. GRB 130907A was also detected by the Fermi/LAT instrument and at late times showed a strong spectral evolution in X-rays. We focus on the early-time radio observations, especially at >10 GHz, to attempt to identify reverse shock signatures. While our radio follow-up of GRB 130907A ranks among the earliest observations of a GRB with the Karl G. Jansky Very Large Array, we did not see an unambiguous signature of a reverse shock. While a model with both reverse and forward shock can correctly describe the observations, the data is not constraining enough to decide upon the presence of the reverse-shock component. We model the broadband data using a simple forward-shock synchrotron scenario with a transition from a wind environment to a constant density interstellar medium (ISM) in order to account for the observed features. Within the confines of this model, we also derive the underlying physical parameters of the fireball, which are within typical ranges except for the wind density parameter (A{sub *}), which is higher than those for bursts with wind-ISM transition, but typical for the general population of bursts. We note the importance of early-time radio observations of the afterglow (and of well-sampled light curves) for unambiguously identifying the potential contribution of the reverse shock.

  12. A complete sample of bright Swift Gamma-ray bursts: X-ray afterglow luminosity and its correlation with the prompt emission

    NASA Astrophysics Data System (ADS)

    D'Avanzo, P.; Salvaterra, R.; Sbarufatti, B.; Nava, L.; Melandri, A.; Bernardini, M. G.; Campana, S.; Covino, S.; Fugazza, D.; Ghirlanda, G.; Ghisellini, G.; Parola, V. La; Perri, M.; Vergani, S. D.; Tagliaferri, G.

    2012-09-01

    We investigate whether there is any correlation between the X-ray afterglow luminosity and the prompt emission properties of a carefully selected sub-sample of bright Swift long Gamma-ray bursts (GRBs) nearly complete in redshift (˜90 per cent). Being free of selection effects (except flux limit), this sample provides the possibility to compare the rest frame physical properties of GRB prompt and afterglow emission in an unbiased way. The afterglow X-ray luminosities are computed at four different rest frame times (5 min, 1 h, 11 h and 24 h after trigger) and compared with the prompt emission isotropic energy Eiso, the isotropic peak luminosity Liso and the rest frame peak energy Epeak. We find that the rest frame afterglow X-ray luminosity do correlate with these prompt emission quantities, but the significance of each correlation decreases over time. This result is in agreement with the idea that the GRB X-ray light curve can be described as the result of a combination of different components whose relative contribution and weight change with time, with the prompt and afterglow emission dominating at early and late time, respectively. In particular, we found evidence that the plateau and the shallow decay phase often observed in GRB X-ray light curves are powered by activity from the central engine. The existence of the LX - Eiso correlation at late times (trf≥11h) suggests a similar radiative efficiency among different bursts with on average about 6 per cent of the total kinetic energy powering the prompt emission.

  13. CONSTRAINTS ON VERY HIGH ENERGY EMISSION FROM GRB 130427A

    SciTech Connect

    Aliu, E.; Errando, M.; Aune, T.; Barnacka, A.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Berger, K.; Biteau, J.; Byrum, K.; Cardenzana, J. V; Dickinson, H. J.; Eisch, J. D.; Chen, X.; Ciupik, L.; Connaughton, V.; Cui, W.; Falcone, A. E-mail: sjzhu@umd.edu; and others

    2014-11-01

    Prompt emission from the very fluent and nearby (z = 0.34) gamma-ray burst GRB 130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, it is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-Ray Space Telescope for ∼70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is also evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB 130427A ∼71 ks (∼20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB 130427A for E > 100 GeV. The non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst.

  14. Confronting GRB prompt emission with a model for subphotospheric dissipation

    NASA Astrophysics Data System (ADS)

    Ahlgren, Björn; Larsson, Josefin; Nymark, Tanja; Ryde, Felix; Pe'er, Asaf

    2015-11-01

    The origin of the prompt emission in gamma-ray bursts (GRBs) is still an unsolved problem and several different mechanisms have been suggested. Here, we fit Fermi GRB data with a photospheric emission model which includes dissipation of the jet kinetic energy below the photosphere. The resulting spectra are dominated by Comptonization and contain no significant contribution from synchrotron radiation. In order to fit to the data, we span a physically motivated part of the model's parameter space and create DREAM (Dissipation with Radiative Emission as A table Model), a table model for XSPEC. We show that this model can describe different kinds of GRB spectra, including GRB 090618, representing a typical Band function spectrum, and GRB 100724B, illustrating a double peaked spectrum, previously fitted with a Band+blackbody model, suggesting they originate from a similar scenario. We suggest that the main difference between these two types of bursts is the optical depth at the dissipation site.

  15. THE ROLE OF NEWLY BORN MAGNETARS IN GAMMA-RAY BURST X-RAY AFTERGLOW EMISSION: ENERGY INJECTION AND INTERNAL EMISSION

    SciTech Connect

    Yu Yunwei; Cheng, K. S.; Cao Xiaofeng E-mail: hrspksc@hkucc.hku.h

    2010-05-20

    Swift observations suggest that the central compact objects of some gamma-ray bursts (GRBs) could be newly born millisecond magnetars. Therefore, considering the spin evolution of the magnetars against r-mode instability, we investigate the role of magnetars in GRB X-ray afterglow emission. Besides modifying the conventional energy injection model, we pay particular attention to the internal X-ray afterglow emission, whose luminosity is assumed to track the magnetic dipole luminosity of the magnetars with a certain fraction. Following a comparison between the model and some selected observational samples, we suggest that some so-called canonical X-ray afterglows including the shallow decay, normal decay, and steeper-than-normal decay phases could be internally produced by the magnetars (possibly through some internal dissipations of the magnetar winds), while the (energized) external shocks are associated with another type of X-ray afterglows. If this is true, then from those internal X-ray afterglows we can further determine the magnetic field strengths and the initial spin periods of the corresponding magnetars.

  16. Prompt Emission of GRB 121217A from Gamma-Rays to the Near-Infrared

    NASA Technical Reports Server (NTRS)

    Elliott, J.; Yu, H.-F.; Schmidl, S.; Greiner, J.; Gruber, D.; Oates, S.; Kobayashi, S.; Zhang, B.; Cummings, J. R.; Filgas, R.; Gehrels, N.

    2014-01-01

    The mechanism that causes the prompt-emission episode of gamma-ray bursts (GRBs) is still widely debated despite there being thousands of prompt detections. The favoured internal shock model relates this emission to synchrotron radiation. However, it does not always explain the spectral indices of the shape of the spectrum, which is often fit with empirical functions, such as the Band function. Multi-wavelength observations are therefore required to help investigate the possible underlying mechanisms that causes the prompt emission. We present GRB 121217A, for which we were able to observe its near-infrared (NIR) emission during a secondary prompt-emission episode with the Gamma-Ray burst Optical Near-infrared Detector (GROND) in combination with the Swift and Fermi satellites, which cover an energy range of 5 orders of magnitude (10(exp -3) keV to 100 keV). We determine a photometric redshift of z = 3.1 +/- 0.1 with a line-of-sight with little or no extinction (AV approx. 0 mag) utilising the optical/NIR SED. From the afterglow, we determine a bulk Lorentz factor of Gamma(sub 0) approx. 250 and an emission radius of R < 1018 cm. The prompt-emission broadband spectral energy distribution is well fit with a broken power law with beta1 = -0.3 +/- 0.1 and beta2 = 0.6 +/- 0.1 that has a break at E = 6.6 +/- 0.9 keV, which can be interpreted as the maximum injection frequency. Self-absorption by the electron population below energies of Ea < 6 keV suggest a magnetic field strength of B approx. 10(exp 5) G. However, all the best fit models underpredict the flux observed in the NIR wavelengths, which also only rebrightens by a factor of approx. 2 during the second prompt emission episode, in stark contrast to the X-ray emission, which rebrightens by a factor of approx. 100. This suggests an afterglow component is dominating the emission. We present GRB 121217A, one of the few GRBs that has multi-wavelength observations of the prompt-emission period and shows that it can

  17. THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. V. VLT/X-SHOOTER EMISSION-LINE REDSHIFTS FOR SWIFT GRBs AT z {approx} 2

    SciTech Connect

    Kruehler, Thomas; Malesani, Daniele; Milvang-Jensen, Bo; Fynbo, Johan P. U.; Hjorth, Jens; Sparre, Martin; Watson, Darach J.; Jakobsson, Pall; Levan, Andrew J.; Tanvir, Nial R.

    2012-10-10

    We present simultaneous optical and near-infrared (NIR) spectroscopy of 19 Swift {gamma}-ray burst (GRB) host galaxies observed with the VLT/X-shooter with the aim of measuring their redshifts. Galaxies were selected from The Optically Unbiased GRB Host (TOUGH) survey (15 of the 19 galaxies) or because they hosted GRBs without a bright optical afterglow. Here we provide emission-line redshifts for 13 of the observed galaxies with brightnesses between F606W > 27 mag and R = 22.9 mag (median R-tilde =24.6 mag). The median redshift is z-tilde =2.1 for all hosts and z-tilde =2.3 for the TOUGH hosts. Our new data significantly improve the redshift completeness of the TOUGH survey, which now stands at 77% (53 out of 69 GRBs). They furthermore provide accurate redshifts for nine prototype dark GRBs (e.g., GRB 071021 at z = 2.452 and GRB 080207 at z = 2.086), which are exemplary of GRBs where redshifts are challenging to obtain via afterglow spectroscopy. This establishes X-shooter spectroscopy as an efficient tool for redshift determination of faint, star-forming, high-redshift galaxies such as GRB hosts. It is hence a further step toward removing the bias in GRB samples that is caused by optically dark events, and provides the basis for a better understanding of the conditions in which GRBs form. The distribution of column densities as measured from X-ray data (N{sub H,X}), for example, is closely related to the darkness of the afterglow and skewed toward low N{sub H,X} values in samples that are dominated by bursts with bright optical afterglows.

  18. NuSTAR OBSERVATIONS OF GRB 130427A ESTABLISH A SINGLE COMPONENT SYNCHROTRON AFTERGLOW ORIGIN FOR THE LATE OPTICAL TO MULTI-GEV EMISSION

    SciTech Connect

    Kouveliotou, C.; Racusin, J. L.; Gehrels, N.; McEnery, J. E.; Zhang, W. W.; Bellm, E.; Harrison, F. A.; Vianello, G.; Oates, S.; Fryer, C. L.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Dermer, C. D.; Hailey, C. J.; Melandri, A.; Tagliaferri, G.; Mundell, C. G.; Stern, D. K. E-mail: granot@openu.ac.il

    2013-12-10

    GRB 130427A occurred in a relatively nearby galaxy; its prompt emission had the largest GRB fluence ever recorded. The afterglow of GRB 130427A was bright enough for the Nuclear Spectroscopic Telescope ARray (NuSTAR) to observe it in the 3-79 keV energy range long after its prompt emission (∼1.5 and 5 days). This range, where afterglow observations were previously not possible, bridges an important spectral gap. Combined with Swift, Fermi, and ground-based optical data, NuSTAR observations unambiguously establish a single afterglow spectral component from optical to multi-GeV energies a day after the event, which is almost certainly synchrotron radiation. Such an origin of the late-time Fermi/Large Area Telescope >10 GeV photons requires revisions in our understanding of collisionless relativistic shock physics.

  19. THERMAL EMISSION IN THE EARLY X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS: FOLLOWING THE PROMPT PHASE TO LATE TIMES

    SciTech Connect

    Friis, Mette; Watson, Darach E-mail: darach@dark-cosmology.dk

    2013-07-01

    Thermal radiation, peaking in soft X-rays, has now been detected in a handful of gamma-ray burst (GRB) afterglows and has to date been interpreted as shock break-out of the GRB's progenitor star. We present a search for thermal emission in the early X-ray afterglows of a sample of Swift bursts selected by their brightness in X-rays at early times. We identify a clear thermal component in eight GRBs and track the evolution. We show that at least some of the emission must come from highly relativistic material since two show an apparent super-luminal expansion of the thermal component. Furthermore, we determine very large luminosities and high temperatures for many of the components-too high to originate in a supernova shock break-out. Instead, we suggest that the component may be modeled as late photospheric emission from the jet, linking it to the apparently thermal component observed in the prompt emission of some GRBs at gamma-ray and hard X-ray energies. By comparing the parameters from the prompt emission and the early afterglow emission, we find that the results are compatible with the interpretation that we are observing the prompt quasi-thermal emission component in soft X-rays at a later point in its evolution.

  20. Detection of the Optical Afterglow of GRB 000630: Implications for Dark Bursts

    DTIC Science & Technology

    2001-01-01

    erated on the island of La Palma by the Centro Galileo Galilei 1. Introduction The discoveries of the first X-ray afterglow (Costa et al. 1997) and...Association, U. S. Naval Observatory, Flagstaff Station, PO Box 1149, Flagstaff, AZ 86002-1149, USA 9 Telescopio Nazionale Galileo , Apartado Postal 565, 38700...images with the 3.5-m Telescopio Nazionale Galileo (TNG). The journal of observations is reported in Table 1. 3. Results 3.1. Astrometry By measuring

  1. Beam On Target (BOT) Produces Gamma Ray Burst (GRB) Fireballs and Afterglows

    NASA Astrophysics Data System (ADS)

    Greyber, H. D.

    1997-12-01

    Unlike the myriads of ad hoc models that have been offered to explain GRB, the BOT process is simply the very common process used worldwide in accelerator laboratories to produce gamma rays. The Strong Magnetic Field (SMF) model postulates an extremely intense, highly relativistic current ring formed during the original gravitational collapse of a distant galaxy when the plasma cloud was permeated by a primordial magnetic field. GRB occur when solid matter (asteroid, white dwarf, neutron star, planet) falls rapidly through the Storage Ring beam producing a very strongly collimated electromagnetic shower, and a huge amount of matter from the target, in the form of a giant, hot, expanding plasma cloud, or ``Fireball,'' is blown off. BOT satisfies all the ``severe constraints imposed on the source of this burst --'' concluded by the CGRO team (Sommer et al, Astrophys. J. 422 L63 (1994)) for the huge intense burst GRB930131, whereas neutron star merger models are ``difficult to reconcile.'' BOT expects the lowest energy gamma photons to arrive very slightly later than higher energy photons due to the time for the shower to penetrate the target. The millisecond spikes in bursts are due to the slender filaments of current that make up the Storage Ring beam. Delayed photons can be explained by a broken target ``rock.'' See H. Greyber in the book ``Compton Gamma Ray Observatory,'' AIP Conf. Proc. 280, 569 (1993).

  2. A Correlated Optical and Gamma Emission from GRB 081126A

    SciTech Connect

    Gendre, B.; Klotz, A.; Atteia, J. L.; Boeer, M.; Coward, D. M.; Imerito, A. C.

    2010-10-15

    We present an analysis of time-resolved optical emissions observed from the gamma-ray burst GRB 081126 during the prompt phase. The analysis employed time-resolved photometry using optical data obtained by the TAROT telescope, BAT data from the Swift spacecraft and time-resolved spectroscopy at high energies from the GBM instrument onboard the Fermi spacecraft. The optical emission of GRB 081126 is found to be compatible with the second gamma emission pulse shifted by a positive time-lag of 8.4{+-}3.9 sec. This is the first well resolved observation of a time lag between optical and gamma emissions during a gamma-ray burst. Our observations could potentially provide new constraints on the fireball model for gamma ray burst early emissions. Furthermore, observations of time-lags between optical and gamma ray photons provides an exciting opportunity to constrain quantum gravity theories.

  3. A COMPREHENSIVE STUDY OF GAMMA-RAY BURST OPTICAL EMISSION. III. BRIGHTNESS DISTRIBUTIONS AND LUMINOSITY FUNCTIONS OF OPTICAL AFTERGLOWS

    SciTech Connect

    Wang Xianggao; Liang Enwei; Li Liang; Lu Ruijing; Wei Jianyan; Zhang Bing

    2013-09-10

    We continue our systematic statistical study on optical afterglow data of gamma-ray bursts (GRBs). We present the apparent magnitude distributions of early optical afterglows at different epochs (t = 10{sup 2} s, 10{sup 3} s, and 1 hr) for the optical light curves of a sample of 93 GRBs (the global sample) and for sub-samples with an afterglow onset bump or a shallow decay segment. For the onset sample and shallow decay sample we also present the brightness distribution at the peak time t{sub p} and break time t{sub b}, respectively. All the distributions can be fit with Gaussian functions. We further perform Monte Carlo simulations to infer the luminosity function of GRB optical emission at the rest-frame time 10{sup 3} s, t{sub p}, and t{sub b}. Our results show that a single power-law luminosity function is adequate to model the data with indices -1.40 {+-} 0.10, -1.06 {+-} 0.16, and -1.54 {+-} 0.22. Based on the derived rest-frame 10{sup 3} s luminosity function, we generate the intrinsic distribution of the R-band apparent magnitude M{sub R} at the observed time 10{sup 3} s post-trigger, which peaks at M{sub R} = 22.5 mag. The fraction of GRBs whose R-band magnitude is fainter than 22 mag and 25 mag and at the observer time 10{sup 3} s are {approx}63% and {approx}25%, respectively. The detection probabilities of the optical afterglows with ground-based robotic telescopes and the UV-Optical Telescope on board Swift are roughly consistent with that inferred from this intrinsic M{sub R} distribution, indicating that the variations of the dark GRB fraction among the samples with different telescopes may be due to the observational selection effect, although the existence of an intrinsically dark GRB population cannot be ruled out.

  4. A Bulk Comptonization Model for the Prompt GRB Emission and its Relation to the Fermi GRB Spectra

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes

    2010-01-01

    We present a model in which the GRB prompt emission at E E(sub peak) is due to bulk Comptonization by the relativistic blast wave motion of either its own synchrotron photons of ambient photons of the stellar configuration that gave birth to the GRB. The bulk Comptonization process then induces the production of relativistic electrons of Lorentz factor equal to that of the blast wave through interactions with its ambient protons. The inverse compton emission of these electrons produces a power law component that extends to multi GeV energies in good agreement with the LAT GRB observations.

  5. Effect of secondary emission on the argon plasma afterglow with large dust density

    SciTech Connect

    Denysenko, I. B.; Azarenkov, N. A.; Burmaka, G. P.; Stefanović, I.

    2015-02-15

    A zero-dimensional, space-averaged model for argon plasma afterglow with large dust density is developed. In the model, three groups of electrons in the plasma afterglow are assumed: (i) thermal electrons with Maxwellian distribution, (ii) energetic electrons generated by metastable-metastable collisions (metastable pooling), and (iii) secondary electrons generated at collisions of ions with the electrodes, which have sufficiently large negative voltages in the afterglow. The model calculates the time-dependencies for electron densities in plasma afterglow based on experimental decay times for metastable density and electrode bias. The effect of secondary emission on electron density in the afterglow is estimated by varying secondary emission yields. It is found that this effect is less important than metastable pooling. The case of dust-free plasma afterglow is considered also, and it is found that in the afterglow the effect of secondary emission may be more important than metastable pooling. The secondary emission may increase thermal electron density n{sub e} in dust-free and dusty plasma afterglows on a few ten percentages. The calculated time dependencies for n{sub e} in dust-free and dusty plasma afterglows describe well the experimental results.

  6. Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; O'Brien, P. T.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tam, P. H. T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2014-05-01

    The long gamma-ray burst (GRB) 100621A, at the time the brightest X-ray transient ever detected by Swift-XRT in the 0.3-10 keV range, has been observed with the H.E.S.S. imaging air Cherenkov telescope array, sensitive to gamma radiation in the very-high-energy (VHE, >100 GeV) regime. Due to its relatively small redshift of z ~ 0.5, the favourable position in the southern sky and the relatively short follow-up time (<700 s after the satellite trigger) of the H.E.S.S. observations, this GRB could be within the sensitivity reach of the H.E.S.S. instrument. The analysis of the H.E.S.S. data shows no indication of emission and yields an integral flux upper limit above ~380 GeV of 4.2 × 10-12 cm-2 s-1 (95% confidence level), assuming a simple Band function extension model. A comparison to a spectral-temporal model, normalised to the prompt flux at sub-MeV energies, constraints the existence of a temporally extended and strong additional hard power law, as has been observed in the other bright X-ray GRB 130427A. A comparison between the H.E.S.S. upper limit and the contemporaneous energy output in X-rays constrains the ratio between the X-ray and VHE gamma-ray fluxes to be greater than 0.4. This value is an important quantity for modelling the afterglow and can constrain leptonic emission scenarios, where leptons are responsible for the X-ray emission and might produce VHE gamma rays.

  7. GRB 081007 AND GRB 090424: THE SURROUNDING MEDIUM, OUTFLOWS, AND SUPERNOVAE

    SciTech Connect

    Jin Zhiping; Covino, Stefano; Fugazza, Dino; Melandri, Andrea; Campana, Sergio; D'Avanzo, Paolo; Della Valle, Massimo; Ferrero, Patrizia; Malesani, Daniele; Fynbo, Johan P. U.; Hjorth, Jens; Pian, Elena; Salvaterra, Ruben; Bersier, David; Cano, Zach; Castro-Tirado, Alberto J.; Gorosabel, Javier; Guidorzi, Cristiano; Haislip, Joshua B.; and others

    2013-09-10

    We discuss the results of the analysis of multi-wavelength data for the afterglows of GRB 081007 and GRB 090424, two bursts detected by Swift. One of them, GRB 081007, also shows a spectroscopically confirmed supernova, SN 2008hw, which resembles SN 1998bw in its absorption features, while the maximum magnitude may be fainter, up to 0.7 mag, than observed in SN 1998bw. Bright optical flashes have been detected in both events, which allows us to derive solid constraints on the circumburst-matter density profile. This is particularly interesting in the case of GRB 081007, whose afterglow is found to be propagating into a constant-density medium, yielding yet another example of a gamma-ray burst (GRB) clearly associated with a massive-star progenitor which did not sculpt the surroundings with its stellar wind. There is no supernova component detected in the afterglow of GRB 090424, likely due to the brightness of the host galaxy, comparable to the Milky Way. We show that the afterglow data are consistent with the presence of both forward- and reverse-shock emission powered by relativistic outflows expanding into the interstellar medium. The absence of optical peaks due to the forward shock strongly suggests that the reverse-shock regions should be mildly magnetized. The initial Lorentz factor of outflow of GRB 081007 is estimated to be {Gamma} {approx} 200, while for GRB 090424 a lower limit of {Gamma} > 170 is derived. We also discuss the prompt emission of GRB 081007, which consists of just a single pulse. We argue that neither the external forward-shock model nor the shock-breakout model can account for the prompt emission data and suggest that the single-pulse-like prompt emission may be due to magnetic energy dissipation of a Poynting-flux-dominated outflow or to a dissipative photosphere.

  8. MITSuME: multicolor optical/NIR telescopes for GRB afterglows

    SciTech Connect

    Shimokawabe, Takashi; Kawai, Nobuyuki; Kotani, Taro; Yatsu, Yoichi; Ishimura, Takuto; Vasquez, Nicolas; Mori, Yuki; Kudo, Yusuke; Yoshida, Michitoshi; Yanagisawa, Kenshi; Nagayama, Shogo; Toda, Hiroyuki; Shimozu, Yasuhiro; Kuroda, Daisuke; Watanabe, Junichi; Fukushima, Hideo; Mori, Masaki

    2008-05-22

    Multicolor Imaging Telescopes for Survey and Monstrous Explosions (MITSuME) is built to perform multi-color photometry of NIR/optical afterglow covering the wavebands from K{sub s} to g' allowing the photometric redshift measurements up to z{approx_equal}10.Two 50 cm optical telescopes are built at Akeno, Yamanashi in eastern Japan, and at OAO, Okayama in western Japan. Each telescope has a Tricolor Camera, which allows us to take simultaneous images in g', R{sub c} and I{sub c} bands. These telescopes respond to GCN alerts and start taking series of tricolor images, which are immediately processed through the analys is pipeline on site. The pipeline consists of source finding, catalog matching, sky coordinates mapping to the image pixels, and photometry of the found sources. In addition, an automated search for an optical counterpart is performed.In addition, a wide-field (1 deg.) 91 cm NIR telescope is being built at OAO with filters in K{sub s}, H, J, and y bands.Summary of early results will be also presented.

  9. DISCOVERY OF RADIO AFTERGLOW FROM THE MOST DISTANT COSMIC EXPLOSION

    SciTech Connect

    Chandra, Poonam; Frail, Dale A.; Fox, Derek; Kulkarni, Shrinivas; Harrsion, Fiona; Kasliwal, Mansi; Berger, Edo; Cenko, S. Bradley; Bock, Douglas C.-J.

    2010-03-20

    We report on the discovery of radio afterglow emission from the gamma-ray burst GRB 090423, which exploded at a redshift of 8.3, making it the object with the highest known redshift in the universe. By combining our radio measurements with existing X-ray and infrared observations, we estimate the kinetic energy of the afterglow, the geometry of the outflow, and the density of the circumburst medium. Our best-fit model suggests a quasi-spherical, high-energy explosion in a low, constant-density medium. GRB 090423 had a similar energy release to the other well-studied high redshift GRB 050904 (z = 6.26), but their circumburst densities differ by 2 orders of magnitude. We compare the properties of GRB 090423 with a sample of gamma-ray bursts (GRBs) at moderate redshifts. We find that the high energy and afterglow properties of GRB 090423 are not sufficiently different from other GRBs to suggest a different kind of progenitor, such as a Population III (Pop III) star. However, we argue that it is not clear that the afterglow properties alone can provide convincing identification of Pop III progenitors. We suggest that the millimeter and centimeter radio detections of GRB 090423 at early times contained emission from the reverse shock. If true, this may have important implications for the detection of high-redshift GRBs by the next generation of radio facilities.

  10. Broadband Study of GRB 091127: A Sub-Energetic Burst at Higher Redshift?

    NASA Technical Reports Server (NTRS)

    Troja, E.; Sakamoto, T.; Guidorzi, C.; Norris, J. P.; Panaitescu, A.; Kobayashi, S.; Omodei, N.; Brown, J. C.; Burrows, D. N.; Evans, P. A.; Gehrels, N.; Marshall, F. E.; Mawson, N.; Melandri,; Mundell, C. G.; Oates, S. R.; Pal'shin, V.; Preece, R. D.; Racusin, J. L.; Steele, I. A.; Tanvir, N. R.; Vasileiou, V.; Wilson-Hodge, C.

    2012-01-01

    GRB 091127 is a bright gamma-ray burst (GRB) detected by Swift at a redshift z=0.49 and associated with SN 2009nz. We present the broadband analysis of the GRB prompt and afterglow emission and study its high-energy properties in the context of the GRB/SN association. While the high luminosity of the prompt emission and standard afterglow behavior are typical of cosmological long GRBs, its low energy release (E(sub gamma),<3x10(exp 49) erg), soft spectrum and unusual spectral lag connect this GRB to the class of sub-energetic bursts. We discuss the suppression of high-energy emission in this burst, and investigate whether this behavior could be connected with the sub-energetic nature of the explosion. Subject headings: gamma-ray bursts: individual (GRB 091127)

  11. Prompt and Afterglow Emission Properties of Gamma-Ray Bursts with Spectroscopically Identified Supernovae

    SciTech Connect

    Kaneko, Yuki; Ramirez-Ruiz, E.; Granot, J.; Kouveliotou, C.; Woosley, S.E.; Patel, S.K.; Rol, E.; Zand, J.J.M.in't; a; Wijers, R.A.M.J.; Strom, R.; /USRA, Huntsville /Princeton, Inst. Advanced Study /UC, Santa Cruz /KIPAC, Menlo Park /NASA, Marshall /Leicester U. /SRON, Utrecht /Utrecht, Astron. Inst. /Amsterdam U., Astron. Inst. /NFRA, Dwingeloo

    2006-07-12

    We present a detailed spectral analysis of the prompt and afterglow emission of four nearby long-soft gamma-ray bursts (GRBs 980425, 030329, 031203, and 060218) that were spectroscopically found to be associated with type Ic supernovae, and compare them to the general GRB population. For each event, we investigate the spectral and luminosity evolution, and estimate the total energy budget based upon broadband observations. The observational inventory for these events has become rich enough to allow estimates of their energy content in relativistic and sub-relativistic form. The result is a global portrait of the effects of the physical processes responsible for producing long-soft GRBs. In particular, we find that the values of the energy released in mildly relativistic outflows appears to have a significantly smaller scatter than those found in highly relativistic ejecta. This is consistent with a picture in which the energy released inside the progenitor star is roughly standard, while the fraction of that energy that ends up in highly relativistic ejecta outside the star can vary dramatically between different events.

  12. Evidence for Jet Launching Close to the Black Hole in GRB 101219b—A Fermi GRB Dominated by Thermal Emission

    NASA Astrophysics Data System (ADS)

    Larsson, J.; Racusin, J. L.; Burgess, J. M.

    2015-02-01

    We present observations by the Fermi Gamma-Ray Space Telescope Gamma-Ray Burst Monitor (GBM) of the nearby (z = 0.55) GRB 101219B. This burst is a long GRB, with an associated supernova and with a blackbody (BB) component detected in the early afterglow observed by the Swift X-ray Telescope (XRT). Here we show that the prompt gamma-ray emission has a BB spectrum, making this the second such burst observed by Fermi GBM. The properties of the BB, together with the redshift and our estimate of the radiative efficiency makes it possible to calculate the absolute values of the properties of the outflow. We obtain an initial Lorentz factor Γ = 138 ± 8, a photospheric radius {{r}phot}=4.4+/- 1.9× {{10}11} cm, and a launch radius {{r}0}=2.7+/- 1.6× {{10}7} cm. The latter value is close to the black hole and suggests that the jet has a relatively unobstructed path through the star. There is no smooth connection between the BB components seen by GBM and XRT, ruling out the scenario that the late emission is due to high-latitude effects. In the interpretation that the XRT BB is prompt emission due to late central engine activity, the jet either has to be very wide or have a clumpy structure where the emission originates from a small patch. Other explanations for this component, such as emission from a cocoon surrounding the jet, are also possible.

  13. Comment on 'Shock-wave-induced enhancement of optical emission in nitrogen afterglow plasma'

    SciTech Connect

    Naidis, G. V.

    2007-01-15

    Sieffert et al. [Phys. Rev. E 72, 066402 (2005)] have recently presented experimental results on optical emission enhancement at the front of shockwaves propagating in nitrogen afterglow. They claim that their results point to local heating of electrons at the shock front. In this Comment it is shown that the observed emission enhancement can be explained on the basis of a commonly accepted model of nitrogen discharge and afterglow, so that the use of unfounded assumption of local electron heating is not required.

  14. Prospects for detection of very high-energy emission from GRB in the context of the external shock model

    NASA Astrophysics Data System (ADS)

    Galli, A.; Piro, L.

    2008-10-01

    Context: The detection of the 100 GeV-TeV emission by a gamma-ray burst (GRB) will provide an unprecedented opportunity to study the nature of the central engine and the interaction between the relativistic flow and the environment of the burst's progenitor. Aims: In this paper we show that there are exciting prospects of detecting from the burst by MAGIC high-energy (HE) emission during the early X-ray flaring activity and, later, during the normal afterglow phase. We also identify the best observational strategy: trigger conditions and time period of observation. Methods: We determine the expected HE emission from the flaring and afterglow phases of GRBs in the context of the external shock scenario and compare them with the MAGIC threshold. Results: We find that an X-ray flare with the average properties of the class can be detected in the 100 GeV range by MAGIC, provided that z ≲ 0.7. The requested observational window with MAGIC should then start from 10-20 s after the burst and cover about 1000-2000 s. Furthermore, we demonstrate that there are solid prospects of detecting the late afterglow emission in the same energy range for most of the bursts with z ≲ 0.5 if the density of the external medium is n ≳ a few cm-3. In this case, the MAGIC observation shall extend to about 10-20 ks. We provide recipes for tailoring this prediction to the observational properties of each burst, in particular the fluence in the prompt emission and the redshift, thus allowing an almost real time decision procedure to decide whether to continue the follow-up observation of a burst at late times.

  15. GRB 070724B: the first Gamma Ray Burst localized by SuperAGILE

    SciTech Connect

    Del Monte, E.; Costa, E.; Donnarumma, I.; Feroci, M.; Lapshov, I.; Lazzarotto, F.; Soffitta, P.; Argan, A.; Pucella, G.; Trois, A.; Vittorini, V.; Evangelista, Y.; Rapisarda, M.; Barbiellini, G.; Longo, F.; Basset, M.; Foggetta, L.; Vallazza, E.; Bulgarelli, A.; Di Cocco, G.

    2008-05-22

    GRB070724B is the first Gamma Ray Burst localized by the SuperAGILE instrument aboard the AGILE space mission. The SuperAGILE localization has been confirmed after the after-glow observation by the XRT aboard the Swift satellite. No significant gamma ray emission above 50 MeV has been detected for this GRB. In this paper we describe the SuperAGILE capabilities in detecting Gamma Ray Burst and the AGILE observation of GRB 070724B.

  16. Photospheric emission throughout GRB 100507 detected by Fermi

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Pescalli, A.; Ghisellini, G.

    2013-07-01

    Gamma-ray bursts with blackbody spectra are only a few and in most cases this spectral component is accompanied by a dominating non-thermal one. Only four bursts detected by Burst And Transient Source Experiment have a pure blackbody spectrum throughout their duration. We present the new case of GRB 100507 detected by the Gamma Burst Monitor on board the Fermi satellite. GRB 100507 has a blackbody spectrum for the entire duration (˜30 s) of the prompt emission. The blackbody temperature varies between 25 and 40 keV. The flux varies between 10-7 and 4 × 10-7 erg cm-2 s. There is no clear evidence of a correlation between the temperature and the blackbody flux. If the thermal emission in GRB 100507 is due to the fireballs becoming transparent, we can estimate the radius RT and bulk Lorentz factor ΓT corresponding to this transition and the radius R0 where the fireballs are created. We compare these parameters with those derived for the other four bursts with a pure blackbody spectrum. In all but one burst, for fiducial assumptions on the radiative efficiency and distance of the sources, R0 ˜ 109-1010 cm, i.e. much larger than the gravitational radius of a few solar mass black hole. Possible solutions of this apparent inconsistency are tentatively discussed considering the dependence of R0 on the unknown parameters. Alternatively, such a large R0 could be where the fireball, still opaque, converts most of its kinetic energy into internal energy (due to the impact with some material left over by the progenitor star) and starts to re-accelerate.

  17. GRB 120711A: an intense INTEGRAL burst with long-lasting soft γ-ray emission and a powerful optical flash

    NASA Astrophysics Data System (ADS)

    Martin-Carrillo, A.; Hanlon, L.; Topinka, M.; LaCluyzé, A. P.; Savchenko, V.; Kann, D. A.; Trotter, A. S.; Covino, S.; Krühler, T.; Greiner, J.; McGlynn, S.; Murphy, D.; Tisdall, P.; Meehan, S.; Wade, C.; McBreen, B.; Reichart, D. E.; Fugazza, D.; Haislip, J. B.; Rossi, A.; Schady, P.; Elliott, J.; Klose, S.

    2014-07-01

    A long and intense γ-ray burst (GRB) was detected by INTEGRAL on 11 July 2012 with a duration of ~115 s and fluence of 2.8 × 10-4 erg cm-2 in the 20 keV-8 MeV energy range. GRB 120711A was at z ~ 1.405 and produced soft γ-ray emission (>20 keV) for at least ~10 ks after the trigger. The GRB was observed by several ground-based telescopes that detected a powerful optical flash peaking at an R-band brightness of ~11.5 mag at ~126 s after the trigger, or ~9th magnitude when corrected for the host galaxy extinction (AV ~ 0.85). The X-ray afterglow was monitored by the Swift, XMM-Newton, and Chandra observatories from 8 ks to 7 Ms and provides evidence for a jet break at ~0.9 Ms. We present a comprehensive temporal and spectral analysis of the long-lasting soft γ-ray emission detected in the 20-200 keV band with INTEGRAL/IBIS, the Fermi/LAT post-GRB detection above 100 MeV, the soft X-ray afterglow and the optical/near-infrared detections from Watcher, Skynet/PROMPT, GROND, and REM. The prompt emission had a very hard spectrum (Epeak ~ 1 MeV) and yields an Eγ,iso ~ 1054 erg (1 keV-10 MeV rest frame), making GRB 120711A one of the most energetic GRBs detected so far. We modelled the long-lasting soft γ-ray emission using the standard afterglow scenario, which indicates a forward shock origin. The combination of data extending from the near-infrared to GeV energies suggest that the emission is produced by a broken power-law spectrum consistent with synchrotron radiation. The afterglow is well modelled using a stratified wind-like environment with a density profile k ~ 1.2, suggesting a massive star progenitor (i.e. Wolf-Rayet) with a mass-loss rate between ~10-5-10-6 M⊙ yr-1 depending on the value of the radiative efficiency (ηγ = 0.2 or 0.5). The analysis of the reverse and forward shock emission reveals an initial Lorentz factor of ~120-340, a jet half-opening angle of ~2°-5°, and a baryon load of ~10-5 - 10-6 M⊙ consistent with the expectations of the

  18. The 80 Ms follow-up of the X-ray afterglow of GRB 130427A challenges the standard forward shock model

    NASA Astrophysics Data System (ADS)

    De Pasquale, M.; Page, M. J.; Kann, D. A.; Oates, S. R.; Schulze, S.; Zhang, B.; Cano, Z.; Gendre, B.; Malesani, D.; Rossi, A.; Troja, E.; Piro, L.; Boër, M.; Stratta, G.; Gehrels, N.

    2016-10-01

    GRB 130427A was the brightest gamma-ray burst detected in the last 30 yr. With an equivalent isotropic energy output of 8.5 × 1053 erg and redshift z = 0.34, it uniquely combined very high energetics with a relative proximity to Earth. As a consequence, its X-ray afterglow has been detected by sensitive X-ray observatories such as XMM-Newton and Chandra for a record-breaking baseline longer than 80 million seconds. We present the X-ray light curve of this event over such an interval. The light curve shows a simple power-law decay with a slope α = 1.309 ± 0.007 over more than three decades in time (47 ks-83 Ms). We discuss the consequences of this result for a few models proposed so far to interpret GRB 130427A, and more in general the significance of this outcome in the context of the standard forward shock model. We find that this model has difficulty in explaining our data, in both cases of constant density and stellar-wind circumburst media, and requires far-fetched values for the physical parameters involved.

  19. Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Gehrels, Cornelis

    2013-01-01

    The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest gamma-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.

  20. Self-triggered Search for GRB Emission at ~ 100 GeV with HAWC

    NASA Astrophysics Data System (ADS)

    Wood, Joshua; HAWC Collaboration

    2015-04-01

    The High Altitude Water Cherenkov (HAWC) Observatory is a ground-based, TeV gamma-ray observatory currently under construction in the state of Puebla, Mexico at an altitude of 4100m. Its 22,000 m2 instrumented area, wide field of view (~ 2 sr), and > 95% uptime make it an ideal instrument for discovering GRB emission at ~ 100 GeV energies. Such a discovery would provide key information about the origins of prompt GRB emission as well as constraints on EBL models and Lorentz invariance. We will present prospects for discovering GRB emission at ~ 100 GeV energies using a simple, blind search algorithm on HAWC data.

  1. Modeling the Early Multiwavelength Emission in GRB130427A

    NASA Astrophysics Data System (ADS)

    Fraija, N.; Lee, W.; Veres, P.

    2016-02-01

    One of the most powerful gamma-ray bursts, GRB 130427A was swiftly detected from GeV γ-rays to optical wavelengths. In the GeV band, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope observed the highest-energy photon ever recorded of 95 GeV and a bright peak in the early phase followed by emission temporally extended for more than 20 hr. In the optical band, a bright flash with a magnitude of 7.03 ± 0.03 in the time interval from 9.31 to 19.31 s after the trigger was reported by RAPTOR in r band. We study the origin of the GeV γ-ray emission, using the multiwavelength observation detected in X-ray and optical bands. The origin of the temporally extended LAT, X-ray, and optical flux is naturally interpreted as synchrotron radiation, and the 95 GeV photon and the integral flux upper limits placed by the high-altitude water Cerenkov observatory are consistent with synchrotron self-Compton from an adiabatic forward shock propagating into the stellar wind of its progenitor. The extreme LAT peak and the bright optical flash are explained through synchrotron self-Compton and synchrotron emission from the reverse shock, respectively, when the ejecta evolves in the thick-shell regime and carries a significant magnetic field.

  2. MODELING THE EARLY MULTIWAVELENGTH EMISSION IN GRB 130427A

    SciTech Connect

    Fraija, N.; Lee, W.; Veres, P. E-mail: wlee@astro.unam.mx

    2016-02-20

    One of the most powerful gamma-ray bursts, GRB 130427A was swiftly detected from GeV γ-rays to optical wavelengths. In the GeV band, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope observed the highest-energy photon ever recorded of 95 GeV and a bright peak in the early phase followed by emission temporally extended for more than 20 hr. In the optical band, a bright flash with a magnitude of 7.03 ± 0.03 in the time interval from 9.31 to 19.31 s after the trigger was reported by RAPTOR in r band. We study the origin of the GeV γ-ray emission, using the multiwavelength observation detected in X-ray and optical bands. The origin of the temporally extended LAT, X-ray, and optical flux is naturally interpreted as synchrotron radiation, and the 95 GeV photon and the integral flux upper limits placed by the high-altitude water Cerenkov observatory are consistent with synchrotron self-Compton from an adiabatic forward shock propagating into the stellar wind of its progenitor. The extreme LAT peak and the bright optical flash are explained through synchrotron self-Compton and synchrotron emission from the reverse shock, respectively, when the ejecta evolves in the thick-shell regime and carries a significant magnetic field.

  3. GRB 130427A: a nearby ordinary monster.

    PubMed

    Maselli, A; Melandri, A; Nava, L; Mundell, C G; Kawai, N; Campana, S; Covino, S; Cummings, J R; Cusumano, G; Evans, P A; Ghirlanda, G; Ghisellini, G; Guidorzi, C; Kobayashi, S; Kuin, P; La Parola, V; Mangano, V; Oates, S; Sakamoto, T; Serino, M; Virgili, F; Zhang, B-B; Barthelmy, S; Beardmore, A; Bernardini, M G; Bersier, D; Burrows, D; Calderone, G; Capalbi, M; Chiang, J; D'Avanzo, P; D'Elia, V; De Pasquale, M; Fugazza, D; Gehrels, N; Gomboc, A; Harrison, R; Hanayama, H; Japelj, J; Kennea, J; Kopac, D; Kouveliotou, C; Kuroda, D; Levan, A; Malesani, D; Marshall, F; Nousek, J; O'Brien, P; Osborne, J P; Pagani, C; Page, K L; Page, M; Perri, M; Pritchard, T; Romano, P; Saito, Y; Sbarufatti, B; Salvaterra, R; Steele, I; Tanvir, N; Vianello, G; Wiegand, B; Weigand, B; Wiersema, K; Yatsu, Y; Yoshii, T; Tagliaferri, G

    2014-01-03

    Long-duration gamma-ray bursts (GRBs) are an extremely rare outcome of the collapse of massive stars and are typically found in the distant universe. Because of its intrinsic luminosity (L ~ 3 × 10(53) ergs per second) and its relative proximity (z = 0.34), GRB 130427A reached the highest fluence observed in the γ-ray band. Here, we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-meter Liverpool and Faulkes telescopes, and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early universe and over the full range of GRB isotropic energies.

  4. GRB 130427A: A Nearby Ordinary Monster

    NASA Astrophysics Data System (ADS)

    Maselli, A.; Melandri, A.; Nava, L.; Mundell, C. G.; Kawai, N.; Campana, S.; Covino, S.; Cummings, J. R.; Cusumano, G.; Evans, P. A.; Ghirlanda, G.; Ghisellini, G.; Guidorzi, C.; Kobayashi, S.; Kuin, P.; La Parola, V.; Mangano, V.; Oates, S.; Sakamoto, T.; Serino, M.; Virgili, F.; Zhang, B.-B.; Barthelmy, S.; Beardmore, A.; Bernardini, M. G.; Bersier, D.; Burrows, D.; Calderone, G.; Capalbi, M.; Chiang, J.; D'Avanzo, P.; D'Elia, V.; De Pasquale, M.; Fugazza, D.; Gehrels, N.; Gomboc, A.; Harrison, R.; Hanayama, H.; Japelj, J.; Kennea, J.; Kopac, D.; Kouveliotou, C.; Kuroda, D.; Levan, A.; Malesani, D.; Marshall, F.; Nousek, J.; O'Brien, P.; Osborne, J. P.; Pagani, C.; Page, K. L.; Page, M.; Perri, M.; Pritchard, T.; Romano, P.; Saito, Y.; Sbarufatti, B.; Salvaterra, R.; Steele, I.; Tanvir, N.; Vianello, G.; Weigand, B.; Wiersema, K.; Yatsu, Y.; Yoshii, T.; Tagliaferri, G.

    2014-01-01

    Long-duration gamma-ray bursts (GRBs) are an extremely rare outcome of the collapse of massive stars and are typically found in the distant universe. Because of its intrinsic luminosity (L ˜ 3 × 1053 ergs per second) and its relative proximity (z = 0.34), GRB 130427A reached the highest fluence observed in the γ-ray band. Here, we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-meter Liverpool and Faulkes telescopes, and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early universe and over the full range of GRB isotropic energies.

  5. GRB 130427A: A Nearby Ordinary Monster

    NASA Technical Reports Server (NTRS)

    Maselli, A.; Melandri, A.; Nava, L.; Mundell, C. G.; Kawai, N.; Campana, S.; Covino, S.; Cummings, J. R.; Cusumano, G.; Evans, P. A.; Ghirlander, G.; Ghisellini, G.; Guidorzi, C.; Kobayashi, S.; Kuin, P.; La Parola, V.; Mangano, V.; Oates, S.; Barthelmy, S.; Gehrels, N.; Marshall, F.; Wiegand, B.

    2014-01-01

    Long-duration gamma-ray bursts (GRBs) are an extremely rare outcome of the collapse of massive stars and are typically found in the distant universe. Because of its intrinsic luminosity (L approx. 3 x 10(exp 53) ergs/s and its relative proximity (z = 0.34), GRB 130427A reached the highest fluence observed in the gamma-ray band. Here, we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-meter Liverpool and Faulkes telescopes, and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early universe and over the full range of GRB isotropic energies.

  6. BDRG and shok instruments for study of GRB prompt emission in michaylo lomonosov space mission

    NASA Astrophysics Data System (ADS)

    Amelushkin, A. M.; Bogomolov, V. V.; Galkin, V. I.; Goncharov, B. V.; Gorbovskoy, E. S.; Kornilov, V. G.; Lipunov, V. M.; Panasyuk, M. I.; Petrov, V. L.; Smoot, G. F.; Svertilov, S. I.; Vedenkin, N. N.; Yashin, I. V.

    2013-07-01

    The study of GRB prompt emission (PE) is one of the main goals of the Lomonosov space mission, which is being prepared at Moscow State University. The GRB monitor (BDRG) and the wide-field optical cameras (SHOK) are intended for detection of GRB prompt emission as well as optical counterparts. The BDRG instrument consists of three identical NaI(Tl)/CsI(Tl) (13.0 × 2.0cm ) phoswich detectors, whose axes determine the Cartesian coordinate system. This allows to localize any GRB source on the sky by means of the count rate seen by each detector with an accuracy of ~2 deg. The SHOK instrument consists of two identical wide-field cameras (WFC) directed in such a way that the field of view (FOV) of each WFC overlaps by the corresponding BDRG FOV, which produces a trigger on the WFC in case of a GRB detection. With this setup, the GRB prompt light curve will be obtained in the visible without any delay with respect to gamma-rays, which is crucial for a GRB central engine understanding.

  7. Evidence of Bulk Acceleration of the GRB X-Ray Flare Emission Region

    NASA Astrophysics Data System (ADS)

    Uhm, Z. Lucas; Zhang, Bing

    2016-06-01

    Applying our recently developed generalized version of the high-latitude emission theory to the observations of X-ray flares in gamma-ray bursts (GRBs), here we present clear observational evidence that the X-ray flare emission region is undergoing rapid bulk acceleration as the photons are emitted. We show that both the observed X-ray flare light curves and the photon index evolution curves can be simultaneously reproduced within a simple physical model invoking synchrotron radiation in an accelerating emission region far from the GRB central engine. Such an acceleration process demands an additional energy dissipation source other than kinetic energy, which points toward a significant Poynting flux in the emission region of X-ray flares. As the X-ray flares are believed to share a similar physical mechanism as the GRB prompt emission, our finding here hints that the GRB prompt emission jets may also carry a significant Poynting flux in their emitting region.

  8. VLT/X-Shooter spectroscopy of the afterglow of the Swift GRB 130606A. Chemical abundances and reionisation at z ~ 6

    NASA Astrophysics Data System (ADS)

    Hartoog, O. E.; Malesani, D.; Fynbo, J. P. U.; Goto, T.; Krühler, T.; Vreeswijk, P. M.; De Cia, A.; Xu, D.; Møller, P.; Covino, S.; D'Elia, V.; Flores, H.; Goldoni, P.; Hjorth, J.; Jakobsson, P.; Krogager, J.-K.; Kaper, L.; Ledoux, C.; Levan, A. J.; Milvang-Jensen, B.; Sollerman, J.; Sparre, M.; Tagliaferri, G.; Tanvir, N. R.; de Ugarte Postigo, A.; Vergani, S. D.; Wiersema, K.; Datson, J.; Salinas, R.; Mikkelsen, K.; Aghanim, N.

    2015-08-01

    Context. The reionisation of the Universe is a process that is thought to have ended around z ~ 6, as inferred from spectroscopy of distant bright background sources, such as quasars (QSO) and gamma-ray burst (GRB) afterglows. Furthermore, spectroscopy of a GRB afterglow provides insight in its host galaxy, which is often too dim and distant to study otherwise. Aims: For the Swift GRB 130606A at z = 5.913 we have obtained a high S/N spectrum covering the full optical and near-IR wavelength region at intermediate spectral resolution with VLT/X-Shooter. We aim to measure the degree of ionisation of the intergalactic medium (IGM) between z = 5.02-5.84 and to study the chemical abundance pattern and dust content of its host galaxy. Methods: We estimated the UV continuum of the GRB afterglow using a power-law extrapolation, then measured the flux decrement due to absorption at Lyα,β, and γ wavelength regions. Furthermore, we fitted the shape of the red damping wing of Lyα. The hydrogen and metal absorption lines formed in the host galaxy were fitted with Voigt profiles to obtain column densities. We investigated whether ionisation corrections needed to be applied. Results: Our measurements of the Lyα-forest optical depth are consistent with previous measurements of QSOs, but have a much smaller uncertainty. The analysis of the red damping wing yields a neutral fraction xH i< 0.05 (3σ). We obtain column density measurements of H, Al, Si, and Fe; for C, O, S and Ni we obtain limits. The ionisation due to the GRB is estimated to be negligible (corrections <0.03 dex), but larger corrections may apply due to the pre-existing radiation field (up to 0.4 dex based on sub-DLA studies). Assuming that [ Si/Fe ] = +0.79 ± 0.13 is due to dust depletion, the dust-to-metal ratio is similar to the Galactic value. Conclusions: Our measurements confirm that the Universe is already predominantly ionised over the redshift range probed in this work, but was slightly more neutral at z

  9. GRB 011121: Jet, wind and supernova -- all in one

    NASA Astrophysics Data System (ADS)

    Greiner, J.; Klose, S.; Salvato, M.; Zeh, A.; Schwarz, R.; Hartmann, D. H.; Masetti, N.; Stecklum, B.; Lamer, G.; Lodieu, N.; Scholz, R. D.; Sterken, C.; Gorosabel, J.; Burud, I.; Rhoads, J.; Mitrofanov, I.; Litvak, M.; Sanin, A.; Grinkov, V.; Andersen, M. I.; Castro Cerón, J. M.; Castro-Tirado, A. J.; Fruchter, A.; Fynbo, J. U.; Hjorth, J.; Kaper, L.; Kouveliotou, C.; Palazzi, E.; Pian, E.; Rol, E.; Salamanca, I.; Tanvir, N. R.; Vreeswijk, P. M.; Wijers, R. A. M. J.; van den Heuvel, E.

    2004-06-01

    We report optical and near-infrared follow-up observations of GRB 011121. We discover a break in the afterglow light curve after 1.3 days, which implies an initial jet opening angle of ˜9°. The jet origin of this break is supported by the achromatic spectral energy distribution. During later phases, GRB 011121 shows significant excess emission above the flux predicted by a power law decline, interpreted as light from an underlying supernova. The deduced parameters for the decay slope as well as the spectral index favor a wind scenario, i.e. an outflow into a circum-burst environment shaped by the stellar wind of a massive GRB progenitor. Due to its low redshift of z=0.36, GRB 011121 is the so far best example for the GRB-supernova connection, and provides compelling evidence for a circum-burster wind region expected to exist if the progenitor was a massive star.

  10. Shock-wave-induced enhancement of optical emission in nitrogen afterglow plasma

    SciTech Connect

    Siefert, N.; Ganguly, B.N.; Bletzinger, P.

    2005-12-15

    This paper reports measurements of optical emission enhancement at the shock front of Mach 1.5 to Mach 3.5 shockwaves propagating in the afterglow of a 0.75 Torr nitrogen glow discharge. Electrically-generated shocks pass through the afterglow and create noticeable enhancements of the B {sup 3}{pi}{sub g}-A {sup 3}{sigma}{sub u}{sup +} and C {sup 3}{pi}{sub u}-B {sup 3}{pi}{sub g} transitions of nitrogen. Under our discharge conditions, the electron Debye length was approximately the same magnitude as the shock thickness; this allows the possibility of a space-charge region extending beyond the neutral shockwave discontinuity. Previous researchers have measured enhancement in the B {sup 3}{pi}{sub g}-A {sup 3}{sigma}{sub u}{sup +} optical emission at the shock front, but only in the active discharge. Fibers connected to photomultipler tubes measure the optical emission from the discharge. Laser deflection measures the shock velocity. The data reveals that the emission enhancement increases with Mach number, and also indicates that the emission enhancement decreases exponentially with time in the afterglow. Since the discharge voltage has already been shut off, the energy needed to create the emission enhancement cannot come from the power supply. We conclude that under our discharge conditions there is an increase in the already non-equilibrium energy of the electrons at the shock front via a shockwave-induced strong double layer.

  11. FAINT HIGH-ENERGY GAMMA-RAY PHOTON EMISSION OF GRB 081006A FROM FERMI OBSERVATIONS

    SciTech Connect

    Zheng Weikang; Akerlof, Carl W.; Pandey, Shashi B.; McKay, Timothy A.; Zhang Binbin; Zhang Bing

    2012-01-20

    Since the launch of the Fermi Gamma-ray Space Telescope on 2008 June 11, the Large Area Telescope (LAT) instrument has firmly detected more than 20 gamma-ray bursts (GRBs) with high-energy photon emission above 100 MeV. Using the matched filter technique, three more GRBs have also shown evidence of correlation with high-energy photon emission as demonstrated by Akerlof et al. In this paper, we present another GRB, GRB 081006A, unambiguously detected by the matched filter technique. This event is associated with more than 13 high-energy photons above 100 MeV. The likelihood analysis code provided by the Fermi Science Support Center generated an independent verification of this detection using a comparison of the test statistics value with similar calculations for random LAT data fields. We have performed detailed temporal and spectral analysis of photons from 8 keV up to 0.8 GeV from the Gamma-ray Burst Monitor and the LAT. The properties of GRB 081006A can be compared to those of the other two long-duration GRBs detected at similar significance, GRB 080825C and GRB 090217A. We find that GRB 081006A is more similar to GRB 080825C with comparable appearances of late high-energy photon emission. As demonstrated previously, there appears to be a surprising dearth of faint LAT GRBs, with only one additional GRB identified in a sample of 74. In this unique period when both Swift and Fermi are operational, there is some urgency to explore this aspect of GRBs as fully as possible.

  12. The LAGO Collaboration: Searching for high energy GRB emissions in Latin America

    NASA Astrophysics Data System (ADS)

    Barros, H.; Lago Collaboration

    2012-02-01

    During more than a decade Gamma Ray Bursts (GRB a cosmological phenomena of tremendous power) have been extensively studied in the keV - MeV energy range. However, the higher energy emission still remains a mystery. The Large Aperture GRB Observatory (L.A.G.O.) is an international collaboration started in 2005 aiming at a better understanding of the GRB by studying their emission at high energies (> 1 GeV), where the fluxes are low and measurements by satellites are difficult. This is done using the Single Particle Technique, by means of ground-based Water Cherenkov Detectors (WCD) at sites of high altitude. At those altitudes it is possible to detect air showers produced by high energy photons from the GRB, i. e. a higher rate of events on a short time scale, of the order of the second. The Pierre Auger Observatory could detect such GRB given its large number of detectors, but at 1400 m.a.s.l. the expected signal is quite small. At higher altitudes, similar performance is expected with only a very small number of WCD. As of 2011, high altitude WCD are in operation at Sierra Negra (Mexico, 4650 m.a.s.l.), Chacaltaya (Bolivia, 5200 m.a.s.l.), Maracapomacocha (Peru, 4200 m.a.s.l.), and new WCDs are being installed in Venezuela (Pico Espejo, 4750 m.a.s.l.), Argentina, Brazil, Chile, Colombia and Guatemala. Most of the new WCDs will not be at high enough altitude to detect GRB, never the less it will allow obtaining valuable measurements of secondaries at ground level, which are relevant for solar physics. The LAGO sensitivity to GRB is determined from simulations (under a sudden increase of 1 GeV - 1 TeV photons from a GRB) of the gamma initiated particle shower in the atmosphere and the WCD response to secondaries. We report on WDC calibration and operation at high altitude, GRB detectability, background rates, search for bursts in several months of preliminary data, as well as search for signals at ground level when satellite burst is reported, all these show the

  13. Search for Polarization from the Prompt Gamma-Ray Emission of GRB 041219 with SPI on INTEGRAL

    NASA Technical Reports Server (NTRS)

    Kalemci, E.; Boggs, S. E.; Kouvelitou, C.; Finger, M.

    2005-01-01

    Measuring the polarization of the prompt gamma-ray emission from GRBs can significantly improve our understanding of both the GRB emission mechanisms, as well as the underlying engine driving the explosion. We searched for polarization in the prompt gamma-ray emission of GRB 041219 with the SPI instrument on INTEGRAL. Using multiple-detector coincidence events in the 100-500 keV energy band, our analysis yields a polarization fraction from this GRB of 66 f 21%. While statistically this measurement suggests a non-zero polarization, we cannot strongly rule out the possibility that the measured modulation is dominated by instrumental systematics. Therefore, SPI observations of GRB 041219 do not significantly constrain GRB models. However, this measurement demonstrates the capability of SPI to measure polarization, and the techniques developed for this analysis.

  14. Observational Signatures of High-Energy Emission during the Shallow Decay Phase of Gamma-Ray Burst X-Ray Afterglows

    NASA Astrophysics Data System (ADS)

    Yu, Y. W.; Liu, X. W.; Dai, Z. G.

    2007-12-01

    The widely existing shallow decay phase of the X-ray afterglows of gamma-ray bursts (GRBs) is generally accepted to be due to long-lasting energy injection. The outflows carrying the injecting energy, based on the component that is dominant in energy, fall into two possible types: baryon-dominated and lepton-dominated ones. The former type of outflow could be ejecta that is ejected during the prompt phase of a GRB and consists of a series of baryonic shells with a distribution of Lorentz factors, and the latter type could be an electron-positron pair wind that is driven by the postburst central engine. We here provide a unified description for the dynamics of fireballs based on these two types of energy injection and calculate the corresponding high-energy photon emission by considering synchrotron radiation and inverse Compton scattering (including synchrotron self-Compton and combined inverse Compton) of electrons. We find that, in the two energy-injection models, there is a plateau (even a hump) in high-energy light curves during the X-ray shallow decay phase. In particular, a considerable fraction of the injecting energy in the lepton-dominated model can be shared by the long-lasting reverse shock since it is relativistic. Furthermore, almost all of the energy of the reverse shock is carried by leptons, and thus, the inverse Compton emission is enhanced dramatically. Therefore, this model predicts more significant high-energy afterglow emission than the baryon-dominated model. We argue that these observational signatures would be used to discriminate between different energy-injection models in the upcoming Gamma-Ray Large Area Space Telescope (GLAST) era.

  15. JITTER SELF-COMPTON PROCESS: GeV EMISSION OF GRB 100728A

    SciTech Connect

    Mao, Jirong; Wang Jiancheng

    2012-04-01

    Jitter radiation, the emission of relativistic electrons in a random and small-scale magnetic field, has been applied to explain the gamma-ray burst (GRB) prompt emission. The seed photons produced from jitter radiation can be scattered by thermal/nonthermal electrons to the high-energy bands. This mechanism is called jitter self-Compton (JSC) radiation. GRB 100728A, which was simultaneously observed by Swift and Fermi, is a great example to constrain the physical processes of jitter and JSC. In our work, we utilize jitter/JSC radiation to reproduce the multiwavelength spectrum of GRB 100728A. In particular, due to JSC radiation, the powerful emission above the GeV band is the result of those jitter photons in the X-ray band scattered by the relativistic electrons with a mixed thermal-nonthermal energy distribution. We also combine the geometric effect of microemitters to the radiation mechanism, such that the 'jet-in-jet' scenario is considered. The observed GRB duration is the result of summing up all of the contributions from those microemitters in the bulk jet.

  16. GRB 090727 and Gamma-Ray Bursts with Early-time Optical Emission

    NASA Astrophysics Data System (ADS)

    Kopač, D.; Kobayashi, S.; Gomboc, A.; Japelj, J.; Mundell, C. G.; Guidorzi, C.; Melandri, A.; Bersier, D.; Cano, Z.; Smith, R. J.; Steele, I. A.; Virgili, F. J.

    2013-07-01

    We present a multi-wavelength analysis of Swift gamma-ray burst GRB 090727, for which optical emission was detected during the prompt gamma-ray emission by the 2 m autonomous robotic Liverpool Telescope and subsequently monitored for a further two days with the Liverpool and Faulkes Telescopes. Within the context of the standard fireball model, we rule out a reverse shock origin for the early-time optical emission in GRB 090727 and instead conclude that the early-time optical flash likely corresponds to emission from an internal dissipation process. Putting GRB 090727 into a broader observational and theoretical context, we build a sample of 36 gamma-ray bursts (GRBs) with contemporaneous early-time optical and gamma-ray detections. From these GRBs, we extract a sub-sample of 18 GRBs, which show optical peaks during prompt gamma-ray emission, and perform detailed temporal and spectral analysis in gamma-ray, X-ray, and optical bands. We find that in most cases early-time optical emission shows sharp and steep behavior, and notice a rich diversity of spectral properties. Using a simple internal shock dissipation model, we show that the emission during prompt GRB phase can occur at very different frequencies via synchrotron radiation. Based on the results obtained from observations and simulation, we conclude that the standard external shock interpretation for early-time optical emission is disfavored in most cases due to sharp peaks (Δt/t < 1) and steep rise/decay indices, and that internal dissipation can explain the properties of GRBs with optical peaks during gamma-ray emission.

  17. Emission and afterglow properties of an expanding RF plasma with nonuniform neutral gas density

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.; Bellan, Paul M.

    2016-08-01

    We describe some notable aspects of the light emission and afterglow properties in pulsed, high-density ( 1018-1020 m-3 ) argon inductively coupled discharges initiated following fast gas injection. The plasma was created in a long, narrow discharge tube and then expanded downstream of the radiofrequency (RF) antenna into a large chamber. Fast camera images of the expanding plasma revealed a multi-phase time-dependent emission pattern that did not follow the ion density distribution. Dramatic differences in visible brightness were observed between discharges with and without an externally applied magnetic field. These phenomena were studied by tracking excited state populations using passive emission spectroscopy and are discussed in terms of the distinction between ionizing and recombining phase plasmas. Additionally, a method is presented for inferring the unknown neutral gas pressure in the discharge tube from the time-dependent visible and infrared emission measured by a simple photodiode placed near the antenna. In magnetized discharges created with fast gas injection, the downstream ion density rose by Δni˜1018 m-3 in the first ˜100 μs after the RF power was turned off. The conditions conducive to this afterglow density rise are investigated in detail, and the effect is tentatively attributed to pooling ionization.

  18. High-energy Emission of GRB 130427A: Evidence for Inverse Compton Radiation

    NASA Astrophysics Data System (ADS)

    Fan, Yi-Zhong; Tam, P. H. T.; Zhang, Fu-Wen; Liang, Yun-Feng; He, Hao-Ning; Zhou, Bei; Yang, Rui-Zhi; Jin, Zhi-Ping; Wei, Da-Ming

    2013-10-01

    A nearby superluminous burst GRB 130427A was simultaneously detected by six γ-ray space telescopes (Swift, the Fermi GLAST Burst Monitor (GBM)/Large Area Telescope, Konus-Wind, SPI-ACS/INTEGRAL, AGILE, and RHESSI) and by three RAPTOR full-sky persistent monitors. The isotropic γ-ray energy release is ~1054 erg, rendering it the most powerful explosion among gamma-ray bursts (GRBs) with a redshift z <= 0.5. The emission above 100 MeV lasted about one day, and four photons are at energies greater than 40 GeV. We show that the count rate of 100 MeV-100 GeV emission may be mainly accounted for by the forward shock synchrotron radiation and the inverse Compton radiation likely dominates at GeV-TeV energies. In particular, an inverse Compton radiation origin is favored for the ~(95.3, 47.3, 41.4, 38.5, 32) GeV photons arriving at t ~ (243, 256.3, 610.6, 3409.8, 34366.2) s after the trigger of Fermi-GBM. Interestingly, the external inverse Compton scattering of the prompt emission (the second episode, i.e., t ~ 120-260 s) by the forward-shock-accelerated electrons is expected to produce a few γ-rays at energies above 10 GeV, while five were detected in the same time interval. A possible unified model for the prompt soft γ-ray, optical, and GeV emission of GRB 130427A, GRB 080319B, and GRB 090902B is outlined. Implications of the null detection of >1 TeV neutrinos from GRB 130427A by IceCube are discussed.

  19. Gamma-ray Burst Reverse Shock Emission in Early Radio Afterglows

    NASA Astrophysics Data System (ADS)

    Resmi, Lekshmi; Zhang, Bing

    2016-07-01

    Reverse shock (RS) emission from gamma-ray bursts is an important tool in investigating the nature of the ejecta from the central engine. If the magnetization of the ejecta is not high enough to suppress the RS, a strong RS emission component, usually peaking in the optical/IR band early on, would provide an important contribution to early afterglow light curve. In the radio band, synchrotron self-absorption may suppress early RS emission and also delay the RS peak time. In this paper, we calculate the self-absorbed RS emission in the radio band under different dynamical conditions. In particular, we stress that the RS radio emission is subject to self-absorption in both RSs and forward shocks (FSs). We calculate the ratio between the RS to FS flux at the RS peak time for different frequencies, which is a measure of the detectability of the RS emission component. We then constrain the range of physical parameters for a detectable RS, in particular the role of magnetization. We notice that unlike optical RS emission which is enhanced by moderate magnetization, moderately magnetized ejecta do not necessarily produce a brighter radio RS due to the self-absorption effect. For typical parameters, the RS emission component would not be detectable below 1 GHz unless the medium density is very low (e.g., n < 10-3 cm-3 for the interstellar medium and A * < 5 × 10-4 for wind). These predictions can be tested using the afterglow observations from current and upcoming radio facilities such as the Karl G. Jansky Very Large Array, the Low-Frequency Array, the Five Hundred Meter Aperture Spherical Telescope, and the Square Kilometer Array.

  20. The AAVSO International GRB Network

    NASA Astrophysics Data System (ADS)

    Price, Aaron

    2003-04-01

    The AAVSO International GRB Network provides services to both amateurs and professionals to help detect GRB afterglows. The network leverages the unique abilities of amateur astronomers to offer global coverage to eliminate geographic and climatic restrictions to GRB alert reaction times. Additionally, public outreach is a critical component of the network and automated online chart making procedures have made it a useful tool for professionals. The financial support of NASA and the Curry Foundation is gratefully appreciated.

  1. The Statistics of BAT-to-XRT Flux Ratio in GRB: Evidence for a Characteristic Value and its Implications

    NASA Astrophysics Data System (ADS)

    Kazanas, D.; Racusin, J. L.; Sultana, J.; Mastichiadis, A.

    2016-10-01

    We present the statistics of the luminosity ratio R between the prompt emission and the GRB afterglow plateau to show that R has a characteristic value 2000 close the proton/electron mass ratio as suggested by an earlier model of ours.

  2. GRB 110709B in the induced gravitational collapse paradigm

    NASA Astrophysics Data System (ADS)

    Penacchioni, A. V.; Ruffini, R.; Bianco, C. L.; Izzo, L.; Muccino, M.; Pisani, G. B.; Rueda, J. A.

    2013-03-01

    -ray afterglow. It is most remarkable that the determination of the cosmological redshift on the basis of scaling the late X-ray afterglow, which was already verified in GRB 090618 and GRB 101023, is again verified by this analysis. Results: We find for episode 1 a temperature of the BB component that evolves with time following a broken PL, with the slope of the PL at early times α = 0 (constant function) and the slope of the PL at late times β = -4 ± 2. The break occurs at t = 41.21 s. The total energy of episode 1 is E1iso = 1.42 × 1053 erg. The total energy of episode 2 is E2iso = 2.43 × 1052 erg. We find at transparency a Lorentz factor Γ ~ 1.73 × 102, laboratory radius of 6.04 × 1013 cm, P-GRB observed temperature kTP - GRB = 12.36 keV, baryon load B = 5.7 × 10-3 and P-GRB energy of EP - GRB = 3.44 × 1050 erg. We find a remarkable coincidence of the cosmological redshift by scaling the XRT data and with three other phenomenological methods. Conclusions: We interpret GRB 110709B as a member of the IGC sources, together with GRB 970828, GRB 090618, and GRB 101023. The existence of the XRT data during the prompt phase of the emission of GRB 110709B (episode 2) offers an unprecedented tool for improving the diagnostic of GRBs emission.

  3. CONSTRAINTS ON THE EMISSION MODEL OF THE 'NAKED-EYE BURST' GRB 080319B

    SciTech Connect

    Abdo, A. A.; Abeysekara, A. U.; Linnemann, J. T.; Allen, B. T.; Chen, C.; Aune, T.; Berley, D.; Goodman, J. A.; Christopher, G. E.; Kolterman, B. E.; Mincer, A. I.; DeYoung, T.; Dingus, B. L.; Hoffman, C. M.; Ellsworth, R. W.; Gonzalez, M. M.; Granot, J.; Hays, E.; McEnery, J. E.; Huentemeyer, P. H.; and others

    2012-07-10

    On 2008 March 19, one of the brightest gamma-ray bursts (GRBs) ever recorded was detected by several ground- and space-based instruments spanning the electromagnetic spectrum from radio to gamma rays. With a peak visual magnitude of 5.3, GRB 080319B was dubbed the 'naked-eye' GRB, as an observer under dark skies could have seen the burst without the aid of an instrument. Presented here are results from observations of the prompt phase of GRB 080319B taken with the Milagro TeV observatory. The burst was observed at an elevation angle of 47 Degree-Sign . Analysis of the data is performed using both the standard air shower method and the scaler or single-particle technique, which results in a sensitive energy range that extends from {approx}5 GeV to >20 TeV. These observations provide the only direct constraints on the properties of the high-energy gamma-ray emission from GRB 080319B at these energies. No evidence for emission is found in the Milagro data, and upper limits on the gamma-ray flux above 10 GeV are derived. The limits on emission between {approx}25 and 200 GeV are incompatible with the synchrotron self-Compton model of gamma-ray production and disfavor a corresponding range (2 eV-16 eV) of assumed synchrotron peak energies. This indicates that the optical photons and soft ({approx}650 keV) gamma rays may not be produced by the same electron population.

  4. Constraints on the Emission Model of the "Naked-eye Burst" GRB 080319B

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Abeysekara, A. U.; Allen, B. T.; Aune, T.; Berley, D.; Chen, C.; Christopher, G. E.; DeYoung, T.; Dingus, B. L.; Ellsworth, R. W.; Gonzalez, M. M.; Goodman, J. A.; Granot, J.; Hays, E.; Hoffman, C. M.; Hüntemeyer, P. H.; Kolterman, B. E.; Linnemann, J. T.; McEnery, J. E.; Mincer, A. I.; Morgan, T.; Nemethy, P.; Pretz, J.; Ramirez-Ruiz, E.; Ryan, J. M.; Saz Parkinson, P. M.; Shoup, A.; Sinnis, G.; Smith, A. J.; Vasileiou, V.; Walker, G. P.; Williams, D. A.; Yodh, G. B.

    2012-07-01

    On 2008 March 19, one of the brightest gamma-ray bursts (GRBs) ever recorded was detected by several ground- and space-based instruments spanning the electromagnetic spectrum from radio to gamma rays. With a peak visual magnitude of 5.3, GRB 080319B was dubbed the "naked-eye" GRB, as an observer under dark skies could have seen the burst without the aid of an instrument. Presented here are results from observations of the prompt phase of GRB 080319B taken with the Milagro TeV observatory. The burst was observed at an elevation angle of 47°. Analysis of the data is performed using both the standard air shower method and the scaler or single-particle technique, which results in a sensitive energy range that extends from ~5 GeV to >20 TeV. These observations provide the only direct constraints on the properties of the high-energy gamma-ray emission from GRB 080319B at these energies. No evidence for emission is found in the Milagro data, and upper limits on the gamma-ray flux above 10 GeV are derived. The limits on emission between ~25 and 200 GeV are incompatible with the synchrotron self-Compton model of gamma-ray production and disfavor a corresponding range (2 eV-16 eV) of assumed synchrotron peak energies. This indicates that the optical photons and soft (~650 keV) gamma rays may not be produced by the same electron population.

  5. Plastic Damping of Alfvén Waves in Magnetar Flares and Delayed Afterglow Emission

    NASA Astrophysics Data System (ADS)

    Li, Xinyu; Beloborodov, Andrei M.

    2015-12-01

    Magnetar flares generate Alfvén waves bouncing in the closed magnetosphere with energy up to ∼ {10}46 erg. We show that on a timescale of 10 ms the waves are transmitted into the star and form a compressed packet of high energy density. This packet strongly shears the stellar crust and initiates a plastic flow, heating the crust and melting it hundreds of meters below the surface. A fraction of the deposited plastic heat is eventually conducted to the stellar surface, contributing to the surface afterglow months to years after the flare. A large fraction of heat is lost to neutrino emission or conducted into the core of the neutron star.

  6. A magnetar powering the ordinary monster GRB 130427A?

    NASA Astrophysics Data System (ADS)

    Bernardini, M. G.; Campana, S.; Ghisellini, G.; D'Avanzo, P.; Calderone, G.; Covino, S.; Cusumano, G.; Ghirlanda, G.; La Parola, V.; Maselli, A.; Melandri, A.; Salvaterra, R.; Burlon, D.; D'Elia, V.; Fugazza, D.; Sbarufatti, B.; Vergani, S. D.; Tagliaferri, G.

    2014-03-01

    We present the analysis of the extraordinarily bright gamma-ray burst (GRB) 130427A under the hypothesis that the GRB central engine is an accretion-powered magnetar. In this framework, initially proposed to explain GRBs with precursor activity, the prompt emission is produced by accretion of matter on to a newly born magnetar, and the observed power is related to the accretion rate. The emission is eventually halted if the centrifugal forces are able to pause accretion. We show that the X-ray and optical afterglow is well explained as the forward shock emission with a jet break plus a contribution from the spin-down of the magnetar. Our modelling does not require any contribution from the reverse shock, that may still influence the afterglow light curve at radio and mm frequencies, or in the optical at early times. We derive the magnetic field (B ˜ 1016 G) and the spin period (P ˜ 20 ms) of the magnetar and obtain an independent estimate of the minimum luminosity for accretion. This minimum luminosity results well below the prompt emission luminosity of GRB 130427A, providing a strong consistency check for the scenario where the entire prompt emission is the result of continuous accretion on to the magnetar. This is in agreement with the relatively long spin period of the magnetar. GRB 130427A was a well-monitored GRB showing a very standard behaviour and, thus, is a well-suited benchmark to show that an accretion-powered magnetar gives a unique view of the properties of long GRBs.

  7. GRB 011121: A Collimated Outflow into Wind-blown Surroundings

    NASA Astrophysics Data System (ADS)

    Greiner, J.; Klose, S.; Salvato, M.; Zeh, A.; Schwarz, R.; Hartmann, D. H.; Masetti, N.; Stecklum, B.; Lamer, G.; Lodieu, N.; Scholz, R. D.; Sterken, C.; Gorosabel, J.; Burud, I.; Rhoads, J.; Mitrofanov, I.; Litvak, M.; Sanin, A.; Grinkov, V.; Andersen, M. I.; Castro Cerón, J. M.; Castro-Tirado, A. J.; Fruchter, A.; Fynbo, J. U.; Hjorth, J.; Kaper, L.; Kouveliotou, C.; Palazzi, E.; Pian, E.; Rol, E.; Tanvir, N. R.; Vreeswijk, P. M.; Wijers, R. A. M. J.; van den Heuvel, E.

    2003-12-01

    We report optical and near-infrared follow-up observations of GRB 011121 collected predominantly at ESO telescopes in Chile. We discover a break in the afterglow light curve after 1.3 days, which implies an initial jet opening angle of about 9°. The jet origin of this break is supported by the fact that the spectral energy distribution is achromatic during the first 4 days. During later phases, GRB 011121 shows significant excess emission above the flux predicted by a power law, which we interpret as additional light from an underlying supernova. In particular, the spectral energy distribution of the optical transient approximately 2 weeks after the burst is clearly not of power-law type but can be presented by a blackbody with a temperature of ~6000 K. The deduced parameters for the decay slope and the spectral index favor a wind scenario, i.e., an outflow into a circumburst environment shaped by the stellar wind of a massive gamma-ray burst (GRB) progenitor. Because of its low redshift of z=0.36, GRB 011121 has been the best example for the GRB-supernova connection until GRB 030329 and provides compelling evidence for a circumburster wind region expected to exist if the progenitor was a massive star. Based on observations collected at the European Southern Observatory, La Silla and Paranal, Chile (ESO Programme 165.H-0464).

  8. GRB 011121: A Collimated Outflow into Wind-Blown Surroundings

    NASA Technical Reports Server (NTRS)

    Greiner, J.; Klose, S.; Salvato, M.; Zeh, A.; Schwarz, R.; Hartmann, D. H.; Masetti, N.; Stecklum, B.; Lamer, G.; Lodieu, N.; Burud, I.; Rhoads, J.; Fruchter, A.

    2003-01-01

    We report optical and near-infrared follow-up observations of GRB 011121 collected predominantly at ESO telescopes in Chile. We discover a break in the afterglow light curve after 1.3 days, which implies an initial jet opening angle of about 9 deg. The jet origin of this break is supported by the fact that the spectral energy distribution is achromatic during the first four days. During later phases, GRB 011121 shows significant excess emission above the flux predicted by a power law, which we interpret as additional light from an underlying supernova. In particular, the spectral energy distribution of the optical transient approximately 2 weeks after the burst is clearly not of power-law type, but can be presented by a black body with a temperature of approx. 6000 K. The deduced parameters for the decay slope as well as the spectral index favor a wind scenario, i.e. an outflow into a circum-burst environment shaped by the stellar wind of a massive GRB progenitor. Due to its low redshift of z=0.36, GRB 011121 has been the best example for the GRB-supernova connection until GRB 030329, and provides compelling evidence for a circum-burster wind region expected to exist if the progenitor was a massive star.

  9. Super-LOTIS/LOTIS/LITE: Prompt GRB Followup Experiments

    SciTech Connect

    Park, H S; Ables, E; Barthelmy, S; Bradshaw, M; Cline, T; Gehrels, N; Hartmann, D; Hurley, K; Nemiroff, R; Pereira, W; Perez-Ramirez, D; Williams, G G; Ziock, K

    2001-06-25

    LOTIS (Livermore Optical Transient Imaging System) and Super-LOTIS are automatic telescope systems that measure very prompt optical emission occurring within seconds of the gamma-ray energy release during a Gamma Ray Burst (GRB). Unlike hour-to-days delayed afterglow measurements, very early measurements will contain information about the GRB progenitor. To accomplish this, we developed and have been operating automated telescopes that rapidly image GRB coordinate error boxes in response to triggers distributed by the GRB Coordinate Distribution Network (GCN). LOTIS, located in California, consists of 4 cameras each with a different astronomical filter (B, V, R, open) that can respond to GRB triggers within 5 s. Super-LOTIS can point to any part of the sky within 30 s upon receipt of a GCN trigger and its sensitivity is as deep as V = 17-19 depending on the integration times. Since the shutdown of the CGRO, there has been no real-time GRE3 triggers that enable the LOTIS systems to measure real-time GRE3 counterpart fluxes as of May 2001. This paper describes performance of these systems. We also present our plan to replace the current optical CCD camera on the Super-LOTIS to a near infrared camera to be able to probe dusty GRB environment.

  10. Dust extinctions for an unbiased sample of gamma-ray burst afterglows

    NASA Astrophysics Data System (ADS)

    Covino, S.; Melandri, A.; Salvaterra, R.; Campana, S.; Vergani, S. D.; Bernardini, M. G.; D'Avanzo, P.; D'Elia, V.; Fugazza, D.; Ghirlanda, G.; Ghisellini, G.; Gomboc, A.; Jin, Z. P.; Krühler, T.; Malesani, D.; Nava, L.; Sbarufatti, B.; Tagliaferri, G.

    2013-06-01

    In this paper, we compute rest-frame extinctions for the afterglows of a sample of Swift gamma-ray bursts (GRBs) complete in redshift. The selection criteria of the sample are based on observational high-energy parameters of the prompt emission and therefore our sample should not be biased against dusty sight-lines. It is therefore expected that our inferences hold for the general population of GRBs. Our main result is that the optical/near-infrared extinction of GRB afterglows in our sample does not follow a single distribution. 87 per cent of the events are absorbed by less than 2 mag, and 50 per cent suffer from less than 0.3-0.4 mag extinction. The remaining 13 per cent of the afterglows are highly absorbed. The true percentage of GRB afterglows showing high absorption could be even higher since a fair fraction of the events without reliable redshift measurement are probably part of this class. These events may be due to highly dusty molecular clouds/star-forming regions associated with the GRB progenitor or along the afterglow line of sight, and/or due to massive dusty host galaxies. No clear evolution in the dust extinction properties is evident within the redshift range of our sample, although the largest extinctions are at z ˜ 1.5-2, close to the expected peak of the star formation rate. Those events classified as dark are characterized, on average, by a higher extinction than typical events in the sample. A correlation between optical/near-infrared extinction and hydrogen-equivalent column density based on X-ray studies is shown, although the observed NH appears to be well in excess compared to those observed in the Local Group. Dust extinction does not seem to correlate with GRB energetics or luminosity.

  11. Realtime GRB Followup with LOTIS/Super-LOTIS/LITE

    NASA Astrophysics Data System (ADS)

    Park, H. S.; Ables, E.; Porrata, R. A.; Ziock, K.; Williams, G. G.; Bradshaw, M.; Barthelmy, S. D.; Cline, T.; Gehrels, N.; Hurley, K.; Hartmann, D.; Nemiroff, R.; Pereira, W.; Perez, D.

    2001-05-01

    Even though many GRBs are now identified with late time afterglows, very few measurements are available on their prompt properties. Unlike delayed afterglows, early-time follow-up measurements will contain information about the GRB progenitors. These measurements are possible via automatic observations triggered by the GRB satellites. We have been operating automatic and rapidly slewing telescope systems, LOTIS (0.11 m aperture; 4 simultaneous astronomical filters) and Super-LOTIS (0.6 m aperture), to detect very prompt optical emission occurring within seconds of a GRB. This paper will present results from our attempts to follow-up observations of HETE2 triggers. We also present our plan to replace the current optical CCD camera on the Super-LOTIS to a near infrared camera to be able to probe dusty GRB environment. This research is supported under NASA contract numbers S-03975G and S-57797F and under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  12. DETECTION OF GAMMA-RAY POLARIZATION IN PROMPT EMISSION OF GRB 100826A

    SciTech Connect

    Yonetoku, Daisuke; Murakami, Toshio; Sakashita, Tomonori; Morihara, Yoshiyuki; Takahashi, Takuya; Fujimoto, Hirofumi; Kodama, Yoshiki; Gunji, Shuichi; Toukairin, Noriyuki; Mihara, Tatehiro; Toma, Kenji; Kubo, Shin

    2011-12-20

    We report the polarization measurement in prompt {gamma}-ray emission of GRB 100826A with the Gamma-Ray Burst Polarimeter on board the small solar-power-sail demonstrator IKAROS. We detected the firm change of polarization angle (PA) during the prompt emission with 99.9% (3.5{sigma}) confidence level, and the average polarization degree ({Pi}) of 27% {+-} 11% with 99.4% (2.9{sigma}) confidence level. Here the quoted errors are given at 1{sigma} confidence level for the two parameters of interest. The systematic errors have been carefully included in this analysis, unlike other previous reports. Such a high {Pi} can be obtained in several emission models of gamma-ray bursts (GRBs), including synchrotron and photospheric models. However, it is difficult to explain the observed significant change of PA within the framework of axisymmetric jet as considered in many theoretical works. The non-axisymmetric (e.g., patchy) structures of the magnetic fields and/or brightness inside the relativistic jet are therefore required within the observable angular scale of {approx}{Gamma}{sup -1}. Our observation strongly indicates that the polarization measurement is a powerful tool to constrain the GRB production mechanism, and more theoretical works are needed to discuss the data in more detail.

  13. Gamma ray burst outflows and afterglows

    NASA Astrophysics Data System (ADS)

    Morsony, Brian J.

    2008-08-01

    We carry out a theoretical investigation of jet propagation in Gamma Ray Bursts and examine the jitter radiation mechanism as a means of producing prompt and afterglow emission. We study the long-term evolution of relativistic jets in collapsars and examine the effects of viewing angle on the subsequent gamma ray bursts. Our simulations allow us to single out three phases in the jet evolution: a precursor phase in which relativistic material turbulently shed from the head of the jet first emerges from the star; a shocked jet phase where a fully shocked jet of material is emerging; and an unshocked jet phase where the jet consists of a free-streaming, unshocked core surrounded by a thin boundary layer of shocked jet material. We also carry out a series of simulations with central engines that vary on long time periods comparable to the breakout time of the jet, on short time periods (0.1s) much less than the breakout time, and finally that decay as a power law at late times. We conclude that rapid variability seen in prompt GRB emission, as well as shallow decays and flares seen in the X-ray afterglow, can be caused by central engine variability. Finally, we present a detailed computation of the jitter radiation spectrum, including self-absorption, for electrons inside Weibel-like shock- generated magnetic fields. We apply our results to the case of the prompt and afterglow emission of gamma-ray bursts. We conclude that jitter and synchrotron afterglows can be distinguished from each other with good quality observations. However, it is unlikely that the difference can explain the peculiar behavior of several recent observations, such as flat X-ray slopes and uncorrelated optical and X-ray behavior.

  14. The ultraluminous GRB 110918A

    SciTech Connect

    Frederiks, D. D.; Svinkin, D. S.; Pal'shin, V. D.; Aptekar, R. L.; Golenetskii, S. V.; Mazets, E. P.; Oleynik, Ph. P.; Tsvetkova, A. E.; Ulanov, M. V.; Kokomov, A. A.; Hurley, K.; Mangano, V.; Burrows, D. N.; Sbarufatti, B.; Siegel, M. H.; Oates, S.; Cline, T. L.; Krimm, H. A.; Pagani, C.; Mitrofanov, I. G. [Space Research Institute, Profsoyuznaya 84 and others

    2013-12-20

    GRB 110918A is the brightest long gamma-ray burst (GRB) detected by Konus-WIND during its almost 19 yr of continuous observations and the most luminous GRB ever observed since the beginning of the cosmological era in 1997. We report on the final Interplanetary Network localization of this event and its detailed multiwavelength study with a number of space-based instruments. The prompt emission is characterized by a typical duration, a moderate peak energy of the time-integrated spectrum, and strong hard-to-soft evolution. The high observed energy fluence yields, at z = 0.984, a huge isotropic-equivalent energy release E {sub iso} = (2.1 ± 0.1) × 10{sup 54} erg. The record-breaking energy flux observed at the peak of the short, bright, hard initial pulse results in an unprecedented isotropic-equivalent luminosity L {sub iso} = (4.7 ± 0.2) × 10{sup 54} erg s{sup –1}. A tail of the soft γ-ray emission was detected with temporal and spectral behavior typical of that predicted by the synchrotron forward-shock model. The Swift/X-Ray Telescope and the Swift/Ultraviolet Optical Telescope observed the bright afterglow from 1.2 to 48 days after the burst and revealed no evidence of a jet break. The post-break scenario for the afterglow is preferred from our analysis, with a hard underlying electron spectrum and interstellar-medium-like circumburst environment implied. We conclude that, among the multiple reasons investigated, the tight collimation of the jet must have been a key ingredient to produce this unusually bright burst. The inferred jet opening angle of 1.°7-3.°4 results in reasonable values of the collimation-corrected radiated energy and the peak luminosity, which, however, are still at the top of their distributions for such tightly collimated events. We estimate a detection horizon for a similar ultraluminous GRB of z ∼ 7.5 for Konus-WIND and z ∼ 12 for the Swift/Burst Alert Telescope, which stresses the importance of GRBs as probes of the early

  15. TWO POPULATIONS OF GAMMA-RAY BURST RADIO AFTERGLOWS

    SciTech Connect

    Hancock, P. J.; Gaensler, B. M.; Murphy, T.

    2013-10-20

    The detection rate of gamma-ray burst (GRB) afterglows is ∼30% at radio wavelengths, much lower than in the X-ray (∼95%) or optical (∼70%) bands. The cause of this low radio detection rate has previously been attributed to limited observing sensitivity. We use visibility stacking to test this idea, and conclude that the low detection rate is instead due to two intrinsically different populations of GRBs: radio-bright and radio-faint. We calculate that no more than 70% of GRB afterglows are truly radio-bright, leaving a significant population of GRBs that lack a radio afterglow. These radio-bright GRBs have higher gamma-ray fluence, isotropic energies, X-ray fluxes, and optical fluxes than the radio-faint GRBs, thus confirming the existence of two physically distinct populations. We suggest that the gamma-ray efficiency of the prompt emission is responsible for the difference between the two populations. We also discuss the implications for future radio and optical surveys.

  16. The Correlation of Spectral Lag Evolution with Prompt Optical Emission in GRB 080319B

    NASA Astrophysics Data System (ADS)

    Stamatikos, Michael; Ukwatta, Tilan N.; Sakamoto, Takanori; Dhuga, Kalvir S.; Toma, Kenji; Pe'Er, Asaf; Mészáros, Peter; Band, David L.; Norris, Jay P.; Barthelmy, Scott D.; Gehrels, Neil

    2009-05-01

    We report on observations of correlated behavior between the prompt γ-ray and optical emission from GRB 080319B, which confirm that (i) they occurred within the same astrophysical source region and (ii) their respective radiation mechanisms were dynamically coupled. Our results, based upon a new cross-correlation function (CCF) methodology for determining the time-resolved spectral lag, are summarized as follows. First, the evolution in the arrival offset of prompt γ-ray photon counts between Swift-BAT 15-25 keV and 50-100 keV energy bands (intrinsic γ-ray spectral lag) appears to be anti-correlated with the arrival offset between prompt 15-350 keV γ-rays and the optical emission observed by TORTORA (extrinsic optical/γ-ray spectral lag), thus effectively partitioning the burst into two main episodes at ~T+28+/-2 sec. Second, the rise and decline of prompt optical emission at ~T+10+/-1 sec and ~T+50+/-1 sec, respectively, both coincide with discontinuities in the hard to soft evolution of the photon index for a power law fit to 15-150 keV Swift-BAT data at ~T+8+/-2 sec and ~T+48+/-1 sec. These spectral energy changes also coincide with intervals whose time-resolved spectral lag values are consistent with zero, at ~T+12+/-2 sec and ~T+50+/-2 sec. These results, which are robust across heuristic permutations of Swift-BAT energy channels and varying temporal bin resolution, have also been corroborated via independent analysis of Konus-Wind data. This potential discovery may provide the first observational evidence for an implicit connection between spectral lags and GRB emission mechanisms in the context of canonical fireball phenomenology. Future work includes exploring a subset of bursts with prompt optical emission to probe the unique or ubiquitous nature of this result.

  17. GRB Analysis Results from GLAST Data Challenge 2

    SciTech Connect

    Komin, Nukri

    2007-05-01

    The Gamma-ray Large Area Space Telescope (GLAST) will observe the gamma-ray sky in the MeV and GeV energy range. It will detect a number of gamma-ray bursts (GRBs) every year, depending on their emission at high energies, which is still unknown. GLAST will be the first instrument observing GRBs at energies above 20 GeV. A systematic study prior to launch, which is foreseen for 15 November 2007, was the GLAST Data Challenge 2 (DC 2). For GLAST DC 2 two month of data taking were simulated. Based on these simulations the GRB Working Group performed systematic studies of the performance of GLAST in observing GRBs. These studies included the spectral analysis of the prompt emission, a position fit of the GRB, and the search for prompt and afterglow emissions in the LAT data.

  18. From a Better Understanding of GRB Prompt Emission to a New Type of Standard Candles?

    NASA Astrophysics Data System (ADS)

    Guiriec, Sylvain

    2016-07-01

    Recent results revealed the simultaneous existence of multiple components in the prompt emission of gamma-ray bursts (GRBs) leading to a unified spectro-temporal model for the broadband spectrum from the optical regime up to higher gamma rays. Unexpectedly, we discovered a relation intrinsic to one specific component of this model: its luminosity is strongly and tightly correlated to its spectral break energy. This new luminosity-hardness relation has the same index for all GRBs when fitted to a power law. In addition, this relation seems to have the same normalization for all GRBs; therefore, this is a promising and physically motivated tool that may establish GRBs as cosmological standard candles. During this presentation, I will introduce this new relation, which might eventually be used to (i) estimate GRB distances, (ii) to support searches for gravitational waves and cosmic high-energy neutrinos, and (iii) constrain the cosmological parameters. I will give a few examples of GRB redshift estimates using this relation and I will show why this new result cannot solely be explain by instrumental selection effects and/or measurement/analysis biases.

  19. Toward an Understanding of GRB Prompt Emission Mechanism. I. The Origin of Spectral Lags

    NASA Astrophysics Data System (ADS)

    Uhm, Z. Lucas; Zhang, Bing

    2016-07-01

    Despite decades of investigations, the physical mechanism that powers the bright prompt γ-ray emission from gamma-ray bursts (GRBs) is still not identified. One important observational clue that still has not been properly interpreted is the existence of time lags of broad light curve pulses in different energy bands, referred to as “spectral lags.” Here, we show that the traditional view invoking the high-latitude emission “curvature effect” of a relativistic jet cannot account for spectral lags. Rather, the observed spectral lags demand the sweep of a spectral peak across the observing energy band in a specific manner. The duration of the broad pulses and inferred typical Lorentz factor of GRBs require that the emission region be in an optically thin emission region far from the GRB central engine. We construct a simple physical model invoking synchrotron radiation from a rapidly expanding outflow. We show that the observed spectral lags appear naturally in our model light curves given that (1) the gamma-ray photon spectrum is curved (as observed), (2) the magnetic field strength in the emitting region decreases with radius as the region expands in space, and (3) the emission region itself undergoes rapid bulk acceleration as the prompt γ-rays are produced. These requirements are consistent with a Poynting-flux-dominated jet abruptly dissipating magnetic energy at a large distance from the engine.

  20. GRB neutrino search with MAGIC

    SciTech Connect

    Becker, Julia K.; Rhode, Wolfgang; Gaug, Markus

    2008-05-22

    The Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescope was designed for the detection of photon sources > or approx. 50 GeV. The measurement of highly-inclined air showers renders possible the search for high-energy neutrinos, too. Only neutrinos can traverse the Earth without interaction, and therefore, events close to the horizon can be identified as neutrino-induced rather than photon-induced or hadronic events. In this paper, Swift-XRT-detected GRBs with given spectral information are used in order to calculate the potential neutrino energy spectrum from prompt and afterglow emission for each individual GRB. The event rate in MAGIC is estimated assuming that the GRB happens within the field of view of MAGIC. A sample of 568 long GRBs as detected by BATSE is used to compare the detection rates with 163 Swift-detected bursts. BATSE has properties similar to the Gamma-ray Burst Monitor (GBM) on board of GLAST. Therefore the estimated rates give an estimate for the possibilities of neutrino detection with MAGIC from GLAST-triggered bursts.

  1. GRB 060714: No Clear Dividing Line Between Prompt Emission and X-Ray Flares

    SciTech Connect

    Krimm, Hans A.; Granot, J.; Marshal, F.; Perri, M.; Barthelmy, S.D.; Burrows, D.N.; Gehrels, N.; Meszaros, P.; Morris, D.; /Penn State U., Astron. Astrophys.

    2007-02-26

    The long gamma-ray burst GRB 060714 was observed to exhibit a series of five X-ray flares beginning {approx} 70 s after the burst trigger T{sub 0} and continuing until {approx} T{sub 0} + 200 s. The first two flares were detected by the Burst Alert Telescope (BAT) on the Swift satellite, before Swift had slewed to the burst location, while the last three flares were strongly detected by the X-Ray Telescope (XRT) but only weakly detected by the BAT. This burst provides an unusual opportunity to track a complete sequence of flares over a wide energy range. The flares were very similar in their light curve morphology, showing power-law rise and fall components, and in most cases significant sub-structure. The flares also showed strong evolution with time, both spectrally and temporally. The small time scale and large amplitude variability observed are incompatible with an external shock origin for the flares, and support instead late time sporadic activity either of the central source or of localized dissipation events within the outflow. We show that the flares in GRB 060714 cannot be the result of internal shocks in which the contrast in the Lorentz factor of the colliding shells is very small, and that this mechanism faces serious difficulties in most Swift GRBs. The morphological similarity of the flares and the prompt emission and the gradual and continual evolution of the flares with time makes it difficult and arbitrary to draw a dividing line between the prompt emission and the flares.

  2. Decay phases of Swift X-ray afterglows and the forward-shock model.

    PubMed

    Panaitescu, A

    2007-05-15

    The X-ray flux of the gamma-ray burst (GRB) afterglows monitored by the Swift satellite from January 2005 to July 2006 displays one to four phases of flux power-law decay. In chronological order, they are: the GRB tail, the 'hump', the standard decay and the post-jet-break decay. More than half of the GRB tails can be identified with the large-angle emission produced during the burst (but arriving later at observer). The remaining, slower GRB tails imply that the gamma-ray mechanism continues to radiate after the burst, as also suggested by the frequent occurrence of X-ray flares during the burst tail. The several GRB tails exhibiting a slow unbroken power-law decay until 100ks must be attributed to the forward shock. In fact, the decay of most GRB tails is also consistent with that of the forward-shock emission from a narrow jet. The X-ray light-curve hump may be due to an increase of the kinetic energy per solid angle of the forward-shock region visible to the observer, caused by either the transfer of energy from ejecta to the forward shock or the emergence of the emission from an outflow seen from a location outside the jet opening. The decay following the X-ray light-curve hump is consistent with the emission from an adiabatic blast wave but, contrary to expectations, the light-curve decay index and spectral slope during this phase are not correlated. The X-ray light curves of two dozens X-ray afterglows that followed for more than a week do not exhibit a jet break, in contrast with the behaviour of pre-Swift optical afterglows, which displayed jet breaks at 0.5-2 days. Nevertheless, the X-ray light curves of several Swift afterglows show a second steepening break at 0.4-3 days that is consistent with the break expected for a jet when its edge becomes visible to the observer.

  3. Investigating the Impact of Optical Selection Effects on Observed Rest-frame Prompt GRB Properties

    NASA Astrophysics Data System (ADS)

    Turpin, D.; Heussaff, V.; Dezalay, J.-P.; Atteia, J.-L.; Klotz, A.; Dornic, D.

    2016-11-01

    Measuring gamma-ray burst (GRB) properties in their rest frame is crucial for understanding the physics at work in GRBs. This can only be done for GRBs with known redshifts. Since redshifts are usually measured from the optical spectrum of the afterglow, correlations between prompt and afterglow emissions may introduce biases into the distribution of the rest-frame properties of the prompt emission, especially considering that we measure the redshift of only one-third of Swift GRBs. In this paper, we study the optical flux of GRB afterglows and its connection to various intrinsic properties of GRBs. We also discuss the impact of the optical selection effect on the distribution of rest-frame prompt properties of GRBs. Our analysis is based on a sample of 90 GRBs with good optical follow-up and well-measured prompt emission. Seventy-six of them have a measure of redshift and 14 have no redshift. We compare the rest-frame prompt properties of GRBs with different afterglow optical fluxes in order to check for possible correlations between the promt properties and the optical flux of the afterglow. The optical flux is measured two hours after the trigger, which is a typical time for the measure of the redshift. We find that the optical flux of GRB afterglows in our sample is mainly driven by their optical luminosity and depends only slightly on their redshift. We show that GRBs with low and high afterglow optical fluxes have similar E {}{{pi}}, E {}{{iso}}, and L {}{{iso}}, indicating that the rest-frame distributions computed from GRBs with a redshift are not significantly distorted by optical selection effects. However, we found that the {T}90{rest} distribution is not immune to optical selection effects, which favor the selection of GRBs with longer durations. Finally, we note that GRBs well above the E {}{{pi}}-E {}{{iso}} relation have lower optical fluxes and we show that optical selection effects favor the detection of GRBs with bright optical afterglows located

  4. GRB 141221A: gone is the wind

    NASA Astrophysics Data System (ADS)

    Bardho, O.; Gendre, B.; Rossi, A.; Amati, L.; Haislip, J.; Klotz, A.; Palazzi, E.; Reichart, D.; Trotter, A. S.; Boër, M.

    2016-06-01

    GRB 141221A was observed from infrared to soft gamma-ray bands. Here, we investigate its properties, in light of the standard model. We find that the optical light curve of the afterglow of this burst presents an unusual steep/quick rise. The broad-band spectral energy distribution taken near the maximum of the optical emission presents either a thermal component or a spectral break. In the former case, the properties of the afterglow are then very unusual, but could explain the lack of apparent jet breaks in the Swift light curves. In the latter case, the afterglow properties of this burst are more usual, and we can see in the light curves the passing through of the injection and cooling frequencies within the optical bands, not masked by a reverse shock. This model also excludes the presence of a stellar wind, challenging either the stellar progenitor properties, or the very stellar nature of the progenitor itself. In all cases, this burst may be a part of a Rosetta stone that could help to explain some of the most striking features discovered by Swift during the last 10 years.

  5. Afterglow Population Studies from Swift Follow-Up Observations of Fermi LAT GRBs

    NASA Technical Reports Server (NTRS)

    Racusin, Judith L.; Oates, S. R.; McEnery, J.; Vasileiou, V.; Troja, E.; Gehrels, N.

    2010-01-01

    The small population of Fermi LAT detected GRBs discovered over the last year has been providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 5 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into other components of GRB emission structure. We explore the new ability to utilize both of these observatories to study the same GRBs over 10 orders of magnitude in energy, although not always concurrently. Almost all LAT GRBs that have been followed-up by Swift within 1-day have been clearly detected and carefully observed. We will present the context of the lower-energy afterglows of this special subset of GRBs that has > 100 MeV emission compared to the hundreds in the Swift database that may or may not have been observed by LAT, and theorize upon the relationship between these properties and the origin of the high energy gamma-ray emission.

  6. GRB 110205A: ANATOMY OF A LONG GAMMA-RAY BURST

    SciTech Connect

    Gendre, B.; Stratta, G.; Atteia, J. L.; Klotz, A.; Boeer, M.; Colas, F.; Vachier, F.; Kugel, F.; Rinner, C.; Laas-Bourez, M.

    2012-03-20

    The Swift burst GRB 110205A was a very bright burst visible in the Northern Hemisphere. GRB 110205A was intrinsically long and very energetic and it occurred in a low-density interstellar medium environment, leading to delayed afterglow emission and a clear temporal separation of the main emitting components: prompt emission, reverse shock, and forward shock. Our observations show several remarkable features of GRB 110205A: the detection of prompt optical emission strongly correlated with the Burst Alert Telescope light curve, with no temporal lag between the two; the absence of correlation of the X-ray emission compared to the optical and high-energy gamma-ray ones during the prompt phase; and a large optical re-brightening after the end of the prompt phase, that we interpret as a signature of the reverse shock. Beyond the pedagogical value offered by the excellent multi-wavelength coverage of a gamma-ray burst with temporally separated radiating components, we discuss several questions raised by our observations: the nature of the prompt optical emission and the spectral evolution of the prompt emission at high energies (from 0.5 keV to 150 keV); the origin of an X-ray flare at the beginning of the forward shock; and the modeling of the afterglow, including the reverse shock, in the framework of the classical fireball model.

  7. The Swift XRT: Observations of Early X-ray Afterglows

    SciTech Connect

    Burrows, David N.; Kennea, J. A.; Nousek, J. A.; Osborne, J. P.; O'Brien, P. T.; Chincarini, G.; Tagliaferri, G.; Giommi, P.; Zhang, B.

    2006-05-19

    During the first year of operations of the Swift observatory, the X-ray Telescope has made a number of discoveries concerning the nature of X-ray afterglows of both long and short GRBs. We highlight the key findings, which include rapid declines at early times, a standard template of afterglow light curve shapes, common flaring, and the discovery of the first short GRB afterglow.

  8. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, J. L.; Oates, S. R.; Schady, P.; Burrows, D. N.; de Pasquale, M.; Donato, D.; Gehrels, N.; Koch, S.; McEnery, J.; Piran, T.; Roming, P.; Sakamoto, T.; Swenson, C.; Virgili, F.; Wanderman, D.; Zhang, B.

    2011-01-01

    The new and extreme population of GRBs detected by Fermi-LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT GRBs and the well studied, fainter, less energetic GRBs detected by Swift-BAT is only beginning to be explored by multiwavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi-GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  9. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, Judith L.; Oates, S. R.; Schady, P.; Burrows, D. N.; dePasquale, M.; Donato, D.; Gehrels, N.; Koch, S.; McEnery, J.; Piran, T.; Roming, P.; Sakamoto, T.; Swenson, C.; Troja, E.; Vasileiou, V.; Virgili, F.; Wanderman, D.; Zhang, B.

    2011-01-01

    The new and extreme population of GRBs detected by Fermi -LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust dataset of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT detected GRBs and the well studied, fainter, less energetic GRBs detected by Swift -BAT is only beginning to be explored by multi-wavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi -GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  10. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, Judith I.

    2011-01-01

    The new and extreme population of GRBs detected by Fermi-LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT GRBs and the well studied, fainter, less energetic GRBs detected by Swift-BAT is only beginning to be explored by multi-wavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi-GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  11. Limits on radioactive powered emission associated with a short-hard GRB 070724A in a star-forming galaxy

    NASA Astrophysics Data System (ADS)

    Kocevski, Daniel; Thöne, Christina C.; Ramirez-Ruiz, Enrico; Bloom, Joshua S.; Granot, Jonathan; Butler, Nathaniel R.; Perley, Daniel A.; Modjaz, Maryam; Lee, William H.; Cobb, Bethany E.; Levan, Andrew J.; Tanvir, Nial; Covino, Stefano

    2010-05-01

    We present results of an extensive observing campaign of the short-duration, hard spectrum gamma-ray burst (GRB) 070724A, aimed at detecting the radioactively powered emission that might follow from a binary merger or collapse involving compact objects. Our multiband observations span the range in time over which this so-called Li-Paczyński mini-supernova (mini-SN) could be active, beginning within 3 h of the GRB trigger and represent some of the deepest and most comprehensive searches for such emission. We find no evidence for such activity and place limits on the abundances and the lifetimes of the possible radioactive nuclides that could form in the rapid decompression of nuclear density matter. Furthermore, our limits are significantly fainter than the peak magnitude of any previously detected broad-lined Type Ic SN associated with other GRBs, effectively ruling out a long GRB-like SN for this event. Given the unambiguous redshift of the host galaxy (z = 0.456), GRB 070724A represents one of a small, but growing, number of short-hard GRBs for which firm physical/rest-frame quantities currently exist. The host of GRB 070724A is a moderately star-forming galaxy with an older stellar population component and a relatively high metallicity of 12 + log(O/H)KD02 = 9.1. We find no significant evidence for large amounts of extinction along the line of sight that could mask the presence of an SN explosion and estimate a small probability for chance alignment with the putative host. We discuss how our derived constraints fit into the evolving picture of short-hard GRBs, their potential progenitors and the host environments in which they are thought to be produced.

  12. CONSTRAINTS ON THE BULK LORENTZ FACTORS OF GRB X-RAY FLARES

    SciTech Connect

    Yi, Shuang-Xi; Wang, Fa-Yin; Dai, Zi-Gao; Wu, Xue-Feng

    2015-07-01

    X-ray flares were discovered in the afterglow phase of gamma-ray bursts (GRBs) by the Swift satellite a decade ago and are known as a canonical component in GRB X-ray afterglows. In this paper, we constrain the Lorentz factors of GRB X-ray flares using two different methods. For the first method, we estimate the lower limit on the bulk Lorentz factor with the flare duration and jet break time. In the second method, the upper limit on the Lorentz factor is derived by assuming that the X-ray flare jet has undergone saturated acceleration. We also re-estimate the initial Lorentz factor with GRB afterglow onsets, and find the coefficient of the theoretical Lorentz factor is 1.67 rather than the commonly used 2 for the interstellar medium (ISM) and 1.44 for the wind case. We find that the correlation between the limited Lorentz factor and the isotropic radiation energy of X-ray flares in the ISM case is more consistent with that of prompt emission than the wind case in a statistical sense. For a comparison, the lower limit on the Lorentz factor is statistically larger than the extrapolation from prompt bursts in the wind case. Our results indicate that X-ray flares and prompt bursts are produced by the same physical mechanism.

  13. Afterglow emission in gamma-ray bursts - I. Pair-enriched ambient medium and radiative blast waves

    NASA Astrophysics Data System (ADS)

    Nava, L.; Sironi, L.; Ghisellini, G.; Celotti, A.; Ghirlanda, G.

    2013-08-01

    Forward shocks caused by the interaction between a relativistic blast wave and the circumburst medium are thought to be responsible for the afterglow emission in gamma-ray bursts (GRBs). We consider the hydrodynamics of a spherical relativistic blast wave expanding into the surrounding medium and we generalize the standard theory in order to account for several effects that are generally ignored. In particular, we consider the role of adiabatic and radiative losses in the hydrodynamical evolution of the shock, under the assumption that the cooling losses are fast. Our model can describe adiabatic, fully radiative and semiradiative blast waves, and can describe the effects of a time-varying radiative efficiency. The equations we present are valid for arbitrary density profiles, and also for a circumburst medium enriched with electron-positron pairs. The presence of pairs enhances the fraction of shock energy gained by the leptons, thus increasing the importance of radiative losses. Our model allows us to study whether the high-energy (>0.1 GeV) emission in GRBs may originate from afterglow radiation. In particular, it is suitable to test whether the fast decay of the high-energy light curve observed in several Fermi Large Area Telescope GRBs can be ascribed to an initial radiative phase, followed by the standard adiabatic evolution.

  14. Beyond the Band Function Paradigm : a New Model for GRB Prompt Emission and Possible Impact in Cosmology

    NASA Astrophysics Data System (ADS)

    Guiriec, Sylvain

    Gamma Ray Bursts (GRBs) are the most violent phenomenons in the Universe. They are associated with the birth of stellar mass black holes either from the collapse of hypermassive stars or the merger of compact objects. The Fireball model is the most popular scenario to explain GRBs. In this theoretical framework, GRB central engines release collimated, bipolar and highly relativistic jets mainly composed of electrons, positrons, photons, and a small amount of baryons. During the first phase of the Fireball model, charged particles are accelerated and release non-thermal radiations. The Fireball model also predicts a thermal like component coming from the jet photosphere. This first phase would be responsible for the GRB prompt emission observed by gamma ray telescopes such as Fermi/GBM in the keV-MeV energy range and which is the only phase discussed in this talk. Until now, GRB prompt emission spectra were considered as adequately fitted with the empirical Band function, which is a smoothly broken power law. However, its parameters are very often incompatible with the Fireball model predictions for both the thermal and non-thermal components. We will see that observation with the Fermi Gamma Ray Space Telescope break the paradigm of the Band function and that deviations from this function exists in many GRBs. Those deviations are adequately fitted with an additional thermal-like component -that we consider as the jet photosphere- and/or an additional power law. Importantly, with the three components together, theory and observations are much more in agreement. We will also see how this new model for prompt emission spectra may have an impact beyond the physics of GRBs. Indeed, this work may confirm a relation between the hardness of the GRB prompt emission and its luminosity which may be used to scale GRBs as standard-like candles for use in cosmology.

  15. A HOT COCOON IN THE ULTRALONG GRB 130925A: HINTS OF A POPIII-LIKE PROGENITOR IN A LOW-DENSITY WIND ENVIRONMENT

    SciTech Connect

    Piro, Luigi; Troja, Eleonora; Kidd, Lauren A.; Ghisellini, Gabriele; Ricci, Roberto; Bannister, Keith; Fiore, Fabrizio; Piranomonte, Silvia; Wieringa, Mark H.

    2014-08-01

    GRB 130925A is a peculiar event characterized by an extremely long gamma-ray duration (≈7 ks), as well as dramatic flaring in the X-rays for ≈20 ks. After this period, its X-ray afterglow shows an atypical soft spectrum with photon index Γ ∼ 4, as observed by Swift and Chandra, until ≈10{sup 7} s, when XMM-Newton observations uncover a harder spectral shape with Γ ∼ 2.5, commonly observed in gamma-ray burst (GRB) afterglows. We find that two distinct emission components are needed to explain the X-ray observations: a thermal component, which dominates the X-ray emission for several weeks, and a non-thermal component, consistent with a typical afterglow. A forward shock model well describes the broadband (from radio to X-rays) afterglow spectrum at various epochs. It requires an ambient medium with a very low-density wind profile, consistent with that expected from a low-metallicity blue supergiant (BSG). The thermal component has a remarkably constant size and a total energy consistent with those expected by a hot cocoon surrounding the relativistic jet. We argue that the features observed in this GRB (its ultralong duration, the thermal cocoon, and the low-density wind environment) are associated with a low metallicity BSG progenitor and, thus, should characterize the class of ultralong GRBs.

  16. Probing the complex environments of GRB host galaxies and intervening systems: high resolution spectroscopy of GRB050922C

    NASA Astrophysics Data System (ADS)

    Piranomonte, S.; Vergani, S.; Fiore, F.; D'Elia, V.; Krongold, Y.; Nicastro, F.; Stella, L.

    2009-05-01

    We use high resolution spectroscopic observations of the afterglow of GRB050922C, in order to investigate the environment of gamma ray bursts (GRBs) and the interstellar matter of their host galaxies. We found that, as for most high resolution spectra of GRBs, the spectrum of the afterglow of GRB050922C is complex. The detection of lines of neutral elements like MgI and the detection of fine-structure levels of the ions FeII, SiII and CII allows us to separate components in the GRB ISM along the line of sight. GRB afterglow spectra can be used to disentangle the contribution of the different parts of the GRB host galaxy and to study their properties.

  17. Afterglows of Mildly Relativistic Supernovae: Baryon Loaded Blastwaves

    NASA Astrophysics Data System (ADS)

    Chakraborti, Sayan; Ray, Alak

    2011-08-01

    Relativistic supernovae have been discovered until recently only through their association with long duration Gamma Ray Bursts (GRB). As the ejecta mass is negligible in comparison to the swept up mass, the blastwaves of such explosions are well described by the Blandford-McKee (in the ultra relativistic regime) and Sedov-Taylor (in the non-relativistic regime) solutions during their afterglows. However, the recent discovery of the relativistic supernova SN 2009bb, without a detected GRB, has indicated the possibility of highly baryon loaded mildly relativistic outflows which remains in nearly free expansion phase during the radio afterglow. In this work, we consider the dynamics and emission from a massive, relativistic shell, launched by a Central Engine Driven EXplosion (CEDEX), decelerating adiabatically due to its collision with the pre-explosion circumstellar wind profile of the progenitor. We show that this model explains the observed radio evolution of the prototypical SN 2009bb and demonstrate that SN 2009bb had a highly baryon loaded, mildly relativistic outflow.

  18. GRB 091127: The Cooling Break Race on Magnetic Fuel

    NASA Technical Reports Server (NTRS)

    Filgas, R.; Greiner, J.; Schady, P.; Kruhler, T.; Updike, A. C.; Klose, S.; Nardini, M.; Kann, D. A.; Rossi, A.; Sudilovsky, V.; Afonso, P. M. J.; Clemens, C.; Elliott, J.; Nicuesa Guelbenzu, A.; Olivares, F.; Rau, A.

    2011-01-01

    Using high-quality, broad-band afterglow data for GRB 091127, we investigate the validity of the synchrotron fireball model for gamma-ray bursts, and infer physical parameters of the ultra-relativistic outflow. Methods. We used multi-wavelength (NIR to X-ray) follow-up observations obtained with GROND simultaneously in the g' r' t' i' z' JH filters and the XRT onboard the Swift satellite in the 0.3 to 10 keY energy range. The resulting afterglow light curve is of excellent accuracy with relative photometric errors as low as 1 %, and the spectral energy distribution (SED) is well-sampled over 5 decades in energy. These data present one of the most comprehensive observing campaigns for a single GRB afterglow and allow us to test several proposed emission models and outflow characteristics in unprecedented detail. Results. Both the multi-color light curve and the broad-band SED of the afterglow of GRB 091127 show evidence of a cooling break moving from high to lower energies. The early light curve is well described by a broken power-law, where the initial decay in the optical/NlR wavelength range is considerably flatter than at X-rays. Detailed fitting of the time-resolved SED shows that the break is very smooth with a sharpness index of 2.2 +/- 0.2, and evolves towards lower frequencies as a power-law with index -1.23 +/- 0.06. These are the first accurate and contemporaneous measurements of both the sharpness of the spectral break and its time evolution. Conclusions. The measured evolution of the cooling break (V(sub c) varies as t(sup -1.2) is not consistent with the predictions of the standard model, wherein V(sub c) varies as t(sup -05) is expected. A possible explanation for the observed behavior is a time dependence of the microphysical parameters, in particular the fraction of the total energy in the magnetic field epsilon(sub Beta). This conclusion provides further evidence that the standard fireball model is too simplistic, and time-dependent micro

  19. The high-redshift gamma-ray burst GRB 140515A

    DOE PAGES

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P. D.; ...

    2015-09-09

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is xHI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded in amore » very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. Furthermore, the possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely.« less

  20. The high-redshift gamma-ray burst GRB 140515A

    SciTech Connect

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P. D.; Sanchez-Ramirez, R.; Nappo, F.; Nava, L.; Japelj, J.; de Ugarte Postigo, A.; Oates, S.; Campana, S.; Covino, S.; D'Elia, V.; Ghirlanda, G.; Gafton, E.; Ghisellini, G.; Gnedin, N.; Goldoni, P.; Gorosabel, J.; Libbrecht, T.; Malesani, D.; Salvaterra, R.; Thone, C. C.; Vergani, S. D.; Xu, D.; Tagliaferri, G.

    2015-09-09

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is xHI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded in a very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. Furthermore, the possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely.

  1. Looking Into the Fireball: ROTSE-III and Swift Observations of Early Gamma-ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Rykoff, E. S.; Aharonian, F.; Akerlof, C. W.; Ashley, M. C. B.; Barthelmy, S. D.; Flewelling, H. A.; Gehrels, N.; Göǧüş, E.; Güver, T.; Kiziloǧlu, Ü.; Krimm, H. A.; McKay, T. A.; Özel, M.; Phillips, A.; Quimby, R. M.; Rowell, G.; Rujopakarn, W.; Schaefer, B. E.; Smith, D. A.; Vestrand, W. T.; Wheeler, J. C.; Wren, J.; Yuan, F.; Yost, S. A.

    2009-09-01

    We report on a complete set of early optical afterglows of gamma-ray bursts (GRBs) obtained with the Robotic Optical Transient Search Experiment (ROTSE-III) telescope network from 2005 March through 2007 June. This set is comprised of 12 afterglows with early optical and Swift/X-Ray Telescope observations, with a median ROTSE-III response time of 45 s after the start of γ-ray emission (8 s after the GCN notice time). These afterglows span 4 orders of magnitude in optical luminosity, and the contemporaneous X-ray detections allow multi-wavelength spectral analysis. Excluding X-ray flares, the broadband synchrotron spectra show that the optical and X-ray emission originate in a common region, consistent with predictions of the external forward shock in the fireball model. However, the fireball model is inadequate to predict the temporal decay indices of the early afterglows, even after accounting for possible long-duration continuous energy injection. We find that the optical afterglow is a clean tracer of the forward shock, and we use the peak time of the forward shock to estimate the initial bulk Lorentz factor of the GRB outflow, and find 100 lsim Γ0 lsim 1000, consistent with expectations.

  2. Observations of GRB 990123 by the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Briggs, M. S.; Band, D. L.; Kippen, R. M.; Preece, R. D.; Kouveliotou, C.; vanParadijs, J.; Share, G. H.; Murphy, R. J.; Matz, S. M.; Connors, A.

    1999-01-01

    GRB 990123 was the first burst from which simultaneous optical, X-ray, and gamma-ray emission was detected; its afterglow has been followed by an extensive set of radio, optical, and X-ray observations. We have studied the gamma-ray burst itself as observed by the Compton Gamma Ray Observatory detectors. We find that gamma-ray fluxes are not correlated with the simultaneous optical observations and that the gamma-ray spectra cannot be extrapolated simply to the optical fluxes. The burst is well fitted by the standard four-parameter GRB function, with the exception that excess emission compared with this function is observed below approx. 15 keV during some time intervals. The burst is characterized by the typical hard-to-soft and hardness-intensity correlation spectral evolution patterns. The energy of the peak of the vf (sub v), spectrum, E (sub p), reaches an unusually high value during the first intensity spike, 1470 plus or minus 110 keV, and then falls to approx. 300 keV during the tail of the burst. The high-energy spectrum above approx. 1 MeV is consistent with a power law with a photon index of about -3. By fluence, GRB 990123 is brighter than all but 0.4% of the GRBs observed with BATSE (Burst and Transient Source Experiment), clearly placing it on the -3/2 power-law portion of the intensity distribution. However, the redshift measured for the afterglow is inconsistent with the Euclidean interpretation of the -3/2 power law. Using the redshift value of greater than or equal to 1.61 and assuming isotropic emission, the gamma-ray energy exceeds 10 (exp 54) ergs.

  3. NEAR-EXTREMAL BLACK HOLES AS INITIAL CONDITIONS OF LONG GRB SUPERNOVAE AND PROBES OF THEIR GRAVITATIONAL WAVE EMISSION

    SciTech Connect

    Van Putten, Maurice H. P. M.

    2015-09-01

    Long gamma-ray bursts (GRBs) associated with supernovae and short GRBs with extended emission (SGRBEE) from mergers are probably powered by black holes as a common inner engine, as their prompt GRB emission satisfies the same Amati correlation in the E{sub p,i}–E{sub iso} plane. We introduce modified Bardeen equations to identify hyper-accretion driving newly formed black holes in core-collapse supernovae to near-extremal spin as a precursor to prompt GRB emission. Subsequent spin-down is observed in the BATSE catalog of long GRBs. Spin-down provides a natural unification of long durations associated with the lifetime of black hole spin for normal long GRBs and SGRBEEs, given the absence of major fallback matter in mergers. The results point to major emissions unseen in high frequency gravitational waves. A novel matched filtering method is described for LIGO–Virgo and KAGRA broadband probes of nearby core-collapse supernovae at essentially maximal sensitivity.

  4. Simulation Study Of Early Afterglows Observed With Swift

    NASA Astrophysics Data System (ADS)

    Nishikawa, Ken-Ichi; Hededal, C.; Hardee, P.; Mizuno, Y.; Fishman, G. J.

    2006-09-01

    A 3-D relativistic particle-in-cell code has been used to simulate the dynamics of forward and reverse shocks with thin and thick shells within the parameter constraints provided by present Swift observations and the present models of GRB emission. Our 3-D RPIC simulations have provided the dynamics of collisionless shocks in electron-ion and electron-positron plasmas with and without initial ambient magnetic fields and revealed the importance of ``jitter radiation'' with prompt and afterglow spectra due to the inhomogeneous magnetic fields generated by the Weibel instability. It is different from synchrotron radiation, which is usually assumed to be the dominant radiation process. We have investigated gamma-ray burst emissions from prompt, early, and late afterglows considering microscopic processes. Based on our previous investigation of the Weibel instability for each stage of evolution of ejecta propagating in the ISM, we have incorporated the plasma conditions (relativistic jets) with the density and composition of the plasmas, the magnetic field strength ($\\sigma$-values (the ratio of the electromagnetic energy flux to the particle energy flux)) and its direction, and the Lorentz factor for the different stages in prompt and afterglows. Systematic simulation studies of the relativistic collisionless shocks, associated particle acceleration, magnetic field generation and self-consistent radiation provide insight into undetermined issues in prompt and afterglows observed by Swift. Self-consistently calculated lightcurves, spectra, spectral evolutions, and polarization as function of viewing angle will be done to light a shed on recent new observations by Swift, in particular, X-ray flares, early steep decay, and shallow decay.

  5. Energies of GRB blast waves and prompt efficiencies as implied by modelling of X-ray and GeV afterglows

    NASA Astrophysics Data System (ADS)

    Beniamini, Paz; Nava, Lara; Duran, Rodolfo Barniol; Piran, Tsvi

    2015-11-01

    We consider a sample of 10 gamma-ray bursts with long-lasting ( ≳ 102 s) emission detected by Fermi/Large Area Telescope and for which X-ray data around 1 d are also available. We assume that both the X-rays and the GeV emission are produced by electrons accelerated at the external forward shock, and show that the X-ray and the GeV fluxes lead to very different estimates of the initial kinetic energy of the blast wave. The energy estimated from GeV is on average ˜50 times larger than the one estimated from X-rays. We model the data (accounting also for optical detections around 1 d, if available) to unveil the reason for this discrepancy and find that good modelling within the forward shock model is always possible and leads to two possibilities: (i) either the X-ray emitting electrons (unlike the GeV emitting electrons) are in the slow-cooling regime or (ii) the X-ray synchrotron flux is strongly suppressed by Compton cooling, whereas, due to the Klein-Nishina suppression, this effect is much smaller at GeV energies. In both cases the X-ray flux is no longer a robust proxy for the blast wave kinetic energy. On average, both cases require weak magnetic fields (10-6 ≲ ɛB ≲ 10-3) and relatively large isotropic kinetic blast wave energies 10^{53} erg<{E}_{0,kin}<10^{55} erg corresponding to large lower limits on the collimated energies, in the range 10^{52} erg<{E}_{θ ,kin}<5× 10^{52} erg for an ISM (interstellar medium) environment with n ˜ 1 cm-3 and 10^{52} erg<{E}_{θ ,kin}<10^{53} erg for a wind environment with A* ˜ 1. These energies are larger than those estimated from the X-ray flux alone, and imply smaller inferred values of the prompt efficiency mechanism, reducing the efficiency requirements on the still uncertain mechanism responsible for prompt emission.

  6. Understanding Grb Physics With Multi-Wavelength Data

    NASA Astrophysics Data System (ADS)

    Zhang, Bing

    /XRT, Chandra), and optical (ground-based and HST) properties of all short GRBs, and apply multi-wavelength observational criteria to constrain the possible progenitor(s) of them. 3. The GRB central engine is still not identified. Growing observational data and theoretical modeling suggest that at least some GRBs may host a magnetar (in contrast to a hyper-accreting black hole) central engine. We propose to carry out a statistical study of the prompt emission and afterglow properties of GRBs that show possible evidence of magnetar behavior and compare their properties with those that do not show such evidence. We will define three samples: a gold sample that show a steady X-ray emission followed by a rapid decline, which are likely powered by internal dissipation of a magnetar wind, a silver sample showing a shallow decay segment followed by a normal decay, which can be interpreted as external shock emission with a magnetar continuous energy injection into the blastwave, and a sample that includes other GRBs that do not show any evidence of magnetar. We will compare various observational properties (e.g. isotropic energy/luminosity, jet-corrected energy/luminosity, jet opening angle, peak energy) of these samples and investigate whether there are noticeable differences among these samples. The results would shed light onto the difficult problem of GRB central engine, addressing whether different engines work in GRBs, and if so, what difference. The program conforms to NASA's Strategic Plan, and will make use of the public archival data of many NASA missions, including Fermi, Swift, HST, and Chandra.

  7. SWIFT Discovery of Gamma-ray Bursts without Jet Break Feature in their X-ray Afterglows

    NASA Technical Reports Server (NTRS)

    Sato, G.; Yamazaki, R.; Sakamoto, T.; Takahashi, T; Nakazawa, K.; Nakamura, T.; Toma, K.; Hullinger, D.; Tashiro, M.; Parsons, A. M.; Krimm, H. A.; Barthelmy, S. D.; Gehrels, N.; Burrows, D. N.; O'Brien, P. T.; Osborne, J. P.; Chincarini, G.; Lamb, D. Q.

    2007-01-01

    We analyze Swift gamma-ray bursts (GRBs) and X-ray afterglows for three GRBs with spectroscopic redshift determinations - GRB 050401, XRF 050416a, and GRB 050525a. We find that the relation between spectral peak energy and isotropic energy of prompt emissions (the Amati relation) is consistent with that for the bursts observed in pre-Swift era. However, we find that the X-ray afterglow lightcurves, which extend up to 10 - 70 days, show no sign of the jet break that is expected in the standard framework of collimated outflows. We do so by showing that none of the X-ray afterglow lightcurves in our sample satisfies the relation between the spectral and temporal indices that is predicted for the phase after jet break. The jet break time can be predicted by inverting the tight empirical relation between the peak energy of the spectrum and the collimation-corrected energy of the prompt emission (the Ghirlanda relation). We find that there are no temporal breaks within the predicted time intervals in X-ray band. This requires either that the Ghirlanda relation has a larger scatter than previously thought, that the temporal break in X-rays is masked by some additional source of X-ray emission, or that it does not happen because of some unknown reason.

  8. Advances on GRB as cosmological tools

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.

    2009-05-01

    Several interesting correlations among Gamma Ray Bursts (GRB) prompt and afterglow properties have been found in the recent years. Some of these correlations have been proposed also to standardize GRB energetics to use them as standard candles in constraining the expansion history of the universe up to z>6. However, given the still unexplained nature of most of these correlations, only the less scattered correlations can be used for constraining the cosmological parameters. The updated Epeak-Eγ correlation is presented. Caveats of alternative methods of standardizing GRB energetics are discussed.

  9. GRB 050717: A Long, Short-Lag Burst Observed by Swift and Konus

    SciTech Connect

    Krimm, H. A.; Hurkett, C.; Osborne, J. P.; Pal'shin, V.; Golenetskii, S.; Norris, J. P.; Barthelmy, S. D.; Gehrels, N.; Parsons, A. M.; Zhang, B.; Burrows, D. N.; Perri, M.

    2006-05-19

    The long burst GRB 050717 was observed simultaneously by the Burst Alert Telescope (BAT) on Swift and the Konus instrument on Wind. Significant hard to soft spectral evolution was seen. Early gamma-ray and X-ray emission was detected by both BAT and the X-Ray Telescope (XRT) on Swift. The XRT continued to observe the burst for 7.1 days and detect it for 1.4 days. The X-ray light curve showed a classic decay pattern including evidence of the onset of the external shock emission at {approx} 45 s after the trigger; the afterglow was too faint for a jet break to be detected. No optical, infrared or ultraviolet counterpart was discovered despite deep searches within 14 hours of the burst. The spectral lag for GRB 050717 was determined to be 2.5 {+-} 2.6 ms, consistent with zero and unusually short for a long burst. This lag measurement suggests that this burst has a high intrinsic luminosity and hence is at high redshift (z > 2.7). GRB 050717 provides a good example of classic prompt and afterglow behavior for a gamma-ray burst.

  10. The Observable Signatures of GRB Cocoons

    NASA Astrophysics Data System (ADS)

    Nakar, Ehud; Piran, Tsvi

    2017-01-01

    As a long gamma-ray burst (GRB) jet propagates within the stellar atmosphere it creates a cocoon composed of an outer Newtonian shocked stellar material and an inner (possibly relativistic) shocked jet. The jet deposits {10}51{--}{10}52 erg into this cocoon. This is comparable to the energies of the GRB and of the accompanying supernova, yet the cocoon’s signature has been largely ignored. The cocoon radiates a fraction of this energy as it expands, following the breakout from the star, and later as it interacts with the surrounding matter. We explore the possible signatures of this emission and outline a framework to calculate them from the conditions of the cocoon at the time of the jet breakout. The cocoon signature depends strongly on the, currently unknown, mixing between the shocked jet and shocked stellar material. With no mixing the γ-ray emission from the cocoon is so bright that it should have been already detected. The lack of such detections indicates that some mixing must take place. For partial and full mixing the expected signals are weaker than regular GRB afterglows. However, the latter are highly beamed while the former are wider. Future optical, UV, and X-ray transient searches, like LSST, ZTF, ULTRASAT, ISS-Lobster, and others, will most likely detect such signals, providing a wealth of information on the progenitors and jets of GRBs. While we focus on long GRBs, analogous (but weaker) cocoons may arise in short GRBs. Their signatures might be the most promising electromagnetic counterparts for gravitational wave signals from compact binary mergers.

  11. GRB 140606B/iPTF14bfu: detection of shock-breakout emission from a cosmological γ-ray burst?

    NASA Astrophysics Data System (ADS)

    Cano, Zach; de Ugarte Postigo, A.; Perley, D.; Krühler, T.; Margutti, R.; Friis, M.; Malesani, D.; Jakobsson, P.; Fynbo, J. P. U.; Gorosabel, J.; Hjorth, J.; Sánchez-Ramírez, R.; Schulze, S.; Tanvir, N. R.; Thöne, C. C.; Xu, D.

    2015-09-01

    We present optical and near-infrared photometry of GRB 140606B (z = 0.384), and optical photometry and spectroscopy of its associated supernova (SN). The results of our modelling indicate that the bolometric properties of the SN (MNi = 0.4 ± 0.2 M⊙, Mej = 5 ± 2 M⊙, and EK = 2 ± 1 × 1052 erg) are fully consistent with the statistical averages determined for other γ-ray burst (GRB)-SNe. However, in terms of its γ-ray emission, GRB 140606B is an outlier of the Amati relation, and occupies the same region as low luminosity (ll) and short GRBs. The γ-ray emission in llGRBs is thought to arise in some or all events from a shock breakout (SBO), rather than from a jet. The measured peak photon energy (Ep ≈ 800 keV) is close to that expected for γ-rays created by an SBO (≳ 1 MeV). Moreover, based on its position in the MV, p-Liso, γ plane and the EK-Γβ plane, GRB 140606B has properties similar to both SBO-GRBs and jetted-GRBs. Additionally, we searched for correlations between the isotropic γ-ray emission and the bolometric properties of a sample of GRB-SNe, finding that no statistically significant correlation is present. The average kinetic energy of the sample is bar{E}_K = 2.1× 10^{52} erg. All of the GRB-SNe in our sample, with the exception of SN 2006aj, are within this range, which has implications for the total energy budget available to power both the relativistic and non-relativistic components in a GRB-SN event.

  12. Spectral Evolution in GRB 990510

    NASA Technical Reports Server (NTRS)

    Vreeswijk, P. M.; Rol, E.; Galama, T. J.; Wijers, R. A. M. J.; vanParadijs, J.; Kouveliotou, C.; Frontera, F.; Pian, E.; Palazzi, E.; Masetti, N.

    2000-01-01

    We present time-resolved spectroscopy of the afterglow of GRB 990510. Through the identification of several absorption lines in the first epoch spectrum, we determine the redshift for this burst to be z >= 1.6190 +/- 0.0016. No clear emission lines are detected. From the absence of the Ly.alpha drop, we can put an upper limit to the redshift of z <= 2.3. We study the time evolution of the MgII absorption line in our spectra taken 0.8 and 3.9 days after the burst, whose equivalent width (E.W.) is expected to change in case the burst resides in a dense compact medium (Perna & Loeb 1998). We measure an E.W. of 2.5 /- 0.2 and 2.3 +/- 0.6 in the spectra 0.8 and 3.8 days after the burst, respectively. Our results suggest that the atoms responsible for the absorption are not in the vicinity of the site of the burst.

  13. GRB 091127/SN 2009nz and the VLT/X-shooter spectroscopy of its host galaxy: probing the faint end of the mass-metallicity relation

    NASA Astrophysics Data System (ADS)

    Vergani, S. D.; Flores, H.; Covino, S.; Fugazza, D.; Gorosabel, J.; Levan, A. J.; Puech, M.; Salvaterra, R.; Tello, J. C.; de Ugarte Postigo, A.; D'Avanzo, P.; D'Elia, V.; Fernández, M.; Fynbo, J. P. U.; Ghirlanda, G.; Jelínek, M.; Lundgren, A.; Malesani, D.; Palazzi, E.; Piranomonte, S.; Rodrigues, M.; Sánchez-Ramírez, R.; Terrón, V.; Thöne, C. C.; Antonelli, L. A.; Campana, S.; Castro-Tirado, A. J.; Goldoni, P.; Hammer, F.; Hjorth, J.; Jakobsson, P.; Kaper, L.; Melandri, A.; Milvang-Jensen, B.; Sollerman, J.; Tagliaferri, G.; Tanvir, N. R.; Wiersema, K.; Wijers, R. A. M. J.

    2011-11-01

    We perform a detailed study of the gamma-ray burst GRB 091127/SN 2009nz host galaxy at z = 0.490 using the VLT/X-shooter spectrograph in slit and integral-field unit (IFU) mode. From the analysis of the optical and X-ray afterglow data obtained from ground-based telescopes and Swift-XRT, we confirm the presence of a bump associated with SN 2009nz and find evidence of a possible jet break in the afterglow lightcurve. The X-shooter afterglow spectra reveal several emission lines from the underlying host, from which we derive its integrated properties. These properties agree with those of previously studied GRB-SN hosts and, more generally, with those of the long GRB host population. We use the Hubble Space Telescope and ground-based images of the host to determine its stellar mass (M⋆). Our results extend to lower M⋆ values the M-Z plot derived for the sample of long GRB hosts at 0.3 < z < 1.0 adding new information to probe the faint end of the M-Z relation and the shift of the LGRB host M-Z relation from that found from emission-line galaxy surveys. Thanks to the IFU spectroscopy, we can build the two-dimensional (2D) velocity, velocity dispersion, and star formation rate (SFR) maps. They show that the host galaxy has perturbed rotation kinematics with evidence of a SFR enhancement consistent with the afterglow position. Based on observations made with ESO Telescopes at Paranal Observatory under programmes ID 084.A-0260 and 086.A-0874.

  14. iPTF14yb: The First Discovery of a Gamma-Ray Burst Afterglow Independent of a High-Energy Trigger

    SciTech Connect

    Cenko, S. Bradley; Urban, Alex L.; Perley, Daniel A.; Horesh, Assaf; Corsi, Alessandra; Fox, Derek B.; Cao, Yi; Kasliwal, Mansi M.; Lien, Amy; Arcavi, Iair; Bloom, Joshua S.; Butler, Nat R.; Cucchiara, Antonino; Diego, José A. de; Filippenko, Alexei V.; Gal-Yam, Avishay; Gehrels, Neil; Georgiev, Leonid; Gonzalez, J. Jesus; Graham, John F.; Greiner, Jochen; Kann, D. Alexander; Klein, Christopher R.; Knust, Fabian; Kulkarni, S. R.; Kutyrev, Alexander; Laher, Russ; Lee, William H.; Nugent, Peter E.; Xavier Prochaska, J.; Rubin, Adam; Urata, Yuji; Varela, Karla; Watson, Alan M.; Wozniak, Przemek R.

    2015-04-20

    We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous (Msub>r ≈ ₋27.8 mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB140226A. This marks the rst unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically dis- tant relativistic explosions) based on iPTF observations, inferring an all-sky value of $R_{rel}$ = 610yr-1 (68% con dence interval of 110{2000 yr-1). Our derived rate is consistent (within the large uncer- tainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we brie y discuss the implications of the nondetection to date of bona de \\orphan" afterglows (i.e., those lacking de- tectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.

  15. iPTF14yb: The First Discovery of a Gamma-Ray Burst Afterglow Independent of a High-Energy Trigger

    DOE PAGES

    Cenko, S. Bradley; Urban, Alex L.; Perley, Daniel A.; ...

    2015-04-20

    We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous (Msub>r ≈ ₋27.8 mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB140226A. This marks the rst unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically dis- tant relativistic explosions) based on iPTF observations, inferring an all-sky value ofmore » $$R_{rel}$$ = 610yr-1 (68% con dence interval of 110{2000 yr-1). Our derived rate is consistent (within the large uncer- tainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we brie y discuss the implications of the nondetection to date of bona de \\orphan" afterglows (i.e., those lacking de- tectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.« less

  16. iPTF14yb: The First Discovery of a Gamma-Ray Burst Afterglow Independent of a High-Energy Trigger

    NASA Technical Reports Server (NTRS)

    Cenko, S. Bradley; Urban, Alex L.; Perley, Daniel A.; Horesh, Assaf; Corsi, Alessandra; Fox, Derek B.; Cao, Yi; Kasliwal, Mansi M.; Lien, Amy; Arcavi, Iair; Bloom, Joshua S.; Butler, Nat R.; Cucchiara, Antonino; De Diego, Jose A.; Filippenko, Alexei V.; Gal-Yam, Avishay; Gehrels, Neil; Georgiev, Leonid; Gonzalez, J. Jesus; Graham, John F.; Greiner, Jochen; Kann, D. Alexander; Klein, Christopher R.; Knust, Fabian; Kutyrev, Alexander

    2015-01-01

    We report here the discovery by the Intermediate Palomar Transient Factory (iPTF) of iPTF14yb, a luminous (Mr >> -27.8 mag), cosmological (redshift 1.9733), rapidly fading optical transient. We demonstrate, based on probabilistic arguments and a comparison with the broader population, that iPTF14yb is the optical afterglow of the long-duration gamma-ray burst GRB 140226A. This marks the first unambiguous discovery of a GRB afterglow prior to (and thus entirely independent of) an associated high-energy trigger. We estimate the rate of iPTF14yb-like sources (i.e., cosmologically distant relativistic explosions) based on iPTF observations, inferring an all-sky value of Rrel = 610/yr (68% confidence interval of 110-2000/yr). Our derived rate is consistent (within the large uncertainty) with the all-sky rate of on-axis GRBs derived by the Swift satellite. Finally, we briefly discuss the implications of the nondetection to date of bona fide "orphan" afterglows (i.e., those lacking detectable high-energy emission) on GRB beaming and the degree of baryon loading in these relativistic jets.

  17. The quest for short GRB radio afterglows

    NASA Astrophysics Data System (ADS)

    Burlon, Davide; Gaensler, Bryan; Murphy, Tara; Hancock, Paul; Bell, Martin; Bannister, Keith; Greiner, Jochen; Klose, Sylvio; Ghirlanda, Giancarlo

    2014-04-01

    Short γ-ray bursts (SGRBs) are the most elusive among GRBs with just a few of them having being studied pan- chromatically. Only three SGRBs have been detected in the radio band in the last 14 years. Radio observations of short GRBs should provide fundamental parameters of the physical process acting in these sources and on the nature of their progenitors. The detection of even a few more short GRBs in the radio band could constrain their true energetics, their radiative efficiency and the density of the environment where they happen (with immediate implications on the nature of their progenitors). The proposed joint radio-optical observations, will allow us for the first time to probe the hydrodynamics of the explosion and the radiation mechanism. We were graded 3.8 for two semesters, but the NAPA was not triggered.

  18. The quest for short GRB radio afterglows

    NASA Astrophysics Data System (ADS)

    Burlon, Davide; Gaensler, Bryan; Murphy, Tara; Hancock, Paul; Bell, Martin; Bannister, Keith; Greiner, Jochen; Klose, Sylvio; Ghirlanda, Giancarlo

    2014-10-01

    Short γ-ray bursts (SGRBs) are the most elusive among GRBs with just a few of them having being studied pan- chromatically. Only three SGRBs have been detected in the radio band in the last 14 years. Radio observations of short GRBs should provide fundamental parameters of the physical process acting in these sources and on the nature of their progenitors. The detection of even a few more short GRBs in the radio band could constrain their true energetics, their radiative efficiency and the density of the environment where they happen (with immediate implications on the nature of their progenitors). The proposed joint radio-optical observations, will allow us for the first time to probe the hydrodynamics of the explosion and the radiation mechanism. We were graded 3.8 for two semesters, but the NAPA was not triggered.

  19. A Bulk Comptonization Model for the Prompt GRM Emission

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos; Mastichiadis, A.

    2010-01-01

    The "Supercritical Pile" is a very economical GRB model that provides for the efficient conversion of the energy stored in the protons of a Relativistic Blast Wave (RBW) into radiation and at the same time produces - in the prompt GRB phase, even in the absence of any particle acceleration - a spectral peak at energy approximately 1 MeV. We extend this model to include the evolution of the RBW Lorentz factor F and thus follow its spectral and temporal features into the early GRB afterglow stage. One of the novel features of the present treatment is the inclusion of the feedback of the GRB produced radiation on the evolution of Gamma with radius. This feedback and the presence of kinematic and dynamic thresholds in the model are sources of potentially very rich time evolution which we have began to explore. In particular, one can this way obtain afterglow light curves with steep decays followed by the more conventional flatter afterglow slopes, while at the same time preserving the desirable features of the model, i.e. the well defined relativistic electron source and radiative processes that produce the proper peak in the nu F(sub nu) spectra. In this note we present the results of a specific set of parameters of this model with emphasis on the multiwavelength prompt emission and transition to the early afterglow.

  20. First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst. H.E.S.S. observations of FRB 150418

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Superb Collaboration; Jankowski, F.; Keane, E. F.; Petroff, E.

    2017-01-01

    Aims: Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods: Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 h of the radio burst. Results: The obtained 1.4 h of gamma-ray observations are presented and discussed. At the 99% C.L. we obtained an integral upper limit on the gamma-ray flux of Φγ(E > 350 GeV) < 1.33 × 10-8 m-2 s-1. Differential flux upper limits as function of the photon energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions: No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0.492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5.1 × 1047 erg/s at 99% C.L.

  1. Radio afterglows of a complete sample of bright Swift GRBs: predictions from present days to the SKA era

    NASA Astrophysics Data System (ADS)

    Ghirlanda, G.; Salvaterra, R.; Burlon, D.; Campana, S.; Melandri, A.; Bernardini, M. G.; Covino, S.; D'Avanzo, P.; D'Elia, V.; Ghisellini, G.; Nava, L.; Prandoni, I.; Sironi, L.; Tagliaferri, G.; Vergani, S. D.; Wolter, A.

    2013-11-01

    Radio observations of Gamma-Ray Bursts (GRBs) afterglows are fundamental in providing insights into their physics and environment, and in constraining the true energetics of these sources. Nonetheless, radio observations of GRB afterglows are presently sparse in the time/frequency domain. Starting from a complete sample of 58 bright Swift long bursts (BAT6), we constructed a homogeneous sub-sample of 38 radio detections/upper limits which preserves all the properties of the parent sample. One half of the bursts have detections between 1 and 5 d after the explosion with typical fluxes F ≳ 100 μJy at 8.4 GHz. Through a Population SYnthesis Code coupled with the standard afterglow Hydrodynamical Emission model, we reproduce the radio flux distribution of the radio sub-sample. Based on these results, we study the detectability in the time/frequency domain of the entire long GRB population by present and future radio facilities. We find that the GRBs that typically trigger Swift can be detected at 8.4 GHz by Jansky Very Large Array within few days with modest exposures even at high redshifts. The final Square Kilometre Array (SKA) can potentially observe the whole GRB population provided that there will be a dedicated GRB gamma-ray detector more sensitive than Swift. For a sizeable fraction (50 per cent) of these bursts, SKA will allow us to perform radio calorimetry, after the trans-relativistic transition (occurring ˜100 d), providing an estimate of the true (collimation corrected) energetics of GRBs.

  2. VizieR Online Data Catalog: List of isolated emission episodes in GRB (Charisi+, 2015)

    NASA Astrophysics Data System (ADS)

    Charisi, M.; Marka, S.; Bartos, I.

    2015-09-01

    We analysed GRB light curves from the three main GRB catalogues: (i) the Gamma-ray Burst Monitor (GBM) on board Fermi Gamma-ray Space Telescope (Meegan et al., 2009ApJ...702..791M), (ii) the Burst Alert Telescope (BAT) on the Swift satellite (Gehrels et al., 2004ApJ...611.1005G), and (iii) the BATSE on board Compton Gamma-Ray Observatory (Fishman et al., 1989, Its Max'91 Workshop 2: Developments in Observations and Theory for Solar Cycle 22. Wingle R. M., Dennis B. R., editors. 1989. p. 96.). We analysed GRBs detected prior to 2014 January 01. The search was confined to long GRBs with nominal duration T90 (T90>2s), where T90 is defined as the time interval during which 90% of the GRB fluence was detected with 5% fluence detected both before and after the interval. Note that T90 was the only property considered in identifying long GRBs. The main reason for this selection is the reduced accuracy of the search for variability shorter than the bin size of the available light curves. Fermi-GBM consists of 12 NaI detectors, sensitive to energies from 8keV to ~1MeV, which cover the entire unocculted sky, along with two BGO detectors sensitive to higher energy photons (~200keV to ~40MeV). The GBM burst catalogue (http://heasarc.gsfc.nasa.gov/W3Browse/fermi/fermigbrst.html) consists of 1276 GRBs (2008 July-2013 December) and the data are publicly available (http://heasarc.gsfc.nasa.gov/FTP/fermi/data/gbm/) Swift-BAT is a sensitive gamma-ray detector with a wide field of view (1.4sr) designed to provide GRB triggers with accurate localization. During the considered observation period up to the end of 2013 (2004 Decembe-2013 December), Swift had detected 833 GRBs (Sakamoto et al., 2011ApJS..195....2S, Cat. J/ApJS/195/2). The data are retrieved from the public archive (http://swift.gsfc.nasa.gov/archive/) BATSE consisted of eight large NaI area detectors (LADs) covering the energy range of ~25keV to ~2MeV, and was able to observe the entire unobstructed sky. Over its nine

  3. Gamma-Ray Bursts and Afterglows: a Multi-Wavelength Study in the Swift Era

    NASA Astrophysics Data System (ADS)

    Yu, Y. W.

    2010-01-01

    Gamma-ray bursts (GRBs), which are generally followed by long-lasting low-frequency afterglow emission, are short and intense pulses of gamma-rays observed from the sky in arbitrary directions. In order to observe the multi-wavelength emission at the early afterglow phase and even the prompt emission phase, NASA launched the Swift satellite on Nov. 20th 2004. Swift can localize GRBs within about 10 seconds. A brief review on the recent progress in observations and theories in the Swift era is given in Chapter 1. This paper focuses on the features of the early afterglows and the multi-wavelength prompt emission. In Chapters 2 and 3, we try to explain the shallow-decaying X-ray afterglows and X-ray flares, both of which are unaccountable in the standard afterglow model. (1) It is widely accepted that the shallow decay phase indicates a continuous energy injection into the GRB blast wave, and this energy could be released from the central engine after the burst. Based on the knowledge of the evolution of a pulsar wind, we argue that the injected flow interacting with the GRB blast wave is an ultra-relativistic kinetic-energy flow (i.e., wind) rather than pure electromagnetic waves. Therefore, a relativistic wind bubble (RWB) including a pair of shocks will be formed. Our numerical calculations and the fitting results show that the emission from an RWB can well account for the X-ray shallow decay phase. (2) For the X-ray flares that are attributed to some intermediate late activities of the central engine, we analyze the detailed dynamics of late internal shocks which directly produce the flare emission. Comparing the theoretical results with the lower limits of the observational luminosities and the profiles of the flare light curves, we find some constraints on the properties of the pre-collision shells, which are directly determined by the central object. In Chapter 4, we investigate the high-energy afterglow emission during the shallow decay phase in two models, i

  4. Jet or Shock Breakout? The Low-Luminosity GRB 060218

    NASA Astrophysics Data System (ADS)

    Irwin, Christopher; Chevalier, Roger

    2016-01-01

    We consider a model for the long-duration, low-luminosity gamma-ray burst GRB 060218 that plausibly accounts for multiwavelength observations to day 20. The components of our model are: (1) a long-lived (tj ~ 3000 s) central engine and accompanying low-luminosity (Lj ~ 1045 erg s-1), mildly relativistic jet; (2) a low-mass (~ 10-2 Msun) envelope surrounding the progenitor star; and (3) a modest amount of dust (AV ~ 0.1) in the circumstellar or interstellar environment. Blackbody emission from the transparency radius in a low-power jet outflow can fit the prompt thermal X-ray emission, and the prompt nonthermal X-rays and γ-rays may be produced via Compton scattering of thermal photons from hot leptons in the jet interior or the external shocks. The later mildly relativistic phase of this outflow can produce the radio emission via synchrotron radiation from the forward shock. Meanwhile, interaction of the associated SN 2006aj with a circumstellar envelope extending to ~ 1013 cm can explain the early optical peak. The X-ray afterglow can be interpreted as a light echo of the prompt emission from dust at ~ 30 pc. Our model is a plausible alternative to that of Nakar, who recently proposed shock breakout of a jet smothered by an extended envelope as the source of prompt emission. Both our results and Nakar's suggest that ultra-long bursts such as GRB 060218 and GRB 100316D may originate from unusual progenitors with extended circumstellar envelopes, and that a jet is necessary to decouple the prompt high-energy emission from the supernova.

  5. IDENTIFYING THE LOCATION IN THE HOST GALAXY OF THE SHORT GRB 111117A WITH THE CHANDRA SUBARCSECOND POSITION

    SciTech Connect

    Sakamoto, T.; Troja, E.; Aoki, K.; Guiriec, S.; Barthelmy, S. D.; Im, M.; Jeon, Y.; Leloudas, G.; Malesani, D.; De Ugarte Postigo, A.; Andersen, M. I.; Melandri, A.; D'Avanzo, P.; Urata, Y.; Xu, D.; Gorosabel, J.; Sanchez-Ramirez, R.; Briggs, M. S.; Foley, S.; and others

    2013-03-20

    We present our successful Chandra program designed to identify, with subarcsecond accuracy, the X-ray afterglow of the short GRB 111117A, which was discovered by Swift and Fermi. Thanks to our rapid target of opportunity request, Chandra clearly detected the X-ray afterglow, though no optical afterglow was found in deep optical observations. The host galaxy was clearly detected in the optical and near-infrared band, with the best photometric redshift of z=1.31{sub -0.23}{sup +0.46} (90% confidence), making it one of the highest known short gamma-ray burst (GRB) redshifts. Furthermore, we see an offset of 1.0 {+-} 0.2 arcsec, which corresponds to 8.4 {+-} 1.7 kpc, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining subarcsecond X-ray localizations of short GRB afterglows to study GRB environments.

  6. Broad band simulation of Gamma Ray Bursts (GRB) prompt emission in presence of an external magnetic field

    NASA Astrophysics Data System (ADS)

    Ziaeepour, Houri; Gardner, Brian

    2011-12-01

    The origin of prompt emission in GRBs is not yet well understood. The simplest and most popular model is Synchrotron Self-Compton (SSC) emission produced by internal shocks inside an ultra-relativistic jet. However, recent observations of a delayed high energy component by the Fermi-LAT instrument have encouraged alternative models. Here we use a recently developed formulation of relativistic shocks for GRBs to simulate light curves and spectra of synchrotron and self-Compton emissions in the framework of internal shock model. This model takes into account the evolution of quantities such as densities of colliding shells, and fraction of kinetic energy transferred to electrons and to induced magnetic field. We also extend this formulation by considering the presence of a precessing external magnetic field. These simulations are very realistic and present significant improvement with respect to previous phenomenological GRB simulations. They reproduce light curves of separate peaks of real GRBs and variety of spectral slopes at E > Epeak observed by the Fermi-LAT instrument. The high energy emission can be explained by synchrotron emission and a subdominant contribution from inverse Compton. We also suggest an explanation for extended tail emission and relate it to the screening of the magnetic field and/or trapping of accelerated electrons in the electromagnetic energy structure of the plasma in the shock front. Spectral slopes of simulated bursts at E << Epeak are consistent with theoretical prediction and at E < Epeak can be flatter if the spectrum of electrons is roughly flat or has a shallow slope at low energies. The observed flat spectra at soft gamma-ray and hard x-ray bands is the evidence that there is a significant contribution at E < Epeak from lower Lorentz factor wing of electron distribution which have a roughly random acceleration rather than being thermal. This means that the state of matter in the jet at the time of ejection is most probably

  7. On the constraining observations of the dark GRB 001109 and the properties of a z = 0.398 radio selected starburst galaxy contained in its error box

    NASA Astrophysics Data System (ADS)

    Castro Cerón, J. M.; Gorosabel, J.; Castro-Tirado, A. J.; Sokolov, V. V.; Afanasiev, V. L.; Fatkhullin, T. A.; Dodonov, S. N.; Komarova, V. N.; Cherepashchuk, A. M.; Postnov, K. A.; Lisenfeld, U.; Greiner, J.; Klose, S.; Hjorth, J.; Fynbo, J. P. U.; Pedersen, H.; Rol, E.; Fliri, J.; Feldt, M.; Feulner, G.; Andersen, M. I.; Jensen, B. L.; Pérez Ramírez, M. D.; Vrba, F. J.; Henden, A. A.; Israelian, G.; Tanvir, N. R.

    2004-09-01

    We present optical and NIR (near infrared) follow up observations of the GRB 001109 from 1 to 300 days after the burst. No transient emission was found at these wavelengths within this GRB's (Gamma Ray Burst) 50 arcsec radius BeppoSAX error box. Strong limits (3σ) are set with: R ⪆ 21, 10.2 h after the GRB; I ⪆ 23, 11.4 h after the GRB; H ⪆ 20.7, 9.9 h after the GRB; and KS⪆ 20, 9.6 h after the GRB. We discuss whether the radio source found in the GRB's error box (\\cite{taylor00}) might be related to the afterglow. We also present a multiwavelength study of a reddened starburst galaxy, found coincident with the potential radio and the X-ray afterglow. We show that our strong I band upper limit makes of the GRB 001109 the darkest one localised by the BeppoSAX's NFI (Narrow Field Instrument), and it is one of the most constraining upper limits on GRB afterglows to date. Further to it, the implications of these observations in the context of dark GRBs are considered. Based on observations made with telescopes at the Centro Astronómico Hispano Alemán (1.23 m + 3.50 m), at the Observatorio del Roque de los Muchachos (NOT + WHT), at the United States Naval Observatory (1.00 m) and at the Russian Academy of Sciences's Special Astrophysical Observatory (6.05 m). The NOT is operated on the island of San Miguel de la Palma jointly by Denmark, Finland, Iceland, Norway and Sweden, in Spain's Observatorio del Roque de los Muchahos of the Instituto de Astrofísica de Canarias. The Centro Astronómico Hispano Alemán is operated in Calar Alto by the Max-Planck Institut für Astronomie of Heidelberg, jointly with Spain's Comisión Nacional de Astronomía.

  8. GRB 091024A and the Nature of Ultra-long Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Virgili, F. J.; Mundell, C. G.; Pal'shin, V.; Guidorzi, C.; Margutti, R.; Melandri, A.; Harrison, R.; Kobayashi, S.; Chornock, R.; Henden, A.; Updike, A. C.; Cenko, S. B.; Tanvir, N. R.; Steele, I. A.; Cucchiara, A.; Gomboc, A.; Levan, A.; Cano, Z.; Mottram, C. J.; Clay, N. R.; Bersier, D.; Kopač, D.; Japelj, J.; Filippenko, A. V.; Li, W.; Svinkin, D.; Golenetskii, S.; Hartmann, D. H.; Milne, P. A.; Williams, G.; O'Brien, P. T.; Fox, D. B.; Berger, E.

    2013-11-01

    We present a broadband study of gamma-ray burst (GRB) 091024A within the context of other ultra-long-duration GRBs. An unusually long burst detected by Konus-Wind (KW), Swift, and Fermi, GRB 091024A has prompt emission episodes covering ~1300 s, accompanied by bright and highly structured optical emission captured by various rapid-response facilities, including the 2 m autonomous robotic Faulkes North and Liverpool Telescopes, KAIT, S-LOTIS, and the Sonoita Research Observatory. We also observed the burst with 8 and 10 m class telescopes and determine the redshift to be z = 1.0924 ± 0.0004. We find no correlation between the optical and γ-ray peaks and interpret the optical light curve as being of external origin, caused by the reverse and forward shock of a highly magnetized jet (RB ≈ 100-200). Low-level emission is detected throughout the near-background quiescent period between the first two emission episodes of the KW data, suggesting continued central-engine activity; we discuss the implications of this ongoing emission and its impact on the afterglow evolution and predictions. We summarize the varied sample of historical GRBs with exceptionally long durations in gamma-rays (gsim1000 s) and discuss the likelihood of these events being from a separate population; we suggest ultra-long GRBs represent the tail of the duration distribution of the long GRB population.

  9. GRB 091024A and the nature of ultra-long gamma-ray bursts

    SciTech Connect

    Virgili, F. J.; Mundell, C. G.; Harrison, R.; Kobayashi, S.; Steele, I. A.; Mottram, C. J.; Clay, N. R.; Pal'shin, V.; Guidorzi, C.; Margutti, R.; Chornock, R.; Melandri, A.; Updike, A. C.; Cenko, S. B.; Tanvir, N. R.; Cucchiara, A.; Levan, A.; Cano, Z.; and others

    2013-11-20

    We present a broadband study of gamma-ray burst (GRB) 091024A within the context of other ultra-long-duration GRBs. An unusually long burst detected by Konus-Wind (KW), Swift, and Fermi, GRB 091024A has prompt emission episodes covering ∼1300 s, accompanied by bright and highly structured optical emission captured by various rapid-response facilities, including the 2 m autonomous robotic Faulkes North and Liverpool Telescopes, KAIT, S-LOTIS, and the Sonoita Research Observatory. We also observed the burst with 8 and 10 m class telescopes and determine the redshift to be z = 1.0924 ± 0.0004. We find no correlation between the optical and γ-ray peaks and interpret the optical light curve as being of external origin, caused by the reverse and forward shock of a highly magnetized jet (R{sub B} ≈ 100-200). Low-level emission is detected throughout the near-background quiescent period between the first two emission episodes of the KW data, suggesting continued central-engine activity; we discuss the implications of this ongoing emission and its impact on the afterglow evolution and predictions. We summarize the varied sample of historical GRBs with exceptionally long durations in gamma-rays (≳1000 s) and discuss the likelihood of these events being from a separate population; we suggest ultra-long GRBs represent the tail of the duration distribution of the long GRB population.

  10. The Decay of Optical Emission from the gamma-Ray Burst GRB970228

    NASA Technical Reports Server (NTRS)

    Galama, T.; Groot, P. J.; vanParadijs, J.; Kouveliotou, C.; Robinson, C. R.; Fishman, G. J.; Meegan, C. A.; Sahu, K. C.; Livio, M.; Petro, L.; Macchetto, F. D.; Heise, J.; Int Zand, J.; Strom, R. G.; Telting, J.; Rutten, R. G. M.; Pettini, M.; Tanvir, N.; Bloom, J.

    1997-01-01

    The origin of gamma-ray bursts has been one of the great unsolved mysteries in high-energy astrophysics for almost 30 years. The recent discovery of fading sources at X-ray and optical wavelengths coincident with the location of the gamma-ray burst GRB970228 therefore provides an unprecedented opportunity to probe the nature of these high-energy events. The optical counterpart appears to be a transient point source embedded in a region of extended nebulosity, the latter having been tentatively identified as a high-redshift galaxy. This would seem to favour models that place gamma-ray bursts at cosmological distances, although a range of mechanisms for producing the bursts is still allowed. A crucial piece of information for distinguishing between such models is how the brightness of the optical counterpart evolves with time. Here we re-evaluate the existing photometry of the optical counterpart of GRB970228 to construct an optical light curve for the transient event. We find that between 21 hours and six days after the burst, the R-band brightness decreased by a factor of approximately 40, with any subsequent decrease in brightness occurring at a much slower rate. As the point source faded, it also became redder. The initial behaviour of the source appears to be consistent with the 'fireball' model, but the subsequent decrease in the rate of fading may prove harder to explain.

  11. Probing the complex environments of GRB host galaxies and intervening systems: high resolution spectroscopy of GRB050922C

    NASA Astrophysics Data System (ADS)

    Piranomonte, S.; Ward, P. A.; Fiore, F.; Vergani, S. D.; D'Elia, V.; Krongold, Y.; Nicastro, F.; Meurs, E. J. A.; Chincarini, G.; Covino, S.; Della Valle, M.; Fugazza, D.; Norci, L.; Sbordone, L.; Stella, L.; Tagliaferri, G.; Burrows, D. N.; Gehrels, N.; Goldoni, P.; Malesani, D.; Mirabel, I. F.; Pellizza, L. J.; Perna, R.

    2008-12-01

    Aims: The aim of this paper is to investigate the environment of gamma ray bursts (GRBs) and the interstellar matter of their host galaxies. Methods: To this purpose we use high resolution spectroscopic observations of the afterglow of GRB050922C, obtained with UVES/VLT ~ 3.5 h after the GRB event. Results: We found that, as for most high resolution spectra of GRBs, the spectrum of the afterglow of GRB050922C is complex. At least seven components contribute to the main absorption system at z=2.1992. The detection of lines of neutral elements like MgI and the detection of fine-structure levels of the ions FeII, SiII and CII allows us to separate components in the GRB ISM along the line of sight. Moreover, in addition to the main system, we analyzed the five intervening systems between z = 2.077 and z = 1.5664 identified along the GRB line of sight. Conclusions: GRB afterglow spectra are very complex, but full of information. This can be used to disentangle the contribution of the different parts of the GRB host galaxy and to study their properties. Our metallicity estimates agree with the scenario of GRBs exploding in low metallicity galaxies Based on observations collected at the European Southern Observatory (ESO) with the VLT/Kueyen telescope, Paranal, Chile, in the framework of program 075.A-0603.

  12. The central engine of GRB 130831A and the energy breakdown of a relativistic explosion

    NASA Astrophysics Data System (ADS)

    De Pasquale, M.; Oates, S. R.; Racusin, J. L.; Kann, D. A.; Zhang, B.; Pozanenko, A.; Volnova, A. A.; Trotter, A.; Frank, N.; Cucchiara, A.; Troja, E.; Sbarufatti, B.; Butler, N. R.; Schulze, S.; Cano, Z.; Page, M. J.; Castro-Tirado, A. J.; Gorosabel, J.; Lien, A.; Fox, O.; Littlejohns, O.; Bloom, J. S.; Prochaska, J. X.; de Diego, J. A.; Gonzalez, J.; Richer, M. G.; Román-Zúñiga, C.; Watson, A. M.; Gehrels, N.; Moseley, H.; Kutyrev, A.; Zane, S.; Hoette, V.; Russell, R. R.; Rumyantsev, V.; Klunko, E.; Burkhonov, O.; Breeveld, A. A.; Reichart, D. E.; Haislip, J. B.

    2016-01-01

    Gamma-ray bursts (GRBs) are the most luminous explosions in the Universe, yet the nature and physical properties of their energy sources are far from understood. Very important clues, however, can be inferred by studying the afterglows of these events. We present optical and X-ray observations of GRB 130831A obtained by Swift, Chandra, Skynet, Reionization And Transients Infra-Red camera, Maidanak, International Scientific Optical-Observation Network, Nordic Optical Telescope, Liverpool Telescope and Gran Telescopio Canarias. This burst shows a steep drop in the X-ray light curve at ≃105 s after the trigger, with a power-law decay index of α ˜ 6. Such a rare behaviour cannot be explained by the standard forward shock (FS) model and indicates that the emission, up to the fast decay at 105 s, must be of `internal origin', produced by a dissipation process within an ultrarelativistic outflow. We propose that the source of such an outflow, which must produce the X-ray flux for ≃1 d in the cosmological rest frame, is a newly born magnetar or black hole. After the drop, the faint X-ray afterglow continues with a much shallower decay. The optical emission, on the other hand, shows no break across the X-ray steep decrease, and the late-time decays of both the X-ray and optical are consistent. Using both the X-ray and optical data, we show that the emission after ≃105 s can be explained well by the FS model. We model our data to derive the kinetic energy of the ejecta and thus measure the efficiency of the central engine of a GRB with emission of internal origin visible for a long time. Furthermore, we break down the energy budget of this GRB into the prompt emission, the late internal dissipation, the kinetic energy of the relativistic ejecta, and compare it with the energy of the associated supernova, SN 2013 fu.

  13. Identifying the host galaxy of the short GRB 100628A

    NASA Astrophysics Data System (ADS)

    Nicuesa Guelbenzu, A.; Klose, S.; Palazzi, E.; Greiner, J.; Michałowski, M. J.; Kann, D. A.; Hunt, L. K.; Malesani, D.; Rossi, A.; Savaglio, S.; Schulze, S.; Xu, D.; Afonso, P. M. J.; Elliott, J.; Ferrero, P.; Filgas, R.; Hartmann, D. H.; Krühler, T.; Knust, F.; Masetti, N.; Olivares E., F.; Rau, A.; Schady, P.; Schmidl, S.; Tanga, M.; Updike, A. C.; Varela, K.

    2015-11-01

    We report on the results of a comprehensive observing campaign to reveal the host galaxy of the short GRB 100628A. This burst was followed by a faint X-ray afterglow but no optical counterpart was discovered. However, inside the X-ray error circle a potential host galaxy at a redshift of z = 0.102 was soon reported in the literature. If this system is the host, then GRB 100628A was the cosmologically most nearby unambiguous short burst with a measured redshift so far. We used the multi-colour imager GROND at the ESO/La Silla MPG 2.2 m telescope, ESO/VLT spectroscopy, and deep Australia Telescope Compact Array (ATCA) radio-continuum observations together with publicly available Gemini imaging data to study the putative host and the galaxies in the field of GRB 100628A. We confirm that inside the X-ray error circle the most probable host-galaxy candidate is the morphologically disturbed, interacting galaxy system at z = 0.102. The interacting galaxies are connected by a several kpc long tidal stream, which our VLT/FORS2 spectroscopy reveals strong emission lines of [O ii], [O iii], Hα and Hβ, characteristic for the class of extreme emission-line galaxies and indicative of ongoing star formation. The latter leaves open the possibility that the GRB progenitor was a member of a young stellar population. However, we indentify a second host-galaxy candidate slightly outside the X-ray error circle. It is a radio-bright, luminous elliptical galaxy at a redshift z = 0.311. With a K-band luminosity of 2 × 1011L⊙ this galaxy resembles the probable giant elliptical host of the first well-localized short burst, GRB 050509B. If this is the host, then the progenitor of GRB 100628A was a member of an old stellar population. Based on observations collected at the Very Large Telescope of the European Southern Observatory, Paranal, Chile (ESO programme 087.D-0503 and 290.D-5194; PI: A. Nicuesa Guelbenzu; 090.A-0825; PI: D. Malesani), GROND (PI: J. Greiner), and ATCA (Program C

  14. Afterglow emission from xenon, krypton, and argon dimers in nanosecond volume discharge at elevated pressures

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh.; Lomaev, M. I.; Rybka, D. V.; Tarasenko, V. F.

    2006-10-01

    The emission characteristics of plasma of a volume discharge initiated by electron avalanche beams in heavy inert gases at pressures up to 1.5 bar have been studied. It is established that more than 90% of the energy radiated in the wavelength range from 120 to 850 nm is emitted from xenon, krypton, and argon dimers. In the case of excited xenon plasma, an output radiation power of ˜300 kW and an energy of 45 mJ per cubic centimeter were obtained.

  15. Deceleration of arbitrarily magnetized GRB ejecta: the complete evolution

    NASA Astrophysics Data System (ADS)

    Mimica, P.; Giannios, D.; Aloy, M. A.

    2009-02-01

    Context: The role of magnetic fields in gamma-ray burst (GRB) flows remains debated. If of sufficient strength, they can leave their signature on the initial phases of the afterglow by substantially changing the backreaction of the flow as a consequence of its interaction with the external medium. Aims: We attempt to understand quantitatively the dynamical effect and observational signatures of GRB ejecta magnetization on the onset of the afterglow. Methods: We perform ultrahigh-resolution, one-dimensional, relativistic MHD simulations of the interaction between a radially expanding, magnetized ejecta with the interstellar medium. We require ultrahigh numerical resolution because of the extreme jump conditions in the region of interaction between the ejecta and the circumburst medium. We study the complete evolution of an ultrarelativistic shell to the self-similar asymptotic phase. Results: Our simulations demonstrate that the complete evolution can be characterized in terms of two parameters, the ξ parameter introduced by Sari and Piran and the magnetization σ_0. We use this fact in producing numerical models in which the shell Lorentz factor γ0 is between 10 and 20 and rescaling the results to arbitrarily large values of γ_0. We find that the reverse shock is typically weak or absent for ejecta characterized by σ_0⪆ 1. The onset of the forward shock emission is strongly dependent on the magnetization. On the other hand, the magnetic energy of the shell is transferred into the external medium on a short timescale (of several times the duration of the burst). The later forward shock emission contains no information about the initial magnetization of the flow. The asymptotic evolution of strongly magnetized shells, after experiencing significant deceleration, resembles that of hydrodynamic shells, i.e. they enter fully into the Blandford-McKee self-similar regime.

  16. GRB 050717: A Long, Short-Lag Burst Observed by Swift and Konus

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Hurkett, C.; Pal'shin, V.; Norris, J. P.; Zhang, B.; Barthelmy, S. D.; Burrows, D. N.; Gehrels, N.; Golenetskii, S.; Osborne, J. P.; Parsons, A. M.; Perri, M.; Willingale, R.

    2005-01-01

    The long burst GRB 050717 was observed simultaneously by the Burst Alert Telescope (BAT) on Swift and the Konus instrument on Wind. Significant hard to soft spectral evolution was seen. Early gamma-ray and X-ray emission was detected by both BAT and the X-Ray Telescope (XRT) on Swift. The XRT continued to observe the burst for 7.1 days and detect it for 1.4 days. The X-ray light curve showed a classic decay pattern including evidence of the onset of the external shock emission at approx. 50 s after the trigger; the afterglow was too faint for a jet break to be detected. No optical, infrared or ultraviolet counterpart was discovered despite deep searches within 14 hours of the burst. The spectral lag for GRB 050717 was determined to be 2.5 +/- 2.6 ms, consistent, with zero and unusually short for a long burst. This lag measurement suggests that this burst has a high intrinsic luminosity and hence is at high redshift (z > 2.7). 050717 provides a good example of classic prompt and afterglow behavior for a gamma-ray burst.

  17. Detection of GRB 060927 at z = 5.47: Implications for the Use of Gamma-Ray Bursts as Probes of the End of the Dark Ages

    NASA Astrophysics Data System (ADS)

    Ruiz-Velasco, A. E.; Swan, H.; Troja, E.; Malesani, D.; Fynbo, J. P. U.; Starling, R. L. C.; Xu, D.; Aharonian, F.; Akerlof, C.; Andersen, M. I.; Ashley, M. C. B.; Barthelmy, S. D.; Bersier, D.; Castro Cerón, J. M.; Castro-Tirado, A. J.; Gehrels, N.; Göǧüş, E.; Gorosabel, J.; Guidorzi, C.; Güver, T.; Hjorth, J.; Horns, D.; Huang, K. Y.; Jakobsson, P.; Jensen, B. L.; Kızıloǧlu, Ü.; Kouveliotou, C.; Krimm, H. A.; Ledoux, C.; Levan, A. J.; Marsh, T.; McKay, T.; Melandri, A.; Milvang-Jensen, B.; Mundell, C. G.; O'Brien, P. T.; Özel, M.; Phillips, A.; Quimby, R.; Rowell, G.; Rujopakarn, W.; Rykoff, E. S.; Schaefer, B. E.; Sollerman, J.; Tanvir, N. R.; Thöne, C. C.; Urata, Y.; Vestrand, W. T.; Vreeswijk, P. M.; Watson, D.; Wheeler, J. C.; Wijers, R. A. M. J.; Wren, J.; Yost, S. A.; Yuan, F.; Zhai, M.; Zheng, W. K.

    2007-11-01

    We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture ground-based telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB. Spectroscopy performed with the VLT about 13 hr after the trigger shows a continuum break at λ~8070 Å, produced by neutral hydrogen absorption at z~5.6. We also detect an absorption line at 8158 Å, which we interpret as Si II λ1260 at z=5.467. Hence, GRB 060927 is the second most distant GRB with a spectroscopically measured redshift. The shape of the red wing of the spectral break can be fitted by a damped Lyα profile with a column density with log(NH/cm-2)=22.50+/-0.15. We discuss the implications of this work for the use of GRBs as probes of the end of the dark ages and draw three main conclusions: (1) GRB afterglows originating from z>~6 should be relatively easy to detect from the ground, but rapid near-infrared monitoring is necessary to ensure that they are found; (2) the presence of large H I column densities in some GRB host galaxies at z>5 makes the use of GRBs to probe the reionization epoch via spectroscopy of the red damping wing challenging; and (3) GRBs appear crucial to locate typical star-forming galaxies at z>5, and therefore the type of galaxies responsible for the reionization of the universe. Partly based on observations carried out with the ESO telescopes under programs 077.D-0661, 077.A-0667, 078.D-0416, and the large program 177.A-f0591.

  18. RAPTOR: Closed-Loop monitoring of the night sky and the earliest optical detection of GRB 021211

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.

    2004-10-01

    We discuss the RAPTOR (Rapid Telescopes for Optical Response) sky monitoring system at Los Alamos National Laboratory. RAPTOR is a fully autonomous robotic system that is designed to identify and make follow-up observations of optical transients with durations as short as one minute. The RAPTOR design is based on Biomimicry of Human Vision. The sky monitor is composed of two identical arrays of telescopes, separated by 38 kilometers, which stereoscopically monitor a field of about 1300 square-degrees for transients. Both monitoring arrays are carried on rapidly slewing mounts and are composed of an ensemble of wide-field telescopes clustered around a more powerful narrow-field telescope called the ``fovea'' telescope. All telescopes are coupled to real-time analysis pipelines that identify candidate transients and relay the information to a central decision unit that filters the candidates to find real celestial transients and command a response. When a celestial transient is found, the system can point the fovea telescopes to any position on the sky within five seconds and begin follow-up observations. RAPTOR also responds to Gamma Ray Burst (GRB) alerts generated by GRB monitoring spacecraft. Here we present RAPTOR observations of GRB 021211 that constitute the earliest detection of optical emission from that event and are the second fastest achieved for any GRB. The detection of bright optical emission from GRB021211, a burst with modest gamma-ray fluence, indicates that prompt optical emission, detectable with small robotic telescopes, is more common than previously thought. Further, the very fast decline of the optical afterglow from GRB 021211 suggests that some so-called ``optically dark'' GRBs were not detected only because of the slow response of the follow-up telescopes.

  19. High energy emission of GRB 130821A: Constraining the density profile of the circum-burst medium as well as the initial Lorentz factor of the outflow

    SciTech Connect

    Liang, Yun-Feng; Zhou, Bei; He, Hao-Ning; Fan, Yi-Zhong; Wei, Da-Ming; Tam, Pak-Hin Thomas

    2014-02-01

    GRB 130821A was detected by Fermi-GBM/LAT, Konus-WIND, SPI-ACS/INTEGRAL, RHESSI and Mars Odyssey-HEND. Although the data of GRB 130821A are very limited, we show in this work that the high energy γ-ray emission (i.e., above 100 MeV) alone imposes tight constraint on the density profile of the circum-burst medium as well as the initial Lorentz factor of the outflow. The temporal behavior of the high energy γ-ray emission is consistent with the forward shock synchrotron radiation model, and the circum-burst medium likely has a constant-density profile. The Lorentz factor is about a few hundred, similar to other bright GRBs.

  20. The Decay of Optical Emission Form the Gamma-Ray Burst GRB 970228

    NASA Technical Reports Server (NTRS)

    Galama, T.; Groot, P. J.; vanParadijs, J.; Kouvellotou, C.; Robinson, C. R.; Fishmans, G. J.; Meegan, C. A.; Sahu, K. C.; Livio, M.; Petro, L.

    1997-01-01

    The origin of gamma-ray bursts has been one of the great unsolved mysteries in high-energy astrophysics for almost 30 years. The recent discovery of fading sources at X-ray and optical wave-lengths coincident with the location of the gamma-ray burst GRB970228 therefore provides an unprecedented opportunity to probe the nature of these high-energy events. The optical counterpart appears to be a transient point source embedded in a region of extended nebulosity, the latter having been tentatively identified as a high-redshift galaxy. This would seem to favour models that place gamma-ray bursts at cosmological distances, although a range of mechanisms for producing the bursts is still allowed. A crucial piece of information for distinguishing between such models is how the brightness of the optical counterpart evolves with time. Here we re-evaluate the existing photometry of the optical counterpart of GRB970228 to construct an optical light curve for the transient event. We find that between 21 hours and six days after the burst, the R-band brightness decreased by a factor of approx. 50, with any subsequent decrease in brightness occurring at a much slower rate. As the point source faded, it also became redder. The initial behaviour of the source appears to be consistent with the 'fireball' model, in which the burst results from the merger of two neutron stars, but the subsequent decrease in the rate of fading may prove harder to explain. The gamma-ray burst of 28 February 1997, detected with the Gamma-Ray Burst Monitor on board the BeppoSAX satellite, and located with an approx. 3 feet radius position with the Wide Field Camera on the same satellite, was the first for which a fading X-ray and optical counterpart were discovered. The optical Counterpart was discovered from a comparison of V- and I-band images taken with the William Herschel Telescope (WHT) on February 28.99 UT, and the Isaac Newton Telescope (INT; V band) and the WHT (I band) on March 8.8 uT.

  1. An external-shock model for gamma-ray burst afterglow 130427A

    NASA Astrophysics Data System (ADS)

    Panaitescu, A.; Vestrand, W. T.; Woźniak, P.

    2013-12-01

    The complex multiwavelength emission of gamma-ray burst (GRB) afterglow 130427A (monitored in the radio up to 10 d, in the optical and X-ray until 50 d, and at GeV energies until 1 d) can be accounted for by a hybrid reverse-forward shock synchrotron model, with inverse-Compton emerging only above a few GeV. The high ratio of the early optical to late radio flux requires that the ambient medium is a wind and that the forward-shock synchrotron spectrum peaks in the optical at about 10 ks. The latter has two consequences: the wind must be very tenuous and the optical emission before 10 ks must arise from the reverse-shock, as suggested also by the bright optical flash that Raptor has monitored during the prompt emission phase (<100 s). The Very Large Array radio emission is from the reverse-shock, the Swift X-ray emission is mostly from the forward-shock, but the both shocks give comparable contributions to the Fermi GeV emission. The weak wind implies a large blast-wave radius (8 t_day^{1/2} pc), which requires a very tenuous circumstellar medium, suggesting that the massive stellar progenitor of GRB 130427A resided in a superbubble.

  2. Magnetar Central Engine and Possible Gravitational Wave Emission of Nearby Short GRB 160821B

    NASA Astrophysics Data System (ADS)

    Lü, Hou-Jun; Zhang, Hai-Ming; Zhong, Shu-Qing; Hou, Shu-Jin; Sun, Hui; Rice, Jared; Liang, En-Wei

    2017-02-01

    GRB 160821B is a short gamma-ray burst (SGRB) at redshift z = 0.16, with a duration less than 1 s and without any “extended emission” detected up to more than 100 s in both Swift/BAT and Fermi/GBM bands. An X-ray plateau with a sharp drop 180 s after the BAT trigger was observed with Swift/XRT. No supernova or kilo-nova signature was detected. Assuming the central engine of this SGRB is a recently born supra-massive magnetar, we can explain the SGRB as jet radiation and its X-ray plateau as the internal energy dissipation of the pulsar wind as it spins down. We constrain its surface magnetic field to Bp < 3.12 × 1016 G and initial spin period to P0 < 8.5 × 10‑3 s. Its equation of state is consistent with the GM1 model with MTOV ∼ 2.37 M⊙ and ellipticity ɛ < 0.07. Its gravitational wave (GW) radiation may be detectable with the future Einstein Telescope, but is much weaker than the current detectability limit of Advanced LIGO. The GW radiation of such an event would be detectable by Advanced LIGO if it occurred at a distance of 100 Mpc (z = 0.023).

  3. GRB 110709A, 111117A, AND 120107A: FAINT HIGH-ENERGY GAMMA-RAY PHOTON EMISSION FROM FERMI-LAT OBSERVATIONS AND DEMOGRAPHIC IMPLICATIONS

    SciTech Connect

    Zheng Weikang; Akerlof, Carl W.; McKay, Timothy A.; Pandey, Shashi B.; Zhang Binbin; Zhang Bing; Sakamoto, Takanori

    2012-09-01

    Launched on 2008 June 11, the Large Area Telescope (LAT) instrument on board the Fermi Gamma-ray Space Telescope has provided a rare opportunity to study high-energy photon emission from gamma-ray bursts (GRBs). Although the majority of such events (27) have been identified by the Fermi-LAT Collaboration, four were uncovered by using more sensitive statistical techniques. In this paper, we continue our earlier work by finding three more GRBs associated with high-energy photon emission, GRB 110709A, 111117A, and 120107A. To systematize our matched filter approach, a pipeline has been developed to identify these objects in nearly real time. GRB 120107A is the first product of this analysis procedure. Despite the reduced threshold for identification, the number of GRB events has not increased significantly. This relative dearth of events with low photon number prompted a study of the apparent photon number distribution. We find an extremely good fit to a simple power law with an exponent of -1.8 {+-} 0.3 for the differential distribution. As might be expected, there is a substantial correlation between the number of lower energy photons detected by the Gamma-ray Burst Monitor (GBM) and the number observed by LAT. Thus, high-energy photon emission is associated with some but not all of the brighter GBM events. Deeper studies of the properties of the small population of high-energy emitting bursts may eventually yield a better understanding of these entire phenomena.

  4. The plateau phase of gamma-ray burst afterglows in the thick-shell scenario

    NASA Astrophysics Data System (ADS)

    Leventis, K.; Wijers, R. A. M. J.; van der Horst, A. J.

    2014-01-01

    We present analytic calculations of synchrotron radiation from the forward and the reverse shock of gamma-ray burst blast waves, in the thick-shell scenario (i.e. when the reverse shock is relativistic). We show that this scenario can naturally account for the plateau phase, observed early in the afterglows of about half the bursts detected by Swift. We generalize our approach to include power-law luminosity of the central engine and show that when radiation from both regions (forward and reverse shock) is taken into account, a wide range of possibilities emerge, including chromatic and achromatic breaks, frequency-dependent spectral evolution during the injection break and widely varying decay indices in different bands. For both the forward and the reverse shock, we derive formulas for the spectral parameters and the observed flux in different power-law segments of the spectrum, as a function of observer time. We explore the Fb-tb relation (between the observed time of the end of the plateau phase and the flux at that point) in the framework of the presented model and show that model predictions favour the reverse shock as the dominant source of emission in both optical and X-rays. As case studies, we present simultaneous fits to X-ray and optical/IR afterglow data of GRB 080928 and GRB 090423. We identify the end of the plateau phase with the cessation of energy injection and infer the corresponding upper limits to central-engine activity, which are about 1 h for the former and 1.5 h for the latter. We conclude that smooth energy injection through the reverse shock is a plausible explanation for the plateau phase of gamma-ray burst afterglows. During that phase, radiation from the reverse shock is likely to be important, or even dominant, and should be taken into account when fitting model parameters to observations.

  5. Jet or shock breakout? The low-luminosity GRB 060218

    NASA Astrophysics Data System (ADS)

    Irwin, Christopher M.; Chevalier, Roger A.

    2016-08-01

    We consider a model for the low-luminosity gamma-ray burst GRB 060218 that plausibly accounts for multiwavelength observations to day 20. The model components are: (1) a long-lived (tj ˜ 3000 s) central engine and accompanying low-luminosity (Lj ˜ 1047 erg s-1), mildly relativistic (γ ˜ 10) jet; (2) a low-mass (˜4 × 10-3 M⊙) envelope surrounding the progenitor star; and (3) a modest amount of dust (AV ˜ 0.1 mag) in the circumstellar or interstellar environment. Blackbody emission from the transparency radius in a low-power jet outflow can fit the prompt thermal X-ray emission, and the non-thermal X-rays and gamma-rays may be produced via Compton scattering of thermal photons from hot leptons in the jet interior or the external shocks. The later mildly relativistic phase of this outflow can produce the radio emission via synchrotron radiation from the forward shock. Meanwhile, interaction of the associated SN 2006aj with a circumstellar envelope extending to ˜1013 cm can explain the early optical emission. The X-ray afterglow can be interpreted as a light echo of the prompt emission from dust at ˜30 pc. Our model is a plausible alternative to that of Nakar, who recently proposed shock breakout of a jet smothered by an extended envelope as the source of prompt emission. Both our results and Nakar's suggest that bursts such as GRB 060218 may originate from unusual progenitors with extended circumstellar envelopes, and that a jet is necessary to decouple the prompt emission from the supernova.

  6. Implications from the Upper Limit of Radio Afterglow Emission of FRB 131104/Swift J0644.5-5111

    NASA Astrophysics Data System (ADS)

    Gao, He; Zhang, Bing

    2017-02-01

    A γ-ray transient, Swift J0644.5-5111, has been claimed to be associated with FRB 131104. However, a long-term radio imaging follow-up observation only placed an upper limit on the radio afterglow flux of Swift J0644.5-5111. Applying the external shock model, we perform a detailed constraint on the afterglow parameters for the FRB 131104/Swift J0644.5-5111 system. We find that for the commonly used microphysics shock parameters (e.g., {ε }e=0.1, {ε }B=0.01, and p = 2.3), if the fast radio burst (FRB) is indeed cosmological as inferred from its measured dispersion measure (DM), the ambient medium number density should be ≤slant {10}-3 {{cm}}-3, which is the typical value for a compact binary merger environment but disfavors a massive star origin. Assuming a typical ISM density, one would require that the redshift of the FRB be much smaller than the value inferred from DM (z\\ll 0.1), implying a non-cosmological origin of DM. The constraints are much looser if one adopts smaller {ε }B and {ε }e values, as observed in some gamma-ray burst afterglows. The FRB 131104/Swift J0644.5-5111 association remains plausible. We critically discuss possible progenitor models for the system.

  7. GRB 080319B: A Naked-Eye Stellar Blast from the Distant Universe

    SciTech Connect

    Racusin, J. L.; Burrows, D. N.

    2008-10-22

    On behalf of a large international collaboration [1], we present the unprecedented broadband observations of GRB 080319B, whose prompt optical emission peaked at a visual magnitude of 5.3, making it briefly visible with the naked eye. GRB 080319B was discovered by Swift and captured in exquisite detail by ground based wide-field telescopes, imaging the burst location from before the time of the explosion. The combination of these unique optical data with simultaneous {gamma}-ray observations provides powerful diagnostics of the detailed physics of this explosion within seconds of its formation. We show that the prompt optical and {gamma}-ray emissions from this event arise from different spectral components within the same physical region located at a large distance from the source, implying an extremely relativistic outflow. Our observations also provide good evidence for a bright reverse shock component. The chromatic behavior of the broadband afterglow is consistent with viewing the GRB down the very narrow inner core of a two-component jet that is expanding into a wind-like environment consistent with the massive star origin of long GRBs.

  8. Prompt GRB optical follow-up experiments

    SciTech Connect

    Park, H-S; Williams, G; Ables, E; Band, D; Barthelmy, S; Bionta, R; Cline, T; Gehrels, N; Hartmann, D; Hurley, K; Kippen, M; Nemiroff, R; Pereira, W; Porrata, R

    2000-11-13

    Gamma Ray Bursts (GRBs) are brief, randomly located, releases of gamma-ray energy from unknown celestial sources that occur almost daily. The study of GRBs has undergone a revolution in the past three years due to an international effort of follow-up observations of coordinates provided by Beppo/SAX and IPN GRB. These follow-up observations have shown that GRBs are at cosmological distances and interact with surrounding material as described by the fireball model. However, prompt optical counterparts have only been seen in one case and are therefore very rare or much dimmer than the sensitivity of the current instruments. Unlike later time afterglows, prompt optical measurements would provide information on the GRB progenitor. LOTIS is the very first automated and dedicated telescope system that actively utilizes the GRB Coordinates Network (GCN) and it attempts to measure simultaneous optical light curve associated with GRBs. After 3 years of running, LOTIS has responded to 75 GRB triggers. The lack of any optical signal in any of the LOTIS images places numerical limits on the surrounding matter density, and other physical parameters in the environment of the GRB progenitor. This paper presents LOTIS results and describes other prompt GRB follow-up experiments including the Super-LOTIS at Kitt Peak in Arizona.

  9. Broadband observations of the naked-eye gamma-ray burst GRB 080319B.

    PubMed

    Racusin, J L; Karpov, S V; Sokolowski, M; Granot, J; Wu, X F; Pal'shin, V; Covino, S; van der Horst, A J; Oates, S R; Schady, P; Smith, R J; Cummings, J; Starling, R L C; Piotrowski, L W; Zhang, B; Evans, P A; Holland, S T; Malek, K; Page, M T; Vetere, L; Margutti, R; Guidorzi, C; Kamble, A P; Curran, P A; Beardmore, A; Kouveliotou, C; Mankiewicz, L; Melandri, A; O'Brien, P T; Page, K L; Piran, T; Tanvir, N R; Wrochna, G; Aptekar, R L; Barthelmy, S; Bartolini, C; Beskin, G M; Bondar, S; Bremer, M; Campana, S; Castro-Tirado, A; Cucchiara, A; Cwiok, M; D'Avanzo, P; D'Elia, V; Valle, M Della; de Ugarte Postigo, A; Dominik, W; Falcone, A; Fiore, F; Fox, D B; Frederiks, D D; Fruchter, A S; Fugazza, D; Garrett, M A; Gehrels, N; Golenetskii, S; Gomboc, A; Gorosabel, J; Greco, G; Guarnieri, A; Immler, S; Jelinek, M; Kasprowicz, G; La Parola, V; Levan, A J; Mangano, V; Mazets, E P; Molinari, E; Moretti, A; Nawrocki, K; Oleynik, P P; Osborne, J P; Pagani, C; Pandey, S B; Paragi, Z; Perri, M; Piccioni, A; Ramirez-Ruiz, E; Roming, P W A; Steele, I A; Strom, R G; Testa, V; Tosti, G; Ulanov, M V; Wiersema, K; Wijers, R A M J; Winters, J M; Zarnecki, A F; Zerbi, F; Mészáros, P; Chincarini, G; Burrows, D N

    2008-09-11

    Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.

  10. A Statistical Study of GRB X-Ray Flares: Evidence of Ubiquitous Bulk Acceleration in the Emission Region

    NASA Astrophysics Data System (ADS)

    Jia, Lan-Wei; Uhm, Z. Lucas; Zhang, Bing

    2016-07-01

    When emission in a conical relativistic jet ceases abruptly (or decays sharply), the observed decay light curve is controlled by the high-latitude “curvature effect.” Recently, Uhm & Zhang found that the decay slopes of three gamma-ray burst (GRB) X-ray flares are steeper than what the standard model predicts. This requires bulk acceleration of the emission region, which is consistent with a Poynting-flux-dominated outflow. In this paper, we systematically analyze a sample of 85 bright X-ray flares detected in 63 Swift GRBs and investigate the relationship between the temporal decay index α and spectral index β during the steep decay phase of these flares. The α values depend on the choice of the zero time point t 0. We adopt two methods. “Method I” takes {t}0{{I}} as the first rising data point of each flare and is the most conservative approach. We find that at the 99.9% confidence level 56/85 flares have decay slopes steeper than the simplest curvature effect prediction and therefore are in the acceleration regime. “Method II” extrapolates the rising light curve of each flare backward until the flux density is three orders of magnitude lower than the peak flux density, and it defines the corresponding time as the zero time point ({t}0{{II}}). We find that 74/85 flares fall into the acceleration regime at the 99.9% confidence level. This suggests that bulk acceleration is common and may even be ubiquitous among X-ray flares, pointing toward a Poynting-flux-dominated jet composition for these events.

  11. A REVERSE SHOCK IN GRB 130427A

    SciTech Connect

    Laskar, T.; Berger, E.; Zauderer, B. A.; Margutti, R.; Soderberg, A. M.; Chakraborti, S.; Lunnan, R.; Chornock, R.; Chandra, P.; Ray, A.

    2013-10-20

    We present extensive radio and millimeter observations of the unusually bright GRB 130427A at z = 0.340, spanning 0.67-12 days after the burst. We combine these data with detailed multi-band UV, optical, NIR, and Swift X-ray observations and find that the broadband afterglow emission is composed of distinct reverse shock and forward shock contributions. The reverse shock emission dominates in the radio/millimeter and at ∼< 0.1 days in the UV/optical/NIR, while the forward shock emission dominates in the X-rays and at ∼> 0.1 days in the UV/optical/NIR. We further find that the optical and X-ray data require a wind circumburst environment, pointing to a massive star progenitor. Using the combined forward and reverse shock emission, we find that the parameters of the burst include an isotropic kinetic energy of E{sub K,{sub iso}} ≈ 2 × 10{sup 53} erg, a mass loss rate of M-dot ∼3×10{sup -8} M{sub ☉} yr{sup –1} (for a wind velocity of 1000 km s{sup –1}), and a Lorentz factor at the deceleration time of Γ(200 s) ≈ 130. Due to the low density and large isotropic energy, the absence of a jet break to ≈15 days places only a weak constraint on the opening angle, θ{sub j} ∼> 2.°5, and therefore a total energy of E{sub γ} + E{sub K} ∼> 1.2 × 10{sup 51} erg, similar to other gamma-ray bursts (GRBs). The reverse shock emission is detectable in this burst due to the low circumburst density, which leads to a slow cooling shock. We speculate that this property is required for the detectability of reverse shocks in radio and millimeter bands. Following on GRB 130427A as a benchmark event, observations of future GRBs with the exquisite sensitivity of the Very Large Array and ALMA, coupled with detailed modeling of the reverse and forward shock contributions, will test this hypothesis.

  12. GLAST Prospects for Swift-Era Afterglows

    SciTech Connect

    Gou, L.J.; Meszaros, P.; /Penn State U.

    2011-11-23

    We calculate the GeV spectra of gamma-ray burst afterglows produced by inverse Compton scattering of these objects sub-MeV emission. We improve on earlier treatments by using refined afterglow parameters and new model developments motivated by recent Swift observations. We present time-dependent GeV spectra for standard, constant-parameter models, as well as for models with energy injection and with time-varying parameters, for a range of burst parameters. We evaluate the limiting redshift to which such afterglows can be detected by the GLAST Large Area Telescope, as well as by AGILE.

  13. Evaluating the Bulk Lorentz Factors of Outflow Material: Lessons Learned from the Extremely Energetic Outburst GRB 160625B

    NASA Astrophysics Data System (ADS)

    Wang, Yuan-Zhu; Wang, Hao; Zhang, Shuai; Liang, Yun-Feng; Jin, Zhi-Ping; He, Hao-Ning; Liao, Neng-Hui; Fan, Yi-Zhong; Wei, Da-Ming

    2017-02-01

    GRB 160625B is an extremely bright outburst with well-monitored afterglow emission. The geometry-corrected energy is high, up to ∼5.2 × 1052 erg or even ∼8 × 1052 erg, rendering it the most energetic GRB prompt emission recorded so far. We analyzed the time-resolved spectra of the prompt emission and found that in some intervals there were likely thermal-radiation components and the high energy emission was characterized by significant cutoff. The bulk Lorentz factors of the outflow material are estimated accordingly. We found out that the Lorentz factors derived in the thermal-radiation model are consistent with the luminosity-Lorentz factor correlation found in other bursts, as well as in GRB 090902B for the time-resolved thermal-radiation components, while the spectral cutoff model yields much lower Lorentz factors that are in tension with the constraints set by the electron pair Compton scattering process. We then suggest that these spectral cutoffs are more likely related to the particle acceleration process and that one should be careful in estimating the Lorentz factors if the spectrum cuts at a rather low energy (e.g., ∼tens of MeV). The nature of the central engine has also been discussed, and a stellar-mass black hole is favored.

  14. Detection of GRB 060927 at zeta = 5.47: Implications for the Use of Gamma-Ray Bursts as Probes of the End of the Dark Ages

    NASA Technical Reports Server (NTRS)

    Ruiz-Velasco, A. E.; Swan, H.; Troja, E.; Malesani, D.; Fynbo, J. P. U.; Sterling, R. L. C.; Xu, D.; Aharonian, F.; Akerlof, C.; Andersen, M. I.; Ashley, M. C. B.; Barthelmy, S. D.; Bersier, D.; CastroCeron, J. M.; Castro-Tirado, A. J.; Gehrels, N.; Gogus, E.; Gorosabel, J.; Guidorzi, C.; Guver, T.; Hjorth, J.; Horns, D.; Huang, K. Y.; Jakobsson, P.; Jensen, B. L.

    2007-01-01

    We report on follow-up observations of the gamma-ray burst GRB 060927 using the robotic ROTSE-IIIa telescope and a suite of larger aperture groundbased telescopes. An optical afterglow was detected 20 s after the burst, the earliest rest-frame detection of optical emission from any GRB. Spectroscopy performed with the VLT about 13 hours after the trigger shows a continuum break at lambda approx. equals 8070 A, produced by neutral hydrogen absorption at zeta = 5.6. We also detect an absorption line at 8158 A which we interpret as Si II lambda 1260 at zeta = 5.467. Hence, GRB 060927 is the second most distant GRB with a spectroscopically measured redshift. The shape of the red wing of the spectral break can be fitted by a damped Ly(alpha) profile with a column density with log(N(sub HI)/sq cm) = 22.50 +/- 0.15. We discuss the implications of this work for the use of GRBs as probes of the end of the dark ages and draw three main conclusions: i) GRB afterglows originating from zeta greater than or approx. equal to 6 should be relatively easy to detect from the ground, but rapid near-infrared monitoring is necessary to ensure that they are found; ii) The presence of large H I column densities in some GRBs host galaxies at zeta > 5 makes the use of GRBs to probe the reionization epoch via spectroscopy of the red damping wing challenging; iii) GRBs appear crucial to locate typical star-forming galaxies at zeta > 5 and therefore the type of galaxies responsible for the reionization of the universe.

  15. LIMITS ON OPTICAL POLARIZATION DURING THE PROMPT PHASE OF GRB 140430A

    SciTech Connect

    Kopac, D.; Mundell, C. G.; Arnold, D. M.; Steele, I. A.; Kobayashi, S.; Lamb, G. P.; Smith, R. J.; Virgili, F. J.; Japelj, J.; Gomboc, A.; Guidorzi, C.; Dichiara, S.; Harrison, R. M.; Melandri, A.; Castro-Tirado, A. J.; Gorosabel, J.; Sánchez-Ramírez, R.; Oates, S. R.; Jelínek, M.

    2015-11-01

    Gamma-ray burst GRB 140430A was detected by the Swift satellite and observed promptly with the imaging polarimeter RINGO3 mounted on the Liverpool Telescope, with observations beginning while the prompt γ-ray emission was still ongoing. In this paper, we present densely sampled (10-s temporal resolution) early optical light curves (LCs) in 3 optical bands and limits to the degree of optical polarization. We compare optical, X-ray, and gamma-ray properties and present an analysis of the optical emission during a period of high-energy flaring. The complex optical LC cannot be explained merely with a combination of forward and reverse shock emission from a standard external shock, implying additional contribution of emission from internal shock dissipation. We estimate an upper limit for time averaged optical polarization during the prompt phase to be as low as P < 12% (1σ). This suggests that the optical flares and early afterglow emission in this GRB are not highly polarized. Alternatively, time averaging could mask the presence of otherwise polarized components of distinct origin at different polarization position angles.

  16. Highly polarized light from stable ordered magnetic fields in GRB 120308A

    NASA Astrophysics Data System (ADS)

    Mundell, C. G.; Kopač, D.; Arnold, D. M.; Steele, I. A.; Gomboc, A.; Kobayashi, S.; Harrison, R. M.; Smith, R. J.; Guidorzi, C.; Virgili, F. J.; Melandri, A.; Japelj, J.

    2013-12-01

    After the initial burst of γ-rays that defines a γ-ray burst (GRB), expanding ejecta collide with the circumburst medium and begin to decelerate at the onset of the afterglow, during which a forward shock travels outwards and a reverse shock propagates backwards into the oncoming collimated flow, or `jet'. Light from the reverse shock should be highly polarized if the jet's magnetic field is globally ordered and advected from the central engine, with a position angle that is predicted to remain stable in magnetized baryonic jet models or vary randomly with time if the field is produced locally by plasma or magnetohydrodynamic instabilities. Degrees of linear polarization of P ~ 10 per cent in the optical band have previously been detected in the early afterglow, but the lack of temporal measurements prevented definitive tests of competing jet models. Hours to days after the γ-ray burst, polarization levels are low (P < 4 per cent), when emission from the shocked ambient medium dominates. Here we report the detection of P = per cent in the immediate afterglow of Swift γ-ray burst GRB 120308A, four minutes after its discovery in the γ-ray band, decreasing to P = per cent over the subsequent ten minutes. The polarization position angle remains stable, changing by no more than 15 degrees over this time, with a possible trend suggesting gradual rotation and ruling out plasma or magnetohydrodynamic instabilities. Instead, the polarization properties show that GRBs contain magnetized baryonic jets with large-scale uniform fields that can survive long after the initial explosion.

  17. GRB 971214

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. R.; Ramaprakash, A. N.; Bloom, J.; Djorgovski, S.; Goodrich, R.; Frail, D.

    1998-01-01

    The optical transient (IAUC #6788) of GRB 971214 (IAUC #6787; IAUC #6792) was observed by J. Aycock using the LRIS instrument on Keck II. The observations were conducted between 1400--1600 UT of January 10, 1998 and images were obtained in the R band. The seeing was consistently 0.86 arcsec and 12 frames each of five minute duration were obtained. A source is clearly detected at the position of the OT.

  18. GRB 971214

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. R.; Adelberger, K. L.; Bloom, J. S.; Kundic, T.; Lubin, L.

    1998-01-01

    On December 28, 1997, Kundic and Lubin obtained spectra of the optical transient of GRB 971214 (IAUC #6788) with the Low Resolution Imaging Spectrograph (LRIS) mounted on the Keck II telescope. The seeing conditions were excellent. If the transient continued the power-law decay as indicated by the data from Halpern et al. (IAUC #6788) then by this epoch the light at this position should be dominated by the host (cf. Kulkarni et al. GCN #27; ATEL #5).

  19. GRBs as probes: increasing both the high-z and short GRB sample

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan E.

    The promise of GRBs as probes of the high-z Universe is clear, given the detection of GRBs at z = 8.3 and ˜ 9.3 within 6d in April, 2009. These were both hampered by their (late) near-IR followup, suggesting that the large high-z GRB sample is limited currently by lack of prompt JHK photometry and spectroscopy within the first few hours from trigger. With no planned space-borne near IR telescope, for prompt GRB photo-z's or high resolution spectroscopy, the power of GRBs to probe the Early Universe will depend on a possible 3.5m Chinese telescope in the near-space like environment of Dome A in Antarctica or a modest network of 4m class telescopes (proposed here) for rapid response imaging and spectra, as needed also in the era of LSST. With the coming advent of Advanced LIGO, short GRBs will be vital as probes of the gravitational wave Universe. Just as with long GRBs as probes of the high-z Universe, it is essential that we are ready with a sensitive GRB imaging mission. For sGRBs, with their lower luminosity and conspicuously faint afterglows as well as likely wider-angle beaming factors, it is advantageous to be able to locate them precisely from their prompt emission (i.e. without afterglow detectons) to identify their host galaxies within the projected ˜ 300-600 Mpc survey limits for ALIGO. This will not only open the GW-EM window, but also allow precision measures of the Hubble constant.

  20. A Compact Binary Merger Model for the Short, Hard GRB 050509b

    SciTech Connect

    Lee, William H.; Ramirez-Ruiz, Enrico; Granot, Jonathan; /Princeton, Inst. Advanced Study /KIPAC, Menlo Park

    2005-06-15

    The first X-ray afterglow for a short ({approx}30ms), hard {gamma}-ray burst was detected by Swift on 9 May 2005 (GRB 050509b). No optical or radio counterpart was identified in follow-up observations. The tentative association of the GRB with a nearby giant elliptical galaxy at redshift z = 0.2248 would imply the progenitor had traveled several tens of kpc from its point of origin, in agreement with expectations linking these events to the final merger of compact binaries driven by gravitational wave emission. We model the dynamical merger of such a system and the time-dependent evolution of the accretion tori thus created. The resulting energetics, variability, and expected durations are consistent with GRB 050509b originating from the tidal disruption of a neutron star by a stellar mass black hole, or of the merger of two neutron stars followed by prompt gravitational collapse of the massive remnant. We discuss how the available {gamma}-ray and X-ray data provides a probe for the nature of the relativistic ejecta and the surrounding medium.

  1. The signature of the central engine in the weakest relativistic explosions: GRB 100316D

    SciTech Connect

    Margutti, R.; Soderberg, A. M.; Sironi, L.; Zauderer, B. A.; Milisavljevic, D.; Kamble, A.; Wieringa, M. H.; Edwards, P. G.; Chevalier, R. A.; Morsony, B. J.; Duran, R. Barniol; Pian, E.

    2013-11-20

    We present late-time radio and X-ray observations of the nearby sub-energetic gamma-ray burst (GRB)100316D associated with supernova (SN) 2010bh. Our broad-band analysis constrains the explosion properties of GRB 100316D to be intermediate between highly relativistic, collimated GRBs and the spherical, ordinary hydrogen-stripped SNe. We find that ∼10{sup 49} erg is coupled to mildly relativistic (Γ = 1.5-2), quasi-spherical ejecta, expanding into a medium previously shaped by the progenitor mass-loss with a rate of M-dot ∼ 10{sup −5} M{sub ⊙} yr{sup −1} (for an assumed wind density profile and wind velocity v{sub w} = 1000 km s{sup –1}). The kinetic energy profile of the ejecta argues for the presence of a central engine and identifies GRB 100316D as one of the weakest central-engine-driven explosions detected to date. Emission from the central engine is responsible for an excess of soft X-ray radiation that dominates over the standard afterglow at late times (t > 10 days). We connect this phenomenology with the birth of the most rapidly rotating magnetars. Alternatively, accretion onto a newly formed black hole might explain the excess of radiation. However, significant departure from the standard fall-back scenario is required.

  2. GRB 090510: A DISGUISED SHORT GAMMA-RAY BURST WITH THE HIGHEST LORENTZ FACTOR AND CIRCUMBURST MEDIUM

    SciTech Connect

    Muccino, M.; Ruffini, R.; Bianco, C. L.; Izzo, L.; Penacchioni, A. V.; Pisani, G. B.

    2013-07-20

    GRB 090510, observed by both Fermi and AGILE satellites, is the first bright short-hard gamma-ray burst (GRB) with an emission from the keV up to the GeV energy range. Within the Fireshell model, we interpret the faint precursor in the light curve as the emission at the transparency of the expanding e {sup +} e {sup -} plasma: the Proper-GRB. From the observed isotropic energy, we assume a total plasma energy E{sup tot}{sub e{sup +}e{sup -}}=(1.10{+-}0.06) Multiplication-Sign 10{sup 53} erg and derive a Baryon load B = (1.45 {+-} 0.28) Multiplication-Sign 10{sup -3} and a Lorentz factor at transparency {Gamma}{sub tr} = (6.7 {+-} 1.6) Multiplication-Sign 10{sup 2}. The main emission {approx}0.4 s after the initial spike is interpreted as the extended afterglow, due to the interaction of the ultrarelativistic baryons with the CircumBurst Medium (CBM). Using the condition of fully radiative regime, we infer a CBM average spherically symmetric density of (n{sub CBM}) = (1.85 {+-} 0.14) Multiplication-Sign 10{sup 3} particles cm{sup -3}, one of the highest found in the Fireshell model. The value of the filling factor, 1.5 Multiplication-Sign 10{sup -10}{<=}R{<=}3.8 Multiplication-Sign 10{sup -8}, leads to the estimate of filaments with densities n{sub fil} = n{sub CBM}/R approx. (10{sup 6}-10{sup 14}) particles cm{sup -3}. The sub-MeV and the MeV emissions are well reproduced. When compared to the canonical GRBs with (n{sub CBM}) Almost-Equal-To 1 particles cm{sup -3} and to the disguised short GRBs with (n{sub CBM}) Almost-Equal-To 10{sup -3} particles cm{sup -3}, the case of GRB 090510 leads to the existence of a new family of bursts exploding in an overdense galactic region with (n{sub CBM}) Almost-Equal-To 10{sup 3} particles cm{sup -3}. The joint effect of the high {Gamma}{sub tr} and the high density compresses in time and 'inflates' in intensity the extended afterglow, making it appear as a short burst, which we here define as a 'disguised short GRB by excess

  3. Two-shell collisions in the gamma-ray burst afterglow phase

    NASA Astrophysics Data System (ADS)

    Vlasis, A.; van Eerten, H. J.; Meliani, Z.; Keppens, R.

    2011-07-01

    Strong optical and radio flares often appear in the afterglow phase of gamma-ray bursts (GRBs). It has been proposed that colliding ultrarelativistic shells can produce these flares. Such consecutive shells can be formed due to the variability in the central source of a GRB. We perform high-resolution 1D numerical simulations of late collisions between two ultrarelativistic shells in order to explore these events. We examine the case where a cold uniform shell collides with a self-similar Blandford & McKee shell in a constant density environment and consider cases with different Lorentz factor and energy for the uniform shell. We produce the corresponding on-axis light curves and emission images for the afterglow phase and examine the occurrence of optical and radio flares, assuming a spherical explosion and a hard-edged jet scenario. For our simulations, we use the Adaptive Mesh Refinement version of the Versatile Advection Code coupled to a linear radiative transfer code to calculate synchrotron emission. We find steeply rising flares like the behaviour of small jet opening angles and more gradual rebrightenings for large opening angles. Synchrotron self-absorption is found to strongly influence the onset and shape of the radio flare.

  4. [Effect of different excitation monitoring wavelengths on emission spectrum of red long afterglow phosphor Sr3Al2O6 : Eu2+, Dy3+].

    PubMed

    Cui, Cai-e; Li, Jian; Huang, Ping; Liang, Li-ping; Wu, Yin-lan

    2012-01-01

    The Eu2+ and Dy3+ ion co-doped Sr3Al2O6 phosphor powders with long afterglow were prepared with high temperature solid-state reaction. The phase and the spectra properties of the material were characterized by X-ray diffraction (XRD) and fluorescence spectrophotometer. It was found that the sample is composed of pure Sr3Al2O6 phase. Furthermore, the emission peak of 537 nm under 360 nm excitation and that of 590 nm excited by 468 nm-light were obtained, respectively, and it is more interesting that the emission peaks were at 537 and 590 nm under 394 nm excitation. The effects of different excitation wavelengths on the emission spectrum were explained reasonably by the effect of nephelauxetic effect and crystal field. It revealed that the two types of luminescence with different color were caused by the differences of the center of gravity of the 5d excited state energy level and the split range of 5d energy level.

  5. GRB980109

    NASA Astrophysics Data System (ADS)

    Udalski, Andrzej; Kubiak, Martin

    1998-01-01

    GRB980109 field was observed by the OGLE collaboration with the 1.3-m Warsaw telescope at the Las Campanas Observatory, Chile on Jan. 10.06, 10.18, 11.05, 12.05 and 16.05, 1998. Ten 900 sec I-band exposures were collected. The field size was 14.2 by 14.2 arcmins covering almost entire error box. None fading or variable stellar-like object was detected up to detection limit of I ~ 21 mag and variability threshold of 0.4 mag.

  6. Afterglow Complex Plasma

    SciTech Connect

    Samarian, A. A.; Boufendi, L.; Mikikian, M.

    2008-09-07

    The review of the first detailed experimental and theoretical studies of complex plasma in RF discharge afterglow is presented. The studies have been done in a frame of FAST collaborative research project between Complex Plasma Laboratory of the University of Sydney and the GREMI laboratory of Universite d'Orleans. We examined the existing models of plasma decay, presents experimental observations of dust dynamics under different afterglow complex plasma conditions, presents the experimental data obtained (in particular the presence of positively charged particles in discharge afterglow), discusses the use of dust particles as a probe to study the diffusion losses in afterglow plasmas.

  7. Energetic Fermi/LAT GRB 100414A: Energetic and Correlations

    NASA Astrophysics Data System (ADS)

    Urata, Yuji; Huang, Kuiyun; Yamaoka, Kazutaka; Tsai, Patrick P.; Tashiro, Makoto S.

    2012-03-01

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E src peak of 1458.7+132.6 - 106.6 keV and E iso of 34.5+2.0 - 1.8 × 1052 erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of α = -2.6 ± 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 ± 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5fdg8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E src peak-E iso and E src peak-E γ correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  8. ALMA and RATIR observations of GRB 131030A

    NASA Astrophysics Data System (ADS)

    Huang, Kuiyun; Urata, Yuji; Takahashi, Satoko; Im, Myungshin; Yu, Po-Chieh; Choi, Changsu; Butler, Nathaniel; Watson, Alan M.; Kutyrev, Alexander; Lee, William H.; Klein, Chris; Fox, Ori D.; Littlejohns, Owen; Cucchiara, Nino; Troja, Eleonora; González, Jesús; Richer, Michael G.; Román-Zúñiga, Carlos; Bloom, Josh; Prochaska, J. Xavier; Gehrels, Neil; Moseley, Harvey; Georgiev, Leonid; de Diego, José A.; Ramirez-Ruiz, Enrico

    2017-01-01

    We report on the first open-use based Atacama Large Millimeter/submm Array (ALMA) 345 GHz observation for the late afterglow phase of GRB 131030A. The ALMA observation constrained a deep limit at 17.1 d for the afterglow and host galaxy. We also identified a faint submillimeter source (ALMA J2300-0522) near the GRB 131030A position. The deep limit at 345 GHz and multifrequency observations obtained using Swift and RATIR yielded forward-shock modeling with a two-dimensional relativistic hydrodynamic jet simulation and described X-ray excess in the afterglow. The excess was inconsistent with the synchrotron self-inverse Compton radiation from the forward shock. The host galaxy of GRB 131030A and optical counterpart of ALMA J2300-0522 were also identified in the Subaru image. Based on the deep ALMA limit for the host galaxy, the 3σ upper limits of IR luminosity and the star formation rate (SFR) are estimated as LIR < 1.11 × 1011 L⊙ and SFR <18.7 (M⊙ yr-1), respectively. Although the separation angle from the burst location (3{^''.}5) was rather large, ALMA J2300-0522 may be one component of the GRB 131030A host galaxy, according to previous host galaxy cases.

  9. An optical spectrum of the afterglow of a gamma-ray burst at a redshift of z = 6.295.

    PubMed

    Kawai, N; Kosugi, G; Aoki, K; Yamada, T; Totani, T; Ohta, K; Iye, M; Hattori, T; Aoki, W; Furusawa, H; Hurley, K; Kawabata, K S; Kobayashi, N; Komiyama, Y; Mizumoto, Y; Nomoto, K; Noumaru, J; Ogasawara, R; Sato, R; Sekiguchi, K; Shirasaki, Y; Suzuki, M; Takata, T; Tamagawa, T; Terada, H; Watanabe, J; Yatsu, Y; Yoshida, A

    2006-03-09

    The prompt gamma-ray emission from gamma-ray bursts (GRBs) should be detectable out to distances of z > 10 (ref. 1), and should therefore provide an excellent probe of the evolution of cosmic star formation, reionization of the intergalactic medium, and the metal enrichment history of the Universe. Hitherto, the highest measured redshift for a GRB has been z = 4.50 (ref. 5). Here we report the optical spectrum of the afterglow of GRB 050904 obtained 3.4 days after the burst; the spectrum shows a clear continuum at the long-wavelength end of the spectrum with a sharp cut-off at around 9,000 A due to Lyman alpha absorption at z approximately 6.3 (with a damping wing). A system of absorption lines of heavy elements at z = 6.295 +/- 0.002 was also detected, yielding the precise measurement of the redshift. The Si ii fine-structure lines suggest a dense, metal-enriched environment around the progenitor of the GRB.

  10. Long-Wavelength Demographics of GRB Host Galaxies

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.

    2017-01-01

    We present new VLA observations of 32 Swift and pre-Swift GRB host galaxies, supplemented by new ALMA and Herschel observations. Although our observations are quite deep, we securely detect only a few targets in the sample. Indeed, we rule out several claimed detections of ULIRG-like host galaxies in the previous literature, including every pre-Swift ULIRG-like host: these now appear to have been due to residual afterglow contamination or source confusion. Our results indicate that only a small minority of GRBs (~10%) occur in ULIRG-like galaxies and that intense star-formation does little to directly facilitate GRB production. This suggests in turn that dynamical interactions or ultra-massive stellar progenitors are not likely to be critical ingredients in GRB formation. Every GRB securely associated with a ULIRG is observed to significantly dust-obscured, consistent with the large dust optical depths and covering frations thought to be characteristic of these systems.

  11. Fast-response optical and near-infrared GRB science with RATIR and RIMAS

    NASA Astrophysics Data System (ADS)

    Capone, John; RIMAS Collaboration, RATIR project Team

    2016-01-01

    As the Universe's most luminous transient events, long gamma-ray bursts (GRBs) are observed at cosmological distances. The afterglow emission generated by the burst's interaction with the surrounding medium presents the opportunity to study the local environment, as well as intervening systems. The transient nature of these events requires observations starting within minutes of the GRB to maximize the scientific opportunities.This dissertation work comprises efforts to advance the field with a new instrument, the Rapid Infrared Imager and Spectrograph (RIMAS). The optical design is complicated by the broad band coverage (0.97 to 2.39 microns) and the necessity of transmissive optics due to space and weight limitations on the telescope. Additionally, the entire optical system must be cooled to cryogenic temperatures to decrease the background from thermal emission. The completed instrument will be permanently installed on Lowell Observatory's new 4.3 meter Discovery Channel Telescope (DCT) located in Happy Jack, Arizona. The fast slew time of the telescope, combined with the instrument's ability to image in two bands simultaneously and switch to spectroscopic configurations in under a minute will allow observers to obtain photometric data within minutes and spectra within ~ ten minutes.In addition to instrumentation work on RIMAS's optics, early time photometric light curves have been studied primarily using data from the Reionization and Transients Infrared/Optical Project (RATIR). Early time photometric data in six optical and near-infrared (NIR) bands has allowed a study of color evolution in the early to late time SEDs. This study probes possible impacts of the GRB on the local medium as well as intrinsic changes in the afterglow emission.This work is made possible by the RATIR and RIMAS collaborations as well as financial support by the NSF.

  12. The obscured hyper-energetic GRB 120624B hosted by a luminous compact galaxy at z = 2.20

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, A.; Campana, S.; Thöne, C. C.; D'Avanzo, P.; Sánchez-Ramírez, R.; Melandri, A.; Gorosabel, J.; Ghirlanda, G.; Veres, P.; Martín, S.; Petitpas, G.; Covino, S.; Fynbo, J. P. U.; Levan, A. J.

    2013-09-01

    Context. Gamma-ray bursts (GRBs) are the most luminous explosions that we can witness in the Universe. Studying the most extreme cases of these phenomena allows us to constrain the limits for the progenitor models. Aims: In this Letter, we study the prompt emission, afterglow, and host galaxy of GRB 120624B, one of the brightest GRBs detected by Fermi, to derive the energetics of the event and characterise the host galaxy in which it was produced. Methods: Following the high-energy detection we conducted a multi-wavelength follow-up campaign, including near-infrared imaging from HAWKI/VLT, optical from OSIRIS/GTC, X-ray observations from the Chandra X-ray Observatory and at submillimetre/millimetre wavelengths from SMA. Optical/NIR spectroscopy was performed with X-shooter/VLT. Results: We detect the X-ray and NIR afterglow of the burst and determine a redshift of z = 2.1974 ± 0.0002 through identification of emission lines of [O ii], [O iii] and H-α from the host galaxy of the GRB. This implies an energy release of Eiso,γ = (3.0 ± 0.2) × 1054 erg, amongst the most luminous ever detected. The observations of the afterglow indicate high obscuration with AV > 1.5. The host galaxy is compact, with R1/2 < 1.6 kpc, but luminous, at L ~ 1.5 L∗ and has a star formation rate of 91 ± 6 M⊙/yr as derived from Hα. Conclusions: As for other highly obscured GRBs, GRB 120624B is hosted by a luminous galaxy, which we also prove to be compact, with very intense star formation. It is one of the most luminous host galaxies associated with a GRB, showing that the host galaxies of long GRBs are not always blue dwarf galaxies, as previously thought. Based on observations collected at the European Southern Observatory, Chile, with programmes 089.D-0256 and 090.D-0667, at the Gran Telescopio Canarias with programmes GTC49-12A and GTC58-12B, at the Submillimeter Array with programme 2012A-S001, at CAHA with programme F13-3.5-031, at Liverpool Telescope with programme CL13A03

  13. New search strategy for high z intervening absorbers: GRB 021004, a pilot study

    NASA Astrophysics Data System (ADS)

    Vreeswijk, P. M.; Møller, P.; Fynbo, J. P. U.

    2003-10-01

    We present near-infrared narrow- and broad-band imaging of the field of GRB 021004, performed with ISAAC on the UT1 of the ESO Very Large Telescope. The narrow-band filters were chosen to match prominent emission lines at the redshift of the absorption-line systems found against the early-time afterglow of GRB 021004: [O Iii] at z=1.38 and Hα at z=1.60, respectively. For the z=1.38 system we find an emission-line source at an impact parameter of 16'', which is somewhat larger than the typical impact parameters of a sample of Mg Ii absorbers at redshifts around unity. Assuming that this tentative redshift-identification is correct, the star formation rate of the galaxy is 13+/-2 Msun yr-1. Our study reaches star-formation rate limits (5sigma ) of 5.7 Msun yr-1 at z=1.38, and 7.7 Msun yr-1 at z=1.60. These limits correspond to a depth of roughly 0.13 L*. Any galaxy counterpart of the absorbers nearer to the line of sight either has to be fainter than this limit or not be an emission-line source. Based on observations collected at the European Southern Observatory, Chile; proposal No. 270.A-5016.

  14. Gamma-ray Bursts: Radio Afterglow and Host Galaxy Study with The FAST Telescope

    NASA Astrophysics Data System (ADS)

    Li, L. B.; Huang, Y. F.; Kong, S. W.; Zhang, Z. B.; Li, D.; Luo, J. J.

    2016-02-01

    For four types of GRBs, namely high-luminosity, low-luminosity, standard and failed GRBs, we calculated their radio afterglow light curves. Meanwhile, considering contributions from host galaxies in radio bands, we statistically investigated the effect of hosts on radio afterglows. It is found that a tight anti-correlation exists between the ratio of radio flux (RRF) of host galaxy to the total radio afterglow peak flux and the observed frequency. Using this method, the host flux densities of those bursts without host measurements can be estimated at low or medium frequencies. We predicted that almost all types of radio afterglows, except that of low-luminosity GRBs, can be observed by FAST up to z = 15 or even more. FAST is expected to significantly expand the samples of GRB radio afterglows and host galaxies.

  15. Multiwavelength observations of the energetic GRB 080810: detailed mapping of the broad-band spectral evolution

    NASA Astrophysics Data System (ADS)

    Page, K. L.; Willingale, R.; Bissaldi, E.; Postigo, A. De Ugarte; Holland, S. T.; McBreen, S.; O'Brien, P. T.; Osborne, J. P.; Prochaska, J. X.; Rol, E.; Rykoff, E. S.; Starling, R. L. C.; Tanvir, N. R.; van der Horst, A. J.; Wiersema, K.; Zhang, B.; Aceituno, F. J.; Akerlof, C.; Beardmore, A. P.; Briggs, M. S.; Burrows, D. N.; Castro-Tirado, A. J.; Connaughton, V.; Evans, P. A.; Fynbo, J. P. U.; Gehrels, N.; Guidorzi, C.; Howard, A. W.; Kennea, J. A.; Kouveliotou, C.; Pagani, C.; Preece, R.; Perley, D.; Steele, I. A.; Yuan, F.

    2009-11-01

    GRB 080810 was one of the first bursts to trigger both Swift and the Fermi Gamma-ray Space Telescope. It was subsequently monitored over the X-ray and UV/optical bands by Swift, in the optical by Robotic Optical Transient Search Experiment (ROTSE) and a host of other telescopes, and was detected in the radio by the Very Large Array. The redshift of z = 3.355 +/- 0.005 was determined by Keck/High Resolution Echelle Spectrometer (HIRES) and confirmed by RTT150 and NOT. The prompt gamma/X-ray emission, detected over 0.3-103 keV, systematically softens over time, with Epeak moving from ~600 keV at the start to ~40 keV around 100s after the trigger; alternatively, this spectral evolution could be identified with the blackbody temperature of a quasi-thermal model shifting from ~60 to ~3keV over the same time interval. The first optical detection was made at 38s, but the smooth, featureless profile of the full optical coverage implies that this is originated from the afterglow component, not from the pulsed/flaring prompt emission. Broad-band optical and X-ray coverage of the afterglow at the start of the final X-ray decay (~8ks) reveals a spectral break between the optical and X-ray bands in the range of 1015-2 × 1016Hz. The decay profiles of the X-ray and optical bands show that this break initially migrates blueward to this frequency and then subsequently drifts redward to below the optical band by ~3 × 105s. GRB 080810 was very energetic, with an isotropic energy output for the prompt component of 3 × 1053 and 1.6 × 1052 erg for the afterglow; there is no evidence for a jet break in the afterglow up to 6d following the burst. This paper is dedicated to the memory of Professor Martin Turner, who sadly passed away during its writing. Martin was an influential figure in X-ray Astronomy and an excellent PhD supervisor. He will be greatly missed. E-mail: kpa@star.le.ac.uk ‡ NASA postdoctoral program fellow.

  16. The Swift/Fermi GRB 080928 from 1 eV to 150 keV

    NASA Technical Reports Server (NTRS)

    Sonbas, Eda; Rossi, A.; Schulze, S.; Klose, S.; Kann, D. A.; Ferrero, P.; NicuesaGuelbenzu, A.; Rau, A.; Kruehler, T.; Greiner, J.; Schady, P.; Afonso, P. M. J.; Clemens, C.; Filgas, R.; KuepcuYoldas, A.; McBreen, S.; Olivares, F.; Szokoly, G.; Yoldas, A.; Krimm, H. A.; Johannesson, G.; Panaitescu, A.; Yuan, F.; Pandey, S. B.; Akerlof, C. W.

    2010-01-01

    We present the results of a comprehensive study of the Gamma-Ray Burst 080928 and of its afterglow. GRB 08092 was a long burst detected by Swift/BAT and Fermi/GBM, It is one of the exceptional cases where optical emission was already detected when the GRB itself was still radiating in the gamma-ray band. for nearly 100 seconds simultaneous optical X-ray and gamma-ray data provide a coverage of the spectral energy distribution of the transient source from about 1 eV to 150 keV. Here we analyze the prompt emission, constrain its spectral propertIes. and set lower limits on the initial Lorentz factor of the relativistic outflow, In particular. we show that the SED during the main prompt emission phase is in agreement with synchrotron radiation. We construct the optical/near-infrared light curve and the spectral energy distribution based on Swift/UVOT. ROTSE-Illa (Australia) and GROND (La Silla) data and compare it to the X-ray light curve retrieved from the Swift/XRT repository. We show that its bumpy shape can be modeled by multiple energy injections into the forward shock. Furthermore, we provide evidence that the temporal and spectral evolution of the first strong flare seen in the early X-ray light curve can be explained by large-angle emission. Finally, we report on the results of our search for the GRB host galaxy, for which only a deep upper limit can be provided.

  17. The radiative efficiency of relativistic jet and wind: a case study of GRB 070110

    NASA Astrophysics Data System (ADS)

    Du, Shuang; Lü, Hou-Jun; Zhong, Shu-Qing; Liang, En-Wei

    2016-11-01

    A rapidly spinning, strongly magnetized neutron star (NS) is invoked as the central engine for some gamma-ray bursts (GRBs), especially, the `internal plateau' feature of X-ray afterglow. However, for these `internal plateau' GRBs, how to produce their prompt emission remains an open question. Two different physical processes have been proposed in the literature, (1) a new-born NS is surrounded by a hyper-accreting and neutrino cooling disc, the GRB jet can be powered by neutrino annihilation aligning the spin axis; (2) a differentially rotating millisecond pulsar was formed due to different angular velocity between the interior core and outer shell parts of the NS, which can power an episodic GRB jet. In this paper, by analysing the data of one peculiar GRB 070110 (with internal plateau), we try to test which model is being favoured. By deriving the physical parameters of magnetar with observational data, the parameter regime for initial period (P0) and surface polar cap magnetic field (Bp) of the central NS are 0.96 ˜ 1.2 ms and (2.4 ˜ 3.7) × 1014 G, respectively. The radiative efficiency of prompt emission is about ηγ ˜ 6 per cent. However, the radiative efficiency of internal plateau (ηX) is larger than 31 per cent assuming the MNS ˜ 1.4 M⊙ and P0˜ 1.2 ms. The clear difference between the radiation efficiencies of prompt emission and internal plateau implies that they maybe originated from different components (e.g. prompt emission from the relativistic jet powered by neutrino annihilation, while the internal plateau from the magnetic outflow wind).

  18. Delayed energy injection model for gamma-ray burst afterglows

    SciTech Connect

    Geng, J. J.; Huang, Y. F.; Yu, Y. B.; Wu, X. F. E-mail: xfwu@pmo.ac.cn

    2013-12-10

    The shallow decay phase and flares in the afterglows of gamma-ray bursts (GRBs) are widely believed to be associated with the later activation of the central engine. Some models of energy injection involve a continuous energy flow since the GRB trigger time, such as the magnetic dipole radiation from a magnetar. However, in the scenario involving a black hole accretion system, the energy flow from the fall-back accretion may be delayed for a fall-back time ∼t {sub fb}. Thus, we propose a delayed energy injection model. The delayed energy would cause a notable rise to the Lorentz factor of the external shock, which will 'generate' a bump in the multiple band afterglows. If the delayed time is very short, our model degenerates to the previous models. Our model can explain the significant re-brightening in the optical and infrared light curves of GRB 081029 and GRB 100621A. A considerable fall-back mass is needed to provide the later energy; this indicates that GRBs accompanied with fall-back material may be associated with a low energy supernova so that the fraction of the envelope can survive during eruption. The fall-back time can give meaningful information on the properties of GRB progenitor stars.

  19. CONSTRAINING GAMMA-RAY BURST INITIAL LORENTZ FACTOR WITH THE AFTERGLOW ONSET FEATURE AND DISCOVERY OF A TIGHT {Gamma}{sub 0}-E{sub {gamma},iso} CORRELATION

    SciTech Connect

    Liang Enwei; Yi Shuangxi; Lue Houjun; Zhang Jin; Zhang Binbin; Zhang Bing E-mail: zhang@physics.unlv.ed

    2010-12-20

    The onset of gamma-ray burst (GRB) afterglow is characterized by a smooth bump in the early afterglow light curve as the GRB fireball is decelerated by the circumburst medium. We extensively search for GRBs with such an onset feature in their optical and X-ray light curves from the literature and from the catalog established with the Swift/XRT. Twenty optically selected GRBs and 12 X-ray-selected GRBs are obtained, among which 17 optically selected and 2 X-ray-selected GRBs have redshift measurements. We fit these light curves with a smooth broken power law and measure the width (w), rising timescale (t{sub r}), and decaying timescale (t{sub d}) at full width at half-maximum. Strong mutual correlations among these timescales and with the peak time (t{sub p}) are found. The ratio t{sub r}/t{sub d} is almost universal among bursts, but the ratio t{sub r}/t{sub p} varies from 0.3 to {approx}1. The optical peak luminosity in the R band (L{sub R,p}) is anti-correlated with t{sub p} and w in the burst frame, indicating a dimmer and broader bump peaking at a later time. The isotropic prompt gamma-ray energy (E{sub {gamma},iso}) is also tightly correlated with L{sub R,p} and t{sub p} in the burst frame. Assuming that the bumps signal the deceleration of the GRB fireballs in a constant density medium, we calculate the initial Lorentz factor ({Gamma}{sub 0}) and the deceleration radius (R{sub d}) of the GRBs with redshift measurements. The derived {Gamma}{sub 0} is typically a few hundreds, and the deceleration radius is R{sub dec} {approx} 2 x 10{sup 17} cm. More intriguingly, a tight correlation between {Gamma}{sub 0} and E{sub {gamma},iso} is found, namely {Gamma}{sub 0} {approx_equal} 182(E{sub {gamma},iso}/10{sup 52} erg){sup 0.25}. This correlation also applies to the small sample of GRBs which show the signature of the afterglow onset in their X-ray afterglow, and to two bursts (GRBs 990123 and 080319B) whose early optical emission is dominated by a reverse shock. The

  20. Synchrotron radiation and diffusive shock acceleration - A short review and GRB perspective

    SciTech Connect

    Karlica, Mile

    2015-12-17

    In this talk we present the sponge” model and its possible implications on the GRB afterglow light curves. “Sponge” model describes source of GRB afterglow radiation as fragmented GRB ejecta where bubbles move through the rarefied medium. In the first part of the talk a short introduction to synchrotron radiation and Fermi acceleration was presented. In the assumption that X-ray luminosity of GRB afterglow phase comes from the kinetic energy losses of clouds in ejecta medium radiated as synchrotron radiation we solved currently very simple equation of motion to find which combination of cloud and medium regime describes the afterglow light curve the best. We proposed for the first step to watch simple combinations of expansion regimes for both bubbles and surrounding medium. The closest case to the numerical fit of GRB 150403A with time power law index k = 1.38 is the combination of constant bubbles and Sedov like expanding medium with time power law index k = 1.25. Of course the question of possible mixture of variuos regime combinations is still open within this model.

  1. The Enigma of the Strong MgII Absorbers along the GRB Sightlines

    NASA Astrophysics Data System (ADS)

    Cucchiara, Antonino; Charlton, J.; Jones, T.; Fox, D. B.; Narayan, A.; Narayan, A.

    2009-01-01

    The startling result of Prochter & Prochaska (2006) that the incidence of strong MgII absorbers (equivalent width EW(2796Å) > 1 Å) along gamma-ray burst (GRB) sightlines is four times larger (dN/dzGR=0.90) than for quasar sightlines (dN/dzQSO=0.24) has yet to be understood. In particular, explanations relating to dust bias in quasar samples, partial covering of quasars, and lensing amplification of the GRB beam all fail to satisfy basic observational constraints. We are currently engaged in an effort to explore this mystery using archival VLT/UVES (R=45,000) quasar and afterglow spectra. Identifying strong MgII absorbers in a uniform and statistically complete manner, we have compiled a sample of 28 absorbers toward 81 quasars and 9 absorbers toward 6 GRB afterglows. We explore the kinematics of the absorbers, the abundances of other metal species, and the strength of dust depletion in the GRB and QSO samples. We fail to identify any respects in which 75% of the GRB line-of-sight absorbers can be distinguished from the other members of the GRB and QSO absorber populations. We consider whether this finding rules out the possibility of an intrinsic high-velocity (v 0.2 c) GRB or GRB host-related origin for the excess absorbers, and conclude that it does not.

  2. GRB Jets with Time Variable Central Engines

    NASA Astrophysics Data System (ADS)

    Morsony, Brian J.; Lazzati, D.; Begelman, M. C.

    2009-01-01

    We study the long-term evolution of relativistic jets in collapsars and examine the effects of time variable energy input on the subsequent gamma ray bursts. We carry out a series of high-resolution simulations of a jet propagating through a stellar envelope in 2D cylindrical coordinates using the FLASH relativistic hydrodynamics module. We carry out a series of simulations of central engines that vary on long time periods, comparable to the breakout time of the jet, short time periods (0.1s) much less than the breakout time, and that decay as a powerlaw at late times. Long period simulations show the opening angle of the jet rapidly adjusts to changes in input energy, in about 0.1s. For short period variability, the structure of the jet is not significantly effected by changes of the central engine output, but the signature of these changes is clearly visible in the energy flux seen by an observer. Short period changes are preserved from the central engine to well outside the star, indicating that short timescale fluctuation seen in prompt GRB emission can be due to central engine activity and will reflect the history of that activity. Models with a decaying energy input have a constant opening angle at late times. This is significant because it allows energy to escape from the central engine to a large radius even with a small energy input at late times, indicating that the central engine could be responsible for the shallow decay seen in X-ray afterglow lightcurves and for X-ray flares. A simulation of a flare from the central engine during the decay phase produces a flare of energy with a sharp rise and decay that is not significantly modified by passing through the stellar envelope.

  3. Gamma-ray burst afterglows as probes of their host galaxies and the cosmos

    NASA Astrophysics Data System (ADS)

    Cucchiara, Antonino

    2010-12-01

    Gamma-ray Bursts (GRBs) represent the sole class of catastrophic phenomena seen over almost the entire history of the Universe. Their extreme luminosities in high energy gamma-ray radiation make them readily detectable, even with relatively small satellite-based detectors, out to the earliest cosmic epochs. Moreover, the brilliance of their fading afterglow light, routinely observed in X-ray, optical, near-infrared, and radio wavelengths, allows them to be exploited -- for hours, days, or weeks -- as cosmic lighthouses, probing the conditions of gas and dust along the line of sight, through their host galaxies and the cosmos at large. Since the November 2004 launch of Swift, this GRB-focused NASA mission has discovered more than 500 GRBs, in almost all cases reporting the burst coordinates to ground-based observers within seconds of the event. The availability of prompt burst positions from Swift, combined with promptly-reported flux measurements from instruments on Swift and an array of ground-based robotic telescopes, have enabled targeted spectroscopic campaigns that have gathered detailed observations of the young, bright afterglows of hundreds of these events. This thesis reports the results of my own efforts over the past 5 years, analyzing imaging and spectroscopic observations of Swift-detected GRBs as triggered according to my own requests, or as gathered from public data archives. In Chapter 2, I discuss our follow-up campaign for GRB090429B, one of our best "extreme redshift" (z > 8) candidates. This burst followed closely on the spectroscopicallyconfirmed z = 8.2 GRB090423, and our multiwavelength observations and SED modeling demonstrate the value and limitation of such studies, in cases where a spectroscopic redshift cannot be gathered in a timely fashion. I also address the importance of such extreme-redshift events from a cosmological perspective. In Chapter 3, I use high-resolution GRB afterglow spectra to study the properties of intervening

  4. Strong radio emission from SN 2007bg one year after the explosion - detection of spreading, off-axis GRB jet?

    NASA Astrophysics Data System (ADS)

    Prieto, J. L.; Watson, L. C.; Stanek, K. Z.

    2009-05-01

    In their study of supernova hosts using SDSS data (Prieto, Stanek & Beacom 2008, ApJ, 673, 999), the broad-lined SN Ic 2007bg at z=0.034 (Quimby et al. 2007, #CBET 927; Harutyunyan et al. 2007, CBET #948; Soderberg & Immler 2007, ATEL #1142), was identified as a good candidate for an off-axis GRB. The likely host of SN 2007bg is an extremely low- luminosity galaxy with M_B ~ -12, one of the least-luminous supernova hosts of any kind ever observed.

  5. GRB 990712 optical decay: indication of bright host galaxy.

    NASA Astrophysics Data System (ADS)

    Hjorth, J.; Courbin, F.; Cuadra, J.; Minniti, D.

    We have obtained a 5-min R-band exposure of the optical afterglow of GRB 990712 (Frontera, GCN #385; Bakos et al., GCN #387) with the ESO 3.5-m NTT on 16.403 July 1999 UT. We detect an unresolved (seeing FWHM = 1.8") object at RA (2000) = 22 31 53.03, Dec (2000) = -73 24 28.3 (with a positional uncertainty of +- 0.6" relative to the USNO-A2.0 system), consistent with the position of the bright decaying source discovered by Bakos et al. (IAUC 7225). We have tied our photometry to the PLANET photometric zeropoint (K. Sahu, personal communication) and find that the object has continued to fade to R = 21.48 +- 0.02 (systematic) +- 0.05 (random). The combined SAAO data (Bakos et al., IAUC 7225) and NTT data indicate that the light curve is leveling off relative to a power law decline. Assuming that the light curve can be modeled as the combined effects of a power law decline of the OT and a constant contribution from the host galaxy we find an OT decay slope of -0.81 (i.e. a rather slow decay) and a bright host galaxy with R = 22.0. Such a bright host galaxy would be consistent with its fairly low redshift (z = 0.43) and would possibly even account for the prominent emission lines seen in the VLT spectrum (Galama et al., GCN #388). We caution however that the hypothesis of a bright host galaxy is based on just a few data points. To test this hypothesis continued monitoring of the system is therefore urged. The NTT image and the R-band light curve are posted at http://www.astro.ku.dk/~jens/grb990712/ .

  6. Unusual Central Engine Activity in the Double Burst GRB 110709B

    NASA Technical Reports Server (NTRS)

    Zhang, Bin-Bin; Burrows, David N.; Zhang, Bing; Meszaros, Peter; Stratta, Giulia; D'Elia, Valerio; Frederiks, Dmitry; Golenetskii, S.; Cummings, Jay R.; Wang, Xiang-Yu; Falcone, Abraham D.; Barthelmy, Scott D.; Gehrels, Neil

    2011-01-01

    The double burst, GRB 110709B, triggered Swift/BAT twice at 21:32:39 UT and 21:43:45 UT, respectively, on 9 July 2011. This is the first time we observed a GRB with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events are from the same physical origin, their different time-dependent spectral evolution suggest they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system.

  7. UNUSUAL CENTRAL ENGINE ACTIVITY IN THE DOUBLE BURST GRB 110709B

    SciTech Connect

    Zhang Binbin; Burrows, David N.; Meszaros, Peter; Falcone, Abraham D.; Zhang Bing; Wang Xiangyu; Stratta, Giulia; D'Elia, Valerio; Frederiks, Dmitry; Golenetskii, Sergey; Cummings, Jay R.; Barthelmy, Scott D.; Gehrels, Neil; Norris, Jay P.

    2012-04-01

    The double burst, GRB 110709B, triggered the Swift/Burst Alert Telescope (BAT) twice at 21:32:39 UT and 21:43:45 UT, respectively, on 2011 July 9. This is the first time we observed a gamma-ray burst (GRB) with two BAT triggers. In this paper, we present simultaneous Swift and Konus-WIND observations of this unusual GRB and its afterglow. If the two events originated from the same physical progenitor, their different time-dependent spectral evolution suggests they must belong to different episodes of the central engine, which may be a magnetar-to-BH accretion system.

  8. DIVERSITY OF SHORT GAMMA-RAY BURST AFTERGLOWS FROM COMPACT BINARY MERGERS HOSTING PULSARS

    SciTech Connect

    Holcomb, Cole; Ramirez-Ruiz, Enrico; De Colle, Fabio; Montes, Gabriela

    2014-07-20

    Short-duration gamma-ray bursts (sGRBs) are widely believed to result from the mergers of compact binaries. This model predicts an afterglow that bears the characteristic signatures of a constant, low-density medium, including a smooth prompt-afterglow transition, and a simple temporal evolution. However, these expectations are in conflict with observations for a non-negligible fraction of sGRB afterglows. In particular, the onset of the afterglow phase for some of these events appears to be delayed and, in addition, a few of them exhibit late-time rapid fading in their light curves. We show that these peculiar observations can be explained independently of ongoing central engine activity if some sGRB progenitors are compact binaries hosting at least one pulsar. The Poynting flux emanating from the pulsar companion can excavate a bow-shock cavity surrounding the binary. If this cavity is larger than the shock deceleration length scale in the undisturbed interstellar medium, then the onset of the afterglow will be delayed. Should the deceleration occur entirely within the swept-up thin shell, a rapid fade in the light curve will ensue. We identify two types of pulsar that can achieve the conditions necessary for altering the afterglow: low-field, long-lived pulsars, and high-field pulsars. We find that a sizable fraction (≈20%-50%) of low-field pulsars are likely to reside in neutron star binaries based on observations, while their high-field counterparts are not. Hydrodynamical calculations motivated by this model are shown to be in good agreement with observations of sGRB afterglow light curves.

  9. A revised host galaxy association for GRB 020819B: a high-redshift dusty starburst, not a low-redshift gas-poor spiral

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.; Krühler, Thomas; Schady, Patricia; Michałowski, Michał J.; Thöne, Christina C.; Petry, Dirk; Graham, John F.; Greiner, Jochen; Klose, Sylvio; Schulze, Steve; Kim, Sam

    2017-02-01

    The purported spiral host galaxy of GRB 020819B at z = 0.41 has been seminal in establishing our view of the diversity of long-duration gamma-ray burst environments: Optical spectroscopy of this host provided evidence that gamma-ray bursts (GRBs) can form even at high metallicities, whereas millimetric observations suggested that GRBs may preferentially form in regions with minimal molecular gas. We report new observations from the Very Large Telescope (Multi Unit Spectroscopic Explorer and X-shooter), which demonstrate that the purported host is an unrelated foreground galaxy. The probable radio afterglow is coincident with a compact, highly star forming, dusty galaxy at z = 1.9621. The revised redshift naturally explains the apparent non-detection of CO(3-2) line emission at the afterglow site from the Atacama Large Millimetre Observatory. There is no evidence that molecular gas properties in GRB host galaxies are unusual, and limited evidence that GRBs can form readily at a super-Solar metallicity.

  10. IS THE LATE NEAR-INFRARED BUMP IN SHORT-HARD GRB 130603B DUE TO THE LI-PACZYNSKI KILONOVA?

    SciTech Connect

    Jin, Zhi-Ping; Fan, Yi-Zhong; Wei, Da-Ming; Xu, Dong; Wu, Xue-Feng

    2013-09-20

    Short-hard gamma-ray bursts (GRBs) are widely believed to be produced by the merger of two binary compact objects, specifically by two neutron stars or by a neutron star orbiting a black hole. According to the Li-Paczynski kilonova model, the merger would launch sub-relativistic ejecta and a near-infrared/optical transient would then occur, lasting up to days, which is powered by the radioactive decay of heavy elements synthesized in the ejecta. The detection of a late bump using the Hubble Space Telescope (HST) in the near-infrared afterglow light curve of the short-hard GRB 130603B is indeed consistent with such a model. However, as shown in this Letter, the limited HST near-infrared light curve behavior can also be interpreted as the synchrotron radiation of the external shock driven by a wide mildly relativistic outflow. In such a scenario, the radio emission is expected to peak with a flux of ∼100 μJy, which is detectable for current radio arrays. Hence, the radio afterglow data can provide complementary evidence on the nature of the bump in GRB 130603B. It is worth noting that good spectroscopy during the bump phase in short-hard bursts can test the validity of either model above, analogous to spectroscopy of broad-lined Type Ic supernova in long-soft GRBs.

  11. Search for a supernova in a GRB at 55 Mp

    NASA Astrophysics Data System (ADS)

    Levan, Andrew; Hjorth, Jens; Malesani, Daniele; Tanvir, Nial; Wiersema, Klaas; Fynbo, Johan

    2011-10-01

    We seek a rapid response target of opportunity observation of the recent GRB 111005A, which was detected by Swift last week. The burst is essentially invisible to most ground and space based optical/IR observations because it lies only 35 degrees from the Sun (as viewed from Earth). However, its gamma-ray error box contains the bright low redshift galaxy ESO 580-49, at only ~55 Mpc distance. Short integration (twilight) K-band observations do not show any sign of the burst in the optical/IR in the night after it occurred, perhaps because of extinction, or possibly because observations were too early to catch the associated supernova (SN). Howeve, radio observations today (10 Oct) do locate a transient source within the galaxy, presumably the GRB afterglow. This makes GRB 1110005A the closest Swift-GRB by some margin, and the second closest of all time. Such bursts provide a Rosetta Stone for our understanding of the GRB phenomena, since their proximity allows exquisite data to be obtained, and for late time observations to fully characterise the nature of the stellar population. Unlike other observatories, Spitzer can observe GRB 111005A until the end of the 14th October, providing an opportunity to search for an associated SN at optical and IR wavelengths, and even probe through the dust that may be present in the host galaxy. This is a unique opportunity, and a role that only Spitzer can perform.

  12. Three intervening galaxy absorbers towards GRB 060418: faint and dusty?

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.; Vreeswijk, Paul; Ledoux, Cédric; Willis, Jon P.; Jaunsen, Andreas; Wijers, Ralph A. M. J.; Smette, Alain; Fynbo, Johan P. U.; Møller, Palle; Hjorth, Jens; Kaufer, Andreas

    2006-10-01

    We present an analysis of three strong, intervening Mg II absorption systems (zabs = 0.603, 0.656, 1.107) towards the optical afterglow of gamma-ray burst (GRB) 060418. From high-resolution Ultraviolet and Visual Echelle Spectrograph (UVES) spectra we measure metal column densities and find that the highest redshift absorber exhibits a large amount of dust depletion compared with damped Lyman absorbers (DLAs) seen in quasi-stellar object (QSO) spectra. The intervening zabs = 1.107 absorber is also unusual in exhibiting a clear 2175-Å bump, the first time this feature has been definitively detected in a GRB spectrum. The GRB afterglow spectrum is best fitted with a two-component extinction curve: a Small Magellanic Cloud (SMC) extinction law at z = 1.49 (the redshift of the host) with E(B - V) = 0.07 +/- 0.01 and a Galactic extinction curve at z ~ 1.1 with E(B - V) = 0.08 +/- 0.01. We also present a moderately deep New Technology Telescope (NTT) R-band image of the GRB 060418 field and spectroscopy of four galaxies within 1 arcmin. None of these objects has a redshift that matches any of the intervening absorbers, and we conclude that the galaxies responsible for the two intervening MgII absorbers at z ~ 0.6 have luminosities .

  13. Closing in on a Short-Hard Burst Progenitor: Constraints From Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b

    SciTech Connect

    Bloom, Joshua S.; Prochaska, J.X.; Pooley, D.; Blake, C.W.; Foley, R.J.; Jha, S.; Ramirez-Ruiz, E.; Granot, J.; Filippenko, A.V.; Sigurdsson, S.; Barth, A.J.; Chen, H.-W.; Cooper, M.C.; Falco, E.E.; Gal, R.R.; Gerke, B.F.; Gladders, M.D.; Greene, J.E.; Hennanwi, J.; Ho, L.C.; Hurley, K.; /UC, Berkeley, Astron. Dept. /Lick Observ. /Harvard-Smithsonian Ctr. Astrophys. /Princeton, Inst. Advanced Study /KIPAC, Menlo Park /Penn State U., Astron. Astrophys. /UC, Irvine /MIT, MKI /UC, Davis /UC, Berkeley /Carnegie Inst. Observ. /UC, Berkeley, Space Sci. Dept. /Michigan U. /LBL, Berkeley /Spitzer Space Telescope

    2005-06-07

    The localization of the short-duration, hard-spectrum gamma-ray burst GRB050509b by the Swift satellite was a watershed event. Never before had a member of this mysterious subclass of classic GRBs been rapidly and precisely positioned in a sky accessible to the bevy of ground-based follow-up facilities. Thanks to the nearly immediate relay of the GRB position by Swift, we began imaging the GRB field 8 minutes after the burst and have continued during the 8 days since. Though the Swift X-ray Telescope (XRT) discovered an X-ray afterglow of GRB050509b, the first ever of a short-hard burst, thus far no convincing optical/infrared candidate afterglow or supernova has been found for the object. We present a re-analysis of the XRT afterglow and find an absolute position of R.A. = 12h36m13.59s, Decl. = +28{sup o}59'04.9'' (J2000), with a 1{sigma} uncertainty of 3.68'' in R.A., 3.52'' in Decl.; this is about 4'' to the west of the XRT position reported previously. Close to this position is a bright elliptical galaxy with redshift z = 0.2248 {+-} 0.0002, about 1' from the center of a rich cluster of galaxies. This cluster has detectable diffuse emission, with a temperature of kT = 5.25{sub -1.68}{sup +3.36} keV. We also find several ({approx}11) much fainter galaxies consistent with the XRT position from deep Keck imaging and have obtained Gemini spectra of several of these sources. Nevertheless we argue, based on positional coincidences, that the GRB and the bright elliptical are likely to be physically related. We thus have discovered reasonable evidence that at least some short-duration, hard-spectra GRBs are at cosmological distances. We also explore the connection of the properties of the burst and the afterglow, finding that GRB050509b was underluminous in both of these relative to long-duration GRBs. However, we also demonstrate that the ratio of the blast-wave energy to the {gamma}-ray energy is consistent with that of long-duration GRBs. We thus find plausible

  14. 'DARK' GRB 080325 IN A DUSTY MASSIVE GALAXY AT z {approx} 2

    SciTech Connect

    Hashimoto, T.; Ohta, K.; Yabe, K.; Niino, Y.; Aoki, K.; Tanaka, I.; Hattori, T.; Minowa, Y.; Noumaru, J.; Kawai, N.; Aoki, W.; Furusawa, H.; Iye, M.; Komiyama, Y.; Kosugi, G.; Mizumoto, Y.; Ogasawara, R.; Kawabata, K. S.; Kobayashi, N.; Nomoto, K.

    2010-08-10

    We present optical and near-infrared observations of Swift GRB 080325 classified as a 'dark gamma-ray burst (GRB)'. Near-infrared observations with Subaru/MOIRCS provided a clear detection of afterglow in the K{sub s} band, although no optical counterpart was reported. The flux ratio of rest-wavelength optical to X-ray bands of the afterglow indicates that the dust extinction along the line of sight to the afterglow is A{sub V} = 2.7-10 mag. This large extinction is probably the major reason for the optical faintness of GRB 080325. The J - K{sub s} color of the host galaxy, (J - K{sub s} = 1.3 in AB magnitude), is significantly redder than those for typical GRB hosts previously identified. In addition to J and K{sub s} bands, optical images in B, R{sub c} , i', and z' bands with Subaru/Suprime-Cam were obtained at about 1 year after the burst, and a photometric redshift of the host is estimated to be z {sub photo} = 1.9. The host luminosity is comparable to L* at z {approx} 2 in contrast to the sub-L* property of typical GRB hosts at lower redshifts. The best-fit stellar population synthesis model for the host shows that the red nature of the host is attributed to a large dust extinction (A{sub V} = 0.8 mag), and that the host galaxy is massive (M* = 7.0 x 10{sup 10} M {sub sun}), which makes it one of the most massive GRB hosts yet identified. By assuming that the mass-metallicity relation for star-forming galaxies at z {approx} 2 is applicable for the GRB host, this large stellar mass suggests the high-metallicity environment around GRB 080325, consistent with inferred large extinction.

  15. Toward a Better Understanding of the GRB Phenomenon: a New Model for GRB Prompt Emission and its Effects on the New LiNT- Epeak,irest,NT Relation

    NASA Astrophysics Data System (ADS)

    Guiriec, S.; Kouveliotou, C.; Daigne, F.; Zhang, B.; Hascoët, R.; Nemmen, R. S.; Thompson, D. J.; Bhat, P. N.; Gehrels, N.; Gonzalez, M. M.; Kaneko, Y.; McEnery, J.; Mochkovitch, R.; Racusin, J. L.; Ryde, F.; Sacahui, J. R.; Ünsal, A. M.

    2015-07-01

    Gamma-ray burst (GRB) prompt emission spectra in the keV-MeV energy range are usually considered to be adequately fitted with the empirical Band function. Recent observations with the Fermi Gamma-ray Space Telescope (Fermi) revealed deviations from the Band function, sometimes in the form of an additional blackbody (BB) component, while on other occasions in the form of an additional power law (PL) component extending to high energies. In this article we investigate the possibility that the three components may be present simultaneously in the prompt emission spectra of two very bright GRBs (080916C and 090926A) observed with Fermi, and how the three components may affect the overall shape of the spectra. While the two GRBs are very different when fitted to a single Band function, they look like “twins” in the three-component scenario. Through fine-time spectroscopy down to the 100 ms timescale, we follow the evolution of the various components. We succeed in reducing the number of free parameters in the three-component model, which results in a new semi-empirical model—but with physical motivations—to be competitive with the Band function in terms of number of degrees of freedom. From this analysis using multiple components, the Band function is globally the most intense component, although the additional PL can overpower the others in sharp time structures. The Band function and the BB component are the most intense at early times and globally fade across the burst duration. The additional PL is the most intense component at late time and may be correlated with the extended high-energy emission observed thousands of seconds after the burst with Fermi/Large Area Telescope. Unexpectedly, this analysis also shows that the additional PL may be present from the very beginning of the burst, where it may even overpower the other components at low energy. We investigate the effect of the three components on the new time-resolved luminosity-hardness relation in

  16. The Supercritical Pile Model: Prompt Emission Across the Electromagnetic Spectrum

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos; Mastichiadis, A.

    2008-01-01

    The "Supercritical Pile" GRB model is an economical model that provides the dissipation necessary to convert explosively the energy stored in relativistic protons in the blast wave of a GRB into radiation; at the same time it produces spectra whose luminosity peaks at 1 MeV in the lab frame, the result of the kinematics of the proton-photon - pair production reaction that effects the conversion of proton energy to radiation. We outline the fundamental notions behind the "Supercritical Pile" model and discuss the resulting spectra of the prompt emission from optical to gamma-ray energies of order Gamma^2 m_ec^2, (Gamma is the Lorentz factor of the blast wave) present even in the absence of an accelerated particle distribution and compare our results to bursts that cover this entire energy range. Particular emphasis is given on the emission at the GLAST energy range both in the prompt and the afterglow stages of the burst.

  17. Afterglow Radiation from Gamma Ray Bursts

    SciTech Connect

    Desmond, Hugh; /Leuven U. /SLAC

    2006-08-28

    Gamma-ray bursts (GRB) are huge fluxes of gamma rays that appear randomly in the sky about once a day. It is now commonly accepted that GRBs are caused by a stellar object shooting off a powerful plasma jet along its rotation axis. After the initial outburst of gamma rays, a lower intensity radiation remains, called the afterglow. Using the data from a hydrodynamical numerical simulation that models the dynamics of the jet, we calculated the expected light curve of the afterglow radiation that would be observed on earth. We calculated the light curve and spectrum and compared them to the light curves and spectra predicted by two analytical models of the expansion of the jet (which are based on the Blandford and McKee solution of a relativistic isotropic expansion; see Sari's model [1] and Granot's model [2]). We found that the light curve did not decay as fast as predicted by Sari; the predictions by Granot were largely corroborated. Some results, however, did not match Granot's predictions, and more research is needed to explain these discrepancies.

  18. Afterglow model for the radio emission from the jetted tidal disruption candidate Swift J1644+57

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Giannios, Dimitrios; Mimica, Petar

    2012-03-01

    The recent transient event Swift J1644+57 has been interpreted as emission from a collimated relativistic jet, powered by the sudden onset of accretion on to a supermassive black hole following the tidal disruption of a star. Here we model the radio-microwave emission as synchrotron radiation produced by the shock interaction between the jet and the gaseous circumnuclear medium (CNM). At early times after the onset of the jet (t≲ 5-10 d) a reverse shock propagates through and decelerates the ejecta, while at later times the outflow approaches the Blandford-McKee self-similar evolution (possibly modified by additional late energy injection). The achromatic break in the radio light curve of Swift J1644+57 is naturally explained as the transition between these phases. We show that the temporal indices of the pre- and post-break light curve are consistent with those predicted if the CNM has a wind-type radial density profile n∝r-2. The observed synchrotron frequencies and self-absorbed flux constrain the fraction of the post-shock thermal energy in relativistic electrons ɛe≈ 0.03-0.1, the CNM density at 1018 cm n18≈ 1-10 cm-3 and the initial Lorentz factor Γj≈ 10-20 and opening angle ? of the jet. Radio modelling thus provides robust independent evidence for a narrowly collimated outflow. Extending our model to the future evolution of Swift J1644+57, we predict that the radio flux at low frequencies (ν≲ few GHz) will begin to brighten more rapidly once the characteristic frequency νm crosses below the radio band after it decreases below the self-absorption frequency on a time-scale of months (indeed, such a transition may already have begun). Our results demonstrate that relativistic outflows from tidal disruption events provide a unique probe of the conditions in distant, previously inactive galactic nuclei, complementing studies of normal active galactic nuclei.

  19. Black Hole Physics and Astrophysics: The GRB-Supernova Connection and URCA-1 - URCA-2

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Bernardini, M. G.; Bianco, C. L.; Vitagliano, L.; Xue, S.-S.; Chardonnet, P.; Fraschetti, F.; Gurzadyan, V.

    2006-02-01

    We outline the confluence of three novel theoretical fields in our modeling of Gamma-Ray Bursts (GRBs): 1) the ultrarelativistic regime of a shock front expanding with a Lorentz gamma factor 300; 2) the quantum vacuum polarization process leading to an electron-positron plasma originating the shock front; and 3) the general relativistic process of energy extraction from a black hole originating the vacuum polarization process. There are two different classes of GRBs: the long GRBs and the short GRBs. We here address the issue of the long GRBs. The theoretical understanding of the long GRBs has led to the detailed description of their luminosities in fixed energy bands, of their spectral features and made also possible to probe the astrophysical scenario in which they originate. We are specially interested, in this report, to a subclass of long GRBs which appear to be accompanied by a supernova explosion. We are considering two specific examples: GRB980425/SN1998bw and GRB030329/SN2003dh. While these supernovae appear to have a standard energetics of 1049 ergs, the GRBs are highly variable and can have energetics 104 - 105 times larger than the ones of the supernovae. Moreover, many long GRBs occurs without the presence of a supernova. It is concluded that in no way a GRB can originate from a supernova. The precise theoretical understanding of the GRB luminosity we present evidence, in both these systems, the existence of an independent component in the X-ray emission, usually interpreted in the current literature as part of the GRB afterglow. This component has been observed by Chandra and XMM to have a strong decay on scale of months. We have named here these two sources respectively URCA-1 and URCA-2, in honor of the work that George Gamow and Mario Shoenberg did in 1939 in this town of Urca identifying the basic mechanism, the Urca processes, leading to the process of gravitational collapse and the formation of a neutron star and a supernova. The further

  20. MULTI-WAVELENGTH AFTERGLOWS OF FAST RADIO BURSTS

    SciTech Connect

    Yi, Shuang-Xi; Gao, He; Zhang, Bing

    2014-09-01

    The physical origin of fast radio bursts (FRBs) is unknown. Detecting electromagnetic counterparts to FRBs in other wavelengths is essential to measure their distances and to determine their physical origin. Assuming that at least some of them are of cosmological origin, we calculate their afterglow light curves in multiple wavelengths (X-rays, optical, and radio) by assuming a range of total kinetic energies and redshifts. We focus on forward shock emission, but also consider the possibility that some of the FRBs might have bright reverse shock emission. In general, FRB afterglows are too faint to be detected by current detectors. Only if an FRB has a very low radiative efficiency in radio (hence, a very large kinetic energy), and when it is close enough to observe can its afterglow be detected in the optical and radio bands. We discuss observational strategies for detecting these faint afterglows using future telescopes such as Large Synoptic Survey Telescope and Expanded Very Large Array.

  1. ENERGETIC FERMI/LAT GRB 100414A: ENERGETIC AND CORRELATIONS

    SciTech Connect

    Urata, Yuji; Tsai, Patrick P.; Huang, Kuiyun; Yamaoka, Kazutaka; Tashiro, Makoto S.

    2012-03-20

    This study presents multi-wavelength observational results for energetic GRB 100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E{sup src}{sub peak} of 1458.7{sup +132.6}{sub -106.6} keV and E{sub iso} of 34.5{sup +2.0}{sub -1.8} Multiplication-Sign 10{sup 52} erg with z = 1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of {alpha} = -2.6 {+-} 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 {+-} 0.2 days. This was the first Fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5.{sup 0}8, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB 100414A follows E{sup src}{sub peak}-E{sub iso} and E{sup src}{sub peak}-E{sub {gamma}} correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB 100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed light curve.

  2. Methodology in the Afterglow

    ERIC Educational Resources Information Center

    Hofsess, Brooke Anne

    2013-01-01

    My dissertation study seeks to understand how artist-teacher renewal may be nurtured through aesthetic experiential play in a Masters of Art Education degree program, and beyond, as my former students/participants and myself experience finding ourselves in its afterglow. "Aesthetic experiential play" could be described as a playful,…

  3. The air afterglow revisited

    NASA Technical Reports Server (NTRS)

    Kaufman, F.

    1972-01-01

    The air afterglow, 0 + NO2 chemiluminescence, is discussed in terms of fluorescence, photodissociation, and quantum theoretical calculations of NO2. The experimental results presented include pressure dependence, M-dependence, spectral dependence of P and M, temperature dependence, and infrared measurements. The NO2 energy transfer model is also discussed.

  4. Long GRB with Additional High Energy Maxima after the End of the Low Energy T90 Intervals

    NASA Astrophysics Data System (ADS)

    Irene, Arkhangelskaja; Alexander, Zenin; Dmitry, Kirin; Elena, Voevodina

    2013-01-01

    Now GRB high energy γ-emission was observed mostly by detectors onboard Fermi and Agile satellites. During most part of GRB high energy γ-emission registered some later than low energy trigger and lasts several hundreds of seconds, but its maxima are within low energy t90 intervals both for short and long bursts. But GRB090323, GRB090328 and GRB090626 temporal profiles have additional maxima after low energy t90 intervals finished. These bursts temporal profile analysis have shown that faint peaks in low energy bands close to the ends of low energy t90 intervals preceded such maxima. Moreover, these events low energy spectral index β behavior differs from usual GRB one according to preliminary analysis. We suppose that these GRB could be separated as different GRB type. In presented article this new GRB type properties are discussed.

  5. The Grb2 adaptor.

    PubMed

    Chardin, P; Cussac, D; Maignan, S; Ducruix, A

    1995-08-01

    Grb2 is an 'adaptor' protein made of one SH2 and two SH3 domains. The SH3 domains bind to prolinerich motifs in the C-terminal part of the ras exchange factor Sos. Binding of the Grb2 SH2 domain to phosphotyrosine motifs on receptors, or other adaptor proteins such as Shc, recruits this Grb2/Sos complex at the plasma membrane where Sos stimulates nucleotide exchange on ras, then ras activates raf and leads to MAP kinase activation. The structure of Grb2, the precise motifs recognised by its SH2 and SH3 domains, the way Grb2 performs its function, a possible regulation of its association with Sos, and its ability to complex with other proteins in vivo, are discussed.

  6. Molecular chemiluminescence from Mercury halides excited in an atmospheric-pressure active-nitrogen afterglow

    SciTech Connect

    Rice, G.W.; D'Silva, A.P.; Fassel, V.A.

    1985-05-01

    It is demonstrated that an atmospheric-pressure, active-nitrogen (APAN) afterglow can be used as an excitation source for HgCl/sub 2/, HgBr/sub 2/, and HgI/sub 2/ introduced into the afterglow. The emission spectra obtained upon the introductiion of HgCl/sub 2/, HgBr/sub 2/, and HgI/sub 2/ vapors into the APAN afterglow are presented. (AIP)

  7. Self-organized criticality in X-ray flares of gamma-ray-burst afterglows

    NASA Astrophysics Data System (ADS)

    Wang, F. Y.; Dai, Z. G.

    2013-08-01

    X-ray flares detected in nearly half of gamma-ray-burst (GRB) afterglows are one of the most intriguing phenomena in high-energy astrophysics. All of the observations indicate that the central engines of bursts, after the gamma-ray emission has ended, still have long periods of activity, during which energetic explosions eject relativistic materials, leading to late-time X-ray emission. It is thus expected that X-ray flares provide important clues as to the nature of the central engines of GRBs, and more importantly, unveil the physical mechanism of the flares themselves, which has so far remained mysterious. Here we report statistical results of X-ray flares of GRBs with known redshifts, and show that X-ray flares and solar flares share three statistical properties: power-law frequency distributions for energies, durations and waiting times. All of the distributions can be well understood within the physical framework of a self-organized criticality (SOC) system. The statistical properties of X-ray flares of GRBs are similar to solar flares, and thus both can be attributed to a SOC process. Both types of flares may be driven by a magnetic reconnection process, but X-ray flares of GRBs are produced in ultra-strongly magnetized millisecond pulsars or long-term hyperaccreting disks around stellar-mass black holes.

  8. Radio and X-ray observations of the Ultra-long GRB 150518A

    NASA Astrophysics Data System (ADS)

    Johnson, Louis; Kamble, Atish; Margutti, Raffaella; Soderberg, Alicia Margarita; Supernova Forensics

    2016-01-01

    Gamma Ray Burst (GRB) 150518A, discovered on 2015 May 18 by the MAXI and KONUS-Wind satellites, lasted for about 1000s, making it an important addition to the recently established class of very long duration GRBs. We report on the JVLA radio observations of the afterglow of GRB 150518A. Additionally, we report the analysis of Xray afterglow observations by Swift-XRT. Multi-band light curves of the radio afterglow display an unusual, conspicuous rise around 10 days after the burst, possibly due to enhanced mass-loss from the progenitor in the final stages of evolution before the GRB. The X-ray afterglow spectrum is significantly soft (photon index Γx > 3) and heavily absorbed (NHx,i > 8 × 10^{21}/cm^2). These properties suggest peculiar behavior that is different from the predictions of the standard fireball model of GRBs. In the light of these properties, we compare different models of progenitors for very long duration GRBs. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  9. GRB070125: The First Long-Duration Gamma-Ray Burst in a Halo Environment

    NASA Technical Reports Server (NTRS)

    Bradley, Cenko S.; Fox, Derek B.; Penprase, Brian E.; Kulkarni, Shri R.; Price, Paul A.; Berger, Edo; Kulkarni, Shri R.; Harrison, Fiona A.; Gal-Yam, Avishay; Ofek, Eran O.; Rau, Arne; Chandra, Poonam; Frail, Dale A.; Kasliwal, Mansi M.; Schmidt, Brian P.; Soderberg, Alicia M.; Cameron, P. Brian; Roth, Kathy C.

    2007-01-01

    We present the discovery and high signal-to-noise spectroscopic observations of the optical afterglow of the long-duration gamma-ray burst GRB070125. Unlike all previously observed long-duration afterglows in the redshift range 0.5 < z < 2.0, we find no strong (rest-frame equivalent width W > 1.0 A) absorption features in the wavelength range 4000 - 10000 A. The sole significant feature is a weak doublet we identify as Mg 11 2796 (W = 0.18 +/- 0.02 A), 2803 (W = 0.08 +0I.-01 ) at z = 1.5477 +/- 0.0001. The low observed Mg II and inferred H I column densities are typically observed in galactic halos, far away from the bulk of massive star formation. Deep ground-based imaging reveals no host directly underneath the afterglow to a limit of R > 25.4 mag. Either of the two nearest blue galaxies could host GRB070125; the large offset (d >= 27 kpc) would naturally explain the low column density. To remain consistent with the large local (i.e. parsec scale) circum-burst density inferred from broadband afterglow observations, we speculate GRB070125 may have occurred far away from the disk of its host in a compact star-forming cluster. Such distant stellar clusters, typically formed by dynamical galaxy interactions, have been observed in the nearby universe, and should be more prevalent at z>l where galaxy mergers occur more frequently.

  10. The high-redshift gamma-ray burst GRB 140515A. A comprehensive X-ray and optical study

    NASA Astrophysics Data System (ADS)

    Melandri, A.; Bernardini, M. G.; D'Avanzo, P.; Sánchez-Ramírez, R.; Nappo, F.; Nava, L.; Japelj, J.; de Ugarte Postigo, A.; Oates, S.; Campana, S.; Covino, S.; D'Elia, V.; Ghirlanda, G.; Gafton, E.; Ghisellini, G.; Gnedin, N.; Goldoni, P.; Gorosabel, J.; Libbrecht, T.; Malesani, D.; Salvaterra, R.; Thöne, C. C.; Vergani, S. D.; Xu, D.; Tagliaferri, G.

    2015-09-01

    High-redshift gamma-ray bursts (GRBs) offer several advantages when studying the distant Universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of this kind of distant events. We present the multi-wavelength analysis of the high-zSwift GRB GRB 140515A (z = 6.327). The best estimate of the neutral hydrogen fraction of the intergalactic medium towards the burst is xHI ≤ 0.002. The spectral absorption lines detected for this event are the weakest lines ever observed in GRB afterglows, suggesting that GRB 140515A exploded in a very low-density environment. Its circum-burst medium is characterised by an average extinction (AV ~ 0.1) that seems to be typical of z ≥ 6 events. The observed multi-band light curves are explained either with a very hard injected spectrum (p = 1.7) or with a multi-component emission (p = 2.1). In the second case a long-lasting central engine activity is needed in order to explain the late time X-ray emission. The possible origin of GRB 140515A in a Pop III (or in a Pop II star with a local environment enriched by Pop III) massive star is unlikely. Based on observations collected at the European Southern Observatory, ESO, the VLT/Kueyen telescope, Paranal, Chile (proposal code: 093.A-0069), on observations made with the Nordic Optical Telescope, operated by the Nordic Optical Telescope Scientific Association at the Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofísica de Canarias (programme 49-008), and on observations made with the Italian 3.6-m Telescopio Nazionale Galileo (TNG), operated by the Fundación Galileo Galilei of the INAF (Instituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos, La Palma, Spain, of the Instituto de Astrofísica de Canarias (programme A26TAC_63).Appendix A is available in electronic form at

  11. Clustering of galaxies around the GRB 021004 sight-line at z ~ 0.5

    NASA Astrophysics Data System (ADS)

    Sokolov, Ilya V.; Castro-Tirado, A. J.; Verkhodanov, O. V.; Zhelenkova, O. P.; Baryshev, Yu. V.

    2016-06-01

    In this report we test for reliability any signatures of field galaxies clustering in the GRB 021004 line of sight. The first signature is the BTA and Hubble GRB 021004 field photometric redshift distribution with a peak at z ~ 0.5 estimated from multicolor photometry. The second signature is the MgII 2796,2803 absorption doublet at z ~ 0.5 in the GRB 021004 afterglow spectrum. The third signature is some inhomogeneity in Plank + GRB 021004 fields. And the fourth signature may be the galaxy clustering with an effective redshift of z = 0.5 from the Baryon Oscillation Spectroscopic Survey (BOSS), which is a part of the Sloan Digital Sky Survey III (SDSS-III).

  12. The Macronova in GRB 050709 and the GRB-macronova connection

    PubMed Central

    Jin, Zhi-Ping; Hotokezaka, Kenta; Li, Xiang; Tanaka, Masaomi; D'Avanzo, Paolo; Fan, Yi-Zhong; Covino, Stefano; Wei, Da-Ming; Piran, Tsvi

    2016-01-01

    GRB 050709 was the first short Gamma-ray Burst (sGRB) with an identified optical counterpart. Here we report a reanalysis of the publicly available data of this event and the discovery of a Li-Paczynski macronova/kilonova that dominates the optical/infrared signal at t>2.5 days. Such a signal would arise from 0.05 r-process material launched by a compact binary merger. The implied mass ejection supports the suggestion that compact binary mergers are significant and possibly main sites of heavy r-process nucleosynthesis. Furthermore, we have reanalysed all afterglow data from nearby short and hybrid GRBs (shGRBs). A statistical study of shGRB/macronova connection reveals that macronova may have taken place in all these GRBs, although the fraction as low as 0.18 cannot be ruled out. The identification of two of the three macronova candidates in the I-band implies a more promising detection prospect for ground-based surveys. PMID:27659791

  13. Chemical abundances associated with gamma-ray bursts: nucleosynthesis in afterglows

    NASA Astrophysics Data System (ADS)

    Hu, Tao; Wang, Min

    2014-03-01

    Gamma-ray burst (GRB) ejecta carries huge amounts of energy expanding into the surrounding medium and heats up these materials, making it possible that nucleosynthesis can take place in such hot sites in afterglow stage. Here, we study possible changes in chemical abundances in the GRB afterglow processes of Wolf-Rayet (WR) star wind environments (Case A) and constant density surroundings (Case B). We find that the light element of lithium-beryllium-boron could occur in the afterglows via He+He process and spallation reactions. Some isotopes of F, Ne, Mg, Al, Si, P, S and Fe-group elements are also new species formed in the afterglows via proton-, neutron- and α-capture. The results show that the nucleosynthetic yields might be a diagnostic of the GRB's ambient environment. Our calculations indicate that Mg, Al, Si, P, Cr, Mn, Fe and Co have trended to appear in Case A, while Ne, Ti and Ni trend to occur in Case B. Furthermore, although some species have occurred both in Cases A and B, their mass fractions are quite different in these two cases. Here, we show that the mass fractions of 7Li, 7Be, 24Mg and 30Si are higher in Case A than that in Case B, but 18F gives an opposite conclusion. Nucleosynthetic outputs might also be an indice to estimate the luminosity-temperature relation factor β. In this study, when β reduces, the mass abundances of 11B and 20Ne are higher in Case B than that in Case A; in contrast, as the β becomes larger, this trend would be reversed; therefore, perhaps we could select the above elements as the indicators to estimate the properties of the surroundings around the GRBs. We also suggest that the spectroscopic observations of a GRB afterglow could only reveal the nucleosynthetic outputs from the interaction site between the GRB jet and its ambient matter, but could not represent the original composition of the pre-GRB surrounding medium.

  14. Long-Duration Gamma-Ray Burst Host Galaxies in Emission and Absorption

    NASA Astrophysics Data System (ADS)

    Perley, Daniel A.; Niino, Yuu; Tanvir, Nial R.; Vergani, Susanna D.; Fynbo, Johan P. U.

    2016-12-01

    The galaxy population hosting long-duration GRBs provides a means to constrain the progenitor and an opportunity to use these violent explosions to characterize the nature of the high-redshift universe. Studies of GRB host galaxies in emission reveal a population of star-forming galaxies with great diversity, spanning a wide range of masses, metallicities, and redshifts. However, as a population GRB hosts are significantly less massive and poorer in metals than the hosts of other core-collapse transients, suggesting that GRB production is only efficient at metallicities significantly below Solar. GRBs may also prefer compact galaxies, and dense and/or central regions of galaxies, more than other types of core-collapse explosion. Meanwhile, studies of hosts in absorption against the luminous GRB optical afterglow provide a unique means of unveiling properties of the ISM in even the faintest and most distant galaxies; these observations are helping to constrain the chemical evolution of galaxies and the properties of interstellar dust out to very high redshifts. New ground- and space-based instrumentation, and the accumulation of larger and more carefully-selected samples, are continually enhancing our view of the GRB host population.

  15. Evolution of dust content in galaxies probed by gamma-ray burst afterglows

    NASA Astrophysics Data System (ADS)

    Kuo, Tzu-Ming; Hirashita, Hiroyuki; Zafar, Tayyaba

    2013-12-01

    Because of their brightness, gamma-ray burst (GRB) afterglows are viable targets for investigating the dust content in their host galaxies. Simple intrinsic spectral shapes of GRB afterglows allow us to derive the dust extinction. Recently, the extinction data of GRB afterglows are compiled up to redshift z = 6.3, in combination with hydrogen column densities and metallicities. This data set enables us to investigate the relation between dust-to-gas ratio and metallicity out to high redshift for a wide metallicity range. By applying our evolution models of dust content in galaxies, we find that the dust-to-gas ratios derived from GRB afterglow extinction data are excessively high such that they can be explained with a fraction of gas-phase metals condensed into dust (fin) ˜ 1, while theoretical calculations on dust formation in the wind of asymptotic giant branch stars and in the ejecta of Type II supernovae suggest a much more moderate condensation efficiency (fin ˜ 0.1). Efficient dust growth in dense clouds has difficulty in explaining the excessive dust-to-gas ratio at metallicities Z/Z⊙ < ɛ, where ɛ is the star formation efficiency of the dense clouds. However, if ɛ is as small as 0.01, the dust-to-gas ratio at Z ˜ 10-2 Z⊙ can be explained with nH ≳ 106 cm-3. Therefore, a dense environment hosting dust growth is required to explain the large fraction of metals condensed into dust, but such clouds should have low star formation efficiencies to avoid rapid metal enrichment by stars.

  16. The Dynamics and Afterglow Radiation of Gamma-Ray Bursts. I. Constant Density Medium

    NASA Astrophysics Data System (ADS)

    Zhang, Weiqun; MacFadyen, Andrew

    2009-06-01

    Direct multidimensional numerical simulation is the most reliable approach for calculating the fluid dynamics and observational signatures of relativistic jets in gamma-ray bursts (GRBs). We present a two-dimensional relativistic hydrodynamic simulation of a GRB outflow during the afterglow phase, which uses the fifth-order weighted essentially nonoscillatory scheme and adaptive mesh refinement. Initially, the jet has a Lorentz factor of 20. We have followed its evolution up to 150 years. Using the hydrodynamic data, we calculate synchrotron radiation based upon standard afterglow models and compare our results with previous analytic work. We find that the sideways expansion of a relativistic GRB jet is a very slow process and previous analytic works have overestimated its rate. In our computed light curves, a very sharp jet break is seen and the postbreak light curves are steeper than analytic predictions. We find that the jet break in GRB afterglow light curves is mainly caused by the missing flux when the edge of the jet is observed. The outflow becomes nonrelativistic at the end of the Blandford-McKee phase. But it is still highly nonspherical, and it takes a rather long time for it to become a spherical Sedov-von Neumann-Taylor blast wave. We find that the late-time afterglows become increasingly flatter over time. But we disagree with the common notion that there is a sudden flattening in light curves due to the transition into the Sedov-von Neumann-Taylor solution. We have also found that there is a bump in light curves at very late times (~1000 days) due to radiation from the counter jet. We speculate that such a counter jet bump might have already been observed in GRB 980703.

  17. The Onset of Gamma-Ray Burst Afterglow

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shiho; Zhang, Bing

    2007-02-01

    We discuss the reference time t0 of afterglow light curves in the context of the standard internal-external shock model. The decay index of early afterglow is very sensitive to the reference time one chooses. In order to understand the nature of early afterglow, it is essential to take a correct reference time. Our simple analytic model provides a framework for understanding special relativistic effects involved in early afterglow phase. We evaluate light curves of reverse shock emission as well as those of forward shock emission, based on full hydrodynamic calculations. We show that the reference time does not shift significantly even in the thick-shell case. For external shock emission components, measuring times from the beginning of the prompt emission is a good approximation and it does not cause an early steep decay. In the thin-shell case, the energy transfer time from fireball ejecta to ambient medium typically extends to thousands of seconds. This might be related to the shallow decay phases observed in early X-ray afterglow at least for some bursts.

  18. Simulations of Gamma-Ray Burst Jets in a Stratified External Medium: Dynamics, Afterglow Light Curves, Jet Breaks, and Radio Calorimetry

    NASA Astrophysics Data System (ADS)

    De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; Lopez-Camara, Diego

    2012-05-01

    The dynamics of gamma-ray burst (GRB) jets during the afterglow phase is most reliably and accurately modeled using hydrodynamic simulations. All published simulations so far, however, have considered only a uniform external medium, while a stratified external medium is expected around long duration GRB progenitors. Here, we present simulations of the dynamics of GRB jets and the resulting afterglow emission for both uniform and stratified external media with ρextvpropr -k for k = 0, 1, 2. The simulations are performed in two dimensions using the special relativistic version of the Mezcal code. Common to all calculations is the initiation of the GRB jet as a conical wedge of half-opening angle θ0 = 0.2 whose radial profile is taken from the self-similar Blandford-McKee solution. The dynamics for stratified external media (k = 1, 2) are broadly similar to those derived for expansion into a uniform external medium (k = 0). The jet half-opening angle is observed to start increasing logarithmically with time (or radius) once the Lorentz factor Γ drops below θ-1 0. For larger k values, however, the lateral expansion is faster at early times (when Γ > θ-1 0) and slower at late times with the jet expansion becoming Newtonian and slowly approaching spherical symmetry over progressively longer timescales. We find that, contrary to analytic expectations, there is a reasonably sharp jet break in the light curve for k = 2 (a wind-like external medium), although the shape of the break is affected more by the viewing angle (for θobs <= θ0) than by the slope of the external density profile (for 0 <= k <= 2). Steeper density profiles (i.e., increasing k values) are found to produce more gradual jet breaks while larger viewing angles cause smoother and later appearing jet breaks. The counterjet becomes visible as it becomes sub-relativistic, and for k = 0 this results in a clear bump-like feature in the light curve. However, for larger k values the jet decelerates more

  19. Estimates for Lorentz factors of gamma-ray bursts from early optical afterglow observations

    SciTech Connect

    Hascoët, Romain; Beloborodov, Andrei M.; Daigne, Frédéric; Mochkovitch, Robert

    2014-02-10

    The peak time of optical afterglow may be used as a proxy to constrain the Lorentz factor Γ of the gamma-ray burst (GRB) ejecta. We revisit this method by including bursts with optical observations that started when the afterglow flux was already decaying; these bursts can provide useful lower limits on Γ. Combining all analyzed bursts in our sample, we find that the previously reported correlation between Γ and the burst luminosity L {sub γ} does not hold. However, the data clearly show a lower bound Γ{sub min} that increases with L {sub γ}. We suggest an explanation for this feature: explosions with large jet luminosities and Γ < Γ{sub min} suffer strong adiabatic cooling before their radiation is released at the photosphere; they produce weak bursts, barely detectable with present instruments. To test this explanation, we examine the effect of adiabatic cooling on the GRB location in the L {sub γ} – Γ plane using a Monte Carlo simulation of the GRB population. Our results predict detectable on-axis 'orphan' afterglows. We also derive upper limits on the density of the ambient medium that decelerates the explosion ejecta. We find that the density in many cases is smaller than expected for stellar winds from normal Wolf-Rayet progenitors. The burst progenitors may be peculiar massive stars with weaker winds, or there might exist a mechanism that reduces the stellar wind a few years before the explosion.

  20. Optical flashes from internal pairs formed in gamma-ray burst afterglows

    DOE PAGES

    Panaitescu, A.

    2015-06-09

    We develop a numerical formalism for calculating the distribution with energy of the (internal) pairs formed in a relativistic source from unscattered MeV–TeV photons. For gamma-ray burst (GRB) afterglows, this formalism is more suitable if the relativistic reverse shock that energizes the ejecta is the source of the GeV photons. The number of pairs formed is set by the source GeV output (calculated from the Fermi-LAT fluence), the unknown source Lorentz factor, and the unmeasured peak energy of the LAT spectral component. We show synchrotron and inverse-Compton light curves expected from pairs formed in the shocked medium and identify some criteria for testing a pair origin of GRB optical counterparts. Pairs formed in bright LAT afterglows with a Lorentz factor in the few hundreds may produce bright optical counterparts (more » $$R\\lt 10$$) lasting for up to one hundred seconds. As a result, the number of internal pairs formed from unscattered seed photons decreases very strongly with the source Lorentz factor, thus bright GRB optical counterparts cannot arise from internal pairs if the afterglow Lorentz factor is above several hundreds.« less

  1. Optical flashes from internal pairs formed in gamma-ray burst afterglows

    SciTech Connect

    Panaitescu, A.

    2015-06-09

    We develop a numerical formalism for calculating the distribution with energy of the (internal) pairs formed in a relativistic source from unscattered MeV–TeV photons. For gamma-ray burst (GRB) afterglows, this formalism is more suitable if the relativistic reverse shock that energizes the ejecta is the source of the GeV photons. The number of pairs formed is set by the source GeV output (calculated from the Fermi-LAT fluence), the unknown source Lorentz factor, and the unmeasured peak energy of the LAT spectral component. We show synchrotron and inverse-Compton light curves expected from pairs formed in the shocked medium and identify some criteria for testing a pair origin of GRB optical counterparts. Pairs formed in bright LAT afterglows with a Lorentz factor in the few hundreds may produce bright optical counterparts ($R\\lt 10$) lasting for up to one hundred seconds. As a result, the number of internal pairs formed from unscattered seed photons decreases very strongly with the source Lorentz factor, thus bright GRB optical counterparts cannot arise from internal pairs if the afterglow Lorentz factor is above several hundreds.

  2. Afterglow Study of ZnS:Cu,Co Water-soluble Nanoparticles and Potential Applications

    NASA Astrophysics Data System (ADS)

    Ma, Lun; Chen, Wei

    2011-03-01

    ZnS:Cu,Co water-soluble afterglow particles with average size of 4 nm have been prepared by using simple wet chemistry method. The X-ray diffraction pattern of the nanoparticles shows a cubic zinc blende structure as the synthesis temperature is low comparing with solid state reactions. The nanoparticles have two photoluminescence emission peaks. The blue emission is from sulfur defects (vacancies), while the green emission is from Cu 2+ luminescent center which also contributes to the particle's afterglow. The presence of co-dopant Co 2+ is critical to perform the afterglow of these nanoparticles. The afterglow intensity and decay vary on different Cu 2+ and Co 2+ doping levels. Further conjugation of ZnS:Cu,Co nanoparticles and photosensitizers presents a new method for deep cancer treatment in photodynamic therapy. The successful afterglow observation from water-soluble nanoparticles may find many new applications in biological imaging, detection and treatment.

  3. Machine Learning Search for Gamma-Ray Burst Afterglows in Optical Images

    NASA Astrophysics Data System (ADS)

    Topinka, M.

    2016-06-01

    Thanks to the advances in robotic telescopes, time domain astronomy leads to a large number of transient events detected in images every night. Data mining and machine learning tools used for object classification are presented. The goal is to automatically classify transient events for both further follow-up by a larger telescope and for statistical studies of transient events. Special attention is given to the identification of gamma-ray burst afterglows. Machine learning techniques are used to identify GROND gamma-ray burst afterglow among the astrophysical objects present in the SDSS archival images based on the g'-r', r'-i' and i'-z' color indices. The performance of the support vector machine, random forest and neural network algorithms is compared. A joint meta-classifier, built on top of the individual classifiers, can identify GRB afterglows with the overall accuracy of ≳ 90%.

  4. Study of argon-oxygen flowing afterglow

    NASA Astrophysics Data System (ADS)

    Mazánková, V.; Trunec, D.; Navrátil, Z.; Raud, J.; Krčma, F.

    2016-06-01

    The reaction kinetics in argon-oxygen flowing afterglow (post-discharge) was studied using NO titration and optical emission spectroscopy. The flowing DC post-discharge in argon-oxygen mixture was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 90 W. The O(3P) atom concentration was determined by NO titration at different places along the flow tube. The optical emission spectra were also measured along the flow tube. Argon spectral lines, oxygen lines at 777 nm and 844.6 nm and atmospheric A-band of {{\\text{O}}2} were identified in the spectra. Rotational temperature of {{\\text{O}}2} was determined from the oxygen atmospheric A-band and also the outer wall temperature of the flow tube was measured by a thermocouple and by an IR thermometer. A zero-dimensional kinetic model for the reactions in the afterglow was developed. This model allows the time dependencies of particle concentrations and of gas temperature to be calculated. The wall recombination probability for O(3P) atoms {γ\\text{O≤ft(\\text{P}\\right)}}=≤ft(1.63+/- 0.06\\right)× {{10}-3} and wall deactivation probability for {{\\text{O}}2} (b {{}1}Σ\\text{g}+ ) molecules {γ{{\\text{O}2}≤ft(\\text{b}\\right)}}=≤ft(1.7+/- 0.1\\right)× {{10}-3} were determined from the fit of model results to experimental data. Sensitivity analysis was applied for the analysis of kinetic model in order to reveal the most important reactions in the model. The calculated gas temperature increases in the afterglow and then decreases at later afterglow times after reaching the maximum. This behavior is in good agreement with the spatial rotational temperature dependence. A similar trend was also observed at outer wall temperature measurement.

  5. A GRB tool shed

    NASA Astrophysics Data System (ADS)

    Haglin, David J.; Roiger, Richard J.; Hakkila, Jon; Pendleton, Geoffrey; Mallozzi, Robert

    2000-09-01

    We describe the design of a suite of software tools to allow users to query Gamma Ray Burst (GRB) data and perform data mining expeditions. We call this suite of tools a shed (SHell for Expeditions using Datamining). Our schedule is to have a completed prototype (funded via the NASA AISRP) by February, 2002. Meanwhile, interested users will find a partially functioning tool shed at http:/grb.mankato.msus.edu. .

  6. GRB Catalog: Bursts from Vela to Swift

    NASA Technical Reports Server (NTRS)

    Angelini, L.

    2008-01-01

    Gamma ray burst (GRB) astronomy started when the first event was recorded on July 2, 1967 by Vela 4a and 4b. Since then many missions have flown experiments capable of detecting GRBs. The events collected by these older experiments are mostly available in paper copy, each containing a few ten to a few hundred bursts. No systematic effort in cataloging of these bursts has been available. In some cases the information is unpublished and in others difficult to retrieve. The first major GRB catalog was obtained by GRO with the BATSE experiment. It contains more than 2000 bursts and includes homogeneous information for each of the bursts. With the launch of Swift, the first Gamma-ray/X-ray mission dedicated to the study of GRBs and their afterglows, a wealth of information is collected by the Swift instrument as well as from ground-based telescopes. This talk will describe the efforts to create a comprehensive GRBCAT and its current status and future prospective.

  7. The GRB 030227 Detected by INTEGRAL: Another Sign of Compton Scattering in X-rays

    NASA Astrophysics Data System (ADS)

    Castro-Tirado, A. J.; Gorosabel, J.; Guziy, S.; Reverte, D.; Castro Cerón, J. M.; de Ugarte Postigo, A.; Tanvir, N.; Mereghetti, S.; Tiengo, A.; Pandey, S. B.; Masetti, N.; Pedersen, H.; Grace Collaboration

    2004-09-01

    Multiwavelengthp observations of a GRB detected by INTEGRAL (GRB 030227) revealed a dim optical afterglow (OA) that would not have been detected by many previous searches due to its faintess (R~ 23). This OA was seen to decline following a power law decay with index α = -0.95 +/- 0.16. The spectral index β of the OA yields -1.32 +/- 0.15, with the intrinsec absorption consistent with zero. These values may be explained by a relativistic expansion of a fireball in an homogeneous medium. We also find evidence for inverse Compton scattering in X-rays. A possible break is detected at ~ 1.5 days.

  8. LATE-TIME OBSERVATIONS OF GRB 080319B: JET BREAK, HOST GALAXY, AND ACCOMPANYING SUPERNOVA

    SciTech Connect

    Tanvir, N. R.; O'Brien, P. T.; Wiersema, K.; Starling, R. L. C.; Rol, E.; Levan, A. J.; Svensson, K.; Fruchter, A. S.; Granot, J.; Jakobsson, P.; Fynbo, J.; Hjorth, J.; Curran, P. A.; Burrows, D. N.; Genet, F.

    2010-12-10

    The Swift-discovered GRB 080319B was by far the most distant source ever observed at naked-eye brightness, reaching a peak apparent magnitude of 5.3 at a redshift of z = 0.937. We present our late-time optical (Hubble Space Telescope, Gemini, and Very Large Telescope) and X-ray (Chandra) observations, which confirm that an achromatic break occurred in the power-law afterglow light curve at {approx}11 days post-burst. This most likely indicates that the gamma-ray burst (GRB) outflow was collimated, which for a uniform jet would imply a total energy in the jet E{sub jet} {approx}> 10{sup 52} erg. Our observations also show a late-time excess of red light, which is well explained if the GRB was accompanied by a supernova (SN), similar to those seen in some other long-duration GRBs. The latest observations are dominated by light from the host and show that the GRB took place in a faint dwarf galaxy (r(AB) {approx} 27.0, rest frame M{sub B} {approx} -17.2). This galaxy is small even by the standards of other GRB hosts, which is suggestive of a low-metallicity environment. Intriguingly, the properties of this extreme event-a small host and bright SN-are entirely typical of the very low luminosity bursts such as GRB 980425 and GRB 060218.

  9. Chameleon induced atomic afterglow

    SciTech Connect

    Brax, Philippe; Burrage, Clare

    2010-11-01

    The chameleon is a scalar field whose mass depends on the density of its environment. Chameleons are necessarily coupled to matter particles and will excite transitions between atomic energy levels in an analogous manner to photons. When created inside an optical cavity by passing a laser beam through a constant magnetic field, chameleons are trapped between the cavity walls and form a standing wave. This effect will lead to an afterglow phenomenon even when the laser beam and the magnetic field have been turned off, and could be used to probe the interactions of the chameleon field with matter.

  10. The Afterglow, Energetics, and Host Galaxy of the Short-Hard Gamma-Ray Burst 051221a

    NASA Astrophysics Data System (ADS)

    Soderberg, A. M.; Berger, E.; Kasliwal, M.; Frail, D. A.; Price, P. A.; Schmidt, B. P.; Kulkarni, S. R.; Fox, D. B.; Cenko, S. B.; Gal-Yam, A.; Nakar, E.; Roth, K. C.

    2006-10-01

    We present detailed optical, X-ray, and radio observations of the bright afterglow of the short gamma-ray burst 051221a obtained with Gemini, Swift XRT, and the Very Large Array, as well as optical spectra from which we measure the redshift of the burst, z=0.5464. At this redshift the isotropic-equivalent prompt energy release was about 1.5×1051 ergs, and using a standard afterglow synchrotron model, we find that the blast wave kinetic energy is similar, EK,iso~8.4×1051 ergs. An observed jet break at t~5 days indicates that the opening angle is θj~7deg and the total beaming-corrected energy is therefore ~2.5×1049 ergs, comparable to the values inferred for previous short GRBs. We further show that the burst experienced an episode of energy injection by a factor of 3.4 between t=1.4 and 3.4 hr, which was accompanied by reverse shock emission in the radio band. This result provides continued evidence that the central engines of short GRBs may be active significantly longer than the duration of the burst and/or produce a wide range of Lorentz factors. Finally, we show that the host galaxy is actively forming stars at a rate of about 1.6 Msolar yr-1, yet exhibits evidence for an appreciable population of old stars (~1 Gyr) and near-solar metallicity. These properties are intermediate between those of long GRB hosts and previous short burst hosts. The lack of bright supernova emission and the low circumburst density (n~10-3 cm-3), however, continue to support the idea that short bursts are not related to massive stellar death. Given that the total energy release is larger than the predicted yield for a neutrino annihilation mechanism, this suggests that magnetohydrodynamic processes may be required to power the burst.

  11. On binary driven hypernovae and their nested late X-ray emission

    NASA Astrophysics Data System (ADS)

    Muccino, Marco; Ruffini, Remo; Bianco, Carlo Luciano; Enderli, Maxime; Kovacevic, Milos; Izzo, Luca; Penacchioni, Ana Virginia; Pisani, Giovanni Battista; Rueda, Jorge A.; Wang, Yu

    2015-07-01

    The induced gravitational collapse (IGC) paradigm addresses energetic (1052-1054 erg), long gamma-ray bursts (GRBs) associated to supernovae (SNe) and proposes as their progenitors tight binary systems composed of an evolved FeCO core and a companion neutron star (NS). Their emission is characterized by four specific episodes: Episode 1, corresponding to the on-set of the FeCO SN explosion and the accretion of the ejecta onto the companion NS; Episode 2, related the collapse of the companionNS to a black hole (BH) and to the emission of a long GRB; Episode 3, observed in X-rays and characterized by a steep decay, a plateau phase and a late power-law decay; Episode 4, corresponding to the optical SN emission due to the 56Ni decay. We focus on Episode 3 and we show that, from the thermal component observed during the steep decay of the prototype GRB 090618, the emission region has a typical dimension of ~1013 cm, which is inconsistent with the typical size of the emitting region of GRBs, e.g., ~1016 cm. We propose, therefore, that the X-ray afterglow emission originates from a spherically symmetric SN ejecta expanding at G ˜ 2 or, possibly, from the accretion onto the newly formed black hole, and we name these systems "binary driven hypernovae" (BdHNe). This interpretation is alternative to the traditional afterglow model based on the GRB synchrotron emission from a collimated jet outflow, expanding at ultra-relativistic Lorentz factor of G ~ 102-103 and originating from the collapse of a single object. We show then that the rest-frame energy band 0.3-10 keV X-ray luminosities of three selected BdHNe, GRB 060729, GRB 061121, and GRB 130427A, evidence a precisely constrained "nested" structure and satisfy precise scaling laws between the average prompt luminosity, < Liso>, and the luminosity at the end of the plateau, La, as functions of the time at the end of the plateau. All these features extend the applicability of the "cosmic candle" nature of Episode 3. The

  12. On the anomalous afterglow seen in a chameleon afterglow search

    SciTech Connect

    Steffen, Jason H.; Baumbaugh, Alan; Chou, Aaron S.; Tomlin, Ray; Upadhye, Amol; /Argonne, PHY

    2012-05-01

    We present data from our investigation of the anomalous orange-colored afterglow that was seen in the GammeV Chameleon Afterglow Search (CHASE). These data include information about the broadband color of the observed glow, the relationship between the glow and the temperature of the apparatus, and other data taken prior to, and during the science operations of CHASE. While differing in several details, the generic properties of the afterglow from CHASE are similar to luminescence seen in some vacuum compounds. Contamination from this, or similar, luminescent signatures will likely impact the design of implementation of future experiments involving single photon detectors and high intensity light sources in a cryogenic environment.

  13. First Detection of a Foreground Damped Ly-Alpha Absorber Along a GRB Line of Sight?

    NASA Technical Reports Server (NTRS)

    Vreeswijk, P. M.; Fruchter, A. S.; Pian, E.; Rol, E.; Wijers, R. A. M. J.; Kouveliotou, C.; Kaper, L.; Palazzi, E.; Masetti, N.; Frontera, F.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We present a VLT spectrum of the optical afterglow of GRB 991216, taken 1.5 days after the burst, and HST (Hubble Space Telescope) imaging of the host galaxy, obtained four months later. The spectrum contains three metal absorption-line systems with redshifts z = 1.024, z = 0.803, and z = 0.771, where the highest redshift most likely reflects the distance to the host galaxy. For the z = 1.024 and z = 0.803 systems we tentatively detect MgI which suggests a dense environment at these redshifts. This and the strength of the z = 0.803 Fe lines indicate that this system very likely is a damped Ly-alpha absorber (DLA), which would be the first foreground DLA to be detected along a GRB afterglow sight line. The HST images are consistent with these findings: they show two blobs of light, one underneath the projected OT position, the presumed host galaxy, and the other 0.6" away, which is probably responsible for the absorption lines at z = 0.803. The lowest redshift system can be explained by either one of the two galaxies that are located roughly 2" away from the transient. Including these newly found systems, the total number of DLAS and Lyman limit systems along GRB afterglow sight lines is consistent with the number expected from QSO (quasi-stellar object) absorption line studies. We expect early spectroscopy of GRB afterglows to significantly increase the number of detected foreground absorption systems, and we discuss some advantages over QSO lines of sight.

  14. Prompt optical emission from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Kehoe, Robert; Akerlof, Karl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Priedhorsky, Bill; Szymanski, John; Wren, Jim

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting senisitivities are mV > 13.0 at 14.7 seconds after the gamma-ray rise, and mmV > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray emission.

  15. GRB 131014A: A Laboratory for Studying the Thermal-like and Non-thermal Emissions in Gamma-Ray Bursts, and the New LnThi-EnTh,restpeak,i Relation

    NASA Astrophysics Data System (ADS)

    Guiriec, S.; Mochkovitch, R.; Piran, T.; Daigne, F.; Kouveliotou, C.; Racusin, J.; Gehrels, N.; McEnery, J.

    2015-11-01

    Over the past few years, evidence has been accumulated in support of the existence of a thermal-like component during the prompt phase of gamma-ray bursts (GRBs). However, this component, which is often associated with the GRB jet's photosphere, is usually subdominant compared to a much stronger non-thermal one. The prompt emission of GRB 131014A—detected by the Fermi Gamma-ray Space Telescope (hereafter Fermi)—provides a unique opportunity to trace the history of this thermal-like component. Indeed, the thermal emission in GRB 131014A is much more intense than in other GRBs and a pure thermal episode is observed during the initial 0.16 s. The thermal-like component cools monotonically during the first second while the non-thermal emission kicks off. The intensity of the non-thermal component progressively increases until being energetically dominant at late time, similar to what is typically observed. This is a perfect scenario to disentangle the thermal component from the non-thermal component. The initial decaying and cooling phase of the thermal-like component is followed by a strong re-brightening and a re-heating episode; however, despite a much brighter second emission phase, the temperature of the thermal component does not reach its initial value. This re-brightening episode is followed by a global constant cooling until the end of the burst. We note that there is a shallower low-energy spectral slope than the typical index value +1, corresponding to a pure Planck function, which better matches with the thermal-like spectral shape; a spectral index around +0.6 seems to be in better agreement with the data. The non-thermal component is adequately fitted with a Band function whose low- and high-energy power-law indices are ˜-0.7 and <˜-3, respectively; this is also statistically globally equivalent to a cutoff power law with a ˜-0.7 index. This is in agreement with our previous results. Finally, a strong correlation is observed between the time

  16. How Can The SN-GRB Time Delay Be Measured?

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; Bonnell, J. T.

    2003-01-01

    The connection between SNe and GRBs, launched by SN 1998bw / GRB 980425 and clinched by SN 2003dh / GRB 030329-with the two GRBs differing by a factor of approximately 50000 in luminosity-so far suggests a rough upper limit of approximately 1-2 days for the delay between SN and GRB. Only four SNe have had nonnegligible coverage in close coincidence with the initial explosion, near the W shock breakout: two Qpe II, and two Type IC, SN 1999ex and SN 1998bw. For the latter, only a hint of the minimum between the UV maximum and the radioactivity bump served to help constrain the interval between SN and GRB. Swift GRB alerts may provide the opportunity to study many SNe through the UV breakout phase: GRB 980425 look dikes -apparently nearby, low- luminosity, soft-spectrum, long-lag GRBs-accounted for half of BATSE bursts near threshold, and may dominate the Swift yield near threshold, since it has sensitivity to lower energies than did BATSE. The SN to GRB delay timescale should be better constrained by prompt UV/optical observations alerted by these bursts. Definitive delay measurements may be obtained if long-lag bursters are truly nearby: The SNe/GRBs could emit gravitational radiation detectable by LIGO-II if robust non-axisymmetric bar instabilities develop during core collapse, and/or neutrino emission may be detectable as suggested by Meszaros et al.

  17. SYNCHROTRON ORIGIN OF THE TYPICAL GRB BAND FUNCTION—A CASE STUDY OF GRB 130606B

    SciTech Connect

    Zhang, Bin-Bin; Briggs, Michael S.; Uhm, Z. Lucas; Zhang, Bing; Connaughton, Valerie

    2016-01-10

    We perform a time-resolved spectral analysis of GRB 130606B within the framework of a fast-cooling synchrotron radiation model with magnetic field strength in the emission region decaying with time, as proposed by Uhm and Zhang. The data from all time intervals can be successfully fit by the model. The same data can be equally well fit by the empirical Band function with typical parameter values. Our results, which involve only minimal physical assumptions, offer one natural solution to the origin of the observed GRB spectra and imply that, at least some, if not all, Band-like GRB spectra with typical Band parameter values can indeed be explained by synchrotron radiation.

  18. GRB 090417B AND ITS HOST GALAXY: A STEP TOWARD AN UNDERSTANDING OF OPTICALLY DARK GAMMA-RAY BURSTS

    SciTech Connect

    Holland, Stephen T.; Cummings, Jay R.; Fonseca, Emmanuel; Sbarufatti, Boris; Shen, Rongfeng; Schady, Patricia; Still, Martin; Fynbo, Johan P. U.; Jakobsson, Pall; Leitet, Elisabet; Linne, Staffan; Roming, Peter W. A.; Zhang Bing

    2010-07-01

    GRB 090417B was an unusually long burst with a T{sub 90} duration of at least 2130 s and a multi-peaked light curve at energies of 15-150 keV. It was optically dark and has been associated with a bright star-forming galaxy at a redshift of 0.345 that is broadly similar to the Milky Way. This is one of the few cases where a host galaxy has been clearly identified for a dark gamma-ray burst (GRB) and thus an ideal candidate for studying the origin of dark bursts. We find that the dark nature of GRB 090417B cannot be explained by high redshift, incomplete observations, or unusual physics in the production of the afterglow. Assuming the standard relativistic fireball model for the afterglow we find that the optical flux is at least 2.5 mag fainter than predicted by the X-ray flux. The Swift/XRT X-ray data are consistent with the afterglow being obscured by a dense, localized sheet of dust approximately 30-80 pc from the burst along the line of sight. Our results suggest that this dust sheet imparts an extinction of A{sub V} {approx_gt} 12 mag, which is sufficient to explain the missing optical flux. GRB 090417B is an example of a GRBs that is dark due to the localized dust structure in its host galaxy.

  19. Discovery of a cosmological, relativistic outburst via its rapidly fading optical emission

    SciTech Connect

    Cenko, S. Bradley; Nugent, Peter E.; Miller, Adam A.; Bloom, Joshua S.; Filippenko, Alexei V.; Kulkarni, S. R.; Horesh, Assaf; Carpenter, John; Perley, Daniel A.; Groot, Paul J.; Hallinan, G.; Corsi, Alessandra; Fox, Derek B.; Frail, Dale A.; Gruber, D.; Rau, Arne; Gal-Yam, Avishay; Ofek, Eran O.; MacLeod, Chelsea L.; Kasliwal, Mansi M.; and others

    2013-06-01

    We report the discovery by the Palomar Transient Factory (PTF) of the transient source PTF11agg, which is distinguished by three primary characteristics: (1) bright (R {sub peak} = 18.3 mag), rapidly fading (ΔR = 4 mag in Δt = 2 days) optical transient emission; (2) a faint (R = 26.2 ± 0.2 mag), blue (g' – R = 0.17 ± 0.29 mag) quiescent optical counterpart; and (3) an associated year-long, scintillating radio transient. We argue that these observed properties are inconsistent with any known class of Galactic transients (flare stars, X-ray binaries, dwarf novae), and instead suggest a cosmological origin. The detection of incoherent radio emission at such distances implies a large emitting region, from which we infer the presence of relativistic ejecta. The observed properties are all consistent with the population of long-duration gamma-ray bursts (GRBs), marking the first time such an outburst has been discovered in the distant universe independent of a high-energy trigger. We searched for possible high-energy counterparts to PTF11agg, but found no evidence for associated prompt emission. We therefore consider three possible scenarios to account for a GRB-like afterglow without a high-energy counterpart: an 'untriggered' GRB (lack of satellite coverage), an 'orphan' afterglow (viewing-angle effects), and a 'dirty fireball' (suppressed high-energy emission). The observed optical and radio light curves appear inconsistent with even the most basic predictions for off-axis afterglow models. The simplest explanation, then, is that PTF11agg is a normal, on-axis long-duration GRB for which the associated high-energy emission was simply missed. However, we have calculated the likelihood of such a serendipitous discovery by PTF and find that it is quite small (≈2.6%). While not definitive, we nonetheless speculate that PTF11agg may represent a new, more common (>4 times the on-axis GRB rate at 90% confidence) class of relativistic outbursts lacking associated high

  20. A MISSING-LINK IN THE SUPERNOVA–GRB CONNECTION: THE CASE OF SN 2012ap

    SciTech Connect

    Chakraborti, Sayan; Soderberg, Alicia; Kamble, Atish; Margutti, Raffaella; Milisavljevic, Dan; Dittmann, Jason; Chomiuk, Laura; Yadav, Naveen; Ray, Alak; Hurley, Kevin; Bietenholz, Michael; Brunthaler, Andreas; Pignata, Giuliano; Pian, Elena; Mazzali, Paolo; Fransson, Claes; Bartel, Norbert; Hamuy, Mario; Levesque, Emily; MacFadyen, Andrew; and others

    2015-06-01

    Gamma-ray bursts (GRBs) are characterized by ultra-relativistic outflows, while supernovae are generally characterized by non-relativistic ejecta. GRB afterglows decelerate rapidly, usually within days, because their low-mass ejecta rapidly sweep up a comparatively larger mass of circumstellar material. However, supernovae with heavy ejecta can be in nearly free expansion for centuries. Supernovae were thought to have non-relativistic outflows except for a few relativistic ones accompanied by GRBs. This clear division was blurred by SN 2009bb, the first supernova with a relativistic outflow without an observed GRB. However, the ejecta from SN 2009bb was baryon loaded and in nearly free expansion for a year, unlike GRBs. We report the first supernova discovered without a GRB but with rapidly decelerating mildly relativistic ejecta, SN 2012ap. We discovered a bright and rapidly evolving radio counterpart driven by the circumstellar interaction of the relativistic ejecta. However, we did not find any coincident GRB with an isotropic fluence of more than one-sixth of the fluence from GRB 980425. This shows for the first time that central engines in SNe Ic, even without an observed GRB, can produce both relativistic and rapidly decelerating outflows like GRBs.

  1. SPECTROSCOPIC EVIDENCE FOR SN 2010ma ASSOCIATED WITH GRB 101219B

    SciTech Connect

    Sparre, M.; Fynbo, J. P. U.; Malesani, D.; De Ugarte Postigo, A.; Hjorth, J.; Leloudas, G.; Milvang-Jensen, B.; Watson, D. J.; Sollerman, J.; Goldoni, P.; Covino, S.; Tagliaferri, G.; D'Elia, V.; Flores, H.; Hammer, F.; Jakobsson, P.; Schulze, S.; Kaper, L.; Levan, A. J.; Tanvir, N. R.

    2011-07-01

    We report on the spectroscopic detection of supernova SN 2010ma associated with the long gamma-ray burst GRB 101219B. We observed the optical counterpart of the GRB on three nights with the X-shooter spectrograph at the Very Large Telescope. From weak absorption lines, we measure a redshift of z = 0.55. The first-epoch UV-near-infrared afterglow spectrum, taken 11.6 hr after the burst, is well fit by a power law consistent with the slope of the X-ray spectrum. The second- and third-epoch spectra (obtained 16.4 and 36.7 days after the burst), however, display clear bumps closely resembling those of the broad-lined type-Ic SN 1998bw if placed at z = 0.55. Apart from demonstrating that spectroscopic SN signatures can be observed for GRBs at these large distances, our discovery makes a step forward in establishing a general connection between GRBs and SNe. In fact, unlike most previous unambiguous GRB-associated SNe, GRB 101219B has a large gamma-ray energy (E{sub iso} = 4.2 x 10{sup 51} erg), a bright afterglow, and obeys the 'Amati' relation, thus being fully consistent with the cosmological population of GRBs.

  2. ZnS:Cu,Co water-soluble afterglow nanoparticles: synthesis, luminescence and potential applications.

    PubMed

    Ma, Lun; Chen, Wei

    2010-09-24

    Cu(2+) and Co(2+) co-doped zinc sulfide water-soluble nanoparticles (ZnS:Cu,Co) were prepared and their afterglow luminescence was observed and reported for the first time. The nanoparticles have a cubic zinc blende structure with average sizes of about 4 nm as determined by high-resolution transmission electron microscopy (HRTEM) and x-ray diffraction (XRD). In the photoluminescence, two emission peaks are observed at 470 and 510 nm. However, in the afterglow, only one peak is observed at around 525 nm. The blue emission at 470 nm is from surface states and the green emission at 525 nm is from Cu(2+). This means that Cu(2+) is responsible for the afterglow from the nanoparticles, while the co-doping of Co(2+) is critical for the afterglow because no afterglow could be seen without co-doping with Co(2+). The successful observation of the afterglow from water-soluble nanoparticles may open up new applications of afterglow phosphors in biological imaging, detection and treatment.

  3. ZnS:Cu,Co water-soluble afterglow nanoparticles: synthesis, luminescence and potential applications

    NASA Astrophysics Data System (ADS)

    Ma, Lun; Chen, Wei

    2010-09-01

    Cu2 + and Co2 + co-doped zinc sulfide water-soluble nanoparticles (ZnS:Cu,Co) were prepared and their afterglow luminescence was observed and reported for the first time. The nanoparticles have a cubic zinc blende structure with average sizes of about 4 nm as determined by high-resolution transmission electron microscopy (HRTEM) and x-ray diffraction (XRD). In the photoluminescence, two emission peaks are observed at 470 and 510 nm. However, in the afterglow, only one peak is observed at around 525 nm. The blue emission at 470 nm is from surface states and the green emission at 525 nm is from Cu2 + . This means that Cu2 + is responsible for the afterglow from the nanoparticles, while the co-doping of Co2 + is critical for the afterglow because no afterglow could be seen without co-doping with Co2 + . The successful observation of the afterglow from water-soluble nanoparticles may open up new applications of afterglow phosphors in biological imaging, detection and treatment.

  4. Identifying the Location in the Host Galaxy of Short GRB 1111l7A with the Chandra Sub- Arcsecond Position

    NASA Technical Reports Server (NTRS)

    Sakamoto, Takanori; Troja, E.; Aoki, K.; Guiriec, S.; Im, M.; Leloudas, G.; Malesani, D.; Melandri, A.; deUgartePostigo, A.; Urata, Y.; Xu, D.; DAvanzo, P.; Gorosabel, J.; Anderson, M. I.; Fynbo, J. P. U.; Aoki, K.; Sanchez-Ramirez, R.

    2012-01-01

    We present our successful program using Chandra for identifying the X-ray afterglow with sub-arcsecond accuracy for the short GRB 111117A d iscovered by Swift and Fermi. Thanks to our rapid target of opportuni ty request, Chandra clearly detected the X-ray afterglow, whereas no optical afterglow was found in deep optical observations. Instead, we clearly detect the host galaxy in optica; and also in near-infrared b ands. We found that the best photometric redshift fitofthe host is z = 1.31:(+0.46/-0.23) (90% confidence), making it one of the highest redshift short GRBs. Furthermore, we see an offset of 1.0+/-O.2 arcseco nds, which corresponds to 8.4+/-1.7 kpc aSBuming z= 1.31, between the host and the afterglow position. We discuss the importance of using Chandra for obtaining sub-arcsecond localization of the afterglow in X -rays for short GRBs to study GRB environments in great detail.

  5. The GRB Simulator: A System for Testing GOES Rebroadcast (GRB)

    NASA Astrophysics Data System (ADS)

    Gibbons, K.; Race, R.; Miller, C.; Barnes, K.; Dittberner, G.

    2012-12-01

    GOES Rebroadcast (GRB) signals in the GOES-R era will replace the current legacy GOES Variable (GVAR) signal and will have substantially different characteristics, including a change in data rate from a single 2.1 Mbps stream to two digital streams of 15.5 Mbps each. The GRB Simulator is a portable system that outputs a high-fidelity stream of Consultative Committee for Space Data Systems (CCSDS) formatted GRB packet data equivalent to live GRB data. The data is used for on-site testing of user ingest and data handling systems known as field terminal sites. The GRB Simulator is a fully self-contained system which includes all hardware units needed for operation. The operator manages configurations to edit preferences, define individual test scenarios, and manage event logs and reports. Simulations are controlled by test scenarios, which are scripts that specify the test data and provide a series of actions for the GRB Simulator to perform when generating GRB output. Scenarios allow for the insertion of errors or modification of GRB packet headers for testing purposes. The GRB Simulator provides a built-in editor for managing scenarios. Data output by the simulator is derived from either proxy data files containing Level 1b (L1b) or GLM L2+ data, test pattern images, or non-image test pattern generation commands specified from within a scenario. The GRB Simulator outputs packets containing both instrument and GRB Information data. Instrument packets contain data simulated from any instrument: the Advanced Baseline Imager (ABI), Solar Ultraviolet Imager (SUVI), Space Environment In-Situ Suite (SEISS), Extreme Ultraviolet Sensor (EUVS) and X-ray Irradiance Sensor (XRS) called EXIS, Geostationary Lightning Mapper (GLM), or the Magnetometer. The GRB Information packets contain information such as satellite schedules. The GRB Simulator will provide GRB data as either baseband (digital) or Intermediate Frequency (IF) output to the test system. GRB packet data will be sent

  6. A PHOTOMETRIC REDSHIFT OF z {approx} 9.4 FOR GRB 090429B

    SciTech Connect

    Cucchiara, A.; Fox, D. B.; Wu, X. F.; Toma, K.; Levan, A. J.; Tanvir, N. R.; Rowlinson, A.; Ukwatta, T. N.; Berger, E.; Kruehler, T.; Greiner, J.; Olivares, F. E.; Yoldas, A. Kuepcue; Amati, L.; Sakamoto, T.; Roth, K.; Stephens, A.; Fritz, Alexander; Fynbo, J. P. U.; Hjorth, J.

    2011-07-20

    Gamma-ray bursts (GRBs) serve as powerful probes of the early universe, with their luminous afterglows revealing the locations and physical properties of star-forming galaxies at the highest redshifts, and potentially locating first-generation (Population III) stars. Since GRB afterglows have intrinsically very simple spectra, they allow robust redshifts from low signal-to-noise spectroscopy, or photometry. Here we present a photometric redshift of z {approx} 9.4 for the Swift detected GRB 090429B based on deep observations with Gemini-North, the Very Large Telescope, and the GRB Optical and Near-infrared Detector. Assuming a Small Magellanic Cloud dust law (which has been found in a majority of GRB sight lines), the 90% likelihood range for the redshift is 9.06 < z < 9.52, although there is a low-probability tail toward somewhat lower redshifts. Adopting Milky Way or Large Magellanic Cloud dust laws leads to very similar conclusions, while a Maiolino law does allow somewhat lower redshift solutions, though in all cases the most likely redshift is found to be z > 7. The non-detection of the host galaxy to deep limits (Y(AB) {approx} 28, which would correspond roughly to 0.001L* at z = 1) in our late-time optical and infrared observations with the Hubble Space Telescope strongly supports the extreme-redshift origin of GRB 090429B, since we would expect to have detected any low-z galaxy, even if it were highly dusty. Finally, the energetics of GRB 090429B are comparable to those of other GRBs and suggest that its progenitor is not greatly different from those of lower redshift bursts.

  7. AN IMAGING AND SPECTROSCOPIC STUDY OF FOUR STRONG Mg II ABSORBERS REVEALED BY GRB 060418

    SciTech Connect

    Pollack, L. K.; Prochaska, J. X.; Chen, H.-W.; Bloom, J. S.

    2009-08-20

    We present results from an imaging and spectroscopic study of four strong Mg II absorbers of W(2796) {approx}> 1 A revealed by the afterglow of GRB 060418 at z{sub GRB} = 1.491. These absorbers, at z = 0.603, 0.656, 1.107, and z {sub GRB}, exhibit large ion abundances that suggest neutral gas columns characteristic of damped Ly{alpha} systems. The imaging data include optical images obtained using Low-Resolution Imaging Spectrometer (LRIS) on the Keck I telescope and using Advanced Camera for Surveys on board Hubble Space Telescope, and near-infrared H-band images obtained using Persson's Auxiliary Nasmyth Infrared Camera on the Magellan Baade Telescope and K'-band images obtained using NIRC2 with laser guide star adaptive optics on the Keck II telescope. These images reveal six distinct objects at {delta} {theta} {approx}< 3.''5 of the afterglow's position, two of which exhibit well-resolved mature disk morphology, one shows red colors, and three are blue compact sources. Follow-up spectroscopic observations using LRIS confirm that one of the disk galaxies coincides with the Mg II absorber at z = 0.656. The observed broadband spectral energy distributions of the second disk galaxy and the red source indicate that they are associated with the absorbers at z = 0.603 and z = 1.107, respectively. These results show that strong Mg II absorbers identified in gamma-ray burst (GRB) afterglow spectra are associated with typical galaxies of luminosity {approx}0.1 - 1 L{sub *} at impact parameter of {rho} {approx}< 10 h {sup -1} kpc. The close angular separation would preclude easy detections toward a bright quasar. Finally, we associate the remaining three blue compact sources with the GRB host galaxy, noting that they are likely star-forming knots located at projected distances of {rho} = 2 - 12 h {sup -1} kpc from the afterglow. At the afterglow's position, we derive a 2{sigma} upper limit to the underlying star-formation rate intensity of 0.0074 M{sub sun} yr{sup -1} kpc

  8. REM/ROSS: a powerful tool for monitoring the prompt afterglow of γ-ray bursts

    NASA Astrophysics Data System (ADS)

    Tagliaferri, G.; Zerbi, F. M.; Chincarini, G.; Ghisellini, G.; Rodonò, M.; Palazzi, E.; Antonelli, L. A.; Conconi, P.; Covino, S.; Cutispoto, G.; Molinari, E.; Nicastro, L.; Tosti, G.; REM/ROSS Team

    2004-01-01

    Observations of the prompt afterglow of γ-ray burst events are unanimously considered of paramount importance for GRB science and cosmology. Such observations at NIR wavelengths are even more promising allowing the monitoring of high- z Ly-α absorbed bursts as well as events occurring in dusty star-forming regions. In these pages we present rapid eye mount (REM), a fully robotized fast slewing telescope equipped with a high throughput NIR (Z, J, H, K) camera dedicated to detecting the prompt IR afterglow. REM can discover objects at extremely high redshift and trigger large telescopes to observe them. The REM telescope will simultaneously feed REM optical slitless spectrograph (ROSS) via a dichroic. ROSS will intensively monitor the prompt optical continuum of GRB afterglows. The synergy between the REM-IR camera and the ROSS spectrograph makes REM a powerful observing tool for any kind of fast transient phenomena. Beside its ambitious scientific goals, REM is also technically challenging since it represent the first attempt to locate a NIR camera on a small telescope providing, with ROSS, unprecedented simultaneous wavelength coverage on a telescope of this size.

  9. Seven-year Collection of Well-monitored Fermi-LAT Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Panaitescu, A.

    2017-03-01

    We present the light curves and spectra of 24 afterglows that have been monitored by Fermi-LAT at 0.1–100 GeV over more than a decade. All light curves (except 130427) are consistent with a single power law starting from their peaks, which occur in most cases before the burst end. The light curves display a brightness–decay rate correlation, with all but one (130427) of the bright afterglows decaying faster than the dimmer afterglows. We attribute this dichotomy to the quick deposition of relativistic ejecta energy in the external shock for the brighter/faster-decaying afterglows and to an extended energy injection in the afterglow shock for the dimmer/slower-decaying light curves. The spectra of six afterglows (090328, 100414, 110721, 110731, 130427, 140619B) indicate the existence of a harder component above a spectral dip or ankle at energies of 0.3–3 GeV, offering evidence for inverse-Compton emission at higher energies and suggesting that the harder power-law spectra of five other LAT afterglows (130327B, 131231, 150523, 150627, 160509) could also be inverse-Compton, while the remaining, softer LAT afterglows should be synchrotron emission. Marginal evidence for a spectral break and softening at higher energies is found for two afterglows (090902B and 090926).

  10. Gamma-ray burst afterglows from transrelativistic blast wave simulations

    NASA Astrophysics Data System (ADS)

    van Eerten, H. J.; Leventis, K.; Meliani, Z.; Wijers, R. A. M. J.; Keppens, R.

    2010-03-01

    We present a study of the intermediate regime between ultrarelativistic and non-relativistic flow for gamma-ray burst afterglows. The hydrodynamics of spherically symmetric blast waves is numerically calculated using the AMRVAC adaptive mesh refinement code. Spectra and light curves are calculated using a separate radiation code that, for the first time, links a parametrization of the microphysics of shock acceleration, synchrotron self-absorption and electron cooling to a high-performance hydrodynamic simulation. For the dynamics, we find that the transition to the non-relativistic regime generally occurs later than expected, the Sedov-Taylor solution overpredicts the late-time blast wave radius and the analytical formula for the blast wave velocity from Huang, Dai & Lu overpredicts the late-time velocity by a factor of 4/3. Also, we find that the lab frame density directly behind the shock front divided by the fluid Lorentz factor squared remains very close to four times the unshocked density, while the effective adiabatic index of the shock changes from relativistic to non-relativistic. For the radiation, we find that the flux may differ up to an order of magnitude depending on the equation of state that is used for the fluid and that the counterjet leads to a clear rebrightening at late times for hard-edged jets. Simulating GRB 030329 using predictions for its physical parameters from the literature leads to spectra and light curves that may differ significantly from the actual data, emphasizing the need for very accurate modelling. Predicted light curves at low radio frequencies for a hard-edged jet model of GRB 030329 with opening angle 22° show typically two distinct peaks, due to the combined effect of jet break, non-relativistic break and counterjet. Spatially resolved afterglow images show a ring-like structure.

  11. Implications of the Early X-Ray Afterglow Light Curves of Swift GRBs

    SciTech Connect

    Granot, Jonathan; Konigl, Arieh; Piran, Tsvi; /Hebrew U.

    2006-01-17

    According to current models, gamma-ray bursts (GRBs) are produced when the energy carried by a relativistic outflow is dissipated and converted into radiation. The efficiency of this process, {epsilon}{sub {gamma}}, is one of the critical factors in any GRB model. The X-ray afterglow light curves of Swift GRBs show an early stage of flattish decay. This has been interpreted as reflecting energy injection. When combined with previous estimates, which have concluded that the kinetic energy of the late ({approx}> 10 hr) afterglow is comparable to the energy emitted in {gamma}-rays, this interpretation implies very high values of {epsilon}{sub {gamma}}, corresponding to {approx}> 90% of the initial energy being converted into {gamma}-rays. Such a high efficiency is hard to reconcile with most models, including in particular the popular internal-shocks model. We re-analyze the derivation of the kinetic energy from the afterglow X-ray flux and re-examine the resulting estimates of the efficiency. We confirm that, if the flattish decay arises from energy injection and the pre-Swift broad-band estimates of the kinetic energy are correct, then {epsilon}{sub {gamma}} {approx}> 0.9. We discuss various issues related to this result, including an alternative interpretation of the light curve in terms of a two-component outflow model, which we apply to the X-ray observations of GRB 050315. We point out, however, that another interpretation of the flattish decay--a variable X-ray afterglow efficiency (e.g., due to a time dependence of afterglow shock microphysical parameters)--is possible. We also show that direct estimates of the kinetic energy from the late X-ray afterglow flux are sensitive to the assumed values of the shock microphysical parameters and suggest that broad-band afterglow fits might have underestimated the kinetic energy (e.g., by overestimating the fraction of electrons that are accelerated to relativistic energies). Either one of these possibilities implies a

  12. GRB Simulations in GLAST

    SciTech Connect

    Omodei, Nicola; Battelino, Milan; Komin, Nukri; Longo, Francesco; McEnery, Julie; Ryde, Felix; /Denver U.

    2007-10-22

    The Gamma-ray Large Area Space Telescope (GLAST), scheduled to be launched in fall of 2007, is the next generation satellite for high-energy gamma-ray astronomy. The Large Area Telescope (LAT) is a pair conversion telescope built with a high precision silicon tracker, a segmented CsI electromagnetic calorimeter and a plastic anticoincidence shield. The LAT will survey the sky in the energy range between 20 MeV to more than 300 GeV, shedding light on many issues left open by its highly successful predecessor EGRET. LAT will observe Gamma-Ray Bursts (GRB) in an energy range never explored before; to tie these frontier observations to the better-known properties at lower energies, a second instrument, the GLAST Burst Monitor (GBM) will provide important spectra and timing in the 10 keV to 30 MeV range. We briefly present the instruments onboard the GLAST satellite, their synergy in the GRB observations and the work done so far by the collaboration in simulation, analysis, and GRB sensitivity estimation.

  13. GRB Simulations in GLAST

    SciTech Connect

    Omodei, Nicola; Battelino, Milan; Komin, Nukri; Longo, Francesco; McEnery, Julie; Norris, Jay; Ryde, Felix

    2007-05-01

    The Gamma-ray Large Area Space Telescope (GLAST), scheduled to be launched in fall of 2007, is the next generation satellite for high-energy gamma-ray astronomy. The Large Area Telescope (LAT) is a pair conversion telescope built with a high precision silicon tracker, a segmented CsI electromagnetic calorimeter and a plastic anticoincidence shield. The LAT will survey the sky in the energy range between 20 MeV to more than 300 GeV, shedding light on many issues left open by its highly successful predecessor EGRET. LAT will observe Gamma-Ray Bursts (GRB) in an energy range never explored before; to tie these frontier observations to the better-known properties at lower energies, a second instrument, the GLAST Burst Monitor (GBM) will provide important spectra and timing in the 10 keV to 30 MeV range. We briefly present the instruments onboard the GLAST satellite, their synergy in the GRB observations and the work done so far by the collaboration in simulation, analysis, and GRB sensitivity estimation.

  14. A Spatially - Resolved Study of the GRB 020903 Host Complex

    NASA Astrophysics Data System (ADS)

    Thorp, Mallory; Levesque, Emily M.

    2017-01-01

    The host complex of GRB 020903 is one of only a few long-duration gamma ray burst (GRB) environments where spatially-resolved observations are possible. It may also be the only known GRB host consisting of multiple interacting components, as well as an active galactic nucleus. We were granted 4.5 hours of observing time on the Gemini Multi-Object Spectrograph (South) to obtain spatially resolved spectra of the GRB 020903 host complex. Using long-slit observations at two different position angles we were able to obtain optical spectra of the four main regions of the GRB host, with a spectral range of 3600 - 9000 Å. From this data we discern the redshift of each region to confirm that they comprise a single interacting system at an approximate redshift of z ~ 0.251. We also measure the metallicity, star formation rate, and young stellar population age of each region to create a spatially-resolved map of these parameters for the larger host complex. Based on the distribution of these characteristics we determine whether the localized GRB explosion site is representative of the host complex as a whole, or localized in a metal-poor or strongly star-forming region. Lastly, we consider the dynamics and past interactions of the host complex, studying the strongest emission lines for signs of potential inflows or outflows through each region.

  15. A Search for Early High-Energy Afterglows in BATSE Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Giblin, Timothy W.

    2003-01-01

    The scope of this project was to perform a detailed search for the early high-energy afterglow component of gamma-ray bursts (GRBs) in the BATSE GRB data archive. GRBs are believed to be the product of shock waves generated in a relativistic outflow from the demise of extremely massive stars and/or binary neutron star mergers. The outflow undeniably encounters the ambient medium of the progenitor object and another shock wave is set up. A forward shock propagates into the medium and a reverse shock propagates through the ejecta. This "external" shock dissipates the kinetic energy of the ejecta in the form of radiation via synchrotron losses and slows the outflow eventually to a non-relativistic state. Radiation from the forward external shock is therefore expected to be long-lived, lasting days, weeks, and even months. This radiation is referred to as the 'afterglow'.

  16. A HIGH SIGNAL-TO-NOISE RATIO COMPOSITE SPECTRUM OF GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Christensen, L.; Fynbo, J. P. U.; Prochaska, J. X.; Jakobsson, P.

    2011-02-01

    We present a composite spectrum of 60 long duration gamma-ray burst (GRB) afterglows with redshifts in the range 0.35 < z < 6.7 observed with low-resolution optical spectra. The composite spectrum covers the wavelength range 700-6600 A in the rest frame and has a mean signal-to-noise ratio of 150 per 1 A pixel and reaches a maximum of {approx}300 in the range 2500-3500 A. Equivalent widths are measured from metal absorption lines from the Ly{alpha} line to {approx}5200 A, and associated metal and hydrogen lines are identified between the Lyman break and Ly{alpha} line. The average transmission within the Lyman forest is consistent with that found along quasar lines of sight. We find a temporal variation in fine-structure lines when dividing the sample into bursts observed within 2 hr from their trigger and those observed later. Other lines in the predominantly neutral gas show variations too, but this is most likely a random effect caused by weighting of individual strong absorption lines and which mimics a temporal variation. Bursts characterized with high- or low-prompt GRB energy release produce afterglows with similar absorption line strengths, and likewise for bursts with bright or faint optical afterglows. Bursts defined as dark from their optical to X-ray spectral index have stronger absorption lines relative to the optically bright bursts. The composite spectrum has strong Ca II and Mg II absorption lines as commonly found in dusty galaxies, however, we find no evidence for dust or a significant molecular content based on the non-detection of diffuse interstellar bands. Compared to starburst galaxy spectra, the GRB composite has much stronger fine-structure lines, while metal absorption lines are weaker.

  17. CORRELATED SPECTRAL AND TEMPORAL BEHAVIOR OF LATE-TIME AFTERGLOWS OF GAMMA-RAY BURSTS

    SciTech Connect

    Dado, Shlomo; Dar, Arnon

    2012-12-20

    The cannonball (CB) model of gamma-ray bursts (GRBs) predicts that the asymptotic behavior of the spectral energy density of GRB afterglows is a power law in time and in frequency, and the difference between the temporal and spectral power-law indices, {alpha}{sub X} - {beta}{sub X}, is restricted to the values 0, 1/2, and 1. Here we report the distributions of the values {alpha}{sub X} and {beta}{sub X}, and their difference for a sample of 315 Swift GRBs. This sample includes all Swift GRBs that were detected before 2012 August 1, whose X-ray afterglow extended well beyond 1 day and the estimated error in {alpha}{sub X} - {beta}{sub X} was {<=}0.25. The values of {alpha}{sub X} were extracted from the CB-model fits to the entire light curves of their X-ray afterglow while the spectral index was extracted by the Swift team from the time-integrated X-ray afterglow of these GRBs. We found that the distribution of the difference {alpha}{sub X} - {beta}{sub X} for these 315 Swift GRBs has three narrow peaks around 0, 1/2, and 1 whose widths are consistent with being due to the measurement errors, in agreement with the CB-model prediction.

  18. Polarization Evolution of Early Optical Afterglows of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lan, Mi-Xiang; Wu, Xue-Feng; Dai, Zi-Gao

    2016-01-01

    The central engine and jet composition of gamma-ray bursts (GRBs) remain mysterious. Here we suggest that observations on the polarization evolution of early optical afterglows may shed light on these questions. We first study the dynamics of a reverse shock and a forward shock that are generated during the interaction of a relativistic jet and its ambient medium. The jet is likely magnetized with a globally large-scale magnetic field from the central engine. The existence of the reverse shock requires that the magnetization degree of the jet should not be high (σ ≤ 1), so that the jet is mainly composed of baryons and leptons. We then calculate the light curves and polarization evolution of early optical afterglows and find that when the polarization position angle changes by 90° during the early afterglow, the polarization degree is zero for a toroidal magnetic field but is very likely to be nonzero for an aligned magnetic field. This result would be expected to provide a probe for the central engine of GRBs because an aligned field configuration could originate from a magnetar central engine and a toroidal field configuration could be produced from a black hole via the Blandford-Znajek mechanism. Finally, for such two kinds of magnetic field configurations, we fit the observed data of the early optical afterglow of GRB 120308A equally well.

  19. POLARIZATION EVOLUTION OF EARLY OPTICAL AFTERGLOWS OF GAMMA-RAY BURSTS

    SciTech Connect

    Lan, Mi-Xiang; Dai, Zi-Gao; Wu, Xue-Feng

    2016-01-10

    The central engine and jet composition of gamma-ray bursts (GRBs) remain mysterious. Here we suggest that observations on the polarization evolution of early optical afterglows may shed light on these questions. We first study the dynamics of a reverse shock and a forward shock that are generated during the interaction of a relativistic jet and its ambient medium. The jet is likely magnetized with a globally large-scale magnetic field from the central engine. The existence of the reverse shock requires that the magnetization degree of the jet should not be high (σ ≤ 1), so that the jet is mainly composed of baryons and leptons. We then calculate the light curves and polarization evolution of early optical afterglows and find that when the polarization position angle changes by 90° during the early afterglow, the polarization degree is zero for a toroidal magnetic field but is very likely to be nonzero for an aligned magnetic field. This result would be expected to provide a probe for the central engine of GRBs because an aligned field configuration could originate from a magnetar central engine and a toroidal field configuration could be produced from a black hole via the Blandford–Znajek mechanism. Finally, for such two kinds of magnetic field configurations, we fit the observed data of the early optical afterglow of GRB 120308A equally well.

  20. HST Data suggest proper motion for the optical counterpart of GRB 970228.

    NASA Astrophysics Data System (ADS)

    Caraveo, P. A.; Mignani, R. P.; Tavani, M.; Bignami, G. F.

    1997-10-01

    After a quarter of a century of γ-ray burst (GRB) astronomy, the Italian-Dutch satellite BeppoSAX on Feb 28^th^, 1997 detected a soft X-ray afterglow from GRB 970228 and positioned it accurately. This made possible the successful detection of an optical transient. Two public Hubble Space Telescope (HST) images of the GRB/optical transient region were taken on March 26^th^ and April 7^th^, 1997. They are analyzed here, with the purpose of understanding the nature of GRB 970228. We find that the position of the faint point-like object (m_v_~26) seen at the transient location changed by 0.40+/-0.10pixels in 12 days, corresponding to a proper motion of ~550mas/year. By comparison, four adjacent sources in the same field do not show any significant displacement, with astrometric residuals close to zero and average absolute displacements less than 0.09pixels. If confirmed, this result would strongly support the galactic nature of GRB 970228.

  1. A study of gamma ray bursts with afterglow plateau phases associated with supernovae

    NASA Astrophysics Data System (ADS)

    Dainotti, M. G.; Nagataki, S.; Maeda, K.; Postnikov, S.; Pian, E.

    2017-04-01

    Context. The analysis of 176 gamma ray burst (GRB) afterglow plateaus observed by Swift from GRBs with known redshifts revealed that the subsample of long GRBs associated with supernovae (LONG-SNe), comprising 19 events, presents a very high correlation coefficient between the luminosity at the end of the plateau phase LX(Ta) = La and the end time of the plateau . Furthermore, these SNe Ib/c associated with GRBs also obey the peak-magnitude stretch relation, which is similar to that used to standardize the SNe Ia. Aims: Our aim is to investigate a category of GRBs with plateau and associated with SNe to compare our correlation for this sample with the correlation for long GRBs for which no associated SN has been observed (hereafter LONG-NO-SNe, 128 GRBs) and to check whether there is a difference among these subsamples. Methods: We first adopted a nonparametric statistical method to take redshift evolution into account and to check if and how this effect may steepen the slope for the LONG-NO-SNe sample. This procedure is necessary because this sample is observed at much higher redshift than the GRB-SNe sample. Therefore, removing selection bias is the first step before any comparison among samples observed at different redshifts could be properly performed. Then, we applied the T-student test to evaluate a statistical difference between the slopes of the two samples. Results: We demonstrate that there is no evolution for the slope of the LONG-NO-SNe sample and no evolution is expected for GRBs observed at small redshifts such as those present in the LONG-SNe sample. The difference between the slope of the LONG-NO-SNe and the slope of LONG-SNe, i.e., those with firm spectral detection of SN components, is statistically significant (P = 0.005). Conclusions: This possibly suggests that, unlike LONG-NO-SNe, LONG-SNe with firm spectroscopic features of the associated SNe might not require a standard energy reservoir in the plateau phase. Therefore, this analysis may

  2. A deep search for the host galaxies of gamma-ray bursts with no detected optical afterglow

    NASA Astrophysics Data System (ADS)

    Rossi, A.; Klose, S.; Ferrero, P.; Greiner, J.; Arnold, L. A.; Gonsalves, E.; Hartmann, D. H.; Updike, A. C.; Kann, D. A.; Krühler, T.; Palazzi, E.; Savaglio, S.; Schulze, S.; Afonso, P. M. J.; Amati, L.; Castro-Tirado, A. J.; Clemens, C.; Filgas, R.; Gorosabel, J.; Hunt, L. K.; Küpcü Yoldaş, A.; Masetti, N.; Nardini, M.; Nicuesa Guelbenzu, A.; Olivares, F. E.; Pian, E.; Rau, A.; Schady, P.; Schmidl, S.; Yoldaş, A.; de Ugarte Postigo, A.

    2012-09-01

    Context. Gamma-ray bursts (GRBs) can provide information about star formation at high redshifts. Even in the absence of a bright optical/near-infrared/radio afterglow, the high detection rate of X-ray afterglows by Swift/XRT and its localization precision of 2-3 arcsec facilitates the identification and the study of GRB host galaxies. Aims: We focus on the search for the host galaxies of 17 bursts with arcsec-sized XRT error circles but no detected long-wavelength afterglow, in spite of their deep and rapid follow-up observations. Three of these events can also be classified as truly dark bursts, i.e., the observed upper limit on the optical flux of the afterglow was less than expected based on the measured X-ray flux. Our goals are to identify the GRB host galaxy candidates and characterize their phenomenological parameters. Methods: Our study is based on deep RC and Ks-band observations performed with FORS1, FORS2, VIMOS, ISAAC, and HAWK-I at the ESO/VLT, partly supported by observations with the seven-channel imager GROND at the 2.2-m telescope on La Silla, and supplemented by observations with NEWFIRM at the 4-m telescope on Kitt Peak. To be conservative, we searched for host galaxy candidates within an area of twice the radius of each associated 90% c.l. Swift/XRT error circle. Results: For 15 of the 17 bursts, we find at least one galaxy within the searching area, and in the remaining two cases only a deep upper limit to RC and Ks can be provided. In seven cases, we discover extremely red objects in the error circles, at least four of which might be dust-enshrouded galaxies. The most remarkable case is the host of GRB 080207, which has a color of (RC - Ks)AB ~ 4.7 mag, and is one of the reddest galaxies ever associated with a GRB. As a by-product of our study we identify the optical afterglow of GRB 070517. Conclusions: Only a minority of optically dim afterglows are due to Lyman dropout (≲ 1/3). Extinction by dust in the host galaxies might explain all

  3. The local dissociation phenomenon in a nitrogen afterglow

    NASA Astrophysics Data System (ADS)

    Levaton, J.; Amorim, J.; Ricard, A.

    2012-12-01

    We used the optical emission spectroscopy diagnostic to study the nitrogen afterglow of a pure N2 flowing dc discharge operating under particular experimental conditions to facilitate the simultaneous occurrence of the pink afterglow (PA) and the Lewis-Rayleigh afterglow. The PA is a special kind of nitrogen plasma occurring outside the direct influence of an external electric field. The phenomenon results from the flux of energy, introduced in the nitrogen molecules by the electrons in the discharge region, from the lower to the higher N_{2}(X\\,^1\\Sigma _g^+ ) vibrational levels due to vibrational-vibrational (V-V) and vibrational-translational (V-T) exchange reactions. We studied the following set of experimental conditions: discharge electric current (I = 15-50 mA), gas pressure (p = 200-1070 Pa) and gas flow rate (Q = 400-1000 sccm). The emissions of the first positive system of the nitrogen molecules were monitored from the end of the discharge down to the end of the post-discharge tube. A kinetic numerical model developed to investigate the nitrogen afterglow generated a calibrating factor for the 580.4 nm band in such a way that the relative density of the N(4S) atoms could be measured along the afterglow. The experimental results indicated that N(4S) atoms are created locally in the afterglow producing atomic density profiles that follow the behaviour of the other species studied experimentally in the PA, such as N_{2}(A\\,^3\\Sigma _u^+ ) , N2(B 3Πg), N2(C 3Πu), N_2^+ (X\\,^2\\Sigma _g^+ ) , N_2^+ (B\\,^2\\Sigma _u^+ ) , N+, N_3^+ , N_4^+ , N(2D) and N(2P). The numerical model was also used to fit the N2(B 3Πg), N_2^+ (B\\,^2\\Sigma _u^+ ) and the N(4S) experimental density profiles and to evaluate the participation of several kinetic pathways capable of producing local dissociation in the N2 afterglow. It was found that the dominant dissociation channel in the PA is the reaction N_2 (a'\\,^1\\Sigma _u^- )+N_2 (X\\,^1\\Sigma _g^+ ,v>4)\\to N(^4S)+N(^4

  4. The 999th Swift gamma-ray burst: Some like it thermal. A multiwavelength study of GRB 151027A

    NASA Astrophysics Data System (ADS)

    Nappo, F.; Pescalli, A.; Oganesyan, G.; Ghirlanda, G.; Giroletti, M.; Melandri, A.; Campana, S.; Ghisellini, G.; Salafia, O. S.; D'Avanzo, P.; Bernardini, M. G.; Covino, S.; Carretti, E.; Celotti, A.; D'Elia, V.; Nava, L.; Palazzi, E.; Poppi, S.; Prandoni, I.; Righini, S.; Rossi, A.; Salvaterra, R.; Tagliaferri, G.; Testa, V.; Venturi, T.; Vergani, S. D.

    2017-01-01

    We present a multiwavelength study of GRB 151027A. This is the 999th gamma-ray burst detected by the Swift satellite and it has a densely sampled emission in the X-ray and optical band and has been observed and detected in the radio up to 140 days after the prompt. The multiwavelength light curve from 500 s to 140 days can be modelled through a standard forward shock afterglow, but it requires an additional emission component to reproduce the early X-ray and optical emission. We present optical observations performed with the Telescopio Nazionale Galileo (TNG) and the Large Binocular Telescope (LBT) 19.6, 33.9, and 92.3 days after the trigger which show a bump with respect to a standard afterglow flux decay and are interpreted as possibly due to the underlying supernova and host galaxy (at a level of 0.4 μJy in the optical R band, RAB 25). Radio observations, performed with the Sardinia Radio Telescope (SRT) and Medicina in single-dish mode and with the European Very Long Baseline Interferometer (VLBI) Network and the Very Long Baseline Array (VLBA), between day 4 and 140 suggest that the burst exploded in an environment characterized by a density profile scaling with the distance from the source (wind profile). A remarkable feature of the prompt emission is the presence of a bright flare 100 s after the trigger, lasting 70 s in the soft X-ray band, which was simultaneously detected from the optical band up to the MeV energy range. By combining Swift-BAT/XRT and Fermi-GBM data, the broadband (0.3-1000 keV) time resolved spectral analysis of the flare reveals the coexistence of a non-thermal (power law) and thermal blackbody components. The blackbody component contributes up to 35% of the luminosity in the 0.3-1000 keV band. The γ-ray emission observed in Swift-BAT and Fermi-GBM anticipates and lasts less than the soft X-ray emission as observed by Swift-XRT, arguing against a Comptonization origin. The blackbody component could either be produced by an outflow

  5. Time-dependent excitation and ionization modelling of absorption-line variability due to GRB 080310

    NASA Astrophysics Data System (ADS)

    Vreeswijk, P. M.; Ledoux, C.; Raassen, A. J. J.; Smette, A.; De Cia, A.; Woźniak, P. R.; Fox, A. J.; Vestrand, W. T.; Jakobsson, P.

    2013-01-01

    We model the time-variable absorption of Fe II, Fe III, Si II, C II and Cr II detected in Ultraviolet and Visual Echelle Spectrograph (UVES) spectra of gamma-ray burst (GRB) 080310, with the afterglow radiation exciting and ionizing the interstellar medium in the host galaxy at a redshift of z = 2.42743. To estimate the rest-frame afterglow brightness as a function of time, we use a combination of the optical VRI photometry obtained by the RAPTOR-T telescope array, which is presented in this paper, and Swift's X-Ray Telescope (XRT) observations. Excitation alone, which has been successfully applied for a handful of other GRBs, fails to describe the observed column density evolution in the case of GRB 080310. Inclusion of ionization is required to explain the column density decrease of all observed Fe II levels (including the ground state 6D9/2) and increase of the Fe III 7S3 level. The large population of ions in this latter level (up to 10% of all Fe III) can only be explained through ionization of Fe II, as a large fraction of the ionized Fe II ions (we calculate 31% using the Flexible Atomic and Cowan codes) initially populate the 7S3 level of Fe III rather than the ground state. This channel for producing a significant Fe III 7S3 level population may be relevant for other objects in which absorption lines from this level, the UV34 triplet, are observed, such as broad absorption line (BAL) quasars and η Carinae. This provides conclusive evidence for time-variable ionization in the circumburst medium, which to date has not been convincingly detected. However, the best-fit distance of the neutral absorbing cloud to the GRB is 200-400 pc, i.e. similar to GRB-absorber distance estimates for GRBs without any evidence for ionization. We find that the presence of time-varying ionization in GRB 080310 is likely due to a combination of the super-solar iron abundance ([Fe/H] = +0.2) and the low H I column density (log N(H i) = 18.7) in the host of GRB 080310. Finally

  6. Lorentz factor - Beaming corrected energy/luminosity correlations and GRB central engine models

    NASA Astrophysics Data System (ADS)

    Yi, Shuang-Xi; Lei, Wei-Hua; Zhang, Bing; Dai, Zi-Gao; Wu, Xue-Feng; Liang, En-Wei

    2017-03-01

    We work on a GRB sample whose initial Lorentz factors (Γ0) are constrained by the afterglow onset method and the jet opening angles (θj) are determined by the jet break time. We confirm the Γ0-Eγ,iso correlation by Liang et al. (2010), and the Γ0-Lγ,iso correlation by Lü et al. (2012). Furthermore, we find correlations between Γ0 and the beaming corrected γ-ray energy (Eγ) and mean γ-ray luminosity (Lγ). By also including the kinetic energy of the afterglow, we find rough correlations (with larger scatter) between Γ0 and the total (γ-ray plus kinetic) energy and the total mean luminosity, both for isotropic values and beaming corrected values: these correlations allow us to test the data with GRB central engine models. Limiting our sample to the GRBs that likely have a black hole central engine, we compare the data with theoretical predictions of two types of jet launching mechanisms from BHs, i.e. the non-magnetized ν ν bar -annihilation mechanism, and the strongly magnetized Blandford-Znajek (BZ) mechanism. We find that the data are more consistent with the latter mechanism, and discuss the implications of our findings for GRB jet composition.

  7. Study of argon flowing afterglow with nitrogen injection

    SciTech Connect

    Mazánková, V.; Krčma, F.; Trunec, D.

    2013-10-28

    In this work, the reaction kinetics in argon flowing afterglow with nitrogen addition was studied by optical emission spectroscopy. The DC flowing post-discharge in pure argon was created in quartz tube at the total gas pressure of 1000 Pa and discharge power of 60 W. The nitrogen was added into the afterglow at the distance of 9 cm behind the active discharge. The optical emission spectra were measured along the flow tube. The argon spectral lines and after nitrogen addition also nitrogen second positive system (SPS) were identified in the spectra. The measurement of spatial dependence of SPS intensity showed a very slow decay of the intensity and the decay rate did not depend on the nitrogen concentration. In order to explain this behavior a kinetic model for reaction in afterglow was developed. This model showed that C {sup 3}Π{sub u} state of molecular nitrogen, which is the upper state of SPS emission, is produced by excitation transfer from argon metastables to nitrogen molecules. However, the argon metastables are also produced at Ar{sub 2}{sup +} ion recombination with electrons and this limits the decay of argon metastable concentration and it results in very slow decay of SPS intensity.

  8. Photometric Observations of Supernova 2013cq Associated with GRB 130427A

    NASA Astrophysics Data System (ADS)

    Becerra, R. L.; Watson, A. M.; Lee, W. H.; Fraija, N.; Butler, N. R.; Bloom, J. S.; Capone, J. I.; Cucchiara, A.; de Diego, J. A.; Fox, O. D.; Gehrels, N.; Georgiev, L. N.; González, J. J.; Kutyrev, A. S.; Littlejohns, O. M.; Prochaska, J. X.; Ramirez-Ruiz, E.; Richer, M. G.; Román-Zúñiga, C. G.; Toy, V. L.; Troja, E.

    2017-03-01

    We observed the afterglow of GRB 130427A with the Reionization and Transients Infrared Camera (RATIR) instrument on the 1.5 m Harold L. Johnson telescope of the Observatorio Astronómico Nacional in Sierra San Pedro Mártir. Our homogenous griZY JH photometry extends from the night of the burst to three years later. We fit a model for the afterglow. There is a significant positive residual that matches the behavior of SN 1998bw in the griZ filters; we suggest that this is a photometric signature of the supernova SN 2013cq associated with the Gamma-ray burst. The peak absolute magnitude of the supernova is {M}r=-18.43+/- 0.11.

  9. Synchrotron self-inverse Compton radiation from reverse shock on GRB 120326A

    SciTech Connect

    Urata, Yuji; Huang, Kuiyun; Takahashi, Satoko; Im, Myungshin; Kim, Jae-Woo; Jang, Minsung; Yamaoka, Kazutaka; Tashiro, Makoto; Pak, Soojong

    2014-07-10

    We present multi-wavelength observations of a typical long duration GRB 120326A at z = 1.798, including rapid observations using a Submillimeter Array (SMA) and a comprehensive monitoring in the X-ray and optical. The SMA observation provided the fastest detection to date among seven submillimeter afterglows at 230 GHz. The prompt spectral analysis, using Swift and Suzaku, yielded a spectral peak energy of E{sub peak}{sup src}=107.8{sub −15.3}{sup +15.3} keV and an equivalent isotropic energy of E{sub iso} as 3.18{sub −0.32}{sup +0.40}×10{sup 52} erg. The temporal evolution and spectral properties in the optical were consistent with the standard forward shock synchrotron with jet collimation (6.°69 ± 0.°16). The forward shock modeling, using a two-dimensional relativistic hydrodynamic jet simulation, was also determined by the reasonable burst explosion and the synchrotron radiation parameters for the optical afterglow. The X-ray light curve showed no apparent jet break and the temporal decay index relation between the X-ray and optical (αo – α{sub X} = –1.45 ± 0.10) indicated different radiation processes in each of them. Introducing synchrotron self-inverse Compton radiation from reverse shock is a possible solution, and the detection and slow decay of the afterglow in submillimeter supports that this is a plausible idea. The observed temporal evolution and spectral properties, as well as forward shock modeling parameters, enabled us to determine reasonable functions to describe the afterglow properties. Because half of the events share similar properties in the X-ray and optical as the current event, GRB 120326A will be a benchmark with further rapid follow-ups, using submillimeter instruments such as an SMA and the Atacama Large Millimeter/submillimeter Array.

  10. On GRB 060218 and the GRBs Related to Supernovae Ib/c

    NASA Astrophysics Data System (ADS)

    Dainotti, Maria Giovanna; Bernardini, Maria Grazia; Biancow, Bianco Carlo; Caito, Letizia; Guida, Roberto; Ruffini, Remo

    2008-09-01

    We study the Gamma-Ray Burst (GRB) 060218: a particularly close source at z = 0.033 with an extremely long duration, namely T90 2000 s, related to SN 2006aj. This source appears to be a very soft burst, with a peak in the spectrum at 4.9 keV, therefore interpreted as an X-Ray Flash (XRF) and it obeys to the Amati relation. We fit the X- and γ-ray observations by Swift of GRB 060218 in the 0.1-150 keV energy band during the entire time of observations from 0 all the way to 106 s within a unified theoretical model. The details of our theoretical analysis have been recently published in a series of articles. The free parameters of the theory are only three, namely the total energy E{e ± }tot of the e± plasma, its baryon loading B ≡ MB c2 /E{e ± }tot , as well as the CircumBurst Medium (CBM) distribution. We fit the entire light curve, including the prompt emission as an essential part of the afterglow. We recall that this value of the B parameter is the highest among the sources we have analyzed and it is very close to its absolute upper limit expected. We successfully make definite predictions about the spectral distribution in the early part of the light curve, exactly we derive the instantaneous photon number spectrum N(E) and we show that although the spectrum in the co-moving frame of the expanding pulse is thermal, the shape of the final spectrum in the laboratory frame is clearly non thermal. In fact each single instantaneous spectrum is the result of an integration of thousands of thermal spectra over the corresponding EQuiTemporal Surfaces (EQTS). By our fit we show that there is no basic differences between XRFs and more general GRBs. They all originate from the collapse process to a black hole and their difference is due to the variability of the three basic parameters within the range of full applicability of the theory.

  11. HELIUM IN NATAL H II REGIONS: THE ORIGIN OF THE X-RAY ABSORPTION IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Watson, Darach; Andersen, Anja C.; Fynbo, Johan P. U.; Hjorth, Jens; Kruehler, Thomas; Laursen, Peter; Leloudas, Giorgos; Malesani, Daniele; Zafar, Tayyaba; Gorosabel, Javier

    2013-05-01

    Soft X-ray absorption in excess of Galactic is observed in the afterglows of most gamma-ray bursts (GRBs), but the correct solution to its origin has not been arrived at after more than a decade of work, preventing its use as a powerful diagnostic tool. We resolve this long-standing problem and find that absorption by He in the GRB's host H II region is responsible for most of the absorption. We show that the X-ray absorbing column density (N{sub H{sub X}}) is correlated with both the neutral gas column density and with the optical afterglow's dust extinction (A{sub V} ). This correlation explains the connection between dark bursts and bursts with high N{sub H{sub X}} values. From these correlations, we exclude an origin of the X-ray absorption which is not related to the host galaxy, i.e., the intergalactic medium or intervening absorbers are not responsible. We find that the correlation with the dust column has a strong redshift evolution, whereas the correlation with the neutral gas does not. From this, we conclude that the column density of the X-ray absorption is correlated with the total gas column density in the host galaxy rather than the metal column density, in spite of the fact that X-ray absorption is typically dominated by metals. The strong redshift evolution of N{sub H{sub X}}/A{sub V} is thus a reflection of the cosmic metallicity evolution of star-forming galaxies and we find it to be consistent with measurements of the redshift evolution of metallicities for GRB host galaxies. We conclude that the absorption of X-rays in GRB afterglows is caused by He in the H II region hosting the GRB. While dust is destroyed and metals are stripped of all of their electrons by the GRB to great distances, the abundance of He saturates the He-ionizing UV continuum much closer to the GRB, allowing it to remain in the neutral or singly-ionized state. Helium X-ray absorption explains the correlation with total gas, the lack of strong evolution with redshift, as well

  12. An optical study of the GRB 970111 field beginning 19 hours after the gamma-ray burst

    NASA Astrophysics Data System (ADS)

    Gorosabel, J.; Castro-Tirado, A. J.; Wolf, C.; Heidt, J.; Seitz, T.; Thommes, E.; Bartolini, C.; Guarnieri, A.; Masetti, N.; Piccioni, A.; Larsen, S.; Costa, E.; Feroci, M.; Frontera, F.; Palazzi, E.; Lund, N.

    1998-11-01

    We present the results of the monitoring of the GRB 970111 field that started 19 hours after the event. This observation represents the fastest ground-based follow-up performed for GRB 970111 in all wavelengths. As soon as the detection of the possible GRB 970111 X-ray afterglow was reported by Feroci et al. (1998) we reanalyzed the optical data collected for the GRB 970111 field. Although we detect small magnitude variability in some objects, no convincing optical counterpart is found inside the WFC error box. Any change in brightness 19 hours after the GRB is less than 0.2 mag for objects with B < 21 and R < 20.8. The bluest object found in the field is coincident with 1SAX J1528.8+1937. Spectroscopic observations revealed that this object is a Seyfert-1 galaxy with redshift z=0.657, which we propose as the optical counterpart of the X-ray source. Further observations allowed to perform multicolour photometry for objects in the GRB 970111 error box. The colour-colour diagrams do not show any object with unusual colours. We applied a photometric classification method to the objects inside the GRB error box, that can distinguish stars from galaxies and estimate redshifts. We were able to estimate photometric redshifts in the range 0.2 < z < 1.4 for several galaxies in this field and we did not find any conspicuous unusual object. We note that GRB 970111 and GRB 980329 could belong to the same class of GRBs, which may be related to nearby sources (z ~ 1) in which high intrinsic absorption leads to faint optical afterglows. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, operated by the Max-Planck-Institut für Astronomie, Heidelberg, jointly with the Spanish National Commission for Astronomy.Based on observations carried out at the Danish 1.54-m Telescope on the European Southern Observatory, La Silla, ChileBased on observations at the Osservatorio Astronomico di Loiano, Italy.

  13. Spectroscopic Evidence for SN 2010ma Associated with GRB 101219B

    NASA Astrophysics Data System (ADS)

    Sparre, M.; Sollerman, J.; Fynbo, J. P. U.; Malesani, D.; Goldoni, P.; de Ugarte Postigo, A.; Covino, S.; D'Elia, V.; Flores, H.; Hammer, F.; Hjorth, J.; Jakobsson, P.; Kaper, L.; Leloudas, G.; Levan, A. J.; Milvang-Jensen, B.; Schulze, S.; Tagliaferri, G.; Tanvir, N. R.; Watson, D. J.; Wiersema, K.; Wijers, R. A. M. J.

    2011-07-01

    We report on the spectroscopic detection of supernova SN 2010ma associated with the long gamma-ray burst GRB 101219B. We observed the optical counterpart of the GRB on three nights with the X-shooter spectrograph at the Very Large Telescope. From weak absorption lines, we measure a redshift of z = 0.55. The first-epoch UV-near-infrared afterglow spectrum, taken 11.6 hr after the burst, is well fit by a power law consistent with the slope of the X-ray spectrum. The second- and third-epoch spectra (obtained 16.4 and 36.7 days after the burst), however, display clear bumps closely resembling those of the broad-lined type-Ic SN 1998bw if placed at z = 0.55. Apart from demonstrating that spectroscopic SN signatures can be observed for GRBs at these large distances, our discovery makes a step forward in establishing a general connection between GRBs and SNe. In fact, unlike most previous unambiguous GRB-associated SNe, GRB 101219B has a large gamma-ray energy (E iso = 4.2 × 1051 erg), a bright afterglow, and obeys the "Amati" relation, thus being fully consistent with the cosmological population of GRBs. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under program 086.A-0073(B). Also based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil), and Ministerio de Ciencia, Tecnología e Innovacón Productiva (Argentina).

  14. A cross-correlation search for intermediate-duration gravitational waves from GRB magnetars

    NASA Astrophysics Data System (ADS)

    Coyne, Robert

    2015-04-01

    Since the discovery of the afterglow in 1997, the progress made in our understanding of gamma-ray bursts (GRBs) has been spectacular. Yet a direct proof of GRB progenitors is still missing. In the last few years, evidence for a long-lived and sustained central engine in GRBs has mounted. This has called attention to the so-called millisecond-magnetar model, which proposes that a highly magnetized, rapidly-rotating neutron star may exist at the heart of some of these events. The advent of advanced gravitational wave detectors such as LIGO and Virgo may enable us to probe directly, for the first time, the nature of GRB progenitors and their byproducts. In this context, we describe a novel application of a generalized cross-correlation technique optimized for the detection of long-duration gravitational wave signals that may be associated with bar-like deformations of GRB magnetars. The detection of these signals would allow us to answer some of the most intriguing questions on the nature of GRB progenitors, and serve as a starting point for a new class of intermediate-duration gravitational wave searches.

  15. THE NEEDLE IN THE 100 deg{sup 2} HAYSTACK: UNCOVERING AFTERGLOWS OF FERMI GRBs WITH THE PALOMAR TRANSIENT FACTORY

    SciTech Connect

    Singer, Leo P.; Kasliwal, Mansi M.; Cenko, S. Bradley; Cucchiara, Antonino; Gehrels, Neil; Perley, Daniel A.; Cao, Yi; Anderson, Gemma E.; Fender, Rob P.; Anupama, G. C.; Arcavi, Iair; Bhalerao, Varun; Bue, Brian D.; Connaughton, Valerie; Corsi, Alessandra; Fox, Derek B.; Goldstein, Adam; Gorosabel, J.; and others

    2015-06-10

    The Fermi Gamma-ray Space Telescope has greatly expanded the number and energy window of observations of gamma-ray bursts (GRBs). However, the coarse localizations of tens to a hundred square degrees provided by the Fermi GRB Monitor instrument have posed a formidable obstacle to locating the bursts’ host galaxies, measuring their redshifts, and tracking their panchromatic afterglows. We have built a target-of-opportunity mode for the intermediate Palomar Transient Factory in order to perform targeted searches for Fermi afterglows. Here, we present the results of one year of this program: 8 afterglow discoveries out of 35 searches. Two of the bursts with detected afterglows (GRBs 130702A and 140606B) were at low redshift (z = 0.145 and 0.384, respectively) and had spectroscopically confirmed broad-line Type Ic supernovae. We present our broadband follow-up including spectroscopy as well as X-ray, UV, optical, millimeter, and radio observations. We study possible selection effects in the context of the total Fermi and Swift GRB samples. We identify one new outlier on the Amati relation. We find that two bursts are consistent with a mildly relativistic shock breaking out from the progenitor star rather than the ultra-relativistic internal shock mechanism that powers standard cosmological bursts. Finally, in the context of the Zwicky Transient Facility, we discuss how we will continue to expand this effort to find optical counterparts of binary neutron star mergers that may soon be detected by Advanced LIGO and Virgo.

  16. GRB 090417B and its Host Galaxy: A Step Towards an Understanding of Optically-Dark Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; Sbarufatti, Boris; Shen, Rongfeng; Schady, Patricia; Cummings, Jay R.; Fonseca, Emmanuel; Fynbo, Johan P. U.; Jakobsson, Pall; Leitet, Elisabet; Linne, Staffan; Roming, Peter W.A.; Still, Martin; Zhang, Bing

    2009-01-01

    GRB 090417B was an unusually long burst with a T(sub 90) duration of at least 2130 s and a multi-peaked light curve at energies of 15-150 keV. It was optically dark and has been convincingly associated with a bright star-forming galaxy at a redshift of 0.345 that is broadly similar to the Milky Way. This is one of the few cases where a host galaxy has been clearly identified for a dark gamma-ray burst and thus an ideal candidate for studying the origin of dark bursts. We find that the dark nature of GRB 090417B can not be explained by high redshift, incomplete observations, or unusual physics in the production of the afterglow. The Swift/XRT X-ray data are consistent with the afterglow being obscured by a dense, localized sheet of dust approximately 30-80 pc from the burst along the line of sight. Assuming the standard relativistic fireball model for the afterglow we find that the optical flux is at least 2.5 mag fainter than predicted by the X -ray flux. We are able to explain the lack of an optical afterglow, and the evolution of the X -ray spectrum, by assuming that there is a sheet of dust along the line of sight approximately 30-80 pc from the progenitor. Our results suggest that this dust sheet imparts an extinction of A(sub v)> or = 12 mag, which is sufficient to explain the missing optical flux. GRB 090417B is an example of a gamma-ray burst that is dark due to the localized dust structure in its host galaxy.

  17. GRB 120521C at z ∼ 6 and the properties of high-redshift γ-ray bursts

    SciTech Connect

    Laskar, Tanmoy; Berger, Edo; Zauderer, B. Ashley; Margutti, Raffaella; Fong, Wen-fai; Tanvir, Nial; Wiersema, Klaas; Levan, Andrew; Perley, Daniel; Menten, Karl; Hrudkova, Marie

    2014-01-20

    We present optical, near-infrared, and radio observations of the afterglow of GRB 120521C. By modeling the multi-wavelength data set, we derive a photometric redshift of z ≈ 6.0, which we confirm with a low signal-to-noise ratio spectrum of the afterglow. We find that a model with a constant-density environment provides a good fit to the afterglow data, with an inferred density of n ≲ 0.05 cm{sup –3}. The radio observations reveal the presence of a jet break at t {sub jet} ≈ 7 d, corresponding to a jet opening angle of θ{sub jet} ≈ 3°. The beaming-corrected γ-ray and kinetic energies are E {sub γ} ≈ E{sub K} ≈ 3 × 10{sup 50} erg. We quantify the uncertainties in our results using a detailed Markov Chain Monte Carlo analysis, which allows us to uncover degeneracies between the physical parameters of the explosion. To compare GRB 120521C to other high-redshift bursts in a uniform manner we re-fit all available afterglow data for the two other bursts at z ≳ 6 with radio detections (GRBs 050904 and 090423). We find a jet break at t {sub jet} ≈ 15 d for GRB 090423, in contrast to previous work. Based on these three events, we find that γ-ray bursts (GRBs) at z ≳ 6 appear to explode in constant-density environments, and exhibit a wide range of energies and densities that span the range inferred for lower redshift bursts. On the other hand, we find a hint for narrower jets in the z ≳ 6 bursts, potentially indicating a larger true event rate at these redshifts. Overall, our results indicate that long GRBs share a common progenitor population at least to z ∼ 8.

  18. Kinematics of Gamma-Ray Burst and their Relationship to Afterglows

    SciTech Connect

    Salmonson, J D

    2001-12-17

    A strong correlation is reported between gamma-ray burst (GRB) pulse lags and afterglow jet-break times for the set of bursts (seven) with known redshifts, luminosities, pulse lags, and jet-break times. This may be a valuable clue toward understanding the connection between the burst and afterglow phases of these events. The relation is roughly linear (i.e. doubling the pulse lag in turn doubles the jet break time) and thus implies a simple relationship between these quantities. We suggest that this correlation is due to variation among bursts of emitter Doppler factor. Specifically, an increased speed or decreased angle of velocity, with respect to the observed line-of-site, of burst ejecta will result in shorter perceived pulse lags in GRBs as well as quicker evolution of the external shock of the afterglow to the time when the jet becomes obvious, i.e. the jet-break time. Thus this observed variation among GRBs may result from a perspective effect due to different observer angles of a morphologically homogeneous populations of GRBs. Also, a conjecture is made that peak luminosities not only vary inversely with burst timescale, but also are directly proportional to the spectral break energy. If true, this could provide important information for explaining the source of this break.

  19. IMPLICATIONS FOR THE ORIGIN OF GRB 051103 FROM LIGO OBSERVATIONS

    SciTech Connect

    Abadie, J.; Abbott, B. P.; Abbott, R.; Adhikari, R.; Ajith, P.; Anderson, S. B.; Arai, K.; Araya, M. C.; Abbott, T. D.; Abernathy, M.; Adams, C.; Affeldt, C.; Allen, B.; Allen, G. S.; Ceron, E. Amador; Anderson, W. G.; Amariutei, D.; Arain, M. A.; Amin, R. S.; Aston, S. M.; Collaboration: LIGO Collaboration; and others

    2012-08-10

    We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst (GRB) whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at a distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed {gamma}-ray emission with a jet semi-angle of 30 Degree-Sign , we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with >99% confidence. If the event occurred in M81, then our findings support the hypothesis that GRB 051103 was due to an SGR giant flare, making it one of the most distant extragalactic magnetars observed to date.

  20. Implications for the Origin of GRB 051103 from LIGO Observations

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, T. D.; Abbott, R.; Abernathy, M.; Adams, C.; Adhikari, R.; Affeldt, C.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballmer, S.; Barker, D.; Barnum, S.; Barr, B.; Barriga, P.; Barsotti, L.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Behnke, B.; Bell, A. S.; Belopolski, I.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bork, R.; Born, M.; Bose, S.; Boyle, M.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brinkmann, M.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummitt, A.; Buonanno, A.; Burguet-Castell, J.; Burmeister, O.; Byer, R. L.; Cadonati, L.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Cao, J.; Capano, C.; Caride, S.; Caudill, S.; Cavaglia, M.; Cepeda, C.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chelkowski, S.; Chen, Y.; Christensen, N.; Chua, S. S. Y.; Chung, S.; Chung, C. T. Y.; Clara, F.; Clark, D.; Clark, J.; Clayton, J. H.; Conte, R.; Cook, D.; Corbitt, T. R. C.; Cornish, N.; Costa, C. A.; Coughlin, M.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Culter, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; Danzmann, K.; Das, K.; Daudert, B.; Daveloza, H.; Davies, G.; Daw, E. J.; Dayanga, T.; DeBra, D.; Degallaix, J.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Palma, I.; Díaz, M.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Douglas, E. S. D.; Drever, R. W. P.; Driggers, J. C.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Finn, L. S.; Flanigan, M.; Foley, S.; Forsi, E.; Fotopoulos, N.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Garcia, J.; Garofoli, J. A.; Gholami, I.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Graef, C.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Kelner, M.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, N.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Kuehn, G.; Kumar, R.; Kwee, P.; Landry, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Li, J.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lormand, M.; Lu, P.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Mageswaran, M.; Mailand, K.; Mandel, I.; Mandic, V.; Marandi, A.; Márka, S.; Márka, Z.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Miller, J.; Mino, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohanty, S. D.; Moraru, D.; Moreno, G.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Newton, G.; Nishizawa, A.; Nolting, D.; Nuttall, L.; O'Reilly, B.; O'Shaughnessy, R.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pan, Y.; Pankow, C.; Papa, M. A.; Patel, P.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Phelps, M.; Pickenpack, M.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Podkaminer, J.; Pöld, J.; Postiglione, F.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prokhorov, L.; Puncken, O.; Quetschke, V.; Raab, F. J.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Mohapatra, S. R. P.; Raymond, V.; Redwine, K.; Reed, C. M.; Reed, T.; Reid, S.; Reitze, D. H.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rollins, J.; Romano, J. D.; Romie, J. H.; Röver, C.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Salit, M.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saraf, S.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shihan Weerathunga, T.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, R.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Stein, A. J.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stefszky, M.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Szokoly, G. P.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C. I.; Traylor, G.; Trias, M.; Tseng, K.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vallisneri, M.; Van Den Broeck, C.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Villar, A. E.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, K.; Yamamoto, H.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Collaboration; Bizouard, M. A.; Dietz, A.; Guidi, G. M.; Was, M.

    2012-08-01

    We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst (GRB) whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at a distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed γ-ray emission with a jet semi-angle of 30°, we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with >99% confidence. If the event occurred in M81, then our findings support the hypothesis that GRB 051103 was due to an SGR giant flare, making it one of the most distant extragalactic magnetars observed to date.

  1. The low-extinction afterglow in the solar-metallicity host galaxy of γ-ray burst 110918A

    NASA Astrophysics Data System (ADS)

    Elliott, J.; Krühler, T.; Greiner, J.; Savaglio, S.; Olivares, F.; Rau, E. A.; de Ugarte Postigo, A.; Sánchez-Ramírez, R.; Wiersema, K.; Schady, P.; Kann, D. A.; Filgas, R.; Nardini, M.; Berger, E.; Fox, D.; Gorosabel, J.; Klose, S.; Levan, A.; Nicuesa Guelbenzu, A.; Rossi, A.; Schmidl, S.; Sudilovsky, V.; Tanvir, N. R.; Thöne, C. C.

    2013-08-01

    Galaxies selected through long γ-ray bursts (GRBs) could be of fundamental importance when mapping the star formation history out to the highest redshifts. Before using them as efficient tools in the early Universe, however, the environmental factors that govern the formation of GRBs need to be understood. Metallicity is theoretically thought to be a fundamental driver in GRB explosions and energetics, but it is still, even after more than a decade of extensive studies, not fully understood. This is largely related to two phenomena: a dust-extinction bias, which prevented high-mass and thus likely high-metallicity GRB hosts from being detected in the first place, and a lack of efficient instrumentation, which limited spectroscopic studies, including metallicity measurements, to the low-redshift end of the GRB host population. The subject of this work is the very energetic GRB 110918A (Eγ,iso = 1.9 × 1054 erg), for which we measure a redshift of z = 0.984. GRB 110918A gave rise to a luminous afterglow with an intrinsic spectral slope of β = 0.70, which probed a sight-line with little extinction (AGRBV = 0.16 mag) and soft X-ray absorption (NH,X = (1.6 ± 0.5) × 1021 cm-2) typical of the established distributions of afterglow properties. However, photometric and spectroscopic follow-up observations of the galaxy hosting GRB 110918A, including optical/near-infrared photometry with the Gamma-Ray burst Optical Near-infrared Detector and spectroscopy with the Very Large Telescope/X-shooter, reveal an all but average GRB host in comparison to the z ~ 1 galaxies selected through similar afterglows to date. It has a large spatial extent with a half-light radius of R1/2 ~ 10 kpc, the highest stellar mass for z < 1.9 (log (M∗/M⊙) = 10.68 ± 0.16), and an Hα-based star formation rate of SFRHα = 41+28-16M⊙ yr-1. We measure a gas-phase extinction of AgasV ~ 1.8 mag through the Balmer decrement and one of the largest host-integrated metallicities ever of around solar

  2. Non-variability of intervening absorbers observed in the UVES spectra of the `naked-eye' GRB080319

    NASA Astrophysics Data System (ADS)

    D'Elia, V.; Fiore, F.; Goldoni, P.; D'Odorico, V.; Campana, S.; Covino, S.; D'Avanzo, P.; Meurs, E. J. A.; Norci, L.; Tagliaferri, G.

    2010-01-01

    The aim of this paper is to investigate the properties of the intervening absorbers lying along the line of sight of GRB080319B through the analysis of its optical absorption features. For this purpose, we analyse Ultraviolet and Visual Echelle Spectrograph (UVES)/Very Large Telescope multi-epoch, high-resolution spectroscopic observations (R = 40000, corresponding to 7.5 kms-1) of the optical afterglow of GRB080319B (z = 0.937), detected by Swift. Thanks to the rapid response mode (RRM), we observed the afterglow just 8min 30s after the gamma-ray burst (GRB) onset when the magnitude was R ~ 12. This allowed us to obtain the best signal-to-noise ratio (S/N), high-resolution spectrum of a GRB afterglow ever (S/N per resolution element of ~50). Two further RRM and target of opportunity observations were obtained starting 1.0 and 2.4 h after the event, respectively. Four MgII absorption systems lying along the line of sight to the afterglow have been detected in the redshift range 0.5 < z < 0.8, most of them showing a complex structure featuring several components. Absorptions due to FeII, MgI and MnII are also present; they appear in four, two and one intervening absorbers, respectively. One out of four systems show an MgII λ2796 rest-frame-equivalent width larger than 1 Å. This is in agreement with the excess of strong MgII absorbers compared to quasars, with dn/dz = 0.9, approximately four times larger than the value observed along quasar lines of sight. In addition, the analysis of multi-epoch, high-resolution spectra allowed us to exclude a significant variability in the column density of the single components of each absorber. In particular, 17 out of 21 MgII components belonging to the four absorbers do not vary at the 3σ confidence level, and the column densities of the remaining four are saturated and cannot be reliably measured. Combining this result with estimates of the size of the emitting region, we can reject the hypothesis that the difference

  3. The late X-ray afterglow of gamma-ray bursts.

    PubMed

    Willingale, Richard; O'Brien, Paul T

    2007-05-15

    We have developed a functional fit which can be used to represent the entire temporal decay of the X-ray afterglow of gamma-ray bursts (GRBs). The fit delineates and parameterizes well-defined phases for the decay: the prompt emission; an initial steep decay; a shallow plateau phase; and finally, a powerlaw afterglow. For 20% of GRBs, the plateau phase is weak, or not seen, and the initial powerlaw decay becomes the final afterglow.We compare the temporal decay parameters and X-ray spectral indices for 107 GRBs discovered by Swift with the expectations of the standard fireball model including a search for possible jet breaks. For approximately 50% of GRBs, the observed afterglow is in accord with the model, but for the rest the temporal and spectral properties are not as expected. We identify a few possible jet breaks, but there are many examples where such breaks are predicted but are absent. We also find that the start time of the final afterglow decay, Ta, is associated with the peak of the prompt gamma-ray emission spectrum, Epeak, just as optical jet-break times, tj, are associated with Epeak in the Ghirlanda relation.

  4. GRB 051008: a long, spectrally hard dust-obscured GRB in a Lyman-break galaxy at z ≈ 2.8

    NASA Astrophysics Data System (ADS)

    Volnova, A. A.; Pozanenko, A. S.; Gorosabel, J.; Perley, D. A.; Frederiks, D. D.; Kann, D. A.; Rumyantsev, V. V.; Biryukov, V. V.; Burkhonov, O.; Castro-Tirado, A. J.; Ferrero, P.; Golenetskii, S. V.; Klose, S.; Loznikov, V. M.; Minaev, P. Yu.; Stecklum, B.; Svinkin, D. S.; Tsvetkova, A. E.; de Ugarte Postigo, A.; Ulanov, M. V.

    2014-08-01

    We present observations of the dark gamma-ray burst GRB 051008 provided by Swift/BAT, Swift/XRT, Konus-WIND, INTEGRAL/SPI-ACS in the high-energy domain and the Shajn, Swift/UVOT, Tautenburg, NOT, Gemini and Keck I telescopes in the optical and near-infrared bands. The burst was detected only in gamma- and X-rays and neither a prompt optical nor a radio afterglow was detected down to deep limits. We identified the host galaxy of the burst, which is a typical Lyman-break galaxy (LBG) with R-magnitude of 24.06 ± 0.10 mag. A redshift of the galaxy of z = 2.77_{-0.20}^{+0.15} is measured photometrically due to the presence of a clear, strong Lyman-break feature. The host galaxy is a small starburst galaxy with moderate intrinsic extinction (AV = 0.3) and has a star formation rate of ˜60 M⊙ yr-1 typical for LBGs. It is one of the few cases where a GRB host has been found to be a classical LBG. Using the redshift we estimate the isotropic-equivalent radiated energy of the burst to be Eiso = (1.15 ± 0.20) × 1054 erg. We also provide evidence in favour of the hypothesis that the darkness of GRB 051008 is due to local absorption resulting from a dense circumburst medium.

  5. the Large Aperture GRB Observatory

    SciTech Connect

    Bertou, Xavier

    2009-04-30

    The Large Aperture GRB Observatory (LAGO) aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique (SPT) in ground based water Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on the project progresses and the first operation at high altitude, search for bursts in 6 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  6. GRB 090510: A Genuine Short GRB from a Binary Neutron Star Coalescing into a Kerr-Newman Black Hole

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Muccino, M.; Aimuratov, Y.; Bianco, C. L.; Cherubini, C.; Enderli, M.; Kovacevic, M.; Moradi, R.; Penacchioni, A. V.; Pisani, G. B.; Rueda, J. A.; Wang, Y.

    2016-11-01

    In a new classification of merging binary neutron stars (NSs) we separate short gamma-ray bursts (GRBs) into two subclasses. The ones with {E}{iso}≲ {10}52 erg coalesce to form a massive NS and are indicated as short gamma-ray flashes (S-GRFs). The hardest, with {E}{iso}≳ {10}52 erg, coalesce to form a black hole (BH) and are indicated as genuine short GRBs (S-GRBs). Within the fireshell model, S-GRBs exhibit three different components: the proper GRB (P-GRB) emission, observed at the transparency of a self-accelerating baryon-{e}+{e}- plasma; the prompt emission, originating from the interaction of the accelerated baryons with the circumburst medium; and the high-energy (GeV) emission, observed after the P-GRB and indicating the formation of a BH. GRB 090510 gives the first evidence for the formation of a Kerr BH or, possibly, a Kerr-Newman BH. Its P-GRB spectrum can be fitted by a convolution of thermal spectra whose origin can be traced back to an axially symmetric dyadotorus. A large value of the angular momentum of the newborn BH is consistent with the large energetics of this S-GRB, which reach in the 1-10,000 keV range {E}{iso}=(3.95+/- 0.21)× {10}52 erg and in the 0.1-100 GeV range {E}{LAT}=(5.78+/- 0.60)× {10}52 erg, the most energetic GeV emission ever observed in S-GRBs. The theoretical redshift {z}{th}=0.75+/- 0.17 that we derive from the fireshell theory is consistent with the spectroscopic measurement z=0.903+/- 0.003, showing the self-consistency of the theoretical approach. All S-GRBs exhibit GeV emission, when inside the Fermi-LAT field of view, unlike S-GRFs, which never evidence it. The GeV emission appears to be the discriminant for the formation of a BH in GRBs, confirmed by their observed overall energetics.

  7. Numerical Study on GRB-Jet Formation in Collapsars

    SciTech Connect

    Nagataki, Shigehiro; Takahashi, Rohta; Mizuta, Akira; Takiwaki, Tomoya; /Tokyo U.

    2006-08-22

    Two-dimensional magnetohydrodynamic simulations are performed using the ZEUS-2D code to investigate the dynamics of a collapsar that generates a GRB jet, taking account of realistic equation of state, neutrino cooling and heating processes, magnetic fields, and gravitational force from the central black hole and self gravity. It is found that neutrino heating processes are not so efficient to launch a jet in this study. It is also found that a jet is launched mainly by B{sub {phi}} fields that are amplified by the winding-up effect. However, since the ratio of total energy relative to the rest mass energy in the jet is not so high as several hundred, we conclude that the jets seen in this study are not be a GRB jet. This result suggests that general relativistic effects, which are not included in this study, will be important to generate a GRB jet. Also, the accretion disk with magnetic fields may still play an important role to launch a GRB jet, although a simulation for much longer physical time {approx} 10-100 s is required to confirm this effect. It is shown that considerable amount of {sup 56}Ni is synthesized in the accretion disk. Thus there will be a possibility for the accretion disk to supply sufficient amount of {sup 56}Ni required to explain the luminosity of a hypernova. Also, it is shown that neutron-rich matter due to electron captures with high entropy per baryon is ejected along the polar axis. Moreover, it is found that the electron fraction becomes larger than 0.5 around the polar axis near the black hole by {nu}{sub e} capture at the region. Thus there will be a possibility that r-process and r/p-process nucleosynthesis occur at these regions. Finally, much neutrons will be ejected from the jet, which suggests that signals from the neutron decays may be observed as the delayed bump of the light curve of the afterglow or gamma-rays.

  8. ESTIMATING LONG GRB JET OPENING ANGLES AND REST-FRAME ENERGETICS

    SciTech Connect

    Goldstein, Adam; Briggs, Michael S.; Burns, Eric

    2016-02-10

    We present a method to estimate the jet opening angles of long duration gamma-ray bursts (GRBs) using the prompt gamma-ray energetics and an inversion of the Ghirlanda relation, which is a correlation between the time-integrated peak energy of the GRB prompt spectrum and the collimation-corrected energy in gamma-rays. The derived jet opening angles using this method and detailed assumptions match well with the corresponding inferred jet opening angles obtained when a break in the afterglow is observed. Furthermore, using a model of the predicted long GRB redshift probability distribution observable by the Fermi Gamma-ray Burst Monitor (GBM), we estimate the probability distributions for the jet opening angle and rest-frame energetics for a large sample of GBM GRBs for which the redshifts have not been observed. Previous studies have only used a handful of GRBs to estimate these properties due to the paucity of observed afterglow jet breaks, spectroscopic redshifts, and comprehensive prompt gamma-ray observations, and we potentially expand the number of GRBs that can be used in this analysis by more than an order of magnitude. In this analysis, we also present an inferred distribution of jet breaks which indicates that a large fraction of jet breaks are not observable with current instrumentation and observing strategies. We present simple parameterizations for the jet angle, energetics, and jet break distributions so that they may be used in future studies.

  9. Intervening Metal Systems in GRB and QSO Sight Lines: The Mg II and C IV Question

    NASA Astrophysics Data System (ADS)

    Sudilovsky, Vladimir; Savaglio, Sandra; Vreeswijk, Paul; Ledoux, Cédric; Smette, Alain; Greiner, Jochen

    2007-11-01

    Prochter and coworkers recently found that the number density of strong intervening 0.5GRB) afterglow spectra is nearly 4 times larger than those in QSO spectra. We have conducted a similar study using C IV absorbers. Our C IV sample, consisting of a total of 19 systems, is drawn from three high-resolution and high to moderate signal-to-noise ratio VLT UVES spectra of three long-duration GRB afterglows, covering the redshift interval 1.6

  10. Two Variable Radio Sources Near the Position of GRB 940301

    NASA Technical Reports Server (NTRS)

    Galama, T. J.; DeBruyn, A. G.; vanParadijs, J.; Hanlon, L.; Groot, P. J.; VanDerKlis, M.; Strom, R.; Spoelstra, T.; Bennett, K.; Fishman, G. J.; Hurley, K.

    1997-01-01

    We report on the results of a search for a radio counterpart to the strong gamma-ray burst GRB 940301. Observations with the Westerbork Synthesis Radio Telescope of the Compton Telescope error box region of GRB 940301 began on March 4, 1994, at 21 cm and April 2, 1994, at 92 cm. No flux density variations were detected at 92 cm above S= 10 mJy (5 (sigma)) within a period of 1 to 4 months after the burst. However, when we compared the field with Westerbork Northern Sky Survey data, taken two years prior to GRB 940301, we found two radio sources with significantly increased flux densities. These sources, only 17 min. apart, are located at the 2.3 and 2.6(sigma) Compton Telescope confidence contours. Their separation from the Inter Planetary Network annulus virtually excludes association with GRB 940301. Further observations in January 1996 reveal that the sources continued to change in flux density. The relatively large flux density variations at 92 cm, compared to those at higher frequencies, and the inverted spectra in the frequency range from 325-38O MHz make the sources somewhat unusual. Because the sources were already detected at 5 GHz in 1986 most, if not all, of the radio emission is probably associated with activity in Active Galactic Nuclei in distant galaxies.

  11. GRB 060505: A Possible Short-Duration Gamma-Ray Burst in a Star Forming Region at Redshift of 0.09

    NASA Technical Reports Server (NTRS)

    Ofek, E. O.; Cenko, S. B.; Gal-Yam, A.; Fox, D. B.; Nakar, E.; Rau, A.; Frail, D. A.; Kullkarni, S. R.; Price, P. A.; Schmidt, B. P.; Soderberg, A. M.; Peterson, B.; Berger, E.; Sharon, K.; Shemmer, O.; Penprase, B. E.; Chevalier, R. A.; Brown, P. J.; Burrows, D. N.; Gehrels, N.; Harrison, F.; Holland, S. T.

    2007-01-01

    On May 5, 2006 a four-second duration, low-energy, approximately 10(exp 59) erg, Gamma-Ray Burst (GRB) was observed, spatially associated with a z=0.0894 galaxy. Here, we report the discovery of the GRB optical afterglow and observations of its environment using gemini-south, Hubble Space Telescope (HST), Chandra, Swift and the Very Large Array. The optical afterglow of this GRB is spatially associated with a prominent star forming region in the Sc-type galaxy 2dFGRS S173Z112. Its proximity to a star forming region suggests that the progenitor delay time, from birth to explosion, is smaller than about 10 Myr. Our HST deep imaging rules out the presence of a supernova brighter than an absolute magnitude of about -11 (or -126 in case of 'maximal' extinction) at about two weeks after the burst, and limits the ejected mass of radioactive Nickel 56 to be less than about 2x10(exp -4) solar mass (assuming no extinction). Although it was suggested that GRB 060505 may belong to a new class of long-duration GRBs with no supernova, we argue that the simplest interpretation is that the physical mechanism for this burst is the same as for short-duration GRBs.

  12. Dust Cloud Dynamics in Complex Plasma Afterglow

    SciTech Connect

    Layden, B.; Samarian, A. A.; Vladimirov, S. V.; Coueedel, L.

    2008-09-07

    Experimental observations of dust cloud dynamics in a RF discharge afterglow are presented. Image analysis is used to extract information from videos taken of the plasma. Estimations of the mean confining electric field have been made for different experimental conditions using a model for the contraction of the dust cloud. Dust particle trajectories in the late afterglow evidence the co-existence of positively and negatively charged dust particles.

  13. Afterglow of a microwave microstrip plasma as an ion source for mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Kevin P.; White, Allen; Broekaert, José A. C.; Hieftje, Gary M.

    2015-01-01

    A microwave-induced plasma that was previously used for optical emission spectrometry has been repurposed as an afterglow ion source for mass spectrometry. This compact microwave discharge, termed the microstrip plasma (MSP), is operated at 20-50 W and 2.45 GHz in helium at a flow of 300 mL/min. The primary background ions present in the afterglow are ionized and protonated water clusters. An exponential dilution chamber was used to introduce volatile organic compounds into the MSP afterglow and yielded limits of detection in the 40 ppb to 7 ppm range (v/v). A hydride-generation system was also utilized for detection of volatile hydride-forming elements (arsenic, antimony, tin) in the afterglow and produced limits of detection in the 10-100 ppb range in solution. The MSP afterglow was found capable of desorption and ionization of analyte species directly from a solid substrate, suggesting its use as an ion source for ambient desorption/ionization mass spectrometry.

  14. On binary-driven hypernovae and their nested late X-ray emission

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Muccino, M.; Bianco, C. L.; Enderli, M.; Izzo, L.; Kovacevic, M.; Penacchioni, A. V.; Pisani, G. B.; Rueda, J. A.; Wang, Y.

    2014-05-01

    Context. The induced gravitational collapse (IGC) paradigm addresses the very energetic (1052-1054 erg) long gamma-ray bursts (GRBs) associated to supernovae (SNe). Unlike the traditional "collapsar" model, an evolved FeCO core with a companion neutron star (NS) in a tight binary system is considered as the progenitor. This special class of sources, here named "binary-driven hypernovae" (BdHNe), presents a composite sequence composed of four different episodes with precise spectral and luminosity features. Aims: We first compare and contrast the steep decay, the plateau, and the power-law decay of the X-ray luminosities of three selected BdHNe (GRB 060729, GRB 061121, and GRB 130427A). Second, to explain the different sizes and Lorentz factors of the emitting regions of the four episodes, for definiteness, we use the most complete set of data of GRB 090618. Finally, we show the possible role of r-process, which originates in the binary system of the progenitor. Methods: We compare and contrast the late X-ray luminosity of the above three BdHNe. We examine correlations between the time at the starting point of the constant late power-law decay t*a, the average prompt luminosity ⟨ Liso ⟩, and the luminosity at the end of the plateau La. We analyze a thermal emission (~ 0.97-0.29 keV), observed during the X-ray steep decay phase of GRB 090618. Results: The late X-ray luminosities of the three BdHNe, in the rest-frame energy band 0.3-10 keV, show a precisely constrained "nested" structure. In a space-time diagram, we illustrate the different sizes and Lorentz factors of the emitting regions of the three episodes. For GRB 090618, we infer an initial dimension of the thermal emitter of ~ 7 × 1012 cm, expanding at Γ ≈ 2. We find tighter correlations than the Dainotti-Willingale ones. Conclusions: We confirm a constant slope power-law behavior for the late X-ray luminosity in the source rest frame, which may lead to a new distance indicator for BdHNe. These results

  15. Implications of Lag-Luminosity Relationship for Unified GRB Paradigms

    NASA Technical Reports Server (NTRS)

    Norris, J. P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Spectral lags (tau(sub lag)) are deduced for 1437 long (T(sub 90) greater than 2 s) BATSE gamma-ray bursts (GRBs) with peak flux F(sub p) greater than 0.25 photons cm(sup -2)/s, near to the BATSE trigger threshold. The lags are modeled to approximate the observed distribution in the F(sub p)-T(sub lag) plane, realizing a noise-free representation. Assuming a two-branch lag-luminosity relationship, the lags are self-consistently corrected for cosmological effects to yield distributions in luminosity, distance, and redshift. The results have several consequences for GRB populations and for unified gamma-ray/afterglow scenarios which would account for afterglow break times and gamma-ray spectral evolution in terms of jet opening angle, viewing angle, or a profiled jet with variable Lorentz factor: A component of the burst sample is identified - those with few, wide pulses, lags of a few tenths to several seconds, and soft spectra - whose Log[N]-Log[F(sub p)] distribution approximates a -3/2 power-law, suggesting homogeneity and thus relatively nearby sources. The proportion of these long-lag bursts increases from negligible among bright BATSE bursts to approx. 50% at trigger threshold. Bursts with very long lags, approx. 1-2 less than tau(sub lag) (S) less than 10, show a tendency to concentrate near the Supergalactic Plane with a quadrupole moment of approx. -0.10 +/- 0.04. GRB 980425 (SN 1998bw) is a member of this subsample of approx. 90 bursts with estimated distances less than 100 Mpc. The frequency of the observed ultra-low luminosity bursts is approx. 1/4 that of SNe Ib/c within the same volume. If truly nearby, the core-collapse events associated with these GRBs might produce gravitational radiation detectable by LIGO-II. Such nearby bursts might also help explain flattening of the cosmic ray spectrum at ultra-high energies, as observed by AGASA.

  16. Observation on long afterglow of Tb{sup 3+} in CaWO{sub 4}

    SciTech Connect

    Wu, Haoyi; Hu, Yihua; Kang, Fengwen; Chen, Li; Wang, Xiaojuan; Ju, Guifang; Mu, Zhongfei

    2011-12-15

    Graphical abstract: The afterglow of Tb{sup 3+} is observed in CaWO{sub 4} matrix. The main emission of the afterglow is ascribed to the {sup 5}D{sub 4} {yields} {sup 7}F{sub 5} and {sup 5}D{sub 4} {yields} {sup 7}F{sub 6}. Emission due to {sup 5}D{sub 3} {yields} {sup 7}F{sub 4} and {sup 5}D{sub 3} {yields} {sup 7}F{sub 5} is weak. The cross-relaxation dominate the afterglow emission and it enhances the transition from {sup 5}D{sub 4} whereas from {sup 5}D{sub 3}. Highlights: Black-Right-Pointing-Pointer A green long afterglow is observed from Tb{sup 3+} in CaWO{sub 4} matrix. Black-Right-Pointing-Pointer Two traps which may have a strong influence on the afterglow properties are revealed by TL. Black-Right-Pointing-Pointer A mechanism model based on energy transfer from WO{sub 4}{sup 2-} group to Tb{sup 3+} followed by cross-relaxation is proposed. -- Abstract: The Tb{sup 3+} doped CaWO{sub 4} phosphors are synthesized via high temperature solid state reaction. The X-ray diffraction shows that small amount of Tb{sup 3+} does not have a significant influence on the structure of CaWO{sub 4}. A broad absorption band of the WO{sub 4}{sup 2-} group is observed from photoluminescence and the energy transfer from WO{sub 4}{sup 2-} group to Tb{sup 3+} ions induces the f-f transition. The cross-relaxation between two adjacent Tb{sup 3+} ions weakens {sup 5}D{sub 3}-{sup 7}F{sub j} transitions and enhances the {sup 5}D{sub 4}-{sup 7}F{sub j} transitions, leading to a green long afterglow of the phosphors. The thermoluminescence curves centered around 75 Degree-Sign C reveal the trap depth for afterglow generation is about 0.74-0.77 eV. The optimum Tb{sup 3+} concentration for afterglow properties is about 1%. A deep hole trap is induced when Tb{sup 3+} concentration exceeds 1% and it suppresses the thermoluminescence and the decay properties.

  17. Exploring the first stars with rapid GRB follow-up observations

    NASA Astrophysics Data System (ADS)

    Cucchiara, Antonino; Cenko, Stephen; Schmidt, Brian; Perley, Daniel; Berger, Edo; Fox, Derek; Fruchter, Andrew; Bloom, Joshua; Prochaska, Jason X.; Lopez, Sebastian; Cobb, Bethany; Roth, Kathy; Levan, Andrew; Tanvir, Nial; Rapoport, Sharon; Yuan, Fang; Chornock, Ryan; Wen-Fai, Fong; Morgan, Adam; Wiersema, Klaas

    2013-02-01

    GRBs provide a unique window on exotic, highly relativistic physics. Our discovery of cosmic explosions like GRB090423 at z=8.2, breaking the record for the most distant known object, also demonstrates the power of using GRBs as lighthouses visible into the epoch of re-ionization, pinpointing the earliest stars and galaxies. Therefore, we intend (i) to observe GRBs at very high-z, in order to explore the IGM during reionization and place fundamental constraints on the early epochs of star-formation; (ii) to study in detail the class of short-duration bursts, especially their electromagnetic signatures in relation to gravitational-wave sources; (iii) to observe exceptionally energetic bursts, such as detected by the Fermi-LAT satellite in order to test theories of quantum gravity; (iv) continue our quest for low-z GRBs associated with supernovae, which, in conjunction with a larger sample of GRB afterglow spectra will provide unique insights into the stellar progenitors and explosion sites of these intriguing phenomena. Gemini, with its flexible schedule and instrumentation suite, represents a cornerstone facility of global GRB research and we will continue to use it in combination with a large network of other facilities.

  18. Optical Light Curve and Cooling Break of GRB 050502A

    NASA Astrophysics Data System (ADS)

    Yost, S. A.; Alatalo, K.; Rykoff, E. S.; Aharonian, F.; Akerlof, C. W.; Ashley, M. C. B.; Blake, C. H.; Bloom, J. S.; Boettcher, M.; Falco, E. E.; Göǧüş, E.; Güver, T.; Halpern, J. P.; Horns, D.; Joshi, M.; Kızıloǧlu, Ü.; McKay, T. A.; Mirabal, N.; Özel, M.; Phillips, A.; Quimby, R. M.; Rujopakarn, W.; Schaefer, B. E.; Shields, J. C.; Skrutskie, M.; Smith, D. A.; Starr, D. L.; Swan, H. F.; Szentgyorgyi, A.; Vestrand, W. T.; Wheeler, J. C.; Wren, J.

    2006-01-01

    We present light curves of the afterglow of GRB 050502A, including very early data at t-tGRB<60 s. The light curve is composed of unfiltered ROTSE-IIIb optical observations from 44 s to 6 hr postburst, R-band MDM observations from 1.6 to 8.4 hr postburst, and PAIRITEL JHKs observations from 0.6 to 2.6 hr postburst. The optical light curve is fit by a broken power law, where tα steepens from α=-1.13+/-0.02 to -1.44+/-0.02 at ~5700 s. This steepening is consistent with the evolution expected for the passage of the cooling frequency νc through the optical band. Even in our earliest observation at 44 s postburst, there is no evidence that the optical flux is brighter than a backward extrapolation of the later power law would suggest. The observed decay indices and spectral index are consistent with either an ISM or a wind fireball model, but slightly favor the ISM interpretation. The expected spectral index in the ISM interpretation is consistent within 1 σ with the observed spectral index β=-0.8+/-0.1 the wind interpretation would imply a spectral index slightly (~2 σ) shallower than observed. A small amount of dust extinction at the source redshift could steepen an intrinsic spectrum sufficiently to account for the observed value of β. In this picture, the early optical decay, with the peak at or below 4.7×1014 Hz at 44 s, requires very small electron and magnetic energy partitions from the fireball.

  19. Effective absorbing column density in the gamma-ray burst afterglow X-ray spectra

    NASA Astrophysics Data System (ADS)

    Campana, S.; Bernardini, M. G.; Braito, V.; Cusumano, G.; D'Avanzo, P.; D'Elia, V.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2014-07-01

    We investigate the scaling relation between the observed amount of absorption in the X-ray spectra of gamma-ray burst afterglows and the absorber redshift. Through dedicated numerical simulations of an ideal instrument, we establish that this dependence has a power-law shape with index 2.4. However, for real instruments, this value depends on their low-energy cut-off, spectral resolution and on the detector spectral response in general. We thus provide appropriate scaling laws for specific instruments. Finally, we discuss the possibility to measure the absorber redshift from X-ray data alone. We find that 105-106 counts in the 0.3-10 keV band are needed to constrain the redshift with 10 per cent accuracy. As a test case, we discuss the XMM-Newton observation of GRB 090618 at z = 0.54. We are able to recover the correct redshift of this burst with the expected accuracy.

  20. Apparent brightness distribution of GRB host galaxies

    NASA Astrophysics Data System (ADS)

    Bagoly, Zsolt; Racz, Istvan; Gyorgy Balazs, Lajos; Toth, Viktor; Horvath, Istvan

    2015-08-01

    We studied the relationship between the Swift GRB data and the optical brightness of the host galaxy measured by the Keck telescope. We calculated the unbiased distribution of the host's optical brightness by making use the survival analysis. Based on the sample obtained from merging the Swift GRB table and the Keck optical data we studied also the dependence of this distribution on the GRB's data.

  1. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  2. Study of nitrogen flowing afterglow with mercury vapor injection

    SciTech Connect

    Mazánková, V. Krčma, F.; Trunec, D.

    2014-10-21

    The reaction kinetics in nitrogen flowing afterglow with mercury vapor addition was studied by optical emission spectroscopy. The DC flowing post-discharge in pure nitrogen was created in a quartz tube at the total gas pressure of 1000 Pa and discharge power of 130 W. The mercury vapors were added into the afterglow at the distance of 30 cm behind the active discharge. The optical emission spectra were measured along the flow tube. Three nitrogen spectral systems – the first positive, the second positive, and the first negative, and after the mercury vapor addition also the mercury resonance line at 254 nm in the spectrum of the second order were identified. The measurement of the spatial dependence of mercury line intensity showed very slow decay of its intensity and the decay rate did not depend on the mercury concentration. In order to explain this behavior, a kinetic model for the reaction in afterglow was developed. This model showed that the state Hg(6 {sup 3}P{sub 1}), which is the upper state of mercury UV resonance line at 254 nm, is produced by the excitation transfer from nitrogen N{sub 2}(A{sup 3}Σ{sup +}{sub u}) metastables to mercury atoms. However, the N{sub 2}(A{sup 3}Σ{sup +}{sub u}) metastables are also produced by the reactions following the N atom recombination, and this limits the decay of N{sub 2}(A{sup 3}Σ{sup +}{sub u}) metastable concentration and results in very slow decay of mercury resonance line intensity. It was found that N atoms are the most important particles in this late nitrogen afterglow, their volume recombination starts a chain of reactions which produce excited states of molecular nitrogen. In order to explain the decrease of N atom concentration, it was also necessary to include the surface recombination of N atoms to the model. The surface recombination was considered as a first order reaction and wall recombination probability γ = (1.35 ± 0.04) × 10{sup −6} was determined from the experimental data. Also

  3. Constraining Stellar Properties of Intervening Damped Lyα and Mg II Absorbing Galaxies toward GRB 050730

    NASA Astrophysics Data System (ADS)

    Minowa, Y.; Okoshi, K.; Kobayashi, N.; Takami, H.

    2012-09-01

    We performed multiband deep imaging of the field around GRB 050730 to identify the host galaxies of intervening absorbers, which consist of a damped Lyα absorption (DLA) system at z abs = 3.564, a sub-DLA system at z abs = 3.022, and strong Mg II absorption systems at z abs = 1.773 and 2.253. Our observations were performed after the gamma-ray burst afterglow had disappeared. Thus, our imaging survey has a higher sensitivity to the host galaxies of the intervening absorbers than the normal imaging surveys in the direction of QSOs, for which the QSO glare tends to hide the foreground galaxies. In this deep imaging survey, we could not detect any unambiguous candidates for the host galaxies of the intervening absorbers. Using the 3σ upper limit of the flux in the optical to mid-infrared observing bands, which corresponds to the UV to optical bands in the rest frame of the intervening absorbers, we constrained the star formation rates and stellar masses of the hosts. We estimated the star formation rates for the intervening absorbers to be <~ 2.5 M ⊙ yr-1 for z > 3 DLAs and <~ 1.0 M ⊙ yr-1 for z ~ 2 Mg II systems. Their stellar masses are estimated to be several times 109 M ⊙ or smaller for all intervening galaxies. These properties are comparable to dwarf galaxies, rather than the massive star-forming galaxies commonly seen in the z > 2 galaxy surveys based on emission-line selection or color selection.

  4. Evolution of the dust-to-metals ratio in high-redshift galaxies probed by GRB-DLAs

    NASA Astrophysics Data System (ADS)

    Wiseman, P.; Schady, P.; Bolmer, J.; Krühler, T.; Yates, R. M.; Greiner, J.; Fynbo, J. P. U.

    2017-02-01

    Context. Several issues regarding the nature of dust at high redshift remain unresolved: its composition, its production and growth mechanisms, and its effect on background sources. Aims: We provide a more accurate relation between dust depletion levels and dust-to-metals ratio (DTM), and to use the DTM to investigate the origin and evolution of dust in the high-redshift Universe via gamma-ray burst damped Lyman-alpha absorbers (GRB-DLAs). Methods: We use absorption-line measured metal column densities for a total of 19 GRB-DLAs, including five new GRB afterglow spectra from VLT/X-Shooter. We use the latest linear models to calculate the dust depletion strength factor in each DLA. Using these values we calculate total dust and metal column densities to determine a DTM. We explore the evolution of DTM with metallicity, and compare it to previous trends in DTM measured with different methods. Results: We find significant dust depletion in 16 of our 19 GRB-DLAs, yet 18 of the 19 have a DTM significantly lower than the Milky Way. We find that DTM is positively correlated with metallicity, which supports a dominant ISM grain-growth mode of dust formation. We find a substantial discrepancy between the dust content measured from depletion and that derived from the total V-band extinction, AV, measured by fitting the afterglow SED. We advise against using a measurement from one method to estimate that from the other until the discrepancy can be resolved. Based on observations collected at the European Southern Observatory, Paranal, Chile, Program IDs: 088.A-0051(B), 089.A-0067(B), 091.C-0934, 094.A-0134(A).

  5. Implications for the Origin of GRB 051103 from LIGO Observations

    NASA Technical Reports Server (NTRS)

    Bizouard, M. A.; Dietz, A.; Guidi, G. M.; Was, M.; Camp, J. B.; Cannizzo, J.; Stroeer, A. S.; Blackburn, L.

    2012-01-01

    We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6Mpc from Earth. Possible progenitors for short-hard GRBs include compact object mergers and soft gamma repeater (SGR) giant flares. A merger progenitor would produce a characteristic GW signal that should be detectable at the distance of M81, while GW emission from an SGR is not expected to be detectable at that distance. We found no evidence of a GW signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission with a jet semi-angle of 30. we exclude a binary neutron star merger in M81 as the progenitor with a confidence of 98%. Neutron star-black hole mergers are excluded with > 99% confidence. If the event occurred in M81 our findings support the hypothesis that GRB 051103 was due to an SGR giant flare, making it the most distant extragalactic magnetar observed to date.

  6. Probing the Nature of Short Swift Bursts via Deep INTEGRAL Monitoring of GRB 050925

    NASA Technical Reports Server (NTRS)

    Sakamoto, T.; Barbier, L.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; Sato, G.; Stamatikos, M.; Tueller, J.

    2010-01-01

    We present results from Swift, XMM-Newton, and deep INTEGRAL monitoring in the region of GRB 050925. This short Swift burst is a candidate for a newly discovered soft gamma-ray repeater (SGR) with the following observational burst properties: 1) galactic plane (b=-0.1 deg) localization, 2) 150 msec duration, and 3) a blackbody rather than a simple power-law spectral shape (with a significance level of 97%). We found two possible X-ray counterparts of GRB 050925 by comparing the X-ray images from Swift XRT and XMM-Newton. Both X-ray sources show the transient behavior with a power-law decay index shallower than -1. We found no hard X-ray emission nor any additional burst from the location of GRB 050925 in approximately 5 Ms of INTEGRAL data. We discuss about the three BATSE short bursts which might be associated with GRB 050925, based on their location and the duration. Assuming GRB 050925 is associated with the H(sub II), regions (W 58) at the galactic longitude of 1=70 deg, we also discuss the source frame properties of GRB 050925.

  7. Synthesis of ZnS:Ag,Co water-soluble blue afterglow nanoparticles and application in photodynamic activation

    NASA Astrophysics Data System (ADS)

    Ma, Lun; Zou, Xiaoju; Hossu, Marius; Chen, Wei

    2016-08-01

    Silver and cobalt co-doped ZnS (ZnS:Ag,Co) water-soluble afterglow nanoparticles were synthesized using a wet chemistry method followed by aging at room temperature. The nanoparticles had a cubic zinc blende structure with average sizes of approximately 4 nm and emitted a blue fluorescence emission centered at 441 nm due to radiative transitions from surface defects to Ag+ luminescent centers. Intense afterglow emission peaking at 475 nm from the obtained nanoparticles was observed and was red-shifted compared to the fluorescence emission peak. X-ray photoelectron spectroscopy revealed a large increase of O/S ratio, indicating a surface oxidation process during aging. The S vacancies produced accordingly may contribute to form more electron traps and enhance afterglow. The ZnS:Ag,Co afterglow nanoparticles have a very low dark-toxicity and are applied as a light source for photodynamic therapy activation by conjugating with protoporphyrin together. Our preliminary study has shown that the ZnS:Ag,Co afterglow nanoparticles can significantly reduce the x-ray dosage used in activation and thus may be a very promising candidate for future x-ray excited photodynamic therapy in deep cancer treatment.

  8. GRB Astrophysics with LOBSTER

    SciTech Connect

    Hudec, R.; Pina, L.; Sveda, L.; Inneman, A.

    2006-05-19

    We refer on the recent developments of LOBSTER project suggesting novel wide-field Lobster-Eye type of X-ray All Sky Monitor to detect and to analyze GRBs including XRF and X-ray rich GRBs. The triggers can be detected and localized by their X-ray emission in the 0.1 - 8 keV energy range. The system exhibits fine detecting sensitivities of order of 10-12 ergcm-2s-1 and the localization accuracy is of order of a few arcmin. The LOBSTER is expected to contribute significantly to analyses of GRBs and especially the XRFs.

  9. AQUA: a very fast automatic reduction pipeline for near real-time GRBs early afterglow detection

    NASA Astrophysics Data System (ADS)

    Di Paola, Andrea; Antonelli, Lucio A.; Testa, Vincenzo; Patria, Giorgio

    2002-12-01

    AQUA (Automated QUick Analysis) is the fast reduction pipeline of the Near Infra-Red (NIR) images obtained by the REM telescope. REM (Rapid Eye Mount) is a robotic NIR/Optical 60cm telescope for fast detection of early afterglow of Gamma Ray Bursts (GRB). NIR observations of GRBs early afterglow are of crucial importance for GRBs science, revealing even optical obscured or high redshift events. On the technical side, they pose a series of problems: luminous background, bright sources (as the counterparts should be observed few seconds after the satellite trigger) and fast detection force high rate images acquisition. Even if the observational strategy will change during the same event observation depending on the counterpart characteristics, we will start with 1 second exposures at the fastest possible rate. The main guideline in the AQUA pipeline development is to allow such a data rate along all the night with nearly real-time results delivery. AQUA will start from the raw images and will deliver an alert with coordinates, photometry and colors to larger telescopes to allow prompt spectroscopic and polarimetric observations. Very fast processing for the raw 512×512 32bit images and variable sources detection with both sources catalogs and images comparison have been implemented to obtain a processing speed of at least 1 image/sec. AQUA is based on ANSI-C code optimized to run on a dual Athlon Linux PC with careful MMX and SSE instructions utilization.

  10. Gamma-Ray bursts: accumulating afterglow implications, progenitor clues, and prospects.

    PubMed

    Mészáros, P

    2001-01-05

    Gamma-ray bursts (GRBs) are sudden, intense flashes of gamma rays that, for a few blinding seconds, light up in an otherwise fairly dark gamma-ray sky. They are detected at the rate of about once a day, and while they are on, they outshine every other gamma-ray source in the sky, including the sun. Major advances have been made in the last 3 or 4 years, including the discovery of slowly fading x-ray, optical, and radio afterglows of GRBs, the identification of host galaxies at cosmological distances, and evidence showing that many GRBs are associated with star-forming regions and possibly supernovae. Progress has been made in understanding how the GRB and afterglow radiation arises in terms of a relativistic fireball shock model. These advances have opened new vistas and questions on the nature of the central engine, the identity of their progenitors, the effects of the environment, and their possible gravitational wave, cosmic ray, and neutrino luminosity. The debates on these issues indicate that GRBs remain among the most mysterious puzzles in astrophysics.

  11. MONSTER IN THE DARK: THE ULTRALUMINOUS GRB 080607 AND ITS DUSTY ENVIRONMENT

    SciTech Connect

    Perley, D. A.; Morgan, A. N.; Miller, A. A.; Bloom, J. S.; Cenko, S. B.; Li, W.; Filippenko, A. V.; Butler, N. R.; Christian, P.; Updike, A.; Hartmann, D. H.; Yuan, F.; Akerlof, C. W.; Prochaska, J. X.; Tanvir, N. R.; Levan, A. J.; Milne, P.; Rujopakarn, W.; Rykoff, E. S.

    2011-02-15

    We present early-time optical through infrared photometry of the bright Swift gamma-ray burst (GRB) 080607, starting only 6 s following the initial trigger in the rest frame. Complemented by our previously published spectroscopy, this high-quality photometric data set allows us to solve for the extinction properties of the redshift 3.036 sightline, giving perhaps the most detailed information to date on the ultraviolet continuum absorption properties of any sightline outside our Local Group. The extinction properties are not adequately modeled by any ordinary extinction template (including the average Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud curves), partially because the 2175 A feature (while present) is weaker by about a factor of two than when seen under similar circumstances locally. However, the spectral energy distribution is exquisitely fitted by the more general Fitzpatrick and Massa parameterization of Local-Group extinction, putting it in the same family as some peculiar Milky Way extinction curves. After correcting for this (considerable, A{sub V} = 3.3 {+-} 0.4 mag) extinction, GRB 080607 is revealed to have been among the most optically luminous events ever observed, comparable to the naked-eye burst GRB 080319B. Its early peak time (t{sub rest} < 6 s) indicates a high initial Lorentz factor ({Gamma}>600), while the extreme luminosity may be explained in part by a large circumburst density. Only because of its early high luminosity could the afterglow of GRB 080607 be studied in such detail in spite of the large attenuation and great distance, making this burst an excellent prototype for the understanding of other highly obscured extragalactic objects, and of the class of 'dark' GRBs in particular.

  12. From Engine to Afterglow: Collapsars Naturally Produce Top-heavy Jets and Early-time Plateaus in Gamma-Ray Burst Afterglows

    NASA Astrophysics Data System (ADS)

    Duffell, Paul C.; MacFadyen, Andrew I.

    2015-06-01

    We demonstrate that the steep decay and long plateau in the early phases of gamma-ray burst X-ray afterglows are naturally produced in the collapsar model, by a means ultimately related to the dynamics of relativistic jet propagation through a massive star. We present two-dimensional axisymmetric hydrodynamical simulations that start from a collapsar engine and evolve all the way through the late afterglow phase. The resultant outflow includes a jet core that is highly relativistic after breaking out of the star, but becomes baryon loaded after colliding with a massive outer shell, corresponding to mass from the stellar atmosphere of the progenitor star which became trapped in front of the jet core at breakout. The prompt emission produced before or during this collision would then have the signature of a high Lorentz factor jet, but the afterglow is produced by the amalgamated post-collision ejecta that has more inertia than the original highly relativistic jet core and thus has a delayed deceleration. This naturally explains the early light curve behavior discovered by Swift, including a steep decay and a long plateau, without invoking late-time energy injection from the central engine. The numerical simulation is performed continuously from engine to afterglow, covering a dynamic range of over 10 orders of magnitude in radius. Light curves calculated from the numerical output demonstrate that this mechanism reproduces basic features seen in early afterglow data. Initial steep decays are produced by internal shocks, and the plateau corresponds to the coasting phase of the outflow.

  13. FROM ENGINE TO AFTERGLOW: COLLAPSARS NATURALLY PRODUCE TOP-HEAVY JETS AND EARLY-TIME PLATEAUS IN GAMMA-RAY BURST AFTERGLOWS

    SciTech Connect

    Duffell, Paul C.; MacFadyen, Andrew I. E-mail: macfadyen@nyu.edu

    2015-06-20

    We demonstrate that the steep decay and long plateau in the early phases of gamma-ray burst X-ray afterglows are naturally produced in the collapsar model, by a means ultimately related to the dynamics of relativistic jet propagation through a massive star. We present two-dimensional axisymmetric hydrodynamical simulations that start from a collapsar engine and evolve all the way through the late afterglow phase. The resultant outflow includes a jet core that is highly relativistic after breaking out of the star, but becomes baryon loaded after colliding with a massive outer shell, corresponding to mass from the stellar atmosphere of the progenitor star which became trapped in front of the jet core at breakout. The prompt emission produced before or during this collision would then have the signature of a high Lorentz factor jet, but the afterglow is produced by the amalgamated post-collision ejecta that has more inertia than the original highly relativistic jet core and thus has a delayed deceleration. This naturally explains the early light curve behavior discovered by Swift, including a steep decay and a long plateau, without invoking late-time energy injection from the central engine. The numerical simulation is performed continuously from engine to afterglow, covering a dynamic range of over 10 orders of magnitude in radius. Light curves calculated from the numerical output demonstrate that this mechanism reproduces basic features seen in early afterglow data. Initial steep decays are produced by internal shocks, and the plateau corresponds to the coasting phase of the outflow.

  14. Testing an unifying view of Gamma Ray Burst afterglows

    NASA Astrophysics Data System (ADS)

    Nardini, M.; Ghisellini, G.; Ghirlanda, G.; Celotti, A.

    2011-04-01

    Four years after the launch the Swift satellite the nature of the Gamma Ray Bursts (GRBs) broadband afterglow behaviour is still an open issue. The standard external shock fireball model cannot easily explain the combined temporal and spectral properties of optical to X-ray afterglows. We analysed the rest frame de-absorbed and K-corrected optical and X-ray light curves of a sample of 33 GRBs with known redshift and optical extinction at the host frame. We modelled their broadband behaviour as the sum of the standard forward shock emission due to the interaction of a fireball with the circum-burst medium and an additional component. This description provides a good agreement with the observed light curves despite their complexity and diversity and can also account for the lack of achromatic late times jet breaks and the presence of chromatic breaks in several GRBs lightcurves. In order to test the predictions of such modelling we analysed the X-ray time resolved spectra searching for possible spectral breaks within the observed XRT energy band, finding seven GRBs showing such a break. The optical to X-ray SED evolution of these GRBs are consistent with what expected by our interpretation.

  15. Time Resolved Spectroscopy of a Leonid Fireball Afterglow

    NASA Astrophysics Data System (ADS)

    Borovička, Jiří.; Jenniskens, Peter

    Two video spectra of a meteoric afterglow were obtained for the first time during the 1999 Leonid aircraft campaign. The train was produced by a -13 magnitude Leonid fireball at a relatively low height between 91-75 km. The meteor spectrum has a strong hydrogen emission, proportional to 10-20 II atoms per one Fe atom The train spectrum consisted of a red continuum, yellow continuum, and about 50 atomic lines between 3700-9000 Å. The yellow continuum, possibly due to NO_2, was also detected in the persistent train. The red continuum is interpreted as a thermal radiation of dust from meteoric debris at about 1400 K. Evidence for secondary ablation is found in the afterglow. The atomic lines decayed within seconds of the meteor. The lines of Fe I, Mg I, Na I, Ca I, Ca II, Cr I, Mn I, K I, and possibly Al I were present in the glow together with the 5577 Å forbidden O I line. The gas temperature in the train was close to 5000 K at the beginning and decayed to 1200 K within two seconds. However, thermal equilibrium was not satisfied for all populated levels.

  16. AN r-PROCESS KILONOVA ASSOCIATED WITH THE SHORT-HARD GRB 130603B

    SciTech Connect

    Berger, E.; Fong, W.; Chornock, R.

    2013-09-10

    We present ground-based optical and Hubble Space Telescope (HST) optical and near-IR observations of the short-hard GRB 130603B at z = 0.356, which demonstrate the presence of excess near-IR emission matching the expected brightness and color of an r-process powered transient (a {sup k}ilonova{sup )}. The early afterglow fades rapidly with {alpha} {approx}< -2.6 at t Almost-Equal-To 8-32 hr post-burst and has a spectral index of {beta} Almost-Equal-To -1.5 (F{sub {nu}}{proportional_to}t {sup {alpha}}{nu}{sup {beta}}), leading to an expected near-IR brightness at the time of the first HST observation of m{sub F160W}(t = 9.4 days) {approx}> 29.3 AB mag. Instead, the detected source has m{sub F160W} = 25.8 {+-} 0.2 AB mag, corresponding to a rest-frame absolute magnitude of M{sub J} Almost-Equal-To -15.2 mag. The upper limit in the HST optical observations is m{sub F606W} {approx}> 27.7 AB mag (3{sigma}), indicating an unusually red color of V - H {approx}> 1.9 mag. Comparing the observed near-IR luminosity to theoretical models of kilonovae produced by ejecta from the merger of an NS-NS or NS-BH binary, we infer an ejecta mass of M{sub ej} Almost-Equal-To 0.03-0.08 M{sub Sun} for v{sub ej} Almost-Equal-To 0.1-0.3c. The inferred mass matches the expectations from numerical merger simulations. The presence of a kilonova provides the strongest evidence to date that short GRBs are produced by compact object mergers, and provides initial insight on the ejected mass and the primary role that compact object merger may play in the r-process. Equally important, it demonstrates that gravitational wave sources detected by Advanced LIGO/Virgo will be accompanied by optical/near-IR counterparts with unusually red colors, detectable by existing and upcoming large wide-field facilities (e.g., Pan-STARRS, DECam, Subaru, LSST)

  17. Revealing Physical Activity of GRB Central Engine with Macronova/Kilonova Data

    NASA Astrophysics Data System (ADS)

    Shen, Zhao-Qiang; Jin, Zhi-Ping; Liang, Yun-Feng; Li, Xiang; Fan, Yi-Zhong; Wei, Da-Ming

    2017-02-01

    The modeling of Li-Paczyński macronova/kilonova signals gives a reasonable estimate on the neutron-rich material ejected during the neutron star mergers. Usually the accretion disk is more massive than the macronova ejecta, with which the efficiencies of converting the disk mass into prompt emission of three merger-driven GRBs can hence be directly constrained. Supposing the macronovae/kilonovae associated with GRB 050709, GRB 060614, and GRB 130603B arose from radioactive decay of the r-process material, the upper limit on energy conversion efficiencies are found to be as low as ∼10‑6–10‑4. Moreover, for all three events, neutrino annihilation is likely powerful enough to account for the brief gamma-ray flashes. Neutrino annihilation can also explain the “extended” emission lasting ∼100 s in GRB 050709, but does not work for the one in GRB 060614. These progresses demonstrate that the macronova can serve as a novel probe of the central engine activity.

  18. Optical Observations of GRB981226

    NASA Astrophysics Data System (ADS)

    Wozniak, Przemyslaw R.

    1998-12-01

    An attempt to observe optical transient of GRB981226 was made in BeppoSAX 6' radius region reported by Di Ciolo et al. (IAUCirc 7074). On three nights following the announcement, Dec 27-29, approximately between 1:15 and 2:30 UT I collected 10 and 15-minute frames in I band, with the 1.3 m Warsaw University Observatory Telescope on Las Campanas. This amounted to 70,70,80 minutes of integration each night at 1.4, 1.3 and 1.2" seeing respectively.

  19. Investigation on the effect of exposure time on scintillator afterglow for ultra-fast tomography acquisition

    NASA Astrophysics Data System (ADS)

    Zefreh, K. Z.; Welford, F. M.; Sijbers, Jan

    2016-12-01

    Thanks to the ultra-fast endstation of the TOMCAT beamline, it is possible to do a tomographic scan with a sub-second temporal resolution which allows following dynamic processes in 4D (3D space + time). This ultra- high-rate tomography acquisition, exploiting the distinctive peculiarities of synchrotron radiation, provides nondestructive investigation of many dynamic processes which were not possible in the past. For example a continuous tensile test has been conducted recently in-situ for the first time with a frequency of 20 tomograms per second (20 Hz acquisition frequency). In the ultra-fast endstation a scintillator is used to convert X-ray to visible photons that can be detected by the camera. However, this conversion is not ideal and the scintillator response decays exponentially with afterglow. Afterglow can cause resolution degradation and artifacts (such as ring and band) especially with high rotation speed. On the other hand, to achieve a higher scan speed, thicker scintillators are more common because they result in higher emission intensities that can compensate the short exposure time in fast scans. However, the resolution deteriorates as the scintillator's thickness increases and thicker scintillators show higher afterglow. Performing many ultra-fast scans at the TOMCAT beamline with different acquisition rate, we demonstrate how the exposure time effects on the projection data and reconstructed images. Using two different thicknesses of LAG scintillator we also investigate the afterglow artifacts for different acquisition rate and exposure time.

  20. Search for Hard X-Ray Emission from Aquila X-1: High Energy Emission from Gamma-ray Radio Star 2CG 135+1/LSI 61 305

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Several investigations supported by these CCRO grant were completed or are close to completion. The study of EGRET data for the unidentified source 2CG 135+01 was very fruitful. We discovered transient gamma-ray emission by combining several data obtained since 1994 through 1997. It is the first time that time variable emission is established for this enigmatic source, and clearly an interpretation in terms of an isolated radio pulsar (Geminga-like) is disfavored now. Our preferred model is a Galactic source, probably an energetic pulsar (such as PSR129-63) in a binary system producing gamma-rays because of pulsar wind/mass outflow interaction. We also accumulated may data concerning the radio source LSI 61 303, the possible counterpart of 2CG 135+01. We show that a possible anti-correlation between radio and gamma-ray emission exists. This anticorrelation is evident only in the energy range above 100 MeV, as demonstrated by the lack of it obtained from OSSE data. If confirmed, this anti-correlation would prove to be very important for the interpretation of the hundreds of unidentified gamma-ray sources currently discovered by EGRET near the Galactic plane, and would point to a new class of sources in addition to AGNs and isolated pulsars. We also completed the analysis of several time variable gamma-ray sources near the Galactic plane, with the discussion of evidence for transient emission from 2EG J1813-12 and 2EG J1828+01. We completed several investigations regarding gamma-ray bursts (GRBs), including the study of the brightness distribution for different spectral/duration GRB sub-classes, an investigation of acceleration processes and their consequences for GRB afterglow emission [61, the application of the synchrotron shock model of GRBs to X-ray energies.

  1. Optical-infrared flares and radio afterglows by Jovian planets inspiraling into their host stars

    NASA Astrophysics Data System (ADS)

    Yamazaki, Ryo; Hayasaki, Kimitake; Loeb, Abraham

    2017-04-01

    When a planet inspirals into its host star, it releases gravitational energy, which is converted into an expanding bubble of hot plasma. We study the radiation from the bubble and show that it includes prompt optical-infrared emission and a subsequent radio afterglow. The prompt emission from M31 and the Large Magellanic Cloud is detectable by optical-near-infrared transient surveys with a large field of view. The subsequent radio afterglows are detectable for 103-104 yr. The event rate depends on uncertain parameters in the formation and dynamics of giant planets. Future observations of the rate will constrain related theoretical models. If the event rate is high ( ≳ a few events per year), the circumstellar disc must typically be massive, as suggested by recent numerical simulations.

  2. Electrical characterization of the flowing afterglow of N2 and N2/O2 microwave plasmas at reduced pressure

    NASA Astrophysics Data System (ADS)

    Afonso Ferreira, J.; Stafford, L.; Leonelli, R.; Ricard, A.

    2014-04-01

    A cylindrical Langmuir probe was used to analyze the spatial distribution of the number density of positive ions and electrons as well as the electron energy distribution function (EEDF) in the flowing afterglow of a 6 Torr N2 and N2/O2 plasma sustained by a propagating electromagnetic surface wave in the microwave regime. In pure N2 discharges, ion densities were in the mid 1014 m-3 in the pink afterglow and in the mid 1012 m-3 early in the late afterglow. In both pink and late afterglows, the ion population was much higher than the electron population, indicating non-macroscopically neutral media. The EEDF was close to a Maxwellian with an electron temperature of 0.5 ± 0.1 eV, except in the pink afterglow where the temperature rose to 1.1 ± 0.2 eV. This latter behavior is ascribed to N2 vibration-vibration pumping in the pink afterglow that increases the concentration of high N2 vibrational states and thus rises the electron temperature by vibration-electron collisions. After addition of small amounts of O2 in the nominally pure N2 discharge, the charged particles densities and average electron energy first strongly increased and then decreased with increasing O2 concentration. Based on these data and the evolution of the N2+(B) band emission intensities, it is concluded that a significant change in the positive ion composition of the flowing afterglow occurs, going from N2+ in nominally pure N2 discharges to NO+ after addition of trace amounts of O2 in N2.

  3. CONSTRAINING THE GRB-MAGNETAR MODEL BY MEANS OF THE GALACTIC PULSAR POPULATION

    SciTech Connect

    Rea, N.; Gullón, M.; Pons, J. A.; Miralles, J. A.; Perna, R.; Dainotti, M. G.; Torres, D. F.

    2015-11-10

    A large fraction of Gamma-ray bursts (GRBs) displays an X-ray plateau phase within <10{sup 5} s from the prompt emission, proposed to be powered by the spin-down energy of a rapidly spinning newly born magnetar. In this work we use the properties of the Galactic neutron star population to constrain the GRB-magnetar scenario. We re-analyze the X-ray plateaus of all Swift GRBs with known redshift, between 2005 January and 2014 August. From the derived initial magnetic field distribution for the possible magnetars left behind by the GRBs, we study the evolution and properties of a simulated GRB-magnetar population using numerical simulations of magnetic field evolution, coupled with Monte Carlo simulations of Pulsar Population Synthesis in our Galaxy. We find that if the GRB X-ray plateaus are powered by the rotational energy of a newly formed magnetar, the current observational properties of the Galactic magnetar population are not compatible with being formed within the GRB scenario (regardless of the GRB type or rate at z = 0). Direct consequences would be that we should allow the existence of magnetars and “super-magnetars” having different progenitors, and that Type Ib/c SNe related to Long GRBs form systematically neutron stars with higher initial magnetic fields. We put an upper limit of ≤16 “super-magnetars” formed by a GRB in our Galaxy in the past Myr (at 99% c.l.). This limit is somewhat smaller than what is roughly expected from Long GRB rates, although the very large uncertainties do not allow us to draw strong conclusion in this respect.

  4. Apparent brightness distribution of GRB host galaxies

    NASA Astrophysics Data System (ADS)

    Bagoly, Zsolt; Rácz, István I.; Balázs, Lajos G.; Horváth, István; Tóth, L. Viktor

    We studied the unbiased optical brightness distribution which was calculated from the survival analysis of host galaxies (HGs) data and its relationship with the Swift GRB data of the host galaxies observed by the Keck telescope. Based on the sample obtained from merging the Swift GRB table and the Keck optical data we also studied the dependence of this distribution on the GRB's data. Finally, we compared the HGs distribution with standard galaxies distribution of the DEEP2 redshift survey and checked the result with the VIPERS catalogue too.

  5. AFTERGLOW OBSERVATIONS OF FERMI LARGE AREA TELESCOPE GAMMA-RAY BURSTS AND THE EMERGING CLASS OF HYPER-ENERGETIC EVENTS

    SciTech Connect

    Cenko, S. B.; Butler, N. R.; Cobb, B. E.; Cucchiara, A.; Bloom, J. S.; Perley, D. A.; Filippenko, A. V.; Frail, D. A.; Harrison, F. A.; Haislip, J. B.; Reichart, D. E.; Ivarsen, K. M.; LaCluyze, A. P.; Berger, E.; Chandra, P.; Fox, D. B.; Prochaska, J. X.; Kasliwal, M. M.; Kulkarni, S. R.

    2011-05-01

    We present broadband (radio, optical, and X-ray) light curves and spectra of the afterglows of four long-duration gamma-ray bursts (GRBs; GRBs 090323, 090328, 090902B, and 090926A) detected by the Gamma-Ray Burst Monitor and Large Area Telescope (LAT) instruments on the Fermi satellite. With its wide spectral bandpass, extending to GeV energies, Fermi is sensitive to GRBs with very large isotropic energy releases (10{sup 54} erg). Although rare, these events are particularly important for testing GRB central-engine models. When combined with spectroscopic redshifts, our afterglow data for these four events are able to constrain jet collimation angles, the density structure of the circumburst medium, and both the true radiated energy release and the kinetic energy of the outflows. In agreement with our earlier work, we find that the relativistic energy budget of at least one of these events (GRB 090926A) exceeds the canonical value of 10{sup 51} erg by an order of magnitude. Such energies pose a severe challenge for models in which the GRB is powered by a magnetar or a neutrino-driven collapsar, but remain compatible with theoretical expectations for magnetohydrodynamical collapsar models (e.g., the Blandford-Znajek mechanism). Our jet opening angles ({theta}) are similar to those found for pre-Fermi GRBs, but the large initial Lorentz factors ({Gamma}{sub 0}) inferred from the detection of GeV photons imply {theta}{Gamma}{sub 0} {approx} 70-90, values which are above those predicted in magnetohydrodynamic models of jet acceleration. Finally, we find that these Fermi-LAT events preferentially occur in a low-density circumburst environment, and we speculate that this might result from the lower mass-loss rates of their lower-metallicity progenitor stars. Future studies of Fermi-LAT afterglows at radio wavelengths with the order-of-magnitude improvement in sensitivity offered by the Extended Very Large Array should definitively establish the relativistic energy

  6. Metastable atomic species in the N2 flowing afterglow

    NASA Astrophysics Data System (ADS)

    Levaton, J.; Amorim, J.

    2012-03-01

    We have studied by optical emission spectroscopy the post-discharge of a pure N2 DC flowing discharge in such experimental conditions that the pink afterglow and the Lewis-Rayleigh afterglow occur. The emission profiles originated from the NB3Πg, NC3Πu and N2+B2Σu+ states and the NB3Πg,6≤v≤12 and NC3Πu,0≤v≤4 vibrational distributions were obtained in the post-discharge region. With basis on the works of Bockel et al. [S. Bockel, A.M. Diamy, A. Ricard, Surf. Coat. Tech. 74 (1995) 474] and Amorim and Kiohara [J. Amorim, V. Kiohara, Chem. Phys. Lett. 385 (2004) 268], we have obtained the experimental N(4S) and N(2D) relative densities along the post-discharge. A numerical model, previously developed to describe the neutral atomic, molecular and ionic species in the afterglow, was improved to include the kinetics of N(2D) and N(2P) states. Several kinetic mechanisms leading to the production of N(2D) in the post-discharge have been studied in order to explain the experimental data. We have determined that the dominant one is the reaction NX1Σg+,v>8+N(4S)→NX1Σg++N(2D) with an estimated rate constant of 7 × 10-14 cm3 s-1. Also, the fit of the numerical density profiles of NC3Πu and N2+B2Σu+ to the experimental ones has provided the rate constant for reaction NA3Σu++NX1∑g+,v>18→NC3Πu+NX1Σg+. Its estimated value is 4 × 10-13 cm3 s-1. Finally, with the new kinetic scheme, we have found that the ionization in the post-discharge region has important contribution of N(2D) and N(2P) species.

  7. Variability in GRB light curves: Introducing Orthogonal Matching Pursuit

    NASA Astrophysics Data System (ADS)

    Dereli, Husne; Bégué, Damien; Ryde, Felix

    2016-07-01

    Constraining the variability of GRBs is important as it is one of the few keys to estimate many unknown parameters, such as the emission radius, the Lorentz factor, the size of the progenitor. In this work, we introduced the Orthogonal Matching Pursuit (OMP) method to study GRB light curves and to compute the minimum time variability of GRBs. Commonly used in medical sciences, this method reconstructs a signal by choosing among predefined functional shapes. We will discuss the implementation of the code, and compare its performances with those of other dedicated methods (Haar wavelet analysis, peak finding algorithm and step wise filter correlation).

  8. Using contour maps to search for red-shifted 511 keV features in BATSE GRB spectra

    NASA Technical Reports Server (NTRS)

    Varmette, Peter G.

    1993-01-01

    Since their discovery twenty years ago, the origin of gamma-ray bursts (GRB's) has remained an intriguing mystery. The quest to understand these objects has given rise to a plethora of competing theories. Several theories suggest that GRB's are galactic in origin while others suggest that GRB's are cosmological. One piece of evidence that might provide scientistis with a key to understanding the origin of GRB's may be whether or not spectral emission and absorption features exist in burst spectra. If the features exist and can be attributed to either cyclotron lines or to red-shifted 511 keV annihilation lines then credence would be given to those theories that support a galactic origin, i.e. near neutron stars. A method of searching for spectral features in burst spectra (BATSE HER data) is outlined.

  9. The association of GRB 060218 with a supernova and the evolution of the shock wave.

    PubMed

    Campana, S; Mangano, V; Blustin, A J; Brown, P; Burrows, D N; Chincarini, G; Cummings, J R; Cusumano, G; Della Valle, M; Malesani, D; Mészáros, P; Nousek, J A; Page, M; Sakamoto, T; Waxman, E; Zhang, B; Dai, Z G; Gehrels, N; Immler, S; Marshall, F E; Mason, K O; Moretti, A; O'Brien, P T; Osborne, J P; Page, K L; Romano, P; Roming, P W A; Tagliaferri, G; Cominsky, L R; Giommi, P; Godet, O; Kennea, J A; Krimm, H; Angelini, L; Barthelmy, S D; Boyd, P T; Palmer, D M; Wells, A A; White, N E

    2006-08-31

    Although the link between long gamma-ray bursts (GRBs) and supernovae has been established, hitherto there have been no observations of the beginning of a supernova explosion and its intimate link to a GRB. In particular, we do not know how the jet that defines a gamma-ray burst emerges from the star's surface, nor how a GRB progenitor explodes. Here we report observations of the relatively nearby GRB 060218 (ref. 5) and its connection to supernova SN 2006aj (ref. 6). In addition to the classical non-thermal emission, GRB 060218 shows a thermal component in its X-ray spectrum, which cools and shifts into the optical/ultraviolet band as time passes. We interpret these features as arising from the break-out of a shock wave driven by a mildly relativistic shell into the dense wind surrounding the progenitor. We have caught a supernova in the act of exploding, directly observing the shock break-out, which indicates that the GRB progenitor was a Wolf-Rayet star.

  10. Early-time polarized optical light curve of GRB 131030A

    NASA Astrophysics Data System (ADS)

    King, O. G.; Blinov, D.; Giannios, D.; Papadakis, I.; Angelakis, E.; Baloković, M.; Fuhrmann, L.; Hovatta, T.; Khodade, P.; Kiehlmann, S.; Kylafis, N.; Kus, A.; Myserlis, I.; Modi, D.; Panopoulou, G.; Papamastorakis, I.; Pavlidou, V.; Pazderska, B.; Pazderski, E.; Pearson, T. J.; Rajarshi, C.; Ramaprakash, A. N.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Zensus, J. A.

    2014-11-01

    We report the polarized optical light curve of a gamma-ray burst afterglow obtained using the RoboPol instrument. Observations began 655 s after the initial burst of gamma-rays from GRB 131030A, and continued uninterrupted for 2 h. The afterglow displayed a low, constant fractional linear polarization of p = (2.1 ± 1.6) per cent throughout, which is similar to the interstellar polarization measured on nearby stars. The optical brightness decay is consistent with a forward-shock propagating in a medium of constant density, and the low polarization fraction indicates a disordered magnetic field in the shock front. This supports the idea that the magnetic field is amplified by plasma instabilities on the shock front. These plasma instabilities produce strong magnetic fields with random directions on scales much smaller than the total observable region of the shock, and the resulting randomly-oriented polarization vectors sum to produce a low net polarization over the total observable region of the shock.

  11. Optical Flash From GRB 130427A

    NASA Video Gallery

    This movie shows GRB 130427A as viewed by the RAPTOR telescopes located near Los Alamos, N.M, and on Mount Haleakala on the island of Maui, Hawaii. The movie opens with wide-field images acquired b...

  12. Induced gravitational collapse at extreme cosmological distances: the case of GRB 090423

    NASA Astrophysics Data System (ADS)

    Ruffini, R.; Izzo, L.; Muccino, M.; Pisani, G. B.; Rueda, J. A.; Wang, Y.; Barbarino, C.; Bianco, C. L.; Enderli, M.; Kovacevic, M.

    2014-09-01

    Context. The induced gravitational collapse (IGC) scenario has been introduced in order to explain the most energetic gamma ray bursts (GRBs), Eiso = 1052-1054 erg, associated with type Ib/c supernovae (SNe). It has led to the concept of binary-driven hypernovae (BdHNe) originating in a tight binary system composed by a FeCO core on the verge of a SN explosion and a companion neutron star (NS). Their evolution is characterized by a rapid sequence of events: 1) the SN explodes, giving birth to a new NS (νNS). The accretion of SN ejecta onto the companion NS increases its mass up to the critical value; 2) the consequent gravitational collapse is triggered, leading to the formation of a black hole (BH) with GRB emission; 3) a novel feature responsible for the emission in the GeV, X-ray, and optical energy range occurs and is characterized by specific power-law behavior in their luminosity evolution and total spectrum; 4) the optical observations of the SN then occurs. Aims: We investigate whether GRB 090423, one of the farthest observed GRB at z = 8.2, is a member of the BdHN family. Methods: We compare and contrast the spectra, the luminosity evolution, and the detectability in the observations by Swift of GRB 090423 with the corresponding ones of the best known BdHN case, GRB 090618. Results: Identification of constant slope power-law behavior in the late X-ray emission of GRB 090423 and its overlapping with the corresponding one in GRB 090618, measured in a common rest frame, represents the main result of this article. This result represents a very significant step on the way to using the scaling law properties, proven in Episode 3 of this BdHN family, as a cosmological standard candle. Conclusions: Having identified GRB 090423 as a member of the BdHN family, we can conclude that SN events, leading to NS formation, can already occur, namely at 650 Myr after the Big Bang. It is then possible that these BdHNe stem from 40-60 M⊙ binaries. They are probing the

  13. A smoking gun for a neutron star merger in a short GRB?

    NASA Astrophysics Data System (ADS)

    Tanvir, Nial

    2012-10-01

    The nature of short duration gamma-ray bursts {SGRBs} represents one of the great unsolved mysteries of astrophysics today. While a favoured model for their origin is in the merger of two compact objects {e.g. neutron stars} this lacks a smoking gun to date. However, these mergers are expected to create r-process elements and radioactive nickel, visible as a faint, fast transient in the days following the burst, a so-called kilonova. Recent calculations suggest much energy comes out in the near-infrared in the days following the initial burst. Here we propose for such a search in the burst GRB 130603B, the first short-GRB to have a firm redshift established directly from the afterglow. At z 0.3 the faint transient is expected to peak a few days after the burst at a H-band magnitude of 25. Only HST has the sensitivity to detect this source, and the resolution to cleanly resolve it within its host galaxy. Our modest observations will locate, or place strong constraints on the nature of any radioactive transient associated with an prime SGRB, and may finally solve the mystery of the origin of SGRBs. If found, it will also establish that there is an alternative, un-beamed electromagnetic counterpart to binary neutron star mergers, which will have great value in the future in localising gravitational wave sources.

  14. The Second Fermi Large Area Telescope GRB Catalog

    NASA Astrophysics Data System (ADS)

    Kocevski, Daniel; Fermi Large Area Telescope Collaboration

    2017-01-01

    The high-energy emission from gamma-ray bursts (GRBs) is a formidable probe of extreme physics, requiring rapid variability from highly relativistic sources. Despite the advancements in our understanding of GRBs through observations by NASA's Swift and Fermi spacecraft, many fundemental questions regarding the particle acceleration and radiative processes associated with these events remain unanswered. Here we present the most extensive search for emission from GRBs above 40 MeV performed by the Fermi Large Area Telescope (LAT). The resulting catalog includes more than 130 detections and represents an improvement in the detection efficency of GRBs at high-energies of over 50% compared to the first LAT GRB catalog. We utilize this improved sensativity to characterize the high-energy emission from GRBs and review how these observations further our understanding of the nature of these events.

  15. Gamma-ray Burst Afterglows as Probes of Environment and Blastwave Physics: Absorption by Host Galaxy Gas and Dust, Circumburst Media and the Distribution of P

    NASA Technical Reports Server (NTRS)

    Starling, R. L. C.; Wijers, R. a. M. J.; Curran, P.; Rol, E.; Wiersema, K.; Kouveliotou, C.; vanderHorst, A. J.

    2006-01-01

    We use a new approach to obtain limits on the absorbing columns towards a sample of 10 Gamma-ray Bursts observed by BeppoSAX from simultaneous fits to X-ray, optical and IR data, in counts space and including the effects of metallicity. For half the afterglows the best-fitting model to the SED includes SMC-like extinction (as opposed to LMC or MW) and in one LMC-like extinction, and in no cases is there a preference for MW-like extinction. Gas-to-dust ratios generally do not match those of the 3 standard and most well-known extinction models of SMC, LMC and MW, but tend to be higher. We compare the results from this method to those of previous works using other methods. We constrain the jet models for a subsample of the bursts by constraining the cooling break position and power law spectral slopes, allowing the injected electron energy index to be measured. We derive secure values of p from our spectral fits and comparison with the temporal optical and X-ray slopes for 4 afterglows. The mean of these single value, suggesting that either external factors such as circumburst medium play a strong role or that the microphysics is not identical for each GRB. For GRB 971214 we find that the circumburst medium has a wind-like density profile and the cooling frequency appears to be moving to higher frequencies.

  16. Photospheric Emission of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Beloborodov, A. M.; Mészáros, P.

    2017-03-01

    We review the physics of GRB production by relativistic jets that start highly opaque near the central source and then expand to transparency. We discuss dissipative and radiative processes in the jet and how radiative transfer shapes the observed nonthermal spectrum released at the photosphere. A comparison of recent detailed models with observations gives estimates for important parameters of GRB jets, such as the Lorentz factor and magnetization. We also discuss predictions for GRB polarization and neutrino emission.

  17. ON THE NEUTRINO NON-DETECTION OF GRB 130427A

    SciTech Connect

    Gao Shan; Kashiyama, Kazumi; Meszaros, Peter E-mail: kzk15@psu.edu

    2013-07-20

    The recent gamma-ray burst GRB 130427A has an isotropic electromagnetic energy E{sup iso} {approx} 10{sup 54} erg, suggesting an ample supply of target photons for photo-hadronic interactions, which at its low redshift of z {approx} 0.34 would appear to make it a promising candidate for neutrino detection. However, the IceCube collaboration has reported a null result based on a search during the prompt emission phase. We show that this neutrino non-detection can provide valuable information about this gamma-ray burst's (GRB's) key physical parameters such as the emission radius R{sub d} , the bulk Lorentz factor {Gamma}, and the energy fraction converted into cosmic rays {epsilon}{sub p}. The results are discussed both in a model-independent way and in the specific scenarios of an internal shock (IS) model, a baryonic photospheric (BPH) model, and a magnetic photospheric (MPH) model. We find that the constraints are most stringent for the MPH model considered, but the constraints on the IS and the BPH models are fairly modest.

  18. Dissociative recombination studies in stationary and flowing afterglows

    NASA Astrophysics Data System (ADS)

    Skrzypkowski, Miroslaw Piotr

    2000-11-01

    The dissociative recombination of NH4+(NH 3)2,3 cluster-ions with electrons has been studied in a stationary afterglow experiment in which the electron temperature Te was elevated by radio- frequency heating from 300K up to 1000K. The recombination coefficients for the n = 2 and n = 3 cluster ions were found to be equal, α2 = α3 = (4.8 +/- 0.5) × 10-6cm3/s, and to vary with electron temperature as Te-0.65 . The known temperature dependence of the recombination coefficient of Ar2+ ions was remeasured to check the validity of the methods employed to calculate the electron-temperature scale in the experiment. A flowing afterglow/Langmuir probe (FALP) technique in conjunction with spatially resolved optical emission spectroscopy has been used to measure the absolute yield of radiative product states from ion-electron recombination. The technique was applied to the dissociative recombination of CO2 +, HCO+/COH+, HCO2 +, N2O+, and N2OH+/HN 2O+ ions with electrons at 300K. The vibrational distribution in CO(a3Π, v = 0-3) from CO2+ + e and in CO(a3Π, v = 0-4) from HCO+ + e was deduced. Contrary to expectations, no spectral features in the 550-750 region could be ascribed to the dissociative recombination in H3 +/e plasmas. FALP, coupled with spatially-resolved laser induced fluorescence (LIF), was also used in the studies of H- atom branching ratio from H3 + + e.

  19. A Reverse Shock in GRB 160509A

    NASA Astrophysics Data System (ADS)

    Laskar, Tanmoy; Alexander, Kate D.; Berger, Edo; Fong, Wen-fai; Margutti, Raffaella; Shivvers, Isaac; Williams, Peter K. G.; Kopač, Drejc; Kobayashi, Shiho; Mundell, Carole; Gomboc, Andreja; Zheng, WeiKang; Menten, Karl M.; Graham, Melissa L.; Filippenko, Alexei V.

    2016-12-01

    We present the second multi-frequency radio detection of a reverse shock in a γ-ray burst. By combining our extensive radio observations of the Fermi-Large Area Telescope γ-ray burst 160509A at z = 1.17 up to 20 days after the burst with Swift X-ray observations and ground-based optical and near-infrared data, we show that the afterglow emission comprises distinct reverse shock and forward shock contributions: the reverse shock emission dominates in the radio band at ≲10 days, while the forward shock emission dominates in the X-ray, optical, and near-infrared bands. Through multi-wavelength modeling, we determine a circumburst density of {n}0≈ {10}-3 {{cm}}-3, supporting our previous suggestion that a low-density circumburst environment is conducive to the production of long-lasting reverse shock radiation in the radio band. We infer the presence of a large excess X-ray absorption column, N H ≈ 1.5 × 1022 {{cm}}-2, and a high rest-frame optical extinction, A V ≈ 3.4 mag. We identify a jet break in the X-ray light curve at {t}{jet}≈ 6 {days}, and thus derive a jet opening angle of {θ }{jet}≈ 4^\\circ , yielding a beaming-corrected kinetic energy and radiated γ-ray energy of {E}{{K}}≈ 4× {10}50 erg and {E}γ ≈ 1.3× {10}51 erg (1-104 keV, rest frame), respectively. Consistency arguments connecting the forward shocks and reverse shocks suggest a deceleration time of {t}{dec} ≈ 460 s ≈ T 90, a Lorentz factor of {{Γ }}({t}{dec})≈ 330, and a reverse-shock-to-forward-shock fractional magnetic energy density ratio of {R}{{B}}\\equiv {ɛ }{{B},{RS}}/{ɛ }{{B},{FS}}≈ 8. Our study highlights the power of rapid-response radio observations in the study of the properties and dynamics of γ-ray burst ejecta.

  20. Studies on High Energy Radiation Mechanisms and Gamma-Ray Burst Prompt Emissions

    NASA Astrophysics Data System (ADS)

    Zhang, B.

    2014-07-01

    Gamma-Ray Bursts (GRBs) are the most violent high-energy explosion in the universe. They are randomly happened, pulse-like phenomena with short durations. Since its discovery in 1960's by Vela satellite, GRBs have become a hot topic for astrophysical research. In 1997 the BeppoSAX satellite discovered afterglows of GRBs, and then helped to measure GRB redshifts. Thus it was found that GRBs are the events occurred at cosmological distances. Now it is widely accepted that the long bursts with durations longer than 2 s are from the collapsing massive stars, while the short bursts with durations less than 2 s are results of the merging compact binaries. By studying GRBs, the physical processes in ultrarelativistic and very high energy conditions can be investigated, and the researches on other fields, including constraining the cosmological models, can also get helped. The goal of this thesis is to present some discussions on possible radiation mechanisms and prompt light curves of GRBs. Since radiation mechanisms and prompt emissions are related to GRB central engines directly, studying these topics can help us to get a better understanding of some properties of the central engine. In Chapter 1, we review the discovery and observations of GRBs, presenting major achievements from major GRB-monitoring satellites including Compton Gamma-ray Observatory, BeppoSAX satellite, Swift satellite, as well as the latest Fermi Gamma-ray Space Telescope. The multi-wavelength properties of prompt emission as well as afterglows of GRBs are also summarized in Chapter 1. In Chapter 2 the current GRB standard model is presented. According to standard model, a fireball is ejected by the central engine. The internal shock is produced by collisions between various shells with different velocities inside the fireball. The directional kinetic energy of the fireball is then converted to internal energy, and finally the non-thermal radiation (the prompt emission) is produced by internal shocks