Sample records for greater nutrient availability

  1. Root Cortical Senescence Improves Growth under Suboptimal Availability of N, P, and K1[OPEN

    PubMed Central

    Schneider, Hannah M.

    2017-01-01

    Root cortical senescence (RCS) in Triticeae reduces nutrient uptake, nutrient content, respiration, and radial hydraulic conductance of root tissue. We used the functional-structural model SimRoot to evaluate the functional implications of RCS in barley (Hordeum vulgare) under suboptimal nitrate, phosphorus, and potassium availability. The utility of RCS was evaluated using sensitivity analyses in contrasting nutrient regimes. At flowering (80 d), RCS increased simulated plant growth by up to 52%, 73%, and 41% in nitrate-, phosphorus-, and potassium-limiting conditions, respectively. Plants with RCS had reduced nutrient requirement of root tissue for optimal plant growth, reduced total cumulative cortical respiration, and increased total carbon reserves. Nutrient reallocation during RCS had a greater effect on simulated plant growth than reduced respiration or nutrient uptake. Under low nutrient availability, RCS had greater benefit in plants with fewer tillers. RCS had greater benefit in phenotypes with fewer lateral roots at low nitrate availability, but the opposite was true in low phosphorus or potassium availability. Additionally, RCS was quantified in field-grown barley in different nitrogen regimes. Field and virtual soil coring simulation results demonstrated that living cortical volume per root length (an indicator of RCS) decreased with depth in younger plants, while roots of older plants had very little living cortical volume per root length. RCS may be an adaptive trait for nutrient acquisition by reallocating nutrients from senescing tissue and secondarily by reducing root respiration. These simulated results suggest that RCS merits investigation as a breeding target for enhanced soil resource acquisition and edaphic stress tolerance. PMID:28667049

  2. Improving soil nutrient availability increases carbon rhizodeposition under maize and soybean in Mollisols.

    PubMed

    Qiao, Yunfa; Miao, Shujie; Han, Xiaozeng; Yue, Shuping; Tang, Caixian

    2017-12-15

    Rhizodeposited carbon (C) is an important source of soil organic C, and plays an important role in the C cycle in the soil-plant-atmosphere continuum. However, interactive effects of plant species and soil nutrient availability on C rhizodeposition remain unclear. This experiment examined the effect of soil nutrient availability on C rhizodeposition of C4 maize and C3 soybean with contrasting photosynthetic capacity. The soils (Mollisols) were collected from three treatments of no fertilizer (Control), inorganic fertilizer only (NPK), and NPK plus organic manure (NPKM) in a 24-year fertilization field trial. The plants were labelled with 13 C at the vegetative and reproductive stages. The 13 C abundance of shoots, roots and soil were quantified at 0, 7days after 13 C labelling, and at maturity. Increasing soil nutrient availability enhanced the C rhizodeposition due to the greater C fixation in shoots and distribution to roots and soil. The higher amount of averaged below-ground C allocated to soil resulted in greater specific rhizodeposited C from soybean than maize. Additional organic amendment further enhanced them. As a result, higher soil nutrient availability increased total soil organic C under both maize and soybean systems though there was no significant difference between the two crop systems. All these suggested that higher soil nutrient availability favors C rhizodeposition. Mean 80, 260 and 300kgfixedCha -1 were estimated to transfer into soil in the Control, NPK and NPKM treatments, respectively, during one growing season. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Soil Nutrient Assessment for Urban Ecosystems in Hubei, China

    PubMed Central

    Li, Zhi-guo; Zhang, Guo-shi; Liu, Yi; Wan, Kai-yuan; Zhang, Run-hua; Chen, Fang

    2013-01-01

    Recent urban landscape vegetation surveys conducted in many cities in China identified numerous plant nutrient deficiencies, especially in newly developed cities. Soil nutrients and soil nutrient management in the cities of Hubei province have not received adequate attention to date. The aims of this study were to characterize the available nutrients of urban soils from nine cities in Hubei province, China, and to assess how soil nutrient status is related to land use type and topography. Soil nutrients were measured in 405 sites from 1,215 soil samples collected from four land use types (park, institutional [including government building grounds, municipal party grounds, university grounds, and garden city institutes], residential, and roadside verges) and three topographies (mountainous [142–425 m a.s.l], hilly [66–112 m a.s.l], and plain [26–30 m a.s.l]). Chemical analyses showed that urban soils in Hubei had high pH and lower soil organic matter, available nitrogen (N), available phosphorus (P), and available boron (B) concentrations than natural soils. Nutrient concentrations were significantly different among land use types, with the roadside and residential areas having greater concentrations of calcium (Ca), sulfur (S), copper (Cu), manganese (Mn), and zinc (Zn) that were not deficient against the recommended ranges. Topographic comparisons showed statistically significant effects for 8 of the 11 chemical variables (p < 0.05). Concentrations of N, Ca, Mg, S, Cu, and Mn in plain cities were greater than those in mountainous cities and show a negative correlation with city elevation. These results provide data on urban soils characteristics in land use types and topography, and deliver significant information for city planners and policy makers. PMID:24086647

  4. Soil nutrient assessment for urban ecosystems in Hubei, China.

    PubMed

    Li, Zhi-Guo; Zhang, Guo-Shi; Liu, Yi; Wan, Kai-Yuan; Zhang, Run-Hua; Chen, Fang

    2013-01-01

    Recent urban landscape vegetation surveys conducted in many cities in China identified numerous plant nutrient deficiencies, especially in newly developed cities. Soil nutrients and soil nutrient management in the cities of Hubei province have not received adequate attention to date. The aims of this study were to characterize the available nutrients of urban soils from nine cities in Hubei province, China, and to assess how soil nutrient status is related to land use type and topography. Soil nutrients were measured in 405 sites from 1,215 soil samples collected from four land use types (park, institutional [including government building grounds, municipal party grounds, university grounds, and garden city institutes], residential, and roadside verges) and three topographies (mountainous [142-425 m a.s.l], hilly [66-112 m a.s.l], and plain [26-30 m a.s.l]). Chemical analyses showed that urban soils in Hubei had high pH and lower soil organic matter, available nitrogen (N), available phosphorus (P), and available boron (B) concentrations than natural soils. Nutrient concentrations were significantly different among land use types, with the roadside and residential areas having greater concentrations of calcium (Ca), sulfur (S), copper (Cu), manganese (Mn), and zinc (Zn) that were not deficient against the recommended ranges. Topographic comparisons showed statistically significant effects for 8 of the 11 chemical variables (p < 0.05). Concentrations of N, Ca, Mg, S, Cu, and Mn in plain cities were greater than those in mountainous cities and show a negative correlation with city elevation. These results provide data on urban soils characteristics in land use types and topography, and deliver significant information for city planners and policy makers.

  5. A new parameterization for surface ocean light attenuation in Earth System Models: assessing the impact of light absorption by colored detrital material

    NASA Astrophysics Data System (ADS)

    Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.

    2015-03-01

    Light limitation can affect the distribution of biota and nutrients in the ocean. Light absorption by colored detrital material (CDM) was included in a fully coupled Earth System Model using a new parameterization for shortwave attenuation. Two model runs were conducted, with and without light attenuation by CDM. In a global average sense, greater light limitation associated with CDM increased surface chlorophyll, biomass and nutrients together. These changes can be attributed to the movement of biological productivity higher up the water column, which increased surface chlorophyll and biomass while simultaneously decreasing total biomass. Meanwhile, the reduction in biomass resulted in greater nutrient availability throughout the water column. Similar results were found on a regional scale in an analysis of the oceans by biome. In coastal regions, surface chlorophyll increased by 35% while total integrated phytoplankton biomass diminished by 18%. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth in the upper 200 m. Overall, increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients, but changes in light limitation decoupled trends between these two variables. Understanding changes in biological productivity requires both surface and depth-resolved information. Surface trends may be minimal or of the opposite sign to depth-integrated amounts, depending on the vertical structure of phytoplankton abundance.

  6. Effects of fire alone or combined with thinning on tissue nutrient concentrations and nutrient resorption in Desmodium nudiflorum.

    PubMed

    Huang, Jianjun; Boerner, Ralph E J

    2007-08-01

    This study examined tissue nutrient responses of Desmodium nudiflorum to changes in soil total inorganic nitrogen (TIN) and available phosphorus (P) that occurred as the result of the application of alternative forest management strategies, namely (1) prescribed low-intensity fire (B), (2) overstory thinning followed by prescribed fire (T + B), and (3) untreated control C), in two Quercus-dominated forests in the State of Ohio, USA. In the fourth growing season after a first fire, TIN was significantly greater in the control plots (9.8 mg/kg) than in the B (5.5 mg/kg) and T + B (6.4 mg/kg) plots. Similarly, available P was greater in the control sites (101 microg/g) than in the B (45 microg/kg) and T + B (65 microg/kg) sites. Leaf phosphorus ([P]) was higher in the plants from control site (1.86 mg/g) than in either the B (1.77 mg/g) or T + B plants (1.73 mg/g). Leaf nitrogen ([N]) and root [N] showed significant site-treatment interactive effects, while stem [N], stem [P], and root [P] did not differ significantly among treatments. During the first growing season after a second fire, leaf [N], stem [N], litter [P] and available soil [P] were consistently lower in plots of the manipulated treatments than in the unmanaged control plot, whereas the B and T + B plots did not differ significantly from each other. N resorption efficiency was positively correlated with the initial foliar [N] in the manipulated (B and T + B) sites, but there was no such relation in the unmanaged control plots. P resorption efficiency was positively correlated with the initial leaf [P] in both the control and manipulated plots. Leaf nutrient status was strongly influenced by soil nutrient availability shortly after fire, but became more influenced by topographic position in the fourth year after fire. Nutrient resorption efficiency was independent of soil nutrient availability. These findings enrich our understanding of the effects of ecosystem restoration treatments on soil nutrient availability, plant nutrient relations, and plant-soil interactions at different temporal scales.

  7. Viral pathogen production in a wild grass host driven by host growth and soil nitrogen.

    PubMed

    Whitaker, Briana K; Rúa, Megan A; Mitchell, Charles E

    2015-08-01

    Nutrient limitation is a basic ecological constraint that has received little attention in studies on virus production and disease dynamics. Nutrient availability could directly limit the production of viral nucleic acids and proteins, or alternatively limit host growth and thus indirectly limit metabolic pathways necessary for viral replication. In order to compare direct and indirect effects of nutrient limitation on virus production within hosts, we manipulated soil nitrogen (N) and phosphorus (P) availability in a glasshouse for the wild grass host Bromus hordeaceus and the viral pathogen Barley yellow dwarf virus-PAV. We found that soil N additions increased viral concentrations within host tissues, and the effect was mediated by host growth. Specifically, in statistical models evaluating the roles of host biomass production, leaf N and leaf P, viral production depended most strongly on host biomass, rather than the concentration of either nutrient. Furthermore, at low soil N, larger plants supported greater viral concentrations than smaller ones, whereas at high N, smaller plants supported greater viral concentrations. Our results suggest that enhanced viral productivity under N enrichment is an indirect consequence of nutrient stimulation to host growth rate. Heightened pathogen production in plants has important implications for a world facing increasing rates of nutrient deposition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Root proliferation in decaying roots and old root channels: A nutrient conservation mechanism in oligotrophic mangrove forests?

    USGS Publications Warehouse

    McKee, K.L.

    2001-01-01

    1. In oligotrophic habitats, proliferation of roots in nutrient-rich microsites may contribute to overall nutrient conservation by plants. Peat-based soils on mangrove islands in Belize are characterized by the presence of decaying roots and numerous old root channels (0.1-3.5 cm diameter) that become filled with living and highly branched roots of Rhizophora mangle and Avicennia germinans. The objectives of this study were to quantify the proliferation of roots in these microsites and to determine what causes this response. 2. Channels formed by the refractory remains of mangrove roots accounted for only 1-2% of total soil volume, but the proportion of roots found within channels varied from 9 to 24% of total live mass. Successive generations of roots growing inside increasingly smaller root channels were also found. 3. When artificial channels constructed of PVC pipe were buried in the peat for 2 years, those filled with nutrient-rich organic matter had six times more roots than empty or sand-filled channels, indicating a response to greater nutrient availability rather than to greater space or less impedance to root growth. 4. Root proliferation inside decaying roots may improve recovery of nutrients released from decomposing tissues before they can be leached or immobilized in this intertidal environment. Greatest root proliferation in channels occurred in interior forest zones characterized by greater soil waterlogging, which suggests that this may be a strategy for nutrient capture that minimizes oxygen losses from the whole root system. 5. Improved efficiency of nutrient acquisition at the individual plant level has implications for nutrient economy at the ecosystem level and may explain, in part, how mangroves persist and grow in nutrient-poor environments.

  9. The Optimal Lateral Root Branching Density for Maize Depends on Nitrogen and Phosphorus Availability1[C][W][OPEN

    PubMed Central

    Postma, Johannes Auke; Dathe, Annette; Lynch, Jonathan Paul

    2014-01-01

    Observed phenotypic variation in the lateral root branching density (LRBD) in maize (Zea mays) is large (1–41 cm−1 major axis [i.e. brace, crown, seminal, and primary roots]), suggesting that LRBD has varying utility and tradeoffs in specific environments. Using the functional-structural plant model SimRoot, we simulated the three-dimensional development of maize root architectures with varying LRBD and quantified nitrate and phosphorus uptake, root competition, and whole-plant carbon balances in soils varying in the availability of these nutrients. Sparsely spaced (less than 7 branches cm−1), long laterals were optimal for nitrate acquisition, while densely spaced (more than 9 branches cm−1), short laterals were optimal for phosphorus acquisition. The nitrate results are mostly explained by the strong competition between lateral roots for nitrate, which causes increasing LRBD to decrease the uptake per unit root length, while the carbon budgets of the plant do not permit greater total root length (i.e. individual roots in the high-LRBD plants stay shorter). Competition and carbon limitations for growth play less of a role for phosphorus uptake, and consequently increasing LRBD results in greater root length and uptake. We conclude that the optimal LRBD depends on the relative availability of nitrate (a mobile soil resource) and phosphorus (an immobile soil resource) and is greater in environments with greater carbon fixation. The median LRBD reported in several field screens was 6 branches cm−1, suggesting that most genotypes have an LRBD that balances the acquisition of both nutrients. LRBD merits additional investigation as a potential breeding target for greater nutrient acquisition. PMID:24850860

  10. The Relative Concentrations of Nutrients and Toxins Dictate Feeding by a Vertebrate Browser, the Greater Glider Petauroides volans.

    PubMed

    Jensen, Lora M; Wallis, Ian R; Foley, William J

    2015-01-01

    Although ecologists believe that vertebrate herbivores must select a diet that allows them to meet their nutritional requirements, while avoiding intoxication by plant secondary metabolites, this is remarkably difficult to show. A long series of field and laboratory experiments means that we have a good understanding of the factors that affect feeding by leaf-eating marsupials. This knowledge and the natural intraspecific variation in Eucalyptus chemistry allowed us to test the hypothesis that the feeding decisions of greater gliders (Petauroides volans) depend on the concentrations of available nitrogen (incorporating total nitrogen, dry matter digestibility and tannins) and of formylated phloroglucinol compounds (FPCs), potent antifeedants unique to Eucalyptus. We offered captive greater gliders foliage from two species of Eucalyptus, E. viminalis and E. melliodora, which vary naturally in their concentrations of available nitrogen and FPCs. We then measured the amount of foliage eaten by each glider and compared this with our laboratory analyses of foliar total nitrogen, available nitrogen and FPCs for each tree offered. The concentration of FPCs was the main factor that determined how much gliders ate of E. viminalis and E. melliodora, but in gliders fed E. viminalis the concentration of available nitrogen was also a significant influence. In other words, greater gliders ate E. viminalis leaves with a particular combination of FPCs and available nitrogen that maximised the nutritional gain but minimised their ingestion of toxins. In contrast, the concentration of total nitrogen was not correlated with feeding. This study is among the first to empirically show that browsing herbivores select a diet that balances the potential gain (available nutrients) and the potential costs (plant secondary chemicals) of eating leaves. The major implication of the study is that it is essential to identify the limiting nutrients and relevant toxins in a system in order to understand feeding behaviour.

  11. The Relative Concentrations of Nutrients and Toxins Dictate Feeding by a Vertebrate Browser, the Greater Glider Petauroides volans

    PubMed Central

    Jensen, Lora M.; Wallis, Ian R.; Foley, William J.

    2015-01-01

    Although ecologists believe that vertebrate herbivores must select a diet that allows them to meet their nutritional requirements, while avoiding intoxication by plant secondary metabolites, this is remarkably difficult to show. A long series of field and laboratory experiments means that we have a good understanding of the factors that affect feeding by leaf-eating marsupials. This knowledge and the natural intraspecific variation in Eucalyptus chemistry allowed us to test the hypothesis that the feeding decisions of greater gliders (Petauroides volans) depend on the concentrations of available nitrogen (incorporating total nitrogen, dry matter digestibility and tannins) and of formylated phloroglucinol compounds (FPCs), potent antifeedants unique to Eucalyptus. We offered captive greater gliders foliage from two species of Eucalyptus, E. viminalis and E. melliodora, which vary naturally in their concentrations of available nitrogen and FPCs. We then measured the amount of foliage eaten by each glider and compared this with our laboratory analyses of foliar total nitrogen, available nitrogen and FPCs for each tree offered. The concentration of FPCs was the main factor that determined how much gliders ate of E. viminalis and E. melliodora, but in gliders fed E. viminalis the concentration of available nitrogen was also a significant influence. In other words, greater gliders ate E. viminalis leaves with a particular combination of FPCs and available nitrogen that maximised the nutritional gain but minimised their ingestion of toxins. In contrast, the concentration of total nitrogen was not correlated with feeding. This study is among the first to empirically show that browsing herbivores select a diet that balances the potential gain (available nutrients) and the potential costs (plant secondary chemicals) of eating leaves. The major implication of the study is that it is essential to identify the limiting nutrients and relevant toxins in a system in order to understand feeding behaviour. PMID:25938422

  12. Effects of burn temperature on ash nutrient forms and availability from cattail (Typha domingensis) and sawgrass (Cladium jamaicense) in the Florida Everglades.

    PubMed

    Qian, Y; Miao, S L; Gu, B; Li, Y C

    2009-01-01

    Plant ash derived from fire plays an important role in nutrient balance and cycling in ecosystems. Factors that determine the composition and availability of ash nutrients include fire intensity (burn temperature and duration), plant species, habitat nutrient enrichment, and leaf type (live or dead leaf). We used laboratory simulation methods to evaluate temperature effects on nutrient composition and metals in the residual ash of sawgrass (Cladium jamaicense) and cattail (Typha domingensis), particularly on post-fire phosphorus (P) availability in plant ash. Live and dead leaf samples were collected from Water Conservation Area 2A in the northern Everglades along a soil P gradient, where prescribed fire may be used to accelerate recovery of this unique ecosystem. Significant decreases in total carbon and total nitrogen were detected with increasing fire temperature. Organic matter combustion was nearly complete at temperatures > or = 450 degrees C. HCl-extractable P (average, 50% of total P in the ash) and NH(4)Cl-extractable P (average, 33% of total P in the ash) were the predominant P fractions for laboratory-burned ash. Although a low-intensity fire could induce an elevation of P availability, an intense fire generally resulted in decreased water-soluble P. Significant differences in nutrient compositions were observed between species, habitat nutrient status, and leaf types. More labile inorganic P remained in sawgrass ash than in cattail ash; hence, sawgrass ash has a greater potential to release available P than cattail. Fire intensity affected plant ash nutrient composition, particularly P availability, and the effects varied with plant species and leaf type. Therefore, it is important to consider fire intensity and vegetation community when using a prescribed fire for ecosystem management.

  13. Tree seedlings respond to both light and soil nutrients in a Patagonian evergreen-deciduous forest.

    PubMed

    Promis, Alvaro; Allen, Robert B

    2017-01-01

    Seedlings of co-occurring species vary in their response to resource availability and this has implications for the conservation and management of forests. Differential shade-tolerance is thought to influence seedling performance in mixed Nothofagus betuloides-Nothofagus pumilio forests of Patagonia. However, these species also vary in their soil nutrient requirements. To determine the effects of light and soil nutrient resources on small seedlings we examined responses to an experimental reduction in canopy tree root competition through root trenching and restricting soil nutrient depletion through the addition of fertilizer. To understand the effect of light these treatments were undertaken in small canopy gaps and nearby beneath undisturbed canopy with lower light levels. Seedling diameter growth was greater for N. pumilio and height growth was greater for N. betuloides. Overall, diameter and height growth were greater in canopy gaps than beneath undisturbed canopy. Such growths were also greater with fertilizer and root trenching treatments, even beneath undisturbed canopy. Seedling survival was lower under such treatments, potentially reflecting thinning facilitated by resource induced growth. Finally, above-ground biomass did not vary among species although the less shade tolerant N. pumilio had higher below-ground biomass and root to shoot biomass ratio than the more shade tolerant N. betuloides. Above- and below-ground biomass were higher in canopy gaps so that the root to shoot biomass ratio was similar to that beneath undisturbed canopy. Above-ground biomass was also higher with fertilizer and root trenching treatments and that lowered the root to shoot biomass ratio. Restricting soil nutrient depletion allowed seedlings of both species to focus their responses above-ground. Our results support a view that soil nutrient resources, as well as the more commonly studied light resources, are important to seedlings of Nothofagus species occurring on infertile soils.

  14. A new hammer to crack an old nut: interspecific competitive resource capture by plants is regulated by nutrient supply, not climate.

    PubMed

    Trinder, Clare J; Brooker, Rob W; Davidson, Hazel; Robinson, David

    2012-01-01

    Although rarely acknowledged, our understanding of how competition is modulated by environmental drivers is severely hampered by our dependence on indirect measurements of outcomes, rather than the process of competition. To overcome this, we made direct measurements of plant competition for soil nitrogen (N). Using isotope pool-dilution, we examined the interactive effects of soil resource limitation and climatic severity between two common grassland species. Pool-dilution estimates the uptake of total N over a defined time period, rather than simply the uptake of ¹⁵N label, as used in most other tracer experiments. Competitive uptake of N was determined by its available form (NO₃⁻ or NH₄⁺). Soil N availability had a greater effect than the climatic conditions (location) under which plants grew. The results did not entirely support either of the main current theories relating the role of competition to environmental conditions. We found no evidence for Tilman's theory that competition for soil nutrients is stronger at low, compared with high nutrient levels and partial support for Grime's theory that competition for soil nutrients is greater under potentially more productive conditions. These results provide novel insights by demonstrating the dynamic nature of plant resource competition.

  15. A New Hammer to Crack an Old Nut: Interspecific Competitive Resource Capture by Plants Is Regulated by Nutrient Supply, Not Climate

    PubMed Central

    Trinder, Clare J.; Brooker, Rob W.; Davidson, Hazel; Robinson, David

    2012-01-01

    Although rarely acknowledged, our understanding of how competition is modulated by environmental drivers is severely hampered by our dependence on indirect measurements of outcomes, rather than the process of competition. To overcome this, we made direct measurements of plant competition for soil nitrogen (N). Using isotope pool-dilution, we examined the interactive effects of soil resource limitation and climatic severity between two common grassland species. Pool-dilution estimates the uptake of total N over a defined time period, rather than simply the uptake of 15N label, as used in most other tracer experiments. Competitive uptake of N was determined by its available form (NO3 − or NH4 +). Soil N availability had a greater effect than the climatic conditions (location) under which plants grew. The results did not entirely support either of the main current theories relating the role of competition to environmental conditions. We found no evidence for Tilman's theory that competition for soil nutrients is stronger at low, compared with high nutrient levels and partial support for Grime's theory that competition for soil nutrients is greater under potentially more productive conditions. These results provide novel insights by demonstrating the dynamic nature of plant resource competition. PMID:22247775

  16. Nutrient limitation in tropical savannas across multiple scales and mechanisms.

    PubMed

    Pellegrini, Adam F A

    2016-02-01

    Nutrients have been hypothesized to influence the distribution of the savanna biome through two possible mechanisms. Low nutrient availability may restrict growth rates of trees, thereby allowing for intermittent fires to maintain low tree cover; alternatively, nutrient deficiency may even place an absolute constraint on the ability of forests to form, independent of fire. However, we have little understanding of the scales at which nutrient limitation operates, what nutrients are limiting, and the mechanisms that influence how nutrient limitation regulates savanna-forest transitions. Here, I review literature, synthesize existing data, and present a simple calculation of nutrient demand to evaluate how nutrient limitation may regulate the distribution of the savanna biome. The literature primarily supports the hypothesis that nutrients may interact dynamically with fire to restrict the transition of savanna into forest. A compilation of indirect metrics of nutrient limitation suggest that nitrogen and phosphorus are both in short supply and may limit plants. Nutrient demand calculations provided a number of insights. First, trees required high rates of nitrogen and phosphorus supply relative to empirically determined inputs. Second, nutrient demand increased as landscapes approached the transition point between savanna and forest. Third, the potential for fire-driven nutrient losses remained high throughout transitions, which may exaggerate limitation and could be a key feedback stabilizing the savanna biome. Fourth, nutrient limitation varied between functional groups, with fast-growing forest species having substantially greater nutrient demand and a higher susceptibility to fire-driven nutrient losses. Finally, African savanna trees required substantially larger amounts of nutrients supplied at greater rates, although this varied across plant functional groups. In summary, the ability of nutrients to control transitions emerges at individual and landscape scales, and is regulated through different mechanisms based on spatial (differences in underlying geology), temporal (stage in biome transition) and biological (species traits and community composition) variability.

  17. Nutrient dynamics across a dissolved organic carbon and burn gradient in central Siberia

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cardona, B.; Coble, A. A.; Prokishkin, A. S.; Kolosov, R.; Spencer, R. G.; Wymore, A.; McDowell, W. H.

    2016-12-01

    In stream ecosystems, dissolved organic carbon (DOC) and nitrogen (N) processing are tightly linked. In temperate streams, greater DOC concentrations and higher DOC:NO3- ratios promote the greatest nitrate (NO3-) uptake. However, less is known about this relationship in other biomes including the arctic which is undergoing changes due to climate change contributing to thawing of permafrost and alterations in biogeochemical cycles in soils and streams. Headwater streams draining into the N. Tunguska River in the central Siberian plateau are affected by forest fires but little is known about the aquatic biogeochemical implications in both a thawing and burning landscape. There are clear patterns between carbon concentration and fire history where generally DOC concentration in streams decrease after fires and older burn sites have shown greater DOC concentrations and more bioavailable DOC that could promote greater heterotrophic uptake of NO3-. However, the relationship between nutrient dynamics, organic matter composition, and fire history in streams is not very clear. In order to assess the influence of organic matter composition and DOC concentration on nutrient uptake in arctic streams, we conducted a series of short-term nutrient addition experiments following the tracer addition for spiraling curve characterization (TASCC) method, consisting of NO3- and NH4++PO43- additions, across 4 streams that comprise a fire gradient that spans 3- >100 years since the last burn with DOC concentrations ranging between 12-23 mg C/L. We hypothesized that nutrient uptake would be greatest in older burn sites due to greater DOC concentrations and availability. We will specifically examine how nutrient uptake relates to DOC concentration and OM composition (analyzed via FTICR-MS) across the burn gradient. Across the four sites DOC concentration and DOC:NO3- ratios decreased from old burn sites to recently burned sites. Results presented here can elucidate on the potential impacts of permafrost thawing and forest fires on nutrient dynamics in arctic streams.

  18. Heterogeneity of soil nutrients and subsurface biota in a dryland ecosystem

    USGS Publications Warehouse

    Housman, D.C.; Yeager, C.M.; Darby, B.J.; Sanford, R.L.; Kuske, C.R.; Neher, D.A.; Belnap, J.

    2007-01-01

    Dryland ecosystems have long been considered to have a highly heterogeneous distribution of nutrients and soil biota, with greater concentrations of both in soils under plants relative to interspace soils. We examined the distribution of soil resources in two plant communities (dominated by either the shrub Coleogyne ramosissima or the grass Stipa hymenoides) at two locations. Interspace soils were covered either by early successional biological soil crusts (BSCs) or by later successional BSCs (dominated by nitrogen (N)-fixing cyanobacteria and lichens). For each of the 8 plant type??crust type??locations, we sampled the stem, dripline, and 3 interspace distances around each of 3 plants. Soil analyses revealed that only available potassium (Kav) and ammonium concentrations were consistently greater under plants (7 of 8 sites and 6 of 8 sites, respectively). Nitrate and iron (Fe) were greater under plants at 4 sites, while all other nutrients were greater under plants at less than 50% of the sites. In contrast, calcium, copper, clay, phosphorus (P), and zinc were often greater in the interspace than under the plants. Soil microbial biomass was always greater under the plant compared to the interspace. The community composition of N-fixing bacteria was highly variable, with no distinguishable patterns among microsites. Bacterivorous nematodes and rotifers were consistently more abundant under plants (8 and 7 sites, respectively), and fungivorous and omnivorous nematodes were greater under plants at 5 of the 8 sites. Abundance of other soil biota was greater under plants at less than 50% of the sites, but highly correlated with the availability of N, P, Kav, and Fe. Unlike other ecosystems, the soil biota was only infrequently correlated with organic matter. Lack of plant-driven heterogeneity in soils of this ecosystem is likely due to (1) interspace soils covered with BSCs, (2) little incorporation of above-ground plant litter into soils, and/or (3) root deployment patterns. ?? 2007 Elsevier Ltd. All rights reserved.

  19. Soil moisture and biogeochemical factors influence the distribution of annual Bromus species

    USGS Publications Warehouse

    Belnap, Jayne; Stark, John Thomas; Rau, Benjamin; Allen, Edith B.; Phillips, Sue

    2016-01-01

    Abiotic factors have a strong influence on where annual Bromus species are found. At the large regional scale, temperature and precipitation extremes determine the boundaries of Bromusoccurrence. At the more local scale, soil characteristics and climate influence distribution, cover, and performance. In hot, dry, summer-rainfall-dominated deserts (Sonoran, Chihuahuan), little or noBromus is found, likely due to timing or amount of soil moisture relative to Bromus phenology. In hot, winter-rainfall-dominated deserts (parts of the Mojave Desert), Bromus rubens is widespread and correlated with high phosphorus availability. It also responds positively to additions of nitrogen alone or with phosphorus. On the Colorado Plateau, with higher soil moisture availability, factors limiting Bromus tectorum populations vary with life stage: phosphorus and water limit germination, potassium and the potassium/magnesium ratio affect winter performance, and water and potassium/magnesium affect spring performance. Controlling nutrients also change with elevation. In cooler deserts with winter precipitation (Great Basin, Columbia Plateau) and thus even greater soil moisture availability, B. tectorum populations are controlled by nitrogen, phosphorus, or potassium. Experimental nitrogen additions stimulate Bromus performance. The reason for different nutrients limiting in dissimilar climatic regions is not known, but it is likely that site conditions such as soil texture (as it affects water and nutrient availability), organic matter, and/or chemistry interact in a manner that regulates nutrient availability and limitations. Under future drier, hotter conditions,Bromus distribution is likely to change due to changes in the interaction between moisture and nutrient availability.

  20. Aeolian dust nutrient contributions increase with substrate age in semi-arid ecosystems

    NASA Astrophysics Data System (ADS)

    Coble, A. A.; Hart, S. C.; Ketterer, M. E.; Newman, G. S.

    2013-12-01

    Rock-derived nutrients supplied by mineral weathering become depleted over time, and without an additional nutrient source the ecosystem may eventually regress or reach a terminal steady state. Previous studies have demonstrated that aeolian dust act as parent materials of soils and important nutrients to plants in arid regions, but the relative importance of these exogenous nutrients to the function of dry ecosystems during soil development is uncertain. Here, using strontium isotopes as a tracer and a well-constrained, three million year old substrate age gradient, we show that aeolian-derived nutrients become increasingly important to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of soil development in a semi-arid climate. Furthermore, the depth of nutrient uptake increased on older substrates, suggesting that trees in arid regions acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results contribute to the unification of biogeochemical theory by demonstrating the similarity in roles of atmospheric nutrient inputs during ecosystem development across contrasting climates.

  1. Mathematical modelling of the influenced of diffusion rate on macro nutrient availability in paddy field

    NASA Astrophysics Data System (ADS)

    Renny; Supriyanto

    2018-04-01

    Nutrition is the chemical compounds that needed by the organism for the growth process. In plants, nutrients are organic or inorganic compounds that are absorbed from the roots of the soil. It consist of macro and micro nutrient. Macro nutrients are nutrition that needed by plants in large quantities, such as, nitrogen, calcium, pottacium, magnesium, and sulfur. The total soil nutrient is the difference between the input nutrient and the output nutrients. Input nutrients are nutrient that derived from the decomposition of organic substances. Meanwhile, the output nutrient consists of the nutrients that absorbed by plant roots (uptake), the evaporated nutrients (volatilized) and leached nutrients. The nutrient transport can be done through diffusion process. The diffusion process is essential in removing the nutrient from one place to the root surface. It will cause the rate of absorption of nutrient by the roots will be greater. Nutrient concept in paddy filed can be represented into a mathematical modelling, by making compartment models. The rate of concentration change in the compartment model forms a system of homogeneous linear differential equations. In this research, we will use Laplaces transformation to solve the compartment model and determined the dynamics of macro nutrition due to diffusion process.

  2. Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake.

    PubMed

    Hepworth, Christopher; Doheny-Adams, Timothy; Hunt, Lee; Cameron, Duncan D; Gray, Julie E

    2015-10-01

    Manipulation of stomatal density was investigated as a potential tool for enhancing drought tolerance or nutrient uptake. Drought tolerance and soil water retention were assessed using Arabidopsis epidermal patterning factor mutants manipulated to have increased or decreased stomatal density. Root nutrient uptake via mass flow was monitored under differing plant watering regimes using nitrogen-15 ((15) N) isotope and mass spectrometry. Plants with less than half of their normal complement of stomata, and correspondingly reduced levels of transpiration, conserve soil moisture and are highly drought tolerant but show little or no reduction in shoot nitrogen concentrations especially when water availability is restricted. By contrast, plants with over twice the normal density of stomata have a greater capacity for nitrogen uptake, except when water availability is restricted. We demonstrate the possibility of producing plants with reduced transpiration which have increased drought tolerance, with little or no loss of nutrient uptake. We demonstrate that increasing transpiration can enhance nutrient uptake when water is plentiful. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Resource Legacies of Organic and Conventional Management Differentiate Soil Microbial Carbon Use

    PubMed Central

    Arcand, Melissa M.; Levy-Booth, David J.; Helgason, Bobbi L.

    2017-01-01

    Long-term contrasts in agricultural management can shift soil resource availability with potential consequences to microbial carbon (C) use efficiency (CUE) and the fate of C in soils. Isothermal calorimetry was combined with 13C-labeled glucose stable isotope probing (SIP) of 16S rRNA genes to test the hypothesis that organically managed soils would support microbial communities with greater thermodynamic efficiency compared to conventional soils due to a legacy of lower resource availability and a resultant shift toward communities supportive of more oligotrophic taxa. Resource availability was greater in conventionally managed soils, with 3.5 times higher available phosphorus, 5% more nitrate, and 36% more dissolved organic C. The two management systems harbored distinct glucose-utilizing populations of Proteobacteria and Actinobacteria, with a higher Proteobacteria:Actinobacteria ratio (2.4 vs. 0.7) in conventional soils. Organically managed soils also harbored notable activity of Firmicutes. Thermodynamic efficiency indices were similar between soils, indicating that glucose was metabolized at similar energetic cost. However, differentially abundant glucose utilizers in organically managed soils were positively correlated with soil organic matter (SOM) priming and negatively correlated to soil nutrient and carbon availability, respiration, and heat production. These correlation patterns were strongly reversed in the conventionally managed soils indicating clear differentiation of microbial functioning related to soil resource availability. Fresh C addition caused proportionally more priming of SOM decomposition (57 vs. 51%) in organically managed soils likely due to mineralization of organic nutrients to satisfy microbial demands during glucose utilization in these more resource deprived soils. The additional heat released from SOM oxidation may explain the similar community level thermodynamic efficiencies between management systems. Restoring fertility to soils with a legacy of nutrient limitation requires a balanced supply of both nutrients and energy to protect stable SOM from microbial degradation. These results highlight the need to consider managing C for the energy it provides to ıcritical biological processes that underpin soil health. PMID:29230199

  4. Diel Vertical Migration Thresholds of Karenia brevis (Dinophyceae).

    EPA Science Inventory

    Light and nutrient availability change throughout dinoflagellate diel vertical migration (DVM) and/or with subpopulation location in the water column along the west Florida shelf. Typically, the vertical depth of the shelf is greater than the distance a subpopulation can vertical...

  5. The Median Isn't the Message: Elucidating Nutrient Hot spots and Hot Moments in a Sierra Nevada Forest Soil

    NASA Astrophysics Data System (ADS)

    Barnes, M. E.; Hart, S. C.; Johnson, D. W.; Meadows, M. W.

    2015-12-01

    Most biogeochemical studies in forests have concentrated on nutrient pools and transformations occurring at relatively large spatial scales (i.e., stand or small catchment), over monthly or annual time scales. Many of these studies have also focused on the average or medial values observed across the spatial or temporal scale studied, discounting outliers. However, extremely high values found consistently (hot spot) or infrequently (hot moment) at a given soil microsite may be critical for nutrient acquisition by organisms and nutrient retention by terrestrial ecosystems. We have been evaluating soil nutrient hot-spot and hot-moment phenomena vertically (to a 60-cm depth) and horizontally (2-m sampling interval within a 6 m x 6 m grid) in two areas within a mixed-conifer, Sierran forest experiencing a Mediterranean-type climate. Nutrient fluxes in space and time were measured using ion exchange resin capsules placed at various depths and collected at two times (first significant precipitation in fall and post-snowmelt in spring) per year. Our previous work over a single year showed that fluxes of Ca2+ and Mg2+ in mineral soil were substantially greater in the spring than in the fall, suggesting that soil water was a major factor in controlling these nutrient fluxes. The opposite pattern was found for NH4+ and Na+, where greater fluxes occurred following the first precipitation event in fall. Here, we report new data over two additional years at these same sites. Over the entire 3-year study, nutrient fluxes were greater in the fall for all mineral soil nutrients except Ca2+ and Mg2+. Calcium fluxes were consistent with previous results; however, Mg2+ demonstrated no statistical significance between fall and spring sampling dates. Generally, the number of high statistical outliers persisted through time for Ca2+ and Mg2+, suggesting hot spots for these nutrients. In contrast, large seasonal and annual changes in the number of high statistical outliers occurred for NH4+, NO3-, and PO43-, nutrients whose availabilities are more mediated by microbial activity than base cations. Further elucidation of the mechanisms responsible for nutrient hot spot-hot moment phenomena within soil should be invaluable for improving the predictive capacity of biogeochemical models and for scaling these models across space and time.

  6. Can nutrient limitations explain low and declining white spruce growth near the Arctic treeline in the eastern Brooks Range, Alaska?

    NASA Astrophysics Data System (ADS)

    Ellison, S.; Sullivan, P. F.

    2014-12-01

    The position of the Arctic treeline is of critical importance for global carbon cycling and surface energy budgets. However, controls on tree growth at treeline remain uncertain. In the Alaskan Brooks Range, 20th century warming has caused varying growth responses among treeline trees, with trees in the west responding positively, while trees in the east have responded negatively. The prevailing explanation of this trend ascribes the negative growth response to warming-induced drought stress in the eastern Brooks Range. However, recent measurements of carbon isotope discrimination in tree rings, xylem sap flow and needle gas exchange suggest that drought stress cannot explain these regional growth declines. Additionally, evidence from the western Brooks Range suggests that nutrient availability, rather than drought stress, may be the proximate control on tree growth. In this study, we investigated the hypothesis that low and declining growth of eastern Brooks Range trees is due to low and declining soil nutrient availability, which may continue to decrease with climate change as soils become drier and microbial activity declines. We compared microclimate, tree performance, and a wide range of proxies for soil nutrient availability in four watersheds along a west-east transect in the Brooks Range during the growing seasons of 2013 and 2014. We hypothesized that soil nutrient availability would track closely with the strong west-east precipitation gradient, with higher rainfall and greater soil nutrient availability in the western Brooks Range. We expected to find that soil water contents in the west are near optimum for nitrogen mineralization, while those in the east are below optimum. Needle nitrogen concentration, net photosynthesis, branch extension growth, and growth in the main stem are expected to decline with the hypothesized decrease in soil nutrient availability. The results of our study will elucidate the current controls on growth of trees near the Arctic treeline, enabling improved predictions of future treeline position and more accurate reconstructions of past climate.

  7. The invasive species Alliaria petiolata (garlic mustard) increases soil nutrient availability in northern hardwood-conifer forests.

    PubMed

    Rodgers, Vikki L; Wolfe, Benjamin E; Werden, Leland K; Finzi, Adrien C

    2008-09-01

    The invasion of non-native plants can alter the diversity and activity of soil microorganisms and nutrient cycling within forests. We used field studies to analyze the impact of a successful invasive groundcover, Alliaria petiolata, on fungal diversity, soil nutrient availability, and pH in five northeastern US forests. We also used laboratory and greenhouse experiments to test three mechanisms by which A. petiolata may alter soil processes: (1) the release of volatile, cyanogenic glucosides from plant tissue; (2) the exudation of plant secondary compounds from roots; and (3) the decomposition of litter. Fungal community composition was significantly different between invaded and uninvaded soils at one site. Compared to uninvaded plots, plots invaded by A. petiolata were consistently and significantly higher in N, P, Ca and Mg availability, and soil pH. In the laboratory, the release of volatile compounds from the leaves of A. petiolata did not significantly alter soil N availability. Similarly, in the greenhouse, the colonization of native soils by A. petiolata roots did not alter soil nutrient cycling, implying that the exudation of secondary compounds has little effect on soil processes. In a leaf litter decomposition experiment, however, green rosette leaves of A. petiolata significantly increased the rate of decomposition of native tree species. The accelerated decomposition of leaf litter from native trees in the presence of A. petiolata rosette leaves shows that the death of these high-nutrient-content leaves stimulates decomposition to a greater extent than any negative effect that secondary compounds may have on the activity of the microbes decomposing the native litter. The results presented here, integrated with recent related studies, suggest that this invasive plant may change soil nutrient availability in such a way as to create a positive feedback between site occupancy and continued proliferation.

  8. The Consequences of Precipitation Seasonality for Mediterranean-Ecosystem Vegetation of South Africa.

    PubMed

    Cramer, Michael D; Hoffman, M Timm

    2015-01-01

    Globally, mediterranean-climate ecosystem vegetation has converged on an evergreen, sclerophyllous and shrubby growth form. The particular aspects of mediterranean-climate regions that contribute to this convergence include summer droughts and relatively nutrient-poor soils. We hypothesised that winter-precipitation implies stressful summer droughts and leaches soils due to greater water availability (i.e. balance between precipitation and potential evapotranspiration; P-PET) during cold periods. We conducted a comparative analysis of normalised difference vegetation indices (NDVI) and edaphic and climate properties across the biomes of South Africa. NDVI was strongly correlated with both precipitation and P-PET (r2 = 0.8). There was no evidence, however, that winter-precipitation reduces NDVI in comparison to similar amounts of summer-precipitation. Base saturation (BS), a measure of soil leaching was, however, negatively related to P-PET (r2 = 0.64). This led to an interaction between P-PET and BS in determining NDVI, indicating the existence of a trade-off between water availability and soil nutrients that enables NDVI to increase with precipitation, despite negative consequences for soil nutrient availability. The mechanism of this trade-off is suggested to be that water increases nutrient accessibility. This implies that along with nutrient-depauperate geologies and long periods of time since glaciation, the winter-precipitation may have contributed to the highly leached status of the soils. Since many of the ecophysiological characteristics of mediterranean-ecosystem flora are associated with low nutrient availabilities (e.g. evergreen foliage, sclerophylly, cluster roots), we conclude that mediterranean-climates promote convergence of growth-forms in these regions through high leaching capacity.

  9. The Consequences of Precipitation Seasonality for Mediterranean-Ecosystem Vegetation of South Africa

    PubMed Central

    2015-01-01

    Globally, mediterranean-climate ecosystem vegetation has converged on an evergreen, sclerophyllous and shrubby growth form. The particular aspects of mediterranean-climate regions that contribute to this convergence include summer droughts and relatively nutrient-poor soils. We hypothesised that winter-precipitation implies stressful summer droughts and leaches soils due to greater water availability (i.e. balance between precipitation and potential evapotranspiration; P–PET) during cold periods. We conducted a comparative analysis of normalised difference vegetation indices (NDVI) and edaphic and climate properties across the biomes of South Africa. NDVI was strongly correlated with both precipitation and P–PET (r2 = 0.8). There was no evidence, however, that winter-precipitation reduces NDVI in comparison to similar amounts of summer-precipitation. Base saturation (BS), a measure of soil leaching was, however, negatively related to P–PET (r2 = 0.64). This led to an interaction between P–PET and BS in determining NDVI, indicating the existence of a trade-off between water availability and soil nutrients that enables NDVI to increase with precipitation, despite negative consequences for soil nutrient availability. The mechanism of this trade-off is suggested to be that water increases nutrient accessibility. This implies that along with nutrient-depauperate geologies and long periods of time since glaciation, the winter-precipitation may have contributed to the highly leached status of the soils. Since many of the ecophysiological characteristics of mediterranean-ecosystem flora are associated with low nutrient availabilities (e.g. evergreen foliage, sclerophylly, cluster roots), we conclude that mediterranean-climates promote convergence of growth-forms in these regions through high leaching capacity. PMID:26650081

  10. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau

    PubMed Central

    Li, Qingxue; Jia, Zhiqing; Zhu, Yajuan; Wang, Yongsheng; Li, Hong; Yang, Defu; Zhao, Xuebin

    2015-01-01

    The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1) Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2) Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3) Soil “fertile islands” were formed, and the “fertile islands” were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E) for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous shrub. PMID:25946170

  11. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau.

    PubMed

    Li, Qingxue; Jia, Zhiqing; Zhu, Yajuan; Wang, Yongsheng; Li, Hong; Yang, Defu; Zhao, Xuebin

    2015-01-01

    The Gonghe Basin region of the Tibet Plateau is severely affected by desertification. Compared with other desertified land, the main features of this region is windy, cold and short growing season, resulting in relatively difficult for vegetation restoration. In this harsh environment, identification the spatial distribution of soil nutrients and analysis its impact factors after vegetation establishment will be helpful for understanding the ecological relationship between soil and environment. Therefore, in this study, the 12-year-old C. intermedia plantation on sand dunes was selected as the experimental site. Soil samples were collected under and between shrubs on the windward slopes, dune tops and leeward slopes with different soil depth. Then analyzed soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available nitrogen (AN), available phosphorus (AP) and available potassium (AK). The results showed that the spatial heterogeneity of soil nutrients was existed in C. intermedia plantation on sand dunes. (1) Depth was the most important impact factor, soil nutrients were decreased with greater soil depth. One of the possible reasons is that windblown fine materials and litters were accumulated on surface soil, when they were decomposed, more nutrients were aggregated on surface soil. (2) Topography also affected the distribution of soil nutrients, more soil nutrients distributed on windward slopes. The herbaceous coverage were higher and C. intermedia ground diameter were larger on windward slopes, both of them probably related to the high soil nutrients level for windward slopes. (3) Soil "fertile islands" were formed, and the "fertile islands" were more marked on lower soil nutrients level topography positions, while it decreased towards higher soil nutrients level topography positions. The enrichment ratio (E) for TN and AN were higher than other nutrients, most likely because C. intermedia is a leguminous shrub.

  12. Nutrient Enrichment Increases Mortality of Mangroves

    PubMed Central

    Lovelock, Catherine E.; Ball, Marilyn C.; Martin, Katherine C.; C. Feller, Ilka

    2009-01-01

    Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients. PMID:19440554

  13. Nutrient enrichment increases mortality of mangroves.

    PubMed

    Lovelock, Catherine E; Ball, Marilyn C; Martin, Katherine C; C Feller, Ilka

    2009-01-01

    Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients.

  14. Physiological variation among native and exotic winter annual plants associated with microbiotic crusts in the Mojave Desert

    USGS Publications Warehouse

    DeFalco, L.A.; Detling, J.K.; Tracy, C.R.; Warren, S.D.

    2001-01-01

    Microbiotic crusts are important components of many aridland soils. Research on crusts typically focuses on the increase in soil fertility due to N-fixing micro-organisms, the stabilization of soils against water and wind erosion and the impact of disturbance on N-cycling. The effect of microbiotic crusts on the associated plant community has received little attention. We quantified the influence of crusts on the production, species diversity, nutrient content and water relations of winter annual plant species associated with microbiotic soil crusts in the northeast Mojave Desert. Shoot biomass of winter annuals was 37% greater and plant density was 77% greater on crusts than were biomass and density on soils lacking crust cover (=bare soils). This greater production of annuals on crusts was likely due to enhanced soil conditions including an almost two-fold increase in soil organic matter and inorganic N compared to bare soils. Crusted soils also had 53% greater volumetric water content than bare soils during November and December, the time when winter annuals become established. As plant development progressed into spring, however, soil water availability decreased: More negative plant xylem water potentials were associated with greater plant biomass on crusted soils. Plants associated with microbiotic soil crusts had lower concentrations of N in shoots (mg N g-1 dry mass). However, total shoot N (mg N m-2) was the same in plants growing on the different soil types when biomass production peaked in April. Shoots had similar patterns in their concentration and content of P. Species diversity of annuals was not statistically different between the two soil types. Yet, while native annuals comprised the greatest proportion of shoot biomass on bare soils, exotic forbs and grasses produced more biomass on crusts. Total shoot nutrient content (biomass x concentration) of the two exotic annual species examined was dramatically greater on crusts than bare soils; only one native species had greater shoot content of N and P when growing on crusts than bare soils. Microbiotic crusts appear to increase site fertility in the northeast Mojave Desert, but nutrients and water distributed within a greater biomass of annual plants growing on microbiotic crusts likely resulted in lower concentrations of nutrients in plant tissue and lower xylem pressure potentials than plants growing on bare soils. Exotic annuals growing on crusts appear to respond to the higher N availability by growing faster, potentially outcompeting native annual species.

  15. Physiological variation among native and exotic winter annuals associated with microphytic soil crusts in the Mojave Desert

    USGS Publications Warehouse

    DeFalco, Lesley; Detling, James K.; Tracy, C. Richard; Warren, Steven D.

    2001-01-01

    Microbiotic crusts are important components of many aridland soils. Research on crusts typically focuses on the increase in soil fertility due to N-fixing micro-organisms, the stabilization of soils against water and wind erosion and the impact of disturbance on N-cycling. The effect of microbiotic crusts on the associated plant community has received little attention. We quantified the influence of crusts on the production, species diversity, nutrient content and water relations of winter annual plant species associated with microbiotic soil crusts in the northeast Mojave Desert. Shoot biomass of winter annuals was 37% greater and plant density was 77% greater on crusts than were biomass and density on soils lacking crust cover (=bare soils). This greater production of annuals on crusts was likely due to enhanced soil conditions including an almost two-fold increase in soil organic matter and inorganic N compared to bare soils. Crusted soils also had 53% greater volumetric water content than bare soils during November and December, the time when winter annuals become established. As plant development progressed into spring, however, soil water availability decreased: More negative plant xylem water potentials were associated with greater plant biomass on crusted soils. Plants associated with microbiotic soil crusts had lower concentrations of N in shoots (mg N g−1 dry mass). However, total shoot N (mg N m−2) was the same in plants growing on the different soil types when biomass production peaked in April. Shoots had similar patterns in their concentration and content of P. Species diversity of annuals was not statistically different between the two soil types. Yet, while native annuals comprised the greatest proportion of shoot biomass on bare soils, exotic forbs and grasses produced more biomass on crusts. Total shoot nutrient content (biomass×concentration) of the two exotic annual species examined was dramatically greater on crusts than bare soils; only one native species had greater shoot content of N and P when growing on crusts than bare soils. Microbiotic crusts appear to increase site fertility in the northeast Mojave Desert, but nutrients and water distributed within a greater biomass of annual plants growing on microbiotic crusts likely resulted in lower concentrations of nutrients in plant tissue and lower xylem pressure potentials than plants growing on bare soils. Exotic annuals growing on crusts appear to respond to the higher N availability by growing faster, potentially outcompeting native annual species.

  16. Limitations to CO2-induced growth enhancement in pot studies.

    PubMed

    McConnaughay, K D M; Berntson, G M; Bazzaz, F A

    1993-07-01

    Recently, it has been suggested that small pots may reduce or eliminate plant responses to enriched CO 2 atmospheres due to root restriction. While smaller pot volumes provide less physical space available for root growth, they also provide less nutrients. Reduced nutrient availability alone may reduce growth enhancement under elevated CO 2 . To investigate the relative importance of limited physical rooting space separate from and in conjunction with soil nutrients, we grew plants at ambient and double-ambient CO 2 levels in growth containers of varied volume, shape, nutrient concentration, and total nutrient content. Two species (Abutilon theophrasti, a C 3 dicot with a deep tap root andSetaria faberii, a C 4 monocot with a shallow diffuse root system) were selected for their contrasting physiology and root architecture. Shoot demography was determined weekly and biomass was determined after eight and ten weeks of growth. Increasing total nutrients, either by increasing nutrient concentration or by increasing pot size, increased plant growth. Further, increasing pot size while maintaining equal total nutrients per pot resulted in increased total biomass for both species. CO 2 -induced growth and reproductive yield enhancements were greatest in pots with high nutrient concentrations, regardless of total nutrient content or pot size, and were also mediated by the shape of the pot. CO 2 -induced growth and reproductive yield enhancements were unaffected by pot size (growth) or were greater in small pots (reproductive yield), regardless of total nutrient content, contrary to predictions based on earlier studies. These results suggest that several aspects of growth conditions within pots may influence the CO 2 responses of plants; pot size, pot shape, the concentration and total amount of nutrient additions to pots may lead to over-or underestimates of the CO 2 responses of real-world plants.

  17. Changes of parameters during composting of bio-waste collected over four seasons.

    PubMed

    Hanc, Ales; Ochecova, Pavla; Vasak, Filip

    2017-07-01

    This study investigated the evolution of several main parameters during the composting of separately collected household bio-waste originating from urban settlements (U-bio-waste) and family houses (F-bio-waste) from four climate seasons. When comparing both types of composts, U-bio-waste compost contained a higher amount of nutrients, however F-bio-waste compost was characterized by greater yield, greater availability of phosphorus and magnesium, and faster stability. In terms of seasons, compost from bio-waste collected in spring contained the highest amount of nutrients, reflecting the high content of nutrients in plant feedstock. Dissolved organic carbon and pH in U- and F-bio-waste compost, respectively, frequently showed close relationships with other parameters. The seasonal variations of most of the parameters in the composts were found to be lower compared to the variations observed in the feedstocks. The greatest seasonal variation was found in nitrate nitrogen, which is the reason for the more frequent analysis of this parameter.

  18. Contrasting Strategies of Photosynthetic Energy Utilization Drive Lifestyle Strategies in Ecologically Important Picoeukaryotes

    PubMed Central

    Halsey, Kimberly H.; Milligan, Allen J.; Behrenfeld, Michael J.

    2014-01-01

    The efficiency with which absorbed light is converted to net growth is a key property for estimating global carbon production. We previously showed that, despite considerable evolutionary distance, Dunaliella tertiolecta (Chlorophyceae) and Thalassiosira weissflogii (Bacillariophyceae) share a common strategy of photosynthetic energy utilization and nearly identical light energy conversion efficiencies. These findings suggested that a single model might be appropriate for describing relationships between measures of phytoplankton production. This conclusion was further evaluated for Ostreococcus tauri RCC1558 and Micromonas pusilla RCC299 (Chlorophyta, Prasinophyceae), two picoeukaryotes with contrasting geographic distributions and swimming abilities. Nutrient-dependent photosynthetic efficiencies in O. tauri were similar to the previously studied larger algae. Specifically, absorption-normalized gross oxygen and carbon production and net carbon production were independent of nutrient limited growth rate. In contrast, all measures of photosynthetic efficiency were strongly dependent on nutrient availability in M. pusilla. This marked difference was accompanied by a diminished relationship between Chla:C and nutrient limited growth rate and a remarkably greater efficiency of gross-to-net energy conversion than the other organisms studied. These results suggest that the cost-benefit of decoupling pigment concentration from nutrient availability enables motile organisms to rapidly exploit more frequent encounters with micro-scale nutrient patches in open ocean environments. PMID:24957026

  19. Contemporary deposition and long-term accumulation of sediment and nutrients by tidal freshwater forested wetlands impacted by sea level rise

    USGS Publications Warehouse

    Noe, Gregory; Hupp, Cliff R.; Bernhardt, Christopher E.; Krauss, Ken W.

    2016-01-01

    Contemporary deposition (artificial marker horizon, 3.5 years) and long-term accumulation rates (210Pb profiles, ~150 years) of sediment and associated carbon (C), nitrogen (N), and phosphorus (P) were measured in wetlands along the tidal Savannah and Waccamaw rivers in the southeastern USA. Four sites along each river spanned an upstream-to-downstream salinification gradient, from upriver tidal freshwater forested wetland (TFFW), through moderately and highly salt-impacted forested wetlands, to oligohaline marsh downriver. Contemporary deposition rates (sediment, C, N, and P) were greatest in oligohaline marsh and lowest in TFFW along both rivers. Greater rates of deposition in oligohaline and salt-stressed forested wetlands were associated with a shift to greater clay and metal content that is likely associated with a change from low availability of watershed-derived sediment to TFFW and to greater availability of a coastal sediment source to oligohaline wetlands. Long-term accumulation rates along the Waccamaw River had the opposite spatial pattern compared to contemporary deposition, with greater rates in TFFW that declined to oligohaline marsh. Long-term sediment and elemental mass accumulation rates also were 3–9× lower than contemporary deposition rates. In comparison to other studies, sediment and associated nutrient accumulation in TFFW are lower than downriver/estuarine freshwater, oligohaline, and salt marshes, suggesting a reduced capacity for surface sedimentation (short-term) as well as shallow soil processes (long-term sedimentation) to offset sea level rise in TFFW. Nonetheless, their potentially large spatial extent suggests that TFFW have a large impact on the transport and fate of sediment and nutrients in tidal rivers and estuaries.

  20. Context-dependency in the effects of nutrient loading and consumers on the availability of space in marine rocky environments.

    PubMed

    Bulleri, Fabio; Russell, Bayden D; Connell, Sean D

    2012-01-01

    Enhanced nutrient loading and depletion of consumer populations interact to alter the structure of aquatic plant communities. Nonetheless, variation between adjacent habitats in the relative strength of bottom-up (i.e. nutrients) versus top-down (i.e. grazing) forces as determinants of community structure across broad spatial scales remains unexplored. We experimentally assessed the importance of grazing pressure and nutrient availability on the development of macroalgal assemblages and the maintenance of unoccupied space in habitats differing in physical conditions (i.e. intertidal versus subtidal), across regions of contrasting productivity (oligotrophic coasts of South Australia versus the more productive coasts of Eastern Australia). In Eastern Australia, grazers were effective in maintaining space free of macroalgae in both intertidal and subtidal habitats, irrespective of nutrient levels. Conversely, in South Australia, grazers could not prevent colonization of space by turf-forming macroalgae in subtidal habitats regardless of nutrients levels, yet in intertidal habitats removal of grazers reduced unoccupied space when nutrients were elevated. Assessing the effects of eutrophication in coastal waters requires balancing our understanding between local consumer pressure and background oceanographic conditions that affect productivity. This broader-based understanding may assist in reconciling disproportionately large local-scale variation, a characteristic of ecology, with regional scale processes that are often of greater relevance to policy making and tractability to management.

  1. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought

    PubMed Central

    Isbell, Forest; Manning, Pete; Connolly, John; Bruelheide, Helge; Ebeling, Anne; Roscher, Christiane; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian; Beierkuhnlein, Carl; de Luca, Enrica; Griffin, John N.; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtech; Loreau, Michel; Meyer, Sebastian T.; Mori, Akira S.; Naeem, Shahid; Palmborg, Cecilia; Polley, H. Wayne; Reich, Peter B.; Schmid, Bernhard; Siebenkäs, Alrun; Seabloom, Eric; Thakur, Madhav P.; Tilman, David; Vogel, Anja; Eisenhauer, Nico

    2016-01-01

    Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function. PMID:27114579

  2. Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems.

    PubMed

    Perring, Michael P; Hedin, Lars O; Levin, Simon A; McGroddy, Megan; de Mazancourt, Claire

    2008-02-12

    Inputs of available nitrogen (N) to ecosystems have grown over the recent past. There is limited general understanding of how increased N inputs affect the cycling and retention of other potentially limiting nutrients. Using a plant-soil nutrient model, and by explicitly coupling N and phosphorus (P) in plant biomass, we examine the impact of increasing N supply on the ecosystem cycling and retention of P, assuming that the main impact of N is to increase plant growth. We find divergent responses in the P cycle depending on the specific pathway by which nutrients are lost from the ecosystem. Retention of P is promoted if the relative propensity for loss of plant available P is greater than that for the loss of less readily available organic P. This is the first theoretical demonstration that the coupled response of ecosystem-scale nutrient cycles critically depends on the form of nutrient loss. P retention might be lessened, or reversed, depending on the kinetics and size of a buffering reactive P pool. These properties determine the reactive pool's ability to supply available P. Parameterization of the model across a range of forest ecosystems spanning various environmental and climatic conditions indicates that enhanced plant growth due to increased N should trigger increased P conservation within ecosystems while leading to more dissolved organic P loss. We discuss how the magnitude and direction of the effect of N may also depend on other processes.

  3. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    PubMed

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  4. Changes in nutrient dynamics of midcontinent greater white-fronted geese during spring migration

    USGS Publications Warehouse

    Pearse, Aaron T.; Alisauskas, Ray T.; Krapu, Gary L.; Cox, Robert R.

    2011-01-01

    Waterfowl and other migratory birds commonly store nutrients at traditional staging areas during spring for later use during migration and reproduction. We investigated nutrient-storage dynamics in the midcontinent population of greater white-fronted geese (Anser albifrons; hereafter white-fronted geese) at spring staging sites in the Rainwater Basin of Nebraska during February-April and in southern Saskatchewan during April-May, 1998 and 1999. In Nebraska, lipid content of white-fronted geese did not increase, and protein content changed little over time for most age and sex categories. In Saskatchewan, lipids increased 11.4 g/day (SE = 1.7) and protein content increased 1.6 g/day (SE = 0.6) in the sample of adult geese collected over a 3-week period. A study conducted during 1979-1980 in the Rainwater Basin reported that white-fronted geese gained 8.8-17.7 g of lipids per day during spring, differing greatly from our results 2 decades later. In addition, lipid levels were less in the 1990s compared to spring 1980 for adult geese nearing departure from staging sites in Saskatchewan. This shift in where geese acquired nutrient stores from Nebraska to more northern staging sites coincided with a decrease in availability of waste corn in Nebraska, their primary food source while staging at that stopover site, and an increase in cultivation of high-energy pulse crops in Saskatchewan. White-fronted geese exhibited flexibility in nutrient dynamics during spring migration, likely in response to landscape-level variation in food availability caused by changes in agricultural trends and practices. Maintaining a wide distribution of wetlands in the Great Plains may allow springstaging waterfowl to disperse across the region and facilitate access to high-energy foods over a larger cropland base.

  5. Shaping an Optimal Soil by Root-Soil Interaction.

    PubMed

    Jin, Kemo; White, Philip J; Whalley, William R; Shen, Jianbo; Shi, Lei

    2017-10-01

    Crop production depends on the availability of water and mineral nutrients, and increased yields might be facilitated by a greater focus on roots-soil interactions. Soil properties affecting plant growth include drought, compaction, nutrient deficiency, mineral toxicity, salinity, and submergence. Plant roots respond to the soil environment both spatially and temporally by avoiding stressful soil environments and proliferating in more favorable environments. We observe that crops can be bred for specific root architectural and biochemical traits that facilitate soil exploration and resource acquisition, enabling greater crop yields. These root traits affect soil physical and chemical properties and might be utilized to improve the soil for subsequent crops. We argue that optimizing root-soil interactions is a prerequisite for future food security. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Increased Calcium Availability Leads to Greater Forest Floor Accumulation in an Adirondack Forest

    NASA Astrophysics Data System (ADS)

    Melvin, A.; Goodale, C. L.

    2010-12-01

    Nutrient availability in Northeastern US forests has been dramatically altered by anthropogenic activities. Acid deposition has not only increased nitrogen (N) availability, but has also been linked to soil acidification and a loss of base cations, largely calcium (Ca). We are studying the long-term effects of a Ca addition on carbon (C) and N cycling in a forested catchment in the Adirondack Park, New York. In 1989, calcium carbonate (lime) was added to two subcatchments within the Woods Lake Watershed to ameliorate the effects of soil Ca depletion. Two additional subcatchments were left as controls. Eighteen years after the Ca application, both soil pH and exchangeable Ca concentrations remain elevated in the organic horizons and upper mineral soils of the treated subcatchments. The forest floor mass in this watershed is very large and measurements show that the organic layer in the limed subcatchments is significantly larger than in the controls (212 t/ha vs. 116 t/ha), resulting in greater C and N stocks in the Ca-amended soils. This finding suggests that Ca may stabilize soil organic matter (SOM), resulting in greater C storage under high soil Ca conditions. We are investigating potential drivers of this SOM accumulation in the limed subcatchments, including rates of leaf litter production and the decomposition rate of forest floor material. This work will provide important insights into how long-term changes in soil Ca availability influence SOM stabilization, retention and nutrient cycling.

  7. No iron fertilization in the equatorial Pacific Ocean during the last ice age

    NASA Astrophysics Data System (ADS)

    Costa, K. M.; McManus, J. F.; Anderson, R. F.; Ren, H.; Sigman, D. M.; Winckler, G.; Fleisher, M. Q.; Marcantonio, F.; Ravelo, A. C.

    2016-01-01

    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age—the Last Glacial Period (LGP)—but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the 232Th proxy), phytoplankton productivity (using opal, 231Pa/230Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ15N) from six cores in the central equatorial Pacific for the Holocene (0-10,000 years ago) and the LGP (17,000-27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the Subantarctic Zone would have ultimately worked to lower, not raise, equatorial Pacific productivity.

  8. No iron fertilization in the equatorial Pacific Ocean during the last ice age.

    PubMed

    Costa, K M; McManus, J F; Anderson, R F; Ren, H; Sigman, D M; Winckler, G; Fleisher, M Q; Marcantonio, F; Ravelo, A C

    2016-01-28

    The equatorial Pacific Ocean is one of the major high-nutrient, low-chlorophyll regions in the global ocean. In such regions, the consumption of the available macro-nutrients such as nitrate and phosphate is thought to be limited in part by the low abundance of the critical micro-nutrient iron. Greater atmospheric dust deposition could have fertilized the equatorial Pacific with iron during the last ice age--the Last Glacial Period (LGP)--but the effect of increased ice-age dust fluxes on primary productivity in the equatorial Pacific remains uncertain. Here we present meridional transects of dust (derived from the (232)Th proxy), phytoplankton productivity (using opal, (231)Pa/(230)Th and excess Ba), and the degree of nitrate consumption (using foraminifera-bound δ(15)N) from six cores in the central equatorial Pacific for the Holocene (0-10,000 years ago) and the LGP (17,000-27,000 years ago). We find that, although dust deposition in the central equatorial Pacific was two to three times greater in the LGP than in the Holocene, productivity was the same or lower, and the degree of nitrate consumption was the same. These biogeochemical findings suggest that the relatively greater ice-age dust fluxes were not large enough to provide substantial iron fertilization to the central equatorial Pacific. This may have been because the absolute rate of dust deposition in the LGP (although greater than the Holocene rate) was very low. The lower productivity coupled with unchanged nitrate consumption suggests that the subsurface major nutrient concentrations were lower in the central equatorial Pacific during the LGP. As these nutrients are today dominantly sourced from the Subantarctic Zone of the Southern Ocean, we propose that the central equatorial Pacific data are consistent with more nutrient consumption in the Subantarctic Zone, possibly owing to iron fertilization as a result of higher absolute dust fluxes in this region. Thus, ice-age iron fertilization in the Subantarctic Zone would have ultimately worked to lower, not raise, equatorial Pacific productivity.

  9. The molecular signature of muscle stem cells is driven by nutrient availability and innate cell metabolism.

    PubMed

    Ryall, James G; Lynch, Gordon S

    2018-07-01

    To discuss how innate muscle stem-cell metabolism and nutrient availability can provide temporal regulation of chromatin accessibility and transcription. Fluorescence-activated cell sorting coupled with whole transcriptome sequencing revealed for the first time that quiescent and proliferating skeletal muscle stem cells exhibit a process of metabolic reprogramming, from fatty-acid oxidation during quiescence to glycolysis during proliferation. Using a combination of immunofluorescence and chromatin immunoprecipitation sequencing, this shift in metabolism has been linked to altered availability of key metabolites essential for histone (de)acetylation and (de)methylation, including acetyl-CoA, s-adenosylmethionine and α-ketoglutarate. Importantly, these changes in metabolite availability have been linked to muscle stem-cell function. Together, these results provide greater insight into how muscle stem cells interact with their local environment, with important implications for metabolic diseases, skeletal muscle regeneration and cell-transplantation therapies.

  10. Genders in Juniperus thurifera have different functional responses to variations in nutrient availability.

    PubMed

    Montesinos, D; Villar-Salvador, P; García-Fayos, P; Verdú, M

    2012-02-01

    • Differences in reproductive investment can trigger asymmetric, context-dependent, functional strategies between genders in dioecious species. However, little is known about the gender responses of dioecious species to nutrient availability. • We experimentally fertirrigated a set of male and female Juniperus thurifera trees monthly for 2 yr. Water potential, photosynthesis rate and stomatal conductance were measured monthly for 2 yr, while shoot nitrogen (N) concentration, carbon isotopic composition (δ(13) C), branch growth, trunk radial growth and reproductive investment per branch were measured yearly. • Control males had lower gas exchange rates and radial growth but greater reproductive investment and higher water use efficiency (WUE; as inferred from more positive δ(13) C values) than females. Fertirrigation did not affect water potential or WUE but genders responded differently to increased nutrient availability. The two genders similarly increased shoot N concentration when fertilized. The increase in shoot N was associated with increased photosynthesis in males but not in females, which presented consistently high photosynthetic rates across treatments. • Our results suggest that genders invest N surplus in different functions, with females presenting a long-term strategy by increasing N storage to compensate for massive reproductive masting events, while males seem to be more reactive to current nutrient availability, promoting gas-exchange capacity. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  11. Fungal Endophyte (Epichloë festucae) Alters the Nutrient Content of Festuca rubra Regardless of Water Availability

    PubMed Central

    Vázquez-de-Aldana, Beatriz R.; García-Ciudad, Antonia; García-Criado, Balbino; Vicente-Tavera, Santiago; Zabalgogeazcoa, Iñigo

    2013-01-01

    Festuca rubra plants maintain associations with the vertically transmitted fungal endophyte Epichloë festucae. A high prevalence of infected host plants in semiarid grasslands suggests that this association could be mutualistic. We investigated if the Epichloë-endophyte affects the growth and nutrient content of F. rubra plants subjected to drought. Endophyte-infected (E+) and non-infected (E−) plants of two half-sib lines (PEN and RAB) were subjected to three water availability treatments. Shoot and root biomass, nutrient content, proline, phenolic compounds and fungal alkaloids were measured after the treatments. The effect of the endophyte on shoot and root biomass and dead leaves depended on the plant line. In the PEN line, E+ plants had a greater S:R ratio than E-, but the opposite occurred in RAB. In both plant lines and all water treatments, endophyte-infected plants had greater concentrations of N, P and Zn in shoots and Ca, Mg and Zn in roots than E- plants. On average, E+ plants contained in their shoots more P (62%), Zn (58%) and N (19%) than E- plants. While the proline in shoots increased in response to water stress, the endophyte did not affect this response. A multivariate analysis showed that endophyte status and plant line impose stronger differences in the performance of the plants than the water stress treatments. Furthermore, differences between PEN and RAB lines seemed to be greater in E- than in E+ plants, suggesting that E+ plants of both lines are more similar than those of their non-infected version. This is probably due to the endophyte producing a similar effect in both plant lines, such as the increase in N, P and Zn in shoots. The remarkable effect of the endophyte in the nutrient balance of the plants could help to explain the high prevalence of infected plants in natural grasslands. PMID:24367672

  12. Viviparous placentotrophy in reptiles and the parent-offspring conflict.

    PubMed

    Blackburn, Daniel G

    2015-09-01

    In placentotrophic viviparous reptiles, pregnant females deliver nutrients to their developing fetuses by diverse morphological specializations that reflect independent evolutionary origins. A survey of these specializations reveals a major emphasis on histotrophy (uterine secretion and fetal absorption) rather than hemotrophy (transfer between maternal and fetal blood streams). Of available hypotheses for the prevalence of histotrophic transfer, the most promising derives insights from the theoretical parent-offspring conflict over nutrient investment. I suggest that histotrophy gives pregnant females greater control over nutrient synthesis, storage, and delivery than hemotrophic transfer, reflecting maternal preeminence in any potential parent-offspring competition over nutrient investment. One lizard species shows invasive ovo-implantation and direct contact between fetal tissues and maternal blood vessels, potentially conferring control over nutrient transfer to the embryo. Future research on squamates will benefit from application of parent-offspring conflict theory to the transition from incipient to substantial matrotrophy, as well as by testing theory-derived predictions on both facultatively and highly placentotrophic forms. © 2015 Wiley Periodicals, Inc.

  13. Effects of nutrient enrichment on the decomposition of wood and associated microbial activity in streams

    USGS Publications Warehouse

    Gulis, V.; Rosemond, A.D.; Suberkropp, K.; Weyers, H.S.; Benstead, J.P.

    2004-01-01

    1. We determined the effects of nutrient enrichment on wood decomposition rates and microbial activity during a 3-year study in two headwater streams at Coweeta Hydrologic Laboratory, NC, U.S.A. After a 1-year pretreatment period, one of the streams was continuously enriched with inorganic nutrients (nitrogen and phosphorus) for 2 years while the other stream served as a reference. We determined the effects of enrichment on both wood veneers and sticks, which have similar carbon quality but differ in physical characteristics (e.g. surface area to volume ratios, presence of bark) that potentially affect microbial colonisation and activity. 2. Oak wood veneers (0.5 mm thick) were placed in streams monthly and allowed to decompose for approximately 90 days. Nutrient addition stimulated ash-free dry mass loss and increased mean nitrogen content, fungal biomass and microbial respiration on veneers in the treatment stream compared with the reference. The magnitude of the response to enrichment was great, with mass loss 6.1 times, and per cent N, fungal biomass and microbial respiration approximately four times greater in the treatment versus reference stream. 3. Decomposition rate and nitrogen content of maple sticks (ca. 1-2 cm diameter) also increased; however, the effect was less pronounced than for veneers. Wood response overall was greater than that determined for leaves in a comparable study, supporting the hypothesis that response to enrichment may be greater for lower quality organic matter (high C:N) than for higher quality (low C:N) substrates. 4. Our results show that moderate nutrient enrichment can profoundly affect decomposition rate and microbial activity on wood in streams. Thus, the timing and availability of wood that provides retention, structure, attachment sites and food in stream ecosystems may be affected by nutrient concentrations raised by human activities.

  14. Litter of the hemiparasite Bartsia alpina enhances plant growth: evidence for a functional role in nutrient cycling.

    PubMed

    Quested, Helen M; Press, Malcolm C; Callaghan, Terry V

    2003-05-01

    Hemiparasitic angiosperms concentrate nutrients in their leaves and also produce high quality litter, which can decompose faster and release more nutrients than that of surrounding species. The impact of these litters on plant growth may be particularly important in nutrient-poor communities where hemiparisites can be abundant, such as the sub-Arctic. We tested the hypothesis that plant growth is enhanced by the litter of the hemiparasite Bartsia alpina, in comparison with litter of co-occurring dwarf shrub species, using a pot based bioassay approach. Growth of Betula nana and Poa alpina was up to 51% and 41% greater, respectively, in the presence of Bartsia alpina litter than when grown with dwarf shrub litter (Vaccinium uliginosum, Betula nana and Empetrum nigrum subsp. hermaphroditum). The nutrient concentrations of Betula nana plants grown with Bartsia alpina litter were almost double those of plants grown with dwarf shrub litter, and a significantly greater proportion of biomass was allocated to shoots rather than roots, strongly suggesting that nutrient availability was higher where Bartsia alpina litter was present. The presence of litter from dwarf shrubs, or the moss Hylocomium splendens, did not reduce the positive effect of Bartsia alpina litter on plant growth. E. nigrum litter did not appear to affect plant growth substantially differently from litter of other dwarf shrub species, despite earlier reports of its allelopathic action. The enhanced nutrient uptake and growth of plants in the presence of Bartsia alpina (and potentially other hemiparasitic species) litter could have important implications for communities in which it occurs, including enhanced survival of seedlings of co-occurring species and increased resource patchiness.

  15. Illuminating pathways of forest nutrient provision: relative release from soil mineral and organic pools

    NASA Astrophysics Data System (ADS)

    Hauser, E.; Billings, S. A.

    2017-12-01

    Depletion of geogenic nutrients during soil weathering can prompt vegetation to rely on other sources, such as organic matter (OM) decay, to meet growth requirements. Weathered soils also tend to permit deep rooting, a phenomenon sometimes attributed to vegetation foraging for geogenic nutrients. This study examines the extent to which OM recycling provides nutrients to vegetation growing in soils with diverse weathering states. We thus address the fundamental problem of how forest vegetation obtains sufficient nutrition to support productivity despite wide variation in soils' nutrient contents. We hypothesized that vegetation growing on highly weathered soils relies on nutrients released from OM decay to a greater extent than vegetation growing on less weathered, more nutrient-rich substrates. For four mineralogically diverse Critical Zone Observatories (CZO) and Critical Zone Exploratory Network sites, we calculated weathering indices and approximated vegetation nutrient demand and nutrient release from OM decay. We also measured nutrient release rates from OM decay at each site. We then assessed the relationship between degree of soil weathering and the estimated fraction of nutrient demand satisfied by OM derived nutrients. Results are consistent with our hypothesis. The chemical index of alteration (CIA), a weathering index that increases in value with mineral depletion, varies predictably from 90 at the highly weathered Calhoun CZO to 60 at the Catalina CZO, where soils are more recently developed. Estimates of rates of K release from OM decay increase with CIA values. The highest release rate is 2.4 gK m-2 y-1 at Calhoun, accounting for 30% of annual vegetation K uptake; at Catalina, less than 0.5 gm-2 y-1 K is released, meeting 14% of vegetation demand. CIA also co-varies with rooting depth across sites: the deepest roots at the Calhoun sites are growing in soils with the highest CIA values, while the deepest roots at Catalina sites are growing in soils with much lower CIA values. Thus, provision of plant-available nutrients from OM decay appears greater at more weathered sites, and dominant nutrient sources accessed by deep roots (OM- vs. rock-derived) may vary predictably with soil weathering stage. On-going incubations will permit us to assess these relationships for multiple geogenic nutrients.

  16. Groundwater Availability Alters Soil-plant Nutrient Cycling in a Stand of Invasive, N-fixing Phreatophytes

    NASA Astrophysics Data System (ADS)

    Dudley, B. D.; Miyazawa, Y.; Hughes, F.; Ostertag, R.; Kettwich, S. K.; MacKenzie, R.; Dulaiova, H.; Waters, C. A.; Bishop, J.; Giambelluca, T. W.

    2013-12-01

    N-fixing phreatophytic trees are common in arid and semi-arid regions worldwide, and can play significant roles in modifying hydrology and soil-plant nutrient cycling where they are present. In light of reductions in groundwater levels in many arid regions we estimated annual transpiration rates at a stand level, and alterations to C, N and P accretion in soils as a function of groundwater depth in a ca.120 year old stand of Prosopis pallida along an elevation gradient in coastal leeward Hawaii. We measured sapflow and stand level sapwood area to quantify transpiration, and calculated groundwater transpiration rates using P. pallida stem water δ18O values. By measuring soil resistivity, we were able to compare the volume of groundwater transpired by these trees to groundwater depth across the stand. We examined nutrient deposition and accretion in soils in lowland areas of the stand with accessible shallow groundwater, compared to upland areas with no groundwater access, as indicated by stem water δ18O values. Resistivity results suggested that groundwater was at a height close to sea level throughout the stand. Transpiration was around 1900 m3 ha-1 year-1 in the areas of the stand closest to the sea (where groundwater was at around 1-4 m below ground level) and decreased to around a tenth of that volume where groundwater was not accessible. Litterfall rates over the course of the year studied were 17 times greater at lowland sites, but this litterfall contributed ca. 24 times the N, and 35 times the P of upland sites. Thus, groundwater access contributed to the total mass of nitrogen and phosphorus deposited in the form of litter through higher litter quantity and quality. Total N content of soils was 4.7 times greater and inorganic N pools were eight times higher at lowland plots. These results suggest that groundwater depth can have strong effects on soil-plant nutrient cycling, so that reductions in the availability of shallow groundwater are likely to impact soil nutrient availability in arid regions.

  17. Strontium source and depth of uptake shifts with substrate age in semiarid ecosystems

    NASA Astrophysics Data System (ADS)

    Coble, Ashley A.; Hart, Stephen C.; Ketterer, Michael E.; Newman, Gregory S.; Kowler, Andrew L.

    2015-06-01

    Without exogenous rock-derived nutrient sources, terrestrial ecosystems may eventually regress or reach a terminal steady state, but the degree to which exogenous nutrient sources buffer or slow to a theoretical terminal steady state remains unclear. We used strontium isotope ratios (87Sr/86Sr) as a tracer and measured 87Sr/86Sr values in aeolian dust, soils, and vegetation across a well-constrained 3 Myr semiarid substrate age gradient to determine (1) whether the contribution of atmospheric sources of rock-derived nutrients to soil and vegetation pools varied with substrate age and (2) to determine if the depth of uptake varied with substrate age. We found that aeolian-derived nutrients became increasingly important, contributing as much as 71% to plant-available soil pools and tree (Pinus edulis) growth during the latter stages of ecosystem development in a semiarid climate. The depth of nutrient uptake increased on older substrates, demonstrating that trees in arid regions can acquire nutrients from greater depths as ecosystem development progresses presumably in response to nutrient depletion in the more weathered surface soils. Our results demonstrate that global and regional aeolian transport of nutrients to local ecosystems is a vital process for ecosystem development in arid regions. Furthermore, these aeolian nutrient inputs contribute to deep soil nutrient pools, which become increasingly important for maintaining plant productivity over long time scales.

  18. Hydrology-oriented forest management trade-offs. A modeling framework coupling field data, simulation results and Bayesian Networks.

    PubMed

    Garcia-Prats, Alberto; González-Sanchis, María; Del Campo, Antonio D; Lull, Cristina

    2018-10-15

    Hydrology-oriented forest management sets water as key factor of the forest management for adaptation due to water is the most limiting factor in the Mediterranean forest ecosystems. The aim of this study was to apply Bayesian Network modeling to assess potential indirect effects and trade-offs when hydrology-oriented forest management is applied to a real Mediterranean forest ecosystem. Water, carbon and nitrogen cycles, and forest fire risk were included in the modeling framework. Field data from experimental plots were employed to calibrate and validate the mechanistic Biome-BGCMuSo model that simulates the storage and flux of water, carbon, and nitrogen between the ecosystem and the atmosphere. Many other 50-year long scenarios with different conditions to the ones measured in the field experiment were simulated and the outcomes employed to build the Bayesian Network in a linked chain of models. Hydrology-oriented forest management was very positive insofar as more water was made available to the stand because of an interception reduction. This resource was made available to the stand, which increased the evapotranspiration and its components, the soil water content and a slightly increase of deep percolation. Conversely, Stemflow was drastically reduced. No effect was observed on Runof due to the thinning treatment. The soil organic carbon content was also increased which in turn caused a greater respiration. The long-term effect of the thinning treatment on the LAI was very positive. This was undoubtedly due to the increased vigor generated by the greater availability of water and nutrients for the stand and the reduction of competence between trees. This greater activity resulted in an increase in GPP and vegetation carbon, and therefore, we would expect a higher carbon sequestration. It is worth emphasizing that this extra amount of water and nutrients was taken up by the stand and did not entail any loss of nutrients. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Nutritional analysis and microbiological evaluation of commercially available enteral diets for cats.

    PubMed

    Prantil, Lori R; Markovich, Jessica E; Heinze, Cailin R; Linder, Deborah E; Tams, Todd R; Freeman, Lisa M

    2016-01-01

    To determine the prevalence of nutrients less than or greater than accepted standards in commercially available enteral diets for cats, and to identify contamination incidence in enteral diets for cats. Prospective cross-sectional study. University teaching hospital. Seven commercial enteral diets for cats. Labels were evaluated to determine if diets were intended to be nutritionally complete and balanced. One diet under storage techniques partially representative of clinical conditions was sampled on days 0, 1, 3, 5, and 7 of storage for aerobic bacterial culture. All 7 diets were analyzed for key nutrients and results were compared to Association of American Feed Control Officials (AAFCO) Nutrient Profiles for Adult Cats for maintenance and National Research Council recommended allowance (NRC-RA). From label information, 4 diets were classified as complete and balanced and 3 diets were classified as not complete and balanced. All 7 diets had at least 1 nutrient less than the AAFCO minimums and the NRC-RA. The total number of nutrients less than AAFCO minimums ranged from 3 to 9 (median = 4), with iron, potassium, and manganese being the most common. Concentrations of some nutrients were undetectable. None of the samples tested had a positive aerobic culture at baseline (day 0) or on subsequent samples from days 1, 3, 5, and 7 under any storage condition. None of the diets analyzed met all of the minimum nutrient concentrations. While short-term feeding may not be of concern for an individual patient, clinicians should be aware of potential nutritional limitations when feeding enteral diets to ill or injured cats. © Veterinary Emergency and Critical Care Society 2015.

  20. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years

    PubMed Central

    Winckler, Gisela; Anderson, Robert F.; Jaccard, Samuel L.; Marcantonio, Franco

    2016-01-01

    Biological productivity in the equatorial Pacific is relatively high compared with other low-latitude regimes, especially east of the dateline, where divergence driven by the trade winds brings nutrient-rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high-nutrient low-chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited, in part, by the availability of iron. Throughout most of the equatorial Pacific, upwelling of water from the Equatorial Undercurrent supplies far more dissolved iron than is delivered by dust, by as much as two orders of magnitude. Nevertheless, recent studies have inferred that the greater supply of dust during ice ages stimulated greater utilization of nutrients within the region of upwelling on the equator, thereby contributing to the sequestration of carbon in the ocean interior. Here we present proxy records for dust and for biological productivity over the past 500 ky at three sites spanning the breadth of the equatorial Pacific Ocean to test the dust fertilization hypothesis. Dust supply peaked under glacial conditions, consistent with previous studies, whereas proxies of export production exhibit maxima during ice age terminations. Temporal decoupling between dust supply and biological productivity indicates that other factors, likely involving ocean dynamics, played a greater role than dust in regulating equatorial Pacific productivity. PMID:27185933

  1. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years

    NASA Astrophysics Data System (ADS)

    Winckler, Gisela; Anderson, Robert F.; Jaccard, Samuel L.; Marcantonio, Franco

    2016-05-01

    Biological productivity in the equatorial Pacific is relatively high compared with other low-latitude regimes, especially east of the dateline, where divergence driven by the trade winds brings nutrient-rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high-nutrient low-chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited, in part, by the availability of iron. Throughout most of the equatorial Pacific, upwelling of water from the Equatorial Undercurrent supplies far more dissolved iron than is delivered by dust, by as much as two orders of magnitude. Nevertheless, recent studies have inferred that the greater supply of dust during ice ages stimulated greater utilization of nutrients within the region of upwelling on the equator, thereby contributing to the sequestration of carbon in the ocean interior. Here we present proxy records for dust and for biological productivity over the past 500 ky at three sites spanning the breadth of the equatorial Pacific Ocean to test the dust fertilization hypothesis. Dust supply peaked under glacial conditions, consistent with previous studies, whereas proxies of export production exhibit maxima during ice age terminations. Temporal decoupling between dust supply and biological productivity indicates that other factors, likely involving ocean dynamics, played a greater role than dust in regulating equatorial Pacific productivity.

  2. Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years.

    PubMed

    Winckler, Gisela; Anderson, Robert F; Jaccard, Samuel L; Marcantonio, Franco

    2016-05-31

    Biological productivity in the equatorial Pacific is relatively high compared with other low-latitude regimes, especially east of the dateline, where divergence driven by the trade winds brings nutrient-rich waters of the Equatorial Undercurrent to the surface. The equatorial Pacific is one of the three principal high-nutrient low-chlorophyll ocean regimes where biological utilization of nitrate and phosphate is limited, in part, by the availability of iron. Throughout most of the equatorial Pacific, upwelling of water from the Equatorial Undercurrent supplies far more dissolved iron than is delivered by dust, by as much as two orders of magnitude. Nevertheless, recent studies have inferred that the greater supply of dust during ice ages stimulated greater utilization of nutrients within the region of upwelling on the equator, thereby contributing to the sequestration of carbon in the ocean interior. Here we present proxy records for dust and for biological productivity over the past 500 ky at three sites spanning the breadth of the equatorial Pacific Ocean to test the dust fertilization hypothesis. Dust supply peaked under glacial conditions, consistent with previous studies, whereas proxies of export production exhibit maxima during ice age terminations. Temporal decoupling between dust supply and biological productivity indicates that other factors, likely involving ocean dynamics, played a greater role than dust in regulating equatorial Pacific productivity.

  3. Quantifying the biological impact of surface ocean light attenuation by colored detrital matter in an ESM using a new optical parameterization

    NASA Astrophysics Data System (ADS)

    Kim, G. E.; Pradal, M.-A.; Gnanadesikan, A.

    2015-08-01

    Light attenuation by colored detrital material (CDM) was included in a fully coupled Earth system model (ESM). This study presents a modified parameterization for shortwave attenuation, which is an empirical relationship between 244 concurrent measurements of the diffuse attenuation coefficient for downwelling irradiance, chlorophyll concentration and light absorption by CDM. Two ESM model runs using this parameterization were conducted, with and without light absorption by CDM. The light absorption coefficient for CDM was prescribed as the average of annual composite MODIS Aqua satellite data from 2002 to 2013. Comparing results from the two model runs shows that changes in light limitation associated with the inclusion of CDM decoupled trends between surface biomass and nutrients. Increases in surface biomass were expected to accompany greater nutrient uptake and therefore diminish surface nutrients. Instead, surface chlorophyll, biomass and nutrients increased together. These changes can be attributed to the different impact of light limitation on surface productivity versus total productivity. Chlorophyll and biomass increased near the surface but decreased at greater depths when CDM was included. The net effect over the euphotic zone was less total biomass leading to higher nutrient concentrations. Similar results were found in a regional analysis of the oceans by biome, investigating the spatial variability of response to changes in light limitation using a single parameterization for the surface ocean. In coastal regions, surface chlorophyll increased by 35 % while total integrated phytoplankton biomass diminished by 18 %. The largest relative increases in modeled surface chlorophyll and biomass in the open ocean were found in the equatorial biomes, while the largest decreases in depth-integrated biomass and chlorophyll were found in the subpolar and polar biomes. This mismatch of surface and subsurface trends and their regional dependence was analyzed by comparing the competing factors of diminished light availability and increased nutrient availability on phytoplankton growth in the upper 200 m. Understanding changes in biological productivity requires both surface and depth-resolved information. Surface trends may be minimal or of the opposite sign than depth-integrated amounts, depending on the vertical structure of phytoplankton abundance.

  4. Phosphorus availability in Western Lake Erie Basin drainage waters: legacy evidence across spatial scales

    USDA-ARS?s Scientific Manuscript database

    The Western Lake Erie Basin (WLEB) was inundated with precipitation during June and July 2015 (2-3× greater than historical averages), which led to significant nutrient loading and the largest in-lake algal bloom on record. Using discharge and concentration data from three spatial scales (0.09 km2 t...

  5. Herbal and nutrient complementary medicines for weight loss: community pharmacists' practices, attitudes, recommendations, information and education needs.

    PubMed

    Taing, Meng-Wong; Tan, Eunice Tze Xin; Williams, Gail M; Clavarino, Alexandra M; McGuire, Treasure M

    2016-05-01

    To investigate pharmacists' herbal/nutrient weight loss complementary medicine (WLCM) practices in the context of other pharmacist weight management support practices (provision of lifestyle advice, orlistat and meal replacement treatments); and gain insight into their attitudes, recommendations, information and education needs. Pharmacists from a randomly selected sample of 214 community pharmacies from different socioeconomic areas in the Greater Brisbane region, Australia, were invited to complete a survey to explore their weight management practices, with a specific focus on herbal/nutrient WLCM practices. Data collected from the sample group represented pharmacist practices within the metropolitan Greater Brisbane region. This survey achieved a 51% response rate. During weight management consultations, a high proportion of customers (37%) sought advice from community pharmacists relating to WLCMs relative to other weight management practices; however, only a small proportion (10%) of pharmacists recommended them. Most were also found to be using resources that may not be evidence-based or do not provide sufficient WLCMs' information. Study results highlight the need for pharmacy professional bodies to develop evidence-based continuing education programmes to assist consumers with popular and widely available WLCMs products. © 2015 Royal Pharmaceutical Society.

  6. Relationship of carbohydrates and lignin molecular structure spectral profiles to nutrient profile in newly developed oats cultivars and barley grain

    NASA Astrophysics Data System (ADS)

    Prates, Luciana Louzada; Refat, Basim; Lei, Yaogeng; Louzada-Prates, Mariana; Yu, Peiqiang

    2018-01-01

    The objectives of this study were to quantify the chemical profile and the magnitude of differences in the oat and barley grain varieties developed by Crop Development Centre (CDC) in terms of Cornell Net Carbohydrate Protein System (CNCPS) carbohydrate sub-fractions: CA4 (sugars), CB1 (starch), CB2 (soluble fibre), CB3 (available neutral detergent fibre - NDF), and CC (unavailable carbohydrate); to estimate the energy values; to detect the lignin and carbohydrate (CHO) molecular structure profiles in CDC Nasser and CDC Seabiscuit oat and CDC Meredith barley grains by using Fourier transform infrared attenuated total reflectance (FTIR-ATR); to develop a model to predict nutrient supply based on CHO molecular profile. Results showed that NDF, ADF and CHO were greater (P < 0.05) in oat than in barley. The starch content was greater (P < 0.05) in barley than in oat. The CDC Meredith showed greater total rumen degradable carbohydrate (RDC), intestinal digestible fraction carbohydrate (FC) and lower total rumen undegradable carbohydrate (RUC). However, the estimated milk production did not differ for CDC Nasser oat and CDC Meredith barley. Lignin peak area and peak height did not differ (P > 0.05) for oat and barley grains as well as non-structural CHO. However, cellulosic compounds peak area and height were greater (P < 0.05) in oat than barley grains. Multiple regressions were determined to predict nutrient supply by using lignin and CHO molecular profiles. It was concluded that although there were some differences between oat and barley grains, CDC Nasser and CDC Meredith presented similarities related to chemical and molecular profiles, indicating that CDC Meredith barley could be replaced for CDC Nasser as ruminant feed. The FTIR was able to identify functional groups related to CHO molecular spectral in oat and barley grains and FTIR-ATR results could be used to predict nutrient supply in ruminant livestock systems.

  7. Foods, Fortificants, and Supplements: Where Do Americans Get Their Nutrients?123

    PubMed Central

    Fulgoni, Victor L.; Keast, Debra R.; Bailey, Regan L.; Dwyer, Johanna

    2011-01-01

    Limited data are available on the source of usual nutrient intakes in the United States. This analysis aimed to assess contributions of micronutrients to usual intakes derived from all sources (naturally occurring, fortified and enriched, and dietary supplements) and to compare usual intakes to the Dietary Reference Intake for U.S. residents aged ≥2 y according to NHANES 2003–2006 (n = 16,110). We used the National Cancer Institute method to assess usual intakes of 19 micronutrients by source. Only a small percentage of the population had total usual intakes (from dietary intakes and supplements) below the estimated average requirement (EAR) for the following: vitamin B-6 (8%), folate (8%), zinc (8%), thiamin, riboflavin, niacin, vitamin B-12, phosphorus, iron, copper, and selenium (<6% for all). However, more of the population had total usual intakes below the EAR for vitamins A, C, D, and E (34, 25, 70, and 60%, respectively), calcium (38%), and magnesium (45%). Only 3 and 35% had total usual intakes of potassium and vitamin K, respectively, greater than the adequate intake. Enrichment and/or fortification largely contributed to intakes of vitamins A, C, and D, thiamin, iron, and folate. Dietary supplements further reduced the percentage of the population consuming less than the EAR for all nutrients. The percentage of the population with total intakes greater than the tolerable upper intake level (UL) was very low for most nutrients, whereas 10.3 and 8.4% of the population had intakes greater than the UL for niacin and zinc, respectively. Without enrichment and/or fortification and supplementation, many Americans did not achieve the recommended micronutrient intake levels set forth in the Dietary Reference Intake. PMID:21865568

  8. Variation in elemental stoichiometry of the marine diatom Thalassiosira weissflogii (Bacillariophyceae) in response to combined nutrient stress and changes in carbonate chemistry.

    PubMed

    Clark, Darren R; Flynn, Kevin J; Fabian, Heiner

    2014-08-01

    The combined consequences of the multi-stressors of pH and nutrient availability upon the growth of a marine diatom were investigated. Thalassiosira weissflogii was grown in N- or P-limited batch culture in sealed systems, with pH commencing at 8.2 ("extant" conditions) or 7.6 ("ocean acidification" [OA] conditions), and then pH was allowed to either drift with growth, or was held fixed. Results indicated that within the pH range tested, the stability of environmental pH rather than its value (i.e., OA vs. extant) fundamentally influenced biomass accumul-ation and C:N:P stoichiometry. Despite large changes in total alkalinity in the fixed pH systems, final biomass production was consistently greater in these systems than that in drifting pH systems. In drift systems, pH increased to exceed pH 9.5, a level of alkalinity that was inhibitory to growth. No statis-tically significant differences between pH treatments were measured for N:C, P:C or N:P ratios during nutrient-replete growth, although the diatom expre-ssed greater plasticity in P:C and N:P ratios than in N:C during this growth phase. During nutrient-deplete conditions, the capacity for uncoupled carbon fixa-tion at fixed pH was considerably greater than that measured in drift pH systems, leading to strong contrasts in C:N:P stoichiometry between these treatments. Whether environmental pH was stable or drifted directly influenced the extent of physiological stress. In contrast, few distinctions could be drawn between "extant" versus "OA" conditions for cell physiology. © 2014 The Authors. Journal of Phycology published by Wiley Periodicals, Inc. on behalf of Phycological Society of America.

  9. Improved sustainability of feedstock production with sludge and interacting mycorrhiza.

    PubMed

    Seleiman, Mahmoud F; Santanen, Arja; Kleemola, Jouko; Stoddard, Frederick L; Mäkelä, Pirjo S A

    2013-05-01

    Recycling nutrients saves energy and improves agricultural sustainability. Sewage sludge contains 2.6% P and 3.1% N, so the availability of these nutrients was investigated using four crops grown in either soil or sand. Further attention was paid to the role of mycorrhiza in improvement of nutrient availability. The content of heavy metals and metalloids in the feedstock was analyzed. Sewage sludge application resulted in greater biomass accumulation in ryegrass than comparable single applications of either synthetic fertilizer or digested sludge. Sewage sludge application resulted in more numerous mycorrhizal spores in soil and increased root colonization in comparison to synthetic fertilizer. All plants studied had mycorrhizal colonized roots, with the highest colonization rate in maize, followed by hemp. Sewage sludge application resulted in the highest P uptake in all soil-grown plants. In conclusion, sewage sludge application increased feedstock yield, provided beneficial use for organic wastes, and contributed to the sustainability of bioenergy feedstock production systems. It also improves the soil conditions and plant nutrition through colonization by mycorrhizal fungi as well as reducing leaching and need of synthetic fertilizers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Complementary models of tree species-soil relationships in old-growth temperate forests

    USGS Publications Warehouse

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Ecosystem level studies identify plant soil feed backs as important controls on soil nutrient availability,particularly for nitrogen and phosphorus. Although site and species specific studies of tree species soil relationships are relatively common,comparatively fewer studies consider multiple coexisting speciesin old-growth forests across a range of sites that vary underlying soil fertility. We characterized patterns in forest floor and mineral soil nutrients associated with four common tree species across eight undisturbed old-growth forests in Oregon, USA, and used two complementary conceptual models to assess tree species soil relationships. Plant soil feedbacks that could reinforce sitelevel differences in nutrient availability were assessed using the context dependent relationships model, where by relative species based differences in each soil nutrient divergedorconvergedas nutrient status changed across sites. Tree species soil relationships that did not reflect strong feedbacks were evaluated using a site independent relationships model, where by forest floor and surface mineral soil nutrient tools differed consistently by tree species across sites,without variation in deeper mineral soils. We found that theorganically cycled elements carbon, nitrogen, and phosphorus exhibited context-dependent differences among species in both forest floor and mineral soil, and most of ten followed adivergence model,where by species differences were greatest at high-nutrient sites. These patterns are consistent with the oryemphasizing biotic control of these elements through plant soil feedback mechanisms. Site independent species differences were strongest for pool so if the weather able cations calcium, magnesium, potassium,as well as phosphorus, in mineral soils. Site independent species differences in forest floor nutrients we reattributable too nespecies that displayed significant greater forest floor mass accumulation. Our finding confirmed that site-independent and context-dependent tree species-soil relationships occur simultaneouslyinold-grow the temperate forests, with context-dependent relationships strongest for organically cycled elements, and site-independent relationships strongest for weather able elements with in organic cycling phases. These models provide complementary explanations for patterns of nutrient accumulation and cycling in mixed species old-growth temperate forests.

  11. Alternative Growth and Defensive Strategies Reveal Potential and Gender Specific Trade-Offs in Dioecious Plants Salix paraplesia to Nutrient Availability

    PubMed Central

    Jiang, Hao; Zhang, Sheng; Lei, Yanbao; Xu, Gang; Zhang, Dan

    2016-01-01

    Population sex ratios of many dioecious plants in nature are biased. This may be attributed to sexually different resource demands and adaptive capacity. In male-biasedPopulus, males often display stronger physiological adaptation than females. Interestingly, Populus and Salix, belonging to Salicaceae, display an opposite biased sex ratio, especially in nutrient-poor environmental conditions. Do female willows have a greater tolerance to nutrient deficiency than males? In this study, we investigated the growth and defensive strategies of Salix paraplesia cuttings, which were grown with high and low soil fertility for about 140 days over one growing season. Results suggest that different strategies for biomass allocation may result in sexually different defense capacities and trade-offs between growth and defense. Females are likely to adopt radical strategies, overdrawing on available resources to satisfy both growth and defense, which seems to be more like a gamble compared with males. It is also suggested that females may have an extra mechanism to compensate for the investment in growth under nutrient-poor conditions. In summary, the results may help focus restoration efforts on sex selection such that a moderate increase in female willow quantity could increase the resistance and resilience of willow populations to early sporadic desertification. PMID:27489556

  12. Maize varieties released in different eras have similar root length density distributions in the soil, which are negatively correlated with local concentrations of soil mineral nitrogen.

    PubMed

    Ning, Peng; Li, Sa; White, Philip J; Li, Chunjian

    2015-01-01

    Larger, and deeper, root systems of new maize varieties, compared to older varieties, are thought to have enabled improved acquisition of soil resources and, consequently, greater grain yields. To compare the spatial distributions of the root systems of new and old maize varieties and their relationships with spatial variations in soil concentrations of available nitrogen (N), phosphorus (P) and potassium (K), two years of field experiments were performed using six Chinese maize varieties released in different eras. Vertical distributions of roots, and available N, P and K in the 0-60 cm soil profile were determined in excavated soil monoliths at silking and maturity. The results demonstrated that new maize varieties had larger root dry weight, higher grain yield and greater nutrient accumulation than older varieties. All varieties had similar total root length and vertical root distribution at silking, but newer varieties maintained greater total root length and had more roots in the 30-60 cm soil layers at maturity. The spatial variation of soil mineral N (Nmin) in each soil horizon was larger than that of Olsen-P and ammonium-acetate-extractable K, and was inversely correlated with root length density (RLD), especially in the 0-20 cm soil layer. It was concluded that greater acquisition of mineral nutrients and higher yields of newer varieties were associated with greater total root length at maturity. The negative relationship between RLD and soil Nmin at harvest for all varieties suggests the importance of the spatial distribution of the root system for N uptake by maize.

  13. Maize Varieties Released in Different Eras Have Similar Root Length Density Distributions in the Soil, Which Are Negatively Correlated with Local Concentrations of Soil Mineral Nitrogen

    PubMed Central

    Ning, Peng; Li, Sa; White, Philip J.; Li, Chunjian

    2015-01-01

    Larger, and deeper, root systems of new maize varieties, compared to older varieties, are thought to have enabled improved acquisition of soil resources and, consequently, greater grain yields. To compare the spatial distributions of the root systems of new and old maize varieties and their relationships with spatial variations in soil concentrations of available nitrogen (N), phosphorus (P) and potassium (K), two years of field experiments were performed using six Chinese maize varieties released in different eras. Vertical distributions of roots, and available N, P and K in the 0–60 cm soil profile were determined in excavated soil monoliths at silking and maturity. The results demonstrated that new maize varieties had larger root dry weight, higher grain yield and greater nutrient accumulation than older varieties. All varieties had similar total root length and vertical root distribution at silking, but newer varieties maintained greater total root length and had more roots in the 30–60 cm soil layers at maturity. The spatial variation of soil mineral N (Nmin) in each soil horizon was larger than that of Olsen-P and ammonium-acetate-extractable K, and was inversely correlated with root length density (RLD), especially in the 0–20 cm soil layer. It was concluded that greater acquisition of mineral nutrients and higher yields of newer varieties were associated with greater total root length at maturity. The negative relationship between RLD and soil Nmin at harvest for all varieties suggests the importance of the spatial distribution of the root system for N uptake by maize. PMID:25799291

  14. Chemistry and decomposition of litter from Populus tremuloides Michaux grown at elevated atmospheric CO2and varying N availability

    Treesearch

    John S. King; Kurt S. Pregitzer; Donald R. Zak; Mark E. Kubiske; Jennifer A. Ashby; William E. Holmes

    2001-01-01

    It has been hypothesized that greater production of total nonstructural carbohydrates (TNC) in foliage grown under elevated atmospheric carbon dioxide (CO2) will result in higher concentrations of defensive compounds in tree leaf litter, possibly leading to reduced rates of decomposition and nutrient cycling in forest ecosystems of the future....

  15. Effects of mountain tea plantations on nutrient cycling at upstream watersheds

    NASA Astrophysics Data System (ADS)

    Lin, T.-C.; Shaner, P.-J. L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C.

    2015-11-01

    The expansion of agriculture to rugged mountains can exacerbate negative impacts of agricultural activities on ecosystem function. In this study, we monitored streamwater and rainfall chemistry of mountain watersheds at the Feitsui Reservoir Watershed in northern Taiwan to examine the effects of agriculture on watershed nutrient cycling. We found that the greater the proportion of tea plantation cover, the higher the concentrations of fertilizer-associated ions (NO3-, K+) in streamwater of the four mountain watersheds examined; on the other hand, the concentrations of the ions that are rich in soils (SO42-, Ca2+, Mg2+) did not increase with the proportion of tea plantation cover, suggesting that agriculture enriched fertilizer-associated nutrients in streamwater. Of the two watersheds for which rainfall chemistry was available, the one with higher proportion of tea plantation cover had higher concentrations of ions in rainfall and retained less nitrogen in proportion to input compared to the more pristine watershed, suggesting that agriculture can influence atmospheric deposition of nutrients and a system's ability to retain nutrients. As expected, we found that a forested watershed downstream of agricultural activities can dilute the concentrations of NO3- in streamwater by more than 70 %, indicating that such a landscape configuration helps mitigate nutrient enrichment in aquatic systems even for watersheds with steep topography. We estimated that tea plantation at our study site contributed approximately 450 kg ha-1 yr-1 of NO3-N via streamwater, an order of magnitude greater than previously reported for agricultural lands around the globe, which can only be matched by areas under intense fertilizer use. Furthermore, we constructed watershed N fluxes to show that excessive leaching of N, and additional loss to the atmosphere via volatilization and denitrification can occur under intense fertilizer use. In summary, this study demonstrated the pervasive impacts of agricultural activities, especially excessive fertilization, on ecosystem nutrient cycling at mountain watersheds.

  16. Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska.

    PubMed

    Sullivan, Patrick F; Ellison, Sarah B Z; McNown, Robert W; Brownlee, Annalis H; Sveinbjörnsson, Bjartmar

    2015-03-01

    The position of the Arctic treeline, which is a key regulator of surface energy exchange and carbon cycling, is widely thought to be controlled by temperature. Here, we present evidence that soil nutrient availability, rather than temperature, may be the proximate control on growth of treeline trees at our study site in northwest Alaska. We examined constraints on growth and allocation of white spruce in three contrasting habitats. The habitats had similar aboveground climates, but soil temperature declined from the riverside terrace to the forest to the treeline. We identified six lines of evidence that conflict with the hypothesis of direct temperature control and/or point to the importance of soil nutrient availability. First, the magnitude of aboveground growth declined from the terrace to the forest to the treeline, along gradients of diminishing soil nitrogen (N) availability and needle N concentration. Second, peak rates of branch extension, main stem radial and fine-root growth were generally not coincident with seasonal air and soil temperature maxima. At the treeline, in particular, rates of aboveground and fine-root growth declined well before air and soil temperatures reached their seasonal peaks. Third, in contrast with the hypothesis of temperature-limited growth, growing season average net photosynthesis was positively related to the sum of normalized branch extension, main stem radial and fine-root growth across trees and sites. Fourth, needle nonstructural carbohydrate concentration was significantly higher on the terrace, where growth was greatest. Fifth, annual branch extension growth was positively related to snow depth, consistent with the hypothesis that deeper snow promotes microbial activity and greater soil nutrient availability. Finally, the tree ring record revealed a large growth increase during late 20th-century climate warming on the terrace, where soil N availability is relatively high. Meanwhile, trees in the forest and at the treeline showed progressively smaller growth increases. Our results suggest temperature effects on tree growth at our study sites may be mediated by soil nutrient availability, making responses to climate change more complex and our ability to interpret the tree ring record more challenging than previously thought.

  17. Convenience stores are the key food environment influence on nutrients available from household food supplies in Texas Border Colonias

    PubMed Central

    2013-01-01

    Background Few studies have focused on the relationship between the retail food environment and household food supplies. This study examines spatial access to retail food stores, food shopping habits, and nutrients available in household food supplies among 50 Mexican-origin families residing in Texas border colonias. Methods The design was cross-sectional; data were collected in the home March to June 2010 by promotora-researchers. Ground-truthed methods enumerated traditional (supercenters, supermarkets, grocery stores), convenience (convenience stores and food marts), and non-traditional (dollar stores, discount stores) retail food stores. Spatial access was computed using the network distance from each participant’s residence to each food store. Data included survey data and two household food inventories (HFI) of the presence and amount of food items in the home. The Spanish language interviewer-administered survey included demographics, transportation access, food purchasing, food and nutrition assistance program participation, and the 18-item Core Food Security Module. Nutrition Data Systems for Research (NDS-R) was used to calculate HFI nutrients. Adult equivalent adjustment constants (AE), based on age and gender calorie needs, were calculated based on the age- and gender composition of each household and used to adjust HFI nutrients for household composition. Data were analyzed using bivariate analysis and linear regression models to determine the association of independent variables with the availability of each AE-adjusted nutrient. Results Regression models showed that households in which the child independently purchased food from a convenience store at least once a week had foods and beverages with increased amounts of total energy, total fat, and saturated fat. A greater distance to the nearest convenience store was associated with reduced amounts of total energy, vitamin D, total sugar, added sugar, total fat, and saturated fat. Participation in the National School Lunch Program (NSLP) was associated with lower household levels of total energy, calcium, vitamin C, sodium, vitamin D, and saturated fat. Spatial access and utilization of supermarkets and dollar stores were not associated with nutrient availability. Conclusions Although household members frequently purchased food items from supermarkets or dollar stores, it was spatial access to and frequent utilization of convenience food stores that influenced the amount of nutrients present in Texas border colonia households. These findings also suggest that households which participate in NSLP have reduced AE-adjusted nutrients available in the home. The next step will target changes within convenience stores to improve in-store marketing of foods and beverages to children and adults. PMID:23327426

  18. Convenience stores are the key food environment influence on nutrients available from household food supplies in Texas Border Colonias.

    PubMed

    Sharkey, Joseph R; Dean, Wesley R; Nalty, Courtney C; Xu, Jin

    2013-01-17

    Few studies have focused on the relationship between the retail food environment and household food supplies. This study examines spatial access to retail food stores, food shopping habits, and nutrients available in household food supplies among 50 Mexican-origin families residing in Texas border colonias. The design was cross-sectional; data were collected in the home March to June 2010 by promotora-researchers. Ground-truthed methods enumerated traditional (supercenters, supermarkets, grocery stores), convenience (convenience stores and food marts), and non-traditional (dollar stores, discount stores) retail food stores. Spatial access was computed using the network distance from each participant's residence to each food store. Data included survey data and two household food inventories (HFI) of the presence and amount of food items in the home. The Spanish language interviewer-administered survey included demographics, transportation access, food purchasing, food and nutrition assistance program participation, and the 18-item Core Food Security Module. Nutrition Data Systems for Research (NDS-R) was used to calculate HFI nutrients. Adult equivalent adjustment constants (AE), based on age and gender calorie needs, were calculated based on the age- and gender composition of each household and used to adjust HFI nutrients for household composition. Data were analyzed using bivariate analysis and linear regression models to determine the association of independent variables with the availability of each AE-adjusted nutrient. Regression models showed that households in which the child independently purchased food from a convenience store at least once a week had foods and beverages with increased amounts of total energy, total fat, and saturated fat. A greater distance to the nearest convenience store was associated with reduced amounts of total energy, vitamin D, total sugar, added sugar, total fat, and saturated fat. Participation in the National School Lunch Program (NSLP) was associated with lower household levels of total energy, calcium, vitamin C, sodium, vitamin D, and saturated fat. Spatial access and utilization of supermarkets and dollar stores were not associated with nutrient availability. Although household members frequently purchased food items from supermarkets or dollar stores, it was spatial access to and frequent utilization of convenience food stores that influenced the amount of nutrients present in Texas border colonia households. These findings also suggest that households which participate in NSLP have reduced AE-adjusted nutrients available in the home. The next step will target changes within convenience stores to improve in-store marketing of foods and beverages to children and adults.

  19. National Aquatic Resource Surveys (NARS) N/P Values for Streams - Wadeable Streams Assessment

    EPA Pesticide Factsheets

    The National Aquatic Resource Survey (NARS) findings for nutrients in streams and lakes highlight that nutrient pollution is widespread across the United States and impacts biological communities. The NARS analysis examined the range of values for nutrients in least-disturbed sites in a WSA region [WSA regions are modified Level III ecoregions from Omernik (1987)] and used this distribution for nitrogen (N) and phosphorus (P) to separate sites into those having high, medium, or low concentrations of nutrients. Sites identified as high were worse (i.e., had higher nutrient concentrations) than 95% of the sites used to define least-disturbed condition. Similarly, the 75th percentile of the least-disturbed distribution was used to distinguish between sites in medium and low condition. This means that sites reported as being as low were as good as or better than 75% of the sites used to define least-disturbed condition. A relative risk analysis of the data from this survey found that nationally streams and lakes have more than two times greater risk of having degraded biological communities when nutrient concentrations are high than when they are low. For more information, please consult the National Wadeable Streams Assessment (WSA) Report available online at: https://www.epa.gov/national-aquatic-resource-surveys/nrsa:

  20. Food availability of glucose and fat, but not fructose, increased in the US between 1970 and 2009: analysis of the USDA food availability data system

    PubMed Central

    2013-01-01

    Background Obesity rates in the United States have risen consistently over the last four decades, increasing from about 13% of the population in 1970 to more than 34% in 2009. Dietary fructose has been blamed as a possible contributor to the obesity increase, although the consumption pattern of fructose and other key nutrients during this 40 year period remains a topic of debate. Therefore, we analyzed the USDA Loss-Adjusted Food Availability Database in combination with the USDA Nutrient Database for Standard Reference (Release 24) to determine whether fructose consumption in the US has increased sufficiently to be a casual factor in the rise in obesity prevalence. Methods Per capita loss-adjusted food availability data for 132 individual food items were compiled and analyzed. Nutrient profiles for each of these foods were used to determine the availability of energy as well as macronutrients and monosaccharides during the years 1970-2009. The percent change in energy from food groups and individual nutrients was determined by using the year 1970 as the baseline and area-under-the-curve analysis of food trends. Results Our findings indicate that during this 40 year period the percent change in total energy availability increased 10.7%, but that the net change in total fructose availability was 0%. Energy available from total glucose (from all digestible food sources) increased 13.0%. Furthermore, glucose availability was more than 3-times greater than fructose. Energy available from protein, carbohydrate and fat increased 4.7%, 9.8% and 14.6%, respectively. Conclusions These data suggest that total fructose availability in the US did not increase between 1970 and 2009 and, thus, was unlikely to have been a unique causal factor in the increased obesity prevalence. We conclude that increased total energy intake, due to increased availability of foods providing glucose (primarily as starch in grains) and fat, to be a significant contributor to increased obesity in the US. PMID:24053221

  1. Relations of principal components analysis site scores to algal-biomass, habitat, basin-characteristics, nutrient, and biological-community data in the Upper Wabash River Basin, Indiana, 2003

    USGS Publications Warehouse

    Leer, Donald R.; Caskey, Brian J.; Frey, Jeffrey W.; Lowe, B. Scott

    2007-01-01

    The values for nutrients (nitrate, total Kjeldahl nitrogen, total nitrogen, and total phosphorus) and chlorophyll a (periphyton and seston) were compared to published U.S. Environmental Protection Agency (USEPA) values for Aggregate Nutrient Ecoregions VI and VII and USEPA Level III Ecoregions 55 and 56. Several nutrient values were greater than the 25th percentile of the published USEPA values. Chlorophyll a (periphyton and seston) values either were greater than the 25th percentile of published USEPA values or extended data ranges in the Aggregate Nutrient and Level III Ecoregions. If the proposed values for the 25th percentile were adopted as nutrient water-quality criteria, many samples in the Upper Wabash River Basin would have exceeded the criteria.

  2. Ash cap influences on site productivity and fertilizer response in forests of the Inland Northwest

    Treesearch

    Mariann T. Garrison-Johnston; Peter G. Mika; Dan L. Miller; Phil Cannon; Leonard R. Johnson

    2007-01-01

    Data from 139 research sites throughout the Inland Northwest were analyzed for effects of ash cap on site productivity, nutrient availability and fertilization response. Stand productivity and nitrogen (N) fertilizer response were greater on sites with ash cap than on sites without. Where ash was present, depth of ash had no effect on site productivity or N fertilizer...

  3. High nutrient availability reduces the diversity and stability of the equine caecal microbiota

    PubMed Central

    Hansen, Naja C. K.; Avershina, Ekaterina; Mydland, Liv T.; Næsset, Jon A.; Austbø, Dag; Moen, Birgitte; Måge, Ingrid; Rudi, Knut

    2015-01-01

    Background It is well known that nutrient availability can alter the gut microbiota composition, while the effect on diversity and temporal stability remains largely unknown. Methods Here we address the equine caecal microbiota temporal stability, diversity, and functionality in response to diets with different levels of nutrient availability. Hay (low and slower nutrient availability) versus a mixture of hay and whole oats (high and more rapid nutrient availability) were used as experimental diets. Results We found major effects on the microbiota despite that the caecal pH was far from sub-clinical acidosis. We found that the low nutrient availability diet was associated with a higher level of both diversity and temporal stability of the caecal microbiota than the high nutrient availability diet. These observations concur with general ecological theories, suggesting a stabilising effect of biological diversity and that high nutrient availability has a destabilising effect through reduced diversity. Conclusion Nutrient availability does not only change the composition but also the ecology of the caecal microbiota. PMID:26246403

  4. Nutrient use preferences among soil Streptomyces suggest greater resource competition in monoculture than polyculture plant communities

    USDA-ARS?s Scientific Manuscript database

    Nutrient use overlap among sympatric Streptomyces populations is correlated with pathogen inhibitory capacity, yet there is little information on either the factors that influence nutrient use overlap among coexisting populations or the diversity of nutrient use among soil Streptomyces. We examined ...

  5. Soluble organic nutrient fluxes

    Treesearch

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  6. Uptake and Distribution of Soil Applied Zinc by Citrus Trees—Addressing Fertilizer Use Efficiency with 68Zn Labeling

    PubMed Central

    Hippler, Franz Walter Rieger; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Boaretto, Antonio Enedi; Abreu-Junior, Cassio Hamilton; Mattos, Dirceu

    2015-01-01

    The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays. PMID:25751056

  7. Energy and nutrient consumption in Mexican women 12-49 years of age: analysis of the National Nutrition Survey 1999.

    PubMed

    Barquera, Simón; Rivera, Juan A; Espinosa-Montero, Juan; Safdie, Margarita; Campirano, Fabricio; Monterrubio, Eric A

    2003-01-01

    To describe the reported energy and nutrient intake and adequacies in Mexican women. A 24-hour dietary recall was used to obtain nutrient intake in a representative sub-sample of 2,630 women from 12 to 49 years of age from the National Nutrition Survey 1999. Nutrient adequacies were estimated using the Dietary Reference Intakes and stratified according to region, area (urban or rural), socioeconomic status and obesity status (non-obese: BMI < 30 kg/m2, obese: > or = 30 kg/m2). Differences were analyzed using linear regression for complex surveys of log-transformed intake and adequacy, adjusting for multiple comparisons with the Bonferroni test. The median national energy intake was 1,471 kcal. The Risk of Inadequacy (RI) (prevalence of adequacy < 50%) was: vitamin A: 38.3%, vitamin C: 45.5%, and folate: 34.3%. Carbohydrates, folate, iron and calcium intake was significantly higher in rural than in urban areas. The RI was higher in women of the lowest socioeconomic status tertile for all nutrients with the exception of carbohydrates and calcium. Macro-nutrient adequacies were significantly higher in non-obese women. Differences within the country among regions, rural and urban areas, and socioeconomic status tertile reflect an increasing availability of inexpensive calorie-dense foods in marginal groups. However, total energy, cholesterol, saturated and total fat were consumed in greater quantities by women from the higher socioeconomic status tertile and from urban areas. These patterns could be a contributing factor to the rise of obesity and other non-communicable nutrition-related chronic diseases in Mexico. The English version of this paper is available at: http://www.insp.mx/salud/index.html.

  8. Uptake and distribution of soil applied zinc by citrus trees-addressing fertilizer use efficiency with 68Zn labeling.

    PubMed

    Hippler, Franz Walter Rieger; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Boaretto, Antonio Enedi; Abreu-Junior, Cassio Hamilton; Mattos, Dirceu

    2015-01-01

    The zinc (Zn) supply increases the fruit yield of Citrus trees that are grown, especially in the highly weathered soils of the tropics due to the inherently low nutrient availability in the soil solution. Leaf sprays containing micronutrients are commonly applied to orchards, even though the nutrient supply via soil could be of practical value. This study aimed to evaluate the effect of Zn fertilizers that are applied to the soil surface on absorption and partitioning of the nutrient by citrus trees. A greenhouse experiment was conducted with one-year-old sweet orange trees. The plants were grown in soils with different textures (18.1 or 64.4% clay) that received 1.8 g Zn per plant, in the form of either ZnO or ZnSO4 enriched with the stable isotope 68Zn. Zinc fertilization increased the availability of the nutrient in the soil and the content in the orange trees. Greater responses were obtained when ZnSO4 was applied to the sandy loam soil due to its lower specific metal adsorption compared to that of the clay soil. The trunk and branches accumulated the most fertilizer-derived Zn (Zndff) and thus represent the major reserve organ for this nutrient in the plant. The trees recovered up to 4% of the applied Zndff. Despite this relative low recovery, the Zn requirement of the trees was met with the selected treatment based on the total leaf nutrient content and increased Cu/Zn-SOD activity in the leaves. We conclude that the efficiency of Zn fertilizers depends on the fertilizer source and the soil texture, which must be taken into account by guidelines for fruit crop fertilization via soil, in substitution or complementation of traditional foliar sprays.

  9. The Mediterranean Diet and Nutritional Adequacy: A Review

    PubMed Central

    Castro-Quezada, Itandehui; Román-Viñas, Blanca; Serra-Majem, Lluís

    2014-01-01

    The Mediterranean dietary pattern, through a healthy profile of fat intake, low proportion of carbohydrate, low glycemic index, high content of dietary fiber, antioxidant compounds, and anti-inflammatory effects, reduces the risk of certain pathologies, such as cancer or Cardiovascular Disease (CVD). Nutritional adequacy is the comparison between the nutrient requirement and the intake of a certain individual or population. In population groups, the prevalence of nutrient inadequacy can be assessed by the probability approach or using the Estimated Average Requirement (EAR) cut-point method. However, dietary patterns can also be used as they have moderate to good validity to assess adequate intakes of some nutrients. The objective of this study was to review the available evidence on the Nutritional Adequacy of the Mediterranean Diet. The inclusion of foods typical of the Mediterranean diet and greater adherence to this healthy pattern was related to a better nutrient profile, both in children and adults, with a lower prevalence of individuals showing inadequate intakes of micronutrients. Therefore, the Mediterranean diet could be used in public health nutrition policies in order to prevent micronutrient deficiencies in the most vulnerable population groups. PMID:24394536

  10. Carbon and nutrients recycling when leaves falling off: mycorrhizal association matters

    NASA Astrophysics Data System (ADS)

    Zhang, H., II; Lü, X. T.; Hartmann, H.; Han, X.; Trumbore, S.

    2016-12-01

    Root-associated mycorrhizal fungi is being increasingly recognized for their roles in influencing soil carbon (C) storage, plant growth and nutrient cycling, whereas mycorrhizae-mediated C dynamics and nutrient acquisition strategy strongly different. Because of a reinforcing feedback from belowground, how different mycorrhizal plants differ in aboveground nutrient status and recycle from senesced to green leaves remains unknown. Based on a global database of C and nutrients concentrations in plant green and senesced leaves, we further identified plant mycorrhizal types (here focus on arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) plants) for woody species and tested whether mycorrhizal types showing consistent effects in plant nutrient status and recycle. Generally, nutrient resorptions from senesced to green leaves for ECM plants are more conservative, balanced and sensitive to climate compare to AM plants. Specifically, we first found lower nutrients concentrations in green and senesced leaves whereas greater nutrient resorption efficiency (NuR) for ECM vs. AM plants. However, C concentration in green and senesced leaves were significant greater while NuR was lower for ECM plants. Second, compare to that for AM plants, we found a general balanced N:P resorption ratio ( 1) for ECM plants, indicating ECM plants had greater ability to balance their N and P resorption simultaneously. Third, we found NuR in N, P and K (potassium) for ECM plants were sensitive to the variation of MAT and MAP while these for AM plants showed no clear trend. Our results suggested that accounting for the influence of mycorrhizae on C and nutrient dynamics in vegetation models will be critical for predicting ecosystem responses and feedbacks to climate change.

  11. Health and environmental policy issues in Canada: the role of watershed management in sustaining clean drinking water quality at surface sources.

    PubMed

    Davies, John-Mark; Mazumder, Asit

    2003-07-01

    Sustaining clean and safe drinking water sources is increasingly becoming a priority because of global pollution. The means of attaining and maintaining clean drinking water sources requires effective policies that identify, document, and reduce watershed risks. These risks are defined by their potential impact to human health. Health and risk are, therefore, indelibly linked because they are in part defined by each other. Understanding pathogen ecology and identifying watershed sources remains a priority because of the associated acute risks. Surface water quality changes resulting from inputs of human waste, nutrients and chemicals are associated with higher drinking water risks. Nutrient input can increase primary production and the resulting increase of organic matter results in greater disinfection by-product formation or requires greater treatment intensity. Many drinking water disease outbreaks have resulted from breaches in treatment facilities, therefore, even with greater treatment intensity poor source water quality intrinsically has greater associated health risks. Government and international agencies play a critical role in developing policy. The goal of maintaining water supplies whose availability is maximized and risks are minimized (i.e. sustainable) should be a vital part of such policy. Health risks are discussed in the context of a multi-barrier perspective and it is concluded that both passive (protection) and active (prescriptive management) management is necessary for sustainability. Canadian aboriginal water systems, British Columbian water policy and US EPA policies are given as examples. The basis for developing effective policies includes a strong reliance on sound science and effective instrumentation with careful consideration of stakeholders' interests. Only with such directed policies can the future availability of clean drinking water sources be ensured.

  12. Suppression of the invasive plant mile-a-minute (Mikania micrantha) by local crop sweet potato (Ipomoea batatas) by means of higher growth rate and competition for soil nutrients.

    PubMed

    Shen, Shicai; Xu, Gaofeng; Clements, David Roy; Jin, Guimei; Chen, Aidong; Zhang, Fudou; Kato-Noguchi, Hisashi

    2015-01-28

    There are a variety of ways of increasing crop diversity to increase agricultural sustainability and in turn having a positive influence on nearby natural ecosystems. Competitive crops may provide potent management tools against invasive plants. To elucidate the competitive mechanisms between a sweet potato crop (Ipomoea batatas) and an invasive plant, mile-a-minute (Mikania micrantha), field experiments were carried out in Longchuan County of Yunnan Province, Southwest China, utilizing a de Wit replacement series. The trial incorporated seven ratios of sweet potato and mile-a-minute plants in 25 m(2) plots. In monoculture, the total biomass, biomass of adventitious root, leafstalk length, and leaf area of sweet potato were all higher than those of mile-a-minute, and in mixed culture the plant height, branch, leaf, stem node, adventitious root, flowering and biomass of mile-a-minute were suppressed significantly (P < 0.05). The relative yield (RY) of mile-a-minute and sweet potato was less than 1.0 in mixed culture, indicating that intraspecific competition was less than interspecific competition. The competitive balance index of sweet potato demonstrated a higher competitive ability than mile-a-minute. Except pH, other soil nutrient contents of initial soil (CK) were significantly higher than those of seven treatments. The concentrations of soil organic matter, total N, total K, available N, available P, available K, exchange Ca, exchange Mg, available Mn, and available B were significantly greater (P < 0.05) in mile-a-minute monoculture soil than in sweet potato monoculture soil, and were reduced by the competition of sweet potato in the mixture. Evidently sweet potato has a competitive advantage in terms of plant growth characteristics and greater absorption of soil nutrients. Thus, planting sweet potato is a promising technique for reducing infestations of mile-a-minute, providing weed management benefits and economic returns from harvest of sweet potatoes. This study also shows the potential value of replacement control methods which may apply to other crop-weed systems or invaded natural ecosystems.

  13. Impacts of post-harvest slash and live-tree retention on biomass and nutrient stocks in Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    USGS Publications Warehouse

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.

    2013-01-01

    Globally, there is widespread interest in using forest-derived biomass as a source of bioenergy. While conventional timber harvesting generally removes only merchantable tree boles, harvesting biomass feedstock can remove all forms of woody biomass (i.e., live and dead standing woody vegetation, downed woody debris, and stumps) resulting in a greater loss of biomass and nutrients as well as more severe habitat alteration. To investigate the potential impacts of this practice, this study examined the initial impacts (pre- and post-harvest) of various levels of slash and live-tree retention on biomass and nutrient stocks, including carbon (C), nitrogen (N), calcium (Ca), potassium (K), and phosphorus (P), in Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Treatments examined included three levels of slash retention, whole-tree harvest (WTH), 20% slash retention (20SR), and stem-only harvest (SOH), factored with three levels of green-tree retention, no trees retained (NONE), dispersed retention (DISP), and aggregate retention (AGR). Slash retention was the primary factor affecting post-harvest biomass and nutrient stocks, including woody debris pools. Compared to the unharvested control, stocks of biomass, carbon, and nutrients, including N, Ca, K, and P, in woody debris were higher in all treatments. Stem-only harvests typically contained greater biomass and nutrient stocks than WTH, although biomass and nutrients within 20SR, a level recommended by biomass harvesting guidelines in the US and worldwide, generally did not differ from WTH or SOH. Biomass in smaller-diameter slash material (typically 2.5-22.5 cm in diameter) dominated the woody debris pool following harvest regardless of slash retention level. Trends among treatments in this diameter range were generally similar to those in the total woody debris pool. Specifically, SOH contained significantly greater amounts of biomass than WTH while 20SR was not different from either WTH or SOH. Within P. tremuloides systems, we observed high stocks of smaller diameter slash material for all prescribed slash retention treatments. Most notably, WTH retains much more material than anticipated, up to 50% of available slash. These results reflect the high levels of breakage during winter harvest operations in these stands and, consequently, warrant consideration when anticipating the impacts of biomass harvesting on woody debris pools. Further investigation is necessary to understand how deliberate slash retention levels and season-of-harvest impact woody debris in other forest systems.

  14. Diet History Questionnaire: Database Utility Program

    Cancer.gov

    If you need to modify the standard nutrient database, a single nutrient value must be provided by gender and portion size. If you have modified the database to have fewer or greater demographic groups, nutrient values must be included for each group.

  15. Influence of Acacia trees on soil nutrient levels in arid lands

    NASA Astrophysics Data System (ADS)

    De Boever, Maarten; Gabriels, Donald; Ouessar, Mohamed; Cornelis, Wim

    2014-05-01

    The potential of scattered trees as keystone structures in restoring degraded environments is gaining importance. Scattered trees have strong influence on their abiotic environment, mainly causing changes in microclimate, water budget and soil properties. They often function as 'nursing trees', facilitating the recruitment of other plants. Acacia raddiana is such a keystone species which persists on the edge of the Sahara desert. The study was conducted in a forest-steppe ecosystem in central Tunisia where several reforestation campaigns with Acacia took place. To indentify the impact of those trees on soil nutrients, changes in nutrient levels under scattered trees of three age stages were examined for the upper soil layer (0-10 cm) at five microsites with increasing distance from the trunk. In addition, changes in soil nutrient levels with depth underneath and outside the canopy were determined for the 0-30 cm soil layer. Higher concentrations of organic matter (OM) were found along the gradient from underneath to outside the canopy for large trees compared to medium and small trees, especially at microsites close to the trunk. Levels of soluble K, electrical conductivity (EC), available P, OM, total C and N decreased whereas pH and levels of soluble Mg increased with increasing distance from tree. Levels of soluble Ca and Na remained unchanged along the gradient. At the microsite closest to the trunk a significant decrease in levels of soluble K, EC, OM, available P, total C and N, while a significant increase in pH was found with increasing depth. The concentration of other nutrients remained unchanged or declined not differently underneath compared to outside the canopy with increasing depth. Differences in nutrient levels were largely driven by greater inputs of organic matter under trees. Hence, Acacia trees can affect the productivity and reproduction of understory species with the latter in term an important source of organic matter. This positive feedback mechanism is of crucial importance for soil nutrient conservation and the restoration of degraded arid environments.

  16. The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetation

    USGS Publications Warehouse

    Davis, S. E.; Childers, D.L.; Noe, G.B.

    2006-01-01

    Our goal was to quantify the coupled process of litter turnover and leaching as a source of nutrients and fixed carbon in oligotrophic, nutrient-limited wetlands. We conducted poisoned and non-poisoned incubations of leaf material from four different perennial wetland plants (Eleocharis spp., Cladium jamaicense, Rhizophora mangle and Spartina alterniflora) collected from different oligotrophic freshwater and estuarine wetland settings. Total phosphorus (TP) release from the P-limited Everglades plant species (Eleocharis spp., C. jamaicense and R. mangle) was much lower than TP release by the salt marsh plant S. alterniflora from N-limited North Inlet (SC). For most species and sampling times, total organic carbon (TOC) and TP leaching losses were much greater in poisoned than non-poisoned treatments, likely as a result of epiphytic microbial activity. Therefore, a substantial portion of the C and P leached from these wetland plant species was bio-available to microbial communities. Even the microbes associated with S. alterniflora from N-limited North Inlet showed indications of P-limitation early in the leaching process, as P was removed from the water column. Leaves of R. mangle released much more TOC per gram of litter than the other species, likely contributing to the greater waterborne [DOC] observed by others in the mangrove ecotone of Everglades National Park. Between the two freshwater Everglades plants, C. jamaicense leached nearly twice as much P than Eleocharis spp. In scaling this to the landscape level, our observed leaching losses combined with higher litter production of C. jamaicense compared to Eleocharis spp. resulted in a substantially greater P leaching from plant litter to the water column and epiphytic microbes. In conclusion, leaching of fresh plant litter can be an important autochthonous source of nutrients in freshwater and estuarine wetland ecosystems. ?? Springer 2006.

  17. Effects of level of nutrient intake and age on mammalian target of rapamycin, insulin, and insulin-like growth factor-1 gene network expression in skeletal muscle of young Holstein calves.

    PubMed

    Wang, P; Drackley, J K; Stamey-Lanier, J A; Keisler, D; Loor, J J

    2014-01-01

    The molecular mechanisms by which level of nutrient intake enhances skeletal muscle growth in young ruminants are not fully understood. We examined mammalian target of rapamycin (mTOR), insulin, and insulin-like growth factor-1 (IGF-1) gene network expression in semitendinosus muscle tissue of young male Holstein calves fed a conventional milk replacer plus conventional starter (CON) or an enhanced milk replacer plus high-protein starter (ENH) for 5 wk followed by a conventional starter or a high-protein starter until 10 wk of age. Feeding ENH led to greater concentration of plasma IGF-1 and leptin and greater carcass protein and fat mass throughout the study. Despite the greater plasma IGF-1 and protein mass at wk 5, calves fed ENH had lower expression of IGF1R, INSR, and RPS6KB1 but greater expression of IRS1 and PDPK1 in muscle tissue. Except for IGF1R expression, which did not differ at wk 10, these differences persisted at wk 10, suggesting a long-term effect of greater nutrient intake on physiological and molecular mechanisms. Components of mTOR complex (mTORC)1 and mTORC2 (RICTOR and RPTOR) and FOXO1 expression decreased by wk 10 regardless of diet. Overall, the present data revealed that greater nutrient intake throughout the milk-fed and early postweaning phase alters body mass composition partly by altering hormonal and molecular profiles of genes associated with glucose and amino acid signaling. Those networks may play a crucial role in coordinating neonatal muscle growth and metabolism in response to level of nutrient intake. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Drainage and fertilization effects on nutrient availability in an ombrotrophic peatland.

    PubMed

    Wang, Meng; Talbot, Julie; Moore, Tim R

    2018-04-15

    Nutrient availability is an important control on the vegetation distribution, productivity and functioning of peatland ecosystems and we examined spatial and temporal patterns of nutrient availability through ion exchange at Mer Bleue bog, southeast Ontario, Canada. We installed ion exchange probes at 5-15cm for 4weeks and determined nutrient sorption at undisturbed sites as well as those affected by nitrogen (N), phosphorus (P), potassium (K) fertilization and drainage. Under undisturbed conditions, the bog had very small amount of available nutrients, especially N (ammonium>nitrate) and P, and exhibited small variations in nutrient availability during the growing season (May to October). The increase in NPK availability upon fertilization was short-lived over the season and the stoichiometry of available NPK captured by the probes was mismatched with the vegetation. The increase in nutrient availability with drainage was confounded by substantial changes in vegetation. We compare these results with data from other Canadian bogs and fens to provide baseline data on nutrient availability in peatlands. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Sexual dimorphism in a dioecious population of the wind-pollinated herb Mercurialis annua: the interactive effects of resource availability and competition.

    PubMed

    Hesse, Elze; Pannell, John R

    2011-05-01

    Male-biased sex allocation commonly occurs in wind-pollinated hermaphroditic plants, and is often positively associated with size, notably in terms of height. Currently, it is not well established whether a corresponding pattern holds for dioecious plants: do males of wind-pollinated species exhibit greater reproductive allocation than females? Here, sexual dimorphism is investigated in terms of life history trade-offs in a dioecious population of the wind-pollinated ruderal herb Mercurialis annua. The allocation strategies of males and females grown under different soil nutrient availability and competitive (i.e. no, male or female competitor) regimes were compared. Male reproductive allocation increased disproportionately with biomass, and was greater than that of females when grown in rich soils. Sexual morphs differentially adjusted their reproductive allocation in response to local environmental conditions. In particular, males reduced their reproductive allocation in poor soils, whereas females increased theirs, especially when competing with another female rather than growing alone. Finally, males displayed smaller above-ground vegetative sizes than females, but neither nutrient availability nor competition had a strong independent effect on relative size disparities between the sexes. Selection appears to favour plasticity in reproductive allocation in dioecious M. annua, thereby maintaining a relatively constant size hierarchy between sexual morphs. In common with other dioecious species, there seems to be little divergence in the niches occupied by males and females of M. annua.

  20. Sexual dimorphism in a dioecious population of the wind-pollinated herb Mercurialis annua: the interactive effects of resource availability and competition

    PubMed Central

    Hesse, Elze; Pannell, John R.

    2011-01-01

    Background and Aims Male-biased sex allocation commonly occurs in wind-pollinated hermaphroditic plants, and is often positively associated with size, notably in terms of height. Currently, it is not well established whether a corresponding pattern holds for dioecious plants: do males of wind-pollinated species exhibit greater reproductive allocation than females? Here, sexual dimorphism is investigated in terms of life history trade-offs in a dioecious population of the wind-pollinated ruderal herb Mercurialis annua. Methods The allocation strategies of males and females grown under different soil nutrient availability and competitive (i.e. no, male or female competitor) regimes were compared. Key Results Male reproductive allocation increased disproportionately with biomass, and was greater than that of females when grown in rich soils. Sexual morphs differentially adjusted their reproductive allocation in response to local environmental conditions. In particular, males reduced their reproductive allocation in poor soils, whereas females increased theirs, especially when competing with another female rather than growing alone. Finally, males displayed smaller above-ground vegetative sizes than females, but neither nutrient availability nor competition had a strong independent effect on relative size disparities between the sexes. Conclusions Selection appears to favour plasticity in reproductive allocation in dioecious M. annua, thereby maintaining a relatively constant size hierarchy between sexual morphs. In common with other dioecious species, there seems to be little divergence in the niches occupied by males and females of M. annua. PMID:21385775

  1. The relative importance of vertical soil nutrient heterogeneity, and mean and depth-specific soil nutrient availabilities for tree species richness in tropical forests and woodlands.

    PubMed

    Shirima, Deo D; Totland, Ørjan; Moe, Stein R

    2016-11-01

    The relative importance of resource heterogeneity and quantity on plant diversity is an ongoing debate among ecologists, but we have limited knowledge on relationships between tree diversity and heterogeneity in soil nutrient availability in tropical forests. We expected tree species richness to be: (1) positively related to vertical soil nutrient heterogeneity; (2) negatively related to mean soil nutrient availability; and (3) more influenced by nutrient availability in the upper than lower soil horizons. Using a data set from 60, 20 × 40-m plots in a moist forest, and 126 plots in miombo woodlands in Tanzania, we regressed tree species richness against vertical soil nutrient heterogeneity, both depth-specific (0-15, 15-30, and 30-60 cm) and mean soil nutrient availability, and soil physical properties, with elevation and measures of anthropogenic disturbance as co-variables. Overall, vertical soil nutrient heterogeneity was the best predictor of tree species richness in miombo but, contrary to our prediction, the relationships between tree species richness and soil nutrient heterogeneity were negative. In the moist forest, mean soil nutrient availability explained considerable variations in tree species richness, and in line with our expectations, these relationships were mainly negative. Soil nutrient availability in the top soil layer explained more of the variation in tree species richness than that in the middle and lower layers in both vegetation types. Our study shows that vertical soil nutrient heterogeneity and mean availability can influence tree species richness at different magnitudes in intensively utilized tropical vegetation types.

  2. Nutrition of mangroves.

    PubMed

    Reef, Ruth; Feller, Ilka C; Lovelock, Catherine E

    2010-09-01

    Mangrove forests dominate the world's tropical and subtropical coastlines. Similar to other plant communities, nutrient availability is one of the major factors influencing mangrove forest structure and productivity. Many mangrove soils have extremely low nutrient availability, although nutrient availability can vary greatly among and within mangrove forests. Nutrient-conserving processes in mangroves are well developed and include evergreeness, resorption of nutrients prior to leaf fall, the immobilization of nutrients in leaf litter during decomposition, high root/shoot ratios and the repeated use of old root channels. Both nitrogen-use efficiency and nutrient resorption efficiencies in mangroves are amongst the highest recorded for angiosperms. A complex range of interacting abiotic and biotic factors controls the availability of nutrients to mangrove trees, and mangroves are characteristically plastic in their ability to opportunistically utilize nutrients when these become available. Nitrogen and phosphorus have been implicated as the nutrients most likely to limit growth in mangroves. Ammonium is the primary form of nitrogen in mangrove soils, in part as a result of anoxic soil conditions, and tree growth is supported mainly by ammonium uptake. Nutrient enrichment is a major threat to marine ecosystems. Although mangroves have been proposed to protect the marine environment from land-derived nutrient pollution, nutrient enrichment can have negative consequences for mangrove forests and their capacity for retention of nutrients may be limited.

  3. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)].

    PubMed

    Dinesh, R; Srinivasan, V; Hamza, S; Manjusha, A

    2010-06-01

    The study was conducted to determine whether short-term incorporation of organic manures and biofertilizers influence biochemical and microbial variables reflecting soil quality. For the study, soils were collected from a field experiment conducted on turmeric (Curcuma longa L.) involving organic nutrient management (ONM), chemical nutrient management (CNM) and integrated nutrient management (INM). The findings revealed that application of organic manures and biofertilizers (ONM and INM) positively influenced microbial biomass C, N mineralization, soil respiration and enzymes activities. Contrarily, greater metabolic quotient levels in CNM indicated a stressed soil microbial community. Principal component analysis indicated the strong relationship between microbial activity and the availability of labile and easily mineralizable organic matter. The findings imply that even short-term incorporation of organic manures and biofertilizers promoted soil microbial and enzyme activities and these parameters are sensitive enough to detect changes in soil quality due to short-term incorporation of biological fertilizers. (c) 2010 Elsevier Ltd. All rights reserved.

  4. Long- and short-term changes in nutrient availability following commercial sawlog harvest via cable logging

    Treesearch

    Jennifer Knoepp; Wayne Swank; Bruce L. Haines

    2014-01-01

    Soil nutrient availability often limits forest productivity and soils have considerable variation in their ability to supply nutrients. Most southern Appalachian forests are minimally managed with no fertilizer inputs or routine thinning regime. Nutrient availability is regulated by atmospheric inputs and the internal cycling of nutrients through such processes as...

  5. Root Cortical Aerenchyma Enhances the Growth of Maize on Soils with Suboptimal Availability of Nitrogen, Phosphorus, and Potassium1[W][OA

    PubMed Central

    Postma, Johannes Auke; Lynch, Jonathan Paul

    2011-01-01

    Root cortical aerenchyma (RCA) is induced by hypoxia, drought, and several nutrient deficiencies. Previous research showed that RCA formation reduces the respiration and nutrient content of root tissue. We used SimRoot, a functional-structural model, to provide quantitative support for the hypothesis that RCA formation is a useful adaptation to suboptimal availability of phosphorus, nitrogen, and potassium by reducing the metabolic costs of soil exploration in maize (Zea mays). RCA increased the growth of simulated 40-d-old maize plants up to 55%, 54%, or 72% on low nitrogen, phosphorus, or potassium soil, respectively, and reduced critical fertility levels by 13%, 12%, or 7%, respectively. The greater utility of RCA on low-potassium soils is associated with the fact that root growth in potassium-deficient plants was more carbon limited than in phosphorus- and nitrogen-deficient plants. In contrast to potassium-deficient plants, phosphorus- and nitrogen-deficient plants allocate more carbon to the root system as the deficiency develops. The utility of RCA also depended on other root phenes and environmental factors. On low-phosphorus soils (7.5 μm), the utility of RCA was 2.9 times greater in plants with increased lateral branching density than in plants with normal branching. On low-nitrate soils, the utility of RCA formation was 56% greater in coarser soils with high nitrate leaching. Large genetic variation in RCA formation and the utility of RCA for a range of stresses position RCA as an interesting crop-breeding target for enhanced soil resource acquisition. PMID:21628631

  6. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens

    NASA Astrophysics Data System (ADS)

    Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.

    2016-04-01

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra.

  7. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens.

    PubMed

    Gharajehdaghipour, Tazarve; Roth, James D; Fafard, Paul M; Markham, John H

    2016-04-05

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ(15)N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra.

  8. Arctic foxes as ecosystem engineers: increased soil nutrients lead to increased plant productivity on fox dens

    PubMed Central

    Gharajehdaghipour, Tazarve; Roth, James D.; Fafard, Paul M.; Markham, John H.

    2016-01-01

    Top predators can provide fundamental ecosystem services such as nutrient cycling, and their impact can be even greater in environments with low nutrients and productivity, such as Arctic tundra. We estimated the effects of Arctic fox (Vulpes lagopus) denning on soil nutrient dynamics and vegetation production near Churchill, Manitoba in June and August 2014. Soils from fox dens contained higher nutrient levels in June (71% more inorganic nitrogen, 1195% more extractable phosphorous) and in August (242% more inorganic nitrogen, 191% more extractable phosphorous) than adjacent control sites. Inorganic nitrogen levels decreased from June to August on both dens and controls, whereas extractable phosphorous increased. Pup production the previous year, which should enhance nutrient deposition (from urine, feces, and decomposing prey), did not affect soil nutrient concentrations, suggesting the impact of Arctic foxes persists >1 year. Dens supported 2.8 times greater vegetation biomass in August, but δ15N values in sea lyme grass (Leymus mollis) were unaffected by denning. By concentrating nutrients on dens Arctic foxes enhance nutrient cycling as an ecosystem service and thus engineer Arctic ecosystems on local scales. The enhanced productivity in patches on the landscape could subsequently affect plant diversity and the dispersion of herbivores on the tundra. PMID:27045973

  9. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils

    PubMed Central

    Koyama, Akihiro; Wallenstein, Matthew D.; Simpson, Rodney T.; Moore, John C.

    2014-01-01

    The pool of soil organic carbon (SOC) in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacterial and fungal biomass and community composition in organic and mineral soils within moist acidic tussock tundra ecosystems. We sampled two experimental arrays of moist acidic tussock tundra that included fertilized and non-fertilized control plots. One array included plots that had been fertilized annually since 1989 and the other since 2006. Fertilization significantly altered overall bacterial community composition and reduced evenness, to a greater degree in organic than mineral soils, and in the 1989 compared to the 2006 site. The relative abundance of copiotrophic α-Proteobacteria and β-Proteobacteria was higher in fertilized than control soils, and oligotrophic Acidobacteria were less abundant in fertilized than control soils at the 1989 site. Fungal community composition was less sensitive to increased nutrient availability, and fungal responses to fertilization were not consistent between soil horizons and sites. We detected two ectomycorrhizal genera, Russula and Cortinarius spp., associated with shrubs. Their relative abundance was not affected by fertilization despite increased dominance of their host plants in the fertilized plots. Our results indicate that fertilization, which has been commonly used to simulate warming in Arctic tundra, has limited applicability for investigating fungal dynamics under warming. PMID:25324836

  10. Plant controls on Late Quaternary whole ecosystem structure and function.

    PubMed

    Jeffers, Elizabeth S; Whitehouse, Nicki J; Lister, Adrian; Plunkett, Gill; Barratt, Phil; Smyth, Emma; Lamb, Philip; Dee, Michael W; Brooks, Stephen J; Willis, Katherine J; Froyd, Cynthia A; Watson, Jenny E; Bonsall, Michael B

    2018-06-01

    Plants and animals influence biomass production and nutrient cycling in terrestrial ecosystems; however, their relative importance remains unclear. We assessed the extent to which mega-herbivore species controlled plant community composition and nutrient cycling, relative to other factors during and after the Late Quaternary extinction event in Britain and Ireland, when two-thirds of the region's mega-herbivore species went extinct. Warmer temperatures, plant-soil and plant-plant interactions, and reduced burning contributed to the expansion of woody plants and declining nitrogen availability in our five study ecosystems. Shrub biomass was consistently one of the strongest predictors of ecosystem change, equalling or exceeding the effects of other biotic and abiotic factors. In contrast, there was relatively little evidence for mega-herbivore control on plant community composition and nitrogen availability. The ability of plants to determine the fate of terrestrial ecosystems during periods of global environmental change may therefore be greater than previously thought. © 2018 John Wiley & Sons Ltd/CNRS.

  11. Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes.

    PubMed

    Bertolini, M M; Xu, H; Sobue, T; Nobile, C J; Del Bel Cury, A A; Dongari-Bagtzoglou, A

    2015-08-01

    Candida albicans and streptococci of the mitis group form communities in multiple oral sites, where moisture and nutrient availability can change spatially or temporally. This study evaluated structural and virulence characteristics of Candida-streptococcal biofilms formed on moist or semidry mucosal surfaces, and tested the effects of nutrient availability and hyphal morphotype on dual-species biofilms. Three-dimensional models of the oral mucosa formed by immortalized keratinocytes on a fibroblast-embedded collagenous matrix were used. Infections were carried out using Streptococcus oralis strain 34, in combination with a C. albicans wild-type strain, or pseudohyphal-forming mutant strains. Increased moisture promoted a homogeneous surface biofilm by C. albicans. Dual biofilms had a stratified structure, with streptococci growing in close contact with the mucosa and fungi growing on the bacterial surface. Under semidry conditions, Candida formed localized foci of dense growth, which promoted focal growth of streptococci in mixed biofilms. Candida biofilm biovolume was greater under moist conditions, albeit with minimal tissue invasion, compared with semidry conditions. Supplementing the infection medium with nutrients under semidry conditions intensified growth, biofilm biovolume and tissue invasion/damage, without changing biofilm structure. Under these conditions, the pseudohyphal mutants and S. oralis formed defective superficial biofilms, with most bacteria in contact with the epithelial surface, below a pseudohyphal mass, resembling biofilms growing in a moist environment. The presence of S. oralis promoted fungal invasion and tissue damage under all conditions. We conclude that moisture, nutrient availability, hyphal morphotype and the presence of commensal bacteria influence the architecture and virulence characteristics of mucosal fungal biofilms. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Long term growth responses of loblolly pine to optimal nutrient and water resource availability

    Treesearch

    Timothy J. Albaugh; H. Lee Allen; Phillip M. Dougherty; Kurt H. Johnsen

    2004-01-01

    A factorial combination of four treatments (control (CW), optimal growing season water availability (IW), optimum nutrient availability (FW), and combined optimum water and nutrient availability (FIW)) in four replications were initiated in an 8-year- old Pinus taeda stand growing on a droughty, nutrient-poor, sandy site in Scotland County, NC and...

  13. Exponential fertilization of Pinus monticola seedlings: nutrient uptake efficiency, leaching fractions, and early outplanting performance

    Treesearch

    R. Kasten Dumroese; Deborah S. Page-Dumroese; K. Francis Salifu; Douglass F. Jacobs

    2005-01-01

    We evaluated nutrient uptake efficiency and subsequent leaching fractions for western white pine (Pinus monticola Dougl. ex D. Don) seedlings grown with exponentially increasing or conventional (constant) fertilization in a greenhouse. Conventional fertilization was associated with higher leachate electrical conductivity and greater nutrient losses,...

  14. Carbon and nitrogen biogeochemistry of a Prairie Pothole Wetland, Stutsman County, North Dakota, USA

    USGS Publications Warehouse

    Holloway, JoAnn M.; Goldhaber, Martin B.; Mills, Christopher T.

    2011-01-01

    The concentration and form of dissolved organic C (DOC) and N species (NH4+ and NO3-) were investigated as part of a larger hydrogeochemical study of the Cottonwood Lake Study Area within the Prairie Potholes region. Groundwater, pore water and surface wetland water data were used to help characterize the relationships between surface and groundwater with respect to nutrient dynamics. Photosynthesis and subsequent decomposition of vegetation in these hydrologically dynamic wetlands generates a large amount of dissolved C and N, although the subsurface till, derived in part from organic matter rich Pierre Shale, is a likely secondary source of nutrients in deeper groundwater. While surface water DOC concentrations ranged from 2.2 to 4.6 mM, groundwater values were 0.15 mM to 3.7 mM. Greater specific UV absorbance (SUVA254) in the wetland water column and in soil pore waters relative to groundwater indicate more reactive DOC in the surface to near-surface waters. Circumneutral wetlands had greater SUVA254, possibly because of variations in vegetation communities. The dominant inorganic nitrogen species was NH4+ in both wetland water and most ground water samples. The exceptions were 3 wells with NO3- ranging from 38 to 115 μM. Shallow groundwater wells (Well 28 and Well 13S) with greater connection to wetland surface water had greater NH4+ concentrations (1.1 mM and 120 μM) than other well samples (3–90 μM). Pore water nutrient chemistry was more similar to surface water than ground water. Nitrogen results suggest reducing conditions in both groundwater and surface water, possibly due to the microbial uptake of O2 by decaying vegetation in the wetland water column, labile organic C available in shallow groundwater, or the oxidation of pyrite associated with the subsurface.

  15. Nutrient availability at Mer Bleue bog measured by PRSTM probes

    NASA Astrophysics Data System (ADS)

    Wang, M.; Moore, T. R.; Talbot, J.

    2015-12-01

    Bogs, covering ~0.7 million km2 in Canada, store a large amount of C and N. As nutrient deficient ecosystems, it's critical to examine the nutrient availabilities and seasonal dynamics. We used Plant Root Simulators (PRSTM) at Mer Bleue bog to provide some baseline data on nutrient availability and its variability. In particular, we focused on ammonium, nitrate, phosphate, calcium, magnesium and potassium, iron, sulphate and aluminum. We placed PRS probes at a depth of 5 - 15 cm in pristine plots and plots with long term N, P and K fertilization for 4 weeks and determined the availability of these nutrients, from spring through to fall. Probes were also placed beneath the water table in hummock and hollow microtopography and along a transect including part of the bog which had been drained through the creation of a ditch 80 years ago. The result showed that there was limited available ammonium, nitrate and phosphate in the bog, the seasonal variation of nutrient availabilities probably due to mineralization, an increase in the availability of some nutrients between different water table depths or as a result of drainage, and the relative availability of nutrients compared to the input from fertilization. We suggest that PRS probes could be a useful tool to examine nutrient availability and dynamics in wetlands, with careful consideration of installing condition, for example, proper exposure period, depth relative to water table etc.

  16. Land use not litter quality is a stronger driver of decomposition in hyperdiverse tropical forest.

    PubMed

    Both, Sabine; Elias, Dafydd M O; Kritzler, Ully H; Ostle, Nick J; Johnson, David

    2017-11-01

    In hyperdiverse tropical forests, the key drivers of litter decomposition are poorly understood despite its crucial role in facilitating nutrient availability for plants and microbes. Selective logging is a pressing land use with potential for considerable impacts on plant-soil interactions, litter decomposition, and nutrient cycling. Here, in Borneo's tropical rainforests, we test the hypothesis that decomposition is driven by litter quality and that there is a significant "home-field advantage," that is positive interaction between local litter quality and land use. We determined mass loss of leaf litter, collected from selectively logged and old-growth forest, in a fully factorial experimental design, using meshes that either allowed or precluded access by mesofauna. We measured leaf litter chemical composition before and after the experiment. Key soil chemical and biological properties and microclimatic conditions were measured as land-use descriptors. We found that despite substantial differences in litter quality, the main driver of decomposition was land-use type. Whilst inclusion of mesofauna accelerated decomposition, their effect was independent of land use and litter quality. Decomposition of all litters was slower in selectively logged forest than in old-growth forest. However, there was significantly greater loss of nutrients from litter, especially phosphorus, in selectively logged forest. The analyses of several covariates detected minor microclimatic differences between land-use types but no alterations in soil chemical properties or free-living microbial composition. These results demonstrate that selective logging can significantly reduce litter decomposition in tropical rainforest with no evidence of a home-field advantage. We show that loss of key limiting nutrients from litter (P & N) is greater in selectively logged forest. Overall, the findings hint at subtle differences in microclimate overriding litter quality that result in reduced decomposition rates in selectively logged forests and potentially affect biogeochemical nutrient cycling in the long term.

  17. Plant response to nutrient availability across variable bedrock geologies

    USGS Publications Warehouse

    Castle, S.C.; Neff, J.C.

    2009-01-01

    We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.

  18. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems

    PubMed Central

    Liu, Juxiu; Fang, Xiong; Deng, Qi; Han, Tianfeng; Huang, Wenjuan; Li, Yiyong

    2015-01-01

    As atmospheric CO2 concentration increases, many experiments have been carried out to study effects of CO2 enrichment on litter decomposition and nutrient release. However, the result is still uncertain. Meanwhile, the impact of CO2 enrichment on nutrients other than N and P are far less studied. Using open-top chambers, we examined effects of elevated CO2 and N addition on leaf litter decomposition and nutrient release in subtropical model forest ecosystems. We found that both elevated CO2 and N addition increased nutrient (C, N, P, K, Ca, Mg and Zn) loss from the decomposing litter. The N, P, Ca and Zn loss was more than tripled in the chambers exposed to both elevated CO2 and N addition than those in the control chambers after 21 months of treatment. The stimulation of nutrient loss under elevated CO2 was associated with the increased soil moisture, the higher leaf litter quality and the greater soil acidity. Accelerated nutrient release under N addition was related to the higher leaf litter quality, the increased soil microbial biomass and the greater soil acidity. Our results imply that elevated CO2 and N addition will increase nutrient cycling in subtropical China under the future global change. PMID:25608664

  19. The quality of our Nation's waters-Nutrients in the Nation's streams and groundwater, 1992-2004

    USGS Publications Warehouse

    Dubrovsky, N.M.; Burow, K.R.; Clark, G.M.; Gronberg, J.M.; Hamilton, P.A.; Hitt, K.J.; Mueller, D.K.; Munn, M.D.; Nolan, B.T.; Puckett, L.J.; Rupert, M.G.; Short, T.M.; Spahr, N.E.; Sprague, L.A.; Wilber, W.G.

    2010-01-01

    National Findings and Their Implications Although the use of artificial fertilizer has supported increasing food production to meet the needs of a growing population, increases in nutrient loadings from agricultural and, to a lesser extent, urban sources have resulted in nutrient concentrations in many streams and parts of aquifers that exceed standards for protection of human health and (or) aquatic life, often by large margins. Do NAWQA findings substantiate national concerns for aquatic and human health? National Water-Quality Assessment (NAWQA) findings indicate that nutrient concentrations in streams and groundwater in basins with significant agricultural or urban development are substantially greater than naturally occurring or ?background? levels. For example, median concentrations of total nitrogen and phosphorus in agricultural streams are about 6 times greater than background levels. Findings also indicate that concentrations in streams routinely were 2 to 10 times greater than regional nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic life. Such large differences in magnitude suggest that significant reductions in sources of nutrients, as well as greater use of land management strategies to reduce the transport of nutrients to streams, are needed to meet recommended criteria for streams draining areas with significant agricultural and urban development. Nitrate concentrations above the Federal drinking-water standard-or Maximum Contaminant Level (MCL)-of 10 milligrams per liter (mg/L, as nit-ogen) are relatively uncommon in samples from streams used for drinking water or from relatively deep aquifers; the MCL is exceeded, however, in more than 20 percent of shallow (less than 100 feet below the water table) domestic wells in agricultural areas. This finding raises concerns for human health in rural agricultural areas where shallow groundwater is used for domestic supply and may warn of future contamination of deeper groundwater pumped from public-supply wells. Are levels of nutrients in water increasing or decreasing? A decadal assessment of trends in concentrations of nitrogen and phosphorus from about 1993 to 2003 shows minimal changes in those concentrations in the majority of studied streams across the Nation, and more upward than downward trends in concentrations at sites with changes. These findings underscore the need for reductions in nutrient inputs or management strategies that would reduce transport of nutrients to streams. Upward trends were evident among all land uses, including those only minimally affected by agricultural and (or) urban development, which suggests that additional protection of some of our Nation's most pristine streams warrants consideration. The median of nitrate concentrations in groundwater from 495 wells also increased significantly from 3.2 to 3.4 mg/L (6 percent) during about the same period, and the proportion of wells with concentrations of nitrate greater than the MCL increased from 16 to 21 percent. Nitrate concentrations in water in deep aquifers are likely to increase during the next decade as shallow groundwater with elevated concentrations moves downward. The potential for future contamination of the deep aquifers requires attention because these aquifers commonly are used for public water supply, and because restoration of groundwater is costly and difficult. Long-term and consistent monitoring of nutrients, improved accounting of nutrient sources, and improved tracking and modeling of climatic and landscape changes will be essential for distinguishing trends in nutrient concentrations, understanding the causes of those trends, and accurately tracking the effectiveness of strategies implemented to manage nutrients.

  20. The quality of our Nation's waters-Nutrients in the Nation's streams and groundwater, 1992-2004

    USGS Publications Warehouse

    Dubrovsky, Neil M.; Burow, Karen R.; Clark, Gregory M.; Gronberg, JoAnn M.; Hamilton, Pixie A.; Hitt, Kerie J.; Mueller, David K.; Munn, Mark D.; Nolan, Bernard T.; Puckett, Larry J.; Rupert, Michael G.; Short, Terry M.; Spahr, Norman E.; Sprague, Lori A.; Wilber, William G.

    2010-01-01

    National Findings and Their ImplicationsAlthough the use of artificial fertilizer has supported increasing food production to meet the needs of a growing population, increases in nutrient loadings from agricultural and, to a lesser extent, urban sources have resulted in nutrient concentrations in many streams and parts of aquifers that exceed standards for protection of human health and (or) aquatic life, often by large margins.Do NAWQA findings substantiate national concerns for aquatic and human health?National Water-Quality Assessment (NAWQA) findings indicate that nutrient concentrations in streams and groundwater in basins with significant agricultural or urban development are substantially greater than naturally occurring or “background” levels. For example, median concentrations of total nitrogen and phosphorus in agricultural streams are about 6 times greater than background levels. Findings also indicate that concentrations in streams routinely were 2 to 10 times greater than regional nutrient criteria recommended by the U.S. Environmental Protection Agency (USEPA) to protect aquatic life. Such large differences in magnitude suggest that significant reductions in sources of nutrients, as well as greater use of land management strategies to reduce the transport of nutrients to streams, are needed to meet recommended criteria for streams draining areas with significant agricultural and urban development.Nitrate concentrations above the Federal drinking-water standard—or Maximum Contaminant Level (MCL)—of 10 milligrams per liter (mg/L, as nitrogen) are relatively uncommon in samples from streams used for drinking water or from relatively deep aquifers; the MCL is exceeded, however, in more than 20 percent of shallow (less than 100 feet below the water table) domestic wells in agricultural areas. This finding raises concerns for human health in rural agricultural areas where shallow groundwater is used for domestic supply and may warn of future contamination of deeper groundwater pumped from public‑supply wells.Are levels of nutrients in water increasing or decreasing?A decadal assessment of trends in concentrations of nitrogen and phosphorus from about 1993 to 2003 shows minimal changes in those concentrations in the majority of studied streams across the Nation, and more upward than downward trends in concentrations at sites with changes. These findings underscore the need for reductions in nutrient inputs or management strategies that would reduce transport of nutrients to streams. Upward trends were evident among all land uses, including those only minimally affected by agricultural and (or) urban development, which suggests that additional protection of some of our Nation’s most pristine streams warrants consideration.The median of nitrate concentrations in groundwater from 495 wells also increased significantly from 3.2 to 3.4 mg/L (6 percent) during about the same period, and the proportion of wells with concentrations of nitrate greater than the MCL increased from 16 to 21 percent. Nitrate concentrations in water in deep aquifers are likely to increase during the next decade as shallow groundwater with elevated concentrations moves downward. The potential for future contamination of the deep aquifers requires attention because these aquifers commonly are used for public water supply, and because restoration of groundwater is costly and difficult.Long-term and consistent monitoring of nutrients, improved accounting of nutrient sources, and improved tracking and modeling of climatic and landscape changes will be essential for distinguishing trends in nutrient concentrations, understanding the causes of those trends, and accurately tracking the effectiveness of strategies implemented to manage nutrients.

  1. Effect of acute heat stress on plant nutrient metabolism proteins

    USDA-ARS?s Scientific Manuscript database

    Abrupt heating decreased the levels (per unit total root protein) of all but one of the nutrient metabolism proteins examined, and for most of the proteins, effects were greater for severe vs. moderate heat stress. For many of the nutrient metabolism proteins, initial effects of heat (1 d) were r...

  2. Stream nutrient enrichment has a greater effect on coarse than on fine benthic organic matter

    Treesearch

    Cynthia J. Tant; Amy D. Rosemond; Matthew R. First

    2013-01-01

    Nutrient enrichment affects bacteria and fungi associated with detritus, but little is known about how biota associated with different size fractions of organic matter respond to nutrients. Bacteria dominate on fine (1 mm) fractions, which are used by different groups of detritivores. We measured the effect of experimental...

  3. Strong hydrological control on nutrient cycling of subtropical rainforests

    NASA Astrophysics Data System (ADS)

    Lin, T. C.; Chang, C. T.; Huang, J. C.; Wang, L.; Lin, N. H.

    2016-12-01

    Forest nutrient cycling is strongly controlled by both biological and hydrological factors. However, based on a close examination of earlier reports, we highlight the role of hydrological control on nutrient cycling at a global scale and is more important at humid tropical and subtropical forests. we analyzed the nutrient budget of precipitation input and stream water output from 1994 to 2013 in a subtropical forest in Taiwan and conducted a data synthesis using results from 32 forests across the globe. The results revealed that monthly input and output of ions were positively correlated with water quantity, indicating hydrological control on nutrient cycling. Hydrological control is also evident from the greater ions export via stream water during the warm and wet growing season. The synthesis also illustrates that strong hydrological control leads to lower nitrogen retention and greater net loss of base cations in humid regions, particularly in the humid tropical and subtropical forests. Our result is of great significance in an era of global climate change because climate change could directly affect ecosystem nutrient cycling particularly in the tropics through changes in patterns of precipitation regime.

  4. Plant Community Richness Mediates Inhibitory Interactions and Resource Competition between Streptomyces and Fusarium Populations in the Rhizosphere.

    PubMed

    Essarioui, Adil; LeBlanc, Nicholas; Kistler, Harold C; Kinkel, Linda L

    2017-07-01

    Plant community characteristics impact rhizosphere Streptomyces nutrient competition and antagonistic capacities. However, the effects of Streptomyces on, and their responses to, coexisting microorganisms as a function of plant host or plant species richness have received little attention. In this work, we characterized antagonistic activities and nutrient use among Streptomyces and Fusarium from the rhizosphere of Andropogon gerardii (Ag) and Lespedeza capitata (Lc) plants growing in communities of 1 (monoculture) or 16 (polyculture) plant species. Streptomyces from monoculture were more antagonistic against Fusarium than those from polyculture. In contrast, Fusarium isolates from polyculture had greater inhibitory capacities against Streptomyces than isolates from monoculture. Although Fusarium isolates had on average greater niche widths, the collection of Streptomyces isolates in total used a greater diversity of nutrients for growth. Plant richness, but not plant host, influenced the potential for resource competition between the two taxa. Fusarium isolates had greater niche overlap with Streptomyces in monoculture than polyculture, suggesting greater potential for Fusarium to competitively challenge Streptomyces in monoculture plant communities. In contrast, Streptomyces had greater niche overlap with Fusarium in polyculture than monoculture, suggesting that Fusarium experiences greater resource competition with Streptomyces in polyculture than monoculture. These patterns of competitive and inhibitory phenotypes among Streptomyces and Fusarium populations are consistent with selection for Fusarium-antagonistic Streptomyces populations in the presence of strong Fusarium resource competition in plant monocultures. Similarly, these results suggest selection for Streptomyces-inhibitory Fusarium populations in the presence of strong Streptomyces resource competition in more diverse plant communities. Thus, landscape-scale variation in plant species richness may be critical to mediating the coevolutionary dynamics and selective trajectories for inhibitory and nutrient use phenotypes among Streptomyces and Fusarium populations in soil, with significant implications for microbial community functional characteristics.

  5. Priming effect in topsoil and subsoil induced by earthworm burrows

    NASA Astrophysics Data System (ADS)

    Thu, Duyen Hoang Thi

    2017-04-01

    Earthworms (Lumbricus terrestris L.) not only affect soil physics, but they also boost microbial activities and consequently important hotspots of microbial mediated carbon and C turnover through their burrowing activity. However, it is still unknown to which extend earthworms affect priming effect in top- and subsoil horizons. More labile C inputs in earthworm burrows were hypothesized to trigger higher priming of soil organic matter (SOM) decomposition compared to rhizosphere and bulk soil. Moreover, this effect was expected to be more pronounced in subsoil due to its greater C and nutrient limitation. To test these hypotheses, biopores and bulk soil were sampled from topsoil (0-30 cm) and two subsoil depths (45-75 and 75-105 cm). Additionally, rhizosphere samples were taken from the topsoil. Total organic C (Corg), total N (TN), total P (TP) and enzyme activities involved in C-, N-, and P-cycling (cellobiohydrolase, β-glucosidase, xylanase, chitinase, leucine aminopeptidase and phosphatase) were measured. Priming effects were calculated as the difference in SOM-derived CO2 from soil with or without 14C-labelled glucose addition. Enzyme activities in biopores were positively correlated with Corg, TN and TP, but in bulk soil this correlation was negative. The more frequent fresh and labile C inputs to biopores caused 4 to 20 time higher absolute priming of SOM turnover due to enzyme activities that were one order of magnitude higher than in bulk soil. In subsoil biopores, reduced labile C inputs and lower N availability stimulated priming twofold greater than in topsoil. In contrast, a positive priming effect in bulk soil was only detected at 75-105 cm depth. We conclude that earthworm burrows provide not only the linkage between top- and subsoil for C and nutrients, but strongly increase microbial activities and accelerate SOM turnover in subsoil, contributing to nutrient mobilization for roots and CO2 emission increase as a greenhouse gas. Additionally, the mechanisms of native SOM decomposition are distinct between topsoil and subsoil, which relies on the fresh C input and nutrient availability. Keywords: Priming effect; Earthworms; Organic matter decomposition; Biopores; Subsoil; Microbial hotspots.

  6. Organic foods contain higher levels of certain nutrients, lower levels of pesticides, and may provide health benefits for the consumer.

    PubMed

    Crinnion, Walter J

    2010-04-01

    The multi-billion dollar organic food industry is fueled by consumer perception that organic food is healthier (greater nutritional value and fewer toxic chemicals). Studies of the nutrient content in organic foods vary in results due to differences in the ground cover and maturity of the organic farming operation. Nutrient content also varies from farmer to farmer and year to year. However, reviews of multiple studies show that organic varieties do provide significantly greater levels of vitamin C, iron, magnesium, and phosphorus than non-organic varieties of the same foods. While being higher in these nutrients, they are also significantly lower in nitrates and pesticide residues. In addition, with the exception of wheat, oats, and wine, organic foods typically provide greater levels of a number of important antioxidant phytochemicals (anthocyanins, flavonoids, and carotenoids). Although in vitro studies of organic fruits and vegetables consistently demonstrate that organic foods have greater antioxidant activity, are more potent suppressors of the mutagenic action of toxic compounds, and inhibit the proliferation of certain cancer cell lines, in vivo studies of antioxidant activity in humans have failed to demonstrate additional benefit. Clear health benefits from consuming organic dairy products have been demonstrated in regard to allergic dermatitis.

  7. A latitudinal gradient in seed nutrients of the forest herb Anemone nemorosa.

    PubMed

    De Frenne, P; Kolb, A; Graae, B J; Decocq, G; Baltora, S; De Schrijver, A; Brunet, J; Chabrerie, O; Cousins, S A O; Dhondt, R; Diekmann, M; Gruwez, R; Heinken, T; Hermy, M; Liira, J; Saguez, R; Shevtsova, A; Baskin, C C; Verheyen, K

    2011-05-01

    The nutrient concentration in seeds determines many aspects of potential success of the sexual reproductive phase of plants, including the seed predation probability, efficiency of seed dispersal and seedling performance. Despite considerable research interest in latitudinal gradients of foliar nutrients, a similar gradient for seeds remains unexplored. We investigated a potential latitudinal gradient in seed nutrient concentrations within the widespread European understorey forest herb Anemone nemorosa L. We sampled seeds of A. nemorosa in 15 populations along a 1900-km long latitudinal gradient at three to seven seed collection dates post-anthesis and investigated the relative effects of growing degree-hours >5 °C, soil characteristics and latitude on seed nutrient concentrations. Seed nitrogen, nitrogen:phosphorus ratio and calcium concentration decreased towards northern latitudes, while carbon:nitrogen ratios increased. When taking differences in growing degree-hours and measured soil characteristics into account and only considering the most mature seeds, the latitudinal decline remained particularly significant for seed nitrogen concentration. We argue that the decline in seed nitrogen concentration can be attributed to northward decreasing seed provisioning due to lower soil nitrogen availability or greater investment in clonal reproduction. This pattern may have large implications for the reproductive performance of this forest herb as the degree of seed provisioning ultimately co-determines seedling survival and reproductive success. © 2010 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize.

    PubMed

    Zhang, Deshan; Zhang, Chaochun; Tang, Xiaoyan; Li, Haigang; Zhang, Fusuo; Rengel, Zed; Whalley, William R; Davies, William J; Shen, Jianbo

    2016-01-01

    Root growth is influenced by soil nutrients and neighbouring plants, but how these two drivers affect root interactions and regulate plant growth dynamics is poorly understood. Here, interactions between the roots of maize (Zea mays) and faba bean (Vicia faba) are characterized. Maize was grown alone (maize) or with maize (maize/maize) or faba bean (maize/faba bean) as competitors under five levels of phosphorus (P) supply, and with homogeneous or heterogeneous P distribution. Maize had longer root length and greater shoot biomass and P content when grown with faba bean than with maize. At each P supply rate, faba bean had a smaller root system than maize but greater exudation of citrate and acid phosphatase, suggesting a greater capacity to mobilize P in the rhizosphere. Heterogeneous P availability enhanced the root-length density of maize but not faba bean. Maize root proliferation in the P-rich patches was associated with increased shoot P uptake. Increased P availability by localized P application or by the presence of faba bean exudation stimulated root morphological plasticity and increased shoot growth in maize in the maize/faba bean mixture, suggesting that root interactions of neighbouring plants can be modified by increased P availability. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition

    Treesearch

    Beth Cheever; Erika Kratzer; Jackson Webster

    2012-01-01

    According to theory, the rate and stoichiometry of microbial mineralization depend, in part, on nutrient availability. For microbes associated with leaves in streams, nutrients are available from both the water column and the leaf. Therefore, microbial nutrient cycling may change with nutrient availability and during leaf decomposition. We explored spatial and temporal...

  10. Selected nutrients and pesticides in streams of the eastern Iowa basins, 1970-95

    USGS Publications Warehouse

    Schnoebelen, Douglas J.; Becher, Kent D.; Bobier, Matthew W.; Wilton, Thomas

    1999-01-01

     The statistical analysis of the nutrient data typically indicated a strong positive correlation of nitrate with streamflow. Total phosphorus concentrations with streamflow showed greater variability than nitrate, perhaps reflecting the greater potential of transport of phosphorus on sediment rather than in the dissolved phase as with nitrate. Ammonia and ammonia plus organic nitrogen showed no correlation with streamflow or a weak positive correlation. Seasonal variations and the relations of nutrients and pesticides to streamflow generally corresponded with nonpoint‑source loadings, although possible point sources for nutrients were indicated by the data at selected monitoring sites. Statistical trend tests for concentrations and loads were computed for nitrate, ammonia, and total phosphorus. Trend analysis indicated decreases for ammonia and total phosphorus concentrations at several sites and increases for nitrate concentrations at other sites in the study unit.

  11. The Effect of Atrazine on Louisiana Gulf Coast Estuarine Phytoplankton.

    PubMed

    Starr, Alexis V; Bargu, Sibel; Maiti, Kanchan; DeLaune, Ronald D

    2017-02-01

    Pesticides may enter water bodies in areas with a high proportion of agricultural land use through surface runoff, groundwater discharge, and erosion and thus negatively impact nontarget aquatic organisms. The herbicide atrazine is used extensively throughout the Midwest and enters the Mississippi River through surface runoff and groundwater discharge. The purpose of this study was to determine the extent of atrazine contamination in Louisiana's estuaries from Mississippi River water under different flow and nutrient regimes (spring and summer) and its effect on the biomass and oxygen production of the local phytoplankton community. The results showed that atrazine was consistently present in these systems at low levels. Microcosm experiments exposed to an atrazine-dilution series under low and high nutrient conditions to determine the phytoplankton stress response showed that high atrazine levels greatly decreased phytoplankton biomass and oxygen production. Phytoplankton exposed to low and moderate atrazine levels under high nutrient conditions were able to recover after an extended acclimation period. Communities grown under high nutrient conditions grew more rapidly and produced greater levels of oxygen than the low nutrient treatment groups, thus indicating that atrazine exposure may induce a greater stress response in phytoplankton communities under low-nutrient conditions. The native community also experienced a shift from more sensitive species, such as chlorophytes, to potentially more resilient species such as diatoms. The phytoplankton response to atrazine exposure at various concentrations can be especially important to greater trophic levels because their growth and abundance can determine the potential productivity of the entire ecosystem.

  12. Two Salix Genotypes Differ in Productivity and Nitrogen Economy When Grown in Monoculture and Mixture

    PubMed Central

    Hoeber, Stefanie; Fransson, Petra; Prieto-Ruiz, Inés; Manzoni, Stefano; Weih, Martin

    2017-01-01

    Individual plant species or genotypes often differ in their demand for nutrients; to compete in a community they must be able to acquire more nutrients (i.e., uptake efficiency) and/or use them more efficiently for biomass production than their competitors. These two mechanisms are often complementary, as there are inherent trade-offs between them. In a mixed-stand, species with contrasting nutrient use patterns interact and may use their resources to increase productivity in different ways. Under contrasting nutrient availabilities, the competitive advantages conferred by either strategy may also shift, so that the interaction between resource use strategy and resource availability ultimately determines the performance of individual genotypes in mixtures. The aim was to investigate growth and nitrogen (N) use efficiency of two willow (Salix) genotypes grown in monoculture and mixture in a fertilizer contrast. We explored the hypotheses that (1) the biomass production of at least one of the involved genotypes should be greater when grown in mixture as compared to the corresponding monoculture when nutrients are the most growth-limiting factor; and (2) the N economy of individual genotypes differs when grown in mixture compared to the corresponding monoculture. The genotypes ‘Tora’ (Salix schwerinii ×S. viminalis) and ‘Loden’ (S. dasyclados), with contrasting phenology and functional traits, were grown from cuttings in a growth container experiment under two nutrient fertilization treatments (high and low) in mono- and mixed-culture for 17 weeks. Under low nutrient level, ‘Tora’ showed a higher biomass production (aboveground biomass, leaf area productivity) and N uptake efficiency in mixture than in monoculture, whereas ‘Loden’ showed the opposite pattern. In addition, ‘Loden’ showed higher leaf N productivity but lower N uptake efficiency than ‘Tora.’ The results demonstrated that the specific functional trait combinations of individual genotypes affect their response to mixture as compared to monoculture. Plants grown in mixture as opposed to monoculture may thus increase biomass and vary in their response of N use efficiency traits. However, young plants were investigated here, and as we cannot predict mixture response in mature stands, our results need to be validated at field scale. PMID:28270828

  13. Two Salix Genotypes Differ in Productivity and Nitrogen Economy When Grown in Monoculture and Mixture.

    PubMed

    Hoeber, Stefanie; Fransson, Petra; Prieto-Ruiz, Inés; Manzoni, Stefano; Weih, Martin

    2017-01-01

    Individual plant species or genotypes often differ in their demand for nutrients; to compete in a community they must be able to acquire more nutrients (i.e., uptake efficiency) and/or use them more efficiently for biomass production than their competitors. These two mechanisms are often complementary, as there are inherent trade-offs between them. In a mixed-stand, species with contrasting nutrient use patterns interact and may use their resources to increase productivity in different ways. Under contrasting nutrient availabilities, the competitive advantages conferred by either strategy may also shift, so that the interaction between resource use strategy and resource availability ultimately determines the performance of individual genotypes in mixtures. The aim was to investigate growth and nitrogen (N) use efficiency of two willow ( Salix ) genotypes grown in monoculture and mixture in a fertilizer contrast. We explored the hypotheses that (1) the biomass production of at least one of the involved genotypes should be greater when grown in mixture as compared to the corresponding monoculture when nutrients are the most growth-limiting factor; and (2) the N economy of individual genotypes differs when grown in mixture compared to the corresponding monoculture. The genotypes 'Tora' ( Salix schwerinii × S. viminalis ) and 'Loden' ( S. dasyclados ), with contrasting phenology and functional traits, were grown from cuttings in a growth container experiment under two nutrient fertilization treatments (high and low) in mono- and mixed-culture for 17 weeks. Under low nutrient level, 'Tora' showed a higher biomass production (aboveground biomass, leaf area productivity) and N uptake efficiency in mixture than in monoculture, whereas 'Loden' showed the opposite pattern. In addition, 'Loden' showed higher leaf N productivity but lower N uptake efficiency than 'Tora.' The results demonstrated that the specific functional trait combinations of individual genotypes affect their response to mixture as compared to monoculture. Plants grown in mixture as opposed to monoculture may thus increase biomass and vary in their response of N use efficiency traits. However, young plants were investigated here, and as we cannot predict mixture response in mature stands, our results need to be validated at field scale.

  14. Effects of Increased Nitrogen Availability on C and N Cycles in Tropical Forests: A Meta-Analysis.

    PubMed

    Bejarano-Castillo, Marylin; Campo, Julio; Roa-Fuentes, Lilia L

    2015-01-01

    Atmospheric N deposition is predicted to increase four times over its current status in tropical forests by 2030. Our ability to understand the effects of N enrichment on C and N cycles is being challenged by the large heterogeneity of the tropical forest biome. The specific response will depend on the forest's nutrient status; however, few studies of N addition appear to incorporate the nutrient status in tropical forests, possibly due to difficulties in explaining how this status is maintained. We used a meta-analysis to explore the consequences of the N enrichment on C and N cycles in tropical montane and lowland forests. We tracked changes in aboveground and belowground plant C and N and in mineral soil in response to N addition. We found an increasing trend of plant biomass in montane forests, but not in lowland forests, as well as a greater increase in NO emission in montane forest compared with lowland forest. The N2O and NO emission increase in both forest; however, the N2O increase in lowland forest was significantly even at first time N addition. The NO emission increase showed be greater at first term compared with long term N addition. Moreover, the increase in total soil N, ammonium, microbial N, and dissolved N concentration under N enrichment indicates a rich N status of lowland forests. The available evidence of N addition experiments shows that the lowland forest is richer in N than montane forests. Finally, the greater increase in N leaching and N gas emission highlights the importance of study the N deposition effect on the global climate change.

  15. Effects of Increased Nitrogen Availability on C and N Cycles in Tropical Forests: A Meta-Analysis

    PubMed Central

    2015-01-01

    Atmospheric N deposition is predicted to increase four times over its current status in tropical forests by 2030. Our ability to understand the effects of N enrichment on C and N cycles is being challenged by the large heterogeneity of the tropical forest biome. The specific response will depend on the forest’s nutrient status; however, few studies of N addition appear to incorporate the nutrient status in tropical forests, possibly due to difficulties in explaining how this status is maintained. We used a meta-analysis to explore the consequences of the N enrichment on C and N cycles in tropical montane and lowland forests. We tracked changes in aboveground and belowground plant C and N and in mineral soil in response to N addition. We found an increasing trend of plant biomass in montane forests, but not in lowland forests, as well as a greater increase in NO emission in montane forest compared with lowland forest. The N2O and NO emission increase in both forest; however, the N2O increase in lowland forest was significantly even at first time N addition. The NO emission increase showed be greater at first term compared with long term N addition. Moreover, the increase in total soil N, ammonium, microbial N, and dissolved N concentration under N enrichment indicates a rich N status of lowland forests. The available evidence of N addition experiments shows that the lowland forest is richer in N than montane forests. Finally, the greater increase in N leaching and N gas emission highlights the importance of study the N deposition effect on the global climate change. PMID:26633681

  16. Nutrient Management Approaches and Tools for Dairy farms in Australia and the USA.

    USDA-ARS?s Scientific Manuscript database

    In Australia and the USA, nutrient imports and accumulation on dairy farms can be a problem and may pose a threat to the greater environment. While the major nutrient imports onto dairy farms (i.e. fertilizer and feed) and exports (i.e. milk and animals) are generally the same for confinement-based ...

  17. In situ measurements of root exudation in three hardwood species in southern Indiana

    NASA Astrophysics Data System (ADS)

    O'Connor, D. A.; Brzostek, E. R.; Fisher, J. B.; Phillips, R.

    2012-12-01

    Root exudation - the release of soluble organic compounds to soil - has long been considered a black box in ecology owing to methodological difficulties associated with measuring this flux in situ. This knowledge gap is significant given recent findings that suggest exudate inputs are appreciable in magnitude (2-5% of net primary production) and are coupled to microbial activities, nutrient release and soil organic matter decomposition. We developed a novel experimental system for collecting exudates from intact roots of field-grown trees using cuvettes filled with sterile glass beads. We measured root exudation for three tree species in ~80 year old mixed hardwood forest in south central Indiana, USA in the summer of 2012. Exudation rates varied from 0 to 1413 ug C/g root/day, and differed by sampling date and among trees species. Overall, rates were greater in early relative to late July, and greater in sugar maple (Acer saccharum) and white oak (Quercus alba) relative to tulip poplar (Liriodendron tulipifera). Across all species, exudation rates were correlated with root mass, indicating that greater allocation to roots likely increases the amount of C available to fuel soil microbial activity. Collectively, the results of this study should enable us to develop improved model parameterizations of the C costs associated with nutrient acquisition, an important feedback for predicting the role of vegetation in mediating climate change.

  18. Mangrove growth in New Zealand estuaries: the role of nutrient enrichment at sites with contrasting rates of sedimentation.

    PubMed

    Lovelock, Catherine E; Feller, Ilka C; Ellis, Joanne; Schwarz, Ann Maree; Hancock, Nicole; Nichols, Pip; Sorrell, Brian

    2007-09-01

    Mangrove forest coverage is increasing in the estuaries of the North Island of New Zealand, causing changes in estuarine ecosystem structure and function. Sedimentation and associated nutrient enrichment have been proposed to be factors leading to increases in mangrove cover, but the relative importance of each of these factors is unknown. We conducted a fertilization study in estuaries with different sedimentation histories in order to determine the role of nutrient enrichment in stimulating mangrove growth and forest development. We expected that if mangroves were nutrient-limited, nutrient enrichment would lead to increases in mangrove growth and forest structure and that nutrient enrichment of trees in our site with low sedimentation would give rise to trees and sediments that converged in terms of functional characteristics on control sites in our high sedimentation site. The effects of fertilizing with nitrogen (N) varied among sites and across the intertidal zone, with enhancements in growth, photosynthetic carbon gain, N resorption prior to leaf senescence and the leaf area index of canopies being significantly greater at the high sedimentation sites than at the low sedimentation sites, and in landward dwarf trees compared to seaward fringing trees. Sediment respiration (CO(2) efflux) was higher at the high sedimentation site than at the low one sedimentation site, but it was not significantly affected by fertilization, suggesting that the high sedimentation site supported greater bacterial mineralization of sediment carbon. Nutrient enrichment of the coastal zone has a role in facilitating the expansion of mangroves in estuaries of the North Island of New Zealand, but this effect is secondary to that of sedimentation, which increases habitat area and stimulates growth. In estuaries with high sediment loads, enrichment with N will cause greater mangrove growth and further changes in ecosystem function.

  19. Spatial variability assessment of soil nutrients in an intense agricultural area, a case study of Rugao County in Yangtze River Delta Region, China

    NASA Astrophysics Data System (ADS)

    Zhao, Yongcun; Xu, Xianghua; Darilek, Jeremy Landon; Huang, Biao; Sun, Weixia; Shi, Xuezheng

    2009-05-01

    Topsoil samples (0-20 cm) ( n = 237) were collected from Rugao County, China. Geostatistical variogram analysis, sequential Gaussian simulation (SGS), and principal component (PC) analysis were applied to assess spatial variability of soil nutrients, identify the possible areas of nutrient deficiency, and explore spatial scale of variability of soil nutrients in the county. High variability of soil nutrient such as soil organic matter (SOM), total nitrogen (TN), available P, K, Fe, Mn, Cu, Zn, and B concentrations were observed. Soil nutrient properties displayed significant differences in their spatial structures, with available Cu having strong spatial dependence, SOM and available P having weak spatial dependence, and other nutrient properties having moderate spatial dependence. The soil nutrient deficiency, defined here as measured nutrient concentrations which do not meet the advisory threshold values specific to the county for dominant crops, namely rice, wheat, and rape seeds, was observed in available K and Zn, and the deficient areas covered 38 and 11%, respectively. The first three PCs of the nine soil nutrient properties explained 62.40% of the total variance. TN and SOM with higher loadings on PC1 are closely related to soil texture derived from different parent materials. The PC2 combined intermediate response variables such as available Zn and P that are likely to be controlled by land use and soil pH. Available B has the highest loading on PC3 and its variability of concentrations may be primarily ascribed to localized anthropogenic influence. The amelioration of soil physical properties (i.e. soil texture) and soil pH may improve the availability of soil nutrients and the sustainability of the agricultural system of Rugao County.

  20. Rhizosphere effect on phosphorus availability in forest soils at different altitudes.

    NASA Astrophysics Data System (ADS)

    De Feudis, Mauro; Cardelli, Valeria; Massaccesi, Luisa; Bol, Roland; Willbold, Sabine; Cocco, Stefania; Corti, Giuseppe; Agnelli, Alberto

    2016-04-01

    Phosphorus (P) is an essential nutrient for plants but it is one of the least available mineral nutrients, and can substantially limit plant growth. Although plants are able to respond to the P shortage, the global warming might modify the soil-plant-microorganisms system and reduce P availability. We evaluated the rhizosphere effect of beech (Fagus sylvatica L.) in forest soils of the Apennines mountains (central Italy) at two altitudes (800 and 1000 m) and along 1° of latitudinal gradient, using latitude and altitude as proxies for temperature change. Specifically, we tested if 1) soil organic C, total N, and organic and available P decrease with increasing latitude and altitude, and 2) the rhizosphere effect on P availability becomes more pronounced when potential nutrient limitations are more severe, as it happens with increasing latitude and altitude. The results suggested that the small latitudinal gradient has no effect on soil properties. Conversely, significant changes occurred between 800 and 1000 m a.s.l., as the soils at higher altitude showed greater TOC, organic and available P contents, and alkaline mono-phosphatases activity than the soils at 800 m a.s.l. Compared to the soils at lower altitude, a marked rhizosphere effect was found at 1000 m a.s.l., and it was mainly attributed to the release of labile organics through rhizodeposition processes. These labile organic compounds were considered able to induce a "priming effect" that fostered the mineralization of the soil organic matter. The enhanced organic carbon cycling, in turn, likely promoted the mineralization of the organic P forms. This was supported by the smaller proportion of orthophosphate monoesters found in the P pool of the rhizosphere than in that of the soil far from the roots, with a consequent increase of the amount of available P. Hence, we speculate that at high altitude the energy supplied by the plants through rhizodeposition to the rhizosphere heterotrophic microbial community promotes the rhizospheric biochemical processes and, in particular, P cycling.

  1. Epiphyte loads on seagrasses and microphytobenthos abundance are not reliable indicators of nutrient availability in oligotrophic coastal ecosystems.

    PubMed

    Fourqurean, James W; Muth, Meredith F; Boyer, Joseph N

    2010-07-01

    Despite marked gradients in nutrient availability that control the abundance and species composition of seagrasses in south Florida, and the importance of nutrient availability in controlling abundance and composition of epiphytes on seagrasses in other locations, we did not find that epiphyte load on the dominant seagrass, Thalassia testudinum, or that the relative contribution of algal epiphytes to the epiphyte community, was positively correlated with nutrient availability in the water column or the sediment in oligotrophic seagrass beds. Further, the abundance of microphytobenthos, as indicated by Chlorophyll-a concentration in the sediments, was not directly correlated with concentrations of nutrients in the sediments. Our results suggest that epiphyte and microphytobenthos abundance are not unambiguous indicators of nutrient availability in relatively pristine seagrass environments, and therefore would make poor candidates for indicators of the status and trends of seagrass ecosystems in relatively low-nutrient environments like the Florida Keys. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Effect of the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the crops of different cultivars of menthol mint (Mentha arvensis) under field conditions.

    PubMed

    Gupta, M L; Prasad, Arun; Ram, Muni; Kumar, Sushil

    2002-01-01

    The effects of inoculation with vesicular-arbuscular mycorrhizal (VAM) fungus Glomusfasciculatum on the root colonization, growth, essential oil yield and nutrient acquisition of three cultivars of menthol mint (Mentha arvensis); Kalka, Shivalik and Gomti, were studied under field conditions. The VAM inoculation significantly increased the root colonization, plant height, fresh herbage and dry matter yield. oil content and oil yield as compared to non-inoculated cultivars. The effect of VAM inoculation on the root colonization, growth and yield of mint was more pronounced with the cv Shivalik than the cvs Kalka and Gomati, indicating Shivalik as a highly mycorrhizal dependent genotype. VAM inoculation significantly increased the uptake of N, P and K by shoot tissues of mint, but most markedly increased the uptake of P. The VAM-inoculated mint plants depleted the available N, P and K in the rhizosphere soil as compared to non-inoculated control plants, however the extent of nutrient depletion was greater for P than N and K. We conclude that the VAM inoculation could significantly increase the root colonization, growth, essential oil yield and nutrient acquisition of mint for obtaining economic production under field conditions.

  3. The Effect of Using Mobile Technology-Based Methods That Record Food or Nutrient Intake on Diabetes Control and Nutrition Outcomes: A Systematic Review.

    PubMed

    Porter, Judi; Huggins, Catherine E; Truby, Helen; Collins, Jorja

    2016-12-17

    (1) Background: Mobile technologies may be utilised for dietary intake assessment for people with diabetes. The published literature was systematically reviewed to determine the effect of using mobile electronic devices to record food or nutrient intake on diabetes control and nutrition outcomes; (2) Methods: The review protocol was registered with PROSPERO: registration number CRD42016050079, and followed PRISMA guidelines. Original research of mobile electronic devices where food or nutrient intake was recorded in people with diabetes with any treatment regimen, and where this intervention was compared with usual care or alternative treatment models, was considered. Quality was assessed using the Quality Criteria Checklist for Primary Research; (3) Results: Nine papers formed the final library with a range of interventions and control practices investigated. The food/nutrient intake recording component of the intervention and patient engagement with the technology was not well described. When assessed for quality, three studies rated positive, five were neutral and one negative. There was significantly greater improvement in HbA1c in the intervention group compared to the control group in four of the nine studies; (4) Conclusion: Based on the available evidence there are no clear recommendations for using technology to record dietary data in this population.

  4. The Effect of Using Mobile Technology-Based Methods That Record Food or Nutrient Intake on Diabetes Control and Nutrition Outcomes: A Systematic Review

    PubMed Central

    Porter, Judi; Huggins, Catherine E.; Truby, Helen; Collins, Jorja

    2016-01-01

    (1) Background: Mobile technologies may be utilised for dietary intake assessment for people with diabetes. The published literature was systematically reviewed to determine the effect of using mobile electronic devices to record food or nutrient intake on diabetes control and nutrition outcomes; (2) Methods: The review protocol was registered with PROSPERO: registration number CRD42016050079, and followed PRISMA guidelines. Original research of mobile electronic devices where food or nutrient intake was recorded in people with diabetes with any treatment regimen, and where this intervention was compared with usual care or alternative treatment models, was considered. Quality was assessed using the Quality Criteria Checklist for Primary Research; (3) Results: Nine papers formed the final library with a range of interventions and control practices investigated. The food/nutrient intake recording component of the intervention and patient engagement with the technology was not well described. When assessed for quality, three studies rated positive, five were neutral and one negative. There was significantly greater improvement in HbA1c in the intervention group compared to the control group in four of the nine studies; (4) Conclusion: Based on the available evidence there are no clear recommendations for using technology to record dietary data in this population. PMID:27999302

  5. Plants may alter competition by modifying nutrient bioavailability in rhizosphere: a modeling approach.

    PubMed

    Raynaud, Xavier; Jaillard, Benoît; Leadley, Paul W

    2008-01-01

    Plants modify nutrient availability by releasing chemicals in the rhizosphere. This change in availability induced by roots (bioavailability) is known to improve nutrient uptake by individual plants releasing such compounds. Can this bioavailability alter plant competition for nutrients and under what conditions? To address these questions, we have developed a model of nutrient competition between plant species based on mechanistic descriptions of nutrient diffusion, plant exudation, and plant uptake. The model was parameterized using data of the effects of root citrate exudation on phosphorus availability. We performed a sensitivity analysis for key parameters to test the generality of these effects. Our simulations suggest the following. (1) Nutrient uptake depends on the number of roots when nutrients and exudates diffuse little, because individual roots are nearly independent in terms of nutrient supply. In this case, bioavailability profits only species with exudates. (2) Competition for nutrients depends on the spatial arrangement of roots when nutrients diffuse little but exudates diffuse widely. (3) Competition for nutrients depends on the nutrient uptake capacity of roots when nutrients and exudates diffuse widely. In this case, bioavailability profits all species. Mechanisms controlling competition for bioavailable nutrients appear to be diverse and strongly depend on soil, nutrient, and plant properties.

  6. Nutrient and Suspended-Sediment Transport and Trends in the Columbia River and Puget Sound Basins, 1993-2003

    USGS Publications Warehouse

    Wise, Daniel R.; Rinella, Frank A.; Rinella, Joseph F.; Fuhrer, Greg J.; Embrey, Sandra S.; Clark, Gregory M.; Schwarz, Gregory E.; Sobieszczyk, Steven

    2007-01-01

    This study focused on three areas that might be of interest to water-quality managers in the Pacific Northwest: (1) annual loads of total nitrogen (TN), total phosphorus (TP) and suspended sediment (SS) transported through the Columbia River and Puget Sound Basins, (2) annual yields of TN, TP, and SS relative to differences in landscape and climatic conditions between subbasin catchments (drainage basins), and (3) trends in TN, TP, and SS concentrations and loads in comparison to changes in landscape and climatic conditions in the catchments. During water year 2000, an average streamflow year in the Pacific Northwest, the Columbia River discharged about 570,000 pounds per day of TN, about 55,000 pounds per day of TP, and about 14,000 tons per day of SS to the Pacific Ocean. The Snake, Yakima, Deschutes, and Willamette Rivers contributed most of the load discharged to the Columbia River. Point-source nutrient loads to the catchments (almost exclusively from municipal wastewater treatment plants) generally were a small percentage of the total in-stream nutrient loads; however, in some reaches of the Spokane, Boise, Walla Walla, and Willamette River Basins, point sources were responsible for much of the annual in-stream nutrient load. Point-source nutrient loads generally were a small percentage of the total catchment nutrient loads compared to nonpoint sources, except for a few catchments where point-source loads comprised as much as 30 percent of the TN load and as much as 80 percent of the TP load. The annual TN and TP loads from point sources discharging directly to the Puget Sound were about equal to the annual loads from eight major tributaries. Yields of TN, TP, and SS generally were greater in catchments west of the Cascade Range. A multiple linear regression analysis showed that TN yields were significantly (p < 0.05) and positively related to precipitation, atmospheric nitrogen load, fertilizer and manure load, and point-source load, and were negatively related to average slope. TP yields were significantly related positively to precipitation, and point-source load and SS yields were significantly related positively to precipitation. Forty-eight percent of the available monitoring sites for TN had significant trends in concentration (2 increasing, 19 decreasing), 32 percent of the available sites for TP had significant trends in concentration (7 increasing, 9 decreasing), and 40 percent of the available sites for SS had significant trends in concentration (4 increasing, 15 decreasing). The trends in load followed a similar pattern, but with fewer sites showing significant trends. The results from this study indicate that inputs from nonpoint sources of nutrients probably have decreased over time in many of the catchments. Despite the generally small contribution of point-source nutrient loads, they still may have been partially responsible for the significant decreasing trends for nutrients at sites where the total point-source nutrient loads to the catchments equaled a substantial proportion of the in-stream load.

  7. An investigation of water nutrient levels associated with forest vegetation in highly altered landscapes

    Treesearch

    M.E.G. Golay; J.R. Thompson; C.M. Mabry; R.K. Kolka

    2013-01-01

    Stream pollution by nutrient loading is a chronic problem in the Midwest, United States, and greater impacts on water quality are expected as agricultural production and urban areas expand. Remnant riparian forests are critical for maintaining ecosystem functions in this landscape context, allowing water infiltration and capture of nutrients before they are lost from...

  8. Plant–herbivore–decomposer stoichiometric mismatches and nutrient cycling in ecosystems

    PubMed Central

    Cherif, Mehdi; Loreau, Michel

    2013-01-01

    Plant stoichiometry is thought to have a major influence on how herbivores affect nutrient availability in ecosystems. Most conceptual models predict that plants with high nutrient contents increase nutrient excretion by herbivores, in turn raising nutrient availability. To test this hypothesis, we built a stoichiometrically explicit model that includes a simple but thorough description of the processes of herbivory and decomposition. Our results challenge traditional views of herbivore impacts on nutrient availability in many ways. They show that the relationship between plant nutrient content and the impact of herbivores predicted by conceptual models holds only at high plant nutrient contents. At low plant nutrient contents, the impact of herbivores is mediated by the mineralization/immobilization of nutrients by decomposers and by the type of resource limiting the growth of decomposers. Both parameters are functions of the mismatch between plant and decomposer stoichiometries. Our work provides new predictions about the impacts of herbivores on ecosystem fertility that depend on critical interactions between plant, herbivore and decomposer stoichiometries in ecosystems. PMID:23303537

  9. Response diversity, nonnative species, and disassembly rules buffer freshwater ecosystem processes from anthropogenic change.

    PubMed

    Moore, Jonathan W; Olden, Julian D

    2017-05-01

    Integrating knowledge of environmental degradation, biodiversity change, and ecosystem processes across large spatial scales remains a key challenge to illuminating the resilience of earth's systems. There is now a growing realization that the manner in which communities will respond to anthropogenic impacts will ultimately control the ecosystem consequences. Here, we examine the response of freshwater fishes and their nutrient excretion - a key ecosystem process that can control aquatic productivity - to human land development across the contiguous United States. By linking a continental-scale dataset of 533 fish species from 8100 stream locations with species functional traits, nutrient excretion, and land remote sensing, we present four key findings. First, we provide the first geographic footprint of nutrient excretion by freshwater fishes across the United States and reveal distinct local- and continental-scale heterogeneity in community excretion rates. Second, fish species exhibited substantial response diversity in their sensitivity to land development; for native species, the more tolerant species were also the species contributing greater ecosystem function in terms of nutrient excretion. Third, by modeling increased land-use change and resultant shifts in fish community composition, land development is estimated to decrease fish nutrient excretion in the majority (63%) of ecoregions. Fourth, the loss of nutrient excretion would be 28% greater if biodiversity loss was random or 84% greater if there were no nonnative species. Thus, ecosystem processes are sensitive to increased anthropogenic degradation but biotic communities provide multiple pathways for resistance and this resistance varies across space. © 2016 John Wiley & Sons Ltd.

  10. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution.

    PubMed

    Cerozi, Brunno da Silva; Fitzsimmons, Kevin

    2016-11-01

    The interaction between the main ions in aquaponics nutrient solutions affects chemical composition and availability of nutrients, and nutrient uptake by plant roots. This study determined the effect of pH on phosphorus (P) speciation and availability in an aquaponics nutrient solution and used Visual MINTEQ to simulate P species and P activity. In both experimental and simulated results, P availability decreased with increase in pH of aquaponics nutrient solutions. According to simulations, P binds to several cations leaving less free phosphate ions available in solution. High pH values resulted in the formation of insoluble calcium phosphate species. The study also demonstrated the importance of organic matter and alkalinity in keeping free phosphate ions in solution at high pH ranges. It is recommended though that pH in aquaponics systems is maintained at a 5.5-7.2 range for optimal availability and uptake by plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wild fire

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Meyer, W. S.; Koerber, G.; Marschner, P.

    2015-06-01

    Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wild fire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well-known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content which could be further modulated by wild fire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy Mallee woodland, where part of the woodland experienced a wild fire which destroyed or damaged most of the aboveground plant parts four months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80% of maximum water holding capacity for 19 days; In DRW, soils were dried for four days, kept dry for another five days, then rewet to 80% WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per g soil in CM and DRW was greater under trees, but lower when expressed per g TOC. Organic matter content, available P, and microbial biomass C, but not available N were greater under trees than in open areas. Wild fire decreased the flush of respiration per g TOC in the open areas and under shrubs, and reduced TOC and MBC concentrations only under trees, but had little effect on available N and P concentrations. We conclude that of the impact wild fire and DRW events on nutrient cycling differ among vegetation patches of a native semiarid woodland which is related to organic matter amount and availability.

  12. The role of DOM in nitrogen processing in streams across arctic regions affected by fire

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cardona, B.; Schade, J. D.; Holmes, R. M.; Natali, S.; Mann, P. J.; Wymore, A.; Coble, A. A.; Prokishkin, A. S.; Zito, P.; Podgorski, D. C.; Spencer, R. G.; McDowell, W. H.

    2017-12-01

    In stream ecosystems, inputs of dissolved organic carbon (DOC) have a strong influence on nitrogen (N) processing. Previous studies have demonstrated that increases in DOC concentrations can promote greater N removal in many stream ecosystems. Most of what we know about C and N coupling comes from studies of temperate streams; less is known about this relationship in the Arctic. Streams in Arctic ecosystems are facing rapid changes in climate and disturbance regimes, in particular increasing fire frequencies that are likely to alter biogeochemical cycles. Although fires can lead to increases in NO3 concentrations in streams, the effects of fire on DOC (concentration and composition) have been difficult to generalize. We studied the relationships between DOC and N in two locations; the Central Siberian Plateau, Russia and the Yukon-Kuskokwim (YK) River Delta, Alaska. Streams in both regions show increases in NO3 concentrations after fire, while DOC concentrations decrease in Siberia but increase in streams within the YK-Delta. These patterns in DOC and NO3 create a gradient in DOC and nutrient concentrations, allowing us to study this coupling in a wider Pan-Arctic scope. In order to assess the role of DOC in Arctic N processing, we conducted NO3 and NH4 additions to stream microcosms at the Alaskan site as well as whole-stream additions in Siberia. We hypothesized that nutrient uptake would be high in older burn sites of Siberia and recently burned sites in the YK-Delta, due to greater DOC concentrations and availability. Our results suggest that nitrogen dynamics in the Alaskan sites is strongly responsive to C availability, but is less so in Siberian sites. The potential impacts of permafrost thawing and fires on DOM and nutrient dynamics thus appear to not be consistent across the Arctic suggesting that different regions of the Arctic have unique biogeochemical controls.

  13. Is white clover able to switch to atmospheric sulphur sources when sulphate availability decreases?

    PubMed

    Varin, Sébastien; Lemauviel-Lavenant, Servane; Cliquet, Jean-Bernard

    2013-05-01

    Sulphur (S) is one of the very few nutrients that plants can absorb either through roots as sulphate or via leaves in a gas form such as SO2 or H2S. This study was realized in a non-S-enriched atmosphere and its purpose was to test whether clover plants can increase their ability to use atmospheric S when sulphate availability decreases. A novel methodology measuring the dilution of (34)S provided from a nutrient solution by atmospheric (32)S was developed to measure S acquisition by Trifolium repens L. Clones of white clover were grown for 140 d in a hydroponic system with three levels of sulphate concentrations. S concentration in plants decreased with S deficiency and plant age. In the experimental conditions used here, S derived from atmospheric deposition (Sdad) constituted from 36% to 100% of the total S. The allocation of S coming from atmospheric and pedospheric sources depends on organs and compounds. Nodules appeared as major sinks for sulphate. A greater proportion of atmospheric S was observed in buffer-soluble proteins than in the insoluble S fraction. Decreasing the S concentration in the nutrient solution resulted in an increase in the Sdad:leaf area ratio and in an increase in the leaf:stolon and root:shoot mass ratios, suggesting that a plasticity in the partitioning of resources to organs may allow a higher gain of S by both roots and leaves. This study shows that clover can increase its ability to use atmospheric S even at low concentration when pedospheric S availability decreases.

  14. Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands

    USGS Publications Warehouse

    Noe, Gregory B.; Hupp, Cliff R.; Rybicki, Nancy B.

    2013-01-01

    Conceptual models of river–floodplain systems and biogeochemical theory predict that floodplain soil nitrogen (N) and phosphorus (P) mineralization should increase with hydrologic connectivity to the river and thus increase with distance downstream (longitudinal dimension) and in lower geomorphic units within the floodplain (lateral dimension). We measured rates of in situ soil net ammonification, nitrification, N, and P mineralization using monthly incubations of modified resin cores for a year in the forested floodplain wetlands of Difficult Run, a fifth order urban Piedmont river in Virginia, USA. Mineralization rates were then related to potentially controlling ecosystem attributes associated with hydrologic connectivity, soil characteristics, and vegetative inputs. Ammonification and P mineralization were greatest in the wet backswamps, nitrification was greatest in the dry levees, and net N mineralization was greatest in the intermediately wet toe-slopes. Nitrification also was greater in the headwater sites than downstream sites, whereas ammonification was greater in downstream sites. Annual net N mineralization increased with spatial gradients of greater ammonium loading to the soil surface associated with flooding, soil organic and nutrient content, and herbaceous nutrient inputs. Annual net P mineralization was associated negatively with soil pH and coarser soil texture, and positively with ammonium and phosphate loading to the soil surface associated with flooding. Within an intensively sampled low elevation flowpath at one site, sediment deposition during individual incubations stimulated mineralization of N and P. However, the amount of N and P mineralized in soil was substantially less than the amount deposited with sedimentation. In summary, greater inputs of nutrients and water and storage of soil nutrients along gradients of river–floodplain hydrologic connectivity increased floodplain soil nutrient mineralization rates.

  15. Phosphorus and nitrogen concentrations and loads at Illinois River south of Siloam Springs, Arkansas, 1997-1999

    USGS Publications Warehouse

    Green, W. Reed; Haggard, Brian E.

    2001-01-01

    Water-quality sampling consisting of every other month (bimonthly) routine sampling and storm event sampling (six storms annually) is used to estimate annual phosphorus and nitrogen loads at Illinois River south of Siloam Springs, Arkansas. Hydrograph separation allowed assessment of base-flow and surfacerunoff nutrient relations and yield. Discharge and nutrient relations indicate that water quality at Illinois River south of Siloam Springs, Arkansas, is affected by both point and nonpoint sources of contamination. Base-flow phosphorus concentrations decreased with increasing base-flow discharge indicating the dilution of phosphorus in water from point sources. Nitrogen concentrations increased with increasing base-flow discharge, indicating a predominant ground-water source. Nitrogen concentrations at higher base-flow discharges often were greater than median concentrations reported for ground water (from wells and springs) in the Springfield Plateau aquifer. Total estimated phosphorus and nitrogen annual loads for calendar year 1997-1999 using the regression techniques presented in this paper (35 samples) were similar to estimated loads derived from integration techniques (1,033 samples). Flow-weighted nutrient concentrations and nutrient yields at the Illinois River site were about 10 to 100 times greater than national averages for undeveloped basins and at North Sylamore Creek and Cossatot River (considered to be undeveloped basins in Arkansas). Total phosphorus and soluble reactive phosphorus were greater than 10 times and total nitrogen and dissolved nitrite plus nitrate were greater than 10 to 100 times the national and regional averages for undeveloped basins. These results demonstrate the utility of a strategy whereby samples are collected every other month and during selected storm events annually, with use of regression models to estimate nutrient loads. Annual loads of phosphorus and nitrogen estimated using regression techniques could provide similar results to estimates using integration techniques, with much less investment.

  16. Global-scale patterns of nutrient density and partitioning in forests in relation to climate.

    PubMed

    Zhang, Kerong; Song, Conghe; Zhang, Yulong; Dang, Haishan; Cheng, Xiaoli; Zhang, Quanfa

    2018-01-01

    Knowledge of nutrient storage and partitioning in forests is imperative for ecosystem models and ecological theory. Whether the nutrients (N, P, K, Ca, and Mg) stored in forest biomass and their partitioning patterns vary systematically across climatic gradients remains unknown. Here, we explored the global-scale patterns of nutrient density and partitioning using a newly compiled dataset including 372 forest stands. We found that temperature and precipitation were key factors driving the nutrients stored in living biomass of forests at global scale. The N, K, and Mg stored in living biomass tended to be greater in increasingly warm climates. The mean biomass N density was 577.0, 530.4, 513.2, and 336.7 kg/ha for tropical, subtropical, temperate, and boreal forests, respectively. Around 76% of the variation in biomass N density could be accounted by the empirical model combining biomass density, phylogeny (i.e., angiosperm, gymnosperm), and the interaction of mean annual temperature and precipitation. Climate, stand age, and biomass density significantly affected nutrients partitioning at forest community level. The fractional distribution of nutrients to roots decreased significantly with temperature, suggesting that forests in cold climates allocate greater nutrients to roots. Gymnosperm forests tended to allocate more nutrients to leaves as compared with angiosperm forests, whereas the angiosperm forests distributed more nutrients in stems. The nutrient-based Root:Shoot ratios (R:S), averaged 0.30 for R:S N , 0.36 for R:S P , 0.32 for R:S K , 0.27 for R:S Ca , and 0.35 for R:S Mg , respectively. The scaling exponents of the relationships describing root nutrients as a function of shoot nutrients were more than 1.0, suggesting that as nutrient allocated to shoot increases, nutrient allocated to roots increases faster than linearly with nutrient in shoot. Soil type significantly affected the total N, P, K, Ca, and Mg stored in living biomass of forests, and the Acrisols group displayed the lowest P, K, Ca, and Mg. © 2017 John Wiley & Sons Ltd.

  17. Sagebrush wildfire effects on surface soil nutrient availability: A temporal and spatial study

    USDA-ARS?s Scientific Manuscript database

    Wildfires occurring in Artemisia (sagebrush) ecosystems can temporarily increase soil nutrient availability in surface soil. Less is known, however, on how soil nutrient availability changes over time and microsite location post-wildfire. In Oct., 2013 a wildfire approximately 30 km north of Reno, N...

  18. Antioxidants in Greek Virgin Olive Oils

    PubMed Central

    Kalogeropoulos, Nick; Tsimidou, Maria Z.

    2014-01-01

    Greece is ranked third after Spain and Italy in virgin olive oil production. The number of Greek olive cultivars—excluding clonal selections—is greater than 40; however, more than 90% of the acreage is cultivated with 20 cultivars, adapted to a wide range of environmental conditions. Greek virgin olive oils, produced mainly with traditional, non-intensive cultivation practices, are mostly of exceptional quality. The benefits of consuming virgin olive oil, originally attributed to its high oleic acid content, are now considered to be the combined result of several nutrient and non-nutrient phytochemicals. The present work summarizes available data regarding natural antioxidants in Greek virgin olive oils (VOO) namely, polar phenolic compounds, tocopherols, squalene, and triterpenic acids. The literature survey indicated gaps in information, which should be filled in the near future so that the intrinsic properties of this major agricultural product of Greece will be substantiated on a solid scientific basis. PMID:26784878

  19. Scale and legacy controls on catchment nutrient export regimes

    NASA Astrophysics Data System (ADS)

    Howden, N. J. K.; Burt, T.; Worrall, F.

    2017-12-01

    Nutrient dynamics in river catchments are complex: water and chemical fluxes are highly variable in low-order streams, but this variability declines as fluxes move through higher-order reaches. This poses a major challenge for process understanding as much effort is focussed on long-term monitoring of the main river channel (a high-order reach), and therefore the data available to support process understanding are predominantly derived from sites where much of the transient response of nutrient export is masked by the effect of averaging over both space and time. This may be further exacerbated at all scales by the accumulation of legacy nutrient sources in soils, aquifers and pore waters, where historical activities have led to nutrient accumulation where the catchment system is transport limited. Therefore it is of particular interest to investigate how the variability of nutrient export changes both with catchment scale (from low to high-order catchment streams) and with the presence of legacy sources, such that the context of infrequent monitoring on high-order streams can be better understood. This is not only a question of characterising nutrient export regimes per se, but also developing a more thorough understanding of how the concepts of scale and legacy may modify the statistical characteristics of observed responses across scales in both space and time. In this paper, we use synthetic data series and develop a model approach to consider how space and timescales combine with impacts of legacy sources to influence observed variability in catchment export. We find that: increasing space and timescales tend to reduce the observed variance in nutrient exports, due to an increase in travel times and greater mixing, and therefore averaging, of sources; increasing the influence of legacy sources inflates the variance, with the level of inflation dictated by the residence time of the respective sources.

  20. Effect of dietary fiber and diet particle size on nutrient digestibility and gastrointestinal secretory function in growing pigs.

    PubMed

    Saqui-Salces, M; Luo, Z; Urriola, P E; Kerr, B J; Shurson, G C

    2017-06-01

    Reduction of diet particle size (PS) increases feed efficiency due to an increase in the apparent total tract (ATTD) of GE. However, other effects of PS on the gut secretory function are not known. Therefore, the objective of this experiment was to measure the effect of diet composition (DC) and PS on nutrient digestibility, gastrointestinal hormones, total bile acids (TBA), total cholesterol and glucose concentrations in plasma of finishing pigs ( = 8/diet). Pigs were fed finely (374 ± 29 µm) or coarsely (631 ± 35 µm) ground corn-soybean meal (CSB), CSB + 35% corn dried distillers' grains with solubles (DDGS), and CSB with 21% soybean hulls (SBH) diets for 49 d. Diet composition, nutrient digestibility, along with fasting plasma concentrations of gastrin, insulin, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), TBA, cholesterol, and glucose were measured. Fine ground diets had greater ( < 0.05) ATTD of GE as well as greater ( < 0.05) ME than coarse ground diets independent on the DC. Fine ground diets also had greater ( < 0.05) ATTD of DM, N, ether extract, and NDF, independent of DC. A decrease in PS also caused an increase ( < 0.05) in ATTD of N, K, and S, but it did not affect ATTD of Ca, P, or Na. The DC and PS affected plasma gastrin, insulin and TBA but not GIP, GLP-1, glucose, and cholesterol. Gastrin concentration was greater ( < 0.05) in pigs fed coarse DDGS compared with feeding coarse CSB and SBH diets. Insulin concentration of pigs fed CSB was greater ( < 0.01) in pigs fed fine compared with coarse DDGS, and was greater ( < 0.05) in coarse compared with fine SBH diets. Pigs fed DDGS had greater ( < 0.05) TBA than those fed SBH and fine CSB diets. Gastrin, insulin, TBA and cholesterol tended ( < 0.10), or correlated ( < 0.05) with P, K and Fe intake. Insulin, TBA, and cholesterol were correlated ( < 0.05) with Na and S intake. In conclusion, a decrease in diet PS increases the ATTD of nutrients independently of DC, while mineral intake affects gastrointestinal secretion of hormones with potential metabolic impacts. Plasma insulin and glucose concentrations were correlated with DM intake, and glucose was associated with lipid and protein intake. Diet energy, nutrient digestibility, and plasma gastrin, insulin and TBA concentrations were affected by DC and PS.

  1. Changes in Nutrients and Primary Production in Barrow Tundra Ponds Over the Past 40 Years

    NASA Astrophysics Data System (ADS)

    Lougheed, V.; Andresen, C.; Hernandez, C.; Miller, N.; Reyes, F.

    2012-12-01

    The Arctic tundra ponds at the International Biological Program (IBP) site in Barrow, Alaska were studied extensively in the 1970's; however, very little research has occurred there since that time. Due to the sensitivity of this region to climate warming, understanding any changes in the ponds' structure and function over the past 40 years can help identify any potential climate-related impacts. The goal of this study was to determine if the structure and function of primary producers had changed through time, and the association between these changes, urban encroachment and nutrient limitation. Nutrient levels, as well as the biomass of aquatic graminoids (Carex aquatilis and Arctophila fulva), phytoplankton and periphyton were determined in the IBP tundra ponds in both 1971-3 and 2010-12, and in 2010-11 from nearby ponds along an anthropogenic disturbance gradient. Uptake of 14C was also used to measure algal primary production in both time periods and nutrient addition experiments were performed to identify the nutrients limiting algal growth. Similar methods were utilized in the past and present studies. Overall, biomass of graminoids, phytoplankton and periphyton was greater in 2010-12 than that observed in the 1970s. This increased biomass was coincident with warmer water temperatures, increased water column nutrients and deeper active layer depth. Biomass of plants and algae was highest in the ponds closest to the village of Barrow, but no effect of urban encroachment was observed at the IBP ponds. Laboratory incubations indicated that nutrient release from thawing permafrost can explain part of these increases in nutrients and has likely contributed to changes in the primary limiting nutrient. Further studies are necessary to better understand the implications of these trends in primary production to nutrient budgets in the Arctic. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on freshwater ecosystem structure and function. Continued monitoring and protection of these invaluable sites is required to help understand the implications of climate change on Arctic freshwater ecosystems.

  2. The influence of mixed tree plantations on the nutrition of individual species: a review.

    PubMed

    Richards, Anna E; Forrester, David I; Bauhus, Jürgen; Scherer-Lorenzen, Michael

    2010-09-01

    Productivity of tree plantations is a function of the supply, capture and efficiency of use of resources, as outlined in the Production Ecology Equation. Species interactions in mixed-species stands can influence each of these variables. The importance of resource-use efficiency in determining forest productivity has been clearly demonstrated in monocultures; however, substantial knowledge gaps remain for mixtures. This review examines how the physiology and morphology of a given species can vary depending on whether it grows in a mixture or monoculture. We outline how physiological and morphological shifts within species, resulting from interactions in mixtures, may influence the three variables of the Production Ecology Equation, with an emphasis on nutrient resources [nitrogen (N) and phosphorus (P)]. These include (i) resource availability, including soil nutrient mineralization, N₂ fixation and litter decomposition; (ii) proportion of resources captured, resulting from shifts in spatial, temporal and chemical patterns of root dynamics; (iii) resource-use efficiency. We found that more than 50% of mixed-species studies report a shift to greater above-ground nutrient content of species grown in mixtures compared to monocultures, indicating an increase in the proportion of resources captured from a site. Secondly, a meta-analysis showed that foliar N concentrations significantly increased for a given species in a mixture containing N₂-fixing species, compared to a monoculture, suggesting higher rates of photosynthesis and greater resource-use efficiency. Significant shifts in N- and P-use efficiencies of a given species, when grown in a mixture compared to a monoculture, occurred in over 65% of studies where resource-use efficiency could be calculated. Such shifts can result from changes in canopy photosynthetic capacities, changes in carbon allocation or changes to foliar nutrient residence times of species in a mixture. We recommend that future research focus on individual species' changes, particularly with respect to resource-use efficiency (including nutrients, water and light), when trees are grown in mixtures compared to monocultures. A better understanding of processes responsible for changes to tree productivity in mixed-species tree plantations can improve species, and within-species, selection so that the long-term outcome of mixtures is more predictable.

  3. The Impact of Climate Change on Photosynthesis: Modeling the Role of Water Use Efficiency and Nitrogen Use Efficiency in Alpine Tundra Plant Communities

    NASA Astrophysics Data System (ADS)

    Wentz, K. F.; Neff, J. C.; Fan, Z.

    2016-12-01

    In the coming years, climate change will affect spatio-temporal patterns of water and nutrient availability in soils. Plant communities and their ability to optimize these limiting resources will analogously shift, causing changes in net photosynthesis. In order to assess this transition, we have developed a quantitative model that incorporates the effects of both water and nutrient limitations on the photosynthetic capacity of plants. In the model, plants increase their water use efficiency (WUE) if soil moisture is most limiting to plant growth and increase their nutrient use efficiency (NUE) if soil nutrients are most limiting to plant growth. Furthermore, WUE and NUE are inversely related. The model predicts that as WUE increases and NUE decreases, photosynthesis increases until reaching a maximum value. Furthermore, more drastic changes in photosynthesis are observed when WUE is perturbed at lower values as compared to higher values. The model will be validated and if necessary, reparametrized using data collected from plant communities at the Niwot Ridge Long Term Ecological Research site. The dominant plants that we are measuring at this site are located in the dry, moist, and wet alpine meadows where soils have different concentrations of water and nutrients. We are measuring photosynthesis rates, transpiration rates, and leaf nitrogen (N) and phosphorus (P) of four different plant species: 1 dry meadow species, 1 moist meadow species, 1 wet meadow species, and a control species that occurs in all of the meadows. This data will in turn be used to calculate WUE and NUE for each plant species to allow for a comparison with model predictions. In order to assess the difference in net photosynthetic capacity between plants that have greater WUE versus plants that have greater NUE, we will generate A/ci curves for each species, where ci is the concentration of carbon dioxide in the chloroplast and A is the maximum photosynthesis. The validated photosynthesis model will be linked to a biogeochemical model that models the effect of climate change on soil water and nutrients. The ultimate goal is to use the two combined models to understand how climate change will affect patterns of photosynthesis.

  4. Tailoring biocontrol to maximize top-down effects: on the importance of underlying site fertility.

    PubMed

    Hovick, Stephen M; Carson, Walter P

    2015-01-01

    The degree to which biocontrol agents impact invasive plants varies widely across landscapes, often for unknown reasons. Understanding this variability can help optimize invasive species management while also informing our understanding of trophic linkages. To address these issues, we tested three hypotheses with contrasting predictions regarding the likelihood of biocontrol success. (1) The biocontrol effort hypothesis: invasive populations are regulated primarily by top-down effects, predicting that increased biocontrol efforts alone (e.g., more individuals of a given biocontrol agent or more time since agent release) will enhance biocontrol success. (2) The relative fertility hypothesis: invasive populations are regulated primarily by bottom-up effects, predicting that nutrient enrichment will increase dominance by invasives and thus reduce biocontrol success, regardless of biocontrol efforts. (3) The fertility-dependent biocontrol effort hypothesis: top-down effects will only regulate invasive populations if bottom-up effects are weak. It predicts that greater biocontrol efforts will increase biocontrol success, but only in low-nutrient sites. To test these hypotheses, we surveyed 46 sites across three states with prior releases of Galerucella beetles, the most common biocontrol agents used against invasive purple loosestrife (Lythrum salicaria). We found strong support for the fertility-dependent biocontrol effort hypothesis, as biocontrol success occurred most often with greater biocontrol efforts, but only in low-fertility sites. This result held for early stage metrics of biocontrol success (higher Galerucella abundance) and ultimate biocontrol outcomes (decreased loosestrife plant size and abundance). Presence of the invasive grass Phalaris arundinacea was also inversely related to loosestrife abundance, suggesting that biocontrol-based reductions in loosestrife made secondary invasion by P. arundinacea more likely. Our data suggest that low-nutrient sites be prioritized for loosestrife biocontrol and that future monitoring account for variation in site fertility or work to mitigate it. We introduce a new framework that integrates our findings with conflicting patterns previously reported from other biocontrol systems, proposing a unimodal relationship whereby nutrient availability enhances biocontrol success in low-nutrient sites but hampers it in high-nutrient sites. Our results represent one of the first examples of biocontrol success depending on site fertility, which has the potential to inform biocontrol-based management decisions across entire regions and among contrasting systems.

  5. Development and Application of Regression Models for Estimating Nutrient Concentrations in Streams of the Conterminous United States, 1992-2001

    USGS Publications Warehouse

    Spahr, Norman E.; Mueller, David K.; Wolock, David M.; Hitt, Kerie J.; Gronberg, JoAnn M.

    2010-01-01

    Data collected for the U.S. Geological Survey National Water-Quality Assessment program from 1992-2001 were used to investigate the relations between nutrient concentrations and nutrient sources, hydrology, and basin characteristics. Regression models were developed to estimate annual flow-weighted concentrations of total nitrogen and total phosphorus using explanatory variables derived from currently available national ancillary data. Different total-nitrogen regression models were used for agricultural (25 percent or more of basin area classified as agricultural land use) and nonagricultural basins. Atmospheric, fertilizer, and manure inputs of nitrogen, percent sand in soil, subsurface drainage, overland flow, mean annual precipitation, and percent undeveloped area were significant variables in the agricultural basin total nitrogen model. Significant explanatory variables in the nonagricultural total nitrogen model were total nonpoint-source nitrogen input (sum of nitrogen from manure, fertilizer, and atmospheric deposition), population density, mean annual runoff, and percent base flow. The concentrations of nutrients derived from regression (CONDOR) models were applied to drainage basins associated with the U.S. Environmental Protection Agency (USEPA) River Reach File (RF1) to predict flow-weighted mean annual total nitrogen concentrations for the conterminous United States. The majority of stream miles in the Nation have predicted concentrations less than 5 milligrams per liter. Concentrations greater than 5 milligrams per liter were predicted for a broad area extending from Ohio to eastern Nebraska, areas spatially associated with greater application of fertilizer and manure. Probabilities that mean annual total-nitrogen concentrations exceed the USEPA regional nutrient criteria were determined by incorporating model prediction uncertainty. In all nutrient regions where criteria have been established, there is at least a 50 percent probability of exceeding the criteria in more than half of the stream miles. Dividing calibration sites into agricultural and nonagricultural groups did not improve the explanatory capability for total phosphorus models. The group of explanatory variables that yielded the lowest model error for mean annual total phosphorus concentrations includes phosphorus input from manure, population density, amounts of range land and forest land, percent sand in soil, and percent base flow. However, the large unexplained variability and associated model error precluded the use of the total phosphorus model for nationwide extrapolations.

  6. Effects of nutrient and lime additions in mine site rehabilitation strategies on the accumulation of antimony and arsenic by native Australian plants.

    PubMed

    Wilson, Susan C; Leech, Calvin D; Butler, Leo; Lisle, Leanne; Ashley, Paul M; Lockwood, Peter V

    2013-10-15

    The effects of nutrient and lime additions on antimony (Sb) and arsenic (As) accumulation by native Australian and naturalised plants growing in two contaminated mine site soils (2,735 mg kg(-1) and 4,517 mg kg(-1) Sb; 826 mg kg(-1) and 1606 As mgkg(-1)) was investigated using a glasshouse pot experiment. The results indicated an increase in soil solution concentrations with nutrient addition in both soils and also with nutrient+lime addition for Sb in one soil. Metalloid concentrations in plant roots were significantly greater than concentrations in above ground plant parts. The metalloid transfer to above ground plant parts from the roots and from the soil was, however, low (ratio of leaf concentration/soil concentration≪1) for all species studied. Eucalyptus michaeliana was the most successful at colonisation with lowest metalloid transfer to above ground plant parts. Addition of nutrients and nutrients+lime to soils, in general, increased plant metalloid accumulation. Relative As accumulation was greater than that of Sb. All the plant species studied were suitable for consideration in the mine soil phytostabilisation strategies but lime additions should be limited and longer term trials also recommended. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Combined effects between temporal heterogeneity of water supply, nutrient level, and population density on biomass of four broadly distributed herbaceous species.

    PubMed

    Hagiwara, Yousuke; Kachi, Naoki; Suzuki, Jun-Ichirou

    2012-01-01

    Temporal heterogeneity of water supply affects grassland community productivity and it can interact with nutrient level and intraspecific competition. To understand community responses, the responses of individual species to water heterogeneity must be evaluated while considering the interactions of this heterogeneity with nutrient levels and population density. We compared responses of four herbaceous species grown in monocultures to various combinations of water heterogeneity, nutrient level, and population density: two grasses (Cynodon dactylon and Lolium perenne), a forb (Artemisia princeps), and a legume (Trifolium repens). Treatment effects on shoot and root biomass were analyzed. In all four species, shoot biomass was larger under homogeneous than under heterogeneous water supply. Shoot responses of L. perenne tended to be greater at high nutrient levels. Although root biomass was also larger under homogeneous water supply, effects of water heterogeneity on root biomass were not significant in the grasses. Trifolium repens showed marked root responses, particularly at high population density. Although greater shoot and root growth under homogeneous water supply appears to be a general trend among herbaceous species, our results suggested differences among species could be found in the degree of response to water heterogeneity and its interactions with nutrient level and intraspecific competition.

  8. Root cortical senescence decreases root respiration, nutrient content and radial water and nutrient transport in barley.

    PubMed

    Schneider, Hannah M; Wojciechowski, Tobias; Postma, Johannes A; Brown, Kathleen M; Lücke, Andreas; Zeisler, Viktoria; Schreiber, Lukas; Lynch, Jonathan P

    2017-08-01

    The functional implications of root cortical senescence (RCS) are poorly understood. We tested the hypotheses that RCS in barley (1) reduces the respiration and nutrient content of root tissue; (2) decreases radial water and nutrient transport; and (3) is accompanied by increased suberization to protect the stele. Genetic variation for RCS exists between modern germplasm and landraces. Nitrogen and phosphorus deficiency increased the rate of RCS. Maximal RCS, defined as the disappearance of the entire root cortex, reduced root nitrogen content by 66%, phosphorus content by 63% and respiration by 87% compared with root segments with no RCS. Roots with maximal RCS had 90, 92 and 84% less radial water, nitrate and phosphorus transport, respectively, compared with segments with no RCS. The onset of RCS coincided with 30% greater aliphatic suberin in the endodermis. These results support the hypothesis that RCS reduces root carbon and nutrient costs and may therefore have adaptive significance for soil resource acquisition. By reducing root respiration and nutrient content, RCS could permit greater root growth, soil resource acquisition and resource allocation to other plant processes. RCS merits investigation as a trait for improving the performance of barley, wheat, triticale and rye under edaphic stress. © 2017 John Wiley & Sons Ltd.

  9. Relationships between nutrient enrichment, pleurocerid snail density and trematode infection rate in streams

    USGS Publications Warehouse

    Ciparis, Serena; Iwanowicz, Deborah D.; Voshell, J. Reese

    2013-01-01

    Summary 1. Nutrient enrichment is a widespread environmental problem in freshwater ecosystems. Eutrophic conditions caused by nutrient enrichment may result in a higher prevalence of infection by trematode parasites in host populations, due to greater resource availability for the molluscan first intermediate hosts. 2. This study examined relationships among land use, environmental variables indicating eutrophication, population density of the pleurocerid snail, Leptoxis carinata, and trematode infections. Fifteen study sites were located in streams within the Shenandoah River catchment (Virginia, U.S.A.), where widespread nutrient enrichment has occurred. 3. Snail population density had a weak positive relationship with stream water nutrient concentration. Snail population density also increased as human activities within stream catchments increased, but density did not continue to increase in catchments where anthropogenic disturbance was greatest. 4. Cercariae from five families of trematodes were identified in L. carinata, and infection rate was generally low (<10%). Neither total infection rate nor the infection rate of individual trematode types showed a positive relationship with snail population density, nutrients or land use. 5. There were statistically significant but weak relationships between the prevalence of infection by two trematode families and physical and biological variables. The prevalence of Notocotylidae was positively related to water depth, which may be related to habitat use by definitive hosts. Prevalence of Opecoelidae had a negative relationship with orthophosphate concentration and a polynomial relationship with chlorophyll a concentration. Transmission of Opecoelid trematodes between hosts may be inhibited by eutrophic conditions. 6. Leptoxis carinata appears to be a useful species for monitoring the biological effects of eutrophication and investigating trematode transmission dynamics in lotic systems.

  10. Effects of epiphytic algae on biomass and physiology of Myriophyllum spicatum L. with the increase of nitrogen and phosphorus availability in the water body.

    PubMed

    Song, Yu-Zhi; Wang, Jin-Qi; Gao, Yong-Xia

    2017-04-01

    The disappearance of submerged vascular macrophytes in shallow eutrophic lakes is a common phenomenon in the world. To explore the mechanism of the decline in submerged macrophyte abundance due to the growth of epiphytic algae along a nutrient gradient in eutrophic water, a 2 × 3 factorial experiment was performed over 4 weeks with the submerged macrophyte (Myriophyllum spicatum L.) by determining the plant's biomass and some physiological indexes, such as chlorophyll (Chl) content, malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity in the leaves of M. spicatum L. on days 7, 14, 21, and 28, which are based on three groups of nitrogen and phosphorus levels in the water body (N-P [mg L -1 ]: NP1 0.5-0.05, NP2 2.5-0.25, NP3 4.5-0.45) and two levels of epiphytic algae (the epiphytic algae group and the control group). Epiphytic algal biomass was also assayed. The results indicated that epiphytic algal biomass remarkably enhanced in the course of the experiment with elevated levels of nitrogen and phosphorus in the water. Under the same level of nutrient condition, plants' biomass accumulation and Chl content were higher in the control group than that in the epiphytic algae group, respectively, while MDA content and SOD activity in the former were lower than that in the latter. The influences of epiphytic algae on the biomass accumulation and Chl content and MDA content became greater and greater with elevated levels of nutrients. In general, in this experiment, water nutrients promoted the growth of both epiphytic algae and submerged plants, while the growth of epiphytic algae hindered submerged macrophytes' growth by reducing Chl content and promoting peroxidation of membrane lipids in plants.

  11. Nutrient limitations to aquatic production along an alluvial groundwater connectivity gradient in semi-arid northwest Australia

    NASA Astrophysics Data System (ADS)

    Iles, Jordan; Pettit, Neil; Grierson, Pauline

    2017-04-01

    Primary production of intermittent streams in hot arid regions, such as the geologically ancient Pilbara region of northwest Australia, is strongly limited by both water and nutrient availability. Pulses of allochthonous materials can be significant source of nutrients and carbon during short periods of connected flow. However, during interflow periods, which may last months to years, surface water retracts to a series of surface disconnected pools, where hydrological processes including hyporheic exchange and evapo-concentration of ions are of increasing importance in maintaining bioavailable nutrients for primary production. In the Pilbara, the persistence of individual pools during interflow periods is strongly linked to local topography and connectivity to alluvial groundwater. We might thus expect that autochthonous production is greater in pools that become disconnected from groundwater due to increased concentration of nutrients. We thus investigated the importance of nitrogen (N) and phosphorus (P) limitations on aquatic production along an alluvial groundwater connectivity gradient. First, we used in-situ bottle incubations and a 13C-enriched NaHCO3 isotopic tracer to measure rates of charophyte and phytoplankton production in response to nutrient amendments. Second, we paired a nutrient diffusing substrata limitation experiment with high performance liquid chromatography to i) identify which nutrient(s) limit periphyton production, and ii) how the periphyton community structure changes within pools along the alluvial gradient. Charophyte production was 2 mg C g-1 DW h-1 while phytoplankton production was orders of magnitude less (˜0.01 mg C g-1 DW h-1). Although charophytes showed no clear respiration response to short-term nutrient addition, productivity was positively correlated to both charophyte N and P content (R2 = 0.65, p < 0.001 and R2 = 0.41, p < 0.001 respectively). This relationship was stronger in pools which were disconnected from alluvial groundwater (N: R2 = 0.92, p < 0.001 and P: R2 = 0.77, p < 0.001). Short-term phytoplankton production was N limited in some pools (F > 7.6, p < 0.009) but this was not directly linked to alluvial connectivity. The chemotaxonomic response of periphyton algae to experimental increases of biologically available N and P showed clear shifts in production and community composition, with nitrogen additions aiding in production, whilst P additions alone did not increase production and in some instances inhibited growth of some taxa. Unique photosynthetic pigment peaks were identified in each sample and matched with published values. Clearly both N and P, along with alluvial groundwater connectivity, have significant and complex roles in regulating production in these pools. Altered hydrology due to changing climate or water abstraction may thus have significant but as yet poorly understood impacts on the ecological functioning of intermittent streams.

  12. Context-dependent effects of nutrient loading on the coral-algal mutualism.

    PubMed

    Shantz, Andrew A; Burkepile, Deron E

    2014-07-01

    Human-mediated increases in nutrient availability alter patterns of primary production, impact species diversity, and threaten ecosystem function. Nutrients can also alter community structure by disrupting the relationships between nutrient-sharing mutualists that form the foundation of communities. Given their oligotrophic nature and the dependence of reef-building corals on symbiotic relationships, coral reefs may be particularly vulnerable to excess nutrients. However, individual studies suggest complex, even contradictory, relationships among nutrient availability, coral physiology, and coral growth. Here, we used meta-analysis to establish general patterns of the impact of nitrogen (N) and phosphorus (P) on coral growth and photobiology. Overall, we found that over a wide range of concentrations, N reduced coral calcification 11%, on average, but enhanced metrics of coral photobiology, such as photosynthetic rate. In contrast, P enrichment increased average calcification rates by 9%, likely through direct impacts on the calcification process, but minimally impacted coral photobiology. There were few synergistic impacts of combined N and P on corals, as the nutrients impact corals via different pathways. Additionally, the response of corals to increasing nutrient availability was context dependent, varying with coral taxa and morphology, enrichment source, and nutrient identity. For example, naturally occurring enrichment from fish excretion increased coral growth, while human-mediated enrichment tended to decrease coral growth. Understanding the nuances of the relationship between nutrients and corals may allow for more targeted remediation strategies and suggest how other global change drivers such as overfishing and climate change will shape how nutrient availability impacts corals.

  13. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest

    PubMed Central

    Mo, Qifeng; Zou, Bi; Li, Yingwen; Chen, Yao; Zhang, Weixin; Mao, Rong; Ding, Yongzhen; Wang, Jun; Lu, Xiankai; Li, Xiaobo; Tang, Jianwu; Li, Zhian; Wang, Faming

    2015-01-01

    Plant N:P ratios are widely used as indices of nutrient limitation in terrestrial ecosystems, but the response of these metrics in different plant tissues to altered N and P availability and their interactions remains largely unclear. We evaluated changes in N and P concentrations, N:P ratios of new leaves (<1 yr), older leaves (>1 yr), stems and mixed fine roots of seven species after 3-years of an N and P addition experiment in a tropical forest. Nitrogen addition only increased fine root N concentrations. P addition increased P concentrations among all tissues. The N × P interaction reduced leaf and stem P concentrations, suggesting a negative effect of N addition on P concentrations under P addition. The reliability of using nutrient ratios as indices of soil nutrient availability varied with tissues: the stoichiometric metrics of stems and older leaves were more responsive indicators of changed soil nutrient availability than those of new leaves and fine roots. However, leaf N:P ratios can be a useful indicator of inter-specific variation in plant response to nutrients availability. This study suggests that older leaf is a better choice than other tissues in the assessment of soil nutrient status and predicting plant response to altered nutrients using nutrients ratios. PMID:26416169

  14. Assessment of nutrient enrichment by use of algal-, invertebrate-, and fish-community attributes in wadeable streams in ecoregions surrounding the Great Lakes

    USGS Publications Warehouse

    Frey, Jeffrey W.; Bell, Amanda H.; Hambrook Berkman, Julie A.; Lorenz, David L.

    2011-01-01

    The algal, invertebrate, and fish taxa and community attributes that best reflect the effects of nutrients along a gradient of low to high nutrient concentrations in wadeable, primarily midwestern streams were determined as part of the U.S. Geological Suvey's National Water-Quality Assessment (NAWQA) Program. Nutrient data collected from 64 sampling sites that reflected reference, agricultural, and urban influences between 1993 and 2006 were used to represent the nutrient gradient within Nutrient Ecoregion VI (Cornbelt and Northern Great Plains), VII (Mostly Glaciated Dairy Region), and VIII (Nutrient Poor Largely Glaciated Upper Midwest and Northeast). Nutrient Ecoregions VII and VIII comprise the Glacial North diatom ecoregion (GNE) and Nutrient Ecoregion VI represents the Central and Western Plains diatom ecoregion (CWPE). The diatom-ecoregion groupings were used chiefly for data analysis. The total nitrogen (TN) and total phosphorus (TP) data from 64 sites, where at least 6 nutrient samples were collected within a year at each site, were used to classify the sites into low-, medium-, and high-nutrient categories based upon the 10th and 75th percentiles of for sites within each Nutrient Ecoregion. In general, TN and TP concentrations were 3-5 times greater in Nutrient Ecoregion VI than in Nutrient Ecoregions VII and VIII. A subgroup of 54 of these 64 sites had algal-, invertebrate-, and fish-community data that were collected within the same year as the nutrients; these sites were used to assess the effects of nutrients on the biological communities. Multidimensional scaling was used to determine whether the entire region could be assessed together or whether there were regional differences between the algal, invertebrate, and fish communities. The biological communities were significantly different between the northern sites, primarily in the GNE and the southern sites, primarily in the CWPE. In the higher nutrient concentration gradient in the streams of the CWPE, algae exhibited greater differences than invertebrates and fish between all of the nutrient categories for both TN and TP; however, in the lower nutrient gradient in the streams of the GNE, invertebrates exhibited greater differences between the nutrient categories. Certain species of algae, invertebrates, and fish were more prevalent in low- and high-nutrient categories within each of the diatom ecoregions. Breakpoint analysis was used to identify the concentration at which the relations between the response variable (biological attribute) and the stressor variable (TN and TP) change. There were significant breakpoints for nutrients (TN and TP) and multiple attributes for algae, invertebrates, and fish communities within the CWPE and GNE diatom ecoregions. In general, more significant breakpoints, with lower concentrations, were found in the GNE than the more nutrient-rich CWPE. The breakpoints from all biological communities were generally about 3-5 times higher in the south (CWPE) than the north (GNE). In the north, breakpoints with similar lower concentrations were found for TN from all biological communities (around 0.60 milligram per liter) and for TP (between 0.02 and 0.03 milligram per liter) for the algae and invertebrate communities. The findings from our study suggest that the range in breakpoints for TN and TP from the GNE can be used as oligotrophic and eutrophic boundaries derived from biological response based on this ecoregion having (1) a gradient with sufficiently low to high nutrient concentrations, (2) distinctive differences in the biological communities in the low- to high-nutrient streams, (3) similarity of breakpoints within algal, invertebrate, and fish communities, (4) significant attributes with either direct relations to nutrients or traditional changes in community structure (that is, decreases in sensitive species or increases in tolerant species), and (5) similar breakpoints in other studies in this and other regions. In nutrie

  15. Effects of harvesting on nitrogen and phosphorus availability in riparian management zone soils in Minnesota, USA

    Treesearch

    Douglas N. Kastendick; Eric K. Zenner; Brian J. Palik; Randall K. Kolka; Charles R. Blinn

    2012-01-01

    Riparian management zones (RMZs) protect streams from excess nutrients, yet few studies have looked at soil nutrients in forested RMZs or the impacts of partial harvesting on nutrient availability. We investigated the impacts of upland clearcutting in conjunction with uncut and partially harvested RMZs (40% basal area reduction) on soil nutrients in forests in...

  16. Carbon fluxes in the Arabian Sea: Export versus recycling

    NASA Astrophysics Data System (ADS)

    Rixen, Tim; Gaye, Birgit; Ramaswamy, Venkitasubramani

    2016-04-01

    The organic carbon pump strongly influences the exchange of carbon between the ocean and the atmosphere. It is known that it responds to global change but the magnitude and the direction of change are still unpredictable. Sediment trap experiments carried out at various sites in the Arabian Sea between 1986 and 1998 have shown differences in the functioning of the organic carbon pump (OCP). An OCP driven by eukaryotic phytoplankton operated in the upwelling region off Oman and during the spring bloom in the northern Arabian Sea. Cyanobacteria capable of fixing nitrogen seem to dominate the phytoplankton community during all other seasons. The export driven by cyanobacteria was much lower than the export driven by eukaryotic phytoplankton. Productivity and nutrient availability seems to be a main factor controlling fluxes during blooms of eukaryotic phytoplankton. The ballast effect caused by inputs of dust into the ocean and its incorporation into sinking particles seems to be the main factor controlling the export during times when cyanobacteria dominate the phytoplankton community. C/N ratios of organic matter exported from blooms dominated by nitrogen fixing cyanobacteria are enhanced and, furthermore, indicate a more efficient recycling of nutrients at shallower water depth. This implies that the bacterial-driven OCP operates more in a recycling mode that keeps nutrients closer to the euphotic zone whereas the OCP driven by eukaryotic phytoplankton reduces the recycling of nutrients by exporting them into greater water-depth.

  17. Tree species and soil nutrient profiles in old-growth forests of the Oregon Coast Range

    USGS Publications Warehouse

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Old-growth forests of the Pacific Northwest provide a unique opportunity to examine tree species – soil relationships in ecosystems that have developed without significant human disturbance. We characterized foliage, forest floor, and mineral soil nutrients associated with four canopy tree species (Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), western hemlock (Tsuga heterophylla (Raf.) Sarg.), western redcedar (Thuja plicata Donn ex D. Don), and bigleaf maple (Acer macrophyllum Pursh)) in eight old-growth forests of the Oregon Coast Range. The greatest forest floor accumulations of C, N, P, Ca, Mg, and K occurred under Douglas-fir, primarily due to greater forest floor mass. In mineral soil, western hemlock exhibited significantly lower Ca concentration and sum of cations (Ca + Mg + K) than bigleaf maple, with intermediate values for Douglas-fir and western redcedar. Bigleaf maple explained most species-based differences in foliar nutrients, displaying high concentrations of N, P, Ca, Mg, and K. Foliar P and N:P variations largely reflected soil P variation across sites. The four tree species that we examined exhibited a number of individualistic effects on soil nutrient levels that contribute to biogeochemical heterogeneity in these ecosystems. Where fire suppression and long-term succession favor dominance by highly shade-tolerant western hemlock, our results suggest a potential for declines in both soil Ca availability and soil biogeochemical heterogeneity in old-growth forests.

  18. Small-scale drivers: the importance of nutrient availability and snowmelt timing on performance of the alpine shrub Salix herbacea.

    PubMed

    Little, Chelsea J; Wheeler, Julia A; Sedlacek, Janosch; Cortés, Andrés J; Rixen, Christian

    2016-04-01

    Alpine plant communities are predicted to face range shifts and possibly extinctions with climate change. Fine-scale environmental variation such as nutrient availability or snowmelt timing may contribute to the ability of plant species to persist locally; however, variation in nutrient availability in alpine landscapes is largely unmeasured. On three mountains around Davos, Switzerland, we deployed Plant Root Simulator probes around 58 Salix herbacea plants along an elevational and microhabitat gradient to measure nutrient availability during the first 5 weeks of the summer growing season, and used in situ temperature loggers and observational data to determine date of spring snowmelt. We also visited the plants weekly to assess performance, as measured by stem number, fruiting, and herbivory damage. We found a wide snowmelt gradient which determined growing season length, as well as variations of an order of magnitude or more in the accumulation of 12 nutrients between different microhabitats. Higher nutrient availability had negative effects on most shrub performance metrics, for instance decreasing stem number and the proportion of stems producing fruits. High nutrient availability was associated with increased herbivory damage in early-melting microhabitats, but among late-emerging plants this pattern was reversed. We demonstrate that nutrient availability is highly variable in alpine settings, and that it strongly influences performance in an alpine dwarf shrub, sometimes modifying the response of shrubs to snowmelt timing. As the climate warms and human-induced nitrogen deposition continues in the Alps, these factors may contribute to patterns of local plants persistence.

  19. Nutrient addition differentially affects ecological processes of Avicennia germinans in nitrogen versus phosphorus limited mangrove ecosystems

    USGS Publications Warehouse

    Feller, Ilka C.; Lovelock, C.E.; McKee, K.L.

    2007-01-01

    Nutrient over-enrichment is a major threat to marine environments, but system-specific attributes of coastal ecosystems may result in differences in their sensitivity and susceptibility to eutrophication. We used fertilization experiments in nitrogen (N)- and phosphorus (P)-limited mangrove forests to test the hypothesis that alleviating different kinds of nutrient limitation may have different effects on ecosystem structure and function in natural systems. We compared a broad range of ecological processes to determine if these systems have different thresholds where shifts might occur in nutrient limitation. Growth responses indicated N limitation in Avicennia germinans (black mangrove) forests in the Indian River Lagoon (IRL), Florida, and P limitation at Twin Cays, Belize. When nutrient deficiency was relieved, A. germinans grew out of its stunted form by increasing wood relative to leaf biomass and shoot length relative to lateral growth. At the P-limited site, P enrichment (+P) increased specific leaf area, N resorption, and P uptake, but had no effect on P resorption. At the N-limited site, +N increased both N and P resorption, but did not alter biomass allocation. Herbivory was greater at the P-limited site and was unaffected by +P, whereas +N led to increased herbivory at the N-limited site. The responses to nutrient enrichment depended on the ecological process and limiting nutrient and suggested that N- versus P-limited mangroves do have different thresholds. +P had a greater effect on more ecological processes at Twin Cays than did +N at the IRL, which indicated that the P-limited site was more sensitive to nutrient loading. Because of this sensitivity, eutrophication is more likely to cause a shift in nutrient limitation at P-limited Twin Cays than N-limited IRL. ?? 2007 Springer Science+Business Media, LLC.

  20. Available nutrients in biochar

    USDA-ARS?s Scientific Manuscript database

    Biochar technology may contribute to the recovery and recycling of plant nutrients and thus add a fertilizer value to the biochar. Total nutrient content in biochars varies greatly and is mainly dependent on feedstock elemental composition and to a lesser extent on pyrolysis conditions. Availability...

  1. Morphology-dependent water budgets and nutrient fluxes in arctic thaw ponds

    USGS Publications Warehouse

    Koch, Joshua C.; Gurney, Kirsty; Wipfli, Mark S.

    2014-01-01

    Thaw ponds on the Arctic Coastal Plain of Alaska are productive ecosystems, providing habitat and food resources for many fish and bird species. Permafrost in this region creates unique pond morphologies: deep troughs, shallow low-centred polygons (LCPs) and larger coalescent ponds. By monitoring seasonal trends in pond volume and chemistry, we evaluated whether pond morphology and size affect water temperature and desiccation, and nitrogen (N) and phosphorus (P) fluxes. Evaporation was the largest early-summer water flux in all pond types. LCPs dried quickly and displayed high early-summer nutrient concentrations and losses. Troughs consistently received solute-rich subsurface inflows, which accounted for 12 to 42 per cent of their volume and may explain higher P in the troughs. N to P ratios increased and ammonium concentrations decreased with pond volume, suggesting that P and inorganic N availability may limit ecosystem productivity in older, larger ponds. Arctic summer temperatures will likely increase in the future, which may accelerate mid-summer desiccation. Given their morphology, troughs may remain wet, become warmer and derive greater nutrient loads from their thawing banks. Overall, seasonal- to decadal-scale warming may increase ecosystem productivity in troughs relative to other Arctic Coastal Plain ponds. 

  2. Spring-staging ecology of midcontinent greater white-fronted geese

    USGS Publications Warehouse

    Krapu, G.L.; Reinecke, K.J.; Jorde, Dennis G.; Simpson, S.G.

    1995-01-01

    A major part of the midcontinent greater white-fronted goose (Anser albifrons) population stages for several weeks in spring in the Rainwater Basin Area (RBA) of south-central Nebraska where substantial mortality from disease occurs periodically. Effective management of this population requires better data on use of habitat, vulnerability to disease, and the role of staging areas in migration and reproduction. We studied use of habitat, foods, nutrient dynamics, and effect of changes in agriculture on food availability and habitat needs in spring 1979-80. During daylight, geese were observed primarily in harvested cornfields (76%) and growing winter wheat (23%). Corn grain and winter wheat shoots composed 90 and 9%, respectively, of foods consumed by collected geese (n = 42). Feeding activity did not vary among post-harvest cornfield treatments except that little feeding occurred (P 0.05) of temporal variation in calcium content. Adult geese storing 14.2 g of fat per day deposited approximately 582 g of fat between 22 February and 8 April. Energy requirements for thermal regulation were small compared with requirements for fat synthesis and probably had little effect on nutrient deposition. The 34,000 white-fronted geese present on the Harvard Marsh and Prairie Dog Marsh study areas in March 1980 probably used <20% of the corn available within a 5-km radius. We believe that midcontinent white-fronted geese arrive on Arctic breeding grounds with larger and less variable fat reserves than prior to modern agricultural development. We attribute this response to increased food availability on staging areas where the net effect of agricultural changes has been an increase in corn availability. Waterfowl managers can increase dispersion of geese and provide favorable foraging conditions by maintaining well-distributed wetland roosting habitat and by working with private landowners to ensure access to grain in the vicinity of wetlands.

  3. Effects of Grazing Regimes on Plant Traits and Soil Nutrients in an Alpine Steppe, Northern Tibetan Plateau

    PubMed Central

    Sun, Jian; Wang, Xiaodan; Cheng, Genwei; Wu, Jianbo; Hong, Jiangtao; Niu, Shuli

    2014-01-01

    Understanding the impact of grazing intensity on grassland production and soil fertility is of fundamental importance for grassland conservation and management. We thus compared three types of alpine steppe management by studying vegetation traits and soil properties in response to three levels of grazing pressure: permanent grazing (M1), seasonal grazing (M2), and grazing exclusion (M3) in the alpine steppe in Xainza County, Tibetan Plateau. The results showed that community biomass allocation did not support the isometric hypothesis under different grassland management types. Plants in M1 had less aboveground biomass but more belowground biomass in the top soil layer than those in M2 and M3, which was largely due to that root/shoot ratios of dominant plants in M1 were far greater than those in M2 and M3. The interramet distance and the tiller size of the dominant clonal plants were greater in M3 than in M1 and M2, while the resprouting from rhizome buds did not differ significantly among the three greezing regimes. Both soil bulk density and soil available nitrogen in M3 were greater than in M1 at the 15–30 cm soil depth (P = 0.05). Soil organic carbon and soil total nitrogen were greater in M3 than in M1 and M2 (P = 0.05). We conclude that the isometric hypothesis is not supported in this study and fencing is a helpful grassland management in terms of plant growth and soil nutrient retention in alpine steppe. The extreme cold, scarce precipitation and short growing period may be the causation of the unique plant and soil responses to different management regimes. PMID:25268517

  4. Exponential Nutrient Loading as a Means to Optimize Bareroot Nursery Fertility of Oak Species

    Treesearch

    Zonda K. D. Birge; Douglass F. Jacobs; Francis K. Salifu

    2006-01-01

    Conventional fertilization in nursery culture of hardwoods may involve supply of equal fertilizer doses at regularly spaced intervals during the growing season, which may create a surplus of available nutrients in the beginning and a deficiency in nutrient availability by the end of the growing season. A method of fertilization termed “exponential nutrient loading” has...

  5. A greater foraging scale, not a higher foraging precision, may facilitate invasion by exotic plants in nutrient-heterogeneous conditions.

    PubMed

    Chen, Bao-Ming; Su, Jin-Quan; Liao, Hui-Xuan; Peng, Shao-Lin

    2018-03-05

    Soil nutrient heterogeneity has been proposed to influence competitive outcomes among different plant species. Thus, it is crucial to understand the effects of environmental heterogeneity on competition between exotic invasive and native species. However, the effects of soil nutrient heterogeneity on the competition between invasive and native plants have rarely been linked to root foraging behaviour. In this study, a competition experiment was performed with two invasive-native species pairs (BP-VC, Bidens pilosa vs. Vernonia cinerea; MM-PS, Mikania micrantha vs. Paederia scandens) grown under homogeneous and heterogeneous conditions in a common greenhouse environment. Root activity was assessed by determining the amount of strontium (Sr) taken up by the shoot of each species. The invasive species exhibited a greater foraging scale, whereas the native species exhibited a higher foraging precision. A trade-off between foraging scale and precision was observed within each pair of invasive-native species. Compared with soil homogeneity, soil heterogeneity significantly increased the biomass of the two invasive species, B. pilosa and M. micrantha, under competitive conditions. Within each pair, the invasive species exhibited greater relative competitive ability with respect to shoot mass, and considerably more Sr taken up by the invasive species compared with the native species. The Sr acquisition results indicate that nutrient-poor conditions may facilitate the competitive ability of the native species V. cinerea, whereas M. micrantha may possess a stronger competitive ability regardless of soil nutrient conditions. Soil nutrient heterogeneity has the potential to promote the invasion of these two exotic species due to their larger foraging scale, stronger competitive ability and greater root activity relative to their counterpart native species. The present work highlights the importance of soil heterogeneity in plant invasion, particularly with regards to root foraging traits and competition between invasive and native plants. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. A Coupled Ocean General Circulation, Biogeochemical, and Radiative Model of the Global Oceans: Seasonal Distributions of Ocean Chlorophyll and Nutrients

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)

    2000-01-01

    A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.

  7. Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species

    PubMed Central

    Bowsher, Alan W.; Ali, Rifhat; Harding, Scott A.; Tsai, Chung-Jui; Donovan, Lisa A.

    2016-01-01

    Plant roots exude numerous metabolites into the soil that influence nutrient availability. Although root exudate composition is hypothesized to be under selection in low fertility soils, few studies have tested this hypothesis in a phylogenetic framework. In this study, we examined root exudates of three pairs of Helianthus species chosen as phylogenetically-independent contrasts with respect to native soil nutrient availability. Under controlled environmental conditions, seedlings were grown to the three-leaf-pair stage, then transferred to either high or low nutrient treatments. After five days of nutrient treatments, we used gas chromatography-mass spectrometry for analysis of root exudates, and detected 37 metabolites across species. When compared in the high nutrient treatment, species native to low nutrient soils exhibited overall higher exudation than their sister species native to high nutrient soils in all three species pairs, providing support for repeated evolutionary shifts in response to native soil fertility. Species native to low nutrient soils and those native to high nutrient soils responded similarly to low nutrient treatments with increased exudation of organic acids (fumaric, citric, malic acids) and glucose, potentially as a mechanism to enhance nutrition acquisition. However, species native to low nutrient soils also responded to low nutrient treatments with a larger decrease in exudation of amino acids than species native to high nutrient soils in all three species pairs. This indicates that species native to low nutrient soils have evolved a unique sensitivity to changes in nutrient availability for some, but not all, root exudates. Overall, these repeated evolutionary divergences between species native to low nutrient soils and those native to high nutrient soils provide evidence for the adaptive value of root exudation, and its plasticity, in contrasting soil environments. PMID:26824236

  8. Evolutionary Divergences in Root Exudate Composition among Ecologically-Contrasting Helianthus Species.

    PubMed

    Bowsher, Alan W; Ali, Rifhat; Harding, Scott A; Tsai, Chung-Jui; Donovan, Lisa A

    2016-01-01

    Plant roots exude numerous metabolites into the soil that influence nutrient availability. Although root exudate composition is hypothesized to be under selection in low fertility soils, few studies have tested this hypothesis in a phylogenetic framework. In this study, we examined root exudates of three pairs of Helianthus species chosen as phylogenetically-independent contrasts with respect to native soil nutrient availability. Under controlled environmental conditions, seedlings were grown to the three-leaf-pair stage, then transferred to either high or low nutrient treatments. After five days of nutrient treatments, we used gas chromatography-mass spectrometry for analysis of root exudates, and detected 37 metabolites across species. When compared in the high nutrient treatment, species native to low nutrient soils exhibited overall higher exudation than their sister species native to high nutrient soils in all three species pairs, providing support for repeated evolutionary shifts in response to native soil fertility. Species native to low nutrient soils and those native to high nutrient soils responded similarly to low nutrient treatments with increased exudation of organic acids (fumaric, citric, malic acids) and glucose, potentially as a mechanism to enhance nutrition acquisition. However, species native to low nutrient soils also responded to low nutrient treatments with a larger decrease in exudation of amino acids than species native to high nutrient soils in all three species pairs. This indicates that species native to low nutrient soils have evolved a unique sensitivity to changes in nutrient availability for some, but not all, root exudates. Overall, these repeated evolutionary divergences between species native to low nutrient soils and those native to high nutrient soils provide evidence for the adaptive value of root exudation, and its plasticity, in contrasting soil environments.

  9. Drug-nutrient interactions and their implications for safety evaluations.

    PubMed

    Conner, M W; Newberne, P M

    1984-06-01

    In order to assess the relevance of the drug-nutrient interactions described in this chapter to routine toxicologic studies, the range of nutrient concentrations within which these interactions may occur must be compared to the range of nutrient concentrations found in routinely used rodent diets. While obviously deficient levels of some nutrients were supplied to demonstrate some of the interactions, others occur when the nutrients are present in adequate or excess levels, such as might be found in commercially available diets. These diets are known to vary from batch to batch in nutrient content. A lifetime toxicity/carcinogenicity bioassay using rodents may last longer than 2 years, during which time several batches of diet will be used. The variation in diet composition, coupled with inadequate diet description, makes nutrient-toxin interactions not only possible, but difficult to recognize. These considerations raise the practical and philosophical question as to what type of diet is most appropriate for rodents used for safety evaluation of drugs and chemicals. Is it appropriate to use diets that vary unpredictably in nutrient content, that infer a degree of protection against chemical carcinogenesis and which supply some nutrients such as protein in great excess of dietary needs? Is the increase in sensitivity to chemical carcinogens of animals fed purified diets desirable or does this increased sensitivity of the bioassay exceed that required to assess the risk of human exposure? In other words, is the use of purified diets likely to increase the number of false positive results? Proper interpretation and extrapolation of safety evaluation studies requires adequate description of the test system. Given the profound influence of diet on the response to some toxins, the composition of the diet should, ideally, be defined with the same rigor as are the test compound and the strain, age, sex, and housing conditions of the animals. It is likely, however, that natural ingredients diets will continue to be the diets of choice in safety evaluation studies. This is largely due to economic reasons. It is possible, however, to use these diets with greater confidence if open-formula diets are used and the concentration of each nutrient is reported. Consideration should also be given to preparing diets for use in adult and aging rodents, diets in which protein content is reduced.(ABSTRACT TRUNCATED AT 400 WORDS)

  10. ULK1, mammalian target of rapamycin, and mitochondria: linking nutrient availability and autophagy.

    PubMed

    Kundu, Mondira

    2011-05-15

    A fundamental function of autophagy conserved from yeast to mammals is mobilization of macromolecules during times of limited nutrient availability, permitting organisms to survive under starvation conditions. In yeast, autophagy is initiated following nitrogen or carbon deprivation, and autophagy mutants die rapidly under these conditions. Similarly, in mammals, autophagy is upregulated in most organs following initiation of starvation, and is critical for survival in the perinatal period following abrupt termination of the placental nutrient supply. The nutrient-sensing kinase, mammalian target of rapamycin, coordinates cellular proliferation and growth with nutrient availability, at least in part by regulating protein synthesis and autophagy-mediated degradation. This review focusses on the regulation of autophagy by Tor, a mammalian target of rapamycin, and Ulk1, a mammalian homolog of Atg1, in response to changes in nutrient availability. Given the importance of mitochondria in maintaining bioenergetic homestasis, and potentially as a source of membrane for autophagosomes during starvation, possible roles for mitochondria in this process are also discussed.

  11. Rainfall,bulk deposition of nutrients and their seasonal variation in two tropical lowland and montane forests in Borneo

    NASA Astrophysics Data System (ADS)

    Gomyo, M.; Kuraji, K.; Kitayama, K.; Suzuki, M.

    2008-12-01

    The Borneo Island, the third largest in the world, is experiencing rapid and extensive changes driven by population growth and economic expansion. This change has induced the tropical forest conversion to other land uses for subsistence cultivations, large-scale mono crop plantations and the irreversible loss of forest biodiversity. In this paper, we examine rainwater chemistry observed at two different national parks in Malaysian Borneo for 12 months. We present annual bulk nutrient input flux and its seasonality, and the results are compared with data obtained at a number of other locations in the tropics. The possible source of the atmospheric nutrients and factors determining the differences of the two sites in Borneo is discussed. Nutrient fluxes in rainfall were measured two times every week in natural tropical montane rain forest in Mount Kinabalu National Park (MK) and natural tropical lowland rain forest in Lambir Hills National Park (LH) in Malaysian Borneo. Annual rainfall in MK and LH were 3,232 and 2,978 mm yr-1 respectively. Three-month rainfall during the northeast monsoon season in LH was 1.6 times greater than that in MK, whereas the 3- month rainfall during the southwest monsoon season in MK was 2.8 times greater than that in LH. The difference of volume-weighed mean ion concentration of nutrients of rainwater between MK and LH is not significant except Mg and Ca. The correlation coefficient between Na and Cl concentration is greater in LH than in MK suggesting that the rainwater chemistry was affected by mainly marine origin in LH both marine and terrestrial origin in MK. From the comparison of annual flux of nutrients in MK and LH with the other sites in the other tropical sites, it was noted that the Na and Cl flux in LH, which is only 13.7 km from the coast, is relatively low compared with the other sites located less than 20 km from the coast. Classification of nutrients was done by cluster analysis of 3-month nutrient flux in MK and LH and the results support the hypothesis of the different origin of nutrients between MK an LH. The source of high Mg and SO4-S flux in LH might be the outcrops of bedrock along the roads which contains high Mg and SO4-S.

  12. Efflux Of Nitrate From Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1992-01-01

    Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.

  13. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis.

    PubMed

    Velthuis, Mandy; van Deelen, Emma; van Donk, Ellen; Zhang, Peiyu; Bakker, Elisabeth S

    2017-01-01

    Human activity is currently changing our environment rapidly, with predicted temperature increases of 1-5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus). In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition consistently leads to decreased carbon:nutrient ratios, elevated temperature does not change submerged aquatic plant carbon:nutrient stoichiometry in a consistent manner. This effect is rather dependent on nutrient availability and may be species-specific. As changes in the carbon:nutrient stoichiometry of submerged aquatic plants can impact the transfer of energy to higher trophic levels, these results suggest that eutrophication may enhance plant consumption and decomposition, which could in turn have consequences for carbon sequestration.

  14. Assessment of Eutrophication in the Lower Yakima River Basin, Washington, 2004-07

    USGS Publications Warehouse

    Wise, Daniel R.; Zuroske, Marie L.; Carpenter, Kurt D.; Kiesling, Richard L.

    2009-01-01

    In response to concerns that excessive plant growth in the lower Yakima River in south-central Washington was degrading water quality and affecting recreational use, the U.S. Geological Survey and the South Yakima Conservation District conducted an assessment of eutrophication in the lower 116 miles of the river during the 2004-07 irrigation seasons (March - October). The lower Yakima River was divided into three distinct reaches based on geomorphology, habitat, aquatic plant and water-quality conditions. The Zillah reach extended from the upstream edge of the study area at river mile (RM) 116 to RM 72, and had abundant periphyton growth and sparse macrophyte growth, the lowest nutrient concentrations, and moderately severe summer dissolved oxygen and pH conditions in 2005. The Mabton reach extended from RM 72 to RM 47, and had sparse periphyton and macrophyte growth, the highest nutrient conditions, but the least severe summer dissolved oxygen and pH conditions in 2005. The Kiona reach extended from RM 47 to RM 4, and had abundant macrophyte and epiphytic algae growth, relatively high nutrient concentrations, and the most severe summer dissolved oxygen and pH conditions in 2005. Nutrient concentrations in the lower Yakima River were high enough at certain times and locations during the irrigation seasons during 2004-07 to support the abundant growth of periphytic algae and macrophytes. The metabolism associated with this aquatic plant growth caused large daily fluctuations in dissolved oxygen concentrations and pH levels that exceeded the Washington State water-quality standards for these parameters between July and September during all 4 years, but also during other months when streamflow was unusually low. The daily minimum dissolved oxygen concentration was strongly and negatively related to the preceding day's maximum water temperature - information that could prove useful if a dissolved oxygen predictive model is developed for the lower Yakima River. Periphytic algal growth generally was not nutrient-limited and frequently reached nuisance levels in the Zillah reach, where some surface-water nutrient concentrations were below the reference concentrations suggested by the U.S. Environmental Protection Agency. Although lowering nutrient concentrations in this reach might limit periphytic algal growth enough to improve dissolved oxygen and pH conditions, ground water inflow at some locations might still provide an adequate supply of nutrients for periphytic algal growth. Macrophyte growth in the Kiona reach was dominated by water stargrass (Heteranthera dubia), was far greater compared to the other two reaches, varied greatly between years, and was negatively related to greater spring runoff due to lower light availability. Lowering nutrient concentrations in the Kiona reach might not impact the level of macrophyte growth because macrophytes with extensive root systems such as water stargrass can get nutrients from river sediment. In addition, the results from this study did not indicate any nutrient uptake by the macrophytes from the water column (nutrient uptake from the sediment was not examined). Creating the prolonged turbid and deep conditions during spring necessary to suppress macrophyte growth in this reach would not be possible in years with low streamflow. In addition, because of the relatively stable substrate present in much of this reach, the macrophyte root systems would likely not be disturbed under all but the most extremely high streamflows that occur in the lower Yakima River.

  15. Occurrence and distribution of algal biomass and Its relation to nutrients and selected basin characteristics in Indiana streams, 2001-2005

    USGS Publications Warehouse

    Lowe, B. Scott; Leer, Donald R.; Frey, Jeffrey W.; Caskey, Brian J.

    2008-01-01

    The seasonal values for nutrients (nitrate, TKN, TN, and TP) and algal biomass (periphyton CHLa, AFDM, seston CHLa, and POC) were compared to published U. S. Environmental Protection Agency (USEPA) values for their respective ecoregions. Algal biomass values either were greater than the 25th percentile published USEPA values or extended the range of data in Aggregate Nutrient Ecoregions VI, VII, IX and USEPA Level III Ecoregions 54, 55, 56, 71, and 72. If the values for the 25th percentile proposed by the USEPA were adopted as nutrient water-quality criteria, then about 71 percent of the nutrient samples and 57 percent of the CHLa samples within the eight study basins would be considered nutrient enriched.

  16. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli--Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinowitz, Joshua D; Wingreen, Ned s; Rabitz, Herschel A

    2012-10-22

    A key challenge for living systems is balancing utilization of multiple elemental nutrients, such as carbon, nitrogen, and oxygen, whose availability is subject to environmental fluctuations. As growth can be limited by the scarcity of any one nutrient, the rate at which each nutrient is assimilated must be sensitive not only to its own availability, but also to that of other nutrients. Remarkably, across diverse nutrient conditions, E. coli grows nearly optimally, balancing effectively the conversion of carbon into energy versus biomass. To investigate the link between the metabolism of different nutrients, we quantified metabolic responses to nutrient perturbations usingmore » LC-MS based metabolomics and built differential equation models that bridge multiple nutrient systems. We discovered that the carbonaceous substrate of nitrogen assimilation, -ketoglutarate, directly inhibits glucose uptake and that the upstream glycolytic metabolite, fructose-1,6-bisphosphate, ultrasensitively regulates anaplerosis to allow rapid adaptation to changing carbon availability. We also showed that NADH controls the metabolic response to changing oxygen levels. Our findings support a general mechanism for nutrient integration: limitation for a nutrient other than carbon leads to build-up of the most closely related product of carbon metabolism, which in turn feedback inhibits further carbon uptake.« less

  17. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area

    NASA Astrophysics Data System (ADS)

    Yu, Liang; Rozemeijer, Joachim; van Breukelen, Boris M.; Ouboter, Maarten; van der Vlugt, Corné; Broers, Hans Peter

    2018-01-01

    The Amsterdam area, a highly manipulated delta area formed by polders and reclaimed lakes, struggles with high nutrient levels in its surface water system. The polders receive spatially and temporally variable amounts of water and nutrients via surface runoff, groundwater seepage, sewer leakage, and via water inlets from upstream polders. Diffuse anthropogenic sources, such as manure and fertiliser use and atmospheric deposition, add to the water quality problems in the polders. The major nutrient sources and pathways have not yet been clarified due to the complex hydrological system in lowland catchments with both urban and agricultural areas. In this study, the spatial variability of the groundwater seepage impact was identified by exploiting the dense groundwater and surface water monitoring networks in Amsterdam and its surrounding polders. A total of 25 variables (concentrations of total nitrogen (TN), total phosphorus (TP), NH4, NO3, HCO3, SO4, Ca, and Cl in surface water and groundwater, N and P agricultural inputs, seepage rate, elevation, land-use, and soil type) for 144 polders were analysed statistically and interpreted in relation to sources, transport mechanisms, and pathways. The results imply that groundwater is a large source of nutrients in the greater Amsterdam mixed urban-agricultural catchments. The groundwater nutrient concentrations exceeded the surface water environmental quality standards (EQSs) in 93 % of the polders for TP and in 91 % for TN. Groundwater outflow into the polders thus adds to nutrient levels in the surface water. High correlations (R2 up to 0.88) between solutes in groundwater and surface water, together with the close similarities in their spatial patterns, confirmed the large impact of groundwater on surface water chemistry, especially in the polders that have high seepage rates. Our analysis indicates that the elevated nutrient and bicarbonate concentrations in the groundwater seepage originate from the decomposition of organic matter in subsurface sediments coupled to sulfate reduction and possibly methanogenesis. The large loads of nutrient-rich groundwater seepage into the deepest polders indirectly affect surface water quality in the surrounding area, because excess water from the deep polders is pumped out and used to supply water to the surrounding infiltrating polders in dry periods. The study shows the importance of the connection between groundwater and surface water nutrient chemistry in the greater Amsterdam area. We expect that taking account of groundwater-surface water interaction is also important in other subsiding and urbanising deltas around the world, where water is managed intensively in order to enable agricultural productivity and achieve water-sustainable cities.

  18. Effects of poultry litter injection on ammonia volatilization, nitrogen availability, and nutrient losses in runoff

    USDA-ARS?s Scientific Manuscript database

    Poultry litter is a common organic amendment in agricultural production systems, but nutrient losses can reduce the effectiveness as a fertilizer. Three studies were conducted to determine differences in nutrient availability and loss when comparing injection and surface application. These investi...

  19. Water and nutrient budgets for Vancouver Lake, Vancouver, Washington, October 2010-October 2012

    USGS Publications Warehouse

    Sheibley, Rich W.; Foreman, James R.; Marshall, Cameron A.; Welch, Wendy B.

    2014-01-01

    Vancouver Lake, a large shallow lake in Clark County, near Vancouver, Washington, has been undergoing water-quality problems for decades. Recently, the biggest concern for the lake are the almost annual harmful cyanobacteria blooms that cause the lake to close for recreation for several weeks each summer. Despite decades of interest in improving the water quality of the lake, fundamental information on the timing and amount of water and nutrients entering and exiting the lake is lacking. In 2010, the U.S. Geological Survey conducted a 2-year field study to quantify water flows and nutrient loads in order to develop water and nutrient budgets for the lake. This report presents monthly and annual water and nutrient budgets from October 2010–October 2012 to identify major sources and sinks of nutrients. Lake River, a tidally influenced tributary to the lake, flows into and out of the lake almost daily and composed the greatest proportion of both the water and nutrient budgets for the lake, often at orders of magnitude greater than any other source. From the water budget, we identified precipitation, evaporation and groundwater inflow as minor components of the lake hydrologic cycle, each contributing 1 percent or less to the total water budget. Nutrient budgets were compiled monthly and annually for total nitrogen, total phosphorus, and orthophosphate; and, nitrogen loads were generally an order of magnitude greater than phosphorus loads across all sources. For total nitrogen, flow from Lake River at Felida, Washington, made up 88 percent of all inputs into the lake. For total phosphorus and orthophosphate, Lake River at Felida flowing into the lake was 91 and 76 percent of total inputs, respectively. Nutrient loads from precipitation and groundwater inflow were 1 percent or less of the total budgets. Nutrient inputs from Burnt Bridge Creek and Flushing Channel composed 12 percent of the total nitrogen budget, 8 percent of the total phosphorus budget, and 21 percent of the orthophosphate budget. We identified several data gaps and areas for future research, which include the need for better understanding nutrient inputs to the lake from sediment resuspension and better quantification of indirect nutrient inputs to the lake from Salmon Creek.

  20. Aboveground and belowground legacies of native Sami land use on boreal forest in northern Sweden 100 years after abandonment.

    PubMed

    Freschet, Grégoire T; Ostlund, Lars; Kichenin, Emilie; Wardle, David A

    2014-04-01

    Human activities that involve land-use change often cause major transformations to community and ecosystem properties both aboveground and belowground, and when land use is abandoned, these modifications can persist for extended periods. However, the mechanisms responsible for rapid recovery vs. long-term maintenance of ecosystem changes following abandonment remain poorly understood. Here, we examined the long-term ecological effects of two remote former settlements, regularly visited for -300 years by reindeer-herding Sami and abandoned -100 years ago, within an old-growth boreal forest that is considered one of the most pristine regions in northern Scandinavia. These human legacies were assessed through measurements of abiotic and biotic soil properties and vegetation characteristics at the settlement sites and at varying distances from them. Low-intensity land use by Sami is characterized by the transfer of organic matter towards the settlements by humans and reindeer herds, compaction of soil through trampling, disappearance of understory vegetation, and selective cutting of pine trees for fuel and construction. As a consequence, we found a shift towards early successional plant species and a threefold increase in soil microbial activity and nutrient availability close to the settlements relative to away from them. These changes in soil fertility and vegetation contributed to 83% greater total vegetation productivity, 35% greater plant biomass, and 23% and 16% greater concentrations of foliar N and P nearer the settlements, leading to a greater quantity and quality of litter inputs. Because decomposer activity was also 40% greater towards the settlements, soil organic matter cycling and nutrient availability were further increased, leading to likely positive feedbacks between the aboveground and belowground components resulting from historic land use. Although not all of the activities typical of Sami have left visible residual traces on the ecosystem after 100 years, their low-intensity but long-term land use at settlement sites has triggered a rejuvenation of the ecosystem that is still present. Our data demonstrates that aboveground-belowground interactions strongly control ecosystem responses to historical human land use and that medium- to long-term consequences of even low-intensity human activities must be better accounted for if we are to predict and manage ecosystems succession following land-use abandonment.

  1. Conditions in Home and Transplant Soils Have Differential Effects on the Performance of Diploid and Allotetraploid Anthericum Species

    PubMed Central

    Černá, Lucie; Münzbergová, Zuzana

    2015-01-01

    Due to increased levels of heterozygosity, polyploids are expected to have a greater ability to adapt to different environments than their diploid ancestors. While this theoretical pattern has been suggested repeatedly, studies comparing adaptability to changing conditions in diploids and polyploids are rare. The aim of the study was to determine the importance of environmental conditions of origin as well as target conditions on performance of two Anthericum species, allotetraploid A. liliago and diploid A. ramosum and to explore whether the two species differ in the ability to adapt to these environmental conditions. Specifically, we performed a common garden experiment using soil from 6 localities within the species’ natural range, and we simulated the forest and open environments in which they might occur. We compared the performance of diploid A. ramosum and allotetraploid A. liliago originating from different locations in the different soils. The performance of the two species was not affected by simulated shading but differed strongly between the different target soils. Growth of the tetraploids was not affected by the origin of the plants. In contrast, diploids from the most nutrient poor soil performed best in the richest soil, indicating that diploids from deprived environments have an increased ability to acquire nutrients when available. They are thus able to profit from transfer to novel nutrient rich environments. Therefore, the results of the study did not support the general expectation that the polyploids should have a greater ability than the diploids to adapt to a wide range of conditions. In contrast, the results are in line with the observation that diploids occupy a wider range of environments than the allotetraploids in our system. PMID:25607545

  2. Soil nutrient availability and reproductive effort drive patterns in nutrient resorption in Pentachlethra macroloba

    Treesearch

    K. L. Tully; Tana Wood; A. M. Schwantes; D. Lawrence

    2013-01-01

    The removal of nutrients from senescing tissues, nutrient resorption, is a key strategy for conserving nutrients in plants. However, our understanding of what drives patterns of nutrient resorption in tropical trees is limited. We examined the effects of nutrient sources (stand-level and tree-level soil fertility) and sinks (reproductive effort) on nitrogen (N) and...

  3. Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed-An empirical model

    USGS Publications Warehouse

    Ator, Scott W.; Brakebill, John W.; Blomquist, Joel D.

    2011-01-01

    Nutrient fate and transport through the Chesapeake Bay watershed to the bay reflect the diferent physical and chemical properties of nitrogen and phosphorus compounds. Groundwater is an important pathway for nitrogen transport (as nitrate), and TN flux is greatest in areas with greater groundwater flow and in areas of the Piedmont underlain by carbonate rocks. TN flux decreases with increasing vegetative growth (likely indicative of plant uptake) and soil available water capacity (likely indicative of reducing conditions). Phosphorus transport to streams, conversely, is greatest in areas most likely to generate overland runoff and related erosion, including those with less permeable and more erodible soils and greater precipitation. Phosphorus transport also is greater in the Coastal Plain than in other areas, possibly due to saturation of soils with historical phosphorus applications. Both nitrogen and phosphorus are lost within watershed impoundments (lakes, ponds, or reservoirs), and nitrogen is also lost significantly along flowing reaches, particularly in small streams and in larger streams in warmer areas.

  4. Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.

    PubMed

    Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao

    2016-02-01

    Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices.

  5. Nutritional Criteria for Military Rations and Effects of Prolonged Feeding on Acceptability

    NASA Technical Reports Server (NTRS)

    Schnakenberg, D.

    1985-01-01

    Broad nutritional policies for operational rations are designed to insure that the nutritional content of the rations served will sustain combat effectiveness. Concern exists that these rations, although nutritionally complete, would become monotonous because of limited variety causing nutrient intake to decrease and body weight losses to occur with adverse effects on morale and combat effectiveness. Whenever possible, troops are now fed one or two hot meals per day containing fresh foods and a much greater variety of foods than are available in packaged rations. A laboratory test was conducted with student volunteers and the results are discussed.

  6. Evidence for micronutrient limitation of biological soil crusts: Importance to arid-lands restoration

    USGS Publications Warehouse

    Bowker, M.A.; Belnap, J.; Davidson, D.W.; Phillips, S.L.

    2005-01-01

    Desertification is a global problem, costly to national economies and human societies. Restoration of biological soil crusts (BSCs) may have an important role to play in the reversal of desertification due to their ability to decrease erosion and enhance soil fertility. To determine if there is evidence that lower fertility may hinder BSC recolonization, we investigated the hypothesis that BSC abundance is driven by soil nutrient concentrations. At a regional scale (north and central Colorado Plateau, USA), moss and lichen cover and richness are correlated with a complex water-nutrient availability gradient and have approximately six-fold higher cover and approximately two-fold higher species richness on sandy soils than on shale-derived soils. At a microscale, mosses and lichens are overrepresented in microhabitats under the north sides of shrub canopies, where water and nutrients are more available. At two spatial scales, and at the individual species and community levels, our data are consistent with the hypothesis that distributions of BSC organisms are determined largely by soil fertility. The micronutrients Mn and Zn figured prominently and consistently in the various analyses, strongly suggesting that these elements are previously unstudied limiting factors in BSC development. Structural-equation modeling of our data is most consistent with the hypothesis of causal relationships between the availability of micronutrients and the abundance of the two major nitrogen (N) fixers of BSCs. Specifically, higher Mn availability may determine greater Collema tenax abundance, and both Mn and Zn may limit Collema coccophorum; alternative causal hypotheses were less consistent with the data. We propose experimental trials of micronutrient addition to promote the restoration of BSC function on disturbed lands. Arid lands, where BSCs are most prevalent, cover ???40% of the terrestrial surface of the earth; thus the information gathered in this study is potentially useful in many places worldwide. ?? 2005 by the Ecological Society of America.

  7. Use of Weighted Regressions on Time, Discharge, and Season to Assess Effectiveness of Agricultural and Environmental Best Management Practices in California and Nevada, USA

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.; Schlegel, B.; Hutchins, J.

    2014-12-01

    Long-term data sets on stream-water quality and discharge can be used to assess whether best management practices (BMPs) are restoring beneficial uses of impaired water as required under the Clean Water Act. In this study, we evaluated a greater than 20-year record of water quality from selected streams in the Central Valley (CV) of California and Lake Tahoe (California and Nevada, USA). The CV contains a mix of agricultural and urbanized land, while the Lake Tahoe area is mostly forested, with seasonal residents and tourism. Because nutrients and fine sediments cause a reduction in water clarity that impair Lake Tahoe, BMPs were implemented in the early 1990's, to reduce nitrogen and phosphorus loads. The CV does not have a current nutrient management plan, but numerous BMPs exist to reduce pesticide loads, and it was hypothesized that these programs could also reduce nutrient levels. In the CV and Lake Tahoe areas, nutrient concentrations, loads, and trends were estimated by using the recently developed Weighted Regressions on Time, Discharge, and Season (WRTDS) model. Sufficient data were available to compare trends during a voluntary and enforcement period for seven CV sites within the lower Sacramento and San Joaquin Basins. For six of the seven sites, flow-normalized mean annual concentrations of total phosphorus and nitrate decreased at a faster rate during the enforcement period than during the earlier voluntary period. Concentration changes during similar years and ranges of flow conditions suggest that BMPs designed for pesticides also reduced nutrient loads in the CV. A trend analysis using WRTDS was completed for six streams that enter Lake Tahoe during the late 1980's through 2008. The results of the model confirm that nutrient loading is influenced strongly by season, such as by spring runoff from snowmelt. The highest nutrient concentrations in the late 1980's and early 1990's correlate with high flows, followed by statistically significant decreases in loading from most streams under different flow conditions. The results of the WRTDS model indicate a clear reduction in nutrient loading of nitrogen and phosphorus in all six streams. However, some streams show an increase in nutrient concentrations after 2000, suggesting the possible need for changes to the nutrient reduction management practices.

  8. Food crop production, nutrient availability, and nutrient intakes in Bangladesh: exploring the agriculture-nutrition nexus with the 2010 Household Income and Expenditure Survey.

    PubMed

    Fiedler, John L

    2014-12-01

    Systematic collection of national agricultural data has been neglected in many low- and middle-income countries for the past 20 years. Commonly conducted nationally representative household surveys collect substantial quantities of highly underutilized food crop production data. To demonstrate the potential usefulness of commonly available household survey databases for analyzing the agriculture-nutrition nexus. Using household data from the 2010 Bangladesh Household Income and Expenditure Survey, the role and significance of crop selection, area planted, yield, nutrient production, and the disposition of 34 food crops in affecting the adequacy of farming households' nutrient availability and nutrient intake status are explored. The adequacy of each farming household's available energy, vitamin A, calcium, iron, and zinc and households' apparent intakes and intake adequacies are estimated. Each household's total apparent nutrient intake adequacies are estimated, taking into account the amount of each crop that households consume from their own production, together with food purchased or obtained from other sources. Even though rice contains relatively small amounts of micronutrients, has relatively low nutrient density, and is a relatively poor source of nutrients compared with what other crops can produce on a given tract of land, because so much rice is produced in Bangladesh, it is the source of 90% of the total available energy, 85% of the zinc, 67% of the calcium, and 55% of the iron produced by the agricultural sector. The domination of agriculture and diet by rice is a major constraint to improving nutrition in Bangladesh. Simple examples of how minor changes in the five most common cropping patterns could improve farming households' nutritional status are provided. Household surveys' agricultural modules can provide a useful tool for better understanding national nutrient production realities and possibilities.

  9. Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate.

    PubMed

    Chen, Dong; Szostak, Paul; Wei, Zongsu; Xiao, Ruiyang

    2016-01-01

    Nutrient loss from soil, especially phosphorous (P) from farmlands to natural water bodies via surface runoff or infiltration, have caused significant eutrophication problems. This is because dissolved orthophosphates are usually the limiting nutrient for algal blooms. Currently, available techniques to control eutrophication are surprisingly scarce. Calcium sulfate or gypsum is a common soil amendment and has a strong complexation to orthophosphates. The results showed that calcium sulfate reduced the amount of water extractable P (WEP) through soil incubation tests, suggesting less P loss from farmlands. A greater decrease in WEP occurred with a greater dosage of calcium sulfate. Compared to conventional coarse calcium sulfate, nano calcium sulfate further reduced WEP by providing a much greater specific surface area, higher solubility, better contact with the fertilizer and the soil particles, and superior dispersibility. The enhancement of the nano calcium sulfate for WEP reduction is more apparent for a pellet- than a powdered- fertilizer. At the dosage of Ca/P weight ratio of 2.8, the WEP decreased by 31±5% with the nano calcium sulfate compared to 20±5% decrease with the coarse calcium sulfate when the pellet fertilizer was used. Computation of the chemical equilibrium speciation shows that calcium hydroxyapatite has the lowest solubility. However, other mineral phases such as hydroxydicalcium phosphate, dicalcium phosphate dihydrate, octacalcium phosphate, and tricalcium phosphate might form preceding to calcium hydroxyapatite. Since calcium sulfate is the major product of the flue gas desulfurization (FGD) process, this study demonstrates a potential beneficial reuse and reduction of the solid FGD waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wildfire

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Meyer, W. S.; Koerber, G. R.; Marschner, P.

    2015-08-01

    Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wildfire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content, which could be further modulated by wildfire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy mallee woodland, where part of the woodland experienced a wildfire which destroyed or damaged most of the aboveground plant parts 4 months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80 % of maximum water holding capacity (WHC) for 19 days; in DRW, soils were dried for 4 days, kept dry for another 5 days, then rewetted to 80 % WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per gram of soil in CM and DRW was greater under trees, but lower when expressed per gram of total organic carbon (TOC). Organic matter content, available P, and microbial biomass C, but not available N, were greater under trees than in open areas. Wild fire decreased the flush of respiration per gram of TOC in the open areas and under shrubs, and reduced TOC and microbial biomass C (MBC) concentrations only under trees, but had little effect on available N and P concentrations. We conclude that the impact of wildfire and DRW events on nutrient cycling differs among vegetation patches of a native semi-arid woodland which is related to organic matter amount and availability.

  11. Plant Nutrition 2: Macronutrients (N, P, K, S, Mg, and Ca)

    PubMed Central

    2014-01-01

    Summary In the second of three lessons spanning the topic of Plant Nutrition, we examine how macronutrients affect plant growth. Specifically, we look at (1) the availability of nutrients in the soil along with the effects of soil microbes and physical properties on their availability; (2) nutrient uptake from the external environment, across plasma membranes and into plant cells; (3) in some cases, the assimilation of the nutrient into organic molecules; (4) the distribution and redistribution of nutrients throughout the plant; and (5) regulation of these processes. In parallel, we examine the genetic basis of a plant's nutrient use efficiency (NUE) and evaluate strategies by which to replenish nutrients that growing plants extract from soil.

  12. ULK1, Mammalian Target of Rapamycin, and Mitochondria: Linking Nutrient Availability and Autophagy

    PubMed Central

    2011-01-01

    Abstract A fundamental function of autophagy conserved from yeast to mammals is mobilization of macromolecules during times of limited nutrient availability, permitting organisms to survive under starvation conditions. In yeast, autophagy is initiated following nitrogen or carbon deprivation, and autophagy mutants die rapidly under these conditions. Similarly, in mammals, autophagy is upregulated in most organs following initiation of starvation, and is critical for survival in the perinatal period following abrupt termination of the placental nutrient supply. The nutrient-sensing kinase, mammalian target of rapamycin, coordinates cellular proliferation and growth with nutrient availability, at least in part by regulating protein synthesis and autophagy-mediated degradation. This review focusses on the regulation of autophagy by Tor, a mammalian target of rapamycin, and Ulk1, a mammalian homolog of Atg1, in response to changes in nutrient availability. Given the importance of mitochondria in maintaining bioenergetic homestasis, and potentially as a source of membrane for autophagosomes during starvation, possible roles for mitochondria in this process are also discussed. Antioxid. Redox Signal. 14, 1953–1958. PMID:21235397

  13. [Spatial variability of surface soil nutrients in the landslide area of Beichuan County, South- west China, after 5 · 12 Wenchuan Earthquake].

    PubMed

    Mai, Ji-shan; Zhao, Ting-ning; Zheng, Jiang-kun; Shi, Chang-qing

    2015-12-01

    Based on grid sampling and laboratory analysis, spatial variability of surface soil nutrients was analyzed with GS⁺ and other statistics methods on the landslide area of Fenghuang Mountain, Leigu Town, Beichuan County. The results showed that except for high variability of available phosphorus, other soil nutrients exhibited moderate variability. The ratios of nugget to sill of the soil available phosphorus and soil organic carbon were 27.9% and 28.8%, respectively, showing moderate spatial correlation, while the ratios of nugget to sill of the total nitrogen (20.0%), total phosphorus (24.3%), total potassium (11.1%), available nitrogen (11.2%), and available potassium (22.7%) suggested strong spatial correlation. The total phosphorus had the maximum range (1232.7 m), followed by available nitrogen (541.27 m), total nitrogen (468.35 m), total potassium (136.0 m), available potassium (128.7 m), available phosphorus (116.6 m), and soil organic carbon (93.5 m). Soil nutrients had no significant variation with the increase of altitude, but gradually increased from the landslide area, the transition area, to the little-impacted area. The total and available phosphorus contents of the landslide area decreased by 10.3% and 79.7% compared to that of the little-impacted area, respectively. The soil nutrient contents in the transition area accounted for 31.1%-87.2% of that of the little-impacted area, with the nant reason for the spatial variability of surface soil nutrients.

  14. Unravelling the limits to tree height: a major role for water and nutrient trade-offs.

    PubMed

    Cramer, Michael D

    2012-05-01

    Competition for light has driven forest trees to grow exceedingly tall, but the lack of a single universal limit to tree height indicates multiple interacting environmental limitations. Because soil nutrient availability is determined by both nutrient concentrations and soil water, water and nutrient availabilities may interact in determining realised nutrient availability and consequently tree height. In SW Australia, which is characterised by nutrient impoverished soils that support some of the world's tallest forests, total [P] and water availability were independently correlated with tree height (r = 0.42 and 0.39, respectively). However, interactions between water availability and each of total [P], pH and [Mg] contributed to a multiple linear regression model of tree height (r = 0.72). A boosted regression tree model showed that maximum tree height was correlated with water availability (24%), followed by soil properties including total P (11%), Mg (10%) and total N (9%), amongst others, and that there was an interaction between water availability and total [P] in determining maximum tree height. These interactions indicated a trade-off between water and P availability in determining maximum tree height in SW Australia. This is enabled by a species assemblage capable of growing tall and surviving (some) disturbances. The mechanism for this trade-off is suggested to be through water enabling mass-flow and diffusive mobility of P, particularly of relatively mobile organic P, although water interactions with microbial activity could also play a role.

  15. Growth, allocation and tissue chemistry of Picea abies seedlings affected by nutrient supply during the second growing season.

    PubMed

    Kaakinen, Seija; Jolkkonen, Annika; Iivonen, Sari; Vapaavuori, Elina

    2004-06-01

    One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.

  16. The role of mycorrhizal fungi and microsites in primary succession on Mount St. Helens.

    PubMed

    Titus, J; Del Moral, R

    1998-03-01

    This study was designed to examine the role of vesicular-arbuscular mycorrhizae (VAM) and microsites on the growth of pioneer species. Flat, rill, near-rock, and dead lupine microsites were created in plots in barren areas of the Pumice Plain of Mount St. Helens. VAM propagules were added to the soil in half of the plots. Six pioneer species were planted into both VAM and non-VAM inoculated microsites. Plants in dead lupine microsites were greater in biomass than those in flat, rill, and near-rock microsites. Significant effects of VAM on plant biomass did not occur. Microsites continue to be important to plant colonization on the Pumice Plain, but VAM do not yet appear to play an important role. This may be due to limited nutrient availability and the facultatively mycotrophic nature of the colonizing plant species. It is unlikely that VAM play an important role in successional processes in newly emplaced nutrient-poor surfaces.

  17. Biofuel components change the ecology of bacterial volatile petroleum hydrocarbon degradation in aerobic sandy soil.

    PubMed

    Elazhari-Ali, Abdulmagid; Singh, Arvind K; Davenport, Russell J; Head, Ian M; Werner, David

    2013-02-01

    We tested the hypothesis that the biodegradation of volatile petroleum hydrocarbons (VPHs) in aerobic sandy soil is affected by the blending with 10 percent ethanol (E10) or 20 percent biodiesel (B20). When inorganic nutrients were scarce, competition between biofuel and VPH degraders temporarily slowed monoaromatic hydrocarbon degradation. Ethanol had a bigger impact than biodiesel, reflecting the relative ease of ethanol compared to methyl ester biodegradation. Denaturing gradient gel electrophoresis (DGGE) of bacterial 16S rRNA genes revealed that each fuel mixture selected for a distinct bacterial community, each dominated by Pseudomonas spp. Despite lasting impacts on soil bacterial ecology, the overall effects on VHP biodegradation were minor, and average biomass yields were comparable between fuel types, ranging from 0.40 ± 0.16 to 0.51 ± 0.22 g of biomass carbon per gram of fuel carbon degraded. Inorganic nutrient availability had a greater impact on petroleum hydrocarbon biodegradation than fuel composition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Nutritional strategies to optimize dairy cattle immunity.

    PubMed

    Sordillo, L M

    2016-06-01

    Dairy cattle are susceptible to increased incidence and severity of both metabolic and infectious diseases during the periparturient period. A major contributing factor to increased health disorders is alterations in bovine immune mechanisms. Indeed, uncontrolled inflammation is a major contributing factor and a common link among several economically important infectious and metabolic diseases including mastitis, retained placenta, metritis, displaced abomasum, and ketosis. The nutritional status of dairy cows and the metabolism of specific nutrients are critical regulators of immune cell function. There is now a greater appreciation that certain mediators of the immune system can have a reciprocal effect on the metabolism of nutrients. Thus, any disturbances in nutritional or immunological homeostasis can provide deleterious feedback loops that can further enhance health disorders, increase production losses, and decrease the availability of safe and nutritious dairy foods for a growing global population. This review will discuss the complex interactions between nutrient metabolism and immune functions in periparturient dairy cattle. Details of how either deficiencies or overexposure to macro- and micronutrients can contribute to immune dysfunction and the subsequent development of health disorders will be presented. Specifically, the ways in which altered nutrient metabolism and oxidative stress can interact to compromise the immune system in transition cows will be discussed. A better understanding of the linkages between nutrition and immunity may facilitate the design of nutritional regimens that will reduce disease susceptibility in early lactation cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. Maternal–Fetal Nutrient Transport in Pregnancy Pathologies: The Role of the Placenta

    PubMed Central

    Brett, Kendra Elizabeth; Ferraro, Zachary Michael; Yockell-Lelievre, Julien; Gruslin, Andrée; Adamo, Kristi Bree

    2014-01-01

    Appropriate in utero growth is essential for offspring development and is a critical contributor to long-term health. Fetal growth is largely dictated by the availability of nutrients in maternal circulation and the ability of these nutrients to be transported into fetal circulation via the placenta. Substrate flux across placental gradients is dependent on the accessibility and activity of nutrient-specific transporters. Changes in the expression and activity of these transporters is implicated in cases of restricted and excessive fetal growth, and may represent a control mechanism by which fetal growth rate attempts to match availability of nutrients in maternal circulation. This review provides an overview of placenta nutrient transport with an emphasis on macro-nutrient transporters. It highlights the changes in expression and activity of these transporters associated with common pregnancy pathologies, including intrauterine growth restriction, macrosomia, diabetes and obesity, as well as the potential impact of maternal diet. Molecular signaling pathways linking maternal nutrient availability and placenta nutrient transport are discussed. How sexual dimorphism affects fetal growth strategies and the placenta’s response to an altered intrauterine environment is considered. Further knowledge in this area may be the first step in the development of targeted interventions to help optimize fetal growth. PMID:25222554

  20. Probiotics for Plants? Growth Promotion by the Entomopathogenic Fungus Beauveria bassiana Depends on Nutrient Availability.

    PubMed

    Tall, Susanna; Meyling, Nicolai V

    2018-03-28

    Cultivation of crops requires nutrient supplements which are costly and impact the environment. Furthermore, global demands for increased crop production call for sustainable solutions to increase yield and utilize resources such as nutrients more effectively. Some entomopathogenic fungi are able to promote plant growth, but studies over such effects have been conducted under optimal conditions where nutrients are abundantly available. We studied the effects of Beauveria bassiana (strain GHA) seed treatment on the growth of maize (Zea mays) at high and low nutrient conditions during 6 weeks in greenhouse. As expected, B. bassiana seed treatment increased plant growth, but only at high nutrient conditions. In contrast, the seed treatment did not benefit plant growth at low nutrient conditions where the fungus potentially constituted a sink and tended to reduce plant growth. The occurrence of endophytic B. bassiana in experimental plant tissues was evaluated by PCR after 6 weeks, but B. bassiana was not documented in any of the above-ground plant tissues indicating that the fungus-plant interaction was independent of endophytic establishment. Our results suggest that B. bassiana seed treatment could be used as a growth promoter of maize when nutrients are abundantly available, while the fungus does not provide any growth benefits when nutrients are scarce.

  1. Treated Olive Cake as a Non-forage Fiber Source for Growing Awassi Lambs: Effects on Nutrient Intake, Rumen and Urine pH, Performance, and Carcass Yield

    PubMed Central

    Awawdeh, M. S.; Obeidat, B. S.

    2013-01-01

    The objective of this study was to investigate the effects of partial replacement of wheat hay with sun-dried (SOC) or acid-treated SOC (ASOC) olive cake on nutrient intake and performance of Awassi lambs. An additional objective was to study the effects of acid treatment of olive cake (OC) on its chemical composition and nutritive value. On DM basis, sun-drying of OC did not dramatically affect its chemical composition. On the other hand, treating SOC with phosphoric acid decreased (p<0.05) SOC contents of neutral detergent fiber. Twenty seven male lambs (17.6±0.75 kg body weight) individually housed in shaded pens were randomly assigned to one of three dietary treatments (9 lambs/treatment). Dietary treatments were formulated to be isocaloric and isonitrogenous by replacing 50% of wheat hay in the control diet (CTL) with SOC or ASOC and to meet all nutrient requirements. Dietary treatments had no effects on nutrient intake or digestibility except for ether extract. Lambs fed the SOC diet had (p = 0.05) faster growth rate, greater final body weight, and greater total body weight gain in comparison with the CTL diet, but not different from the ASOC diet. Additionally, lambs fed the SOC diet had greater (p = 0.03) hot and cold carcass weights than the ASOC diet, but not different from the CTL diet. However, feed conversion ratios and dressing percentages were similar among dietary treatments. In conclusion, replacing half of dietary wheat hay with SOC improved performance of Awassi lambs with no detrimental effects on nutrients intake or digestibility. No further improvements in the nutritive value of SOC and lambs performance were detected when SOC was treated with acid. PMID:25049836

  2. Treated Olive Cake as a Non-forage Fiber Source for Growing Awassi Lambs: Effects on Nutrient Intake, Rumen and Urine pH, Performance, and Carcass Yield.

    PubMed

    Awawdeh, M S; Obeidat, B S

    2013-05-01

    The objective of this study was to investigate the effects of partial replacement of wheat hay with sun-dried (SOC) or acid-treated SOC (ASOC) olive cake on nutrient intake and performance of Awassi lambs. An additional objective was to study the effects of acid treatment of olive cake (OC) on its chemical composition and nutritive value. On DM basis, sun-drying of OC did not dramatically affect its chemical composition. On the other hand, treating SOC with phosphoric acid decreased (p<0.05) SOC contents of neutral detergent fiber. Twenty seven male lambs (17.6±0.75 kg body weight) individually housed in shaded pens were randomly assigned to one of three dietary treatments (9 lambs/treatment). Dietary treatments were formulated to be isocaloric and isonitrogenous by replacing 50% of wheat hay in the control diet (CTL) with SOC or ASOC and to meet all nutrient requirements. Dietary treatments had no effects on nutrient intake or digestibility except for ether extract. Lambs fed the SOC diet had (p = 0.05) faster growth rate, greater final body weight, and greater total body weight gain in comparison with the CTL diet, but not different from the ASOC diet. Additionally, lambs fed the SOC diet had greater (p = 0.03) hot and cold carcass weights than the ASOC diet, but not different from the CTL diet. However, feed conversion ratios and dressing percentages were similar among dietary treatments. In conclusion, replacing half of dietary wheat hay with SOC improved performance of Awassi lambs with no detrimental effects on nutrients intake or digestibility. No further improvements in the nutritive value of SOC and lambs performance were detected when SOC was treated with acid.

  3. Effects of mountain agriculture on nutrient cycling at upstream watersheds

    NASA Astrophysics Data System (ADS)

    Lin, T.-C.; Shaner, P. L.; Wang, L.-J.; Shih, Y.-T.; Wang, C.-P.; Huang, G.-H.; Huang, J.-C.

    2015-05-01

    The expansion of agriculture to rugged mountains can exacerbate negative impacts of agriculture activities on ecosystem function. In this study, we monitored streamwater chemistry of four watersheds with varying proportions of agricultural lands (0.4, 3, 17, 22%) and rainfall chemistry of two of the four watersheds at Feitsui Reservoir Watershed in northern Taiwan to examine the effects of agriculture on watershed nutrient cycling. We found that the greater the proportions of agricultural lands, the higher the ion concentrations, which is evident for fertilizer-associated ions (NO3-, K+) but not for ions that are rich in soils (SO42-, Ca2+, Mg2+), suggesting that agriculture enriched fertilizer-associated nutrients in streamwater. The watershed with the highest proportion of agricultural lands had higher concentrations of ions in rainfall and lower nutrient retention capacity (i.e. higher output-input ratio of ions) compared to the relatively pristine watershed, suggesting that agriculture can influence atmospheric deposition of nutrients and a system's ability to retain nutrients. Furthermore, we found that a forested watershed downstream of agricultural activities can dilute the concentrations of fertilizer-associated ions (NO3-, K+) in streamwater by more than 70%, indicating that specific landscape configurations help mitigate nutrient enrichment to aquatic systems. We estimated that agricultural lands at our study site contributed approximately 400 kg ha-1 yr-1 of NO3-N and 260 kg ha-1 yr-1 of PO4-P output via streamwater, an order of magnitude greater than previously reported around the globe and can only be matched by areas under intense fertilizer use. Furthermore, we re-constructed watershed nutrient fluxes to show that excessive leaching of N and P, and additional loss of N to the atmosphere via volatilization and denitrification, can occur under intense fertilizer use. In summary, this study demonstrated the pervasive impacts of agriculture activities, especially excessive fertilization, on ecosystem nutrient cycling at mountain watersheds.

  4. Nutrient Concentrations and Stable Isotopes of Runoff from a Midwest Tile-Drained Corn Field

    NASA Astrophysics Data System (ADS)

    Wilkins, B. P.; Woo, D.; Li, J.; Michalski, G. M.; Kumar, P.; Conroy, J. L.; Keefer, D. A.; Keefer, L. L.; Hodson, T. O.

    2017-12-01

    Tile drains are a common crop drainage device used in Midwest agroecosystems. While efficient at drainage, the tiles provide a quick path for nutrient runoff, reducing the time available for microbes to use nutrients (e.g., NO3- and PO43-) and reduce export to riverine systems. Thus, understanding the effects of tile drains on nutrient runoff is critical to achieve nutrient reduction goals. Here we present isotopic and concentration data collected from tile drain runoff of a corn field located near Monticello, IL. Tile flow samples were measured for anion concentrations and stable isotopes of H2O and NO3-, while precipitation was measured for dual isotopes of H2O. Results demonstrate early tile flow from rain events have a low Cl- concentration (<20ppm) with water isotopic values reflecting precipitation, indicating preferential flow (>60% contribution) in the beginning of the hydrograph. As flow continues H2O isotopic values reflect pre-event water (ground and soil water), and Cl- concentrations increase representing a greater influence by matrix flow (60-90% contribution). Nitrate concentrations change dramatically, especially during the growing season, and do not follow a similar trend as the conservative Cl-, often decreasing days before, which represents missing nitrate in the upper surface portion of the soil. Nitrate isotopic data shows significant changes in 15N (4‰) and 18O (4‰) during individual hydrological events, representing that in addition to plant uptake and leaching, considerate NO3- is lost through denitrification. It is notable, that throughout the season d15N and d18O of nitrate change significantly representing that seasonally, substantial denitrification occurs.

  5. Blade life span, structural investment, and nutrient allocation in giant kelp.

    PubMed

    Rodriguez, Gabriel E; Reed, Daniel C; Holbrook, Sally J

    2016-10-01

    The turnover of plant biomass largely determines the amount of energy flowing through an ecosystem and understanding the processes that regulate turnover has been of interest to ecologists for decades. Leaf life span theory has proven useful in explaining patterns of leaf turnover in relation to resource availability, but the predictions of this theory have not been tested for macroalgae. We measured blade life span, size, thickness, nitrogen content, pigment content, and maximum photosynthetic rate (P max) in the giant kelp (Macrocystis pyrifera) along a strong resource (light) gradient to test whether the predictions of leaf life span theory applied to this alga. We found that shorter blade life spans and larger blade areas were associated with increased light availability. In addition, nitrogen and P max decreased with blade age, and their decrease was greater in shorter lived blades. These observations are generally consistent with patterns observed for higher plants and the prevailing theory of leaf life span. By contrast, variation observed in pigments of giant kelp was inconsistent with that predicted by leaf life span theory, as blades growing in the most heavily shaded portion of the forest had the lowest chlorophyll content. This result may reflect the dual role of macroalgal blades in carbon fixation and nutrient absorption and the ability of giant kelp to modify blade physiology to optimize the acquisition of light and nutrients. Thus, the marine environment may place demands on resource acquisition and allocation that have not been previously considered with respect to leaf life span optimization.

  6. Effects of nutrient availabiiity on biomass allocation as well as constitutive and rapid induced herbivore resistance in poplar

    Treesearch

    Carolyn Glynn; Daniel A. Herms; Marie Egawa; Robert Hansen; William J. Mattson

    2003-01-01

    Many studies have examined effects of nutrient availability on constitutive herbivore resistance of plants, but few have addressed effects on expression of rapid induced resistance (RIR). We quantified effects of two levels of nutrient availability on growth, biomass allocation, photosynthesis, and constitutive secondary metabolism of black poplar (>i>Populus...

  7. The influence of nutrient and water availability on carbohydrate storage in loblolly pine

    Treesearch

    K.H. Ludovici; H.L. Allen; T.J. Albaugh; P.M. Dougherty

    2002-01-01

    We quantified the effects of nutrient and water availability on monthly whole-tree carbohydrate budgets and determined allocation patterns of storage carbohydrates in loblolly pine (Pinus taeda) to test site resource impacts on internal carbon (C) storage. A factorial combination of two nutrient and two irrigation treatments were imposed on a 7-year...

  8. [Spatial variability of soil nutrients based on geostatistics combined with GIS--a case study in Zunghua City of Hebei Province].

    PubMed

    Guo, X; Fu, B; Ma, K; Chen, L

    2000-08-01

    Geostatistics combined with GIS was applied to analyze the spatial variability of soil nutrients in topsoil (0-20 cm) in Zunghua City of Hebei Province. GIS can integrate attribute data with geographical data of system variables, which makes the application of geostatistics technique for large spatial scale more convenient. Soil nutrient data in this study included available N (alkaline hydrolyzing nitrogen), total N, available K, available P and organic matter. The results showed that the semivariograms of soil nutrients were best described by spherical model, except for that of available K, which was best fitted by complex structure of exponential model and linear with sill model. The spatial variability of available K was mainly produced by structural factor, while that of available N, total N, available P and organic matter was primarily caused by random factor. However, their spatial heterogeneity degree was different: the degree of total N and organic matter was higher, and that of available P and available N was lower. The results also indicated that the spatial correlation of the five tested soil nutrients at this large scale was moderately dependent. The ranges of available N and available P were almost same, which were 5 km and 5.5 km, respectively. The range of total N was up to 18 km, and that of organic matter was 8.5 km. For available K, the spatial variability scale primarily expressed exponential model between 0-3.5 km, but linear with sill model between 3.5-25.5 km. In addition, five soil nutrients exhibited different isotropic ranges. Available N and available P were isotropic through the whole research range (0-28 km). The isotropic range of available K was 0-8 km, and that of total N and organic matter was 0-10 km.

  9. The availability and accessibility of nutrition information in fast food outlets in five states post-menu labelling legislation in New South Wales.

    PubMed

    Wellard, Lyndal; Havill, Michelle; Hughes, Clare; Watson, Wendy L; Chapman, Kathy

    2015-12-01

    1) Explore the availability and accessibility of fast food energy and nutrient information post-NSW menu labelling legislation in states with and without menu labelling legislation. 2) Determine whether availability and accessibility differed compared with pre-menu labelling legislation in NSW. We visited 210 outlets of the five largest fast food chains in five Australian states to observe the availability and accessibility of energy and nutrient information. Results were compared with 197 outlets surveyed pre-menu labelling. Most outlets (95%) provided energy values, half provided nutrient values and 3% provided information for all menu items. The total amount of information available increased post-NSW menu labelling implementation (473 versus 178 pre-implementation, p<0.001); however, fewer outlets provided nutrient values (26% versus 97% pre-implementation, p<0.001). Fast food chains surveyed had voluntarily introduced menu labelling nationally. However, more nutrient information was available in-store in 2010, showing that fast food chains are able to provide comprehensive nutrition information, yet they have stopped doing so. Menu labelling legislation should compel fast food chains to provide accessible nutrition information including nutrient values in addition to energy for all menu items in-store. Additionally, public education campaigns are needed to ensure customers can use menu labelling. © 2015 Public Health Association of Australia.

  10. Impacts of waste from concentrated animal feeding operations on water quality

    USGS Publications Warehouse

    Burkholder, J.; Libra, B.; Weyer, P.; Heathcote, S.; Kolpin, D.; Thorne, P.S.; Wichman, M.

    2007-01-01

    Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This workgroup, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards-Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems.

  11. Impacts of Waste from Concentrated Animal Feeding Operations on Water Quality

    PubMed Central

    Burkholder, JoAnn; Libra, Bob; Weyer, Peter; Heathcote, Susan; Kolpin, Dana; Thorne, Peter S.; Wichman, Michael

    2007-01-01

    Waste from agricultural livestock operations has been a long-standing concern with respect to contamination of water resources, particularly in terms of nutrient pollution. However, the recent growth of concentrated animal feeding operations (CAFOs) presents a greater risk to water quality because of both the increased volume of waste and to contaminants that may be present (e.g., antibiotics and other veterinary drugs) that may have both environmental and public health importance. Based on available data, generally accepted livestock waste management practices do not adequately or effectively protect water resources from contamination with excessive nutrients, microbial pathogens, and pharmaceuticals present in the waste. Impacts on surface water sources and wildlife have been documented in many agricultural areas in the United States. Potential impacts on human and environmental health from long-term inadvertent exposure to water contaminated with pharmaceuticals and other compounds are a growing public concern. This work-group, which is part of the Conference on Environmental Health Impacts of Concentrated Animal Feeding Operations: Anticipating Hazards—Searching for Solutions, identified needs for rigorous ecosystem monitoring in the vicinity of CAFOs and for improved characterization of major toxicants affecting the environment and human health. Last, there is a need to promote and enforce best practices to minimize inputs of nutrients and toxicants from CAFOs into freshwater and marine ecosystems. PMID:17384784

  12. Emergency Food Supplies in Food Secure Households.

    PubMed

    Golem, Devon L; Byrd-Bredbenner, Carol

    2015-08-01

    Introduction Limited food supply paired with reduced access to food during emergency disasters can lead to malnutrition. To date, research evaluating the adequacy of household emergency food supplies relies on self-reported data from surveys and has not been measured objectively in households in the United States. The main objective of this study was to describe household calorie availability and nutrient density in a normal situation and to project changes that could occur when emergencies (eg, natural disasters) restrict replenishment of food supplies and disrupt water and/or energy needed for food preparation and storage. Hypothesis The calorie availability of the food supply within households in New Jersey (USA) is anticipated to be well above the recommended 3-day period. However, it is anticipated that the nutritional density of the food supply within these households will be negative. Additionally, the disaster-related factors that diminish the ability to consume stored food (eg, lack of water, power for cooking, and/or proper storage) will further reduce the caloric and nutritional adequacy of the household food supply. The household food supplies of 100 food secure families in New Jersey were inventoried at a non-emergency point in time. The number of days that the inventoried food supply would provide all household members 100% of the daily value (DV) for calories and other nutrients was determined. Additionally, the effects of water and power shortages on nutritional availability of household food supply were estimated. The households had an average of 33.16 days (SD=21.97; range=8.14-125.17 days) of calories at 100% DV for all household members. Lack of water, energy for cooking, or both would render a decrease in the total household calories by 28%, 35%, or 38%, respectively. Loss of power for greater than five days would reduce availability of household calories by 27%. A positive nutrient density was observed with and without the food-related resources of water and power. The mean food supply within the sampled households exceeds the current emergency preparedness recommendations, even when considering specific nutrients and emergency-related factors that affect ability to consume the food supply. Cross-sectional observation of the household food supply of food secure families in New Jersey reveals adequate dietary-based emergency preparedness and low vulnerability to emergency-induced food insecurity.

  13. Selection of Optimal Auxiliary Soil Nutrient Variables for Cokriging Interpolation

    PubMed Central

    Song, Genxin; Zhang, Jing; Wang, Ke

    2014-01-01

    In order to explore the selection of the best auxiliary variables (BAVs) when using the Cokriging method for soil attribute interpolation, this paper investigated the selection of BAVs from terrain parameters, soil trace elements, and soil nutrient attributes when applying Cokriging interpolation to soil nutrients (organic matter, total N, available P, and available K). In total, 670 soil samples were collected in Fuyang, and the nutrient and trace element attributes of the soil samples were determined. Based on the spatial autocorrelation of soil attributes, the Digital Elevation Model (DEM) data for Fuyang was combined to explore the coordinate relationship among terrain parameters, trace elements, and soil nutrient attributes. Variables with a high correlation to soil nutrient attributes were selected as BAVs for Cokriging interpolation of soil nutrients, and variables with poor correlation were selected as poor auxiliary variables (PAVs). The results of Cokriging interpolations using BAVs and PAVs were then compared. The results indicated that Cokriging interpolation with BAVs yielded more accurate results than Cokriging interpolation with PAVs (the mean absolute error of BAV interpolation results for organic matter, total N, available P, and available K were 0.020, 0.002, 7.616, and 12.4702, respectively, and the mean absolute error of PAV interpolation results were 0.052, 0.037, 15.619, and 0.037, respectively). The results indicated that Cokriging interpolation with BAVs can significantly improve the accuracy of Cokriging interpolation for soil nutrient attributes. This study provides meaningful guidance and reference for the selection of auxiliary parameters for the application of Cokriging interpolation to soil nutrient attributes. PMID:24927129

  14. Distributions of Competing Container Mosquitoes Depend on Detritus Types, Nutrient Ratios, and Food Availability

    PubMed Central

    Murrell, Ebony G.; Damal, Kavitha; Lounibos, L. P.; Juliano, Steven A.

    2012-01-01

    Coexistence of competitors may result if resources are sufficiently abundant to render competition unimportant, or if species differ in resource requirements. Detritus type has been shown to affect interspecific competitive outcomes between Aedes albopictus (Skuse) and Aedes aegypti (L.) larvae under controlled conditions. We assessed the relationships among spatial distributions of detritus types, nutrients, and aquatic larvae of these species in nature. We collected mosquitoes, water, and detritus from artificial containers across 24 Florida cemeteries that varied in relative abundances of Ae. aegypti and Ae. albopictus.We measured nutrient content of fine particulate organic matter in water samples as total N, P, and C and ratios of these nutrients. We quantified food availability via a bioassay, raising individual Aedes larvae in the laboratory in standard volumes of field-collected, particulate-containing water from each cemetery. Quantities of detritus types collected in standard containers were significant predictors of nutrients and nutrient ratios. Nutrient abundances were significant predictors of relative abundance of Ae. aegypti, and of larval survival and development by both species in the bioassay. Survival and development of larvae reared in particulate-containing water from sites decreased with decreasing relative abundance of Ae. aegypti. These data suggest that N, P, and C availabilities are determined by detritus inputs to containers and that these nutrients in turn determine the feeding environment encountered by larvae, the intensity of interspecific competition among larvae, and subsequent relative abundances of species at sites. Detritus inputs, nutrients, and food availability thus seem to contribute to distributions of Ae. aegypti and Ae. albopictus in cemetery containers throughout Florida. PMID:22707761

  15. Nutritional and greenhouse gas impacts of removing animals from US agriculture.

    PubMed

    White, Robin R; Hall, Mary Beth

    2017-11-28

    As a major contributor to agricultural greenhouse gas (GHG) emissions, it has been suggested that reducing animal agriculture or consumption of animal-derived foods may reduce GHGs and enhance food security. Because the total removal of animals provides the extreme boundary to potential mitigation options and requires the fewest assumptions to model, the yearly nutritional and GHG impacts of eliminating animals from US agriculture were quantified. Animal-derived foods currently provide energy (24% of total), protein (48%), essential fatty acids (23-100%), and essential amino acids (34-67%) available for human consumption in the United States. The US livestock industry employs 1.6 × 10 6 people and accounts for $31.8 billion in exports. Livestock recycle more than 43.2 × 10 9 kg of human-inedible food and fiber processing byproducts, converting them into human-edible food, pet food, industrial products, and 4 × 10 9 kg of N fertilizer. Although modeled plants-only agriculture produced 23% more food, it met fewer of the US population's requirements for essential nutrients. When nutritional adequacy was evaluated by using least-cost diets produced from foods available, more nutrient deficiencies, a greater excess of energy, and a need to consume a greater amount of food solids were encountered in plants-only diets. In the simulated system with no animals, estimated agricultural GHG decreased (28%), but did not fully counterbalance the animal contribution of GHG (49% in this model). This assessment suggests that removing animals from US agriculture would reduce agricultural GHG emissions, but would also create a food supply incapable of supporting the US population's nutritional requirements. Copyright © 2017 the Author(s). Published by PNAS.

  16. Nutritional and greenhouse gas impacts of removing animals from US agriculture

    PubMed Central

    White, Robin R.; Hall, Mary Beth

    2017-01-01

    As a major contributor to agricultural greenhouse gas (GHG) emissions, it has been suggested that reducing animal agriculture or consumption of animal-derived foods may reduce GHGs and enhance food security. Because the total removal of animals provides the extreme boundary to potential mitigation options and requires the fewest assumptions to model, the yearly nutritional and GHG impacts of eliminating animals from US agriculture were quantified. Animal-derived foods currently provide energy (24% of total), protein (48%), essential fatty acids (23–100%), and essential amino acids (34–67%) available for human consumption in the United States. The US livestock industry employs 1.6 × 106 people and accounts for $31.8 billion in exports. Livestock recycle more than 43.2 × 109 kg of human-inedible food and fiber processing byproducts, converting them into human-edible food, pet food, industrial products, and 4 × 109 kg of N fertilizer. Although modeled plants-only agriculture produced 23% more food, it met fewer of the US population’s requirements for essential nutrients. When nutritional adequacy was evaluated by using least-cost diets produced from foods available, more nutrient deficiencies, a greater excess of energy, and a need to consume a greater amount of food solids were encountered in plants-only diets. In the simulated system with no animals, estimated agricultural GHG decreased (28%), but did not fully counterbalance the animal contribution of GHG (49% in this model). This assessment suggests that removing animals from US agriculture would reduce agricultural GHG emissions, but would also create a food supply incapable of supporting the US population’s nutritional requirements. PMID:29133422

  17. Growth of mature boreal Norway spruce was not affected by elevated [CO(2)] and/or air temperature unless nutrient availability was improved.

    PubMed

    Sigurdsson, Bjarni D; Medhurst, Jane L; Wallin, Göran; Eggertsson, Olafur; Linder, Sune

    2013-11-01

    The growth responses of mature Norway spruce (Picea abies (L.) Karst.) trees exposed to elevated [CO(2)] (CE; 670-700 ppm) and long-term optimized nutrient availability or elevated air temperature (TE; ±3.9 °C) were studied in situ in northern Sweden in two 3 year field experiments using 12 whole-tree chambers in ca. 40-year-old forest. The first experiment (Exp. I) studied the interactions between CE and nutrient availability and the second (Exp. II) between CE and TE. It should be noted that only air temperature was elevated in Exp. II, while soil temperature was maintained close to ambient. In Exp. I, CE significantly increased the mean annual height increment, stem volume and biomass increment during the treatment period (25, 28, and 22%, respectively) when nutrients were supplied. There was, however, no significant positive CE effect found at the low natural nutrient availability. In Exp. II, which was conducted at the natural site fertility, neither CE nor TE significantly affected height or stem increment. It is concluded that the low nutrient availability (mainly nitrogen) in the boreal forests is likely to restrict their response to the continuous rise in [CO(2)] and/or TE.

  18. Nutrient resorption and patterns of litter production and decomposition in a Neotropical savanna.

    Treesearch

    A.R. Kozovits; M.M.C. Bustamante; C.R. Garofalo; S. Bucci; A.C. Franco; G. Goldstein; F. Meinzer

    2007-01-01

    1. Deposition of nutrients owing to anthropogenic activities has the potential to change nutrient availability in nutrient-limited ecosystems with consequences for plant and ecosystem processes. 2. Species-specific and ecosystem responses to the addition of nutrients were studied in a field experiment conducted in a Savanna (Cerrado sensu stricto)...

  19. Improving crop nutrient efficiency through root architecture modifications.

    PubMed

    Li, Xinxin; Zeng, Rensen; Liao, Hong

    2016-03-01

    Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition. © 2015 Institute of Botany, Chinese Academy of Sciences.

  20. [Changes of soil nutrient contents after prescribed burning of forestland in Heshan City, Guangdong Province].

    PubMed

    Sun, Yu-xin; Wu, Jian-ping; Zhou, Li-xia; Lin, Yong-biao; Fu, Sheng-lei

    2009-03-01

    A comparative study was conducted to analyze the changes of soil nutrient contents in Eucalyptus forestland and in shrubland after three years of prescribed burning. In Eucalyptus forestland, soil organic carbon, total nitrogen, available potassium contents and soil pH decreased significantly; soil available phosphorus and exchangeable magnesium contents, net nitrogen mineralization rate and ammonification rate also decreased but showed no significant difference. In shrubland, soil exchangeable calcium content increased significantly, but the contents of other nutrients had no significant change. The main reason of the lower soil net nitrogen mineralization rate in Eucalyptus forest could be the decrease of available substrates and the uptake of larger amount of soil nutrients by the fast growth of Eucalyptus. The soil nutrients in shrubland had a quick restoration rate after burning.

  1. Wave disturbance overwhelms top-down and bottom-up control of primary production in California kelp forests.

    PubMed

    Reed, Daniel C; Rassweiler, Andrew; Carr, Mark H; Cavanaugh, Kyle C; Malone, Daniel P; Siegel, David A

    2011-11-01

    We took advantage of regional differences in environmental forcing and consumer abundance to examine the relative importance of nutrient availability (bottom-up), grazing pressure (top-down), and storm waves (disturbance) in determining the standing biomass and net primary production (NPP) of the giant kelp Macrocystis pyrifera in central and southern California. Using a nine-year data set collected from 17 sites we show that, despite high densities of sea urchin grazers and prolonged periods of low nutrient availability in southern California, NPP by giant kelp was twice that of central California where nutrient concentrations were consistently high and sea urchins were nearly absent due to predation by sea otters. Waves associated with winter storms were consistently higher in central California, and the loss of kelp biomass to winter wave disturbance was on average twice that of southern California. These observations suggest that the more intense wave disturbance in central California limited NPP by giant kelp under otherwise favorable conditions. Regional patterns of interannual variation in NPP were similar to those of wave disturbance in that year-to-year variation in disturbance and NPP were both greater in southern California. Our findings provide strong evidence that regional differences in wave disturbance overwhelmed those of nutrient supply and grazing intensity to determine NPP by giant kelp. The important role of disturbance in controlling NPP revealed by our study is likely not unique to giant kelp forests, as vegetation dynamics in many systems are dominated by post-disturbance succession with climax communities being relatively uncommon. The effects of disturbance frequency may be easier to detect in giant kelp because it is fast growing and relatively short lived, with cycles of disturbance and recovery occurring on time scales of years. Much longer data sets (decades to centuries) will likely be needed to properly evaluate the role of disturbance relative to other processes in determining patterns of NPP in other systems.

  2. Growth and nutrition of baldcypress families planted under varying salinity regimes in Louisiana, USA

    USGS Publications Warehouse

    Krauss, K.W.; Chambers, J.L.; Allen, J.A.; Soileau, D.M.; DeBosier, A.S.

    2000-01-01

    Saltwater intrusion from the Gulf of Mexico is one important factor in the destruction of baldcypress (Taxodium distichum (L.) Rich.) swamps along the Louisiana Gulf Coast, USA. Recent restoration efforts have focused on identification of baldcypress genotypes with greater tolerance to saline conditions than previously reported. To date, salt tolerance investigations have not been conducted under saline field conditions. In 1996, therefore, three plantations were established with 10 half-sib genotype collections of baldcypress in mesohaline wetlands. Tree survival and growth were measured at the end of two growing seasons, and foliar ion concentrations of Na, Cl, K, and Ca and available soil nutrients were measured during the 1996 growing season. In general, soil nutrient concentrations exceeded averages found in other baldcypress stands in the southeastern United States. Seedlings differed among sites in all parameters measured, with height, diameter, foliar biomass, and survival decreasing as site salinity increased. Average seedling height at the end of two years, for example, was 196.4 cm on the lowest salinity site and 121.6 cm on the highest. Several half-sib families maintained greater height growth increments (ranging from 25.5 to 54.5 cm on the highest salinity site), as well as lower foliar ion concentrations of K, Cl, and Ca. Results indicate that genotypic screening of baldcypress may improve growth and vigor of seedlings planted within wetlands impacted by saltwater intrusion.

  3. Does infection tilt the scales? Disease effects on the mass balance of an invertebrate nutrient recycler.

    PubMed

    Narr, Charlotte F; Frost, Paul C

    2015-12-01

    While parasites are increasingly recognized as important components of ecosystems, we currently know little about how they alter ecosystem nutrient availability via host-mediated nutrient cycling. We examined whether infection alters the flow of nutrients through hosts and whether such effects depend upon host diet quality. To do so, we compared the mass specific nutrient (i.e., nitrogen and phosphorus) release rates, ingestion rates, and elemental composition of uninfected Daphnia to those infected with a bacterial parasite, P. ramosa. N and P release rates were increased by infection when Daphnia were fed P-poor diets, but we found no effect of infection on the nutrient release of individuals fed P-rich diets. Calculations based on the first law of thermodynamics indicated that infection should increase the nutrient release rates of Daphnia by decreasing nutrient accumulation rates in host tissues. Although we found reduced nutrient accumulation rates in infected Daphnia fed all diets, this reduction did not increase the nutrient release rates of Daphnia fed the P-rich diet because infected Daphnia fed this diet ingested nutrients more slowly than uninfected hosts. Our results thus indicate that parasites can significantly alter the nutrient use of animal consumers, which could affect the availability of nutrients in heavily parasitized environments.

  4. Apparatus and method for phosphate-accelerated bioremediation

    DOEpatents

    Looney, Brian B.; Pfiffner, Susan M.; Phelps, Tommy J.; Lombard, Kenneth H.; Hazen, Terry C.; Borthen, James W.

    1998-01-01

    An apparatus and method for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion thereof evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site and provides for the use of a passive delivery system. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate.

  5. Apparatus and method for phosphate-accelerated bioremediation

    DOEpatents

    Looney, B.B.; Phelps, T.J.; Hazen, T.C.; Pfiffner, S.M.; Lombard, K.H.; Borthen, J.W.

    1994-01-01

    An apparatus and method for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in fluid communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion thereof evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate.

  6. Method for phosphate-accelerated bioremediation

    DOEpatents

    Looney, Brian B.; Lombard, Kenneth H.; Hazen, Terry C.; Pfiffner, Susan M.; Phelps, Tommy J.; Borthen, James W.

    1996-01-01

    An apparatus and method for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in fluid communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion thereof evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate.

  7. Evaluation of nutrient digestibility and fecal characteristics of exotic felids fed horse- or beef-based diets: use of the domestic cat as a model for exotic felids.

    PubMed

    Vester, Brittany M; Beloshapka, Alison N; Middelbos, Ingmar S; Burke, Sarah L; Dikeman, Cheryl L; Simmons, Lee G; Swanson, Kelly S

    2010-01-01

    The objective of this study was to determine the effects of feeding commercially available beef- and horse-based diets on nutrient digestibility and fecal characteristics of large captive exotic felids and domestic cats. Four species of large exotic felids including cheetahs, Malayan tigers, jaguars, and Amur tigers, and domestic cats were utilized in a crossover design. Raw meat diets included a beef-based diet (57% protein; 28% fat) and a horse-based diet (51% protein; 30% fat). All cats were acclimated to the diet for 16 days followed by a 4 day collection period, where total feces, including one fresh sample, were collected. All feces were scored on collection. Intake did not differ due to diet, but fecal output was greater when cats consumed the horse-based diet. Total tract apparent dry matter (DM) digestibility was higher (P<0.05) and organic matter (OM) and crude protein (CP) digestibilities were lower (P<0.05) when cats were fed the beef-based diet compared with the horse-based diet. CP digestibility was similar in domestic cats and cheetahs, and greater (P<0.05) than Amur tigers. Fecal scores were lower and fecal DM was greater (P<0.05) when cats consumed the horse-based diet compared with the beef-based diet. Domestic cats had lower (P<0.05) fecal ammonia concentrations compared with all other species. Fecal ammonia concentrations were lowest (P<0.05) when cats were fed the horse-based diet. Fecal total short-chain fatty acid (SCFA), branched-chain fatty acid (BCFA), and butyrate concentrations were higher (P<0.05) when cats consumed the beef-based diet. Our results suggest that the domestic cat serves as an appropriate model for large exotic felid species, but differences among the species exist. Decreased nutrient digestibility by tigers and jaguars should be considered when developing feeding recommendations for these species based on domestic cat data. (c) 2009 Wiley-Liss, Inc.

  8. Balancing the benefits and costs of traditional food substitution by indigenous Arctic women of childbearing age: Impacts on persistent organic pollutant, mercury, and nutrient intakes.

    PubMed

    Binnington, Matthew J; Curren, Meredith S; Chan, Hing Man; Wania, Frank

    2016-09-01

    For indigenous Arctic Canadians, traditional food consumption represents a key source of nutrients and environmental contaminants. Particularly, ingestion of marine mammal blubber and meat may lead to persistent organic pollutant levels and mercury intakes that exceed regulatory thresholds for sensitive populations. We investigated whether temporary adjustments to the consumption of traditional food derived from marine mammals appreciably impacted contaminant exposure and nutrient intakes among indigenous women of childbearing age. Such adjustments can be motivated by the desire to lower contaminant exposure or to increase nutrition, or by the diminishing availability of other traditional food sources. We combined the contaminant fate and transport model GloboPOP with the food chain bioaccumulation model ACC-Human Arctic to simulate polychlorinated biphenyl exposures in female 2007-08 Inuit Health Survey participants. We also calculated daily mercury and nutrient intake rates. Our results suggest that a temporary decrease in marine mammal consumption is largely ineffective at reducing exposure to polychlorinated biphenyls, because of their long elimination half-lives. In contrast, substitution of marine mammals was highly efficient at reducing mercury intake, but also appreciably lowered intakes of iron, manganese, selenium, and ω-3 polyunsaturated fatty acids. The impact of increasing intake of traditional food derived from marine mammals during childbearing age greatly depended on baseline consumption rates; replacement is ill-advised for those who already consume a lot of traditional food due to greater polychlorinated biphenyl and mercury exposures, while replacement was potentially beneficial for those with very limited marine mammal consumption due to increased nutrient intakes. Our calculations primarily suggest that considering baseline traditional food intake rates is critical to devising reproductive dietary adjustment strategies that maximize nutrient intake while minimizing environmental contaminant exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Diffuse nutrient losses and the impact factors determining their regional differences in four catchments from North to South China

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Zhou, Yujian; Shao, Quanxi; Liu, Hongbin; Lei, Qiuliang; Zhai, Xiaoyan; Wang, Xuelei

    2016-12-01

    Diffuse nutrient loss mechanism is complicated and shows remarkably regional differences due to spatial heterogeneities of underlying surface conditions, climate and agricultural practices. Moreover, current available observations are still hard to support the identification of impact factors due to different time or space steps. In this study, an integrated water system model (HEQM) was adopted to obtain the simulated loads of diffuse components (carriers: runoff and sediment; nutrient: total nitrogen (TN) and total phosphorous (TP)) with synchronous scales. Multivariable statistical analysis approaches (Analysis of Similarity and redundancy analysis) were used to assess the regional differences, and to identify impact factors as well as their contributions. Four catchments were selected as our study areas, i.e., Xiahui and Zhangjiafen Catchments of Miyun Basin in North China, Yuliang and Tunxi Catchments of Xin'anjiang Basin in South China. Results showed that the model performances of monthly processes were very good for runoff and good for sediment, TN and TP. The annual average coefficients of all the diffuse components in Xin'anjiang Basin were much greater than those in Miyun Basin, and showed significantly regional differences. All the selected impact factors interpreted 72.87-82.16% of the regional differences of carriers, and 62.72-71.62% of those of nutrient coefficients, respectively. For individual impact factor categories, the critical category was geography, followed by land-use/cover, carriers, climate, as well as soil and agricultural practices in Miyun Basin, or agricultural practices and soil in Xin'anjiang Basin. For individual factors, the critical factors were locations for the carrier regional differences, and carriers or chemical fertilizer for the nutrient regional differences. This study is expected to promote further applications of integrated water system model and multivariable statistical analysis in the diffuse nutrient studies, and provide a scientific support for the diffuse pollution control and management in China.

  10. Temporal trends and spatial patterns in nutrient export along the Mississippi River and its Tributaries

    NASA Astrophysics Data System (ADS)

    Stewart, B.; Li, L.

    2017-12-01

    The Mississippi River, the largest river in the U. S., exports excessive nutrients from the land to the sea, causing the problem of hypoxia in the Gulf of Mexico. In this research, we examined nutrient export along the Mississippi River and its tributaries to understand its trends and patterns and to identify the major factors contributing to these trends. We examined nutrient data from 1950 - 2017 for four sites along the Mississippi River and four tributary sites from the U. S. Geological Survey. The species included: total nitrogen, organic nitrogen, ammonia, nitrate, orthophosphate, and phosphorous. We analyzed the power law relationship of concentration and discharge, for which the export of nutrient species exhibited several trends. Both nitrogen (N) and phosphorous (P) species exhibited mostly chemodynamic behavior. This is in contrast to previous observations in smaller agricultural land where N and P export was mostly chemostatic with no significant change in concentration as discharge varies, suggesting possible scaling effects at different spatial scales. We also compared the average annual concentration over time at each site. The N concentration decreased from upstream to downstream, likely due to greater agricultural activities in the upstream Mississippi river and possible denitrification along the river. The N concentration also increased with time. The P species, however, fluctuated from site to site with no clear spatial patterns, but consistently exhibited higher concentrations at upstream sites with greater agricultural activities. The P species also fluctuated over time, likely due to patterns in discharge and agricultural activities. The results of this research can be further explored by calculating the total export of nutrients into the Gulf of Mexico to determine limits and drivers of nutrient export for better water management, thus helping prevent hypoxia and eutrophication within the Mississippi River basin.

  11. Nutrient availability in rangeland soils: influence of prescribed burning, herbaceous vegetation removal, overseeding with Bromus tectorum, season, and elevation

    Treesearch

    R. R. Blank; J. Chambers; B. Roundy; A. Whittaker

    2007-01-01

    Soil nutrient availability influences plant invasions. Resin capsules were used to examine soil nutrient bioavailability along 2 sagebrush-grassland elevation transects in the east Tintic Range (Utah) and Shoshone Range (Nevada). In the fall of 2001, treatments were applied to 3 replicate plots at each site, which included prescribed burning, herbaceous vegetation...

  12. Nutrient digestibility and fecal characteristics are different among captive exotic felids fed a beef-based raw diet.

    PubMed

    Vester, Brittany M; Burke, Sarah L; Dikeman, Cheryl L; Simmons, Lee G; Swanson, Kelly S

    2008-03-01

    Nutrient digestibility has not been well characterized in exotic felids. The objective of this experiment was to evaluate differences in nutrient digestibility and fecal characteristics in five large exotic captive felid species, including bobcats, jaguars, cheetahs, Indochinese tigers, and Siberian tigers. All animals were individually housed and adapted to a beef-based raw diet (Nebraska Brand((R)) Special Beef Feline, North Platte, NE) for 16 d. Total fecal collections were conducted from days 17 to 20. Fecal samples were weighed and scored on collection. Diet and fecal samples were evaluated for dry matter, organic matter, protein, fat, and energy to determine total tract digestibility. Fresh fecal samples were collected to determine fecal pH, ammonia, phenol, indole, short-chain fatty acid, and branched-chain fatty acid concentrations. Fecal scores were greater (P<0.01) in Indochinese tigers when compared with all other species, and cheetahs had greater (P<0.01) fecal scores than jaguars and bobcats. Fat digestibility was greater (P<0.01) in Siberian tigers, Indochinese tigers, and bobcats (96%) compared with cheetahs and jaguars (94%). Digestible energy was greater (P<0.05) in bobcats and Indochinese tigers at 93.5 and 92.9%, respectively, compared with cheetahs and jaguars, 91.6%. Fecal pH was greater (P<0.01) in bobcats compared with all other species evaluated. Indole concentrations were greater (P<0.05) in cheetahs and jaguars compared with bobcats and Indochinese tigers. Fecal ammonia concentrations were increased (P<0.05) in cheetahs compared with all other species. The beef-based raw diet was highly digestible; however, differences in fat and digestible energy suggest that species should be considered when determining caloric needs of exotic felids. Zoo Biol 27:126-136, 2008. (c) 2008 Wiley-Liss, Inc.

  13. Controls of bedrock geochemistry on soil and plant nutrients in Southeastern Utah

    USGS Publications Warehouse

    Neff, J.C.; Reynolds, R.; Sanford, R.L.; Fernandez, D.; Lamothe, P.

    2006-01-01

    The cold deserts of the Colorado Plateau contain numerous geologically and geochemically distinct sedimentary bedrock types. In the area near Canyonlands National Park in Southeastern Utah, geochemical variation in geologic substrates is related to the depositional environment with higher concentrations of Fe, Al, P, K, and Mg in sediments deposited in alluvial or marine environments and lower concentrations in bedrock derived from eolian sand dunes. Availability of soil nutrients to vegetation is also controlled by the formation of secondary minerals, particularly for P and Ca availability, which, in some geologic settings, appears closely related to variation of CaCO3 and Ca-phosphates in soils. However, the results of this study also indicate that P content is related to bedrock and soil Fe and Al content suggesting that the deposition history of the bedrock and the presence of P-bearing Fe and Al minerals, is important to contemporary P cycling in this region. The relation between bedrock type and exchangeable Mg and K is less clear-cut, despite large variation in bedrock concentrations of these elements. We examined soil nutrient concentrations and foliar nutrient concentration of grasses, shrubs, conifers, and forbs in four geochemically distinct field sites. All four of the functional plant groups had similar proportional responses to variation in soil nutrient availability despite large absolute differences in foliar nutrient concentrations and stoichiometry across species. Foliar P concentration (normalized to N) in particular showed relatively small variation across different geochemical settings despite large variation in soil P availability in these study sites. The limited foliar variation in bedrock-derived nutrients suggests that the dominant plant species in this dryland setting have a remarkably strong capacity to maintain foliar chemistry ratios despite large underlying differences in soil nutrient availability. ?? 2006 Springer Science+Business Media, Inc.

  14. Mechanisms for the increase in phosphorus uptake of waterlogged plants: soil phosphorus availability, root morphology and uptake kinetics.

    PubMed

    Rubio, Gerardo; Oesterheld, Martín; Alvarez, Carina R; Lavado, Raúl S

    1997-10-01

    Waterlogging frequently reduces plant biomass allocation to roots. This response may result in a variety of alterations in mineral nutrition, which range from a proportional lowering of whole-plant nutrient concentration as a result of unchanged uptake per unit of root biomass, to a maintenance of nutrient concentration by means of an increase in uptake per unit of root biomass. The first objective of this paper was to test these two alternative hypothetical responses. In a pot experiment, we evaluated how plant P concentration of Paspalum dilatatum, (a waterlogging-tolerant grass from the Flooding Pampa, Argentina) was affected by waterlogging and P supply and how this related to changes in root-shoot ratio. Under both soil P levels waterlogging reduced root-shoot ratios, but did not reduce P concentration. Thus, uptake of P per unit of root biomass increased under waterlogging. Our second objective was to test three non-exclusive hypotheses about potential mechanisms for this increase in P uptake. We hypothesized that the greater P uptake per unit of root biomass was a consequence of: (1) an increase in soil P availability induced by waterlogging; (2) a change in root morphology, and/or (3) an increase in the intrinsic uptake capacity of each unit of root biomass. To test these hypotheses we evaluated (1) changes in P availability induced by waterlogging; (2) specific root length of waterlogged and control plants, and (3) P uptake kinetics in excised roots from waterlogged and control plants. The results supported the three hypotheses. Soil P avail-ability was higher during waterlogging periods, roots of waterlogged plants showed a morphology more favorable to nutrient uptake (finer roots) and these roots showed a higher physiological capacity to absorb P. The results suggest that both soil and plant mechanisms contributed to compensate, in terms of P nutrition, for the reduction in allocation to root growth. The rapid transformation of the P uptake system is likely an advantage for plants inhabiting frequently flooded environments with low P fertility, like the Flooding Pampa. This advantage would be one of the reasons for the increased relative abundance of P. dilatatum in the community after waterlogging periods.

  15. [Characteristics of soil microorganisms and soil nutrients in different sand-fixation shrub plantations in Kubuqi Desert, China].

    PubMed

    Zhang, Li-Xin; Duan, Yu Xi; Wang, Bo; Wang, Wei Feng; Li, Xiao Jing; Liu, Jin Jie

    2017-12-01

    Three types of sand-fixation shrub plantations, including Artemisia ordosica + Hedysarum fruticosum, Caragana korshinskii and Salix psammophila, were selected in the eastern area of Kubuqi Desert to study the changes in soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN), quantities of soil microorganisms, contents of soil nutrients and the relations among these variables under the different plantation types and shifting sandy land. The restoration effects of each plantation type on soil quality were assessed by synthetic index method. The results showed that the contents of soil organic matter, total nitrogen and phosphorus, and available nitrogen and phosphorus under different plantations were all significantly greater than those under shifting sandy land, and the order of increase was A. ordosica + H. fruticosum > C. korshinskii > S. psammophila. The soil nutrient contents decreased with the increase of soil depth under all plantation types. The quantities of soil microorganisms and the contents of soil MBC and MBN under the plantations were higher at different degrees than those under shifting sandy land. MBC, MBN and the relative numbers of bacteria under A. ordosica+H. fruticosum plantation were higher than those under C. korshinskii plantation and S. psammophila plantation. The relative numbers of fungi and actinobacteria decreased in the order of C. korshinskii > S. psammophila > A. ordosica + H. fruticosum. The relative number of bacteria, MBC and MBN under the plantations were mainly affected by the contents of soil organic matter, total nitrogen, total phosphorus, available nitrogen, available phosphorus, as well as C/N, and the relative numbers of actinobacteria and fungi were primarily affected by the contents of soil total phosphorus, available nitrogen and available phosphorus. Soil quality was ranked in the order of A. ordosica + H. fruticosum > C. korshinskii > S. psammophila > shifting sandy land. These results demonstrated that different sand-fixation shrub plantations could improve the quality of the desert soil and the A. ordosica + H. fruticosum plantation was the best for soil restoration and quality improvement in the desert.

  16. Phosphate addition enhanced soil inorganic nutrients to a large extent in three tropical forests.

    PubMed

    Zhu, Feifei; Lu, Xiankai; Liu, Lei; Mo, Jiangming

    2015-01-21

    Elevated nitrogen (N) deposition may constrain soil phosphorus (P) and base cation availability in tropical forests, for which limited evidence have yet been available. In this study, we reported responses of soil inorganic nutrients to full factorial N and P treatments in three tropical forests different in initial soil N status (N-saturated old-growth forest and two less-N-rich younger forests). Responses of microbial biomass, annual litterfall production and nutrient input were also monitored. Results showed that N treatments decreased soil inorganic nutrients (except N) in all three forests, but the underlying mechanisms varied depending on forests: through inhibition on litter decomposition in the old-growth forest and through Al(3+) replacement of Ca(2+) in the two younger forests. In contrast, besides great elevation in soil available P, P treatments induced 60%, 50%, 26% increases in sum of exchangeable (K(+)+Ca(2+)+Mg(2+)) in the old-growth and the two younger forests, respectively. These positive effects of P were closely related to P-stimulated microbial biomass and litter nutrient input, implying possible stimulation of nutrient return. Our results suggest that N deposition may result in decreases in soil inorganic nutrients (except N) and that P addition can enhance soil inorganic nutrients to support ecosystem processes in these tropical forests.

  17. Phosphate addition enhanced soil inorganic nutrients to a large extent in three tropical forests

    PubMed Central

    Zhu, Feifei; Lu, Xiankai; Liu, Lei; Mo, Jiangming

    2015-01-01

    Elevated nitrogen (N) deposition may constrain soil phosphorus (P) and base cation availability in tropical forests, for which limited evidence have yet been available. In this study, we reported responses of soil inorganic nutrients to full factorial N and P treatments in three tropical forests different in initial soil N status (N-saturated old-growth forest and two less-N-rich younger forests). Responses of microbial biomass, annual litterfall production and nutrient input were also monitored. Results showed that N treatments decreased soil inorganic nutrients (except N) in all three forests, but the underlying mechanisms varied depending on forests: through inhibition on litter decomposition in the old-growth forest and through Al3+ replacement of Ca2+ in the two younger forests. In contrast, besides great elevation in soil available P, P treatments induced 60%, 50%, 26% increases in sum of exchangeable (K++Ca2++Mg2+) in the old-growth and the two younger forests, respectively. These positive effects of P were closely related to P-stimulated microbial biomass and litter nutrient input, implying possible stimulation of nutrient return. Our results suggest that N deposition may result in decreases in soil inorganic nutrients (except N) and that P addition can enhance soil inorganic nutrients to support ecosystem processes in these tropical forests. PMID:25605567

  18. Erythroneura lawsoni abundance and feeding injury levels are influenced by foliar nutrient status in intensively managed American sycamore.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, David, Robert: Aubrey, Doug, Patric; Bentz, Jo-Ann

    2010-01-01

    Abstract 1 Abundance and feeding injury of the leafhopper Erythroneura lawsoni Robinson was measured in an intensively-managed American sycamore Platanus occidentalis L. plantation. Trees were planted in spring 2000 in a randomized complete block design, and received one of three annual treatments: (i) fertilization (120 kg N/ha/year); (ii) irrigation (3.0 cm/week); (iii) fertilization + irrigation; or (iv) control (no treatment). 2 Foliar nutrient concentrations were significantly influenced by the treatments because only sulphur and manganese levels were not statistically greater in trees receiving fertilization. 3 Over 116 000 E. lawsoni were captured on sticky traps during the study. Leafhopper abundancemore » was highest on nonfertilized trees for the majority of the season, and was positively correlated with foliar nutrient concentrations. Significant temporal variation in E. lawsoni abundance occurred, suggesting five discrete generations in South Carolina. 4 Significant temporal variation occurred in E. lawsoni foliar injury levels, with the highest injury ratings occurring in late June and August. Foliar injury was negatively correlated with foliar nutrient content, and higher levels of injury occurred more frequently on nonfertilized trees. 5 The results obtained in the present study indicated that increased E. lawsoni abundance occurred on trees that did not receive fertilization. Nonfertilized trees experienced greater foliar injury, suggesting that lower foliar nutrient status may have led to increased levels of compensatory feeding.« less

  19. Understanding complexities in coupled dynamics of human-water and food security

    NASA Astrophysics Data System (ADS)

    Usmani, M.; Kondal, A.; Lin, L.; Colwell, R. R.; Jutla, A.

    2017-12-01

    Traditional premise of food security is associated with satisfying human hunger by providing sufficient calories to population. Water is the key variable associated with the growth of crops, which is then used as a metric of success for abundance of food across globe. The current framework often negates complex coupled interaction between availability of food nutrients and human well-being (such as productivity, work efficiency, low birth weight, physical and mental growth). Our analysis suggests that 1 in 3 humans suffer from malnutrition across the globe. In last five decades, most of the countries have a decreasing availability trend in at least one of the twenty-three essential food nutrients required for human well-being. We argue that food security can only be achieved if information on use of water for crops and consumption of food must include availability of nutrients for humans. Here, we propose a new concept of "consumptive nutrients" that include constant feedback mechanism between water-human and societal processes- essential for growth, distribution and consumption of food nutrients. Using Ethiopia as a signature rain-fed agricultural region, we will show how decreasing precipitation has led to an increase in crop productivity, but decreased availability of nutrients for humans. This in turn has destabilizing impact on overall regional economy. We will demonstrate why inclusion of nutrients must be a part of discussion for ensuring food security to human population.

  20. Productivity and nutrient cycling in bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem (Andropogon geradii Vitman), switchgrass (Panicum virgatum L.), indiangrass [ Sorghastrum nutans (L.) Nash], and eastern gamagrass (Tripsacum dactyloides L.). Generally, the optimum rate of fertilization for biomass yield by the grasses was 140 kg N ha-1. Nitrogen inputs also had pronounced but grass-specific effects on biomass and nutrient partitioning, and on carbon storage. For big bluestem and switchgrass, 140 kg N ha -1. maximized root biomass, favored allocation of nutrients to roots over shoots, and led to net increases in carbon storage over the study duration. In contrast, for indiangrass and eastern gamagrass, root biomass and root nutrient allocation were generally adversely affected by N fertilization and carbon storage increased only with 0 or 65 kg N ha-1. For all grasses, 220 kg N ha -1 tended to shift allocation of nutrients to shoots over roots and resulted in no net increase in carbon storage. Optimal nitrogen management strategies for perennial, warm-season grass energy crops should take into consideration the effects of N on biomass yield as well as factors such as nutrient and carbon balance that will also impact economic feasibility and environmental sustainability.

  1. Breeding crops for improved mineral nutrition under climate change conditions.

    PubMed

    Pilbeam, David J

    2015-06-01

    Improvements in understanding how climate change may influence chemical and physical processes in soils, how this may affect nutrient availability, and how plants may respond to changed availability of nutrients will influence crop breeding programmes. The effects of increased atmospheric CO2 and warmer temperatures, both individually and combined, on soil microbial activity, including mycorrhizas and N-fixing organisms, are evaluated, together with their implications for nutrient availability. Potential changes to plant growth, and the combined effects of soil and plant changes on nutrient uptake, are discussed. The organization of research on the efficient use of macro- and micronutrients by crops under climate change conditions is outlined, including analysis of QTLs for nutrient efficiency. Suggestions for how the information gained can be used in plant breeding programmes are given. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Effects of soil nutrient heterogeneity on intraspecific competition in the invasive, clonal plant Alternanthera philoxeroides.

    PubMed

    Zhou, Jian; Dong, Bi-Cheng; Alpert, Peter; Li, Hong-Li; Zhang, Ming-Xiang; Lei, Guang-Chun; Yu, Fei-Hai

    2012-03-01

    Fine-scale, spatial heterogeneity in soil nutrient availability can increase the growth of individual plants, the productivity of plant communities and interspecific competition. If this is due to the ability of plants to concentrate their roots where nutrient levels are high, then nutrient heterogeneity should have little effect on intraspecific competition, especially when there are no genotypic differences between individuals in root plasticity. We tested this hypothesis in a widespread, clonal species in which individual plants are known to respond to nutrient heterogeneity. Plants derived from a single clone of Alternanthera philoxeroides were grown in the greenhouse at low or high density (four or 16 plants per 27·5 × 27·5-cm container) with homogeneous or heterogeneous availability of soil nutrients, keeping total nutrient availability per container constant. After 9 weeks, measurements of size, dry mass and morphology were taken. Plants grew more in the heterogeneous than in the homogeneous treatment, showing that heterogeneity promoted performance; they grew less in the high- than in the low-density treatment, showing that plants competed. There was no interactive effect of nutrient heterogeneity and plant density, supporting the hypothesis that heterogeneity does not affect intraspecific competition in the absence of genotypic differences in plasticity. Treatments did not affect morphological characteristics such as specific leaf area or root/shoot ratio. Results indicate that fine-scale, spatial heterogeneity in the availability of soil nutrients does not increase competition when plants are genetically identical, consistent with the suggestion that effects of heterogeneity on competition depend upon differences in plasticity between individuals. Heterogeneity is only likely to increase the spread of monoclonal, invasive populations such as that of A. philoxeroides in China.

  3. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.

    PubMed

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.

  4. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients

    PubMed Central

    Matimati, Ignatious

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed ‘mass-flow’ treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed ‘interception’ treatment). ‘Mass-flow’ plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (g s), 1.2-fold higher intercellular [CO2] (C i), and 3.4-fold lower water use efficiency than ‘interception’ plants, despite comparable values of photosynthetic rate (A). E, g s, and C i first increased and then decreased with increasing distance from the N source to values even lower than those of ‘interception’ plants. ‘Mass-flow’ plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties. PMID:24231035

  5. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands

    USGS Publications Warehouse

    Wolf, Kristin L.; Noe, Gregory B.; Ahn, Changwoo

    2013-01-01

    Greater connectivity to stream surface water may result in greater inputs of allochthonous nutrients that could stimulate internal nitrogen (N) and phosphorus (P) cycling in natural, restored, and created riparian wetlands. This study investigated the effects of hydrologic connectivity to stream water on soil nutrient fluxes in plots (n = 20) located among four created and two natural freshwater wetlands of varying hydrology in the Piedmont physiographic province of Virginia. Surface water was slightly deeper; hydrologic inputs of sediment, sediment-N, and ammonium were greater; and soil net ammonification, N mineralization, and N turnover were greater in plots with stream water classified as their primary water source compared with plots with precipitation or groundwater as their primary water source. Soil water-filled pore space, inputs of nitrate, and soil net nitrification, P mineralization, and denitrification enzyme activity (DEA) were similar among plots. Soil ammonification, N mineralization, and N turnover rates increased with the loading rate of ammonium to the soil surface. Phosphorus mineralization and ammonification also increased with sedimentation and sediment-N loading rate. Nitrification flux and DEA were positively associated in these wetlands. In conclusion, hydrologic connectivity to stream water increased allochthonous inputs that stimulated soil N and P cycling and that likely led to greater retention of sediment and nutrients in created and natural wetlands. Our findings suggest that wetland creation and restoration projects should be designed to allow connectivity with stream water if the goal is to optimize the function of water quality improvement in a watershed.

  6. A nutrient dependant switch explains mutually exclusive existence of meiosis and mitosis initiation in budding yeast.

    PubMed

    Wannige, C T; Kulasiri, D; Samarasinghe, S

    2014-01-21

    Nutrients from living environment are vital for the survival and growth of any organism. Budding yeast diploid cells decide to grow by mitosis type cell division or decide to create unique, stress resistant spores by meiosis type cell division depending on the available nutrient conditions. To gain a molecular systems level understanding of the nutrient dependant switching between meiosis and mitosis initiation in diploid cells of budding yeast, we develop a theoretical model based on ordinary differential equations (ODEs) including the mitosis initiator and its relations to budding yeast meiosis initiation network. Our model accurately and qualitatively predicts the experimentally revealed temporal variations of related proteins under different nutrient conditions as well as the diverse mutant studies related to meiosis and mitosis initiation. Using this model, we show how the meiosis and mitosis initiators form an all-or-none type bistable switch in response to available nutrient level (mainly nitrogen). The transitions to and from meiosis or mitosis initiation states occur via saddle node bifurcation. This bidirectional switch helps the optimal usage of available nutrients and explains the mutually exclusive existence of meiosis and mitosis pathways. © 2013 Elsevier Ltd. All rights reserved.

  7. Cotton Production Practices Change Soil Properties

    NASA Astrophysics Data System (ADS)

    Blaise, D.; Singh, J. V.

    2012-04-01

    Historically, indigenous Asiatic cottons (Gossypium arboreum) were cultivated with minimal inputs in India. The introduction of the Upland cottons (G. hirsutum) and later the hybrid (H-4) triggered a whole set of intensified agronomic management with reliance on high doses of fertilisers and pesticide usage. In 2002, the transgenic Bt cotton hybrids were introduced and released for commercial cultivation. Presently, more than 95% of the nearly 12.2 million hectares of cotton area is under the Bt transgenic hybrids. These hybrids are not only high yielding but have reduced the dependence on pesticide because of an effective control of the lepidopteran pests. Thus, a change in the management practices is evident over the years. In this paper, we discuss the impact of two major agronomic management practices namely, nutrient management and tillage besides organic cotton cultivation in the rainfed cotton growing regions of central India characterized by sub-humid to semi-arid climate and dominated by Vertisols. Long-term studies at Nagpur, Maharashtra indicated the importance of integrated nutrient management (INM) wherein a part of the nutrient needs through fertiliser was substituted with organic manures such as farmyard manure (FYM). With the application of mineral fertilisers alone, soils became deficient in micronutrients. This was not observed with the FYM amended plots. Further, the manure amended plots had a better soil physical properties and the water holding capacity of the soil improved due to improvements in soil organic matter (SOM). Similarly, in a separate experiment, an improvement in SOM was observed in the organically managed fields because of continuous addition of organic residues. Further, it resulted in greater biological activity compared to the conventionally managed fields. Conservation tillage systems such as reduced tillage (RT) are a means to improve soil health and crop productivity. Long-term studies on tillage practices such as conventional tillage {CT}, RT with two inter-row cultivations {RT1} and RT with no inter-row cultivation {RT2} were conducted for 11 years. At the end of the study, an improvement in the soil physical properties such as water stable aggregates and mean weight diameter were observed in the RT system and the plots amended with green manure (GM) cover crop compared to those without. Further, available soil moisture content was greater in the GM mulched plots up to 0.60 m depth compared to the without GM treatment. The RT systems, too, had a higher SOM content than the CT probably due to less soil disturbance and greater retention of crop residues. INM and conservation tillage are strategies to sequester C and reduce emissions. It can also mitigate green house gas emissions because less of fertiliser would be used in the INM treatments. Studies conducted, thus far, have not indicated any adverse effect of Bt cotton cultivation. However, there could be a possibility, of nutrient depletion with the cultivation of Bt transgenic hybrids because of higher biomass and nutrient removal increasing the nutrient demand. Studies on these aspects are needed to understand how long-term cultivation of Bt cotton hybrids will alter the soil properties.

  8. A Comparison of the Role of Episode Nutrient Supply on Pathways of Carbon in Upwelling Regimes

    NASA Technical Reports Server (NTRS)

    Carr, M. E.

    1997-01-01

    Nutrient supply is episode in the ocean even in regions of fairly high and continuous nutrient supply, such as coastal upwelling regimes. The structure of the ecosystem depends on nutrient availability and the different requirements of phytoplankton cells.

  9. Spring-staging ecology of midcontinent greater white-fronted geese

    USGS Publications Warehouse

    Krapu, G.L.; Reinecke, K.J.; Jorde, Dennis G.; Simpson, S.G.

    1995-01-01

    A major part of the midcontinent greater white-fronted goose (Anser albifrons) population stages for several weeks in spring in the Rainwater Basin Area (RBA) of south-central Nebraska where substantial mortality from disease occurs periodically. Effective management of this population requires better data on use of habitat, vulnerability to disease, and the role of staging areas in migration and reproduction, We studied use of habitat, foods, nutrient dynamics, and effect of changes in agriculture on food availability and habitat needs in spring 1979-80. During daylight, geese were observed primarily in harvested cornfields (76%) and growing winter wheat (23%). Corn grain and winter wheat shoots composed 90 and 9%, respectively, of foods consumed by collected geese (n = 42). Feeding activity did not vary among post-harvest cornfield treatments except that little feeding occurred (P lt 0.05) in moldboard-plowed fields ( lt 1%). Fat content for all geese increased (P ltoreq 0.01) with Julian date; protein content increased (P = 0.03) only among adult females, and there was no evidence (P gt 0.05) of temporal variation in calcium content. Adult geese storing 14.2 g of fat per day deposited approximately 582 g of fat between 22 February and 3 April. Energy requirements for thermal regulation were small compared with requirements for fat synthesis and probably had little effect on nutrient deposition. The 34,000 white-fronted geese present on the Harvard Marsh and Prairie Dog Marsh study areas in March 1980 probably used lt 20% of the corn available within a 5-km radius. We believe that midcontinent white-fronted geese arrive on Arctic breeding grounds with larger and less variable fat reserves than prior to modern agricultural development. We attribute this response to increased food availability on staging areas where the net effect of agricultural changes has been an increase in corn availability. Waterfowl managers can increase dispersion of geese and provide favorable foraging conditions by maintaining well-distributed wetland roosting habitat and by working with private landowners to ensure access to grain in the vicinity of wetlands.

  10. Dust and nutrient enrichment by wind erosion from Danish soils in dependence of tillage direction

    NASA Astrophysics Data System (ADS)

    Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.

    2016-04-01

    Wind erosion is a selective process, which promotes erosion of fine particles. Therefore, it can be assumed that increasing erosion rates are generally associated with increasing loss of dust sized particles and nutrients. However, this selective process is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. Since tillage ridges are often the only protection measure available on poorly aggregated soils in absence of a protective vegetation cover, it is very important to know which orientation respective to the dominant wind direction provides best protection. This knowledge could be very helpful for planning erosion protection measures on fields with high wind erosion susceptibility. The main objective of this study, therefore, was to determine the effect of tillage direction on dust and nutrient mobilization by wind, using wind tunnel simulations. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios - flat surface, parallel tillage, perpendicular tillage. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 μm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.

  11. Simultaneous remediation of nutrients from liquid anaerobic digestate and municipal wastewater by the microalga Scenedesmus sp. AMDD grown in continuous chemostats.

    PubMed

    Dickinson, K E; Bjornsson, W J; Garrison, L L; Whitney, C G; Park, K C; Banskota, A H; McGinn, P J

    2015-01-01

    The primary aim of this study was to investigate the capacity of a microalga, Scenedesmus sp. AMDD, to remediate nutrients from municipal wastewater, either as the sole nutrient source or after blending with wastewater obtained from the anaerobic digestion of swine manure. A complimentary aim was to study and define the effects of these wastewaters on microalgal growth, biomass productivity and composition which have important implications for a commercial biofuels production system. A microalga, Scenedesmus sp. AMDD, was grown in continuous chemostats in municipal wastewater or wastewater supplemented with 1·6× or 2·4× higher levels of nitrogen (N) obtained through supplementation with anaerobic digestates. Biomass productivity increased with increasing nutrient supplementation, but was limited by light at high cell densities. Cellular quotas of carbon (C), nitrogen and phosphorus (P) all increased in direct proportion to their concentrations in the combined wastewaters. At higher cell densities, total carbohydrate decreased while protein increased. Fatty acid content remained relatively constant. Under high nutrient levels, the fatty acid profiles contained a higher concentration of polyunsaturated fatty acids at the expense of monounsaturated fatty acids. Chlorophyll a was 2·5 times greater in the treatment of greatest nutrient supplementation compared to the treatment with the least. Ammonium (NH4(+)) and phosphate (PO4(3-)) were completely removed by algal growth in all treatments and with maximal removal rates of 41·2 mg N l(-1) d(-1) and 6·7 mg P l(-1) d(-1) observed in wastewater amended with 2·4× higher N level. The study is the first to report stable, long-term continuous algal growth and productivity obtained by combining wastewaters of different sources. The study is supported by detailed analyses of the composition of the cultivated biomass and links composition to the nutrient and light availabilities in the cultures. Simultaneous remediation of these wastes by algal growth is discussed as a strategy for the valorization of the biomass. © 2014 Her Majesty the Queen in Right of Canada © 2014 The Society for Applied Microbiology. Reproduced with the permission of the Minister of Industry.

  12. Contribution of Wastewater Treatment Plant Effluents to Nutrient Dynamics in Aquatic Systems: A Review

    NASA Astrophysics Data System (ADS)

    Carey, Richard O.; Migliaccio, Kati W.

    2009-08-01

    Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.

  13. Influence of Atmospheric CO{sub 2} enrichment on rangeland forage quality and animal grazing. Final technical report, September 1, 1989--August 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sionit, N.

    1992-12-31

    Increased biomass production in terrestrial ecosystems with elevated atmospheric CO{sub 2}, may be constrained by nutrient limitations as a result of increased requirement or reduced availability caused by reduced turnover rates of nutrients. To determine the short-term impact of nitrogen (N) fertilization on plant biomass production under elevated CO{sub 2}, we compared the response of N-fertilized tallgrass prairie at ambient and twice-ambient CO{sub 2} levels. Native tall grass prairie plots were exposed continuously to ambient and twice-ambient CO{sub 2}. We compared our results to an unfertilized companion experiment on the same research site. Above- and below-ground biomass production and leafmore » area of fertilized plots were greater with elevated than ambient CO{sub 2}. Nitrogen concentration was lower in plants exposed to elevated CO{sub 2}, but total standing crop N was greater at high CO{sub 2} increased root biomass under elevated CO{sub 2} apparently increased N uptake. The biomass production response to elevated CO{sub 2} was much greater on N-fertilized than unfertilized prairie, particularly in the dry year. We conclude that biomass production response to elevated C{sub 2} was suppressed by N limitation in years with below-normal precipitation. Reduced N concentration in above- and below-ground biomass could slow microbial degradation of soil organic matter and surface litter. The reduced tissue N concentration higher acid detergent fiber under elevated CO{sub 2} compared to ambient for forage indicated that ruminant growth and reproduction could be reduced under elevated CO{sub 2}.« less

  14. Architectural plasticity in young Eucalyptus marginata on restored bauxite mines and adjacent natural forest in south-western Australia.

    PubMed

    Bleby, Timothy M; Colquhoun, Ian J; Adams, Mark A

    2009-08-01

    The aboveground architecture of Eucalyptus marginata (Jarrah) was investigated in chronosequences of young trees (2.5, 5 and 10 m height) growing in a seasonally dry climate in a natural forest environment with intact soils, and on adjacent restored bauxite mine sites on soils with highly modified A and B horizons above an intact C horizon. Compared to forest trees, trees on restored sites were much younger and faster growing, with straighter, more clearly defined main stems and deeper, narrower crowns containing a greater number of branches that were longer, thinner and more vertically angled. Trees on restored sites also had a higher fraction of biomass in leaves than forest trees, as indicated by 20-25% thicker leaves, 30-70% greater leaf area, 10-30% greater leaf area to sapwood area ratios and 5-30% lesser branch Huber values. Differences in crown architecture and biomass distribution were consistent with putatively greater soil-water, nutrient and light availability on restored sites. Our results demonstrate that under the same climatic conditions, E. marginata displays a high degree of plasticity of aboveground architecture in response to the net effects of resource availability and soil environment. These differences in architecture are likely to have functional consequences in relation to tree hydraulics and growth that, on larger scales, is likely to affect the water and carbon balances of restored forest ecosystems. This study highlights substrate as a significant determinant of tree architecture in water-limited environments. It further suggests that the architecture of young trees on restored sites may need to change again if they are to survive likely longer-term changes in resource availability.

  15. Femoral medullary infarction secondary to canine total hip arthroplasty.

    PubMed

    Sebestyen, P; Marcellin-Little, D J; DeYoung, B A

    2000-01-01

    To evaluate the prevalence of femoral intramedullary infarction after total hip arthroplasty (THA) and to determine whether any specific femoral morphology predisposes to bone infarction. Retrospective clinical study. All dogs from our hospital population undergoing THA between 1984 and 1997 with radiographic follow-up available at 1 year or more postoperatively. A case control study was conducted within the THA group to determine risk factors predisposing to femoral infarction after THA. Medical records and radiographs were reviewed. Data were collected on clinical parameters, femoral morphology, prosthesis, and bone changes. Radiographic diagnosis was confirmed using histopathology in 11 femora. Radiographs of 50 age-matched control dogs weighing more than 20 kg with coxofemoral degenerative joint disease were randomly chosen to determine the prevalence of bone infarction in nonoperated dogs. Ninety-one dogs with 110 THA were included in the study. Fifteen of the 110 femora with THA had radiographic evidence of infarction (14%). Infarction was not present in any femora in the control group. There was no significant difference in the prevalence of infarction between dogs that received cemented or uncemented prostheses. Clinical signs were not reported in any patient that developed femoral infarction. Young age (P = .03) and a distance between the greater trochanter and nutrient foramen greater than 79 mm (P = .008) predisposed dogs to femoral infarction. Over time, three infarcts decreased in size radiographically, five remained unchanged, and three expanded. An osteosarcoma developed at the site of a bone infarct in one dog. Femoral intramedullary infarction occurred in 15 of 110 THA. Young age at the time of THA and a greater distance between the greater trochanter and the nutrient foramen predisposed to infarction. Intramedullary infarction occurs after canine THA. These bone infarcts do not appear to cause clinical signs; however, they may present a diagnostic challenge. Malignant transformation could potentially result from medullary infarction.

  16. Data for a regional approach to the development of an effects-based nutrient criterion for wadable streams

    USGS Publications Warehouse

    Crawford, J. Kent; Loper, Connie A.; Beaman, Joseph R.; Soehl, Anna G.; Brown, Will S.

    2007-01-01

    States are required by the U.S. Environmental Protection Agency to establish nutrient criteria (concentrations of nutrients above which water quality is deteriorated) as part of their water-quality regulations. A study of wadable streams in the Mid-Atlantic Region was undertaken by the U.S. Geological Survey, the U.S. Environmental Protection Agency, and the Maryland Department of the Environment, with assistance from the Pennsylvania Department of Environmental Protection, to help define current concentrations of nutrients in streams with the goal of associating different nutrient-concentration levels with their effects on water quality. During the summers of 2004 and 2005, diel concentrations of dissolved oxygen, nutrient concentrations, concentrations of chlorophyll a in attached algae, and algal-community structure were measured at 46 stream sites in Maryland, Pennsylvania, Virginia, and West Virginia. Data from this work can be used by individual state agencies to define nutrient criteria. Quality-control measures for the study included submitting blank samples, duplicate samples, and reference samples for analysis of nutrients, total organic carbon, chlorophyll a, and algal biomass. Duplicate and split samples were submitted for periphyton identifications. Three periphyton split samples were sent to an independent lab for a check on periphyton identifications. Neither total organic carbon nor nutrients were detected in blank samples. Concentrations of nutrients and total organic carbon were similar for most duplicate sample pairs, with the exception of a duplicate pair from Western Run. Concentrations of ammonia plus organic nitrogen for this duplicate pair differed by as much as 34 percent. Total organic carbon for the duplicate pair from Western Run differed by 102 percent. The U.S. Geological Survey National Water Quality Laboratory performance on the only valid reference sample submitted was excellent; the relative percent difference values were no larger than 5 percent for any constituent analyzed. For periphyton identifications, duplicate samples had Jaccard Coefficient of Community values slightly greater than 0.5. This indicates the periphyton sampling protocol used provided a sample that was only moderately reproducible. Jaccard Coefficients for three periphyton samples split between two independent labs were 0.2, 0.11, and 0.08. These very low values suggest a poor concurrence on species identifications performed by the two labs. As a result of these quality-control samples, the slides prepared for diatom identifications were sent to the Academy of Natural Sciences for re-identification. Caution is urged when interpreting periphyton-community information from this study. This report and the raw data from the study are available online at http://pubs.usgs.gov/ds257

  17. Nitrogen Cycling in Seagrass Beds Dominated by Thalassia testudinum and Halodule wrightii: the Role of Nitrogen Fixation and Ammonium Oxidation in Regulating Ammonium Availability

    NASA Astrophysics Data System (ADS)

    Capps, R.; Caffrey, J. M.; Hester, C.

    2016-02-01

    Seagrass meadows provide key ecosystem services including nursery and foraging grounds, storm and erosion buffers, biodiversity enhancers and global carbon and nutrient cycling. Nitrogen concentrations are often very low in coastal waters and sediments, which may limit primary productivity. Biological nitrogen fixation is a microbial process that converts dinitrogen to ammonium, which is readily taken up by seagrasses. In the oxygenated rhizospheres, diazotrophs provide the plant with ammonium and use root exudates as an energy source. Nitrogen fixation rates and nutrient concentrations differ between seagrass species and substrate types. Thalassia testudinum has a higher biomass and is a climax species than Halodule wrightii, which is a pioneer species. Nitrogen fixation rates are relatively consistent in Thalassia testudinum dominated sediments. However, it is relatively variable in sediments occupied by Halodule wrightii. Nitrogen fixation rates are higher in bare substrate compared to areas with Thalassia testudinum, which may be due to T. testudinum's greater efficiency in nutrient retention because it is a climax species. We hypothesize that seasonal shifts in nitrogen fixation will coincide with seasonal shifts in seagrass biomass due to higher nutrient requirements during peak growth and lower requirements during senescence and dormancy. The ratio of porewater ammonium to phosphate suggests that seagrass growth may be nitrogen limited as does nitrogen demand, estimated from gross primary productivity. Significant rates of ammonium oxidation in both surface and rhizosphere sediments contribute to this imbalance. Thus, nitrogen fixation may be critical in supporting plant growth.

  18. Insights into nutrient assimilation and export in naturally iron-fertilized waters of the Southern Ocean from nitrogen, carbon and oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Trull, Thomas W.; Davies, Diana; Casciotti, Karen

    2008-03-01

    The KErguelen Ocean and Plateau compared Study (KEOPS) documented enhanced iron input and phytoplankton biomass over the deep Kerguelen plateau in comparison to surrounding high-nutrient low-chlorophyll (HNLC) waters in late summer 2005. We examined the influence of this iron on nitrogen and carbon metabolism by the microbial food-web, by comparing samples from on-plateau and off-plateau. Suspended particulate organic carbon (POC) was ˜5 times more abundant on-plateau and exhibited greater POC/PON (˜6.5 vs. ˜5.5), δ13C-POC (˜-21.5 vs. ˜-24.5‰) and δ15N-PON (˜+2 vs. ˜0‰) than off-plateau. These differences arose in part from changes in ecosystem structure as demonstrated by size-fractionation (1, 5, 20, 55, 210, and 335-μm filters in series), which revealed large isotopic variations with size ( δ13C-POC ranged from -28 to -19‰ and δ15N-PON from -3 to +5‰) and greater abundances of 13C- and 15N-enriched large phytoplankton over the plateau. The 13C enrichment in POC reflected faster growth rates and greater draw-down of dissolved inorganic carbon over the plateau. Quantitative comparison to the δ15N of dissolved nitrate indicates that the δ15N-PON enrichment derived from increased assimilation of nitrate, corresponding to new production f-ratios of 0.7-0.9 on-plateau vs. 0.4-0.6 off-plateau. Results from a sparse set of free-drifting sediment trap samples suggest control of export by zooplankton grazing. The 15N and 18O enrichments in dissolved nitrate exhibited a 1:1 correlation, indicating that phytoplankton assimilation controls nitrate availability and only a relatively small amount of nitrate was regenerated by nitrification. The δ15N-NO 3 values yield indistinguishable isotopic fractionation factors on and off the plateau ( 15ɛ of 4-5‰). This suggests that variations in iron availability may not bias the interpretation of paleo-environmental 15N records, and leaves intact the view that higher sedimentary δ15N-PON values during the last glacial maximum indicate greater fractional nitrate depletion in the Southern Ocean.

  19. [An optical-fiber-sensor-based spectrophotometer for soil non-metallic nutrient determination].

    PubMed

    He, Dong-xian; Hu, Juan-xiu; Lu, Shao-kun; He, Hou-yong

    2012-01-01

    In order to achieve rapid, convenient and efficient soil nutrient determination in soil testing and fertilizer recommendation, a portable optical-fiber-sensor-based spectrophotometer including immersed fiber sensor, flat field holographic concave grating, and diode array detector was developed for soil non-metallic nutrient determination. According to national standard of ultraviolet and visible spectrophotometer with JJG 178-2007, the wavelength accuracy and repeatability, baseline stability, transmittance accuracy and repeatability measured by the prototype instrument were satisfied with the national standard of III level; minimum spectral bandwidth, noise and excursion, and stray light were satisfied with the national standard of IV level. Significant linear relationships with slope of closing to 1 were found between the soil available nutrient contents including soil nitrate nitrogen, ammonia nitrogen, available phosphorus, available sulfur, available boron, and organic matter measured by the prototype instrument compared with that measured by two commercial single-beam-based and dual-beam-based spectrophotometers. No significant differences were revealed from the above comparison data. Therefore, the optical-fiber-sensor-based spectrophotometer can be used for rapid soil non-metallic nutrient determination with a high accuracy.

  20. Sequential nutrient uptake as a potential mechanism for phytoplankton to maintain high primary productivity and balanced nutrient stoichiometry

    NASA Astrophysics Data System (ADS)

    Yin, Kedong; Liu, Hao; Harrison, Paul J.

    2017-05-01

    We hypothesize that phytoplankton have the sequential nutrient uptake strategy to maintain nutrient stoichiometry and high primary productivity in the water column. According to this hypothesis, phytoplankton take up the most limiting nutrient first until depletion, continue to draw down non-limiting nutrients and then take up the most limiting nutrient rapidly when it is available. These processes would result in the variation of ambient nutrient ratios in the water column around the Redfield ratio. We used high-resolution continuous vertical profiles of nutrients, nutrient ratios and on-board ship incubation experiments to test this hypothesis in the Strait of Georgia. At the surface in summer, ambient NO3- was depleted with excess PO43- and SiO4- remaining, and as a result, both N : P and N : Si ratios were low. The two ratios increased to about 10 : 1 and 0. 45 : 1, respectively, at 20 m. Time series of vertical profiles showed that the leftover PO43- continued to be removed, resulting in additional phosphorus storage by phytoplankton. The N : P ratios at the nutricline in vertical profiles responded differently to mixing events. Field incubation of seawater samples also demonstrated the sequential uptake of NO3- (the most limiting nutrient) and then PO43- and SiO4- (the non-limiting nutrients). This sequential uptake strategy allows phytoplankton to acquire additional cellular phosphorus and silicon when they are available and wait for nitrogen to become available through frequent mixing of NO3- (or pulsed regenerated NH4). Thus, phytoplankton are able to maintain high productivity and balance nutrient stoichiometry by taking advantage of vigorous mixing regimes with the capacity of the stoichiometric plasticity. To our knowledge, this is the first study to show the in situ dynamics of continuous vertical profiles of N : P and N : Si ratios, which can provide insight into the in situ dynamics of nutrient stoichiometry in the water column and the inference of the transient status of phytoplankton nutrient stoichiometry in the coastal ocean.

  1. Effects of Inundation, Nutrient Availability and Plant Species Diversity on Fine Root Mass and Morphology Across a Saltmarsh Flooding Gradient

    PubMed Central

    Redelstein, Regine; Dinter, Thomas; Hertel, Dietrich; Leuschner, Christoph

    2018-01-01

    Saltmarsh plants are exposed to multiple stresses including tidal inundation, salinity, wave action and sediment anoxia, which require specific root system adaptations to secure sufficient resource capture and firm anchorage in a temporary toxic environment. It is well known that many saltmarsh species develop large below-ground biomass (roots and rhizomes) but relations between fine roots, in particular, and the abiotic conditions in salt marshes are widely unknown. We studied fine root mass (<2 mm in diameter), fine root depth distribution and fine root morphology in three typical communities (Spartina anglica-dominated pioneer zone, Atriplex portulacoides-dominated lower marsh, Elytrigia atherica-dominated upper marsh) across elevational gradients in two tidal salt marshes of the German North Sea coast [a mostly sandy marsh on a barrier island (Spiekeroog), and a silty-clayey marsh on the mainland coast (Westerhever)]. Fine root mass in the 0–40 cm profile ranged between 750 and 2,500 g m−2 in all plots with maxima at both sites in the lower marsh with intermediate inundation frequency and highest plant species richness indicating an effect of biodiversity on fine root mass. Fine root mass and, even more, total fine root surface area (maximum 340 m2 m−2) were high compared to terrestrial grasslands, and were greater in the nutrient-poorer Spiekeroog marsh. Fine root density showed only a slight or no decrease toward 40 cm depth. We conclude that the standing fine root mass and morphology of these salt marshes is mainly under control of species identity and nutrient availability, but species richness is especially influential. The plants of the pioneer zone and lower marsh possess well adapted fine roots and large standing root masses despite the often water-saturated sediment. PMID:29467778

  2. Ecophysiological responses of a young blue gum (Eucalyptus globulus) plantation to weed control.

    PubMed

    Eyles, Alieta; Worledge, Dale; Sands, Peter; Ottenschlaeger, Maria L; Paterson, Steve C; Mendham, Daniel; O'Grady, Anthony P

    2012-08-01

    Early weed control may improve the growth of forest plantations by influencing soil water and nutrient availability. To understand eucalypt growth responses to weed control, we examined the temporal responses of leaf gas-exchange, leaf nitrogen concentration (N) and water status of 7-month-old Eucalyptus globulus L. trees in a paired-plot field trial. In addition, we monitored the growth, leaf N and water status of the competing vegetation in the weed treatment. By the end of the 11-month experiment, complete weed control (WF treatment) of largely woody competitors increased the basal diameter of E. globulus by 14%. As indicated by pre-dawn water potentials of > - 0.05 MPa, interspecies competition for water resources was minimal at this site. In contrast, competition for N appeared to be the major factor limiting growth. Estimations of total plot leaf N (g m(-2) ground) showed that competing vegetation accounted for up to 70% of the total leaf N at the start of the trial. This value fell to 15% by the end of the trial. Despite increased leaf N(area) in WF trees 5 months after imposition of weed control, the photosynthetic capacity (A(1500)) of E. globulus was unaffected by treatment suggesting that the growth gains from weed control were largely unrelated to changes in leaf-level photosynthesis. Increased nutrient availability brought about by weed control enabled trees to increase investment into leaf-area production. Estimates of whole-tree carbon budget based on direct measurements of dark respiration and A(1500) allowed us to clearly demonstrate the importance of leaf area driving greater productivity following early weed control in a nutrient-limited site.

  3. Increased Nutrient Sensitivity and Plasma Concentrations of Enteral Hormones during Duodenal Nutrient Infusion in Functional Dyspepsia

    PubMed Central

    Bharucha, Adil E.; Camilleri, Michael; Burton, Duane D.; Thieke, Shannon L.; Feuerhak, Kelly J.; Basu, Ananda; Zinsmeister, Alan R.

    2015-01-01

    Objectives Functional dyspepsia is predominantly attributed to gastric sensorimotor dysfunctions. The contribution of intestinal chemosensitivity to symptoms is not understood. We evaluated symptoms and plasma hormones during enteral nutrient infusion and the association with impaired glucose tolerance and quality-of-life (QOL) scores in functional dyspepsia vs health. Design Enteral hormonal responses and symptoms were measured during isocaloric and isovolumic dextrose and lipid infusions into the duodenum in 30 patients with functional dyspepsia (n=27) or nausea and vomiting (n=3) and 35 healthy controls. Infusions were administered in randomized order over 120 minutes each, with a 120-minute washout. Cholecystokinin, glucose-dependent insulinotropic peptide, glucagonlike peptide 1 (GLP1), and peptide YY were measured during infusions. Results Moderate or more severe symptoms during lipid (4 controls vs 14 patients) and dextrose (1 control vs 12 patients) infusions were more prevalent in patients than controls (P≤.01), associated with higher dyspepsia symptom score (P=.01), worse QOL (P=.01), and greater plasma hormone concentrations (eg, GLP1 during lipid infusion). Moderate or more severe symptoms during enteral infusion explained 18%, and depression score explained 21%, of interpatient variation in QOL. Eight patients had impaired glucose tolerance, associated with greater plasma GLP1 and peptide YY concentrations during dextrose and lipid infusions, respectively. Conclusions Increased sensitivity to enteral dextrose and lipid infusions was associated with greater plasma enteral hormone concentrations, more severe daily symptoms, and worse QOL in functional dyspepsia. These observations are consistent with the hypothesis that enteral hormones mediate increased intestinal sensitivity to nutrients in functional dyspepsia. PMID:25403365

  4. Influence of flooding and vegetation on carbon, nitrogen, and phosphorus dynamics in the pore water of a Spartina alterniflora salt marsh.

    PubMed

    Negrin, Vanesa L; Spetter, Carla V; Asteasuain, Raúl O; Perillo, Gerardo M E; Marcovecchio, Jorge E

    2011-01-01

    Four sites were selected in a salt marsh in the Bahia Blanca Estuary (Argentina): (1) low marsh (flooded by the tide twice daily) vegetated by S. alterniflora; (2) non-vegetated low marsh; (3) high marsh (flooded only in spring tides) vegetated by S. alterniflora; (4) non-vegetated high marsh. The pH and Eh were measured in sediments, while dissolved nutrients (ammonium, nitrate, nitrite and phosphate) and particulate organic matter (POM) were determined in pore water. pH (6.2-8.7) was only affected by vegetation in low areas. Eh (from -300 to 250 mV) was lower at low sites than at high ones; in the latter, the values were higher in the non-vegetated sediments. The POM concentration was greater in the high marsh than in the low marsh, with no effect of vegetation. Ammonium was the most abundant nitrogen nutrient species in pore water, except in the non-vegetated high marsh where nitrate concentration was higher. All nitrogen nutrients were affected by both flooding and vegetation. Phosphate was always present in pore water at all sites throughout the year and its concentration varied within narrow limits, with no effect of flooding and greater values always at non-vegetated sites. Our results showed that the variability of the pore water composition within the marsh is greater than the temporal variation, meaning that both tidal flooding and vegetation are important in the dynamics of nutrients and organic matter in the sediment pore water.

  5. Nutrients for prevention and treatment of mental health disorders.

    PubMed

    Akhondzadeh, Shahin; Gerbarg, Patricia L; Brown, Richard P

    2013-03-01

    The choice of nutrients for review is based on clinical evidence of efficacy in neuropsychiatric disorders and biochemical effects that are neuroprotective or reparative. Vitamins, minerals, amino acids, and metabolites have been shown to augment antidepressants, improve symptoms in anxiety disorders, depression, neurodegenerative diseases, brain injury, ADHD, and schizophrenia, and to reduce medication side effects. Detection and correction of vitamin and mineral deficiencies can be essential for recovery. Generally low in adverse effects when taken in therapeutic doses, nutrients can be combined for greater benefits. Further studies are warranted to validate these promising treatments. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Percentile Distributions of Median Nitrite Plus Nitrate as Nitrogen, Total Nitrogen, and Total Phosphorus Concentrations in Oklahoma Streams, 1973-2001

    USGS Publications Warehouse

    Haggard, Brian E.; Masoner, Jason R.; Becker, Carol J.

    2003-01-01

    Nutrients are one of the primary causes of water-quality impairments in streams, lakes, reservoirs, and estuaries in the United States. The U.S. Environmental Protection Agency has developed regional-based nutrient criteria using ecoregions to protect streams in the United States from impairment. However, nutrient criteria were based on nutrient concentrations measured in large aggregated nutrient ecoregions with little relevance to local environmental conditions in states. The Oklahoma Water Resources Board is using a dichotomous process known as Use Support Assessment Protocols to define nutrient criteria in Oklahoma streams. The Oklahoma Water Resources Board is modifying the Use Support Assessment Protocols to reflect nutrient informa-tion and environmental characteristics relevant to Oklahoma streams, while considering nutrient information grouped by geographic regions based on level III ecoregions and state boundaries. Percentile distributions of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorous concentrations were calculated from 563 sites in Oklahoma and 4 sites in Arkansas near the Oklahoma and Arkansas border to facilitate development of nutrient criteria for Oklahoma streams. Sites were grouped into four geographic regions and were categorized into eight stream categories by stream slope and stream order. The 50th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus concentrations were greater in the Ozark Highland ecoregion and were less in the Ouachita Mountains ecoregion when compared to other geographic areas used to group sites. The 50th percentiles of median concentrations of nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus were least in first, second, and third order streams. The 50th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen and total phosphorus concentrations in the Ozark Highland and Ouachita Mountains ecoregions were least in first, second, and third order streams with streams slopes greater than 17 feet per mile. Nitrite plus nitrate as nitrogen and total nitrogen criteria determined by the U.S. Environmental Protection Agency for the Ozark Highland ecoregion were less than the 25th percentiles of median nitrite plus nitrate as nitrogen, total nitrogen, and total phosphorus concentrations in the Ozark Highland ecoregion calculated for this report. Nitrite plus nitrate as nitrogen and total nitrogen criteria developed by the U.S. Environmental Protection Agency for the Ouachita Mountains ecoregion were similar to the 25th percentiles of median nitrite plus nitrate as nitrogen and total nitrogen concentrations in the Ouachita Mountains ecoregion calculated for this report. Nitrate as nitrogen and total phosphorus concentrations currently (2002) used in the Use Support Assessment Protocols for Oklahoma were greater than the 75th percentiles of median nitrite plus nitrate as nitrogen and total phosphorus concentrations calculated for this report.

  7. Plant Functional Traits Associated with Mycorrhizal Root Foraging in Arbuscular Mycorrhizal and Ectomycorrhizal Trees

    NASA Astrophysics Data System (ADS)

    Eissenstat, D. M.; Chen, W.; Cheng, L.; Liu, B.; Koide, R. T.; Guo, D.

    2016-12-01

    Root foraging for nutrient "hot spots" is a key strategy by which some plants maximize nutrient gain from their carbon investment in root and mycorrhizal hyphae. Foraging strategies may depend on costs of root construction, with thick roots generally costing more per unit length than thin roots. Investment in mycorrhizal hyphae, which are considerably thinner than roots, may represent an alternative strategy for cost-effective nutrient foraging, especially for thick-root species. Type of mycorrhiza may matter, as ectomycorrhizal (EM) fungi are more associated with longer hyphae and ability to mineralize organic matter than arbuscular mycorrhizal (AM) fungi. Among AM trees in both subtropical forests in SE China and in temperate forests in central Pennsylvania, USA, we found that tree species with thin roots proliferated their roots in soil patches enriched with mineral nutrients to a greater extent than species with thick roots. In addition, thick-root species were consistently colonized more heavily with mycorrhizal fungi than thin root species, although nutrient addition tended to diminish colonization. In a common garden in central Pennsylvania of both AM and EM tree species, we found that nutrient patches enriched with organic materials resulted in greater root and mycorrhizal fungal proliferation compared to those enriched with inorganic nutrients and that thick-root species proliferated more with their mycorrhizal fungi whereas thin-root species proliferated more with their roots. We further examined with many more species, patterns of root and mycorrhizal fungal proliferation in organic-nutrient-enriched patches. Foraging precision, or the extent that roots or mycorrhizal hyphae grew in the enriched patch relative to the unenriched patch, was related to both root thickness and type of mycorrhiza. In both AM and EM trees, thick-root species were not selective foragers of either their roots or hyphae. In thin-root species, there was strong selectivity in foraging with AM trees showing high precision in root foraging and EM trees showing high precision in mycorrhizal hyphal foraging. Collectively, these results indicate that we can improve our understanding of how trees forage for nutrients by considering both root morphology and type of mycorrhizas (AM or EM).

  8. Managing broiler litter application rate and grazing to decrease watershed runoff losses.

    PubMed

    Sistani, K R; Brink, G E; Oldham, J L

    2008-01-01

    Pasture management and broiler litter application rate are critical factors influencing the magnitude of nutrients being transported by runoff from fields. We investigated the impact of pasture management and broiler litter application rate on nutrient runoff from bermudagrass (Cynodon dactylon) pastures. The experiment was conducted on a Ruston fine sandy loam with a factorial arrangement on 21 large paddocks. Runoff water was collected from natural rainfall events from 2001 to 2003. Runoff water and soil samples were analyzed for nutrients and sediments. Runoff was generally greater (29%) from grazed than hayed pastures regardless of the litter application rate. There was greater inorganic N in the runoff from grazed paddocks when litter rate was based on N rather than P. The mean total P loss per runoff event for all treatments ranged from 7 to 45 g ha(-1) and the grazed treatment with litter applied on N basis had the greatest total P loss. Total dissolved P was the dominant P fraction in the runoff, ranging from 85% to 93% of the total P. The soluble reactive P was greater for treatments with litter applied on N basis regardless of pasture management. Runoff total sediments were greater for N-based litter application compared to those which received litter on P basis. Our results indicate that litter may be applied on N basis if the pasture is hayed and the soil P is low. In contrast, litter rates should be based on a P-basis if pasture is grazed.

  9. Effects of shelter and enrichment on the ecology and nutrient cycling of microbial communities of subtidal carbonate sediments.

    PubMed

    Forehead, Hugh I; Kendrick, Gary A; Thompson, Peter A

    2012-04-01

    The interactions between physical disturbances and biogeochemical cycling are fundamental to ecology. The benthic microbial community controls the major pathway of nutrient recycling in most shallow-water ecosystems. This community is strongly influenced by physical forcing and nutrient inputs. Our study tests the hypotheses that benthic microbial communities respond to shelter and enrichment with (1) increased biomass, (2) change in community composition and (3) increased uptake of inorganic nutrients from the water column. Replicate in situ plots were sheltered from physical disturbance and enriched with inorganic nutrients or left without additional nutrients. At t(0) and after 10 days, sediment-water fluxes of nutrients, O(2) and N(2) , were measured, the community was characterized with biomarkers. Autochthonous benthic microalgal (BMA) biomass increased 30% with shelter and a natural fivefold increase in nutrient concentration; biomass did not increase with greater enrichment. Diatoms remained the dominant taxon of BMA, suggesting that the sediments were not N or Si limited. Bacteria and other heterotrophic organisms increased with enrichment and shelter. Daily exchanges of inorganic nutrients between sediments and the water column did not change in response to shelter or nutrient enrichment. In these sediments, physical disturbance, perhaps in conjunction with nutrient enrichment, was the primary determinant of microbial biomass. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Apparatus and method for phosphate-accelerated bioremediation

    DOEpatents

    Looney, B.B.; Pfiffner, S.M.; Phelps, T.J.; Lombard, K.H.; Hazen, T.C.; Borthen, J.W.

    1998-05-19

    An apparatus and method are provided for supplying a vapor-phase nutrient to contaminated soil for in situ bioremediation. The apparatus includes a housing adapted for containing a quantity of the liquid nutrient, a conduit in communication with the interior of the housing, means for causing a gas to flow through the conduit, and means for contacting the gas with the liquid so that a portion evaporates and mixes with the gas. The mixture of gas and nutrient vapor is delivered to the contaminated site via a system of injection and extraction wells configured to the site and provides for the use of a passive delivery system. The mixture has a partial pressure of vaporized nutrient that is no greater than the vapor pressure of the liquid. If desired, the nutrient and/or the gas may be heated to increase the vapor pressure and the nutrient concentration of the mixture. Preferably, the nutrient is a volatile, substantially nontoxic and nonflammable organic phosphate that is a liquid at environmental temperatures, such as triethyl phosphate or tributyl phosphate. 8 figs.

  11. Nutrients, Select Pesticides, and Suspended Sediment in the Karst Terrane of the Sinking Creek Basin, Kentucky, 2004-06

    USGS Publications Warehouse

    Crain, Angela S.

    2010-01-01

    This report presents the results of a study by the U.S. Geological Survey, in cooperation with the Kentucky Department of Agriculture, on nutrients, select pesticides, and suspended sediment in the karst terrane of the Sinking Creek Basin. Streamflow, nutrient, select pesticide, and suspended-sediment data were collected at seven sampling stations from 2004 through 2006. Concentrations of nitrite plus nitrate ranged from 0.21 to 4.9 milligrams per liter (mg/L) at the seven stations. The median concentration of nitrite plus nitrate for all stations sampled was 1.6 mg/L. Total phosphorus concentrations were greater than 0.1 mg/L, the U.S. Environmental Protection Agency's recommended maximum concentration, in 45 percent of the samples. Concentrations of orthophosphates ranged from less than 0.006 to 0.46 mg/L. Concentrations of nutrients generally were larger during spring and summer months, corresponding to periods of increased fertilizer application on agricultural lands. Concentrations of suspended sediment ranged from 1.0 to 1,490 mg/L at the seven stations. Of the 47 pesticides analyzed, 14 were detected above the adjusted method reporting level of 0.01 micrograms per liter (mug/L). Although these pesticides were detected in water-quality samples, they generally were found at less than part-per-billion concentrations. Atrazine was the only pesticide detected at concentrations greater than U.S. Environmental Protection Agency drinking water standard of 3 mug/L, and the maximum detected concentration was 24.6 mug/L. Loads and yields of nutrients, selected pesticides, and suspended sediment were estimated at two mainstream stations on Sinking Creek, a headwater station (Sinking Creek at Rosetta) and a station at the basin outlet (Sinking Creek near Lodiburg). Mean daily streamflow data were available for the estimation of loads and yields from a stream gage at the basin outlet station; however, only periodic instantaneous flow measurements were available for the headwaters station; mean daily flows at the headwater station were, therefore, estimated using a mathematical record-extension technique known as the Maintenance of Variance-Extension, type 1 (MOVE.1). The estimation of mean daily streamflows introduced a large amount of uncertainty into the loads and yields estimates at the headwater station. Total estimated loads of select (five most commonly detected) pesticides from the Sinking Creek Basin were about 0.01 to 1.2 percent of the estimated application, indicating pesticides possibly are retained within the watershed. Mean annual loads [(in/lb)/yr] for nutrients and suspended sediment were estimated at the two Sinking Creek mainstem sampling stations. The relation between estimated and measured instantaneous loads of nitrite plus nitrate at the Sinking Creek near Lodiburg station indicate a reasonably tight distribution over the range of loads. The model for loads of nitrite plus nitrate at the Sinking Creek at Rosetta station indicates small loads were overestimated and underestimated. Relations between estimated and measured loads of total phosphorus and orthophosphate at both Sinking Creek mainstem stations showed similar patterns to the loads of nitrite plus nitrate at each respective station. The estimated mean annual load of suspended sediment is about 14 times larger at the Sinking Creek near Lodiburg station than at the Sinking Creek near Rosetta station. Estimated yields of nutrients and suspended sediment increased from the headwater to downstream monitoring stations on Sinking Creek. This finding suggests that sources of nutrients and suspended sediment are not evenly distributed throughout the karst terrane of the Sinking Creek Basin. Yields of select pesticides generally were similar from the headwater to downstream monitoring stations. However, the estimated yield of atrazine was about five times higher at the downstream station on Sinking Creek than at the headwater station on Sinking Creek.

  12. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type.

    PubMed

    Subedi, Raghunath; Taupe, Natalie; Pelissetti, Simone; Petruzzelli, Laura; Bertora, Chiara; Leahy, James J; Grignani, Carlo

    2016-01-15

    Manure-derived biochars can offer a potential option for the stabilization of manure, while mitigating climate change through carbon sequestration and the attenuation of nitrous oxide emission. A laboratory incubation study was conducted to assess the effects of four different manure-derived biochars produced from different feedstocks (poultry litter and swine manure) at different temperatures (400 or 600 °C). A commonly available standard wood chip biochar, produced at a greater temperature (1000 °C), and non-amended treatments were used as references. Two different soils (sandy and silt-loam) were amended with 2% (w/w) biochar on a dry soil weight basis (corresponding to 20 Mg ha(-1)), with the soil moisture being adjusted to 75% saturation level. After a pre-incubation period (21 days), 170 kg N ha(-1) of NH4NO3 fertilizer was added. Measurements of CO2, N2O, CH4 emissions and soil N mineralisation were carried out on different days during the 85 days of incubation. The net C mineralization and N2O emissions from both soils amended with poultry litter biochar at 400 °C were significantly greater than the other biochar treatments. Nitrate availability was greater in both soils in which the manure-derived biochar was used instead of the standard biochar. All of the biochars increased the pH of the silt-loam, sub-acid soil, but failed to improve the cation exchange capacities (CEC) in either soil. Total C and N, P, K and Mg (except Ca) were significantly increased in the manure-derived biochar amended soils, compared to the Control, and were positively correlated to the biochar nutrient contents. This study indicates that the soil application of biochar engenders effects that can vary considerably according to the biochar properties, as determined on the basis of the feedstock types and process conditions. Low-temperature biochar production from manure represents a possible way of producing a soil amendment that can stabilize C while supplying a significant quantity of nutrients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. When microbes and consumers determine the limiting nutrient of autotrophs: a theoretical analysis

    PubMed Central

    Cherif, Mehdi; Loreau, Michel

    2008-01-01

    Ecological stoichiometry postulates that differential nutrient recycling of elements such as nitrogen and phosphorus by consumers can shift the element that limits plant growth. However, this hypothesis has so far considered the effect of consumers, mostly herbivores, out of their food-web context. Microbial decomposers are important components of food webs, and might prove as important as consumers in changing the availability of elements for plants. In this theoretical study, we investigate how decomposers determine the nutrient that limits plants, both by feeding on nutrients and organic carbon released by plants and consumers, and by being fed upon by omnivorous consumers. We show that decomposers can greatly alter the relative availability of nutrients for plants. The type of limiting nutrient promoted by decomposers depends on their own elemental composition and, when applicable, on their ingestion by consumers. Our results highlight the limitations of previous stoichiometric theories of plant nutrient limitation control, which often ignored trophic levels other than plants and herbivores. They also suggest that detrital chains play an important role in determining plant nutrient limitation in many ecosystems. PMID:18854301

  14. Nitrogenase and Alkaline Phosphatase Activity in Wetland Metaphyton: Implications for Primary Production and CNP Composition

    NASA Astrophysics Data System (ADS)

    Scott, T.; Doyle, R.

    2005-05-01

    Longitudinal gradients of nutrient availability often occur along the flow path of water in freshwater wetlands. Differential removal efficiencies of water column nitrogen (N) and phosphorus (P) may increase the severity of nutrient deficiency and possibly change the nutrient that limits primary production. A previous study demonstrated that periphyton in the Lake Waco Wetlands (LWW), near Waco, Texas, USA, are generally more P limited near the inflow and become increasingly N limited as distance from the inflow increases. Therefore, spatial heterogeneity in nutrient availability likely influences both the structure and function of periphyton assemblages within this system. In this ongoing study, we are evaluating the relationships between metaphyton primary production, nitrogenase activity, alkaline phosphatase activity, and CNP stoichiometry in areas of differing nutrient limitation within the LWW. As expected, primary production is generally greatest in areas where nitrogenase and alkaline phosphatase activities are minimal. However, expected increases in C:N ratios in areas of greatest nutrient deficiency have not been frequently observed. Decreased primary production and increased enzyme mediated nutrient uptake appear to balance metaphyton nutrient content in these areas.

  15. Recovering Greater Fungal Diversity from Pristine and Diesel Fuel Contaminated Sub-Antarctic Soil Through Cultivation Using Both a High and a Low Nutrient Media Approach

    PubMed Central

    Ferrari, Belinda C.; Zhang, Chengdong; van Dorst, Josie

    2011-01-01

    Novel cultivation strategies for bacteria are widespread and well described for recovering greater diversity from the “hitherto” unculturable majority. While similar approaches have not yet been demonstrated for fungi it has been suggested that of the 1.5 million estimated species less than 5% have been recovered into pure culture. Fungi are known to be involved in many degradative processes, including the breakdown of petroleum hydrocarbons, and it has been speculated that in Polar Regions they contribute significantly to bioremediation of contaminated soils. Given the biotechnological potential of fungi there is a need to increase efforts for greater species recovery, particularly from extreme environments such as sub-Antarctic Macquarie Island. In this study, like the yet-to-be cultured bacteria, high concentrations of nutrients selected for predominantly different fungal species to that recovered using a low nutrient media. By combining both media approaches to the cultivation of fungi from contaminated and non-contaminated soils, 91 fungal species were recovered, including 63 unidentified species. A preliminary biodegradation activity assay on a selection of isolates found that a high proportion of novel and described fungal species from a range of soil samples were capable of hydrocarbon degradation and should be characterized further. PMID:22131985

  16. Nutrient cycling, connectivity, and free-floating plant abundance in backwater lakes of the Upper Mississippi River

    USGS Publications Warehouse

    Houser, Jeff N.; Giblin, Shawn M.; James, William F.; Langrehr, H.A.; Rogala, James T.; Sullivan, John F.; Gray, Brian R.

    2013-01-01

    River eutrophication may cause the formation of dense surface mats of free floating plants (FFP; e.g., duckweeds and filamentous algae) which may adversely affect the ecosystem. We investigated associations among hydraulic connectivity to the channel, nutrient cycling, FFP, submersed aquatic vegetation (SAV), and dissolved oxygen concentration (DO) in ten backwater lakes of the Upper Mississippi River (UMR) that varied in connectivity to the channel. Greater connectivity was associated with higher water column nitrate (NO3-N) concentration, higher rates of sediment phosphorus (P) release, and higher rates of NO3-N flux to the sediments. Rates of sediment P and N (as NH4-N) release were similar to those of eutrophic lakes. Water column nutrient concentrations were high, and FFP tissue was nutrient rich suggesting that the eutrophic condition of the UMR often facilitated abundant FFP. However, tissue nutrient concentrations, and the associations between FFP biomass and water column nutrient concentrations, suggested that nutrients constrained FFP abundance at some sites. FFP abundance was positively associated with SAV abundance and negatively associated with dissolved oxygen concentration. These results illustrate important connections among hydraulic connectivity, nutrient cycling, FFP, SAV, and DO in the backwaters of a large, floodplain river.

  17. Nutrient availability and nutrient use efficiency in plants growing in the transition zone between land and water.

    PubMed

    Cavalli, G; Baattrup-Pedersen, A; Riis, T

    2016-03-01

    The transition zone between terrestrial and freshwater habitats is highly dynamic, with large variability in environmental characteristics. Here, we investigate how these characteristics influence the nutritional status and performance of plant life forms inhabiting this zone. Specifically, we hypothesised that: (i) tissue nutrient content differs among submerged, amphibious and terrestrial species, with higher content in submerged species; and (ii) PNUE gradually increases from submerged over amphibious to terrestrial species, reflecting differences in the availability of N and P relative to inorganic C across the land-water ecotone. We found that tissue nutrient content was generally higher in submerged species and C:N and C:P ratios indicated that content was limiting for growth for ca. 20% of plant individuals, particularly those belonging to amphibious and terrestrial species groups. As predicted, the PNUE increased from submerged over amphibious to terrestrial species. We suggest that this pattern reflects that amphibious and terrestrial species allocate proportionally more nutrients into processes of importance for photosynthesis at saturating CO2 availability, i.e. enzymes involved in substrate regeneration, compared to submerged species that are acclimated to lower availability of CO2 in the aquatic environment. Our results indicate that enhanced nutrient loading may affect relative abundance of the three species groups in the land-water ecotone of stream ecosystems. Thus, species of amphibious and terrestrial species groups are likely to benefit more from enhanced nutrient availability in terms of faster growth compared to aquatic species, and that this can be detrimental to aquatic species growing in the land-water ecotone, e.g. Ranunculus and Callitriche. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Relationship between soil nutrients and mycorrhizal associations of two Bipinnula species (Orchidaceae) from central Chile.

    PubMed

    Mujica, María Isabel; Saez, Nicolás; Cisternas, Mauricio; Manzano, Marlene; Armesto, Juan J; Pérez, Fernanda

    2016-07-01

    Mycorrhizal associations are influenced by abiotic and biotic factors, including climate, soil conditions and the identity of host plants. However, the effect of environmental conditions on orchid mycorrhizal associations remains poorly understood. The present study examined how differences in soil nutrient availability are related to the diversity and composition of mycorrhizal fungi associated with two terrestrial orchid species from central Chile. For 12 populations of Bipinnula fimbriata and B. plumosa, OTU (operational taxonomic unit) richness, phylogenetic diversity and community composition of mycorrhizal fungi in root samples were estimated using internal transcribed spacer (ITS) sequences. Then, these mycorrhizal diversity variables were related to soil nutrients and host species using generalized linear models and non-metric multidimensional scaling. Variation in OTU composition of mycorrhizal fungi among sites was explained mainly by orchid host species. Fungi in Tulasnellaceae and Ceratobasidiaceae were isolated from both orchid species, but the former were more frequent in B. fimbriata and the latter in B. plumosa. Soil nutrients and orchid host species had significant effects on OTU richness and phylogenetic diversity. Mycorrhizal diversity decreased in habitats with higher N in both species and increased with P availability only in B. fimbriata The results suggest that soil nutrient availability modulates orchid mycorrhizal associations and provide support for the hypothesis that specialization is favoured by higher soil nutrient availability. Inter-specific differences in mycorrhizal composition can arise due to a geographical pattern of distribution of orchid mycorrhizal fungi, host preferences for fungal partners or differential performance of mycorrhizal fungi under different nutrient availabilities. Further experiments are needed to evaluate these hypotheses. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Relationship between soil nutrients and mycorrhizal associations of two Bipinnula species (Orchidaceae) from central Chile

    PubMed Central

    Mujica, María Isabel; Saez, Nicolás; Cisternas, Mauricio; Manzano, Marlene; Armesto, Juan J.; Pérez, Fernanda

    2016-01-01

    Background and Aims Mycorrhizal associations are influenced by abiotic and biotic factors, including climate, soil conditions and the identity of host plants. However, the effect of environmental conditions on orchid mycorrhizal associations remains poorly understood. The present study examined how differences in soil nutrient availability are related to the diversity and composition of mycorrhizal fungi associated with two terrestrial orchid species from central Chile. Methods For 12 populations of Bipinnula fimbriata and B. plumosa, OTU (operational taxonomic unit) richness, phylogenetic diversity and community composition of mycorrhizal fungi in root samples were estimated using internal transcribed spacer (ITS) sequences. Then, these mycorrhizal diversity variables were related to soil nutrients and host species using generalized linear models and non-metric multidimensional scaling. Key Results Variation in OTU composition of mycorrhizal fungi among sites was explained mainly by orchid host species. Fungi in Tulasnellaceae and Ceratobasidiaceae were isolated from both orchid species, but the former were more frequent in B. fimbriata and the latter in B. plumosa. Soil nutrients and orchid host species had significant effects on OTU richness and phylogenetic diversity. Mycorrhizal diversity decreased in habitats with higher N in both species and increased with P availability only in B. fimbriata. Conclusions The results suggest that soil nutrient availability modulates orchid mycorrhizal associations and provide support for the hypothesis that specialization is favoured by higher soil nutrient availability. Inter-specific differences in mycorrhizal composition can arise due to a geographical pattern of distribution of orchid mycorrhizal fungi, host preferences for fungal partners or differential performance of mycorrhizal fungi under different nutrient availabilities. Further experiments are needed to evaluate these hypotheses. PMID:27311572

  20. Randomization to plant-based dietary approaches leads to larger short-term improvements in Dietary Inflammatory Index scores and macronutrient intake compared with diets that contain meat.

    PubMed

    Turner-McGrievy, Gabrielle M; Wirth, Michael D; Shivappa, Nitin; Wingard, Ellen E; Fayad, Raja; Wilcox, Sara; Frongillo, Edward A; Hébert, James R

    2015-02-01

    Studies have examined nutrient differences among people following different plant-based diets. However, all of these studies have been observational. The aim of the present study was to examine differences in nutrient intake and Dietary Inflammatory Index (DII) scores among overweight and obese (body mass index 25.0-49.9 kg/m(2)) adults randomized to receive dietary instruction on a vegan (n = 12), vegetarian (n = 13), pescovegetarian (n = 13), semivegetarian (n = 13), or omnivorous (n = 12) diet during a 6-month randomized controlled trial. Nutrient intake, nutrient adequacy, and DII score were assessed via two 24-hour dietary recalls (Automated Self-Administered 24-Hour Dietary Recall) at baseline and at 2 and 6 months. Differences in nutrient intake and the DII were examined using general linear models with follow-up tests at each time point. We hypothesized that individuals randomized to the vegan diet would have lower DII scores and greater improvements in fiber, carbohydrate, fat, saturated fat, and cholesterol at both 2 and 6 months as compared with the other 4 diets. Participants randomized to the vegan diet had significantly greater changes in most macronutrients at both time points, including fat and saturated fat, as well as cholesterol and, at 2 months, fiber, as compared with most of the other diet groups (Ps < .05). Vegan, vegetarian, and pescovegetarian participants all saw significant improvements in the DII score as compared with semivegetarian participants at 2 months (Ps < .05) with no differences at 6 months. Given the greater impact on macronutrients and the DII during the short term, finding ways to provide support for adoption and maintenance of plant-based dietary approaches, such as vegan and vegetarian diets, should be given consideration. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Nutrient intake in community-dwelling adolescent girls with anorexia nervosa and in healthy adolescents123

    PubMed Central

    Misra, Madhusmita; Tsai, Patrika; Anderson, Ellen J; Hubbard, Jane L; Gallagher, Katie; Soyka, Leslie A; Miller, Karen K; Herzog, David B; Klibanski, Anne

    2011-01-01

    Background Adolescence is a common time for the onset of anorexia nervosa (AN), a condition associated with long-term medical and hormonal consequences. Objective The objective was to compare the nutrient intakes of community-dwelling girls with AN with those of healthy adolescents and to describe the associations between specific nutrient intakes and nutritionally dependent hormones. Design Nutrient intakes in 39 community-dwelling girls with AN and 39 healthy adolescents aged 12.1–18.7 y were determined by using 4-d food records. Fasting adiponectin, leptin, ghrelin, insulin, and insulin-like growth factor I (IGF-I) concentrations were measured. Indirect calorimetry was used to assess respiratory quotient and resting energy expenditure. Results In contrast with the control group, the AN group consumed fewer calories from fats (P < 0.0001) and more from carbohydrates (P = 0.0009) and proteins (P < 0.0001). Intake of individual fat components was lower and of dietary fiber higher in the AN group. No significant between-group differences were observed in dietary intakes of calcium, zinc, and iron; however, total intake was greater in the AN group because of greater supplement use (P = 0.006, 0.02, and 0.01, respectively). The AN group had greater intakes of vitamins A, D, and K and of most of the B vitamins, and significantly more girls with AN met the Dietary Reference Intake for calcium (P = 0.01) and vitamin D (P = 0.02) from supplement use. Fat intake predicted ghrelin, insulin, and IGF-I concentrations; carbohydrate intake predicted adiponectin. Resting energy expenditure was lower (P < 0.0001) and leisure activity levels higher in the AN group. Conclusions Despite outpatient follow-up, community-dwelling girls with AN continue to have lower fat and higher fiber intakes than do healthy adolescents, which results in lower calorie intakes. Nutritionally related hormones are associated with specific nutrient intakes. PMID:17023694

  2. The influence of soil properties and nutrients on conifer forest growth in Sweden, and the first steps in developing a nutrient availability metric

    NASA Astrophysics Data System (ADS)

    Van Sundert, Kevin; Horemans, Joanna A.; Stendahl, Johan; Vicca, Sara

    2018-06-01

    The availability of nutrients is one of the factors that regulate terrestrial carbon cycling and modify ecosystem responses to environmental changes. Nonetheless, nutrient availability is often overlooked in climate-carbon cycle studies because it depends on the interplay of various soil factors that would ideally be comprised into metrics applicable at large spatial scales. Such metrics do not currently exist. Here, we use a Swedish forest inventory database that contains soil data and tree growth data for > 2500 forests across Sweden to (i) test which combination of soil factors best explains variation in tree growth, (ii) evaluate an existing metric of constraints on nutrient availability, and (iii) adjust this metric for boreal forest data. With (iii), we thus aimed to provide an adjustable nutrient metric, applicable for Sweden and with potential for elaboration to other regions. While taking into account confounding factors such as climate, N deposition, and soil oxygen availability, our analyses revealed that the soil organic carbon concentration (SOC) and the ratio of soil carbon to nitrogen (C : N) were the most important factors explaining variation in normalized (climate-independent) productivity (mean annual volume increment - m3 ha-1 yr-1) across Sweden. Normalized forest productivity was significantly negatively related to the soil C : N ratio (R2 = 0.02-0.13), while SOC exhibited an empirical optimum (R2 = 0.05-0.15). For the metric, we started from a (yet unvalidated) metric for constraints on nutrient availability that was previously developed by the International Institute for Applied Systems Analysis (IIASA - Laxenburg, Austria) for evaluating potential productivity of arable land. This IIASA metric requires information on soil properties that are indicative of nutrient availability (SOC, soil texture, total exchangeable bases - TEB, and pH) and is based on theoretical considerations that are also generally valid for nonagricultural ecosystems. However, the IIASA metric was unrelated to normalized forest productivity across Sweden (R2 = 0.00-0.01) because the soil factors under consideration were not optimally implemented according to the Swedish data, and because the soil C : N ratio was not included. Using two methods (each one based on a different way of normalizing productivity for climate), we adjusted this metric by incorporating soil C : N and modifying the relationship between SOC and nutrient availability in view of the observed relationships across our database. In contrast to the IIASA metric, the adjusted metrics explained some variation in normalized productivity in the database (R2 = 0.03-0.21; depending on the applied method). A test for five manually selected local fertility gradients in our database revealed a significant and stronger relationship between the adjusted metrics and productivity for each of the gradients (R2 = 0.09-0.38). This study thus shows for the first time how nutrient availability metrics can be evaluated and adjusted for a particular ecosystem type, using a large-scale database.

  3. Scaling of physical constraints at the root-soil interface to macroscopic patterns of nutrient retention in ecosystems.

    PubMed

    Gerber, Stefan; Brookshire, E N Jack

    2014-03-01

    Nutrient limitation in terrestrial ecosystems is often accompanied with maintaining a nearly closed vegetation-soil nutrient cycle. The ability to retain nutrients in an ecosystem requires the capacity of the plant-soil system to draw down nutrient levels in soils effectually such that export concentrations in soil solutions remain low. Here we address the physical constraints of plant nutrient uptake that may be limited by the diffusive movement of nutrients in soils, by the uptake at the root/mycorrhizal surface, and from interactions with soil water flow. We derive an analytical framework of soil nutrient transport and uptake and predict levels of plant available nutrient concentration and residence time. Our results, which we evaluate for nitrogen, show that the physical environment permits plants to lower soil solute concentration substantially. Our analysis confirms that plant uptake capacities in soils are considerable, such that water movement in soils is generally too small to significantly erode dissolved plant-available nitrogen. Inorganic nitrogen concentrations in headwater streams are congruent with the prediction of our theoretical framework. Our framework offers a physical-based parameterization of nutrient uptake in ecosystem models and has the potential to serve as an important tool toward scaling biogeochemical cycles from individual roots to landscapes.

  4. Integrated Systems Mitigate Land Degradation and Improve Agricultural System Sustainability

    NASA Astrophysics Data System (ADS)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Brevik, Eric

    2017-04-01

    Rain-fed agricultural production supported by exogenous inputs is not sustainable because a continuous influx of expensive inputs (fertilizer, chemicals, fossil fuel, labor, tillage, and other) is required. Alternatives to traditional management allow natural occurring dynamic soil processes to provide the necessary microbial activity that supports nutrient cycling in balance with nature. Research designed to investigate the potential for integrated systems to replace expensive inputs has shown that healthy soils rich in soil organic matter (SOM) are the foundation upon which microbial nutrient cycling can reduce and eventually replace expensive fertilizer. No-till seed placement technology effectively replaces multiple-pass cultivation conserving stored soil water in semi-arid farming systems. In multi-crop rotations, cool- and warm-season crops are grown in sequence to meet goals of the integrated farming and ranching system, and each crop in the rotation complements the subsequent crop by supplying a continuous flow of essential SOM for soil nutrient cycling. Grazing animals serve an essential role in the system's sustainability as non-mechanized animal harvesters that reduce fossil fuel consumption and labor, and animal waste contributes soil nutrients to the system. Integrated systems' complementarity has contributed to greater soil nutrient cycling and crop yields, fertilizer reduction or elimination, greater yearling steer grazing net return, reduced cow wintering costs grazing crop residues, increased wildlife sightings, and reduced environmental footprint. Therefore, integrating crop and animal systems can reverse soil quality decline and adopting non-traditional procedures has resulted in a wider array of opportunities for sustainable agriculture and profitability.

  5. Predicting the digestible energy of corn determined with growing swine from nutrient composition and cross-species measurements.

    PubMed

    Smith, B; Hassen, A; Hinds, M; Rice, D; Jones, D; Sauber, T; Iiams, C; Sevenich, D; Allen, R; Owens, F; McNaughton, J; Parsons, C

    2015-03-01

    The DE values of corn grain for pigs will differ among corn sources. More accurate prediction of DE may improve diet formulation and reduce diet cost. Corn grain sources ( = 83) were assayed with growing swine (20 kg) in DE experiments with total collection of feces, with 3-wk-old broiler chick in nitrogen-corrected apparent ME (AME) trials and with cecectomized adult roosters in nitrogen-corrected true ME (TME) studies. Additional AME data for the corn grain source set was generated based on an existing near-infrared transmittance prediction model (near-infrared transmittance-predicted AME [NIT-AME]). Corn source nutrient composition was determined by wet chemistry methods. These data were then used to 1) test the accuracy of predicting swine DE of individual corn sources based on available literature equations and nutrient composition and 2) develop models for predicting DE of sources from nutrient composition and the cross-species information gathered above (AME, NIT-AME, and TME). The overall measured DE, AME, NIT-AME, and TME values were 4,105 ± 11, 4,006 ± 10, 4,004 ± 10, and 4,086 ± 12 kcal/kg DM, respectively. Prediction models were developed using 80% of the corn grain sources; the remaining 20% was reserved for validation of the developed prediction equation. Literature equations based on nutrient composition proved imprecise for predicting corn DE; the root mean square error of prediction ranged from 105 to 331 kcal/kg, an equivalent of 2.6 to 8.8% error. Yet among the corn composition traits, 4-variable models developed in the current study provided adequate prediction of DE (model ranging from 0.76 to 0.79 and root mean square error [RMSE] of 50 kcal/kg). When prediction equations were tested using the validation set, these models had a 1 to 1.2% error of prediction. Simple linear equations from AME, NIT-AME, or TME provided an accurate prediction of DE for individual sources ( ranged from 0.65 to 0.73 and RMSE ranged from 50 to 61 kcal/kg). Percentage error of prediction based on the validation data set was greater (1.4%) for the TME model than for the NIT-AME or AME models (1 and 1.2%, respectively), indicating that swine DE values could be accurately predicted by using AME or NIT-AME. In conclusion, regression equations developed from broiler measurements or from analyzed nutrient composition proved adequate to reliably predict the DE of commercially available corn hybrids for growing pigs.

  6. The stoichiometry of nutrient release by terrestrial herbivores and its ecosystem consequences

    NASA Astrophysics Data System (ADS)

    Sitters, Judith; Bakker, Elisabeth S.; Veldhuis, Michiel P.; Veen, G. F.; Olde Venterink, Harry; Vanni, Michael J.

    2017-04-01

    It is widely recognized that the release of nutrients by herbivores via their waste products strongly impacts nutrient availability for autotrophs. The ratios of nitrogen (N) and phosphorus (P) recycled through herbivore release (i.e., waste N:P) are mainly determined by the stoichiometric composition of the herbivore’s food (food N:P) and its body nutrient content (body N:P). Waste N:P can in turn impact autotroph nutrient limitation and productivity. Herbivore-driven nutrient recycling based on stoichiometric principles is dominated by theoretical and experimental research in freshwater systems, in particular interactions between algae and invertebrate herbivores. In terrestrial ecosystems, the impact of herbivores on nutrient cycling and availability is often limited to studying carbon (C ):N and C:P ratios, while the role of terrestrial herbivores in mediating N:P ratios is also likely to influence herbivore-driven nutrient recycling. In this review, we use rules and predictions on the stoichiometry of nutrient release originating from algal-based aquatic systems to identify the factors that determine the stoichiometry of nutrient release by herbivores. We then explore how these rules can be used to understand the stoichiometry of nutrient release by terrestrial herbivores, ranging from invertebrates to mammals, and its impact on plant nutrient limitation and productivity. Future studies should focus on measuring both N and P when investigating herbivore-driven nutrient recycling in terrestrial ecosystems, while also taking the form of waste product (urine or feces) and other pathways by which herbivores change nutrients into account, to be able to quantify the impact of waste stoichiometry on plant communities.

  7. Hydrology, nutrient concentrations, and nutrient yields in nearshore areas of four lakes in northern Wisconsin, 1999-2001

    USGS Publications Warehouse

    Graczyk, David J.; Hunt, Randall J.; Greb, Steven R.; Buchwald, Cheryl A.; Krohelski, James T.

    2003-01-01

    The effects of shoreline development on water quality and nutrient yields in nearshore areas of four lakes in northern Wisconsin were investigated from October 1999 through September 2001. The study measured surface runoff and ground-water flows from paired developed (sites containing lawn, rooftops, sidewalks, and driveways) and undeveloped (mature and immature woods) catchments adjacent to four lakes in northern Wisconsin. Water samples from surface runoff and ground water were collected and analyzed for nutrients. Coupled with water volumes, loads and subsequent yields of selected constituents were computed for developed and undeveloped catchments. The median runoff from lawn surfaces ranged from 0.0019 to 0.059 inch over the catchment area. Median surface runoff estimates from the wooded catchments were an order of magnitude less than those from the lawn catchments. The increased water volumes from the lawn catchments resulted in greater nutrient loads and subsequent annual nutrient yields from the developed sites. Soil temperature and soil moisture were measured at two sites with mixed lawn and wooded areas. At both of these sites, the area covered with a lawn commonly was warmer than the wooded area. No consistent differences in soil moisture were found. A ground-water model was constructed to simulate the local flow systems at two of the paired catchments. Model simulations showed that much of the ground water delivered to the lake originated from distant areas that did not contribute runoff directly to the lake. Surface runoff and ground-water nutrient concentrations from the lawn and wooded catchments did not have apparent patterns. Some of the median concentrations from lawns were significantly different (at the 0.05 significance level) from those at wooded catchments. Water wells and piezometers were sampled for chemical analyses three times during the study period. Variability in the shallow ground-water chemistry over time in the lawn samples was larger than samples from the wooded areas and upgradient wells. Median nutrient yields in surface runoff from lawns always were greater than those from the wooded catchments. Runoff volumes were the most important factor in determining whether lawns or wooded catchments contribute more nutrients to the lake. The ground-water system had appreciable nutrient concentrations, and are likely an important pathway for nutrient transport to the lake. The nitrate plus nitrite nitrogen and total phosphorus yields to the ground-water system from a lawn catchment were approximately 3 to 4 times greater than those from the wooded catchment. There was no difference in the yields of dissolved inorganic phosphorus to the ground-water system from the lawn and wooded catchments. Study results demonstrate that choosing the appropriate landscape position for locating lawns in sloped areas (specifically, slopes that do not terminate at the lake or areas with intervening flat or buffer zones between lawn and lake) can help reduce the adverse effect of lawns on the shallow ground water and, ultimately, the lake. Additional information would be needed to extrapolate these results to a large drainage area of a lake.

  8. Cell-specific CO2 fixation rates of two distinct groups of plastidic protists in the Atlantic Ocean remain unchanged after nutrient addition.

    PubMed

    Grob, Carolina; Jardillier, Ludwig; Hartmann, Manuela; Ostrowski, Martin; Zubkov, Mikhail V; Scanlan, David J

    2015-04-01

    To assess the role of open-ocean ecosystems in global CO2 fixation, we investigated how picophytoplankton, which dominate primary production, responded to episodic increases in nutrient availability. Previous experiments have shown nitrogen alone, or in combination with phosphorus or iron, to be the proximate limiting nutrient(s) for total phytoplankton grown over several days. Much less is known about how nutrient upshift affects picophytoplankton CO2 fixation over the duration of the light period. To address this issue, we performed a series of small volume (8-60 ml) - short term (10-11 h) nutrient addition experiments in different regions of the Atlantic Ocean using NH4 Cl, FeCl3 , K medium, dust and nutrient-rich water from 300 m depth. We found no significant nutrient stimulation of group-specific CO2 fixation rates of two taxonomically and size-distinct groups of plastidic protists. The above was true regardless of the region sampled or nutrient added, suggesting that this is a generic phenomenon. Our findings show that at least in the short term (i.e. daylight period), nutrient availability does not limit CO2 fixation by the smallest plastidic protists, while their taxonomic composition does not determine their response to nutrient addition. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Impacts of Cover Crops on Water and Nutrient Dynamics in Agroecosystems

    NASA Astrophysics Data System (ADS)

    Williard, K.; Swanberg, S.; Schoonover, J.

    2013-05-01

    Intensive cropping systems of corn (Zea Mays L.) and soybeans (Glycine max) are commonly leaky systems with respect to nitrogen (N). Reactive N outputs from agroecosystems can contribute to eutrophication and hypoxic zones in downstream water bodies and greenhouse gas (N2O) emissions. Incorporating cover crops into temperate agroecosystem rotations has been promoted as a tool to increase nitrogen use efficiency and thus limit reactive N outputs to the environment. Our objective was determine how cereal rye (Secale cereal L.) and annual ryegrass (Lolium multiflorum) cover crops impact nutrient and soil water dynamics in an intensive corn and soybean cropping rotation in central Illinois. Cover crops were planted in mid to late October and terminated in early April prior to corn or soybean planting. In the spring just prior to cover crop termination, soil moisture levels were lower in the cover crop plots compared to no cover plots. This can be a concern for the subsequent crop in relatively dry years, which the Midwestern United States experienced in 2012. No cover plots had greater nutrient leaching below the rooting zone compared to cover crop areas, as expected. The cover crops were likely scavenging nutrients during the fall and early spring and should provide nutrients to the subsequent crop via decomposition and mineralization of the cover crop residue. Over the long term, cover crop systems should produce greater inputs and cycling of carbon and N, increasing the productivity of crops due to the long-term accumulation of soil organic matter. This study demonstrates that there may be short term trade-offs in reduced soil moisture levels that should be considered alongside the long term nutrient scavenging and recycling benefits of cover crops.

  10. Maternal Nutrition During Pregnancy: Intake of Nutrients Important for Bone Health.

    PubMed

    Hyde, Natalie K; Brennan-Olsen, Sharon L; Bennett, Kathy; Moloney, David J; Pasco, Julie A

    2017-04-01

    Objectives Maternal nutrition during pregnancy plays an important role in predisposing offspring to the development of chronic disease in adulthood, including osteoporosis. Our aim was to investigate maternal dietary intakes during pregnancy, with a focus on nutrients important for skeletal development in the offspring. Methods In this case-control study, cases were pregnant women recruited for the Vitamin D in Pregnancy Study (n = 350, age 20-40 years) and controls were non-pregnant peers participating in the Geelong Osteoporosis Study (n = 305, age 20-40 years). Dietary intakes of nutrients were quantified using a validated food frequency questionnaire. Results Compared to controls, cases consumed more energy [median (interquartile range): 7831 (6506-9461) vs. 7136 (6112-8785) kJ/day]; median intakes for cases were greater for carbohydrates [206.2 (172.5-249.9) vs. 188.2 (147.7-217.5) g/day], fat [77.9 (60.3-96.6) vs. 72.1 (53.3-87.4) g/day], potassium [2860 (2363-3442) vs. 2606 (2166-3442) mg/day] and calcium [1022 (819-1264) vs. 918 (782-1264) mg/day] (all p ≤ 0.05). However, pregnant women were not consuming greater amounts of those nutrients which had an increased demand (protein, magnesium, phosphorus and zinc). Similarly, this translated to the likelihood of achieving national recommendations for corresponding nutrients. Conclusions for Practice Compared to their non-pregnant peers, pregnant women were more likely to meet dietary recommendations for calcium and potassium; however, this was not the pattern observed for protein, magnesium and zinc. Future public health messages should perhaps focus on increasing awareness of the importance of all these nutrients during pregnancy.

  11. Biofilm adaptation to iron availability in the presence of biotite and consequences for chemical weathering.

    PubMed

    Grant, M R; Tymon, L S; Helms, G L; Thomashow, L S; Kent Keller, C; Harsh, J B

    2016-11-01

    Bacteria in nature often live within biofilms, exopolymeric matrices that provide a favorable environment that can differ markedly from their surroundings. Biofilms have been found growing on mineral surfaces and are expected to play a role in weathering those surfaces, but a clear understanding of how environmental factors, such as trace-nutrient limitation, influence this role is lacking. Here, we examine biofilm development by Pseudomonas putida in media either deficient or sufficient in Fe during growth on biotite, an Fe rich mineral, or on glass. We hypothesized that the bacteria would respond to Fe deficiency by enhancing biotite dissolution and by the formation of binding sites to inhibit Fe leaching from the system. Glass coupons acted as a no-Fe control to investigate whether biofilm response depended on the presence of Fe in the supporting solid. Biofilms grown on biotite, as compared to glass, had significantly greater biofilm biomass, specific numbers of viable cells (SNVC), and biofilm cation concentrations of K, Mg, and Fe, and these differences were greater when Fe was deficient in the medium. Scanning electron microscopy (SEM) confirmed that biofilm growth altered the biotite surface, smoothing the rough, jagged edges of channels scratched by hand on the biotite, and dissolving away small, easy-to-access particles scattered across the planar surface. High-resolution magic angle spinning proton nuclear magnetic resonance (HRMAS 1 H NMR) spectroscopy showed that, in the Fe-deficient medium, the relative amount of polysaccharide nearly doubled relative to that in biofilms grown in the medium amended with Fe. The results imply that the bacteria responded to the Fe deficiency by obtaining Fe from biotite and used the biofilm matrix to enhance weathering and as a sink for released cation nutrients. These results demonstrate one mechanism by which biofilms may help soil microbes overcome nutrient deficiencies in oligotrophic systems. © 2016 John Wiley & Sons Ltd.

  12. Nutrient limitation and morphological plasticity of the carnivorous pitcher plant Sarracenia purpurea in contrasting wetland environments.

    PubMed

    Bott, Terry; Meyer, Gretchen A; Young, Erica B

    2008-01-01

    * Plasticity of leaf nutrient content and morphology, and macronutrient limitation were examined in the northern pitcher plant, Sarracenia purpurea subsp. purpurea, in relation to soil nutrient availability in an open, neutral pH fen and a shady, acidic ombrotrophic bog, over 2 yr following reciprocal transplantation of S. purpurea between the wetlands. * In both wetlands, plants were limited by nitrogen (N) but not phosphorus (P) (N content < 2% DW(-1), N : P < 14) but photosynthetic quantum yields were high (F(V)/F(M) > 0.79). Despite carnivory, leaf N content correlated with dissolved N availability to plant roots (leaf N vs , r(2) = 0.344, P < 0.0001); carnivorous N acquisition did not apparently overcome N limitation. * Following transplantation, N content and leaf morphological traits changed in new leaves to become more similar to plants in the new environment, reflecting wetland nutrient availability. Changes in leaf morphology were faster when plants were transplanted from fen to bog than from bog to fen, possibly reflecting a more stressful environment in the bog. * Morphological plasticity observed in response to changes in nutrient supply to the roots in natural habitats complements previous observations of morphological changes with experimental nutrient addition to pitchers.

  13. Goldilocks and the three inorganic equilibria: how Earth's chemistry and life coevolve to be nearly in tune.

    PubMed

    Rickaby, R E M

    2015-03-13

    Life and the chemical environment are united in an inescapable feedback cycle. The periodic table of the elements essential for life has transformed over Earth's history, but, as today, evolved in tune with the elements available in abundance in the environment. The most revolutionary time in life's history was the advent and proliferation of oxygenic photosynthesis which forced the environment towards a greater degree of oxidation. Consideration of three inorganic chemical equilibria throughout this gradual oxygenation prescribes a phased release of trace metals to the environment, which appear to have coevolved with employment of these new chemicals by life. Evolution towards complexity was chemically constrained, and changes in availability of notably Fe, Zn and Cu paced the systematic development of complex organisms. Evolving life repeatedly catalysed its own chemical challenges via the unwitting release of new and initially toxic chemicals. Ultimately, the harnessing of these allowed life to advance to greater complexity, though the mechanism responsible for translating novel chemistry to heritable use remains elusive. Whether a chemical acts as a poison or a nutrient lies both in the dose and in its environmental history. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Interactive effects of nutrient additions and predation on infaunal communities

    USGS Publications Warehouse

    Posey, M.H.; Alphin, T.D.; Cahoon, L.; Lindquist, D.; Becker, M.E.

    1999-01-01

    Nutrient additions represent an important anthropogenic stress on coastal ecosystems. At moderate levels, increased nutrients may lead to increased primary production and, possibly, to increased biomass of consumers although complex trophic interactions may modify or mask these effects. We examined the influence of nutrient additions and interactive effects of trophic interactions (predation) on benthic infaunal composition and abundances through small-scale field experiments in 2 estuaries that differed in ambient nutrient conditions. A blocked experimental design was used that allowed an assessment of direct nutrient effects in the presence and absence of predation by epibenthic predators as well as an assessment of the independent effects of predation. Benthic microalgal production increased with experimental nutrient additions and was greater when infaunal abundances were lower, but there were no significant interactions between these factors. Increased abundances of one infaunal taxa, Laeonereis culveri, as well as the grazer feeding guild were observed with nutrient additions and a number of taxa exhibited higher abundances with predator exclusion. In contrast to results from freshwater systems there were no significant interactive effects between nutrient additions and predator exclusion as was predicted. The infaunal responses observed here emphasize the importance of both bottom-up (nutrient addition and primary producer driven) and top-down (predation) controls in structuring benthic communities. These processes may work at different spatial and temporal scales, and affect different taxa, making observation of potential interactive effects difficult.

  15. Nutrient allocation among plant organs across 13 tree species in three Bornean rain forests with contrasting nutrient availabilities.

    PubMed

    Aoyagi, Ryota; Kitayama, Kanehiro

    2016-07-01

    Allocation of nitrogen (N) and phosphorus (P) among plant organs is an important factor regulating growth rate, which is a key ecological process associated with plant life-history strategies. However, few studies have explored how N and P investment in photosynthetic (leaves) and non-photosynthetic (stems and roots) organs changes in relation to depletion of each element. We investigated nutrient concentrations of plant organs in relation to whole-plant nutrient concentration (total nutrient weight per total biomass) as an index of nutrient status of each individual using the saplings of the 13 species in three tropical rain forests with contrasting N and P availabilities (tropical evergreen forests and tropical heath forests). We found a steeper decrease in foliar N concentration than foliar P concentration with decreasing whole-plant nutrient concentration. Moreover, the steeper decrease in foliar N concentration was associated with relatively stable N concentration in stems, and vice versa for P. We suggest that the depletion of N is associated with a rapid dilution of foliar N because the cell walls in non-photosynthetic organs function as an N sink. On the other hand, these species can maintain foliar P concentration by decreasing stem P concentrations despites the depletion of P. Our results emphasize the significance of non-photosynthetic organs as an N sink for understanding the variation of foliar nutrient concentrations for the tree species in the three Bornean rain forests with different N and P availabilities.

  16. Bioavailability of Dissolved Organic Carbon and Nitrogen From Tropical Montane Rainforest Streams Across a Geologic age Gradient

    NASA Astrophysics Data System (ADS)

    Wiegner, T. N.

    2005-05-01

    Dissolved organic matter (DOM) is metabolically important in streams. Its bioavailability is influenced by organic matter sources to streams and inorganic nutrient availability. As forest canopies and soils develop over time, organic matter inputs to streams should switch from algal to watershed sources. Across this succession gradient, nutrient limitation should also change. This study examines how chemical composition and bioavailability of DOM from tropical montane rainforest streams on Hawaii change across a geologic age gradient from 4 ky to 150 ky. Dissolved organic C (DOC) and N (DON) concentrations, chemical characteristics, and bioavailability varied with site age. With increasing stream age, DOC and DON concentrations, DOM aromaticity, and the C:N of the stream DOM increased. Changes in stream DOM chemistry and inorganic nutrient availability affected DOM bioavailability. Fifty percent of the DOC from the 4 ky site was bioavailable, where little to none was bioavailable from the older streams. Inorganic nutrient availability did not affect DOC bioavailability. In contrast, DON bioavailability was similar (12%) across sites and was affected by inorganic nutrient availability. This study demonstrates that the chemistry and metabolism of streams draining forests change with ecosystem age and development.

  17. Bioregenerative life support systems for microgravity

    NASA Technical Reports Server (NTRS)

    Nevill, Gail E., Jr.; Hessel, Michael I., Jr.; Rodriguez, Jose; Morgan, Steve (Editor)

    1993-01-01

    NASA's Controlled Ecological Life Support System (CELSS) project centers on growing plants and recycling wastes in space. The current version of the biomass production chamber (BPC) uses a hydroponic system for nutrient delivery. To optimize plant growth and conserve system resources, the content of the nutrient solution which feeds the plants must be constantly monitored. The macro-nutrients (greater than ten ppm) in the solution include nitrogen, phosphorous, potassium, calcium, magnesium, and sulphur; the micro-nutrients (less than ten ppm) include iron, copper, manganese, zinc, and boron. The goal of this project is to construct a computer-controlled system of ion detectors that will accurately measure the concentrations of several necessary ions in solution. The project focuses on the use of a sensor array to eliminate problems of interference and temperature dependence.

  18. A new conceptual framework for unifying the heterogeneity of plant-microbe interactions in forests by linking belowground measurements with large-scale modeling and remote sensing

    NASA Astrophysics Data System (ADS)

    Brzostek, E. R.; Phillips, R.; Fisher, J. B.

    2015-12-01

    Recognition of the importance of rhizosphere interactions to ecosystem processes has led to efforts to integrate these dynamics into a conceptual framework that can be tested, refined and applied across spatial scales. A new view suggests that a plant's mycorrhizal association represents a "trait integrator" for a suite of aboveground and belowground functional traits involved in coupling C-nutrient cycles, since nearly all plants associate with a single type of mycorrhizal fungi. The MANE framework predicts that tree species that associate with arbuscular mycorrhizal (AM) fungi differ from trees that associate with ectomycorrhizal (ECM) fungi in a suite of functional traits, and that such differences contribute to unique "biogeochemical syndromes" in forests with varying abundances of AM- and ECM-associated trees. To date, we have found that relative to AM trees, the leaf litter of ECM trees decomposes nearly 50% more slowly; as such, the nutrient economy of ECM-dominated stands is driven by organic forms of N and P whereas the nutrient economy of AM-dominated stands in driven by inorganic forms of N and P. Moreover, differences in the nutrient economies between AM- and ECM-dominated stands can affect the carbon (C) cost of nutrient acquisition. For example, while ECM trees allocate 2-3-fold more C to fine roots and mycorrhizal fungi, this greater investment results in the enhanced activity of enzymes that mobilize nitrogen (N) and phosphorus (P) from soil organic matter, and ultimately the greater uptake of nutrients by plants. However, this enhanced uptake by ECM trees comes at a cost to soil organic C, which declines as a function of root-accelerated N mineralization. By incorporating these dynamics into a coupled nutrient acquisition-microbial decomposition model, and scaling these processes following development of a map of mycorrhizal associations, we are now quantifying how belowground processes shape ecosystem sensitivity to global changes (e.g., rising CO2, warming) at regional- and continental-scales.

  19. Reoxidation of estuarine sediments during simulated resuspension events: Effects on nutrient and trace metal mobilisation

    NASA Astrophysics Data System (ADS)

    Vidal-Durà, Andrea; Burke, Ian T.; Stewart, Douglas I.; Mortimer, Robert J. G.

    2018-07-01

    Estuarine environments are considered to be nutrient buffer systems as they regulate the delivery of nutrients from rivers to the ocean. In the Humber Estuary (UK) seawater and freshwater mixing during tidal cycles leads to the mobilisation of oxic surface sediments (0-1 cm). However, less frequent seasonal events can also mobilise anoxic subsurface (5-10 cm) sediments, which may have further implications for the estuarine geochemistry. A series of batch experiments were carried out on surface and subsurface sediments taken from along the salinity gradient of the Humber Estuary. The aim was to investigate the geochemical processes driving major element (N, Fe, S, and Mn) redox cycling and trace metal behaviour during simulated resuspension events. The magnitude of major nutrient and metal release was significantly greater during the resuspension of outer estuarine sediments rather than from inner estuarine sediments. When comparing resuspension of surface versus subsurface sediment, only the outer estuary experiments showed significant differences in major nutrient behaviour with sediment depth. In general, any ammonium, manganese and trace metals (Cu and Zn) released during the resuspension experiments were rapidly removed from solution as new sorption sites (i.e. Fe/Mn oxyhydroxides) formed. Therefore Humber estuary sediments showed a scavenging capacity for these dissolved species and hence may act as an ultimate sink for these elements. Due to the larger aerial extent of the outer estuary intertidal mudflats in comparison with the inner estuary area, the mobilisation of the outer estuary sediments (more reducing and richer in sulphides and iron) may have a greater impact on the transport and cycling of nutrients and trace metals. Climate change-associated sea level rise combined with an increasing frequency of major storm events in temperate zones, which are more likely to mobilise deeper sediment regions, will impact the nutrient and metal inputs to the coastal waters, and therefore enhance the likelihood of eutrophication in this environment.

  20. Site-specific nutrient management systems

    USDA-ARS?s Scientific Manuscript database

    Site-specific nutrient management systems were created to manage for spatial and temporal variability in biophysical factors that determine the availability and demand of crop nutrients. These systems differ among geographical regions in the information utilized and way they operate to accomplish th...

  1. Soil conditions moderate the effects of herbivores, but not mycorrhizae, on a native bunchgrass

    NASA Astrophysics Data System (ADS)

    Connolly, Brian M.; Orrock, John L.; Witter, Martha S.

    2016-11-01

    Herbivores, microbial mutualists, and soil nutrients can affect plant survival, growth, and reproduction, demographic parameters that are essential to plant restoration. In this study we ask: 1) whether native plants that form early associations with mycorrhizal fungi are more tolerant of mammalian grazers, and 2) how early plant associations with mycorrhizal fungi influence mammalian grazing across gradients in soil nutrients. In eight grassland sites in California (USA), we transplanted seedlings of a native bunchgrass, Stipa pulchra, that were or were not pretreated with mycorrhizal fungi in exclosures designed to exclude different guilds of vertebrate grazers. Pretreated plants had greater establishment eight months after transplantation than untreated plants. Mycorrhizal inoculation resulted in twofold greater biomass and fourfold greater seed production when plants were protected from herbivores; inoculation with mycorrhizae resulted in twofold greater biomass and seed production when plants were accessible by all herbivores. Soil phosphate and potassium concentrations influenced herbivory: vertebrate grazing had less effect on transplant biomass and seed production at sites with high phosphate - low potassium soils, but the effects of grazing were more severe in low phosphate - high potassium soils. Pretreatment with mycorrhizal fungi can result in greater survival, growth, and reproduction of transplanted seedlings of native bunchgrass S. pulchra. Our results also illustrate that soil conditions may influence the extent to which the vertebrate herbivore community limits restoration of S. pulchra: the effects of some small mammalian herbivores (e.g., voles) was little affected by soil conditions, but grazing by larger herbivores had a greater effect on S. pulchra performance at sites with low phosphate - high potassium soils. In helping identify the contribution of soil nutrients, herbivores, and mycorrhizae to establishment and performance, our work has implications for the restoration of a species that is likely a fundamental component of pristine California grassland ecosystems.

  2. Significance of Plankton Community Structure and Nutrient Availability for the Control of Dinoflagellate Blooms by Parasites: A Modeling Approach

    PubMed Central

    Alves-de-Souza, Catharina; Pecqueur, David; Le Floc’h, Emilie; Mas, Sébastien; Roques, Cécile; Mostajir, Behzad; Vidussi, Franscesca; Velo-Suárez, Lourdes; Sourisseau, Marc; Fouilland, Eric; Guillou, Laure

    2015-01-01

    Dinoflagellate blooms are frequently observed under temporary eutrophication of coastal waters after heavy rains. Growth of these opportunistic microalgae is believed to be promoted by sudden input of nutrients and the absence or inefficiency of their natural enemies, such as grazers and parasites. Here, numerical simulations indicate that increasing nutrient availability not only promotes the formation of dinoflagellate blooms but can also stimulate their control by protozoan parasites. Moreover, high abundance of phytoplankton other than dinoflagellate hosts might have a significant dilution effect on the control of dinoflagellate blooms by parasites, either by resource competition with dinoflagellates (thus limiting the number of hosts available for infection) or by affecting numerical-functional responses of grazers that consume free-living parasite stages. These outcomes indicate that although both dinoflagellates and their protozoan parasites are directly affected by nutrient availability, the efficacy of the parasitic control of dinoflagellate blooms under temporary eutrophication depends strongly on the structure of the plankton community as a whole. PMID:26030411

  3. The effect of hydraulic lift on organic matter decomposition, soil nitrogen cycling, and nitrogen acquisition by a grass species.

    PubMed

    Armas, Cristina; Kim, John H; Bleby, Timothy M; Jackson, Robert B

    2012-01-01

    Hydraulic lift (HL) is the passive movement of water through plant roots, driven by gradients in water potential. The greater soil-water availability resulting from HL may in principle lead to higher plant nutrient uptake, but the evidence for this hypothesis is not universally supported by current experiments. We grew a grass species common in North America in two-layer pots with three treatments: (1) the lower layer watered, the upper one unwatered (HL), (2) both layers watered (W), and (3) the lower layer watered, the upper one unwatered, but with continuous light 24 h a day to limit HL (no-HL). We inserted ingrowth cores filled with enriched-nitrogen organic matter ((15)N-OM) in the upper layer and tested whether decomposition, mineralization and uptake of (15)N were higher in plants performing HL than in plants without HL. Soils in the upper layer were significantly wetter in the HL treatment than in the no-HL treatment. Decomposition rates were similar in the W and HL treatments and lower in no-HL. On average, the concentration of NH(4)(+)-N in ingrowth cores was highest in the W treatment, and NO(3)(-)-N concentrations were highest in the no-HL treatment, with HL having intermediate values for both, suggesting differential mineralization of organic N among treatments. Aboveground biomass, leaf (15)N contents and the (15)N uptake in aboveground tissues were higher in W and HL than in no-HL, indicating higher nutrient uptake and improved N status of plants performing HL. However, there were no differences in total root nitrogen content or (15)N uptake by roots, indicating that HL affected plant allocation of acquired N to photosynthetic tissues. Our evidence for the role of HL in organic matter decomposition and nutrient cycling suggests that HL could have positive effects on plant nutrient dynamics and nutrient turnover.

  4. Contrasting bacterial communities in two indigenous Chionochloa (Poaceae) grassland soils in New Zealand

    PubMed Central

    Griffith, Jocelyn C.; Lee, William G.; Orlovich, David A.

    2017-01-01

    The cultivation of grasslands can modify both bacterial community structure and impact on nutrient cycling as well as the productivity and diversity of plant communities. In this study, two pristine New Zealand grassland sites dominated by indigenous tall tussocks (Chionochloa pallens or C. teretifolia) were examined to investigate the extent and predictability of variation of the bacterial community. The contribution of free-living bacteria to biological nitrogen fixation is predicted to be ecologically significant in these soils; therefore, the diazotrophic community was also examined. The C. teretifolia site had N-poor and poorly-drained peaty soils, and the C. pallens had N-rich and well-drained fertile soils. These soils also differ in the proportion of organic carbon (C), Olsen phosphorus (P) and soil pH. The nutrient-rich soils showed increased relative abundances of some copiotrophic bacterial taxa (including members of the Proteobacteria, Bacteroidetes and Firmicutes phyla). Other copiotrophs, Actinobacteria and the oliogotrophic Acidobacteria showed increased relative abundance in nutrient-poor soils. Greater diversity based on 16S rRNA gene sequences and the Tax4Fun prediction of enhanced spore formation associated with nutrient-rich soils could indicate increased resilience of the bacterial community. The two sites had distinct diazotrophic communities with higher diversity in C. teretifolia soils that had less available nitrate and ammonium, potentially indicating increased resilience of the diazotroph community at this site. The C. teretifolia soils had more 16S rRNA gene and nifH copies per g soil than the nutrient rich site. However, the proportion of the bacterial community that was diazotrophic was similar in the two soils. We suggest that edaphic and vegetation factors are contributing to major differences in the composition and diversity of total bacterial and diazotrophic communities at these sites. We predict the differences in the communities at the two sites will result in different responses to environmental change. PMID:28658306

  5. Plant responses to elevated atmospheric CO/sub 2/ with emphasis on belowground processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norby, R.J.; Luxmoore, R.J.; O'Neill, E.G.

    1984-12-01

    Consideration of the interrelationships between carbon, water, and nutrient pathways in soil-plant systems has led to the hypothesis that stimulation of root and rhizosphere processes by elevated levels of CO/sub 2/ will increase nutrient availability and lead to an increase in plant growth. Several experiments were conducted to investigate the effects of CO/sub 2/ concentration on carbon allocation, root exudation, nitrogen utilization, and microbial responses, as well as overall plant growth and nutrient utilization. Increases in the growth of yellow-poplar (Liriodendron tulipifera L.) seedlings in response to elevated CO/sub 2/ were demonstrated even when the plants were under apparent nutrientmore » limitation in a forest soil. The proportion of photosynthetically fixed carbon that was allocated to the roots of yellow-poplar and hazel alder (Alnus serrulata (Ait.) Willd.) seedlings was greater at 700 ppM CO/sub 2/ than at ambient CO/sub 2/. Exudation of carbon from yellow-poplar roots also tended to be higher in elevated CO/sub 2/. Responses of rhizosphere microbial populations to elevated CO/sub 2/ were inconsistent, but there was a trend toward relatively fewer ammonium oxidizers, nitrite oxidizers, and phosphate solubilizers in the rhizosphere population of yellow-poplar seedlings grown in 700 ppM CO/sub 2/ compared to that of seedlings grown in ambient CO/sub 2/. Other observed trends included increased nodulation and nitrogenase activity and decreased nitrate reductase activity in hazel alder seedlings in elevated CO/sub 2/. Net uptake of some essential plant nutrients, aluminum, and other trace metals by Virginia pine (Pinus virginiana Mill.) increased with increasing CO/sub 2/ concentration. There was less leaching of some nutrients from soil-plant systems with Virginia pine and yellow-poplar seedlings but increased leaching of zinc. 123 references, 16 figures, 17 tables.« less

  6. Effects of Land-use/Land-cover and Climate Changes on Water Quantity and Quality in Sub-basins near Major US Cities in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Murphy, L.; Al-Hamdan, M. Z.; Crosson, W. L.; Barik, M.

    2017-12-01

    Land-cover change over time to urbanized, less permeable surfaces, leads to reduced water infiltration at the location of water input while simultaneously transporting sediments, nutrients and contaminants farther downstream. With an abundance of agricultural fields bordering the greater urban areas of Milwaukee, Detroit, and Chicago, water and nutrient transport is vital to the farming industry, wetlands, and communities that rely on water availability. Two USGS stream gages each located within a sub-basin near each of these Great Lakes Region cities were examined, one with primarily urban land-cover between 1992 and 2011, and one with primarily agriculture land-cover. ArcSWAT, a watershed model and soil and water assessment tool used in extension with ArcGIS, was used to develop hydrologic models that vary the land-covers to simulate surface runoff during a model run period from 2004 to 2008. Model inputs that include a digital elevation model (DEM), Landsat-derived land-use/land-cover (LULC) satellite images from 1992, 2001, and 2011, soil classification, and meteorological data were used to determine the effect of different land-covers on the water runoff, nutrients and sediments. The models were then calibrated and validated to USGS stream gage data measurements over time. Additionally, the watershed model was run based on meteorological data from an IPCC CMIP5 high emissions climate change scenario for 2050. Model outputs from the different LCLU scenarios were statistically evaluated and results showed that water runoff, nutrients and sediments were impacted by LULC change in four out of the six sub-basins. In the 2050 climate scenario, only one out of the six sub-basin's water quantity and quality was affected. These results contribute to the importance of developing hydrologic models as the dependence on the Great Lakes as a freshwater resource competes with the expansion of urbanization leading to the movement of runoff, nutrients, and sediments off the land.

  7. Reefs of tomorrow: eutrophication reduces coral biodiversity in an urbanized seascape.

    PubMed

    Duprey, Nicolas N; Yasuhara, Moriaki; Baker, David M

    2016-11-01

    Although the impacts of nutrient pollution on coral reefs are well known, surprisingly, no statistical relationships have ever been established between water quality parameters, coral biodiversity and coral cover. Hong Kong provides a unique opportunity to assess this relationship. Here, coastal waters have been monitored monthly since 1986, at 76 stations, providing a highly spatially resolved water quality dataset including 68 903 data points. Moreover, a robust coral species richness (S) dataset is available from more than 100 surveyed locations, composed of 3453 individual colonies' observations, as well as a coral cover (CC) dataset including 85 sites. This wealth of data provides a unique opportunity to test the hypothesis that water quality, and in particular nutrients, drives coral biodiversity. The influence of water quality on S and CC was analyzed using GIS and multiple regression modeling. Eutrophication (as chlorophyll-a concentration; CHLA) was negatively correlated with S and CC, whereas physicochemical parameters (DO and salinity) had no significant effect. The modeling further illustrated that particulate suspended matter, dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) had a negative effect on S and on CC; however, the effect of nutrients was 1.5-fold to twofold greater. The highest S and CC occurred where CHLA <2 μg L -1 , DIN < 2 μm and DIP < 0.1 μm. Where these values were exceeded, S and CC were significantly lower and no live corals were observed where CHLA > 15 μg L -1 , DIN > 9 μm and DIP > 0.33 μm. This study demonstrates the importance of nutrients over other water quality parameters in coral biodiversity loss and highlights the key role of eutrophication in shaping coastal coral reef ecosystems. This work also provides ecological thresholds that may be useful for water quality guidelines and nutrient mitigation policies. © 2016 John Wiley & Sons Ltd.

  8. Water Quality in Big Cypress National Preserve and Everglades National Park - Trends and Spatial Characteristics of Selected Constituents

    USGS Publications Warehouse

    Miller, Ronald L.; McPherson, Benjamin F.; Sobczak, Robert; Clark, Christine

    2004-01-01

    Seasonal changes in water levels and flows in Big Cypress National Preserve (BICY) and Everglades National Park (EVER) affect water quality. As water levels and flows decline during the dry season, physical, geochemical and biological processes increase the breakdown of organic materials and the build-up of organic waste, nutrients, and other constituents in the remaining surface water. For example, concentrations of total phosphorus in the marsh are less than 0.01 milligram per liter (mg/L) during much of the year. Concentrations can rise briefly above this value during the dry season and occasionally exceed 0.1 mg/L under drought conditions. Long-term changes in water levels, flows, water management, and upstream land use also affect water quality in BICY and EVER, based on analysis of available data (1959-2000). During the 1980's and early 1990's, specific conductance and concentrations of chloride increased in the Taylor Slough and Shark River Slough. Chloride concentrations more than doubled from 1960 to 1990, primarily due to greater canal transport of high dissolved solids into the sloughs. Some apparent long-term trends in sulfate and total phosphorus were likely attributable, at least in part, to high percentages of less-than and zero values and to changes in reporting levels over the period of record. High values in nutrient concentrations were evident during dry periods of the 1980's and were attributable either to increased canal inflows of nutrient-rich water, increased nutrient releases from breakdown of organic bottom sediment, or increased build-up of nutrient waste from concentrations of aquatic biota and wildlife in remaining ponds. Long-term changes in water quality over the period of record are less pronounced in the western Everglades and the Big Cypress Swamp; however, short-term seasonal and drought-related changes are evident. Water quality varies spatially across the region because of natural variations in geology, hydrology, and vegetation and because of differences in water management and land use. Nutrient concentrations are relatively low in BICY and EVER compared with concentrations in parts of the northern Everglades that are near agricultural and urban lands. Concentrations of total phosphorus generally are higher in BICY (median values, 1991-2000, were mostly greater than 0.015 mg/L) than in EVER (median values, 1991-2000, less than 0.01 mg/L), probably because of higher phosphorus in natural sources such as shallow soils, rocks, and ground water in the Big Cypress region than in the Everglades region. Conversely, concentrations of chloride and sulfate are higher in EVER (median values in Shark River Slough, 1991-2000, mostly greater than 2 mg/L sulfate and 50 mg/L chloride) than in BICY (median values, 1991-2000, less than 1 mg/L sulfate and at most sites less than 20 mg/L chloride), probably because of the canal transport system, which conveys more water from an agricultural source into EVER than into BICY. Trace elements and contaminants such as pesticides and other toxic organic compounds are in relatively low concentrations in BICY and EVER compared with concentrations in parts of the northern Everglades near agricultural and urban sources. Concentrations rarely exceeded aquatic life criteria in BICY and EVER. Atrazine was the only pesticide found in water that exceeded the criteria (in 2 out of 304 samples). The pesticides heptachlor expoxide, lindane, and p,p?-DDE exceeded criteria in canal bed sediments in 1, 2, and 16 percent of the samples, respectively.

  9. Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest.

    PubMed

    Santiago, Louis S; Kitajima, Kaoru; Wright, S Joseph; Mulkey, Stephen S

    2004-05-01

    We investigated leaf physiological traits of dominant canopy trees in four lowland Panamanian forests with contrasting mean annual precipitation (1,800, 2,300, 3,100 and 3,500 mm). There was near complete turn-over of dominant canopy tree species among sites, resulting in greater dominance of evergreen species with long-lived leaves as precipitation increased. Mean structural and physiological traits changed along this gradient as predicted by cost-benefit theories of leaf life span. Nitrogen content per unit mass (Nmass) and light- and CO2-saturated photosynthetic rates per unit mass (Pmass) of upper canopy leaves decreased with annual precipitation, and these changes were partially explained by increasing leaf thickness and decreasing specific leaf area (SLA). Comparison of 1,800 mm and 3,100 mm sites, where canopy access was available through the use of construction cranes, revealed an association among extended leaf longevity, greater structural defense, higher midday leaf water potential, and lower Pmass, Nmass, and SLA at wetter sites. Shorter leaf life spans and more enriched foliar delta15N values in drier sites suggest greater resorption and re-metabolism of leaf N in drier forest. Greater dominance of short-lived leaves with relatively high Pmass in drier sites reflects a strategy to maximize photosynthesis when water is available and to minimize water loss and respiration costs during rainless periods. Overall, our study links coordinated change in leaf functional traits that affect productivity and nutrient cycling to seasonality in lowland tropical forests. Copyright 2004 Springer-Verlag

  10. Parasite and nutrient enrichment effects on Daphnia interspecific competition.

    PubMed

    Decaestecker, Ellen; Verreydt, Dino; De Meester, Luc; Declerck, Steven A J

    2015-05-01

    Increased productivity due to nutrient enrichment is hypothesized to affect density-dependent processes, such as transmission success of horizontally transmitting parasites. Changes in nutrient availability can also modify the stoichiometry and condition of individual hosts, which may affect their susceptibility for parasites as well as the growth conditions for parasites within the host. Consequently, if not balanced by increased host immuno-competence or life history responses, changes in the magnitude of parasite effects with increasing nutrient availability are expected. If these parasite effects are host-species specific, this may lead to shifts in the host community structure. We here used the Daphnia- parasite model system to study the effect of nutrient enrichment on parasite-mediated competition in experimental mesocosms. In the absence of parasites, D. magna was competitively dominant to D. pulex at both low and high nutrient levels. Introduction of parasites resulted in infections of D. magna, but not of D. pulex and, as such, reversed the competitive hierarchy between these two species. Nutrient addition resulted in an increased prevalence and infection intensity of some of the parasites on D. magna. However, there was no evidence that high nutrient levels enhanced negative effects of parasites on the hosts. Costs associated with parasite infections may have been compensated by better growth conditions for D. magna in the presence of high nutrient levels.

  11. Nutrient uptake and growth responses of Virginia pine to elevated atmospheric carbon dioxide. [Pisolithus tinctorius, Pinus virginiana Mill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luxmoore, R.J.; O'Neill, E.G.; Ells, J.M.

    One-year-old Virgina pine (Pinus virginiana Mill.) seedlings with native or Pisolithus tinctorius mycorrhizal associations were grown in pots with soil low in organic matter and in cation exchange capacity and were exposed to one of five atmospheric CO/sub 2/ levels in the range of 340 to 940 ..mu..L/L in open-top field chambers. The mean dry weight of the seedlings increased from 4.4 to 11.0 g/plant during the 122-d exposure period. Significant increases in dry weight and uptake of N, Ca, Al, Fe, Zn, and Sr occurred with CO/sub 2/ enrichment. Greater chemical uptake was associated with greater root weight. Specificmore » absorption rates for chemicals (uptake per gram of root per day) were generally not affected by CO/sub 2/ enrichment. The uptake of P and K was not increased with elevated CO/sub 2/, and these elements showed the greater nutrient-use efficiency (C gain per element uptake). The nutrient-use efficiency for N and Ca was not influenced by atmospheric CO/sub 2/ enrichment. Large increases in Zn uptake at high CO'' suggested an increase in rhizosphere acidification, which may have resulted from the release of protons from the roots, since it was estimated that cation uptake increasingly exceeded anion uptake with CO/sub 2/ enrichment. Potassium, P, and NO/sub 3//sup -/ concentrations in the pot leachate decreased with higher CO/sub 2/ levels, and a similar trend was found for Al and Mg. These results suggest that soil-plant systems may exhibit increased nutrient and chemical retention at elevated atmospheric CO/sub 2/.« less

  12. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut produce processing plant.

    PubMed

    Liu, Nancy T; Nou, Xiangwu; Bauchan, Gary R; Murphy, Charles; Lefcourt, Alan M; Shelton, Daniel R; Lo, Y Martin

    2015-01-01

    Biofilm-forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been shown to promote the incorporation of Escherichia coli O157:H7 into dual-species biofilms. In this study, interactions between E. coli O157:H7 and R. insidiosa were examined under different incubating conditions. Under static culture conditions, the incorporation of E. coli O157:H7 into biofilms with R. insidiosa was not significantly affected by either low incubating temperature (10°C) or by limited nutrient availability. Greater enhancement of E. coli O157:H7 incorporation in dual-species biofilms was observed by using a continuous culture system with limited nutrient availability. Under the continuous culture conditions used in this study, E coli O157:H7 cells showed a strong tendency of colocalizing with R. insidiosa on a glass surface at the early stage of biofilm formation. As the biofilms matured, E coli O157:H7 cells were mostly found at the bottom layer of the dual-species biofilms, suggesting an effective protection by R. insidiosa in the mature biofilms.

  13. Nutrient concentrations and fluxes in tributaries to the Swan-Canning estuary, Western Australia

    USGS Publications Warehouse

    Peters, N.E.; Donohue, R.

    1999-01-01

    In Western Australia, catchment nutrient availability on an areal basis is primarily controlled by the disposal of animal waste and the type and rate of fertilizer application, particularly in coastal areas. The coastal areas receive notably higher rainfall and have more intense horticulture and animal production than inland areas, and are undergoing rapid urbanization, particularly adjacent to the estuary. Also, the surficial aquifers on the coastal plain are generally sandy having a low nutrient retention capacity and rapidly transmit soluble and colloidal material through the subsurface. In the Swan-Canning basin, high air and soil temperatures and seasonally arid conditions cause rapid mineralization of nitrogen and phosphorus. The nutrients are subsequently available for transport during the onset of seasonal wet weather, which typically begins during the period from late April to June. In addition to the rapid mobility of nutrients in streamwater from agricultural areas during the wet season, drains in urban areas, which typically have high nutrient concentrations, also are an important source of nutrients as the drains flow directly to the estuary throughout the year.

  14. Community temporal variability increases with fluctuating resource availability

    PubMed Central

    Li, Wei; Stevens, M. Henry H.

    2017-01-01

    An increase in the quantity of available resources is known to affect temporal variability of aggregate community properties. However, it is unclear how might fluctuations in resource availability alter community-level temporal variability. Here we conduct a microcosm experiment with laboratory protist community subjected to manipulated resource pulses that vary in intensity, duration and time of supply, and examine the impact of fluctuating resource availability on temporal variability of the recipient community. The results showed that the temporal variation of total protist abundance increased with the magnitude of resource pulses, as protist community receiving infrequent resource pulses (i.e., high-magnitude nutrients per pulse) was relatively more unstable than community receiving multiple resource pulses (i.e., low-magnitude nutrients per pulse), although the same total amounts of nutrients were added to each community. Meanwhile, the timing effect of fluctuating resources did not significantly alter community temporal variability. Further analysis showed that fluctuating resource availability increased community temporal variability by increasing the degree of community-wide species synchrony and decreasing the stabilizing effects of dominant species. Hence, the importance of fluctuating resource availability in influencing community stability and the regulatory mechanisms merit more attention, especially when global ecosystems are experiencing high rates of anthropogenic nutrient inputs. PMID:28345592

  15. Community temporal variability increases with fluctuating resource availability

    NASA Astrophysics Data System (ADS)

    Li, Wei; Stevens, M. Henry H.

    2017-03-01

    An increase in the quantity of available resources is known to affect temporal variability of aggregate community properties. However, it is unclear how might fluctuations in resource availability alter community-level temporal variability. Here we conduct a microcosm experiment with laboratory protist community subjected to manipulated resource pulses that vary in intensity, duration and time of supply, and examine the impact of fluctuating resource availability on temporal variability of the recipient community. The results showed that the temporal variation of total protist abundance increased with the magnitude of resource pulses, as protist community receiving infrequent resource pulses (i.e., high-magnitude nutrients per pulse) was relatively more unstable than community receiving multiple resource pulses (i.e., low-magnitude nutrients per pulse), although the same total amounts of nutrients were added to each community. Meanwhile, the timing effect of fluctuating resources did not significantly alter community temporal variability. Further analysis showed that fluctuating resource availability increased community temporal variability by increasing the degree of community-wide species synchrony and decreasing the stabilizing effects of dominant species. Hence, the importance of fluctuating resource availability in influencing community stability and the regulatory mechanisms merit more attention, especially when global ecosystems are experiencing high rates of anthropogenic nutrient inputs.

  16. Water Masses and Nutrient Sources to the Gulf of Maine

    PubMed Central

    Townsend, David W.; Pettigrew, Neal R.; Thomas, Maura A.; Neary, Mark G.; McGillicuddy, Dennis J.; O’Donnell, James

    2016-01-01

    The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013. PMID:27721519

  17. Water Masses and Nutrient Sources to the Gulf of Maine.

    PubMed

    Townsend, David W; Pettigrew, Neal R; Thomas, Maura A; Neary, Mark G; McGillicuddy, Dennis J; O'Donnell, James

    2015-01-01

    The Gulf of Maine, a semi-enclosed basin on the continental shelf of the northwest Atlantic Ocean, is fed by surface and deep water flows from outside the Gulf: Scotian Shelf Water from the Nova Scotian shelf that enters the Gulf at the surface, and Slope Water that enters at depth and along the bottom through the Northeast Channel. There are two types of Slope Water, Labrador Slope Water (LSW) and Warm Slope Water (WSW); it is these deep water masses that are the major source of dissolved inorganic nutrients to the Gulf. It has been known for some time that the volume inflow of Slope Waters of either type that enters the Gulf of Maine is variable, that it co-varies with the magnitude of inflowing Scotian Shelf Water, and that periods of greater inflows of Scotian Shelf Water have become more frequent in recent years, accompanied by reduced Slope Water inflows. We present here analyses of a ten-year record of data collected by moored sensors in Jordan Basin, in the interior Gulf of Maine, and in the Northeast Channel, along with recent and historical hydrographic and nutrient data, that help reveal the nature of Scotian Shelf Water and Slope Water inflows. Proportional inflows of nutrient-rich Slope Waters and nutrient-poor Scotian Shelf Waters alternate episodically with one another on time scales of months to several years, creating a variable nutrient field upon which the biological productivities of the Gulf of Maine and Georges Bank depend. Unlike decades past, the inflows of Slope Waters of either type do not appear to be correlated with the North Atlantic Oscillation, which had been shown earlier to influence the relative proportions of the two Slope Waters, WSW and LSW, that enter the Gulf. We suggest that of greater importance in recent years are more frequent, episodic influxes of colder, fresher, less dense, and low-nutrient Scotian Shelf Water into the Gulf of Maine, and concomitant reductions in the inflow of deep, nutrient-rich Slope Waters. We also discuss evidence of modified Gulf Stream ring water that penetrated to Jordan Basin in summer of 2013.

  18. Influences of Moisture Regimes and Functional Plant Types on Nutrient Cycling in Permafrost Regions

    NASA Astrophysics Data System (ADS)

    McCaully, R. E.; Arendt, C. A.; Newman, B. D.; Heikoop, J. M.; Wilson, C. J.; Sevanto, S.; Wales, N. A.; Wullschleger, S.

    2017-12-01

    In the permafrost-dominated Arctic, climatic feedbacks exist between permafrost, soil moisture, functional plant type and presence of nutrients. Functional plant types present within the Arctic regulate and respond to changes in hydrologic regimes and nutrient cycling. Specifically, alders are a member of the birch family that use root nodules to fix nitrogen, which is a limiting nutrient strongly linked to fertilizing Arctic ecosystems. Previous investigations in the Seward Peninsula, AK show elevated presence of nitrate within and downslope of alder patches in degraded permafrost systems, with concentrations an order of magnitude greater than that of nitrate measured above these patches. Further observations within these degraded permafrost systems are crucial to assess whether alders are drivers of, or merely respond to, nitrate fluxes. In addition to vegetative feedbacks with nitrate supply, previous studies have also linked low moisture content to high nitrate production. Within discontinuous permafrost regions, the absence of permafrost creates well-drained regions with unsaturated soils whereas the presence of permafrost limits vertical drainage of soil-pore water creating elevated soil moisture content, which likely corresponds to lower nitrate concentrations. We investigate these feedbacks further in the Seward Peninsula, AK, through research supported by the United States Department of Energy Next Generation Ecosystem Experiment (NGEE) - Arctic. Using soil moisture and thaw depth as proxies to determine the extent of permafrost degradation, we identify areas of discontinuous permafrost over a heterogeneous landscape and collect co-located soilwater chemistry samples to highlight the complex relationships that exist between alder patches, soil moisture regimes, the presence of permafrost and available nitrate supply. Understanding the role of nitrogen in degrading permafrost systems, in the context of both vegetation present and soil moisture, is crucial to understand the impacts of a warming climate on biogeochemical cycling in permafrost regions.

  19. Sources of Nutrients to Nearshore Areas of a Eutrophic Estuary: Implications for Nutrient-Enhanced Acidification in Puget Sound

    NASA Astrophysics Data System (ADS)

    Pacella, S. R.

    2016-02-01

    Ocean acidification has recently been highlighted as a major stressor for coastal organisms. Further work is needed to assess the role of anthropogenic nutrient additions in eutrophied systems on local biological processes, and how this interacts with CO2 emission-driven acidification. This study sought to distinguish changes in pH caused by natural versus anthropogenically affected processes. We quantified the variability in water column pH attributable to primary production and respiration fueled by anthropogenically derived nitrogen in a shallow nearshore area. Two study sites were located in shallow subtidal areas of the Snohomish River estuary, a eutrophic system located in central Puget Sound, Washington. These sites were chosen due to the presence of heavy agricultural activity, urbanized areas with associated waste water treatment, as well as influence from deep, high CO2 marine waters transported through the Strait of Juan de Fuca and upwelled into the area during spring and summer. Data was collected from July-December 2015 utilizing continuous moorings and discrete water column sampling. Analysis of stable isotopes, δ15N, δ18O-NO3, δ15N-NH4, was used to estimate the relative contributions of anthropogenic versus upwelled marine nitrogen sources. Continuous monitoring of pH, dissolved oxygen, temperature, and salinity was conducted at both study sites to link changes in nutrient source and availability with changes in pH. We predicted that isotope data would indicate greater contributions of nitrogen from agriculture and wastewater rather than upwelling in the shallow, nearshore study sites. This study seeks to distinguish the relative magnitude of pH change stimulated by anthropogenic versus natural sources of nitrogen to inform public policy decisions in critically important nearshore ecosystems.

  20. Spatial patterns of soil nutrients and groundwater levels within the Debre Mawi watershed of the Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Guzman, Christian; Tilahun, Seifu; Dagnew, Dessalegn; Zegeye, Assefe; Tebebu, Tigist; Yitaferu, Birru; Steenhuis, Tammo

    2015-04-01

    Persistent patterns of erosion have emerged in the Ethiopian highlands leading to soil and water conservation practices being implemented throughout the countryside. A common concern is the loss of soil fertility and loss of soil water. This study investigates the spatial patterns of soil nutrients and water table depths in a small sub-watershed in the northwestern Ethiopian highlands. NPK, a particularly important group of nutrients for inorganic fertilizer considerations, did not follow a consistent trend as a group along and across slope and land use transects. Whereas nitrogen content was greatest in the upslope regions (~0.1% TN), available phosphorus had comparably similar content in the different slope regions throughout the watershed (~2.7 mg/kg). The exchangeable cations (K, Ca, Mg) did increase in content in a downslope direction (in most cases though, they were highest in the middle region) but not consistently later in the season. On average, calcium (40 cmol/kg), magnesium (5 cmol/kg), and potassium (0.5 cmol/kg) were orders of magnitudes different in content. The perched water table in different areas of the watershed showed a very distinct trend. The lower part of the sub-watershed had shallower levels of water table depths (less than 10 cm from the surface) than did the upper parts of the sub-watershed (usually greater than 120 cm from the surface). The middle part of the sub-watershed had water table depths located at 40 to 70 cm below the surface. These results show how the landscape slope position and land use may be important for planning where and when soil nutrients and water would be expected to be appropriately "conserved" or stored.

  1. Adaptive Roles of SSY1 and SIR3 During Cycles of Growth and Starvation in Saccharomyces cerevisiae Populations Enriched for Quiescent or Nonquiescent Cells.

    PubMed

    Wloch-Salamon, Dominika M; Tomala, Katarzyna; Aggeli, Dimitra; Dunn, Barbara

    2017-06-07

    Over its evolutionary history, Saccharomyces cerevisiae has evolved to be well-adapted to fluctuating nutrient availability. In the presence of sufficient nutrients, yeast cells continue to proliferate, but upon starvation haploid yeast cells enter stationary phase and differentiate into nonquiescent (NQ) and quiescent (Q) cells. Q cells survive stress better than NQ cells and show greater viability when nutrient-rich conditions are restored. To investigate the genes that may be involved in the differentiation of Q and NQ cells, we serially propagated yeast populations that were enriched for either only Q or only NQ cell types over many repeated growth-starvation cycles. After 30 cycles (equivalent to 300 generations), each enriched population produced a higher proportion of the enriched cell type compared to the starting population, suggestive of adaptive change. We also observed differences in each population's fitness suggesting possible tradeoffs: clones from NQ lines were better adapted to logarithmic growth, while clones from Q lines were better adapted to starvation. Whole-genome sequencing of clones from Q- and NQ-enriched lines revealed mutations in genes involved in the stress response and survival in limiting nutrients ( ECM21 , RSP5 , MSN1 , SIR4 , and IRA2 ) in both Q and NQ lines, but also differences between the two lines: NQ line clones had recurrent independent mutations affecting the Ssy1p-Ptr3p-Ssy5p (SPS) amino acid sensing pathway, while Q line clones had recurrent, independent mutations in SIR3 and FAS1 Our results suggest that both sets of enriched-cell type lines responded to common, as well as distinct, selective pressures. Copyright © 2017 Wloch-Salamon et al.

  2. ENSO-driven nutrient variability recorded by central equatorial Pacific corals

    NASA Astrophysics Data System (ADS)

    LaVigne, M.; Nurhati, I. S.; Cobb, K. M.; McGregor, H. V.; Sinclair, D. J.; Sherrell, R. M.

    2012-12-01

    Recent evidence for shifts in global ocean primary productivity suggests that surface ocean nutrient availability is a key link between global climate and ocean carbon cycling. Time-series records from satellite, in situ buoy sensors, and bottle sampling have documented the impact of the El Niño Southern Oscillation (ENSO) on equatorial Pacific hydrography and broad changes in biogeochemistry since the late 1990's, however, data are sparse prior to this. Here we use a new paleoceanographic nutrient proxy, coral P/Ca, to explore the impact of ENSO on nutrient availability in the central equatorial Pacific at higher-resolution than available from in situ nutrient data. Corals from Christmas (157°W 2°N) and Fanning (159°W 4°N) Islands recorded a well-documented decrease in equatorial upwelling as a ~40% decrease in P/Ca during the 1997-98 ENSO cycle, validating the application of this proxy to Pacific Porites corals. We compare the biogeochemical shifts observed through the 1997-98 event with two pre-TOGA-TAO ENSO cycles (1982-83 and 1986-87) reconstructed from a longer Christmas Island core. All three corals revealed ~30-40% P/Ca depletions during ENSO warming as a result of decreased regional wind stress, thermocline depth, and equatorial upwelling velocity. However, at the termination of each El Niño event, surface nutrients did not return to pre-ENSO levels for ~4-12 months after, SST as a result of increased biological draw down of surface nutrients. These records demonstrate the utility of high-resolution coral nutrient archives for understanding the impact of tropical Pacific climate on the nutrient and carbon cycling of this key region.

  3. Forms and subannual variability of nitrogen and phosphorus loading to global river networks over the 20th century

    NASA Astrophysics Data System (ADS)

    Vilmin, Lauriane; Mogollón, José M.; Beusen, Arthur H. W.; Bouwman, Alexander F.

    2018-04-01

    Nitrogen (N) and phosphorus (P) play a major role in the biogeochemical functioning of aquatic systems. N and P transfer to surface freshwaters has amplified during the 20th century, which has led to widespread eutrophication problems. The contribution of different sources, natural and anthropogenic, to total N and P loading to river networks has recently been estimated yearly using the Integrated Model to Assess the Global Environment - Global Nutrient Model (IMAGE-GNM). However, eutrophic events generally result from a combination of physicochemical conditions governed by hydrological dynamics and the availability of specific nutrient forms that vary at subyearly timescales. In the present study, we define for each simulated nutrient source: i) its speciation, and ii) its subannual temporal pattern. Thereby, we simulate the monthly loads of different N (ammonium, nitrate + nitrite, and organic N) and P forms (dissolved and particulate inorganic P, and organic P) to global river networks over the whole 20th century at a half-degree spatial resolution. Results indicate that, together with an increase in the delivery of all nutrient forms to global rivers, the proportion of inorganic forms in total N and P inputs has risen from 30 to 43% and from 56 to 65%, respectively. The high loads originating from fertilized agricultural lands and the increasing proportion of sewage inputs have led to a greater proportion of DIN forms (ammonium and nitrate), that are usually more bioavailable. Soil loss from agricultural lands, which delivers large amounts of particle-bound inorganic P to surface freshwaters, has become the dominant P source, which is likely to lead to an increased accumulation of legacy P in slow flowing areas (e.g., lakes and reservoirs). While the TN:TP ratio of the loads has remained quite stable, the DIN:DIP molar ratio, which is likely to affect algal development the most, has increased from 18 to 27 globally. Human activities have also affected the timing of nutrient delivery to surface freshwaters. Increasing wastewater emissions in growing urban areas induces constant local pressure on the quality of aquatic systems by delivering generally highly bioavailable nutrient forms, even in periods of low runoff.

  4. The "isohydric trap": a proposed feedback between water shortage, stomatal regulation and nutrient acquisition drives differential growth and survival of European pines under climatic dryness.

    PubMed

    Salazar-Tortosa, D; Castro, J; Villar-Salvador, P; Viñegla, B; Matías, L; Michelsen, A; Rubio de Casas, R; Querejeta, J I

    2018-05-16

    Climatic dryness imposes limitations on vascular plant growth by reducing stomatal conductance, thereby decreasing CO 2 uptake and transpiration. Given that transpiration-driven water flow is required for nutrient uptake, climatic stress-induced nutrient deficit could be a key mechanism for decreased plant performance under prolonged drought. We propose the existence of an "isohydric trap", a dryness-induced detrimental feedback leading to nutrient deficit and stoichiometry imbalance in strict isohydric species. We tested this framework in a common garden experiment with 840 individuals of four ecologically-contrasting European pines (Pinus halepensis, P. nigra, P. sylvestris, and P. uncinata) at a site with high temperature and low soil water availability. We measured growth, survival, photochemical efficiency, stem water potentials, leaf isotopic composition (δ 13 C, δ 18 O), and nutrient concentrations (C, N, P, K, Zn, Cu). After two years, the Mediterranean species Pinus halepensis showed lower δ 18 O and higher δ 13 C values than the other species, indicating higher time-integrated transpiration and water-use efficiency (WUE), along with lower predawn and midday water potentials, higher photochemical efficiency, higher leaf P and K concentrations, more balanced N:P and N:K ratios, and much greater dry-biomass (up to 63-fold) and survival (100%). Conversely, the more mesic mountain pine species showed higher leaf δ 18 O and lower δ 13 C, indicating lower transpiration and WUE, higher water potentials, severe P and K deficiencies and N:P and N:K imbalances, and poorer photochemical efficiency, growth, and survival. These results support our hypothesis that vascular plant species with tight stomatal regulation of transpiration can become trapped in a feedback cycle of nutrient deficit and imbalance that exacerbates the detrimental impacts of climatic dryness on performance. This overlooked feedback mechanism may hamper the ability of isohydric species to respond to ongoing global change, by aggravating the interactive impacts of stoichiometric imbalance and water stress caused by anthropogenic N deposition and hotter droughts, respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Trends in Dietary Supplement Use in a Cohort of Postmenopausal Women From Iowa

    PubMed Central

    Park, Kyong; Jacobs, David R.

    2009-01-01

    Although it is widely known that use of dietary supplements is common in the United States, little is known about use patterns among older Americans. The authors examined trends in dietary supplement use and its contribution to total nutrient intake in the Iowa Women's Health Study cohort in 1986 (baseline) and 2004 (follow-up). The proportion of women who reported using dietary supplements increased substantially between baseline (66%) and follow-up (85%). Moreover, a substantial proportion of women reported using multiple dietary supplements, with 27% using 4 or more products in 2004. Dietary supplements contributed substantially to total intake of many nutrients at baseline, and their contribution became relatively greater at follow-up for most nutrients examined. For most nutrients, no decline in intake was observed, as might have been expected in an aging cohort. Rather, intake of many nutrients increased, primarily because of the rising use of dietary supplements. Use of dietary supplements by older individuals is of particular importance because of the potential benefits of maintaining nutrient intake levels despite potentially declining food intake. However, possible risks from obtaining a large proportion of purified nutrients from dietary supplements rather than deriving them from foods should be studied. PMID:19208725

  6. Influence of nutrient restriction and melatonin supplementation of pregnant ewes on maternal and fetal pancreatic digestive enzymes and insulin-containing clusters.

    PubMed

    Keomanivong, F E; Lemley, C O; Camacho, L E; Yunusova, R; Borowicz, P P; Caton, J S; Meyer, A M; Vonnahme, K A; Swanson, K C

    2016-03-01

    Primiparous ewes (n=32) were assigned to dietary treatments in a 2×2 factorial arrangement to determine effects of nutrient restriction and melatonin supplementation on maternal and fetal pancreatic weight, digestive enzyme activity, concentration of insulin-containing clusters and plasma insulin concentrations. Treatments consisted of nutrient intake with 60% (RES) or 100% (ADQ) of requirements and melatonin supplementation at 0 (CON) or 5 mg/day (MEL). Treatments began on day 50 of gestation and continued until day 130. On day 130, blood was collected under general anesthesia from the uterine artery, uterine vein, umbilical artery and umbilical vein for plasma insulin analysis. Ewes were then euthanized and the pancreas removed from the ewe and fetus, trimmed of mesentery and fat, weighed and snap-frozen until enzyme analysis. In addition, samples of pancreatic tissue were fixed in 10% formalin solution for histological examination including quantitative characterization of size and distribution of insulin-containing cell clusters. Nutrient restriction decreased (P⩽0.001) maternal pancreatic mass (g) and α-amylase activity (U/g, kU/pancreas, U/kg BW). Ewes supplemented with melatonin had increased pancreatic mass (P=0.03) and α-amylase content (kU/pancreas and U/kg BW). Melatonin supplementation decreased (P=0.002) maternal pancreatic insulin-positive tissue area (relative to section of tissue), and size of the largest insulin-containing cell cluster (P=0.04). Nutrient restriction decreased pancreatic insulin-positive tissue area (P=0.03) and percent of large (32 001 to 512 000 µm2) and giant (⩾512 001 µm2) insulin-containing cell clusters (P=0.04) in the fetus. Insulin concentrations in plasma from the uterine vein, umbilical artery and umbilical vein were greater (P⩽0.01) in animals receiving 100% requirements. When comparing ewes to fetuses, ewes had a greater percentage of medium insulin-containing cell clusters (2001 to 32 000 µm2) while fetuses had more (P<0.001) pancreatic insulin-positive area (relative to section of tissue) and a greater percent of small, large and giant insulin-containing cell clusters (P⩽0.02). Larger insulin-containing clusters were observed in fetuses (P<0.001) compared with ewes. In summary, the maternal pancreas responded to nutrient restriction by decreasing pancreatic weight and activity of digestive enzymes while melatonin supplementation increased α-amylase content. Nutrient restriction decreased the number of pancreatic insulin-containing clusters in fetuses while melatonin supplementation did not influence insulin concentration. This indicated using melatonin as a therapeutic agent to mitigate reduced pancreatic function in the fetus due to maternal nutrient restriction may not be beneficial.

  7. Salinity and light interactively affect neotropical mangrove seedlings at the leaf and whole plant levels.

    PubMed

    López-Hoffman, Laura; Anten, Niels P R; Martínez-Ramos, Miguel; Ackerly, David D

    2007-01-01

    We have studied the interactive effects of salinity and light on Avicennia germinans mangrove seedlings in greenhouse and field experiments. We hypothesized that net photosynthesis, growth, and survivorship rates should increase more with an increase in light availability for plants growing at low salinity than for those growing at high salinity. This hypothesis was supported by our results for net photosynthesis and growth. Net daily photosynthesis did increase more with increasing light for low-salinity plants than for high-salinity plants. Stomatal conductance, leaf-level transpiration, and internal CO(2) concentrations were lower at high than at low salinity. At high light, the ratio of leaf respiration to assimilation was 2.5 times greater at high than at low salinity. Stomatal limitations and increased respiratory costs may explain why, at high salinity, seedlings did not respond to increased light availability with increased net photosynthesis. Seedling mass and growth rates increased more with increasing light availability at low than at high salinity. Ratios of root mass to leaf mass were higher at high salinity, suggesting that either water or nutrient limitations may have limited seedling growth at high salinity in response to increasing light. The interactive effects of salinity and light on seedling size and growth rates observed in the greenhouse were robust in the field, despite the presence of other factors in the field--such as inundation, nutrient gradients, and herbivory. In the field, seedling survivorship was higher at low than at high salinity and increased with light availability. Interestingly, the positive effect of light on seedling survivorship was stronger at high salinity, indicating that growth and survivorship rates are decoupled. In general, this study demonstrates that environmental effects at the leaf-level also influence whole plant growth in mangroves.

  8. Nutrient dynamics in two seagrass species, Posidonia coriacea and Zostera tasmanica, on Success Bank, Western Australia

    NASA Astrophysics Data System (ADS)

    Walker, D. I.; Campey, M. L.; Kendrick, G. A.

    2004-06-01

    Nutrient concentrations and seasonal differences in atomic ratios (N:P) in plant tissue of Posidonia coriacea Kuo and Cambridge and Zostera tasmanica Aschers (formerly Heterozostera tasmanica (Syst Bot 27 (2002) 468) were measured from multiple locations on Success Bank, southwestern Australia, and used to infer nutritional constraints on seagrass vegetative growth, particularly by phosphorus. Posidonia plant tissue at the west site had higher nitrogen than the east site in both summer and winter. Nitrogen concentrations increased in winter, particularly in sheath tissue, but there was little change in root nitrogen concentrations between sites or seasons. Nitrogen concentrations of leaf tissue were all less than median seagrass values reported by Duarte (Mar Ecol Prog Ser 67 (1990) 201). The seasonality in nutrient concentrations in plant tissues suggests greater nutritional constraints in summer, during periods of high growth. Vegetative growth of Posidonia coriacea was more nutrient limited than that of Zostera tasmanica. Translocation of nutrients along rhizomes to the apex may ensure that growing points are not nutrient limited and that growth can be maintained, and was more apparent in Z. tasmanica than P. coriacea. Sexual reproduction placed large demands on P. coriacea through the high investment of nutrients into fruit, resulting in reduced nutritional constraints on successful seedling recruitment by initially providing seedlings with nutrients.

  9. Biomass and nutrient allocation strategies in a desert ecosystem in the Hexi Corridor, northwest China.

    PubMed

    Zhang, Ke; Su, YongZhong; Yang, Rong

    2017-07-01

    The allocation of biomass and nutrients in plants is a crucial factor in understanding the process of plant structures and dynamics to different environmental conditions. In this study, we present a comprehensive scaling analysis of data from a desert ecosystem to determine biomass and nutrient (carbon (C), nitrogen (N), and phosphorus (P)) allocation strategies of desert plants from 40 sites in the Hexi Corridor. We found that the biomass and levels of C, N, and P storage were higher in shoots than in roots. Roots biomass and nutrient storage were concentrated at a soil depth of 0-30 cm. Scaling relationships of biomass, C storage, and P storage between shoots and roots were isometric, but that of N storage was allometric. Results of a redundancy analysis (RDA) showed that soil nutrient densities were the primary factors influencing biomass and nutrient allocation, accounting for 94.5% of the explained proportion. However, mean annual precipitation was the primary factor influencing the roots biomass/shoots biomass (R/S) ratio. Furthermore, Pearson's correlations and regression analyses demonstrated that although the biomass and nutrients that associated with functional traits primarily depended on soil conditions, mean annual precipitation and mean annual temperature had greater effects on roots biomass and nutrient storage.

  10. [Relationships between soil nutrients and rhizospheric soil microbial communities and enzyme activities in a maize-capsicum intercropping system].

    PubMed

    Xu, Qiang; Cheng, Zhi-Hui; Meng, Huan-Wen; Zhang, Yu

    2007-12-01

    By using plastic sheet and nylon mesh to partition the root systems of maize and capsicum in a maize-capsicum intercropping system, this paper studied the relationships between soil biological factors and nutritive status in the intercropping system, with no partitioning and maize monoculture and capsicum monoculture as the control. The results showed that intercropping maize and capsicum had its high superiority. In the treatments of no partitioning and nylon mesh portioning in the intercropping system, soil enzyme activities, microbial individuals and nutrient contents were significantly higher, compared with those in the treatments of nylon mesh partitioning and monocultures. All kinds of soil available nutrients showed significant or very significant positive correlations with soil biological factors, except that soil available Mg was negatively correlated with soil fungi and catalase activity. Pathway analysis indicated that in the intercropping system, soil urease, catalase, protease, and bacteria were the main factors affecting the accumulation of soil organic matter, saccharase was the most important factor affecting soil alkali-hydrolyzable N, urease was the most important factor affecting soil available P, and bacteria largely determined soil available K. Soil alkaline phosphatase and fungi selectively affected the accumulation of soil organic matter and available N, P and K. There was a slight negative correlation between soil actinomycetes and soil nutrients, suggesting that actinomycetes had little effect on soil nutrient formation.

  11. Native Mussels Alter Nutrient Availability and Reduce Blue-Green Algae Abundance

    EPA Science Inventory

    Nutrient cycling is a key process that ties all organisms together. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of...

  12. NUTRIENT TRANSPORT DURING BIOREMEDIATION OF CONTAMINATED BEACHES: EVALUATION WITH LITHIUM AS A CONSERVATIVE TRACER

    EPA Science Inventory

    Bioremediation of oil-contaminated beaches typically involves fertilization with nutrients that are thought to limit the growth rate of hydrocarbon-degrading bacteria. Much of the available technology involves application of fertilizers that release nutrients in a water-soluble ...

  13. Sewage input reduces the consumption of Rhizophora mangle propagules by crabs in a subtropical mangrove system.

    PubMed

    Boehm, Frederike Ricarda; Sandrini-Neto, Leonardo; Moens, Tom; da Cunha Lana, Paulo

    2016-12-01

    Mangrove forests are highly productive and play a major role in global carbon cycling. Their carbon accumulation can be influenced through the consumption of nutrient-poor leaves and propagules by herbivore crabs. Anthropogenic nutrient input from sewage contamination is widespread in these often naturally nutrient-limited ecosystems. We hypothesised that sewage-mediated nutrient input to mangrove stands of Paranaguá Bay (southern Brazil), would alter the nutrient sources available for crabs, e.g. through microphytobenthos increase, and that this would reflect in their feeding behaviour. We predicted that propagules of Rhizophora mangle in contaminated stands would experience lower grazing pressure from their two main local consumers (Ucides cordatus and Goniopsis cruentata). We compared herbivory rates on R. mangle propagules in sewage contaminated and uncontaminated mangrove stands. We found that herbivory rates were significantly lower in contaminated than uncontaminated forests, but this pattern could not be clearly attributed to increased nutrient availability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Randomized Controlled Trial to Compare Growth Parameters and Nutrient Adequacy in Children with Picky Eating Behaviors Who Received Nutritional Counseling With or Without an Oral Nutritional Supplement

    PubMed Central

    Sheng, Xiaoyang; Tong, Meiling; Zhao, Dongmei; Leung, Ting Fan; Zhang, Feng; Hays, Nicholas P; Ge, John; Ho, Wing Man; Northington, Robert; Terry, Donna L; Yao, Manjiang

    2014-01-01

    In this study, changes in growth parameters and nutrient intake were compared in Chinese children (ages 30–60 months) with picky eating (PE) behaviors and weight-for-height ≤25th percentile, who were randomized to receive nutrition counseling alone (NC; n = 76) or with a nutritional milk supplement (NC + NS; n = 77) for 120 days. Increases in weight-for-height z-scores were significantly greater in the NC + NS group at days 30 and 90 and over the entire study period (all P < 0.05), but not at day 120. Increases in weight-for-age z-scores were significantly greater in the NC + NS group at day 90 (P = 0.025) and over the entire study period (P = 0.046). Mean intakes of energy, protein, carbohydrate, docosahexaenoic acid, arachidonic acid, calcium, phosphorous, iron, zinc, and vitamins A, C, D, E, and B6 were significantly higher in the NC + NS group at days 60 and 120 (all P < 0.01). Thus, in young children with PE behaviors, nutritional supplementation given as an adjunct to NC resulted in greater improvements in nutrient intake compared with NC alone. Growth parameters differed between groups at several timepoints during the study, but not at day 120. PMID:25342910

  15. The influence of microtopography on soil nutrients in created mitigation wetlands

    USGS Publications Warehouse

    Moser, K.F.; Ahn, C.; Noe, G.B.

    2009-01-01

    This study explores the relationship between microtopography and soil nutrients (and trace elements), comparing results for created and reference wetlands in Virginia, and examining the effects of disking during wetland creation. Replicate multiscale tangentially conjoined circular transects were used to quantify microtopography both in terms of elevation and by two microtopographic indices. Corresponding soil samples were analyzed for moisture content, total C and N, KCl-extractable NH4-N and NO3-N, and Mehlich-3 extractable P, Ca, Mg, K, Al, Fe, and Mn. Means and variances of soil nutrient/element concentrations were compared between created and natural wetlands and between disked and nondisked created wetlands. Natural sites had higher and more variable soil moisture, higher extractable P and Fe, lower Mn than created wetlands, and comparatively high variability in nutrient concentrations. Disked sites had higher soil moisture, NH4-N, Fe, and Mn than did nondisked sites. Consistently low variances (Levene test for inequality) suggested that nondisked sites had minimal nutrient heterogeneity. Across sites, low P availability was inferred by the molar ratio (Mehlich-3 [P/(Al + Fe)] < 0.06); strong intercorrelations among total C, total N, and extractable Fe, Al, and P suggested that humic-metal-P complexes may be important for P retention and availability. Correlations between nutrient/element concentrations and microtopographic indices suggested increased Mn and decreased K and Al availability with increased surface roughness. Disking appears to enhance water and nutrient retention, as well as nutrient heterogeneity otherwise absent from created wetlands, thus potentially promoting ecosystem development. ?? 2008 Society for Ecological Restoration International.

  16. Use of Linear Programming to Develop Cost-Minimized Nutritionally Adequate Health Promoting Food Baskets.

    PubMed

    Parlesak, Alexandr; Tetens, Inge; Dejgård Jensen, Jørgen; Smed, Sinne; Gabrijelčič Blenkuš, Mojca; Rayner, Mike; Darmon, Nicole; Robertson, Aileen

    2016-01-01

    Food-Based Dietary Guidelines (FBDGs) are developed to promote healthier eating patterns, but increasing food prices may make healthy eating less affordable. The aim of this study was to design a range of cost-minimized nutritionally adequate health-promoting food baskets (FBs) that help prevent both micronutrient inadequacy and diet-related non-communicable diseases at lowest cost. Average prices for 312 foods were collected within the Greater Copenhagen area. The cost and nutrient content of five different cost-minimized FBs for a family of four were calculated per day using linear programming. The FBs were defined using five different constraints: cultural acceptability (CA), or dietary guidelines (DG), or nutrient recommendations (N), or cultural acceptability and nutrient recommendations (CAN), or dietary guidelines and nutrient recommendations (DGN). The variety and number of foods in each of the resulting five baskets was increased through limiting the relative share of individual foods. The one-day version of N contained only 12 foods at the minimum cost of DKK 27 (€ 3.6). The CA, DG, and DGN were about twice of this and the CAN cost ~DKK 81 (€ 10.8). The baskets with the greater variety of foods contained from 70 (CAN) to 134 (DGN) foods and cost between DKK 60 (€ 8.1, N) and DKK 125 (€ 16.8, DGN). Ensuring that the food baskets cover both dietary guidelines and nutrient recommendations doubled the cost while cultural acceptability (CAN) tripled it. Use of linear programming facilitates the generation of low-cost food baskets that are nutritionally adequate, health promoting, and culturally acceptable.

  17. Pre-incubation in soil improves the nitrogen fertiliser value of hair waste.

    PubMed

    Malepfane, N M; Muchaonyerwa, P

    2018-01-25

    Global generation of human hair waste and its disposal at landfills could contribute to the leaching of nitrates into ground water. High concentrations of nitrogen (N) and other elements suggest that the waste could be a source of plant nutrients and differences in ethnic hair types could affect nutrient release and fertiliser value. The objective of this study was to determine the effects of hair type, as an N source, and pre-incubation time on dry-matter yield, nutrient uptake by spinach (Spinacia oleracea L.) and residual soil nutrients. Salons in Pietermaritzburg provided bulk African and Caucasian hair waste, without distinguishing age, sex, health status or livelihood of the individuals. The hair waste was analysed for elemental composition. A pot experiment was set up under glasshouse conditions. The hair waste was incorporated (400 kg N ha -1 ) into a loamy oxisol and pre-incubated for 0, 28, 56 and 84 days before planting spinach. Potassium (K) and phosphorus (P) were corrected to the same level for all treatments. Spinach seedlings were then cultivated for 6 weeks. Shoot dry-matter and the uptake of all nutrients, except P, were increased by the pre-incubation of hair. African hair pre-incubated for 28 days resulted in greater dry-matter, N, K, Mn and S uptake than Caucasian hair. Increasing pre-incubation resulted in a decline in the residual soil pH and exchangeable K. The findings suggested that pre-incubation improves the N fertiliser value of hair and that African hair has greater value than Caucasian hair when pre-incubated for a short period.

  18. Iron and nutrient content of wind-erodible sediment in the ephemeral river valleys of Namibia

    NASA Astrophysics Data System (ADS)

    Dansie, A. P.; Wiggs, G. F. S.; Thomas, D. S. G.

    2017-08-01

    Research concerning the global distribution of aeolian dust sources has principally focussed on salt/clay pan and desiccated lacustrine emission areas. In southern Africa such sources are identified as Etosha Pan in northern Namibia and Makgadikgadi Pans in northern Botswana. Dust emitting from ephemeral river valleys, however, has been largely overlooked. Rivers are known nutrient transport pathways and the flooding regimes of ephemeral river valleys frequently replenish stores of fine sediment which, on drying, can become susceptible to aeolian erosion. Such airborne sediment may be nutrient rich and thus be significant for the fertilisation of marine waters once deposited. This study investigates the dust source sediments from three ephemeral river valleys in Namibia in terms of their particle size distribution and their concentrations of bioavailable N, P and Fe. We compare the nutrient content of these sediments from the ephemeral river valleys to those collected from Etosha and Makgadikgadi Pans and consider their relative ocean fertilising potential. Our results show that the ephemeral river valleys contain fine grained sediment similar in physical character to Etosha and Makgadikgadi Pans yet they have up to 43 times greater concentrations of bioavailable iron and enriched N and P macronutrients that are each important for ocean fertilisation. The known dust-emitting river valleys of Namibia may therefore be contributing a greater fertilisation role in the adjacent marine system than previously considered, and not-yet investigated. Given this finding a re-assessment of the potential role of ephemeral river valleys in providing nutrient-rich sediment into the aeolian and marine systems in other dryland areas is necessary.

  19. Nutritional modulation of gut microbiota - the impact on metabolic disease pathophysiology.

    PubMed

    Ojeda, Patricia; Bobe, Alexandria; Dolan, Kyle; Leone, Vanessa; Martinez, Kristina

    2016-02-01

    The obesity epidemic afflicts over one third of the United States population. With few therapies available to combat obesity, a greater understanding of the systemic causes of this and other metabolic disorders is needed to develop new, effective treatments. The mammalian intestinal microbiota contributes to metabolic processes in the host. This review summarizes the research demonstrating the interplay of diet, intestinal microbiota and host metabolism. We detail the effects of diet-induced modifications in microbial activity and resultant impact on (1) sensory perception of macronutrients and total energy intake; (2) nutrient absorption, transport and storage; (3) liver and biliary function; (4) immune-mediated signaling related to adipose inflammation; and (5) circadian rhythm. We also discuss therapeutic strategies aimed to modify host-microbe interactions, including prebiotics, probiotics and postbiotics, as well as fecal microbiota transplantation. Elucidating the role of gut microbes in shaping metabolic homeostasis or dysregulation provides greater insight into disease development and a promising avenue for improved treatment of metabolic dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The effect of herbicide application on rangeland soil nutrient availability

    USDA-ARS?s Scientific Manuscript database

    Very sparse literature exists on the effect of soil active herbicides on nutrient availability. As part of a larger rangeland rehabilitation project, on four sites in northern Nevada, we quantified the effect of the herbicides Landmark®, Perspective®, and Plateau® relative to controls on surface soi...

  1. Nutrient source and tillage influences on nitrogen availability in a Southern Piedmont corn cropping system

    USDA-ARS?s Scientific Manuscript database

    Combinations of conservation tillage and poultry litter (PL) can increase crop production in southeastern USA soils compared to conventional tillage (CT) and chemical fertilizer (CF). The reason for the beneficial response is usually attributed to improved water and nutrient availability. We evaluat...

  2. Effects of Phos-Chek® on soil nutrient availability

    USDA-ARS?s Scientific Manuscript database

    Wildfire frequencies and intensities have been steadily increasing on western US landscapes. Phos-chek® is an aerially-applied fire retardant used to contain and control wildfires. Composed of ammonium and phosphate salts, Phos-chek® has the potential to increase soil nutrient availability of N and ...

  3. Effect of temperature and nutrients on the growth and development of seedlings of an invasive plant.

    PubMed

    Skálová, Hana; Moravcová, Lenka; Dixon, Anthony F G; Kindlmann, P; Pyšek, Petr

    2015-04-28

    Plant species distributions are determined by the response of populations to regional climates; however, little is known about how alien plants that arrive in central Europe from climatically warmer regions cope with the temperature conditions at the early stage of population development. Ambrosia artemisiifolia (common ragweed) is an invasive annual plant causing considerable health and economic problems in Europe. Although climate-based models predict that the whole of the Czech Republic is climatically suitable for this species, it is confined to the warmest regions. To determine the factors possibly responsible for its restricted occurrence, we investigated the effects of temperature and nutrient availability on its seedlings. The plants were cultivated at one of seven temperature regimes ranging from 10 to 34 °C, combined with three nutrient levels. The data on the rate of leaf development were used to calculate the lower developmental threshold (LDT, the temperature, in °C, below which development ceases), the sum of effective temperatures (SET, the amount of heat needed to complete a developmental stage measured in degree days above LDT) and width of the thermal window. The rate of development decreased with decrease in temperature and nutrient supply. Besides this, the decrease in the availability of nutrients resulted in decreased LDT, increased SET and wider thermal window. The dependence of LDT and SET on the availability of nutrients contradicts the concept that thermal constants do not vary. Our results highlight temperature as the main determinant of common ragweed's distribution and identify nutrient availability as a factor that results in the realized niche being smaller than the fundamental niche; both of these need to be taken into account when predicting the future spread of A. artemisiifolia. Published by Oxford University Press on behalf of the Annals of Botany Company.

  4. Dust outpaces bedrock in nutrient supply to montane forest ecosystems

    PubMed Central

    Aciego, S. M.; Riebe, C. S.; Hart, S. C.; Blakowski, M. A.; Carey, C. J.; Aarons, S. M.; Dove, N. C.; Botthoff, J. K.; Sims, K. W. W.; Aronson, E. L.

    2017-01-01

    Dust provides ecosystem-sustaining nutrients to landscapes underlain by intensively weathered soils. Here we show that dust may also be crucial in montane forest ecosystems, dominating nutrient budgets despite continuous replacement of depleted soils with fresh bedrock via erosion. Strontium and neodymium isotopes in modern dust show that Asian sources contribute 18–45% of dust deposition across our Sierra Nevada, California study sites. The remaining dust originates regionally from the nearby Central Valley. Measured dust fluxes are greater than or equal to modern erosional outputs from hillslopes to channels, and account for 10–20% of estimated millennial-average inputs of bedrock P. Our results demonstrate that exogenic dust can drive the evolution of nutrient budgets in montane ecosystems, with implications for predicting forest response to changes in climate and land use. PMID:28348371

  5. Drug-nutrient interaction.

    PubMed

    Matsui, M S; Rozovski, S J

    1982-01-01

    The effect of certain drugs on nutrient metabolism is discussed. Antituberculotic drugs such as INH and cycloserine interfere with vitamin B6 metabolism and may produce a secondary niacin deficiency. Oral contraceptives interfere with the metabolism of folic acid and ascorbic acid, and in cases of deficient nutrition, they also seem to interfere with riboflavin. Anticonvulsants can act as folate antagonists and precipitate folic acid deficiency. Therefore, in some cases, supplementation with folate has been recommended simultaneously with anticonvulsant therapy. Cholestyramine therapy has been associated with malabsorption of vitamins; several reports suggest that cholestyramine affects absorption of the fat-soluble vitamins K and D and, in addition, may alter water-soluble vitamins, including folic acid. The study of the interaction of drugs and nutrients is an area that deserves a greater attention in the future, especially in groups where nutrient deficiencies may be prevalent.

  6. Overland flow, sediment output and nutrient loss from certain forested sites in the central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Pathak, P. C.; Pandey, A. N.; Singh, J. S.

    1984-03-01

    Overland flow, sediment output and input and output of precipitation nutrients were evaluated on six forested sites in the central Himalaya during the 1981 and 1982 monsoon seasons. Overland flow was significantly different across the forests and the months of the rainy season. It was positively related with rainfall quantity and intensity, and was negatively related with tree canopy cover and with ground vegetation cover. Average overland flow was only 0.66% of the total incident rainfall, indicating that these sites are subsurface-flow systems. Sediment output was positively related to overland flow. Rainfall added a significant amount of nutrients to the forests. This extra-system input was greater than loss through overland flow + sediment output. The loss of nutrients from the forested sites was in the order: Mg > C > Ca > K = N = P.

  7. Relation of watershed setting and stream nutrient yields at selected sites in central and eastern North Carolina, 1997-2008

    USGS Publications Warehouse

    Harden, Stephen L.; Cuffney, Thomas F.; Terziotti, Silvia; Kolb, Katharine R.

    2013-01-01

    Data collected between 1997 and 2008 at 48 stream sites were used to characterize relations between watershed settings and stream nutrient yields throughout central and eastern North Carolina. The focus of the investigation was to identify environmental variables in watersheds that influence nutrient export for supporting the development and prioritization of management strategies for restoring nutrient-impaired streams. Nutrient concentration data and streamflow data compiled for the 1997 to 2008 study period were used to compute stream yields of nitrate, total nitrogen (N), and total phosphorus (P) for each study site. Compiled environmental data (including variables for land cover, hydrologic soil groups, base-flow index, streams, wastewater treatment facilities, and concentrated animal feeding operations) were used to characterize the watershed settings for the study sites. Data for the environmental variables were analyzed in combination with the stream nutrient yields to explore relations based on watershed characteristics and to evaluate whether particular variables were useful indicators of watersheds having relatively higher or lower potential for exporting nutrients. Data evaluations included an examination of median annual nutrient yields based on a watershed land-use classification scheme developed as part of the study. An initial examination of the data indicated that the highest median annual nutrient yields occurred at both agricultural and urban sites, especially for urban sites having large percentages of point-source flow contributions to the streams. The results of statistical testing identified significant differences in annual nutrient yields when sites were analyzed on the basis of watershed land-use category. When statistical differences in median annual yields were noted, the results for nitrate, total N, and total P were similar in that highly urbanized watersheds (greater than 30 percent developed land use) and (or) watersheds with greater than 10 percent point-source flow contributions to streamflow had higher yields relative to undeveloped watersheds (having less than 10 and 15 percent developed and agricultural land uses, respectively) and watersheds with relatively low agricultural land use (between 15 and 30 percent). The statistical tests further indicated that the median annual yields for total P were statistically higher for watersheds with high agricultural land use (greater than 30 percent) compared to the undeveloped watersheds and watersheds with low agricultural land use. The total P yields also were higher for watersheds with low urban land use (between 10 and 30 percent developed land) compared to the undeveloped watersheds. The study data indicate that grouping and examining stream nutrient yields based on the land-use classifications used in this report can be useful for characterizing relations between watershed settings and nutrient yields in streams located throughout central and eastern North Carolina. Compiled study data also were analyzed with four regression tree models as a means of determining which watershed environmental variables or combination of variables result in basins that are likely to have high or low nutrient yields. The regression tree analyses indicated that some of the environmental variables examined in this study were useful for predicting yields of nitrate, total N, and total P. When the median annual nutrient yields for all 48 sites were evaluated as a group (Model 1), annual point-source flow yields had the greatest influence on nitrate and total N yields observed in streams, and annual streamflow yields had the greatest influence on yields of total P. The Model 1 results indicated that watersheds with higher annual point-source flow yields had higher annual yields of nitrate and total N, and watersheds with higher annual streamflow yields had higher annual yields of total P. When sites with high point-source flows (greater than 10 percent of total streamflow) were excluded from the regression tree analyses (Models 2–4), the percentage of forested land in the watersheds was identified as the primary environmental variable influencing stream yields for both total N and total P. Models 2, 3 and 4 did not identify any watershed environmental variables that could adequately explain the observed variability in the nitrate yields among the set of sites examined by each of these models. The results for Models 2, 3, and 4 indicated that watersheds with higher percentages of forested land had lower annual total N and total P yields compared to watersheds with lower percentages of forested land, which had higher median annual total N and total P yields. Additional environmental variables determined to further influence the stream nutrient yields included median annual percentage of point-source flow contributions to the streams, variables of land cover (percentage of forested land, agricultural land, and (or) forested land plus wetlands) in the watershed and (or) in the stream buffer, and drainage area. The regression tree models can serve as a tool for relating differences in select watershed attributes to differences in stream yields of nitrate, total N, and total P, which can provide beneficial information for improving nutrient management in streams throughout North Carolina and for reducing nutrient loads to coastal waters.

  8. Nutrient Intake and Anemia Risk in the WHI Observational Study

    PubMed Central

    Stanaway, Jeffrey; Neuhouser, Marian L.; Snetselaar, Linda G.; Stefanick, Marcia L.; Arendell, Leslie; Chen, Zhao

    2011-01-01

    Background Nutritional anemia among post-menopausal women is preventable; recent data on prevalence are limited. Objective To investigate the association between nutrient intakes and anemia prevalence, in relation to both incidence and persistence, in a longitudinal sample of post-menopausal women. We hypothesized that anemia prevalence, incidence and persistence would be greater among women reporting lower intake of B12, folate and iron. Design Prospective cohort analysis. Participants/setting Observational Cohort of the Women’s Health Initiative(WHI-OS) including 93,676 postmenopausal women, age 50 to 79 years, were recruited across the United States at 40 clinical study sites. Women were enrolled between 1993 and 1998; data collection for these analyses continued through 2000. Main outcome measures Anemia was defined as a blood hemoglobin concentration of <12.0 mg/dL. Persistent anemia was defined as anemia present at each measurement time point. Diet was assessed by food frequency questionnaire for iron, folate, B12, red meat and cold breakfast cereal; inadequacies were based on dietary reference intakes for women over age 50 years. Statistical analysis Descriptive statistics (mean and standard deviation) were used to characterize the population demographics, anemia rates and diet. Unconditional logistic regression was used to investigate associations between diet and incident and persistent anemia. Associations are presented as odds ratio (OR) and 95% confidence intervals (CI). Results Anemia was identified in 3,979 women or 5.5% of the cohort. Inadequate intakes of multiple anemia-associated nutrients were less frequent in non-Hispanic whites (7.4%) than other race/ethnic groups (inadequacies demonstrated in 14.6 to 16.3% of sample). Age, body mass index and smoking were associated with anemia. Women with anemia reported lower intakes of energy, protein, folate, B12, iron, vitamin C and red meat. Multiple (more than a single nutrient) dietary deficiencies were associated with a 21% greater risk of persistent anemia (OR-1.21, 95% CI: 1.05–1.41) and three deficiencies resulted in a 44% increase in risk for persistent anemia (OR-1.44, 95% CI: 1.20–1.73). Conclusion Inadequate nutrient intake, a modifiable condition, is associated with greater risk for anemia in post-menopausal women participating in the WHI-OS. Efforts to identify and update incidence estimates for anemia-associated nutrient deficiencies in aging women should be undertaken. PMID:21443985

  9. Managing manure nutrients through multi-crop forage production.

    PubMed

    Newton, G L; Bernard, J K; Hubbard, R K; Allison, J R; Lowrance, R R; Gascho, G J; Gates, R N; Vellidis, G

    2003-06-01

    Concentrated sources of dairy manure represent significant water pollution potential. The southern United States may be more vulnerable to water quality problems than some other regions because of climate, typical farm size, and cropping practices. Dairy manure can be an effective source of plant nutrients and large quantities of nutrients can be recycled through forage production, especially when multi-cropping systems are utilized. Linking forage production with manure utilization is an environmentally sound approach for addressing both of these problems. Review of two triple-crop systems revealed greater N and P recoveries for a corn silage-bermudagrass hay-rye haylage system, whereas forage yields and quality were greater for a corn silage-corn silage-rye haylage system, when manure was applied at rates to supply N. Nutrient uptake was lower than application during the autumn-winter period, and bermudagrass utilized more of the remaining excess than a second crop of corn silage. Economic comparison of these systems suggests that the added value of the two corn silage crop system was not enough to off-set its increased production cost. Therefore, the system that included bermudagrass demonstrated both environmental and economic advantages. Review of the N and P uptake and calculated crop value of various single, double, and triple crop forage systems indicated that the per hectare economic value as well as the N and P uptakes tended to follow DM yields, and grasses tended to out-perform broadleaf forages. Taken across all systems, systems that included bermudagrass tended to have some of the highest economic values and uptakes of N and P. Manure applied at rates to supply N results in application of excess P, and production will not supply adequate quantities of forage to meet the herd's needs. Systems that lower manure application and supply supplemental N to produce all necessary forage under manure application will likely be less economically attractive due to additional costs of moving manure further and, applying it to greater land areas, but will be environmentally necessary in most cases. Intensive forage systems can produce acceptable to high quality forage, protect the environment, and be economically attractive. The optimal manure-forage system will depend on the farm characteristics and specific local conditions. Buffers and nutrient sinks can protect streams and water bodies from migrating nutrients and should be included as a part of crop production systems.

  10. Natural selection for costly nutrient recycling in simulated microbial metacommunities.

    PubMed

    Boyle, Richard A; Williams, Hywel T P; Lenton, Timothy M

    2012-11-07

    Recycling of essential nutrients occurs at scales from microbial communities to global biogeochemical cycles, often in association with ecological interactions in which two or more species utilise each others' metabolic by-products. However, recycling loops may be unstable; sequences of reactions leading to net recycling may be parasitised by side-reactions causing nutrient loss, while some reactions in any closed recycling loop are likely to be costly to participants. Here we examine the stability of nutrient recycling loops in an individual-based ecosystem model based on microbial functional types that differ in their metabolism. A supplied nutrient is utilised by a "source" functional type, generating a secondary nutrient that is subsequently used by two other types-a "mutualist" that regenerates the initial nutrient at a growth rate cost, and a "parasite" that produces a refractory waste product but does not incur any additional cost. The three functional types are distributed across a metacommunity in which separate patches are linked by a stochastic diffusive migration process. Regions of high mutualist abundance feature high levels of nutrient recycling and increased local population density leading to greater export of individuals, allowing the source-mutualist recycling loop to spread across the system. Individual-level selection favouring parasites is balanced by patch-level selection for high productivity, indirectly favouring mutualists due to the synergistic productivity benefits of the recycling loop they support. This suggests that multi-level selection may promote nutrient cycling and thereby help to explain the apparent ubiquity and stability of nutrient recycling in nature.

  11. X-ray fluorescence spectrometry-based approach to precision management of bioavailable phosphorus in soil environments

    USDA-ARS?s Scientific Manuscript database

    Declining nutrient use efficiency in crop production has been a global priority to preserve high agricultural productivity with finite non-renewable nutrient resources, in particular phosphorus (P). Rapid spectroscopic methods increase measurement density of soil nutrients, and the availability of ...

  12. Combined Influence of Landscape Composition and Nutrient Inputs on Lake Trophic Structure

    EPA Science Inventory

    The concentration of chlorophyll a is a measure of the biological productivity of a lake and is largely (but not exclusively) determined by available nutrients. As nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g. oligotrophic) to...

  13. Measuring nutrient flux in Pacific Coast salt marshes using fluctuating water-level chambers

    EPA Science Inventory

    Nutrient removal from the water column is an important ecosystem function that contributes to the production of clean water, a final valued ecosystem service of wetlands. However, little data is currently available for nutrient exchange in Pacific Northwest tidal ecosystems. We h...

  14. Stream-water chemistry, nutrients, and pesticides in Town Brook, a headwater stream of the Cannonsville Reservoir Watershed, Delaware County, New York, 1999

    USGS Publications Warehouse

    McHale, Michael R.; Phillips, Patrick J.

    2001-01-01

    Stream-water chemistry was monitored from January 1 through December 31, 1999, in the Town Brook watershed (TBW) in Delaware County, N.Y. to provide a basis for future evaluation of the effectiveness of Best Management Practices (BMPs) in decreasing agricultural nutrient and pesticide leaching to receiving waters. Total runoff from the watershed during 1999 was 664 millimeters (mm). Annual nutrient export (in kilograms per hectare) values were: ammonia (NH3), 0.25; nitrate (NO3-), 4.3; total nitrogen (TN), 10.6; orthophosphate (OP), 0.26; total dissolved phosphorus (TDP), 0.30; and total phosphorus (TP), 1.2 during 1999. Streamwater samples were collected during baseflow, elevated baseflow, and stormflow conditions. Stormflow, which produced the greatest flowweighted mean nutrient concentrations, represented only 41 percent of the annual runoff but accounted from 49 to 68 percent of the annual nutrient export. The highest seasonal flow-weighted mean concentrations were measured during the summer; the highest concentrations occurred during a large storm on July 4, 1999 with a recurrence interval greater than 100 years. The greatest seasonal export of dissolved nutrients (NH3, NO3-, OP, and TDP) occurred during the winter, whereas the greatest export of TN and TP was during the summer. Most of the TN and TP export during the summer occurred during the July 4 storm. That storm, together with a second large storm on September 16, 1999, accounted for the following percentages of annual export: ammonia, 17 percent; NO3-, 21 percent; TN, 45 percent; OP, 21 percent; TDP, 21 percent; and TP, 56 percent. Although these results provide information on the quantity and timing of nutrient export, they do not indicate the nutrient source nor the transport mechanisms by which nutrients are delivered to the stream.Baseflow and stormflow samples were collected for pesticide analyses at the Town Brook watershed outlet from January through July 1999. Eight pesticides and pesticide metabolites (degradation products) were detected in the samples. Four compounds (metolachlor, atrazine, metolachlor ESA, and metolachlor OA) were detected in concentrations greater than 1 micrograms per liter (μg/L) in one or more samples. Two of these compounds.the herbicide metabolites metalochlor ESA and metalochlor OA.were detected in concentrations higher than those of the parent compound metolachlor. Only one sample, collected during the July 4 storm, exceeded New York State surface-water-quality standards for any pesticide (simazine); its concentration of 0.53 μg/L was 0.03 μg/L higher than the New York State standard (0.50 μg/L). No concentrations exceeded Federal water-quality standards. Pesticide and metabolite concentrations were as much as 25 times greater during stormflow than during baseflow. Stormflow pesticide concentrations were indicative of a spring 'flushing', in which stream pesticide concentrations are elevated from concentrations typical during the rest of the year during the first few storms after pesticide application. Pesticides and pesticide metabolites were detected in all stormflow samples. These results illustrate the need to include baseflow and stormflow in pesticide sampling routines.The results of this study emphasize the need for (1) baseflow and stormflow sampling to capture the range of nutrient and pesticide concentrations from agricultural watersheds, and (2) research to define the mechanisms of nutrient and pesticide export in agriculutral watersheds.

  15. Freshwater bacterioplankton richness in oligotrophic lakes depends on nutrient availability rather than on species–area relationships

    PubMed Central

    Logue, Jürg Brendan; Langenheder, Silke; Andersson, Anders F; Bertilsson, Stefan; Drakare, Stina; Lanzén, Anders; Lindström, Eva S

    2012-01-01

    A central goal in ecology is to grasp the mechanisms that underlie and maintain biodiversity and patterns in its spatial distribution can provide clues about those mechanisms. Here, we investigated what might determine the bacterioplankton richness (BR) in lakes by means of 454 pyrosequencing of the 16S rRNA gene. We further provide a BR estimate based upon a sampling depth and accuracy, which, to our knowledge, are unsurpassed for freshwater bacterioplankton communities. Our examination of 22 669 sequences per lake showed that freshwater BR in fourteen nutrient-poor lakes was positively influenced by nutrient availability. Our study is, thus, consistent with the finding that the supply of available nutrients is a major driver of species richness; a pattern that may well be universally valid to the world of both micro- and macro-organisms. We, furthermore, observed that BR increased with elevated landscape position, most likely as a consequence of differences in nutrient availability. Finally, BR decreased with increasing lake and catchment area that is negative species–area relationships (SARs) were recorded; a finding that re-opens the debate about whether positive SARs can indeed be found in the microbial world and whether positive SARs can in fact be pronounced as one of the few ‘laws' in ecology. PMID:22170419

  16. Tropical organic soils ecosystems in relation to regional water resources in southeast Asia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armentano, T. V.

    1982-01-01

    Tropical organic soils have functioned as natural sinks for carbon, nitrogen, slfur and other nutrients for the past 4000 years or more. Topographic evolution in peat swamp forests towards greater oligotrophy has concentrated storage of the limited nutrient stock in surface soils and biota. Tropical peat systems thus share common ecosystem characteristics with northern peat bogs and certain tropical oligotrophic forests. Organic matter accumulation and high cation-exchange-capacity limit nutrient exports from undisturbed organic soils, although nutrient retention declines with increasing eutrophy and wetland productivity. Peat swamps are subject to irreversible degradation if severely altered because disturbance of vegetation, surface peatsmore » and detritus can disrupt nuttrient cycles and reduce forest recovery capacity. Drainage also greatly increases exports of nitrogen, phosphorus and other nutrients and leads to downstream eutrophication and water quality degradation. Regional planning for clean water supplies must recognize the benefits provided by natural peatlands in balancing water supplies and regulating water chemistry.« less

  17. Can differential nutrient extraction explain property variations in a predatory trap?

    PubMed Central

    Blamires, Sean J.; Piorkowski, Dakota; Chuang, Angela; Tseng, Yi-Hsuan; Toft, Søren; Tso, I-Min

    2015-01-01

    Predators exhibit flexible foraging to facilitate taking prey that offer important nutrients. Because trap-building predators have limited control over the prey they encounter, differential nutrient extraction and trap architectural flexibility may be used as a means of prey selection. Here, we tested whether differential nutrient extraction induces flexibility in architecture and stickiness of a spider's web by feeding Nephila pilipes live crickets (CC), live flies (FF), dead crickets with the web stimulated by flies (CD) or dead flies with the web stimulated by crickets (FD). Spiders in the CD group consumed less protein per mass of lipid or carbohydrate, and spiders in the FF group consumed less carbohydrates per mass of protein. Spiders from the CD group built stickier webs that used less silk, whereas spiders in the FF group built webs with more radii, greater catching areas and more silk, compared with other treatments. Our results suggest that differential nutrient extraction is a likely explanation for prey-induced spider web architecture and stickiness variations. PMID:26064618

  18. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau

    PubMed Central

    Dang, Peng; Yu, Xuan; Le, Hien; Liu, Jinliang; Shen, Zhen

    2017-01-01

    The effects of Chinese pine (Pinus tabuliformis) on soil variables after afforestation have been established, but microbial community changes still need to be explored. Using high-throughput sequencing technology, we analyzed bacterial and fungal community composition and diversity in soils from three stands of different-aged, designated 12-year-old (PF1), 29-year-old (PF2), and 53-year-old (PF3), on a Chinese pine plantation and from a natural secondary forest (NSF) stand that was almost 80 years old. Abandoned farmland (BL) was also analyzed. Shannon index values of both bacterial and fungal community in PF1 were greater than those in PF2, PF3 and NSF. Proteobacteria had the lowest abundance in BL, and the abundance increased with stand age. The abundance of Actinobacteria was greater in BL and PF1 soils than those in other sites. Among fungal communities, the dominant taxa were Ascomycota in BL and PF1 and Basidiomycota in PF2, PF3 and NSF, which reflected the successional patterns of fungal communities during the development of Chinese pine plantations. Therefore, the diversity and dominant taxa of soil microbial community in stands 12 and 29 years of age appear to have undergone significant changes; afterward, the soil microbial community achieved a relatively stable state. Furthermore, the abundances of the most dominant bacterial and fungal communities correlated significantly with organic C, total N, C:N, available N, and available P, indicating the dependence of these microbes on soil nutrients. Overall, our findings suggest that the large changes in the soil microbial community structure of Chinese pine plantation forests may be attributed to the phyla present (e.g., Proteobacteria, Actinobacteria, Ascomycota and Basidiomycota) which were affected by soil carbon and nutrients in the Loess Plateau. PMID:29049349

  19. Effects of stand age and soil properties on soil bacterial and fungal community composition in Chinese pine plantations on the Loess Plateau.

    PubMed

    Dang, Peng; Yu, Xuan; Le, Hien; Liu, Jinliang; Shen, Zhen; Zhao, Zhong

    2017-01-01

    The effects of Chinese pine (Pinus tabuliformis) on soil variables after afforestation have been established, but microbial community changes still need to be explored. Using high-throughput sequencing technology, we analyzed bacterial and fungal community composition and diversity in soils from three stands of different-aged, designated 12-year-old (PF1), 29-year-old (PF2), and 53-year-old (PF3), on a Chinese pine plantation and from a natural secondary forest (NSF) stand that was almost 80 years old. Abandoned farmland (BL) was also analyzed. Shannon index values of both bacterial and fungal community in PF1 were greater than those in PF2, PF3 and NSF. Proteobacteria had the lowest abundance in BL, and the abundance increased with stand age. The abundance of Actinobacteria was greater in BL and PF1 soils than those in other sites. Among fungal communities, the dominant taxa were Ascomycota in BL and PF1 and Basidiomycota in PF2, PF3 and NSF, which reflected the successional patterns of fungal communities during the development of Chinese pine plantations. Therefore, the diversity and dominant taxa of soil microbial community in stands 12 and 29 years of age appear to have undergone significant changes; afterward, the soil microbial community achieved a relatively stable state. Furthermore, the abundances of the most dominant bacterial and fungal communities correlated significantly with organic C, total N, C:N, available N, and available P, indicating the dependence of these microbes on soil nutrients. Overall, our findings suggest that the large changes in the soil microbial community structure of Chinese pine plantation forests may be attributed to the phyla present (e.g., Proteobacteria, Actinobacteria, Ascomycota and Basidiomycota) which were affected by soil carbon and nutrients in the Loess Plateau.

  20. Evidence for a role of biosurfactants produced by Pseudomonas fluorescens in the spoilage of fresh aerobically stored chicken meat.

    PubMed

    Mellor, Glen E; Bentley, Jessica A; Dykes, Gary A

    2011-08-01

    Fresh chicken meat is a fat-rich environment and we therefore hypothesised that production of biosurfactants to increase bioavailability of fats may represent one way in which spoilage bacteria might enhance the availability of nutrients. Numbers of Pseudomonas were determined on a total of 20 fresh and 20 spoiled chicken thighs with skin. A total of 400 randomly isolated Pseudomonas colonies from fresh (200) and spoiled (200) chicken were screened for the presence of biosurfactant production. Biosurfactant producing strains represented 5% and 72% of the Pseudomonas spp. isolates from fresh (mean count 2.3 log(10) cfu g(-1)) and spoiled (mean count 7.4 log(10) cfu g(-1)) chicken skin, respectively. Partially-purified biosurfactants derived from a subgroup of four Pseudomonasfluorescens strains obtained through the screening process were subsequently used to investigate the role that the addition of these compounds plays in the spoilage of aerobically stored chicken. Emulsification potential of the four selected biosurfactants was measured against a range of hydrocarbons and oils. All four biosurfactants displayed a greater ability to emulsify rendered chicken fat than hydrocarbons (paraffin liquid, toluene and hexane) and oils (canola, olive, sunflower and vegetable). Storage trials (4 °C) of chicken meat treated with the four selected biosurfactants revealed a significantly greater (P < 0.05) total aerobic count in biosurfactant treated samples, as compared to untreated samples on each day (0, 1, 2, 3) of storage. For biosurfactant treated samples the greatest increase in total aerobic count (1.3-1.7 log(10) cfu g(-1)) occurred following one day of incubation. These results indicate that biosurfactants produced by Pseudomonas spp. may play an important role in the spoilage of aerobically stored chicken meat by making nutrients more freely available and providing strains producing them with a competitive advantage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Effect of available nitrogen on phytoavailability and bioaccumulation of hexavalent and trivalent chromium in hankow willows (Salix matsudana Koidz).

    PubMed

    Yu, Xiao-Zhang; Gu, Ji-Dong

    2008-06-01

    The effect of available nitrogen in nutrient solution on removal of two chemical forms of chromium (Cr) by plants was investigated. Pre-rooted hankow willows (Salix matsudana Koidz) were grown in a hydroponic solution system with or without nitrogen, and amended with hexavalent chromium [Cr (VI)] or trivalent chromium [Cr (III)] at 25.0+/-0.5 degrees C for 192 h. The results revealed that higher removal of Cr by plants was achieved from the hydroponic solutions without any nitrogen than those containing nitrogen. Although faster removal of Cr (VI) than Cr (III) was observed, translocation of Cr (III) within plant materials was more efficient than Cr (VI). Substantial difference existed in the distribution of Cr in different parts of plant tissues due to the nitrogen in nutrient solutions (p<0.05): lower stems were the major sink for both Cr species in willows grown in the N-free nutrient solutions and more Cr was accumulated in the roots of plants in N-containing ones. No significant difference was found in the removal rate of Cr (VI) between willows grown in the N-free and N-containing solutions (p>0.05). Removal rates of Cr (III) decreased linearly with the strength of nutrient solutions with or without N addition (p<0.01). Translocation efficiencies of both Cr species increased proportionally with the strength of N-containing nutrient solutions and decreased with the strength of N-free nutrient solutions. Results suggest that uptake and translocation mechanisms of Cr (VI) and Cr (III) are apparently different in hankow willows. The presence of easily available nitrogen and other nutrient elements in the nutrient solutions had a more pronounced influence on the uptake of Cr (III) than Cr (VI). Nitrogen availability and quantities in the ambient environment will affect the translocation of both Cr species and their distribution in willows in phytoremediation.

  2. Comparison of methods for nutrient measurement in calcareous soils: Ion-exchange resin bag, capsule, membrane, and chemical extractions

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, J.; Miller, M.E.

    2002-01-01

    Four methods for measuring quantities of 12 plant-available nutrients were compared using three sandy soils in a series of three experiments. Three of the methods use different ion-exchange resin forms—bags, capsules, and membranes—and the fourth was conventional chemical extraction. The first experiment compared nutrient extraction data from a medium of sand saturated with a nutrient solution. The second and third experiments used Nakai and Sheppard series soils from Canyonlands National Park, which are relatively high in soil carbonates. The second experiment compared nutrient extraction data provided by the four methods from soils equilibrated at two temperatures, “warm” and “cold.” The third experiment extracted nutrients from the same soils in a field equilibration. Our results show that the four extraction techniques are not comparable. This conclusion is due to differences among the methods in the net quantities of nutrients extracted from equivalent soil volumes, in the proportional representation of nutrients within similar soils and treatments, in the measurement of nutrients that were added in known quantities, and even in the order of nutrients ranked by net abundance. We attribute the disparities in nutrient measurement among the different resin forms to interacting effects of the inherent differences in resin exchange capacity, differences among nutrients in their resin affinities, and possibly the relatively short equilibration time for laboratory trials. One constraint for measuring carbonate-related nutrients in high-carbonate soils is the conventional ammonium acetate extraction method, which we suspect of dissolving fine CaCO3 particles that are more abundant in Nakai series soils, resulting in erroneously high Ca2+ estimates. For study of plant-available nutrients, it is important to identify the nutrients of foremost interest and understand differences in their resin sorption dynamics to determine the most appropriate extraction method.

  3. Gustatory and metabolic perception of nutrient stress in Drosophila.

    PubMed

    Linford, Nancy J; Ro, Jennifer; Chung, Brian Y; Pletcher, Scott D

    2015-02-24

    Sleep loss is an adaptive response to nutrient deprivation that alters behavior to maximize the chances of feeding before imminent death. Organisms must maintain systems for detecting the quality of the food source to resume healthy levels of sleep when the stress is alleviated. We determined that gustatory perception of sweetness is both necessary and sufficient to suppress starvation-induced sleep loss when animals encounter nutrient-poor food sources. We further find that blocking specific dopaminergic neurons phenocopies the absence of gustatory stimulation, suggesting a specific role for these neurons in transducing taste information to sleep centers in the brain. Finally, we show that gustatory perception is required for survival, specifically in a low nutrient environment. Overall, these results demonstrate an important role for gustatory perception when environmental food availability approaches zero and illustrate the interplay between sensory and metabolic perception of nutrient availability in regulating behavioral state.

  4. Effects of Liming on Forage Availability and Nutrient Content in a Forest Impacted by Acid Rain

    PubMed Central

    Pabian, Sarah E.; Ermer, Nathan M.; Tzilkowski, Walter M.; Brittingham, Margaret C.

    2012-01-01

    Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus) and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer. PMID:22761890

  5. Effects of liming on forage availability and nutrient content in a forest impacted by acid rain.

    PubMed

    Pabian, Sarah E; Ermer, Nathan M; Tzilkowski, Walter M; Brittingham, Margaret C

    2012-01-01

    Acidic deposition and subsequent forest soil acidification and nutrient depletion can affect negatively the growth, health and nutrient content of vegetation, potentially limiting the availability and nutrient content of forage for white-tailed deer (Odocoileus virginianus) and other forest herbivores. Liming is a mitigation technique that can be used to restore forest health in acidified areas, but little is known about how it affects the growth or nutrient content of deer forage. We examined the effects of dolomitic limestone application on the growth and chemical composition of understory plants in an acidified forest in central Pennsylvania, with a focus on vegetative groups included as white-tailed deer forage. We used a Before-After-Control-Impact study design with observations 1 year before liming and up to 5 years post-liming on 2 treated and 2 untreated 100-ha sites. Before liming, forage availability and several nutrients were below levels considered optimal for white-tailed deer, and many vegetative characteristics were related to soil chemistry. We observed a positive effect of liming on forb biomass, with a 2.7 fold increase on limed sites, but no biomass response in other vegetation groups. We observed positive effects of liming on calcium and magnesium content and negative effects on aluminum and manganese content of several plant groups. Responses to liming by forbs and plant nutrients show promise for improving vegetation health and forage quality and quantity for deer.

  6. Facilitating nutrient aquisition of black walnut and other hardwoods at plantation establishment

    Treesearch

    Douglass F. Jacobs; John R. Seifert

    2004-01-01

    Bareroot hardwood seedlings typically undergo transplant shock immediately following planting before root systems are established. Fertilization at planting may act to minimize transplant shock by reducing nutrient stresses. However, previous work with fertilization of hardwoods at planting has generally relied on fertilizers with nutrient forms immediately available....

  7. Short-term effects of a simulated acid rain upon the growth and nutrient relations of Pinus strobus, L.

    Treesearch

    Tim Wood; F. H. Bormann

    1976-01-01

    Acidified precipitation may affect the productivity of forests by altering the availability of plant nutrients of by affecting the ability of trees to absorb and assimilate those nutrients. In this study, the short-term effects of simulated acid rain (pH range 5.6 - 2.3) upon the growth and nutrient relations of Eastern White Pine seedlings (Pinus strobus...

  8. Effects of dietary supplementation of leaves and whole plant of Andrographis paniculata on rumen fermentation, fatty acid composition and microbiota in goats.

    PubMed

    Yusuf, Aisha L; Adeyemi, Kazeem D; Samsudin, Anjas A; Goh, Yong M; Alimon, Abdul Razak; Sazili, Awis Q

    2017-11-24

    The nature and amount of dietary medicinal plants are known to influence rumen fermentation and nutrient digestibility in ruminants. Nonetheless, changes in nutrient digestibility and rumen metabolism in response to dietary Andrographis paniculata (AP) in goats are unknown. This study examined the effects of dietary supplementation of leaves and whole plant of AP on nutrient digestibility, rumen fermentation, fatty acids and rumen microbial population in goats. Twenty-four Boer crossbred bucks (4 months old; average body weight of 20.18 ± 0.19 kg) were randomly assigned to three dietary groups of eight goats each. The dietary treatments included a control diet (Basal diet without additive), basal diet +1.5% (w/w) Andrographis paniculata leaf powder (APL) and basal diet +1.5% (w/w) Andrographis paniculata whole plant powder (APW). The trial lasted 100 d following 14 d of adjustment. The rumen pH and concentration of propionate were greater (P < 0.05) in goats fed the APL and APW diets than those fed the control diet. The concentrations of ammonia nitrogen and acetate were greater (P < 0.05) in the control goats than the APL and APW goats. The digestibilities of crude protein, dry matter, acid detergent fibre and neutral detergent fibre were greater (P < 0.05) in the APL and APW goats compared to the control goats. Dietary APL and APW decreased (P < 0.05) the ruminal concentration of C18:0 and increased (P < 0.05) the ruminal concentration of C18:2n-6 and C18:3n-3. The APL goats had greater (P < 0.05) ruminal concentration of C18:1 trans-11 and CLA cis-9 trans-11 than the APW and control goats. Dietary treatments had no significant effect on the population of protozoa and methanogens in the rumen of goats. The ruminal populations of Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes were greater (P < 0.05) in the APL and APW goats than the control goats. Dietary supplementation of leaves and whole plant of Andrographis paniculata can be used to manipulate rumen metabolism for improved nutrient digestibility in goats.

  9. Drug-nutrient interactions.

    PubMed

    Trovato, A; Nuhlicek, D N; Midtling, J E

    1991-11-01

    Drug-nutrient interactions are a commonly overlooked aspect of the prescribing practices of physicians. As more pharmaceutical agents become available, attention should be focused on interactions of drugs with foods and nutrients. Although drug-nutrient interactions are not as common as drug-drug interactions, they can have an impact on therapeutic outcome. Drugs can affect nutritional status by altering nutrient absorption, metabolism, utilization or excretion. Food, beverages and mineral or vitamin supplements can affect the absorption and effectiveness of drugs. Knowledge of drug-nutrient interactions can help reduce the incidence of these effects. Physicians should question patients about their dietary habits so that patients can be informed about possible interactions between a prescribed drug and foods and nutrients.

  10. Impact of growth conditions on resistance of Klebsiella pneumoniae to chloramines.

    PubMed Central

    Stewart, M H; Olson, B H

    1992-01-01

    The resistance of Klebsiella pneumoniae to inorganic monochloramine (1.5 mg/liter; 3:1 Cl2:N ratio, pH 8.0) was examined in relation to growth phase, temperature of growth, and growth under decreased nutrient conditions. Growth phase did not impact resistance to chloramines. Mid-exponential and stationary-phase cells, grown in a yeast extract-based medium, had CT99 values and standard deviations of 4.8 +/- 0.1 and 4.6 +/- 0.2 mg.min/liter, respectively. Growth temperature did not alter chloramine resistance at short contact times. CT99 values of cells grown at 15 and 23 degrees C were 4.5 +/- 0.2 and 4.6 +/- 0.2 mg.min/liter, respectively. However, at longer contact times, CT99.99 values of cells grown at 15 and 23 degrees C were 14 and 8 mg.min/liter, respectively, suggesting a small resistant subpopulation for cells grown at the lower temperature. Growth under decreased nutrient conditions resulted in a concomitant increase in resistance to chloramines. When K. pneumoniae was grown in undiluted Ristroph medium and Ristroph medium diluted by 1:100 and 1:1,000, the CT99 values were 4.6 +/- 0.2, 9.6 +/- 0.4, and 24 +/- 7.0 mg.min/liter, respectively. These results indicate that nutrient availability has a greater impact than growth phase or growth temperature in promoting the resistance of K. pneumoniae to inorganic monochloramine. PMID:1514811

  11. Daily consumption of foods and nutrients from institutional and home sources among young children attending two contrasting day-care centers in Guatemala City.

    PubMed

    Vossenaar, M; Jaramillo, P M; Soto-Méndez, M-J; Panday, B; Hamelinck, V; Bermúdez, O I; Doak, C M; Mathias, P; Solomons, N W

    2012-12-01

    Adequate nutrition is critical to child development and institutions such as day-care centers could potentially complement children's diets to achieve optimal daily intakes. The aim of the study was to describe the full-day diet of children, examining and contrasting the relative contribution of home-derived versus institutional energy and nutrient sources. The present comparison should be considered in the domain of a case-study format. The diets of 33, 3-6 y old children attending low-income day-care centers serving either 3 or a single meal were examined. The home-diet was assessed by means of 3 non-consecutive 24-hr recalls. Estimated energy and nutrient intakes at the centers and at home were assessed and related to Recommended Nutrient Intakes (RNI). Nutrient densities, critical densities and main sources of nutrients were computed. We observed that in children attending the day-care center serving three meals, home-foods contributed less than half the daily energy (47.7%) and between 29.9% and 53.5% of daily nutrients. In children receiving only lunch outside the home, energy contribution from the home was 83.9% and 304 kcal lower than for children receiving 3 meals. Furthermore, between 59.0% and 94.8% of daily nutrients were provided at home. Daily energy, nutrient intakes and nutrient densities were well above the nutrient requirements for this age group, and particularly high for vitamin A. The overall dietary variety was superior in the situation of greater contribution of home fare, but overall the nutrient density and adequacy of the aggregate intakes did not differ in any important manner.

  12. Potassium fertigation in highbush blueberry increases availability of K and other nutrients in the root zone

    USDA-ARS?s Scientific Manuscript database

    Fertigation with nitrogen (N) increases growth and production relative to granular N applications in blueberry, but little information is available on whether there is any benefit to fertigating with other nutrients. The plants were grown on raised beds and irrigated using two lines of drip tubing p...

  13. NGEE Arctic Plant Traits: Soil Nutrient Availability, Kougarok Road Mile Marker 64, Seward Peninsula, Alaska, beginning 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verity Salmon; Colleen Iversen; Amy Breen

    Soil nutrient availability at all vegetation plots was measured using anion and cation binding resins deployed to vegetation plots at the Kougarok hillslope site located at Kougarok Road Marker 64. Concentrations of ammonia, nitrate, and phosphate in resin extract solutions were determined in the lab.

  14. Natural and anthropogenic drivers of calcium depletion in a northern forest during the last millennium.

    PubMed

    Leys, Bérangère A; Likens, Gene E; Johnson, Chris E; Craine, Joseph M; Lacroix, Brice; McLauchlan, Kendra K

    2016-06-21

    The pace and degree of nutrient limitation are among the most critical uncertainties in predicting terrestrial ecosystem responses to global change. In the northeastern United States, forest growth has recently declined along with decreased soil calcium (Ca) availability, suggesting that acid rain has depleted soil Ca to the point where it may be a limiting nutrient. However, it is unknown whether the past 60 y of changes in Ca availability are strictly anthropogenic or partly a natural consequence of long-term ecosystem development. Here, we report a high-resolution millennial-scale record of Ca and 16 other elements from the sediments of Mirror Lake, a 15-ha lake in the White Mountains of New Hampshire surrounded by northern hardwood forest. We found that sedimentary Ca concentrations had been declining steadily for 900 y before regional Euro-American settlement. This Ca decline was not a result of serial episodic disturbances but instead the gradual weathering of soils and soil Ca availability. As Ca availability was declining, nitrogen availability concurrently was increasing. These data indicate that nutrient availability on base-poor, parent materials is sensitive to acidifying processes on millennial timescales. Forest harvesting and acid rain in the postsettlement period mobilized significant amounts of Ca from watershed soils, but these effects were exacerbated by the long-term pattern. Shifting nutrient limitation can potentially occur within 10,000 y of ecosystem development, which alters our assessments of the speed and trajectory of nutrient limitation in forests, and could require reformulation of global models of forest productivity.

  15. Natural and anthropogenic drivers of calcium depletion in a northern forest during the last millennium

    PubMed Central

    Leys, Bérangère A.; Likens, Gene E.; Craine, Joseph M.; Lacroix, Brice; McLauchlan, Kendra K.

    2016-01-01

    The pace and degree of nutrient limitation are among the most critical uncertainties in predicting terrestrial ecosystem responses to global change. In the northeastern United States, forest growth has recently declined along with decreased soil calcium (Ca) availability, suggesting that acid rain has depleted soil Ca to the point where it may be a limiting nutrient. However, it is unknown whether the past 60 y of changes in Ca availability are strictly anthropogenic or partly a natural consequence of long-term ecosystem development. Here, we report a high-resolution millennial-scale record of Ca and 16 other elements from the sediments of Mirror Lake, a 15-ha lake in the White Mountains of New Hampshire surrounded by northern hardwood forest. We found that sedimentary Ca concentrations had been declining steadily for 900 y before regional Euro-American settlement. This Ca decline was not a result of serial episodic disturbances but instead the gradual weathering of soils and soil Ca availability. As Ca availability was declining, nitrogen availability concurrently was increasing. These data indicate that nutrient availability on base-poor, parent materials is sensitive to acidifying processes on millennial timescales. Forest harvesting and acid rain in the postsettlement period mobilized significant amounts of Ca from watershed soils, but these effects were exacerbated by the long-term pattern. Shifting nutrient limitation can potentially occur within 10,000 y of ecosystem development, which alters our assessments of the speed and trajectory of nutrient limitation in forests, and could require reformulation of global models of forest productivity. PMID:27298361

  16. Microbes influence the biogeochemical and optical properties of maritime Antarctic snow

    NASA Astrophysics Data System (ADS)

    Hodson, A. J.; Nowak, A.; Cook, J.; Sabacka, M.; Wharfe, E. S.; Pearce, D. A.; Convey, P.; Vieira, G.

    2017-06-01

    Snowmelt in the Antarctic Peninsula region has increased significantly in recent decades, leading to greater liquid water availability across a more expansive area. As a consequence, changes in the biological activity within wet Antarctic snow require consideration if we are to better understand terrestrial carbon cycling on Earth's coldest continent. This paper therefore examines the relationship between microbial communities and the chemical and physical environment of wet snow habitats on Livingston Island of the maritime Antarctic. In so doing, we reveal a strong reduction in bacterial diversity and autotrophic biomass within a short (<1 km) distance from the coast. Coastal snowpacks, fertilized by greater amounts of nutrients from rock debris and marine fauna, develop obvious, pigmented snow algal communities that control the absorption of visible light to a far greater extent than with the inland glacial snowpacks. Absorption by carotenoid pigments is most influential at the surface, while chlorophyll is most influential beneath it. The coastal snowpacks also indicate higher concentrations of dissolved inorganic carbon and CO2 in interstitial air, as well as a close relationship between chlorophyll and dissolved organic carbon (DOC). As a consequence, the DOC resource available in coastal snow can support a more diverse bacterial community that includes microorganisms from a range of nearby terrestrial and marine habitats. Therefore, since further expansion of the melt zone will influence glacial snowpacks more than coastal ones, care must be taken when considering the types of communities that may be expected to evolve there.

  17. Down dead wood statistics for Maine timberlands, 1995

    Treesearch

    Linda S. Heath; David C. Chojnacky; David C. Chojnacky

    2001-01-01

    Down dead wood (DDW) is important for its role in carbon and nutrient cycling, carbon sequestration, wildfire behavior, plant reproduction, and wildlife habitat. DDW was measured for the first time during a forest inventory of Maine by the USDA Forest Service in 1994-1996. Pieces greater than 3 feet long and greater than 3 inches in diameter at point of intersection...

  18. The emerging role of mTORC1 signaling in placental nutrient-sensing.

    PubMed

    Jansson, T; Aye, I L M H; Goberdhan, D C I

    2012-11-01

    Nutrient-sensing signaling pathways regulate cell metabolism and growth in response to altered nutrient levels and growth factor signaling. Because trophoblast cell metabolism and associated signaling influence fetal nutrient availability, trophoblast nutrient sensors may have a unique role in regulating fetal growth. We review data in support of a role for mammalian target of rapamycin complex 1 (mTORC1) in placental nutrient-sensing. Placental insulin/IGF-I signaling and fetal levels of oxygen, glucose and amino acids (AAs) are altered in pregnancy complications such as intrauterine growth restriction, and all these factors are well-established upstream regulators of mTORC1. Furthermore, mTORC1 is a positive regulator of placental AA transporters, suggesting that trophoblast mTORC1 modulates AA transfer across the placenta. In addition, placental mTORC1 signaling is also known to be modulated in pregnancy complications associated with altered fetal growth and in animal models in which maternal nutrient availability has been altered experimentally. Recently, significant progress has been made in identifying the molecular mechanisms by which mTORC1 senses AAs, a process requiring shuttling of mTOR to late endosomal and lysosomal compartments (LELs). We recently identified members of the proton-assisted amino acid transporter (PAT/SLC36) family as critical components of the AA-sensing system or 'nutrisome' that regulates mTORC1 on LEL membranes, placing AA transporters and their subcellular regulation both upstream and downstream of mTORC1-driven processes. We propose a model in which placental mTORC1 signaling constitutes a critical link between maternal nutrient availability and fetal growth, thereby influencing the long-term health of the fetus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance

    PubMed Central

    Smithwick, Erica A. H.; Naithani, Kusum J.; Balser, Teri C.; Romme, William H.; Turner, Monica G.

    2012-01-01

    Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R2<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21st Century. PMID:23226324

  20. Sediment and nutrient trapping as a result of a temporary Mississippi River floodplain restoration: The Morganza Spillway during the 2011 Mississippi River Flood

    USGS Publications Warehouse

    Kroes, Daniel; Schenk, Edward R.; Noe, Gregory; Benthem, Adam J.

    2015-01-01

    The 2011 Mississippi River Flood resulted in the opening of the Morganza Spillway for the second time since its construction in 1954 releasing 7.6 km3 of water through agricultural and forested lands in the Morganza Floodway and into the Atchafalaya River Basin. This volume, released over 54 days, represented 5.5% of the Mississippi River (M.R.) discharge and 14% of the total discharge through the Atchafalaya River Basin (A.R.B.) during the Spillway operation and 1.1% of the M.R. and 3.3% of the A.R.B. 2011 water year discharge. During the release, 1.03 teragrams (Tg) of sediment was deposited on the Morganza Forebay and Floodway and 0.26 Tg was eroded from behind the Spillway structure. The majority of deposition (86 %) occurred in the Forebay (upstream of the structure) and within 4 km downstream of the Spillway structure with minor deposition on the rest of the Floodway. There was a net deposition of 26 × 10−4 Tg of N and 5.36 × 10−4 Tg of P, during the diversion, that was equivalent to 0.17% N and 0.33% P of the 2011 annual M.R. load. Median deposited sediment particle size at the start of the Forebay was 13 μm and decreased to 2 μm 15 km downstream of the Spillway structure. Minimal accretion was found greater than 4 km downstream of the structure suggesting the potential for greater sediment and nutrient trapping in the Floodway. However, because of the large areas involved, substantial sediment mass was deposited even at distances greater than 30 km. Sediment and nutrient deposition on the Morganza Floodway was limited because suspended sediment was quickly deposited along the flowpath and not refreshed by incremental water exchanges between the Atchafalaya River (A.R.) and the Floodway. Sediment and nutrient trapping could have been greater and more evenly distributed if additional locations of hydraulic input from and outputs to the A.R. (connectivity) were added.

  1. Food Web Architecture and Basal Resources Interact to Determine Biomass and Stoichiometric Cascades along a Benthic Food Web

    PubMed Central

    Guariento, Rafael D.; Carneiro, Luciana S.; Caliman, Adriano; Leal, João J. F.; Bozelli, Reinaldo L.; Esteves, Francisco A.

    2011-01-01

    Understanding the effects of predators and resources on primary producers has been a major focus of interest in ecology. Within this context, the trophic cascade concept especially concerning the pelagic zone of lakes has been the focus of the majority of these studies. However, littoral food webs could be especially interesting because base trophic levels may be strongly regulated by consumers and prone to be light limited. In this study, the availability of nutrients and light and the presence of an omnivorous fish (Hyphessobrycon bifasciatus) were manipulated in enclosures placed in a humic coastal lagoon (Cabiúnas Lagoon, Macaé – RJ) to evaluate the individual and interactive effects of resource availability (nutrients and light) and food web configuration on the biomass and stoichiometry of periphyton and benthic grazers. Our findings suggest that light and nutrients interact to determine periphyton biomass and stoichiometry, which propagates to the consumer level. We observed a positive effect of the availability of nutrients on periphytic biomass and grazers' biomass, as well as a reduction of periphytic C∶N∶P ratios and an increase of grazers' N and P content. Low light availability constrained the propagation of nutrient effects on periphyton biomass and induced higher periphytic C∶N∶P ratios. The effects of fish presence strongly interacted with resource availability. In general, a positive effect of fish presence was observed for the total biomass of periphyton and grazer's biomass, especially with high resource availability, but the opposite was found for periphytic autotrophic biomass. Fish also had a significant effect on periphyton stoichiometry, but no effect was observed on grazers' stoichiometric ratios. In summary, we observed that the indirect effect of fish predation on periphyton biomass might be dependent on multiple resources and periphyton nutrient stoichiometric variation can affect consumers' stoichiometry. PMID:21789234

  2. Best management practices for nutrient and sediment retention in urban stormwater runoff.

    PubMed

    Hogan, Dianna M; Walbridge, Mark R

    2007-01-01

    Stormwater management infrastructure is utilized in urban areas to alleviate flooding caused by decreased landscape permeability from increased impervious surface cover (ISC) construction. In this study, we examined two types of stormwater detention basins, SDB-BMPs (stormwater detention basin-best management practice), and SDB-FCs (stormwater detention basin-flood control). Both are constructed to retain peak stormwater flows for flood mitigation. However, the SDB-BMPs are also designed using basin topography and wetland vegetation to provide water quality improvement (nutrient and sediment removal and retention). The objective of this study was to compare SDB (both SDB-BMP and SDB-FC) surface soil P concentrations, P saturation, and Fe chemistry with natural riparian wetlands (RWs), using sites in Fairfax County, Virginia as a model system. The SDB-BMPs had significantly greater surface soil total P (P(t)) concentrations than the RWs and SDB-FCs (831.9 +/- 32.5 kg ha(-1), 643.3 +/- 19.1 kg ha(-1), and 652.1 +/- 18.8 kg ha(-1), respectively). The soil P sorption capacities of SDB-BMPs were similar to the RWs, and were greater than those of SDB-FCs, appearing to result in greater soil P removal and retention in SDB-BMPs compared with SDB-FCs. Increased Fe concentrations and relatively greater amounts of more crystalline forms of Fe in SDB-BMP soils suggested increased sediment deposition compared with RW and SDB-FC soils. Data suggest that SDB nutrient and sediment retention is facilitated in SDB-BMPs. When stormwater management is necessary, use of SDB-BMPs instead of SDB-FCs could foster more responsible urban development and be an appropriate mitigation action for receiving aquatic ecosystems.

  3. Using aquatic vegetation to remediate nitrate, ammonium, and soluble reactive phosphorus in simulated runoff.

    PubMed

    Moore, M T; Locke, M A; Kröger, R

    2016-10-01

    Within the agriculturally-intensive Mississippi River Basin of the United States, significant conservation efforts have focused on management practices that reduce nutrient runoff into receiving aquatic ecosystems. Only a small fraction of those efforts have focused on phytoremediation techniques. Each of six different aquatic macrophytes were planted, in monoculture, in three replicate mesocosms (1.2 m × 0.15 m × 0.65 m). Three additional unvegetated mesocosms served as controls for a total number of 21 mesocosms. Over two years, mesocosms were amended once each summer with sodium nitrate, ammonium sulfate, and potassium phosphate dibasic to represent nitrogen and phosphorus in agricultural runoff. System retention was calculated using a simple aqueous mass balance approach. Ammonium retention in both years differed greatly, as Panicum hemitomon and Echinodorus cordifolius retentions were significantly greater than controls in the first year, while only Myriophyllum aquaticum and Typha latifolia were significantly greater than controls in the second year. Greater soluble reactive phosphorus retention was observed in T. latifolia compared to controls in both years. Several other significant differences were observed in either the first or second year, but not both years. In the first year's exposure, P. hemitomon was significantly more efficient than the control, Saururus cernuus, and T. latifolia for overall percent nitrate decrease. Results of this novel study highlight inherent variability within and among species for nutrient specific uptake and the temporal variations of species for nutrient retention. By examining this natural variability, scientists may design phytoremediation systems with greater impact on improving agricultural runoff water quality. Published by Elsevier Ltd.

  4. Best management practices for nutrient and sediment retention in urban stormwater runoff

    USGS Publications Warehouse

    Hogan, D.M.; Walbridge, M.R.

    2007-01-01

    Stormwater management infrastructure is utilized in urban areas to alleviate flooding caused by decreased landscape permeability from increased impervious surface cover (ISC) construction. In this study, we examined two types of stormwater detention basins, SDB-BMPs (stormwater detention basin-best management practice), and SDB-FCs (stormwater detention basin-flood control). Both are constructed to retain peak stormwater flows for flood mitigation. However, the SDB-BMPs are also designed using basin topography and wetland vegetation to provide water quality improvement (nutrient and sediment removal and retention). The objective of this study was to compare SDB (both SDB-BMP and SDB-FC) surface soil P concentrations, P saturation, and Fe chemistry with natural riparian wetlands (RWs), using sites in Fairfax County, Virginia as a model system. The SDB-BMPs had significantly greater surface soil total P (Pt) concentrations than the RWs and SDB-FCs (831.9 ?? 32.5 kg ha-1, 643.3 ?? 19.1 kg ha-1, and 652.1 ?? 18.8 kg ha-1, respectively). The soil P sorption capacities of SDB-BMPs were similar to the RWs, and were greater than those of SDB-FCs, appearing to result in greater soil P removal and retention in SDB-BMPs compared with SDB-FCs. Increased Fe concentrations and relatively greater amounts of more crystalline forms of Fe in SDB-BMP soils suggested increased sediment deposition compared with RW and SDB-FC soils. Data suggest that SDB nutrient and sediment retention is facilitated in SDB-BMPs. When stormwater management is necessary, use of SDB-BMPs instead of SDB-FCs could foster more responsible urban development and be an appropriate mitigation action for receiving aquatic ecosystems. ?? ASA, CSSA, SSSA.

  5. Larval mosquito communities in discarded vehicle tires in a forested and unforested site: detritus type, amount, and water nutrient differences

    PubMed Central

    Kling, Lindsey J.; Juliano, Steven A.

    2008-01-01

    Discarded tires are an important habitat for larvae of multiple species of disease-transmitting mosquitoes. Although tire locations likely influence composition and abundance of vectors, there are few data linking vector populations to the characteristics of the aquatic tire environment. We sampled water-filled tires at three times at a forested and an unforested site to evaluate how differences in detritus inputs or nutrients in these two macrohabitats may be associated with composition of mosquito-dominated invertebrate communities. The forested site had significantly greater inputs of leaves, twigs, seeds, and fine detritus at the first sampling, but subsequent sampling indicated no differences in inputs of any detritus type. Total phosphorous levels were significantly greater in the forested site, but there was no difference in total nitrogen or total ion concentrations during any sampling. Chlorophyll a levels were not different between sites, even though light levels were greater and canopy cover was less at the unforested site. Culex restuans dominated at the unforested site, and Ochlerotatus triseriatus, Anopheles barberi, and Orthopodomyia signifera were found primarily in the forest. Tires at the forested site had significantly more species but not more individuals than at the unforested site. Leaf amount was a good predictor of densities of Oc. triseriatus and overall abundance of mosquitoes in the forest, whereas the amount of seeds was a good predictor of overall invertebrate richness and of Oc. triseriatus numbers in the unforested site. Differences in mosquito assemblage composition between forested and unforested locations may be explained by greater inputs of plant-based detritus and some nutrients, but other factors, such as macrohabitat or host preferences of adult mosquitoes, also may be important. PMID:18260510

  6. The Impact of Extreme Flooding on Mussel and Microbial Nutrient Dynamics at the Water-Sediment Interface

    NASA Astrophysics Data System (ADS)

    Bril, J.; Just, C. L.; Newton, T.; Young, N.; Parkin, G.

    2009-12-01

    Labeled by the National Academy of Engineering as one of fourteen grand challenges for engineering, the management of the nitrogen cycle has become an increasingly difficult obstacle for sustainable development. In an effort to improve nitrogen cycle management practices, we are attempting to expand on the limited scientific knowledge of how aquatic environments are affected by increasing human- and climate-induced changes. To accomplish this, we are using freshwater mussels as a sentinel species to indicate how natural processes within large river systems may be altered by human activity. Freshwater mussels have been referred to as ‘ecosystem engineers’ because they exert control over food resources and alter habitats for other organisms. Also, mussels and bacteria play a major role in nutrient cycling in large river systems by cycling nutrients taken up by phytoplankton and zooplankton. Under ‘normal’ environmental conditions, mussels appear to process nitrogen more rapidly than denitrifying bacteria. However, substantial deposition of carbon-rich sediment resulting from extreme flooding may increase bacterial nitrogen cycling rates and subsequently alter overall denitrification rates. We hypothesize that intense depositions of particulate matter from recent extreme floods in the Upper Mississippi River Basin (UMRB) have altered the freshwater mussel and microbial food webs through physical and chemical means. This work will be done in a 1200-m reach of the UMRB near Buffalo, Iowa. The reach contains a healthy and diverse assemblage of freshwater mussels. A historic flood event during May-July 2008 coincided with intense spring cultivation and nutrient application activities in the heavily farmed landscape of the Upper Midwest and resulted in a significant pulse of agricultural contaminants to the UMRB. This led scientists to predict an almost unprecedented delivery of sediment and nutrients to the mussel bed, the broader Mississippi River, and ultimately to the Gulf of Mexico. We will correlate the rate of nitrogen removal by mussels to the concentrations of organic carbon that may have been deposited during the flood. Initial studies suggest that the highest amount of total organic carbon exists in areas of fine sediments within the mussel bed. Additionally, bacterial nitrate reduction studies indicate that significantly higher rates of denitrification occur in areas of high organic content. Increased availability of organic carbon may affect the rate that mussels process nitrogen. In field studies, mussel densities are generally greater in areas of coarser sediments (thus, less carbon and less bacterial nutrient processing). We are currently working to determine the role of organic carbon availability on denitrification in a laboratory system containing mussels and bacteria. We also hope to couple sediment grain size with organic carbon to compare organic carbon content pre- and post-flood.

  7. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species.

    PubMed

    Liu, Bitao; Li, Hongbo; Zhu, Biao; Koide, Roger T; Eissenstat, David M; Guo, Dali

    2015-10-01

    In most cases, both roots and mycorrhizal fungi are needed for plant nutrient foraging. Frequently, the colonization of roots by arbuscular mycorrhizal (AM) fungi seems to be greater in species with thick and sparsely branched roots than in species with thin and densely branched roots. Yet, whether a complementarity exists between roots and mycorrhizal fungi across these two types of root system remains unclear. We measured traits related to nutrient foraging (root morphology, architecture and proliferation, AM colonization and extramatrical hyphal length) across 14 coexisting AM subtropical tree species following root pruning and nutrient addition treatments. After root pruning, species with thinner roots showed more root growth, but lower mycorrhizal colonization, than species with thicker roots. Under multi-nutrient (NPK) addition, root growth increased, but mycorrhizal colonization decreased significantly, whereas no significant changes were found under nitrogen or phosphate additions. Moreover, root length proliferation was mainly achieved by altering root architecture, but not root morphology. Thin-root species seem to forage nutrients mainly via roots, whereas thick-root species rely more on mycorrhizal fungi. In addition, the reliance on mycorrhizal fungi was reduced by nutrient additions across all species. These findings highlight complementary strategies for nutrient foraging across coexisting species with contrasting root traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Growth Responses of Three Dominant Wetland Plant Species to Various Flooding and Nutrient Levels

    NASA Astrophysics Data System (ADS)

    Barrett, S.; Shaffer, G. P.

    2017-12-01

    Coastal Louisiana is experiencing a greater rate of wetland loss than any other wetland system in the United States. This is primarily due to anthropogenic stressors such as flood control levees, backfilling and development of wetlands, and other hydrologic modifications. Methods employed to mitigate wetland loss include the construction of river diversions and assimilation wetlands, which can provide consistent sources of freshwater influx and nutrients to impounded swamps and marshes. It is well known that prolonged flooding causes strain on wetland plant communities and facilitates or exacerbates wetland degradation. However, because river diversions and assimilation wetlands bring high nutrient loads along with freshwater, there is debate over whether prolonged flooding or high influx of nutrients is the primary cause of stress in river diversion and assimilation wetland discharge areas. This mesocosm experiment addresses this question by isolating the effects of flooding and nutrients on the biomass of baldcypress (Taxodium distichum), maidencane (Panicum hemitomon), and cordgrass (Spartina patens) over the course of a growing season. The results of this study provide clarity as to whether flooding stress, high nutrient loads, or both cause a reduction in wetland plant productivity. By evaluating the growth responses of T. distichum, P. hemitomon, and S. patens at varying nutrient regimes, we gain insight on how these more dominant species will react to high nutrient discharges from large river diversions, such as those proposed in Louisiana's 2017 Master Plan.

  9. Contribution of Dietary Supplements to Nutritional Adequacy by Socioeconomic Subgroups in Adults of the United States.

    PubMed

    Blumberg, Jeffrey B; Frei, Balz; Fulgoni, Victor L; Weaver, Connie M; Zeisel, Steven H

    2017-12-22

    Many Americans have inadequate intakes of several nutrients, and the Dietary Guidelines for Americans 2015-2020 identified vitamins A, C, D, and E, in addition to calcium, magnesium, iron, potassium, choline, and fiber as "underconsumed nutrients". Based on nationally representative data on 10,698 adults from National Health and Nutrition Examination Surveys (NHANES), 2009-2012, assessments were made of socioeconomic differences, based on the Poverty Income Ratio (PIR), in terms of the association of dietary supplement use on nutrient intake and nutrient inadequacies. Compared to food alone, the use of any dietary supplement plus food was associated with significantly ( p < 0.01) higher intakes of 15-16 of 19 nutrients examined in all socioeconomic groups; and significantly reduced rates of inadequacy for 10/17 nutrients in the subgroup PIR > 1.85 (not poor), but only 4-5/17 nutrients (calcium and vitamins A, C, D, E) for the poor and nearly poor subgroups (PIR < 1.35 and PIR 1.35 to ≤1.85, respectively). An increased prevalence of intakes above the Tolerable Upper Intake Level (UL) was seen for 3-9/13 nutrients, but all were less than 5% in the PIR subgroups. In conclusion, dietary supplement use was associated with an increased micronutrient intake, decreased inadequacies, and a slight increase in the prevalence of intakes above the UL, with greater benefits seen in the PIR > 1.85 subgroup.

  10. Effect of nutrient amendments on indigenous hydrocarbon biodegradation in oil-contaminated beach sediments.

    PubMed

    Xu, Ran; Obbard, Jeffrey P

    2003-01-01

    Nutrient amendment to oil-contaminated beach sediments is a critical factor for the enhancement of indigenous microbial activity and biodegradation of petroleum hydrocarbons in the intertidal marine environment. In this study, we investigated the stimulatory effect of the slow-release fertilizers Osmocote (Os; Scotts, Marysville, OH) and Inipol EAP-22 (Ip; ATOFINA Chemicals, Philadelphia, PA) combined with inorganic nutrients on the bioremediation of oil-spiked beach sediments using an open irrigation system with artificial seawater over a 45-d period. Osmocote is comprised of a semipermeable membrane surrounding water-soluble inorganic N, P, and K. Inipol, which contains organic N and P, has been used for oil cleanup on beach substrate. Nutrient concentrations and microbial activity in sediments were monitored by analyzing sediment leachates and metabolic dehydrogenase activity of the microbial biomass, respectively. Loss of aliphatics (n-C12 to n-C33, pristane, and phytane) was significantly greater (total loss between 95 and 97%) in oil-spiked sediments treated with Os alone or in combination with other nutrient amendments, compared with an unamended oil-spiked control (26% loss) or sediments treated with the other nutrient amendments (28-65% loss). A combination of Os and soluble nutrients (SN) was favorable for the rapid metabolic stimulation of the indigenous microbial biomass, the sustained release of nutrients, and the enhanced biodegradation of petroleum hydrocarbons in leached, oil-contaminated sediments.

  11. An indirect approach to the measurement of nutrient-specific perceptions of food healthiness.

    PubMed

    Rizk, Marianne T; Treat, Teresa A

    2014-08-01

    Enhancing our understanding of food-related perceptions is critical to assist those with eating- and weight-related problems. This study investigated normative and person-specific aspects of perceived food healthiness in terms of nutritional characteristics and the relevance of nutritional knowledge to perceived healthiness. Two hundred sixty-three undergraduate women judged the healthiness of 104 foods and completed nutrient knowledge tasks. Multilevel modeling estimated average and person-specific reliance on and knowledge about nutrients. Participants relied substantially on fat and fiber, moderately on sugar, and minimally on protein. Disordered eating symptoms moderately predicted greater reliance on fat. Nutritional knowledge was highest for sugar and lowest for fiber. Nutritional knowledge and utilization were unrelated. Public health campaigns should educate college-aged women further on the health consequences of sugar and protein consumption. Explicit knowledge of nutrients may not be prioritized when judging food healthiness.

  12. Nutrient Intakes of Men and Women Collegiate Athletes with Disordered Eating

    PubMed Central

    Hinton, Pamela S.; Beck, Niels C.

    2005-01-01

    The objective of this study was to assess the macro- and micronutrient intakes of men and women collegiate athletes with disordered eating behaviors and to compare the nutrient intakes of athletes with restrictive- versus binge-eating behaviors. National Collegiate Athletic Association (NCAA) Division I University athletes (n = 232) were administered an anonymous, written questionnaire to compare nutrient intakes, desired weight change, and weight control behaviors in athletes with restrictive- (R) and binge- (B) eating behaviors to those in asymptomatic (A) athletes. T-tests, χ2 statistic, and ANOVA were used to test for differences among disordered eating groups within genders (p < 0.05). Data are means ± standard error of the mean. Among men athletes, those with disordered eating consumed a smaller percentage of energy from carbohydrate compared to controls (R = 49.7 ± 1.5; B = 48.7 ± 2.3; A = 53.4 ± 0.7%). Among female athletes, those with disordered eating wanted to lose a greater percentage of their current body weight than did asymptomatic athletes (B = -6.1 ± 1.4; R = -6.7 ± 1.1; A = -3.7 ± 0.4%). Women who were classified with binge eating consumed significantly more alcohol than did controls (B = 6.8 ± 1.3; A = 3.9 ± 0.4 g alcohol per day). Athletes with disordered eating were more likely to report restricting their intake of carbohydrate and fat and using supplements to control their weight than asymptomatic athletes. Disordered eating was not associated with greater frequencies of inadequate micronutrient intake in either gender. Athletes with disordered eating may be at significantly greater risk for nutritional inadequacies than athletes who are asymptomatic due to macronutrient restriction and greater alcohol consumption. Key Points Athletes with disordered eating were more likely to report restricting their intake of carbohydrate and fat and using supplements to control their weight than asymptomatic athletes Among female athletes, those with disordered eating wanted to lose a greater percentage of their current body weight than did asymptomatic athletes Disordered eating was not associated with greater frequencies of inadequate micronutrient intake in either gender Athletes with disordered eating may be at significantly greater risk for nutritional inadequacies than athletes who are asymptomatic due to macronutrient restriction and greater alcohol consumption. PMID:24453529

  13. Database of nutrient digestibility’s of traditional and novel feed ingredients for trout and hybrid striped bass

    USDA-ARS?s Scientific Manuscript database

    The determination of nutrient digestibility’s in specific ingredients and diets for fish has been an area of active research for decades. The Apparent Digestibility Coefficients (ADC), the percentage of nutrients in an ingredient that are available to the fish, is information needed by researchers,...

  14. Wastewater and Sludge Nutrient Utilization in Forest Ecosystems

    Treesearch

    D.G. Brockway; D.H. Urie; P.V. Nguyen; J.B. Hart

    1986-01-01

    Although forest ecosystems have evolved efficient mechanisms to assimilate and retain modest levels of annual geochemical input, their productivity is frequently limited by low levels of available nutrients. A review of research studies conducted in the major U.S. forest regions indicates that the nutrients and organic matter in wastewater and sludge representa...

  15. Nutrient Supplying Potential of Different Spent Mushroom Substrate Preparations as Soil Amendment in a Potting Media

    NASA Astrophysics Data System (ADS)

    Ultra, VU, Jr.; Ong Sotto, JME; Punzalan, MR

    2018-03-01

    A three consecutive cropping experiment was conducted to evaluate the nutrient supplying potential of different preparations of the spent mushroom substrate as an amendment of growing media for potted plants using pechay as test plant. There are 12 treatment combinations consisted 4 types of growing media containing soil alone and mixtures of soil with fresh SMS (FSMS), weathered SMS (WSMS) and carbonized SMS (CSMS) in combination with 0%, 50% or 100% recommended rate (RR) of nitrogen fertilizer. Succeeding two trials were conducted on the same pots and treatment assignments. The high yield of pechay during the first and second crop was observed on WSMS and CSMS treatments FSMS media produced high yields only during the 3rd crop. Yield was increased by N fertilizer in WSMS and CSMS treatments but not in FSMS. The growth differences is attributed to differences in available nutrients and C/N ratio between treatments. WSMS and CSMS increased the available N while FSMS immobilized N and other nutrients indicting that weathered SMS and carbonized SMS are more suitable as a component of potting media or as soil amendments without detrimental effect on immobilization and availability of nutrients.

  16. Lianas always outperform tree seedlings regardless of soil nutrients: results from a long-term fertilization experiment.

    PubMed

    Pasquini, Sarah C; Wright, S Joseph; Santiago, Louis S

    2015-07-01

    Lianas are a prominent growth form in tropical forests, and there is compelling evidence that they are increasing in abundance throughout the Neotropics. While recent evidence shows that soil resources limit tree growth even in deep shade, the degree to which soil resources limit lianas in forest understories, where they coexist with trees for decades, remains unknown. Regardless, the physiological underpinnings of soil resource limitation in deeply shaded tropical habitats remain largely unexplored for either trees or lianas. Theory predicts that lianas should be more limited by soil resources than trees because they occupy the quick-return end of the "leaf economic spectrum," characterized by high rates of photosynthesis, high specific leaf area, short leaf life span, affinity to high-nutrient sites, and greater foliar nutrient concentrations. To address these issues, we asked whether soil resources (nitrogen, phosphorus, and potassium), alone or in combination, applied experimentally for more than a decade would cause significant changes in the morphology or physiology of tree and liana seedlings in a lowland tropical forest. We found evidence for the first time that phosphorus limits the photosynthetic performance of both trees and lianas in deeply shaded understory habitats. More importantly, lianas always showed significantly greater photosynthetic capacity, quenching, and saturating light levels compared to trees across all treatments. We found little evidence for nutrient x growth form interactions, indicating that lianas were not disproportionately favored in nutrient-rich habitats. Tree and liana seedlings differed markedly for six key morphological traits, demonstrating that architectural differences occurred very early in ontogeny prior to lianas finding a trellis (all seedlings were self-supporting). Overall, our results do not support nutrient loading as a mechanism of increasing liana abundance in the Neotropics. Rather, our finding that lianas always outperform trees, in terms of photosynthetic processes and under contrasting rates of resource supply of macronutrients, will allow lianas to increase in abundance if disturbance and tree turnover rates are increasing in Neotropical forests as has been suggested.

  17. Does microbial biomass affect pelagic ecosystem efficiency? An experimental study.

    PubMed

    Wehr, J D; Le, J; Campbell, L

    1994-01-01

    Bacteria and other microorganisms in the pelagic zone participate in the recycling of organic matter and nutrients within the water column. The microbial loop is thought to enhance ecosystem efficiency through rapid recycling and reduced sinking rates, thus reducing the loss of nutrients contained in organisms remaining within the photic zone. We conducted experiments with lake communities in 5400-liter mesocosms, and measured the flux of materials and nutrients out of the water column. A factorial design manipulated 8 nutrient treatments: 4 phosphorus levels × 2 nitrogen levels. Total sedimentation rates were greatest in high-N mesocosms; within N-surplus communities, [Symbol: see text]1 µM P resulted in 50% increase in total particulate losses. P additions without added N had small effects on nutrient losses from the photic zone; +2 µM P tanks received 334 mg P per tank, yet after 14 days lost only 69 mg more particulate-P than did control communities. Nutrient treatments resulted in marked differences in phytoplankton biomass (twofold N effect, fivefold P effect in +N mesocosms only), bacterioplankton densities (twofold N-effect, twofold P effects in -N and +N mesocosms), and the relative importance of autotrophic picoplankton (maximum in high NY mesocosms). Multiple regression analysis found that of 8 plankton and water chemistry variables, the ratio of autotrophic picoplankton to total phytoplankton (measured as chlorophyll α) explained the largest portion of the total variation in sedimentation loss rates (65% of P-flux, 57% of N-flux, 26% of total flux). In each case, systems with greater relative importance of autotrophic picoplankton had significantly reduced loss rates. In contrast, greater numbers of planktonic bacteria were associated with increased sedimentation rates and lower system efficiency. We suggest that different microbial components may have contrasting effects on the presumed enhanced efficiency provided by the microbial loop.

  18. Influence of nutrient amendments on the phytoextraction of weathered 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene by cucurbits.

    PubMed

    White, Jason C; Parrish, Zakia D; Isleyen, Mehmet; Gent, Martin P N; Iannucci-Berger, William; Eitzer, Brian D; Mattina, Maryjane Incorvia

    2005-04-01

    Field experiments were conducted to determine the impact of nutrient amendments on the phytoextraction of weathered 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene (p,p '-DDE) by eight cultivars of cucurbits over a single growing season. Four cultivars of Cucurbita pepo ssp pepo are accumulators and extract percent level quantities of persistent organic pollutants (POPs), whereas C. pepo ssp ovifera and Cucumis sativus are nonaccumulators. The nonamended accumulators phytoextracted 1.0% of the p,p'-DDE and had a translocation factor of 0.44; however, the nonaccumulators removed 0.16% of the contaminant and had a translocation factor value of 0.09. The accumulators also had 3.8 times greater inorganic element content than the nonaccumulators. Duplicate mounds of each cultivar also received weekly nutrient amendments of phosphorus (400 mg/L K2HPO4), nitrogen (200 mg/L KNO3), or nitrogen/phosphorus (400 mg/L K2HPO4, 200 mg/L KNO3); a minus phosphorus treatment involved a 1-L addition of 1 g/L AlSO4 to the soil before planting. When normalized to respective control values (unamended vegetation), the root and stem p,p'-DDE bioconcentration factors (BCF) of the accumulator cultivars were significantly greater than those of the nonaccumulator cultivars under most nutrient regimes. The biomass of accumulator cultivars decreased by up to 61% under certain nutrient regimes, resulting in mixed effects on the amount of p,p'-DDE extracted. Treatment with N and P increased nonaccumulator biomass by 40 to 100%, and increased p,p'-DDE extraction from soil by 75%. Although generally assumed that fertilizer amendments will enhance phytoremediation, as evidenced here by the nonaccumulators, additions of macronutrients may reduce the phytoextraction of weathered POPs by C. pepo ssp pepo. These findings support our hypothesis that the ability of C. pepo ssp pepo to remove sequestered organic contaminants is governed by unique nutrient-acquisition mechanisms.

  19. Nutrition guidelines for strength sports: sprinting, weightlifting, throwing events, and bodybuilding.

    PubMed

    Slater, Gary; Phillips, Stuart M

    2011-01-01

    Strength and power athletes are primarily interested in enhancing power relative to body weight and thus almost all undertake some form of resistance training. While athletes may periodically attempt to promote skeletal muscle hypertrophy, key nutritional issues are broader than those pertinent to hypertrophy and include an appreciation of the sports supplement industry, the strategic timing of nutrient intake to maximize fuelling and recovery objectives, plus achievement of pre-competition body mass requirements. Total energy and macronutrient intakes of strength-power athletes are generally high but intakes tend to be unremarkable when expressed relative to body mass. Greater insight into optimization of dietary intake to achieve nutrition-related goals would be achieved from assessment of nutrient distribution over the day, especially intake before, during, and after exercise. This information is not readily available on strength-power athletes and research is warranted. There is a general void of scientific investigation relating specifically to this unique group of athletes. Until this is resolved, sports nutrition recommendations for strength-power athletes should be directed at the individual athlete, focusing on their specific nutrition-related goals, with an emphasis on the nutritional support of training.

  20. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield

    NASA Astrophysics Data System (ADS)

    Servin, Alia; Elmer, Wade; Mukherjee, Arnab; De la Torre-Roche, Roberto; Hamdi, Helmi; White, Jason C.; Bindraban, Prem; Dimkpa, Christian

    2015-02-01

    Nanotechnology has the potential to play a critical role in global food production, food security, and food safety. The applications of nanotechnology in agriculture include fertilizers to increase plant growth and yield, pesticides for pest and disease management, and sensors for monitoring soil quality and plant health. Over the past decade, a number of patents and products incorporating nanomaterials into agricultural practices (e.g., nanopesticides, nanofertilizers, and nanosensors) have been developed. The collective goal of all of these approaches is to enhance the efficiency and sustainability of agricultural practices by requiring less input and generating less waste than conventional products and approaches. This review evaluates the current literature on the use of nanoscale nutrients (metals, metal oxides, carbon) to suppress crop disease and subsequently enhance growth and yield. Notably, this enhanced yield may not only be directly linked to the reduced presence of pathogenic organisms, but also to the potential nutritional value of the nanoparticles themselves, especially for the essential micronutrients necessary for host defense. We also posit that these positive effects are likely a result of the greater availability of the nutrients in the "nano" form. Last, we offer comments on the current regulatory perspective for such applications.

  1. Spatial complexity of carcass location influences vertebrate scavenger efficiency and species composition.

    PubMed

    Smith, Joshua B; Laatsch, Lauren J; Beasley, James C

    2017-08-31

    Scavenging plays an important role in shaping communities through inter- and intra-specific interactions. Although vertebrate scavenger efficiency and species composition is likely influenced by the spatial complexity of environments, heterogeneity in carrion distribution has largely been disregarded in scavenging studies. We tested this hypothesis by experimentally placing juvenile bird carcasses on the ground and in nests in trees to simulate scenarios of nestling bird carrion availability. We used cameras to record scavengers removing carcasses and elapsed time to removal. Carrion placed on the ground was scavenged by a greater diversity of vertebrates and at > 2 times the rate of arboreal carcasses, suggesting arboreal carrion may represent an important resource to invertebrate scavengers, particularly in landscapes with efficient vertebrate scavenging communities. Nonetheless, six vertebrate species scavenged arboreal carcasses. Rat snakes (Elaphe obsolete), which exclusively scavenged from trees, and turkey vultures (Cathartes aura) were the primary scavengers of arboreal carrion, suggesting such resources are potentially an important pathway of nutrient acquisition for some volant and scansorial vertebrates. Our results highlight the intricacy of carrion-derived food web linkages, and how consideration of spatial complexity in carcass distribution (i.e., arboreal) may reveal important pathways of nutrient acquisition by invertebrate and vertebrate scavenging guilds.

  2. The effects of temporal variability of mixed layer depth on primary productivity around Bermuda

    NASA Technical Reports Server (NTRS)

    Bissett, W. Paul; Meyers, Mark B.; Walsh, John J.; Mueller-Karger, Frank E.

    1994-01-01

    Temporal variations in primary production and surface chlorophyll concentrations, as measured by ship and satellite around Bermuda, were simulated with a numerical model. In the upper 450 m of the water column, population dynamics of a size-fractionated phytoplankton community were forced by daily changes of wind, light, grazing stress, and nutrient availability. The temporal variations of production and chlorophyll were driven by changes in nutrient introduction to the euphotic zone due to both high- and low-frequency changes of the mixed layer depth within 32 deg-34 deg N, 62 deg-64 deg W between 1979 and 1984. Results from the model derived from high-frequency (case 1) changes in the mixed layer depth showed variations in primary production and peak chlorophyll concentrations when compared with results from the model derived from low-frequency (case 2) mixed layer depth changes. Incorporation of size-fractionated plankton state variables in the model led to greater seasonal resolution of measured primary production and vertical chlorophyll profiles. The findings of this study highlight the possible inadequacy of estimating primary production in the sea from data of low-frequency temporal resolution and oversimplified biological simulations.

  3. Refuse dumps from leaf-cutting ant nests reduce the intensity of above-ground competition among neighboring plants in a Patagonian steppe

    NASA Astrophysics Data System (ADS)

    Farji-Brener, Alejandro G.; Lescano, María Natalia

    2017-11-01

    In arid environments, the high availability of sunlight due to the scarcity of trees suggests that plant competition take place mainly belowground for water and nutrients. However, the occurrence of soil disturbances that increase nutrient availability and thereby promote plant growth may enhance shoot competition between neighboring plants. We conducted a greenhouse experiment to evaluate the influence of the enriched soil patches generated by the leaf-cutting ant, Acromyrmex lobicornis, on the performance of the alien forb Carduus thoermeri (Asteraceae) under different intraspecific competition scenarios. Our results showed that substrate type and competition scenario affected mainly aboveground plant growth. As expected, plants growing without neighbors and in nutrient-rich ant refuse dumps showed more aboveground biomass than plants growing with neighbors and in nutrient-poor steppe soils. However, aboveground competition was more intense in nutrient-poor substrates: plants under shoot and full competition growing in the nutrient-rich ant refuse dumps showed higher biomass than those growing on steppe soils. Belowground biomass was similar among focal plants growing under different substrate type. Our results support the traditional view that increments in resource availability reduce competition intensity. Moreover, the fact that seedlings in this sunny habitat mainly compete aboveground illustrates how limiting factors may be scale-dependent and change in importance as plants grow.

  4. Vegetation composition, nutrient, and sediment dynamics along a floodplain landscape

    USGS Publications Warehouse

    Rybicki, Nancy B.; Noe, Gregory; Hupp, Cliff R.; Robinson, Myles

    2015-01-01

    Forested floodplains are important landscape features for retaining river nutrients and sediment loads but there is uncertainty in how vegetation influences nutrient and sediment retention. In order to understand the role of vegetation in nutrient and sediment trapping, we quantified species composition and the uptake of nutrients in plant material relative to landscape position and ecosystem attributes in an urban, Piedmont watershed in Virginia, USA. We investigated in situ interactions among vegetative composition, abundance, carbon (C), nitrogen (N) and phosphorus (P) fluxes and ecosystem attributes such as water level, shading, soil nutrient mineralization, and sediment deposition. This study revealed strong associations between vegetation and nutrient and sediment cycling processes at the plot scale and in the longitudinal dimension, but there were few strong patterns between these aspects at the scale of geomorphic features (levee, backswamp, and toe-slope). Patterns reflected the nature of the valley setting rather than a simple downstream continuum. Plant nutrient uptake and sediment trapping were greatest at downstream sites with the widest floodplain and lowest gradient where the hydrologic connection between the floodplain and stream is greater. Sediment trapping increased in association with higher herbaceous plant coverage and lower tree canopy density that, in turn, was associated with a more water tolerant tree community found in the lower watershed but not at the most downstream site in the watershed. Despite urbanization effects on the hydrology, this floodplain functioned as an efficient nutrient trap. N and P flux rates of herbaceous biomass and total litterfall more than accounted for the N and P mineralization flux rate, indicating that vegetation incorporated nearly all mineralized nutrients into biomass.

  5. Plant functional types do not predict biomass responses to removal and fertilization in Alaskan tussock tundra

    PubMed Central

    Bret-Harte, M Syndonia; Mack, Michelle C; Goldsmith, Gregory R; Sloan, Daniel B; DeMarco, Jennie; Shaver, Gaius R; Ray, Peter M; Biesinger, Zy; Chapin, F Stuart

    2008-01-01

    Plant communities in natural ecosystems are changing and species are being lost due to anthropogenic impacts including global warming and increasing nitrogen (N) deposition. We removed dominant species, combinations of species and entire functional types from Alaskan tussock tundra, in the presence and absence of fertilization, to examine the effects of non-random species loss on plant interactions and ecosystem functioning. After 6 years, growth of remaining species had compensated for biomass loss due to removal in all treatments except the combined removal of moss, Betula nana and Ledum palustre (MBL), which removed the most biomass. Total vascular plant production returned to control levels in all removal treatments, including MBL. Inorganic soil nutrient availability, as indexed by resins, returned to control levels in all unfertilized removal treatments, except MBL. Although biomass compensation occurred, the species that provided most of the compensating biomass in any given treatment were not from the same functional type (growth form) as the removed species. This provides empirical evidence that functional types based on effect traits are not the same as functional types based on response to perturbation. Calculations based on redistributing N from the removed species to the remaining species suggested that dominant species from other functional types contributed most of the compensatory biomass. Fertilization did not increase total plant community biomass, because increases in graminoid and deciduous shrub biomass were offset by decreases in evergreen shrub, moss and lichen biomass. Fertilization greatly increased inorganic soil nutrient availability. In fertilized removal treatments, deciduous shrubs and graminoids grew more than expected based on their performance in the fertilized intact community, while evergreen shrubs, mosses and lichens all grew less than expected. Deciduous shrubs performed better than graminoids when B. nana was present, but not when it had been removed. Synthesis. Terrestrial ecosystem response to warmer temperatures and greater nutrient availability in the Arctic may result in vegetative stable-states dominated by either deciduous shrubs or graminoids. The current relative abundance of these dominant growth forms may serve as a predictor for future vegetation composition. PMID:18784797

  6. Watershed Scale Impacts of Stormwater Green Infrastructure on Hydrology and Nutrient Fluxes in the Mid-Atlantic Region.

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Pennino, M. J.; McDonald, R.

    2015-12-01

    Stormwater green infrastructure (SGI), including rain gardens, detention ponds, bioswales, and green roofs, is being implemented in cities across the globe to help reduce flooding, decrease combined sewer overflows, and lessen pollutant transport to streams and rivers. Despite the increasing use of urban SGI, there is much uncertainty regarding the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the cumulative effects of SGI, major cities across the mid-Atlantic were selected based on availability of SGI, water quality, and stream flow data. The impact of SGI was evaluated by comparing similar watersheds, with and without SGI or by assessing how long-term changes in SGI impact hydrologic and water quality metrics over time. Most mid-Atlantic cities have a goal of achieving 10-75% SGI by 2030. Of these cites, Washington D.C. currently has the highest density of SGI (15.5%), while Philadelphia, PA and New York, NY have the lowest (0.14% and 0.28%, respectively). When comparing watersheds of similar size and percent impervious surface cover, watersheds with lower amounts of SGI, on average, show up to 40% greater annual total nitrogen and 75% greater total phosphorus loads and show flashier hydrology (as indicated by 35% greater average peak discharge, 26% more peak discharge events per year, and 21% higher peak-to-volume ratio) compared to watersheds with higher amounts of SGI. However, for cities with combined sewer systems (e.g. Washington, D.C. and Philadelphia, PA), there was no relationship between the level of combined sewer overflows (CSOs) and the amount of SGI, indicating the level of SGI may not yet be sufficient to reduce CSOs as intended. When comparing individual watersheds over time, increases in SGI show no significant effect on the long-term trends in nutrient loads or hydrologic variables, potentially being obscured by the larger effect of interannual variability.

  7. Nutrient digestibility and mass balance in laying hens fed a commercial or acidifying diet.

    PubMed

    Wu-Haan, W; Powers, W J; Angel, C R; Hale, C E; Applegate, T J

    2007-04-01

    The objectives of the current study were to evaluate the effect of an acidifying diet (gypsum) combined with zeolite and slightly reduced crude protein (R) vs. a control diet (C) on nutrient retention in laying hens and compare 3 approaches to estimating nutrient excretion from hens: 1) mass balance calculation (feed nutrients - egg nutrient), 2) use of an indigestible marker with analyzed feed and excreta nutrient content, and 3) an environmental chamber that allowed for capturing all excreted and volatilized nutrients. Hens (n = 640) were allocated randomly to 8 environmental chambers for 3-wk periods. Excreta samples were collected at the end of each trial to estimate apparent retention of N, S, P, and Ca. No diet effects on apparent retention of N were observed (53.44%, P > 0.05). Apparent retention of S, P, and Ca decreased in hens fed R diet (18.7, - 11.4, and 22.6%, respectively) compared with hens fed the C diet (40.7, 0.3, and 28.6%, respectively; P < 0.05). Total N excretion from hens fed the C and R diet was not different (1.16 g/hen/d); however, mass of chamber N remaining in excreta following the 3-wk period was less from hens fed the C diet (1.27 kg) than from hens fed the R diet (1.43 kg). Gaseous emissions of NH(3) over the 3-wk period from hens fed the C diet (0.74 kg per chamber) were greater than emissions from hens fed the R diet (0.45 kg). The 3-wk S excretion mass (estimated using the calculation, indigestible marker, and environmental chamber methods, respectively) was greater from hens fed the R diet (1.85, 1.54, and 1.27 kg, respectively) compared with hens fed the C diet (0.24, 0.20, and 0.14 kg, respectively). The 3-wk P excretion was similar between diets (0.68 kg). Results demonstrate that feeding the acidified diet resulted in decreased N emissions, but because of the acidulant fed, greatly increased S excretion and emissions.

  8. Use of Linear Programming to Develop Cost-Minimized Nutritionally Adequate Health Promoting Food Baskets

    PubMed Central

    Tetens, Inge; Dejgård Jensen, Jørgen; Smed, Sinne; Gabrijelčič Blenkuš, Mojca; Rayner, Mike; Darmon, Nicole; Robertson, Aileen

    2016-01-01

    Background Food-Based Dietary Guidelines (FBDGs) are developed to promote healthier eating patterns, but increasing food prices may make healthy eating less affordable. The aim of this study was to design a range of cost-minimized nutritionally adequate health-promoting food baskets (FBs) that help prevent both micronutrient inadequacy and diet-related non-communicable diseases at lowest cost. Methods Average prices for 312 foods were collected within the Greater Copenhagen area. The cost and nutrient content of five different cost-minimized FBs for a family of four were calculated per day using linear programming. The FBs were defined using five different constraints: cultural acceptability (CA), or dietary guidelines (DG), or nutrient recommendations (N), or cultural acceptability and nutrient recommendations (CAN), or dietary guidelines and nutrient recommendations (DGN). The variety and number of foods in each of the resulting five baskets was increased through limiting the relative share of individual foods. Results The one-day version of N contained only 12 foods at the minimum cost of DKK 27 (€ 3.6). The CA, DG, and DGN were about twice of this and the CAN cost ~DKK 81 (€ 10.8). The baskets with the greater variety of foods contained from 70 (CAN) to 134 (DGN) foods and cost between DKK 60 (€ 8.1, N) and DKK 125 (€ 16.8, DGN). Ensuring that the food baskets cover both dietary guidelines and nutrient recommendations doubled the cost while cultural acceptability (CAN) tripled it. Conclusion Use of linear programming facilitates the generation of low-cost food baskets that are nutritionally adequate, health promoting, and culturally acceptable. PMID:27760131

  9. Effect of variable annual precipitation and nutrient input on nitrogen and phosphorus transport from two Midwestern agricultural watersheds

    USGS Publications Warehouse

    Kalkhoff, Stephen J.; Hubbard, Laura E.; Tomer, Mark D.; James, D.E.

    2016-01-01

    Precipitation patterns and nutrient inputs affect transport of nitrate (NO3-N) and phosphorus (TP) from Midwest watersheds. Nutrient concentrations and yields from two subsurface-drained watersheds, the Little Cobb River (LCR) in southern Minnesota and the South Fork Iowa River (SFIR) in northern Iowa, were evaluated during 1996–2007 to document relative differences in timings and amounts of nutrients transported. Both watersheds are located in the prairie pothole region, but the SFIR exhibits a longer growing season and more livestock production. The SFIR yielded significantly more NO3-N than the LCR watershed (31.2 versus 21.3 kg NO3-N ha− 1 y− 1). The SFIR watershed also yielded more TP than the LCR watershed (1.13 versus 0.51 kg TP ha− 1 yr− 1), despite greater TP concentrations in the LCR. About 65% of NO3-N and 50% of TP loads were transported during April–June, and < 20% of the annual loads were transported later in the growing season from July–September. Monthly NO3-N and TP loads peaked in April from the LCR but peaked in June from the SFIR; this difference was attributed to greater snowmelt runoff in the LCR. The annual NO3-N yield increased with increasing annual runoff at a similar rate in both watersheds, but the LCR watershed yielded less annual NO3-N than the SFIR for a similar annual runoff. These two watersheds are within 150 km of one another and have similar dominant agricultural systems, but differences in climate and cropping inputs affected amounts and timing of nutrient transport.

  10. Posting point-of-purchase nutrition information in university canteens does not influence meal choice and nutrient intake.

    PubMed

    Hoefkens, Christine; Lachat, Carl; Kolsteren, Patrick; Van Camp, John; Verbeke, Wim

    2011-08-01

    Growing concern over the relation between out-of-home eating and overweight has triggered the use of point-of-purchase (POP) nutrition information when eating out of the home. In canteens that offer various unhealthy choices, the posting of POP nutrition information has the potential to improve meal choices and dietary intakes. The objective of this study was to increase the proportion of consumed meals that comply with recommendations for energy, saturated fat, sodium, and vegetable content by 5%. A one-group pretest-posttest design was used. A total of 224 customers of 2 university canteens completed a questionnaire used for consumer profiling and 3-d food records to assess their meal choices and nutrient intakes. The 12 best meal combinations received star ratings and descriptors for nutrients or food groups that did not comply. Reported meal choices in canteens and nutrient intakes did not improve after the intervention (P > 0.05). The nutritional profile of the meal choice, obtained from a qualitative and quantitative nutritional assessment of meals, mirrored the nutritional profile of all meals offered (P > 0.05) and not that of the recommended meals offered (P < 0.001). Meal choices were not compensated for later in the day (P > 0.05). The healthiest choices were made by participants with greater objective nutrition knowledge, stronger health and weight-control motives, and a greater openness to change meal choices at baseline (P < 0.05). The posting of nutrition information in university canteens did not effectively change meal choices and nutrient intakes. Despite the intervention, meal choices were largely determined by meals offered. Therefore, nutrition-information interventions in canteens may be more effective with a healthier meal supply. This trial was registered at clinicaltrials.gov as NCT01249508.

  11. Addition of multiple limiting resources reduces grassland diversity.

    PubMed

    Harpole, W Stanley; Sullivan, Lauren L; Lind, Eric M; Firn, Jennifer; Adler, Peter B; Borer, Elizabeth T; Chase, Jonathan; Fay, Philip A; Hautier, Yann; Hillebrand, Helmut; MacDougall, Andrew S; Seabloom, Eric W; Williams, Ryan; Bakker, Jonathan D; Cadotte, Marc W; Chaneton, Enrique J; Chu, Chengjin; Cleland, Elsa E; D'Antonio, Carla; Davies, Kendi F; Gruner, Daniel S; Hagenah, Nicole; Kirkman, Kevin; Knops, Johannes M H; La Pierre, Kimberly J; McCulley, Rebecca L; Moore, Joslin L; Morgan, John W; Prober, Suzanne M; Risch, Anita C; Schuetz, Martin; Stevens, Carly J; Wragg, Peter D

    2016-09-01

    Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.

  12. Variability of selected nutrients and contaminants monitored in rodent diets: A 6-year study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oller, W.L.; Kendall, D.C.; Greenman, D.L.

    1989-01-01

    The results are given from monitoring a commercial closed-formula cereal-based rodent diet (Purina 5010), two open-formula cereal-based diets (NIH-31 and NIH-07), and one purified diet (AIN-76) for selected nutrients and contaminants. The observed concentrations of nutrients (protein, fat, vitamin A, and thiamine) approximated the manufacturer specifications for closed-formula cereal diet, while the average concentrations of nutrients found in the open-formula cereal diets were well above the nominal concentrations. Nominal concentrations for these open-formula diets tended to be close to the minimum values that were observed. Except for protein levels, greater variation in nutrient concentrations was found in the purified dietmore » than in the cereal diets. Contaminants were generally much lower in the purified diet than in the cereal diets, but the variation of contaminants was about equal in the two types of diets. Open- and closed-formula cereal diets appear to be very similar to each other in the degree of variation of nutrients and contaminants. Cadmium, lead, and selenium are the constituents of greatest concern in assuring the quality of the rodent diets that were evaluated.« less

  13. Dynamics of Inorganic Nutrients in Intertidal Sediments: Porewater, Exchangeable, and Intracellular Pools

    PubMed Central

    Garcia-Robledo, Emilio; Bohorquez, Julio; Corzo, Alfonso; Jimenez-Arias, Juan L.; Papaspyrou, Sokratis

    2016-01-01

    The study of inorganic nutrients dynamics in shallow sediments usually focuses on two main pools: porewater (PW) nutrients and exchangeable (EX) ammonium and phosphate. Recently, it has been found that microphytobenthos (MPB) and other microorganisms can accumulate large amounts of nutrients intracellularly (IC), highlighting the biogeochemical importance of this nutrient pool. Storing nutrients could support the growth of autotrophs when nutrients are not available, and could also provide alternative electron acceptors for dissimilatory processes such as nitrate reduction. Here, we studied the magnitude and relative importance of these three nutrient pools (PW, IC, and EX) and their relation to chlorophylls (used as a proxy for MPB abundance) and organic matter (OM) contents in an intertidal mudflat of Cadiz Bay (Spain). MPB was localized in the first 4 mm of the sediment and showed a clear seasonal pattern; highest chlorophylls content was found during autumn and lowest during spring-summer. The temporal and spatial distribution of nutrients pools and MPB were largely correlated. Ammonium was higher in the IC and EX fractions, representing on average 59 and 37% of the total ammonium pool, respectively. Similarly, phosphate in the IC and EX fractions accounted on average for 40 and 31% of the total phosphate pool, respectively. Nitrate in the PW was low, suggesting low nitrification activity and rapid consumption. Nitrate accumulated in the IC pool during periods of moderate MPB abundance, being up to 66% of the total nitrate pool, whereas it decreased when chlorophyll concentration peaked likely due to a high nitrogen demand. EX-Nitrate accounted for the largest fraction of total sediment nitrate, 66% on average. The distribution of EX-Nitrate was significantly correlated with chlorophyll and OM, which probably indicates a relation of this pool to an increased availability of sites for ionic adsorption. This EX-Nitrate pool could represent an alternative nitrate source with significant concentrations available to the microbial community, deeper in the sediment below the oxic layer. PMID:27303370

  14. Nutrient availability affects floral scent much less than other floral and vegetative traits in Lithophragma bolanderi.

    PubMed

    Friberg, Magne; Waters, Mia T; Thompson, John N

    2017-09-01

    Many plant-pollinator interactions are mediated by floral scents that can vary among species, among populations within species and even among individuals within populations. This variation could be innate and unaffected by the environment, but, because many floral volatiles have amino-acid precursors, scent variation also could be affected by differences in nutrient availability among environments. In plants that have coevolved with specific pollinators, natural selection is likely to favour low phenotypic plasticity in floral scent even under different conditions of nutrient availability if particular scents or scent combinations are important for attracting local pollinators. Clonal pairs of multiple seed-families of two Lithophragma bolanderi (Saxifragaceae) populations were subjected to a high and a low nutrient treatment. These plants are pollinated primarily by host-specific Greya moths. It was evaluated how nutrient treatment affected variation in floral scent relative to other vegetative and reproductive traits. Floral scent strength (the per-flower emission rate) and composition were unaffected by nutrient treatment, but low-nutrient plants produced fewer and lighter leaves, fewer scapes and fewer flowers than high-nutrient plants. The results held in both populations, which differed greatly in the number and composition of floral scents produced. The results reveal a strong genetic component both to scent composition and emission level, and partly contrasts with the only previous study that has assessed the susceptibility of floral volatile signals to variation in the abundance of nutrients. These results, and the tight coevolutionary relationship between Lithophragma plants and their specialized Greya moth pollinators, indicate that reproductive traits important to coevolving interactions, such as the floral scent of L. bolanderi, may be locally specialized and more canalized than other traits important for plant fitness. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Dynamics of Inorganic Nutrients in Intertidal Sediments: Porewater, Exchangeable, and Intracellular Pools.

    PubMed

    Garcia-Robledo, Emilio; Bohorquez, Julio; Corzo, Alfonso; Jimenez-Arias, Juan L; Papaspyrou, Sokratis

    2016-01-01

    The study of inorganic nutrients dynamics in shallow sediments usually focuses on two main pools: porewater (PW) nutrients and exchangeable (EX) ammonium and phosphate. Recently, it has been found that microphytobenthos (MPB) and other microorganisms can accumulate large amounts of nutrients intracellularly (IC), highlighting the biogeochemical importance of this nutrient pool. Storing nutrients could support the growth of autotrophs when nutrients are not available, and could also provide alternative electron acceptors for dissimilatory processes such as nitrate reduction. Here, we studied the magnitude and relative importance of these three nutrient pools (PW, IC, and EX) and their relation to chlorophylls (used as a proxy for MPB abundance) and organic matter (OM) contents in an intertidal mudflat of Cadiz Bay (Spain). MPB was localized in the first 4 mm of the sediment and showed a clear seasonal pattern; highest chlorophylls content was found during autumn and lowest during spring-summer. The temporal and spatial distribution of nutrients pools and MPB were largely correlated. Ammonium was higher in the IC and EX fractions, representing on average 59 and 37% of the total ammonium pool, respectively. Similarly, phosphate in the IC and EX fractions accounted on average for 40 and 31% of the total phosphate pool, respectively. Nitrate in the PW was low, suggesting low nitrification activity and rapid consumption. Nitrate accumulated in the IC pool during periods of moderate MPB abundance, being up to 66% of the total nitrate pool, whereas it decreased when chlorophyll concentration peaked likely due to a high nitrogen demand. EX-Nitrate accounted for the largest fraction of total sediment nitrate, 66% on average. The distribution of EX-Nitrate was significantly correlated with chlorophyll and OM, which probably indicates a relation of this pool to an increased availability of sites for ionic adsorption. This EX-Nitrate pool could represent an alternative nitrate source with significant concentrations available to the microbial community, deeper in the sediment below the oxic layer.

  16. Biogeographic differences in soil biota promote invasive grass response to nutrient addition relative to co-occurring species despite lack of belowground enemy release.

    PubMed

    Broadbent, Arthur A D; Stevens, Carly J; Ostle, Nicholas J; Orwin, Kate H

    2018-03-01

    Multiple plant species invasions and increases in nutrient availability are pervasive drivers of global environmental change that often co-occur. Many plant invasion studies, however, focus on single-species or single-mechanism invasions, risking an oversimplification of a multifaceted process. Here, we test how biogeographic differences in soil biota, such as belowground enemy release, interact with increases in nutrient availability to influence invasive plant growth. We conducted a greenhouse experiment using three co-occurring invasive grasses and one native grass. We grew species in live and sterilized soil from the invader's native (United Kingdom) and introduced (New Zealand) ranges with a nutrient addition treatment. We found no evidence for belowground enemy release. However, species' responses to nutrients varied, and this depended on soil origin and sterilization. In live soil from the introduced range, the invasive species Lolium perenne L. responded more positively to nutrient addition than co-occurring invasive and native species. In contrast, in live soil from the native range and in sterilized soils, there were no differences in species' responses to nutrients. This suggests that the presence of soil biota from the introduced range allowed L. perenne to capture additional nutrients better than co-occurring species. Considering the globally widespread nature of anthropogenic nutrient additions to ecosystems, this effect could be contributing to a global homogenization of flora and the associated losses in native species diversity.

  17. Assessing the impact of nutrient enrichment in estuaries: susceptibility to eutrophication.

    PubMed

    Painting, S J; Devlin, M J; Malcolm, S J; Parker, E R; Mills, D K; Mills, C; Tett, P; Wither, A; Burt, J; Jones, R; Winpenny, K

    2007-01-01

    The main aim of this study was to develop a generic tool for assessing risks and impacts of nutrient enrichment in estuaries. A simple model was developed to predict the magnitude of primary production by phytoplankton in different estuaries from nutrient input (total available nitrogen and/or phosphorus) and to determine likely trophic status. In the model, primary production is strongly influenced by water residence times and relative light regimes. The model indicates that estuaries with low and moderate light levels are the least likely to show a biological response to nutrient inputs. Estuaries with a good light regime are likely to be sensitive to nutrient enrichment, and to show similar responses, mediated only by site-specific geomorphological features. Nixon's scale was used to describe the relative trophic status of estuaries, and to set nutrient and chlorophyll thresholds for assessing trophic status. Estuaries identified as being eutrophic may not show any signs of eutrophication. Additional attributes need to be considered to assess negative impacts. Here, likely detriment to the oxygen regime was considered, but is most applicable to areas of restricted exchange. Factors which limit phytoplankton growth under high nutrient conditions (water residence times and/or light availability) may favour the growth of other primary producers, such as macrophytes, which may have a negative impact on other biological communities. The assessment tool was developed for estuaries in England and Wales, based on a simple 3-category typology determined by geomorphology and relative light levels. Nixon's scale needs to be validated for estuaries in England and Wales, once more data are available on light levels and primary production.

  18. Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of savanna tree species.

    PubMed

    Barbosa, Eduardo R M; Tomlinson, Kyle W; Carvalheiro, Luísa G; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H T; van Langevelde, Frank

    2014-01-01

    Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled short-term experiment in a semi-arid savanna to test how water supply (even water supply vs. natural rainfall) and nutrient availability (no fertilisation vs. fertilisation) affects seedlings' above-ground biomass production and leaf-nutrient concentrations (N, P and K) of broad-leafed and fine-leafed tree species. Contrary to expectations, neither changes in water supply nor changes in soil nutrient level affected biomass production of the studied species. By contrast, leaf-nutrient concentration did change significantly. Under regular water supply, soil nutrient addition increased the leaf phosphorus concentration of both fine-leafed and broad-leafed species. However, under uneven water supply, leaf nitrogen and phosphorus concentration declined with soil nutrient supply, this effect being more accentuated in broad-leafed species. Leaf potassium concentration of broad-leafed species was lower when growing under constant water supply, especially when no NPK fertilizer was applied. We found that changes in environmental factors can affect leaf quality, indicating a potential interactive effect between land-use changes and environmental changes on savanna vegetation: under more uneven rainfall patterns within the growing season, leaf quality of tree seedlings for a number of species can change as a response to changes in nutrient levels, even if overall plant biomass does not change. Such changes might affect herbivore pressure on trees and thus savanna plant community dynamics. Although longer term experiments would be essential to test such potential effects of eutrophication via changes in leaf nutrient concentration, our findings provide important insights that can help guide management plans that aim to preserve savanna biodiversity.

  19. Seasonal Belowground Ecosystem and Eco-enzymatic Responses to Soil pH and Phosphorus Availability in Temperate Hardwood Forests

    NASA Astrophysics Data System (ADS)

    Smemo, K. A.; Deforest, J. L.; Petersen, S. L.; Burke, D.; Hewins, C.; Kluber, L. A.; Kyker, S. R.

    2013-12-01

    Atmospheric acid deposition can increase phosphorus (P) limitation in temperate hardwood forests by increasing N availability, and therefore P demand, and/or by decreasing pH and occluding inorganic P. However, only recently have studies demonstrated that P limitation can occur in temperate forests and very little is known about the temporal aspects of P dynamics in acidic forest soils and how seasonal shifts in nutrient availability and demand influence microbial investment in extracellular enzymes. The objectives of this study were to investigate how P availability and soil pH influence seasonal patterns of nutrient cycling and soil microbial activity in hardwood forests that experience chronic acid deposition. We experimentally manipulated soil pH, P, or both for three years and examined soil treatment responses in fall, winter, spring, early summer, and late summer. We found that site (glaciated versus unglaciated) and treatment had the most significant influence on nutrient pools and cycling. In general, nutrient pools were higher in glaciated soils than unglaciated for measured nutrients, including total C and N (2-3 times higher), extractable inorganic nitrogen, and readily available P. Treatment had no impact on total C and N pools in either region, but did affect other measured nutrients such as ammonium, which was greatest in the elevated pH treatment for both sites. As expected, readily available P pools were highest in the elevated P treatments (3 fold increase in both sites), but raising pH decreased available P pools in the glaciated site. Raising soil pH increased both net N mineralization rates and net P mineralization rates, regardless of site. Nitrification responses were complex, but we observed an overall significant nitrification increase under elevated pH, particularly in the growing season. Extracellular enzyme activity showed more seasonal patterns than site and treatment effects, exhibiting significant growing season activity reductions for all enzymes measured. Phosphatase enzymes did not respond to our treatments and were generally greatest in the unglaciated soils, particularly in winter and spring. Enzyme stoichiometric relationships revealed that soil microbial populations in the glaciated site were consistently less P and N-limited than unglaciated sites but this difference was less pronounced during the growing season. The trajectory of nutrient limitation in response to soil pH and P availability was highly variable, but we observed that enzyme ratios in the early summer were particularly shifted relative to other seasons suggesting that both sites were increasingly P and N-limited during this period. Overall, our results suggest that ecosystem and microbial responses to soil pH and P availability vary with both season and site history and that more spatially and temporally explicit observations are needed to improve our understanding of ecosystem acidification, nutrient limitation, and the cost-benefit relationships of microbial investments in extracellular enzymes.

  20. Rapid Shifts in Soil Nutrients and Decomposition Enzyme Activity in Early Succession Following Forest Fire

    DOE PAGES

    Knelman, Joseph E.; Graham, Emily B.; Ferrenberg, Scott; ...

    2017-09-15

    In post-disturbance landscapes nutrient availability has proven a major control on ecological succession. In this study, we examined variation in connections between soil nutrient availability and decomposition extracellular enzyme activity (EEA) across post fire secondary succession in forest soils as well as after a secondary flood disturbance. We also examined possible linkages between edaphic properties and bacterial communities based on 16S rRNA gene analysis. We found that with advancing succession in a post-fire landscape, the relationship between soil nutrients and EEA became stronger over time. In general, late successional soils showed stronger connections between EEA and soil nutrient status, whilemore » early successional soils were marked by a complete decoupling of nutrients and EEA. We also found that soil moisture and bacterial communities of post-fire disturbance soils were susceptible to change following the secondary flood disturbance, while undisturbed, reference forest soils were not. Our results demonstrate that nutrient pools correlating with EEA change over time. While past work has largely focused on ecosystem succession on decadal timescales, our work suggests that nutrients shift in their relative importance as a control of decomposition EEA in the earliest stages of secondary succession. Furthermore, this work emphasizes the relevance of successional stage, even on short timescales, in predicting rates of carbon and nitrogen cycling, especially as disturbances become more frequent in a rapidly changing world.« less

  1. Rapid Shifts in Soil Nutrients and Decomposition Enzyme Activity in Early Succession Following Forest Fire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knelman, Joseph E.; Graham, Emily B.; Ferrenberg, Scott

    In post-disturbance landscapes nutrient availability has proven a major control on ecological succession. In this study, we examined variation in connections between soil nutrient availability and decomposition extracellular enzyme activity (EEA) across post fire secondary succession in forest soils as well as after a secondary flood disturbance. We also examined possible linkages between edaphic properties and bacterial communities based on 16S rRNA gene analysis. We found that with advancing succession in a post-fire landscape, the relationship between soil nutrients and EEA became stronger over time. In general, late successional soils showed stronger connections between EEA and soil nutrient status, whilemore » early successional soils were marked by a complete decoupling of nutrients and EEA. We also found that soil moisture and bacterial communities of post-fire disturbance soils were susceptible to change following the secondary flood disturbance, while undisturbed, reference forest soils were not. Our results demonstrate that nutrient pools correlating with EEA change over time. While past work has largely focused on ecosystem succession on decadal timescales, our work suggests that nutrients shift in their relative importance as a control of decomposition EEA in the earliest stages of secondary succession. Furthermore, this work emphasizes the relevance of successional stage, even on short timescales, in predicting rates of carbon and nitrogen cycling, especially as disturbances become more frequent in a rapidly changing world.« less

  2. Vertical flow constructed wetlands: kinetics of nutrient and organic matter removal.

    PubMed

    Pérez, M M; Hernández, J M; Bossens, J; Jiménez, T; Rosa, E; Tack, F

    2014-01-01

    The kinetics of organic matter and nutrient removal in a pilot vertical subsurface wetland with red ferralitic soil as substrate were evaluated. The wetland (20 m(2)) was planted with Cyperus alternifolius. The domestic wastewater that was treated in the wetland had undergone a primary treatment consisting of a septic moat and a buffer tank. From the sixth week of operation, the performance of the wetland stabilized, and a significant reduction in pollutant concentration of the effluent wastewater was obtained. Also a significant increase of dissolved oxygen (5 mg/l) was obtained. The organic matter removal efficiency was greater than 85% and the nutrient removal efficiency was greater than 75% in the vertical subsurface wetland. Nitrogen and biochemical oxygen demand (BOD) removal could be described by a first-order model. The kinetic constants were 3.64 and 3.27 d(-1) for BOD and for total nitrogen, respectively. Data on the removal of phosphorus were adapted to a second-order model. The kinetic constant was 0.96 (mg/l)(-1) d(-1). The results demonstrated the potential of vertical flow constructed wetlands to clean treated domestic wastewater before discharge into the environment.

  3. The Effects of Permafrost Thaw on Organic Matter Quality and Availability Along a Hill Slope in Northeastern Siberia

    NASA Astrophysics Data System (ADS)

    Connolly, C. T.; Spawn, S.; Ludwig, S.; Schade, J. D.; Natali, S.

    2014-12-01

    Climate warming and permafrost thaw in northeastern Siberia are expected to change the quantity and quality of organic matter (OM) transported through watersheds, releasing previously frozen carbon (C) to biologically available pool. Hill slopes have shown to influence the distribution of OM, resulting in a downhill accumulation of available C and nutrients relative to uphill. Here we examine how future permafrost thaw will change OM quality and availability along a hill slope in a larch-dominated watershed. We collected soils from the thawed organic and mineral layers, and 1m deep permafrost cores for dissolved organic C (DOC) and total dissolved N (TDN), C composition from measures of colored dissolved organic matter (CDOM), DOC lability from biodegradable DOC (BDOC) incubations, C and nutrient availability from extracellular-enzyme assays (EEA's), and microbial respiration from aerobic soil incubations. Here we show that organic soils (O), in comparison to mineral soils (M) and permafrost (P) are the most abundant source of C (avg O DOC: 51.6mg/L), exhibiting low molecular complexity (avg O SUVA254: 4.05) and high quality. Evidence suggests permafrost OM may be an equally abundant, and more labile source of C than mineral soils (highest P DOC: 16.1 mg/L, lowest P SUVA254: 6.32; median M DOC: 18.5 mg/L, median M SUVA254: 24.0). Furthermore, we demonstrate that there may be a positive relationship in the rate of C mineralization and distance downhill, showing 15-30% greater CO2 production/gC downhill relative to uphill. Evidence also supports a similar relationship in permafrost DOC content and molecular complexity, showing more DOC of a lower complexity further downhill. This indicates DOC transport may have been occurring through the active layer and downhill during ice-rich permafrost formation, and may supply a labile source of carbon to lowland areas and adjacent stream networks upon thaw.

  4. Phenotypic plasticity to light and nutrient availability alters functional trait ranking across eight perennial grassland species.

    PubMed

    Siebenkäs, Alrun; Schumacher, Jens; Roscher, Christiane

    2015-03-27

    Functional traits are often used as species-specific mean trait values in comparative plant ecology or trait-based predictions of ecosystem processes, assuming that interspecific differences are greater than intraspecific trait variation and that trait-based ranking of species is consistent across environments. Although this assumption is increasingly challenged, there is a lack of knowledge regarding to what degree the extent of intraspecific trait variation in response to varying environmental conditions depends on the considered traits and the characteristics of the studied species to evaluate the consequences for trait-based species ranking. We studied functional traits of eight perennial grassland species classified into different functional groups (forbs vs. grasses) and varying in their inherent growth stature (tall vs. small) in a common garden experiment with different environments crossing three levels of nutrient availability and three levels of light availability over 4 months of treatment applications. Grasses and forbs differed in almost all above- and belowground traits, while trait differences related to growth stature were generally small. The traits showing the strongest responses to resource availability were similarly for grasses and forbs those associated with allocation and resource uptake. The strength of trait variation in response to varying resource availability differed among functional groups (grasses > forbs) and species of varying growth stature (small-statured > tall-statured species) in many aboveground traits, but only to a lower extent in belowground traits. These differential responses altered trait-based species ranking in many aboveground traits, such as specific leaf area, tissue nitrogen and carbon concentrations and above-belowground allocation (leaf area ratio and root : shoot ratio) at varying resource supply, while trait-based species ranking was more consistent in belowground traits. Our study shows that species grouping according to functional traits is valid, but trait-based species ranking depends on environmental conditions, thus limiting the applicability of species-specific mean trait values in ecological studies. Published by Oxford University Press on behalf of the Annals of Botany Company.

  5. Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability

    USGS Publications Warehouse

    Lorenzen, B.; Brix, H.; Mendelssohn, I.A.; McKee, K.L.; Miao, S.L.

    2001-01-01

    The effects of phosphorus (P) and oxygen availability on growth, biomass allocation and nutrient use efficiency in Cladium jamaicense Crantz and Typha domingensis Pers. were studied in a growth facility equipped with steady-state hydroponic rhizotrons. The treatments included four P concentrations (10, 40, 80 and 500 ??g I-1) and two oxygen concentration (8.0 and <0.5 mg O2 I-1) in the culture solutions. In Cladium, no clear relationship was found between P availability and growth rate (19-37 mg g-1 d-1), the above to below ground biomass ratio (A/B) (mean = 4.6), or nitrogen use efficiency (NUE) (mean = 72 g dry weight g-1 N). However, the ratio between root supported tissue (leaves, rhizomes and ramets) and root biomass (S/R) (5.6-8) increased with P availability. In contrast, the growth rate (48-89 mg g-1 d-1) and the biomass ratios A/B (2.4-6.1) and S/R (5.4-10.3) of Typha increased with P availability, while NUE (71-30 g dry weight g-1 N) decreased. The proportion of root laterals was similar in the two species, but Typha had thinner root laterals (diameter = 186 ??m) than Cladium (diameter = 438 ??m) indicating a larger root surface area in Typha. The two species had a similar P use efficiency (PUE) at 10 ??g PI-1 (mean = 1134 g dry weight g-1 P) and at 40 and 80 ??g PI-1 (mean = 482 dry weight g-1 P) but the N/P ratio indicated imbalances in nutrient uptake at a higher P concentration (40 ??g PI-1) in Typha than in Cladium (10 ??g PI-1). The two species had similar root specific P accumulation rate at the two lowest P levels, whereas Typha had 3-13-fold higher P uptake rates at the two highest P levels, indicating a higher nutrient uptake capacity in Typha. The experimental oxygen concentration in the rhizosphere had only limited effect on the growth of the two species and had little effect on biomass partitioning and nutrient use efficiency. The aerenchyma in these species was probably sufficient to maintain adequate root oxygenation under partially oxygen depleted conditions. Cladium had characteristics typical for plants from nutrient poor habitats, which included slow growth rate, low capacity for P uptake and relatively inflexible biomass partitioning in response to increased P availability. In contrast, Typha demonstrated a high degree of flexibility in growth, biomass partitioning, and nutrient accumulation to P availability, similar to species from nutrient rich habitats. Although the N/P ratio indicated that Typha was more nutrient stressed at the low P levels, Typha had a higher capacity for P uptake and was more competitive than Cladium at the applied P concentrations. ?? 2001 Elsevier Science B.V.

  6. Seasonal variation in nutritional characteristics of the diet of greater white-fronted geese

    USGS Publications Warehouse

    Ely, Craig R.; Raveling, Dennis G.

    2011-01-01

    We studied diet and habitat use of greater white-fronted geese (Anser albifrons) from autumn through spring on their primary staging and wintering areas in the Pacific Flyway, 1979–1982. There have been few previous studies of resource use and forage quality of wintering greater white-fronted geese in North America, and as a consequence there has been little empirical support for management practices pertaining to habitat conservation of this broadly distributed species. Observations of >2,500 flocks of geese and collections of foraging birds revealed seasonal and geographic variation in resource use reflective of changes in habitat availability, selection, and fluctuating physiological demands. Autumn migrants from Alaska arrived first in the Klamath Basin of California and southern Oregon, where they fed on barley, oats, wheat, and potatoes. Geese migrated from the Klamath Basin into the Central Valley of California in late autumn where they exploited agricultural crops rich in soluble carbohydrates, with geese in the Sacramento Valley feeding almost exclusively on rice and birds on the Sacramento–San Joaquin Delta primarily utilizing corn. White-fronted geese began their northward migration in late winter, and by early spring most had returned to the Klamath Basin where 37% of flocks were found in fields of new growth cultivated and wild grasses. Cereal grains and potatoes ingested by geese were low in protein (7–14%) and high in soluble nutrients (17–47% neutral detergent fiber [NDF]), whereas grasses were low in available energy (47–49% NDF) but high in protein (26–42%). Greater white-fronted geese are generalist herbivores and can exploit a variety of carbohydrate-rich cultivated crops, likely making these geese less susceptible to winter food shortages than prior to the agriculturalization of the North American landscape. However, agricultural landscapes can be extremely dynamic and may be less predictable in the long-term than the historic environments to which geese are adapted. Thus far greater white-fronted geese have proved resilient to changes in land cover in the Pacific Flyway and by altering their migration regime have even been able to adapt to changes in the availability of suitable forage crops.

  7. Cortisol in mother's milk across lactation reflects maternal life history and predicts infant temperament.

    PubMed

    Hinde, Katie; Skibiel, Amy L; Foster, Alison B; Del Rosso, Laura; Mendoza, Sally P; Capitanio, John P

    2015-01-01

    The maternal environment exerts important influences on offspring mass/growth, metabolism, reproduction, neurobiology, immune function, and behavior among birds, insects, reptiles, fish, and mammals. For mammals, mother's milk is an important physiological pathway for nutrient transfer and glucocorticoid signaling that potentially influences offspring growth and behavioral phenotype. Glucocorticoids in mother's milk have been associated with offspring behavioral phenotype in several mammals, but studies have been handicapped by not simultaneously evaluating milk energy density and yield. This is problematic as milk glucocorticoids and nutrients likely have simultaneous effects on offspring phenotype. We investigated mother's milk and infant temperament and growth in a cohort of rhesus macaque ( Macaca mulatta ) mother-infant dyads at the California National Primate Research Center ( N = 108). Glucocorticoids in mother's milk, independent of available milk energy, predicted a more Nervous, less Confident temperament in both sons and daughters. We additionally found sex differences in the windows of sensitivity and the magnitude of sensitivity to maternal-origin glucocorticoids. Lower parity mothers produced milk with higher cortisol concentrations. Lastly, higher cortisol concentrations in milk were associated with greater infant weight gain across time. Taken together, these results suggest that mothers with fewer somatic resources, even in captivity, may be "programming" through cortisol signaling, behaviorally cautious offspring that prioritize growth. Glucocorticoids ingested through milk may importantly contribute to the assimilation of available milk energy, development of temperament, and orchestrate, in part, the allocation of maternal milk energy between growth and behavioral phenotype.

  8. Cortisol in mother’s milk across lactation reflects maternal life history and predicts infant temperament

    PubMed Central

    Skibiel, Amy L.; Foster, Alison B.; Del Rosso, Laura; Mendoza, Sally P.; Capitanio, John P.

    2015-01-01

    The maternal environment exerts important influences on offspring mass/growth, metabolism, reproduction, neurobiology, immune function, and behavior among birds, insects, reptiles, fish, and mammals. For mammals, mother’s milk is an important physiological pathway for nutrient transfer and glucocorticoid signaling that potentially influences offspring growth and behavioral phenotype. Glucocorticoids in mother’s milk have been associated with offspring behavioral phenotype in several mammals, but studies have been handicapped by not simultaneously evaluating milk energy density and yield. This is problematic as milk glucocorticoids and nutrients likely have simultaneous effects on offspring phenotype. We investigated mother’s milk and infant temperament and growth in a cohort of rhesus macaque (Macaca mulatta) mother–infant dyads at the California National Primate Research Center (N = 108). Glucocorticoids in mother’s milk, independent of available milk energy, predicted a more Nervous, less Confident temperament in both sons and daughters. We additionally found sex differences in the windows of sensitivity and the magnitude of sensitivity to maternal-origin glucocorticoids. Lower parity mothers produced milk with higher cortisol concentrations. Lastly, higher cortisol concentrations in milk were associated with greater infant weight gain across time. Taken together, these results suggest that mothers with fewer somatic resources, even in captivity, may be “programming” through cortisol signaling, behaviorally cautious offspring that prioritize growth. Glucocorticoids ingested through milk may importantly contribute to the assimilation of available milk energy, development of temperament, and orchestrate, in part, the allocation of maternal milk energy between growth and behavioral phenotype. PMID:25713475

  9. Decadal variations in diatoms and dinoflagellates on the inner shelf of the East China Sea, China

    NASA Astrophysics Data System (ADS)

    Abate, Rediat; Gao, Yahui; Chen, Changping; Liang, Junrong; Mu, Wenhua; Kifile, Demeke; Chen, Yanghang

    2017-11-01

    Diatoms and dinoflagellates are two major groups of phytoplankton that flourish in the oceans, particularly in coastal zone and upwelling systems, and their contrasting production have been reported in several world seas. However, this information is not available in the coastal East China Sea (ECS). Thus, to investigate and compare the decadal trends in diatoms and dinoflagellates, a sediment core, 47 cm long, was collected from the coastal zone of the ECS. Sediment chlorophyll- a (Chl- a), phytoplankton-group specific pigment signatures of diatoms and dinoflagellates, and diatom valve concentrations were determined. The sediment core covered the period from 1961 to 2011 AD. The chlorophyll- a contents ranged from 2.32 to 73 µg/g dry sediment (dw) and averaged 9.81 µg/g dw. Diatom absolute abundance ranged from 29152 to 177501 valve/gram (v/g) dw and averaged 72137 v/g dw. Diatom valve and diatom specific pigment marker concentrations were not significantly correlated. Peridinin increased after the 1980s in line with intensified use of fertilizer and related increases in nutrient inputs into the marine environment. The increased occurrence of dinoflagellate dominance after the 1980s can be mostly explained by the increase in nutrients. However, the contribution of dinoflagellates to total phytoplankton production (Chl- a) decreased during the final decade of this study, probably because of the overwhelming increase in diatom production that corresponded with the construction of the Three Gorges Dam (TGD) and related light availability. Similarly, the mean ratio of fucoxanthin/peridinin for the period from 1982 to 2001 was 6% less than for 1961 to 1982, while the ratio for 2001 to 2011 was 45.3% greater than for 1982 to 2001. The decadal variation in the fucoxanthin/peridinin ratio implies that dinoflagellate production had been gradually increasing until 2001. We suggest that the observed changes can be explained by anthropogenic impacts, such as nutrient loading and dam construction.

  10. Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed-conifer forest

    USDA-ARS?s Scientific Manuscript database

    The effects of thinning followed by residue mastication (THIN), prescribed fire (BURN), and thinning plus residue mastication plus burning (T+B) on nutrient budgets and resin-based (plant root simulator [PRS] probe) measurements of soil nutrient availability in a mixed-conifer forest were measured. ...

  11. Effects of thinning, residue mastication, and prescribed fire on soil and nutrient budgets in a Sierra Nevada mixed conifer forest

    USDA-ARS?s Scientific Manuscript database

    The effects of thinning followed by residue mastication (THIN), prescribed fire (BURN), and thinning plus residue mastication plus burning (T+B) on nutrient budgets and resin-based (plant root simulator [PRS] probe) measurements of soil nutrient availability in a mixed-conifer forest were measured. ...

  12. Characterization of Pseudomonas putida Genes Responsive to Nutrient Limitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syn, Chris K.; Magnuson, Jon K.; Kingsley, Mark T.

    2004-06-01

    The low bioavailability of nutrients and oxygen in the soil environment has hampered successful expression of biodegradation/biocontrol genes that are driven by promoters highly active during routine laboratory conditions of high nutrient- and oxygen-availability. Hence, in the present study, expression of the gus-tagged genes in 12 Tn5-gus mutants of the soil microbe Pseudomonas putida PNL-MK25 was examined under various conditions chosen to mimic the soil environment: low carbon, phosphate, nitrate, or oxygen, and in the rhizosphere. Based on their expression profiles, three nutrient-responsive mutant (NRM) strains, NRM5, NRM7, and NRM17, were selected for identification of the tagged genes. In themore » mutant strain NRM5, expression of the glutamate dehydrogenase (gdhA) gene was increased between 4.9- to 26.4-fold under various low nutrient conditions. In NRM7, expression of the novel NADPH:quinone oxidoreductase-like (nql) gene was consistently amongst the highest and was synergistically upregulated by low nutrient and anoxic conditions. The cyoD gene in NRM17, which encodes the fourth subunit of the cytochrome o ubiquinol oxidase complex, had decreased expression in low nutrient conditions but its absolute expression levels was still amongst the highest. Additionally, it was independent of oxygen availability, in contrast to that in E. coli.« less

  13. Altered resource availability and the population dynamics of tree species in Amazonian secondary forests.

    PubMed

    Fortini, Lucas Berio; Bruna, Emilio M; Zarin, Daniel J; Vasconcelos, Steel S; Miranda, Izildinha S

    2010-04-01

    Despite research demonstrating that water and nutrient availability exert strong effects on multiple ecosystem processes in tropical forests, little is known about the effect of these factors on the demography and population dynamics of tropical trees. Over the course of 5 years, we monitored two common Amazonian secondary forest species-Lacistema pubescens and Myrcia sylvatica-in dry-season irrigation, litter-removal and control plots. We then evaluated the effects of altered water and nutrient availability on population demography and dynamics using matrix models and life table response experiments. Our results show that despite prolonged experimental manipulation of water and nutrient availability, there were nearly no consistent and unidirectional treatment effects on the demography of either species. The patterns and significance of observed treatment effects were largely dependent on cross-year variability not related to rainfall patterns, and disappeared once we pooled data across years. Furthermore, most of these transient treatment effects had little effect on population growth rates. Our results suggest that despite major experimental manipulations of water and nutrient availability-factors considered critical to the ecology of tropical pioneer tree species-autogenic light limitation appears to be the primary regulator of tree demography at early/mid successional stages. Indeed, the effects of light availability may completely override those of other factors thought to influence the successional development of Amazonian secondary forests.

  14. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass

    NASA Technical Reports Server (NTRS)

    Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.; Sager, J. C. (Principal Investigator)

    1997-01-01

    A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estunate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.

  15. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass

    NASA Astrophysics Data System (ADS)

    Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.

    1997-01-01

    A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estimate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.

  16. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass

    NASA Astrophysics Data System (ADS)

    1997-01-01

    A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 12-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estimate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.

  17. Elkhorn Slough: Detecting Eutrophication through Geospatial Modeling Applications

    NASA Astrophysics Data System (ADS)

    Caraballo Álvarez, I. O.; Childs, A.; Jurich, K.

    2016-12-01

    Elkhorn Slough in Monterey, California, has experienced substantial nutrient loading and eutrophication over the past 21 years as a result of fertilizer-rich runoff from nearby agricultural fields. This study seeks to identify and track spatial patterns of eutrophication hotspots and the correlation to land use changes, possible nutrient sources, and general climatic trends using remotely sensed and in situ data. Threats of rising sea level, subsiding marshes, and increased eutrophication hotspots demonstrate the necessity to analyze the effects of increasing nutrient loads, relative sea level changes, and sedimentation within Elkhorn Slough. The Soil & Water Assessment Tool (SWAT) model integrates specified inputs to assess nutrient and sediment loading and their sources. TerrSet's Land Change Modeler forecasts the future potential of land change transitions for various land cover classes around the slough as a result of nutrient loading, eutrophication, and increased sedimentation. TerrSet's Earth Trends Modeler provides a comprehensive analysis of image time series to rapidly assess long term eutrophication trends and detect spatial patterns of known hotspots. Results from this study will inform future coastal management practices and provide greater spatial and temporal insight into Elkhorn Slough eutrophication dynamics.

  18. Nutrient requirements and low-cost balanced diets, based on seasonally available local feedstuffs, for local pigs on smallholder farms in Western Kenya.

    PubMed

    Carter, Natalie Ann; Dewey, Catherine Elizabeth; Thomas, Lian Francesca; Lukuyu, Ben; Grace, Delia; de Lange, Cornelis

    2016-02-01

    Growth performance of pigs on smallholder farms in the tropics is low. Lack of feedstuffs, seasonal feed shortages, and feeding nutritionally unbalanced diets contribute to slow growth. Low-cost balanced diets are needed to improve pig performance. In this study, we estimated the nutrient requirements of local pigs on smallholder farms in Kenya and developed balanced low-cost diets using seasonally available local feedstuffs. Diets were formulated to provide pigs with 80 % of the nutrient density in corn and soybean meal-based (reference) diets to minimize the cost per unit of energy and other nutrients. Estimated requirements for starting and growing pigs (8 to 35 kg body weight) were as follows: digestible energy (DE) 2960 kcal/kg of dry matter (DM), standardized ileal digestibility (SID) lysine 5.8 g/kg of DM, calcium 2.8 g/kg of DM, standardized total tract digestible (STTD) phosphorous 1.4 g/kg of DM, and crude protein 85 g/kg of DM. Nutrient requirements of local pigs on smallholder farms in Kenya were lower than those of exotic breed pigs raised in commercial settings. Seasonally available local feedstuffs were used to develop low-cost balanced diets. Twenty-two diets are presented based on season, cost, and feedstuff availability. This study has broad applicability as a case study of an approach that could be applied in other tropical regions in which smallholder pig keeping is practiced and where local feedstuffs for pigs are available seasonally.

  19. Plant allocation of carbon to defense as a function of herbivory, light and nutrient availability

    USGS Publications Warehouse

    DeAngelis, Donald L.; Ju, Shu; Liu, Rongsong; Bryant, John P.; Gourley, Stephen A.

    2012-01-01

    We use modeling to determine the optimal relative plant carbon allocations between foliage, fine roots, anti-herbivore defense, and reproduction to maximize reproductive output. The model treats these plant components and the herbivore compartment as variables. Herbivory is assumed to be purely folivory. Key external factors include nutrient availability, degree of shading, and intensity of herbivory. Three alternative functional responses are used for herbivory, two of which are variations on donor-dependent herbivore (models 1a and 1b) and one of which is a Lotka–Volterra type of interaction (model 2). All three were modified to include the negative effect of chemical defenses on the herbivore. Analysis showed that, for all three models, two stable equilibria could occur, which differs from most common functional responses when no plant defense component is included. Optimal strategies of carbon allocation were defined as the maximum biomass of reproductive propagules produced per unit time, and found to vary with changes in external factors. Increased intensity of herbivory always led to an increase in the fractional allocation of carbon to defense. Decreases in available limiting nutrient generally led to increasing importance of defense. Decreases in available light had little effect on defense but led to increased allocation to foliage. Decreases in limiting nutrient and available light led to decreases in allocation to reproduction in models 1a and 1b but not model 2. Increases in allocation to plant defense were usually accompanied by shifts in carbon allocation away from fine roots, possibly because higher plant defense reduced the loss of nutrients to herbivory.

  20. The competitive advantage of a dual-transporter system.

    PubMed

    Levy, Sagi; Kafri, Moshe; Carmi, Miri; Barkai, Naama

    2011-12-09

    Cells use transporters of different affinities to regulate nutrient influx. When nutrients are depleted, low-affinity transporters are replaced by high-affinity ones. High-affinity transporters are helpful when concentrations of nutrients are low, but the advantage of reducing their abundance when nutrients are abundant is less clear. When we eliminated such reduced production of the Saccharomyces cerevisiae high-affinity transporters for phosphate and zinc, the elapsed time from the initiation of the starvation program until the lack of nutrients limited growth was shortened, and recovery from starvation was delayed. The latter phenotype was rescued by constitutive activation of the starvation program. Dual-transporter systems appear to prolong preparation for starvation and to facilitate subsequent recovery, which may optimize sensing of nutrient depletion by integrating internal and external information about nutrient availability.

  1. Effects of feeding frequency on apparent energy and nutrient digestibility/availability of channel catfish, Ictalurus punctatus, reared at optimal and suboptimal temperatures

    USDA-ARS?s Scientific Manuscript database

    This study examined the effects of feeding frequency (daily versus every other day [EOD]) on nutrient digestibility/availability of channel catfish, Ictalurus punctatus, reared at optimal (30 C) and suboptimal (24 C) temperatures. A 28% protein practical diet was used as the test diet, and chromic o...

  2. Effects of long-term nutrient additions on Arctic tundra, stream, and lake ecosystems: beyond NPP.

    PubMed

    Gough, Laura; Bettez, Neil D; Slavik, Karie A; Bowden, William B; Giblin, Anne E; Kling, George W; Laundre, James A; Shaver, Gaius R

    2016-11-01

    Primary producers form the base of food webs but also affect other ecosystem characteristics, such as habitat structure, light availability, and microclimate. Here, we examine changes caused by 5-30+ years of nutrient addition and resulting increases in net primary productivity (NPP) in tundra, streams, and lakes in northern Alaska. The Arctic provides an important opportunity to examine how ecosystems characterized by low diversity and low productivity respond to release from nutrient limitation. We review how responses of algae and plants affect light availability, perennial biotic structures available for consumers, oxygen levels, and temperature. Sometimes, responses were similar across all three ecosystems; e.g., increased NPP significantly reduced light to the substrate following fertilization. Perennial biotic structures increased in tundra and streams but not in lakes, and provided important new habitat niches for consumers as well as other producers. Oxygen and temperature responses also differed. Life history traits (e.g., longevity) of the primary producers along with the fate of detritus drove the responses and recovery. As global change persists and nutrients become more available in the Arctic and elsewhere, incorporating these factors as response variables will enable better prediction of ecosystem changes and feedbacks in this biome and others.

  3. Wool-waste as organic nutrient source for container-grown plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheljazkov, Valtcho D.; Stratton, Glenn W.; Pincock, James

    A container experiment was conducted to test the hypothesis that uncomposted wool wastes could be used as nutrient source and growth medium constituent for container-grown plants. The treatments were: (1) rate of wool-waste application (0 or unamended control, 20, 40, 80, and 120 g of wool per 8-in. pot), (2) growth medium constituents [(2.1) wool plus perlite, (2.2) wool plus peat, and (2.3) wool plus peat plus perlite], and (3) plant species (basil and Swiss chard). A single addition of 20, 40, 80, or 120 g of wool-waste to Swiss chard (Beta vulgaris L.) and basil (Ocimum basilicum L.) inmore » pots with growth medium provided four harvests of Swiss chard and five harvests of basil. Total basil yield from the five harvests was 1.6-5 times greater than the total yield from the unamended control, while total Swiss chard yield from the four harvests was 2-5 times greater relative to the respective unamended control. The addition of wool-waste to the growth medium increased Swiss chard and basil tissue N, and NO{sub 3}-N and NH{sub 4}-N in growth medium relative to the unamended control. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis of wool fibers sampled at the end of the experiments indicated various levels of decomposition, with some fibers retaining their original surface structure. Furthermore, most of the wool fibers' surfaces contained significant concentrations of S and much less N, P, or K. SEM/EDX revealed that some plant roots grow directly on wool-waste fibers suggesting either (1) root directional growth towards sites with greater nutrient concentration and/or (2) a possible role for roots or root exudates in wool decomposition. Results from this study suggest that uncomposted wool wastes can be used as soil amendment, growth medium constituent, and nutrient source for container-grown plants.« less

  4. Physiological profiling of soil microbial communities in a Florida scrub-oak ecosystem: spatial distribution and nutrient limitations.

    PubMed

    Brown, Alisha L P; Garland, Jay L; Day, Frank P

    2009-01-01

    Rapid physiological profiling of heterotrophic microbial communities enables intensive analysis of the factors affecting activity in aerobic habitats, such as soil. Previous methods for performing such profiling were severely limited due to enrichment bias and inflexibility in incubation conditions. We tested a new physiological profiling approach based on a microtiter plate oxygen sensor system (Becton Dickinson Oxygen Biosensor System (BDOBS)), which allows for testing of lower substrate addition (i.e., lower enrichment potential) and manipulation of physiochemical assay conditions, such as pH and nutrients. Soil microbial communities associated with a scrub-oak forest ecosystem on Merritt Island Wildlife Refuge in central Florida, USA, were studied in order to evaluate microbial activity in a nutrient poor soil and to provide baseline data on the site for subsequent evaluation of the effects of elevated CO(2) on ecosystem function. The spatial variation in physiological activity amongst different habitats (litter, bulk soil, and rhizosphere) was examined as a function of adaptation to local resources (i.e., water soluble extracts of roots and leaf litter) and the degree of N and P limitation. All the communities were primarily N-limited, with a secondary P limitation, which was greater in the rhizosphere and bulk soil. The litter community showed greater overall oxygen consumption when exposed to litter extracts relative to the rhizosphere or soil, suggesting acclimation toward greater use of the mixed substrates in the extract. Root extracts were readily used by communities from all the habitats with no habitat specific acclimation observed. A priming effect was detected in all habitats; addition of glucose caused a significant increase in the use of soil organic carbon. Response to added glucose was only observed with N and P addition, suggesting that C may be lost to the groundwater from these porous soils because nutrient limitation prevents C immobilization.

  5. Isotopic and Geochemical Fingerprinting of a Polygonal Arctic Ecosystem

    NASA Astrophysics Data System (ADS)

    Throckmorton, H.; Heikoop, J. M.; Newman, B. D.; Wilson, C. J.; Wullschleger, S. D.

    2015-12-01

    Arctic tundra contain large C stocks and may be an important source of CO2 and CH4 over the next century due to a rapidly changing climate, degrading permafrost, and redistribution of water across high latitude landscapes. This presentation synthesizes geochemical and isotopic data and examines vertical and lateral factors and processes critical to predicting the C, N, and water balance of tundra ecosystems. Stable water isotope analyses (delta 2H and delta 18O) indicate that summer rain is the dominant source for active layer groundwater, with melting seasonal ice contributing to deeper pore waters in late summer. Microtopography and water table effects on geochemistry were apparent from a comprehensive spatial examination of active layer biogeochemistry, showing a number of significant differences in the concentrations of cations and anions for high- vs. low-centered polygons, microtopographic features (polygonal centers vs. troughs), and with depth. Results have implications for future nutrient availability with projected permafrost degradation and landscape evolution, suggesting greater availability of limiting nutrients (sulfate, phosphate, and nitrate) where polygons undergo a shift from low- to high-centered. Nitrate isotopes (delta 15N and delta 18O) indicated a predominantly microbial source for nitrate in high centered polygons active layers. However, atmospheric nitrate was preserved in permafrost, and may serve as a potential indicator of permafrost degradation. Additionally, results suggest that older, deeper C sources may be promoting a shift in methanogenic pathway, from predominantly acetoclastic to hydrogenotrophic. This mechanistic shift is attributed to the source and quality of available organic substrate. Overall, results showed substantial lateral and vertical variability in biogeochemical, biogeophysical, and hydrological processes across microtopographic- to landscape scales that needs to be accounted for in fine and intermediate scale models.

  6. Geostatistical approach for management of soil nutrients with special emphasis on different forms of potassium considering their spatial variation in intensive cropping system of West Bengal, India.

    PubMed

    Chatterjee, Sourov; Santra, Priyabrata; Majumdar, Kaushik; Ghosh, Debjani; Das, Indranil; Sanyal, S K

    2015-04-01

    A large part of precision agriculture research in the developing countries is devoted towards precision nutrient management aspects. This has led to better economics and efficiency of nutrient use with off-farm advantages of environmental security. The keystone of precision nutrient management is analysis and interpretation of spatial variability of soils by establishing management zones. In this study, spatial variability of major soil nutrient contents was evaluated in the Ghoragacha village of North 24 Parganas district of West Bengal, India. Surface soil samples from 100 locations, covering different cropping systems of the village, was collected from 0 to 15 cm depth using 100×100 m grid system and analyzed in the laboratory to determine organic carbon (OC), available nitrogen (N), phosphorus (P), and potassium (K) contents of the soil as well as its water-soluble K (KWS), exchangeable K (KEX), and non-exchangeable forms of K (KNEX). Geostatistical analyses were performed to determine the spatial variation structure of each nutrient content within the village, followed by the generation of surface maps through kriging. Four commonly used semivariogram models, i.e., spherical, exponential, Gaussian, and linear models were fitted to each soil property, and the best one was used to prepare surface maps through krigging. Spherical model was found the best for available N and P contents, while linear and exponential model was the best for OC and available K, and for KWS and KNEK, Gausian model was the best. Surface maps of nutrient contents showed that N content (129-195 kg ha(-1)) was the most limiting factor throughout the village, while P status was generally very high ( 10-678 kg ha(-1)) in the soils of the present village. Among the different soil K fractions, KWS registered the maximum variability (CV 75%), while the remaining soil K fractions showed moderate to high variation. Interestingly, KNEX content also showed high variability, which essentially indicates reserve native K exploitation under intensive cultivation. These maps highlight the necessity of estimating the other soil K fractions as well for better understanding of soil K supplying capacity and K fertilization strategy rather than the current recommendations, based on the plant-available K alone. In conclusion, the present study revealed that the variability of nutrient distribution was a consequence of complex interactions between the cropping system, nutrient application rates, and the native soil characteristics, and such interactions could be utilized to develop the nutrient management strategies for intensive small-holder system.

  7. Carbohydrate and lipid spectroscopic molecular structures of different alfalfa hay and their relationship with nutrient availability in ruminants

    PubMed Central

    Yari, Mojtaba; Valizadeh, Reza; Nnaserian, Abbas Ali; Jonker, Arjan; Yu, Peiqiang

    2017-01-01

    Objective This study was conducted to determine molecular structures related to carbohydrates and lipid in alfalfa hay cut at early bud, late bud and early flower and in the afternoon and next morning using Fourier transform infrared spectroscopy (FT/IR) and to determine their relationship with alfalfa hay nutrient profile and availability in ruminants. Methods Chemical composition analysis, carbohydrate fractionation, in situ ruminal degradability, and DVE/OEB model were used to measure nutrient profile and availability of alfalfa hay. Univariate analysis, hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify FT/IR spectra differences. Results The FT/IR non-structural carbohydrate (NSCHO) to total carbohydrates and NSCHO to structural carbohydrate ratios decreased (p<0.05), while lignin to NSCHO and lipid CH3 symmetric to CH2 symmetric ratios increased with advancing maturity (p<0.05). The FT/IR spectra related to structural carbohydrates, lignin and lipids were distinguished for alfalfa hay at three maturities by PCA and CLA, while FT/IR molecular structures related to carbohydrates and lipids were similar between alfalfa hay cut in the morning and afternoon when analyzed by PCA and CLA analysis. Positive correlations were found for FT/IR NSCHO to total carbohydrate and NSCHO to structural carbohydrate ratios with non-fiber carbohydrate (by wet chemistry), ruminal fast and intermediately degradable carbohydrate fractions and total ruminal degradability of carbohydrates and predicted intestinal nutrient availability in dairy cows (r≥0.60; p<0.05) whereas FT/IR lignin to NSCHO and CH3 to CH2 symmetric stretching ratio had negative correlation with predicted ruminal and intestinal nutrient availability of alfalfa hay in dairy cows (r≥−0.60; p<0.05). Conclusion FT/IR carbohydrate and lipid molecular structures in alfalfa hay changed with advancing maturity from early bud to early flower, but not during the day, and these molecular structures correlated with predicted nutrient supply of alfalfa hay in ruminants. PMID:28335093

  8. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams

    USGS Publications Warehouse

    Black, R.W.; Moran, P.W.; Frankforter, J.D.

    2011-01-01

    Many streams within the United States are impaired due to nutrient enrichment, particularly in agricultural settings. The present study examines the response of benthic algal communities in agricultural and minimally disturbed sites from across the western United States to a suite of environmental factors, including nutrients, collected at multiple scales. The first objective was to identify the relative importance of nutrients, habitat and watershed features, and macroinvertebrate trophic structure to explain algal metrics derived from deposition and erosion habitats. The second objective was to determine if thresholds in total nitrogen (TN) and total phosphorus (TP) related to algal metrics could be identified and how these thresholds varied across metrics and habitats. Nutrient concentrations within the agricultural areas were elevated and greater than published threshold values. All algal metrics examined responded to nutrients as hypothesized. Although nutrients typically were the most important variables in explaining the variation in each of the algal metrics, environmental factors operating at multiple scales also were important. Calculated thresholds for TN or TP based on the algal metrics generated from samples collected from erosion and deposition habitats were not significantly different. Little variability in threshold values for each metric for TN and TP was observed. The consistency of the threshold values measured across multiple metrics and habitats suggest that the thresholds identified in this study are ecologically relevant. Additional work to characterize the relationship between algal metrics, physical and chemical features, and nuisance algal growth would be of benefit to the development of nutrient thresholds and criteria. ?? 2010 The Author(s).

  9. Response of algal metrics to nutrients and physical factors and identification of nutrient thresholds in agricultural streams.

    PubMed

    Black, Robert W; Moran, Patrick W; Frankforter, Jill D

    2011-04-01

    Many streams within the United States are impaired due to nutrient enrichment, particularly in agricultural settings. The present study examines the response of benthic algal communities in agricultural and minimally disturbed sites from across the western United States to a suite of environmental factors, including nutrients, collected at multiple scales. The first objective was to identify the relative importance of nutrients, habitat and watershed features, and macroinvertebrate trophic structure to explain algal metrics derived from deposition and erosion habitats. The second objective was to determine if thresholds in total nitrogen (TN) and total phosphorus (TP) related to algal metrics could be identified and how these thresholds varied across metrics and habitats. Nutrient concentrations within the agricultural areas were elevated and greater than published threshold values. All algal metrics examined responded to nutrients as hypothesized. Although nutrients typically were the most important variables in explaining the variation in each of the algal metrics, environmental factors operating at multiple scales also were important. Calculated thresholds for TN or TP based on the algal metrics generated from samples collected from erosion and deposition habitats were not significantly different. Little variability in threshold values for each metric for TN and TP was observed. The consistency of the threshold values measured across multiple metrics and habitats suggest that the thresholds identified in this study are ecologically relevant. Additional work to characterize the relationship between algal metrics, physical and chemical features, and nuisance algal growth would be of benefit to the development of nutrient thresholds and criteria.

  10. Arctic water tracks retain phosphorus and transport ammonium

    NASA Astrophysics Data System (ADS)

    Harms, T.; Cook, C. L.; Wlostowski, A. N.; Godsey, S.; Gooseff, M. N.

    2017-12-01

    Hydrologic flowpaths propagate biogeochemical signals among adjacent ecosystems, but reactions may attenuate signals by retaining, removing, or transforming dissolved and suspended materials. The theory of nutrient spiraling describes these simultaneous reaction and transport processes, but its application has been limited to stream channels. We applied nutrient spiraling theory to water tracks, zero-order channels draining Arctic hillslopes that contain perennially saturated soils and flow at the surface either perennially or in response to precipitation. In the Arctic, experimental warming results in increased availability of nitrogen, the limiting nutrient for hillslope vegetation at the study site, which may be delivered to aquatic ecosystems by water tracks. Increased intensity of rain events, deeper snowpack, earlier snowmelt, and increasing thaw depth resulting from climate change might support increased transport of nutrients, but the reactive capacity of hillslope flowpaths, including sorption and uptake by plants and microbes, could counter transport to regulate solute flux. Characteristics of flowpaths might influence the opportunity for reaction, where slower flowpaths increase the contact time between solutes and soils or roots. We measured nitrogen and phosphorus uptake and transient storage of water tracks through the growing season and found that water tracks retain inorganic phosphorus, but transport ammonium. Nutrient uptake was unrelated to transient storage, suggesting high capacity for nutrient retention by shallow organic soils and vegetation. These observations indicate that increased availability of ammonium, the biogeochemical signal of warming tundra, is propagated by hillslope flowpaths, whereas water tracks attenuate delivery of phosphorus to aquatic ecosystems, where its availability typically limits production.

  11. Assessing the adequacy of essential nutrient intake in obese dogs undergoing energy restriction for weight loss: a cohort study.

    PubMed

    German, Alexander J; Holden, Shelley L; Serisier, Samuel; Queau, Yann; Biourge, Vincent

    2015-10-07

    Canine obesity is usually treated with dietary energy restriction, but data are limited regarding nutritional adequacy. The aim of the current study was to compare intake of essential nutrients with National Research Council recommendations in obese dogs during weight management with a purpose-formulated diet. Twenty-seven dogs were included in this non-randomised retrospective observational cohort study. All were determined to be systemically well, and without significant abnormalities based upon physical examination and clinicopathological assessments. The dogs underwent a controlled weight loss protocol of at least 182 days' duration using a high protein high fibre weight loss diet. Median, maximum, and minimum daily intakes of all essential nutrients were compared against NRC 2006 recommended allowances (RA) for adult dogs. Median weight loss was 28 % (16-40 %), mean daily energy intake was 61 kcal/kg(0.75) (44-74 kcal/kg(0.75)), and no clinical signs of nutrient deficiency were observed in any dog. Based upon the average nutrient content of the diet, daily intake of the majority of essential nutrients was greater than their NRC 2006 recommended allowance (RA per kg body weight(0.75)), except for selenium, choline, methionine/cysteine, tryptophan, magnesium, and potassium. However, apart from choline (2/27 dogs) and methionine/cysteine (2/27 dogs), all essential nutrients remained above NRC minimum requirements (MR) throughout the trial. When fed the diet used in the current study, daily intakes of most essential nutrients meet both their NRC 2006 RA and MR in obese dogs during weight loss. In light of absence of clinical signs of nutrient deficiency, it is unclear what significance intakes less that NRC cut-offs for some nutrients have (especially selenium and choline), and further studies are recommended.

  12. Nutrients stimulate leaf breakdown rates and detritivore biomass: Bottom-up effects via heterotrophic pathways

    USGS Publications Warehouse

    Greenwood, J.L.; Rosemond, A.D.; Wallace, J.B.; Cross, W.F.; Weyers, H.S.

    2007-01-01

    Most nutrient enrichment studies in aquatic systems have focused on autotrophic food webs in systems where primary producers dominate the resource base. We tested the heterotrophic response to long-term nutrient enrichment in a forested, headwater stream. Our study design consisted of 2 years of pretreatment data in a reference and treatment stream and 2 years of continuous nitrogen (N) + phosphorus addition to the treatment stream. Studies were conducted with two leaf species that differed in initial C:N, Rhododendron maximum (rhododendron) and Acer rubrum (red maple). We determined the effects of nutrient addition on detrital resources (leaf breakdown rates, litter C:N and microbial activity) and tested whether nutrient enrichment affected macroinvertebrate consumers via increased biomass. Leaf breakdown rates were ca. 1.5 and 3?? faster during the first and second years of enrichment, respectively, in the treatment stream for both leaf types. Microbial respiration rates of both leaf types were 3?? higher with enrichment, and macroinvertebrate biomass associated with leaves increased ca. 2-3?? with enrichment. The mass of N in macroinvertebrate biomass relative to leaves tended to increase with enrichment up to 6?? for red maple and up to 44?? for rhododendron leaves. Lower quality (higher C:N) rhododendron leaves exhibited greater changes in leaf nutrient content and macroinvertebrate response to nutrient enrichment than red maple leaves, suggesting a unique response by different leaf species to nutrient enrichment. Nutrient concentrations used in this study were moderate and equivalent to those in streams draining watersheds with altered land use. Thus, our results suggest that similarly moderate levels of enrichment may affect detrital resource quality and subsequently lead to altered energy and nutrient flow in detrital food webs. ?? 2006 Springer-Verlag.

  13. Nutrient contributions to the Santa Barbara Channel, California, from the ephemeral Santa Clara River

    USGS Publications Warehouse

    Warrick, J.A.; Washburn, L.; Brzezinski, Mark A.; Siegel, D.A.

    2005-01-01

    The Santa Clara River delivers nutrient rich runoff to the eastern Santa Barbara Channel during brief (???1-3 day) episodic events. Using both river and oceanographic measurements, we evaluate river loading and dispersal of dissolved macronutrients (silicate, inorganic N and P) and comment on the biological implications of these nutrient contributions. Both river and ocean observations suggest that river nutrient concentrations are inversely related to river flow rates. Land use is suggested to influence these concentrations, since runoff from a subwatershed with substantial agriculture and urban areas had much higher nitrate than runoff from a wooded subwatershed. During runoff events, river nutrients were observed to conservatively mix into the buoyant, surface plume immediately seaward of the Santa Clara River mouth. Dispersal of these river nutrients extended 10s of km into the channel. Growth of phytoplankton and nutrient uptake was low during our observations (1-3 days following runoff), presumably due to the very low light levels resulting from high turbidity. However, nutrient quality of runoff (Si:N:P = 16:5:1) was found to be significantly different than upwelling inputs (13:10:1), which may influence different algal responses once sediments settle. Evaluation of total river nitrate loads suggests that most of the annual river nutrient fluxes to the ocean occur during the brief winter flooding events. Wet winters (such as El Nin??o) contribute nutrients at rates approximately an order-of-magnitude greater than "average" winters. Although total river nitrate delivery is considerably less than that supplied by upwelling, the timing and location of these types of events are very different, with river discharge (upwelling) occurring predominantly in the winter (summer) and in the eastern (western) channel. ?? 2004 Elsevier Ltd. All rights reserved.

  14. Significant impacts of nutrient enrichment on High Arctic vegetation and soils despite two decades of recovery

    NASA Astrophysics Data System (ADS)

    Street, L. E.; Burns, N. R.; Woodin, S. J.

    2012-04-01

    We re-visit a unique field manipulation study in Svalbard to assess the long-term recovery of plant species composition, leaf tissue chemistry and total ecosystem carbon storage from nutrient enrichment. The experiment was established in 1991. The original aim was to quantify the 'critical load' of nitrogen (N) for tundra; that is, the minimum rate of N deposition affecting ecosystem structure and function. Dissolved N was applied to heath vegetation, both alone and in combination with phosphorous (P), during the growing season over three years. The rates of N addition were lower than in most other nutrient manipulation studies, and were designed to represent typical rates of deposition in the Scottish highlands (50 kg N ha-1 yr-1) and maximum deposition rates experienced in the Arctic (10 kg N ha-1 yr-1). Significant changes in shrub cover, the greenness and N content of the moss layer, and the extent of ecosystem N saturation had occurred by the end of the treatment period. After 18 years of recovery without further treatment, we assessed primary productivity using CO2 flux measurements, and the 'greenness' of vegetation using the Normalised Difference Vegetation Index. We made destructive measurements of above- and below-ground carbon and nutrient stocks, quantified species composition and sampled leaf tissue for chemical analysis. Total carbon storage in organic soils and vegetation was c. 40 % lower in the plots treated with 50 kg N ha-1 yr-1 compared to controls. Species composition in N treated plots also differed significantly, but there was no clear treatment effect on primary productivity. Where 50 kg N ha-1 yr-1 was applied in combination with P (at 5 kg P ha-1 yr-1 ), organic carbon storage was c. 70 % greater than controls, the vegetation was greener, and primary productivity higher. Effects of the treatments were also still clearly apparent in moss tissue nutrient status, even at the lower nitrogen application rate. Our results imply that the effects of nutrient enrichment on High Arctic ecosystems are not readily reversible, and that short-term addition of N can result in long-term carbon losses. We show that mosses perform an important role in retaining deposited N aboveground. Our results also highlight the importance of P in mediating carbon cycle responses to increased N availability.

  15. Nutrients in runoff from a furrow-irrigated field after incorporating inorganic fertilizer or manure.

    PubMed

    Lentz, R D; Lehrsch, G A

    2010-01-01

    Use of dairy manure to supply crop nutrients is gaining broader acceptance as the cost of fertilizer rises. However, there are concerns regarding manure's effect on water quality. In 2003 and 2004, we measured sediment, NO3-N, NH4-N, K, dissolved reactive P (DRP), and total P (TP) concentrations in runoff from furrow irrigated field plots (6-7 irrigations yr(-1)) cropped to corn (Zea mays L.) in the semiarid climate of southern Idaho. Annual treatments included 13 (Year 1) and 34 Mg ha(-1) (Year 2) stockpiled dairy manure (M); 78 (Year 1) and 195 kg N ha(-1) (Year 2) inorganic N fertilizer (F); or control-no amendment (C). Available N in manure applied each year was similar to amounts applied in fertilizer. Constituent concentrations (mg L(-1)) in runoff ranged widely among all treatments: sediment, 10 to 50,000; NO3-N, 0 to 4.07; NH4-N, 0 to 2.28; K, 3.6 to 46.4; DRP, 0.02 to 14.3; and TP, 0.03 to 41.5. Over both years, fertilizer and manure treatments increased irrigation mean values (averaged across irrigations) for NO3-N runoff concentrations (M = 0.30, F = 0.26, C = 0.21 mg L(-1)) and mass losses (M = 0.50, F = 0.42, C = 0.33 kg ha(-1)) relative to the control. Over both years, the manure treatment also increased mean irrigation runoff concentrations of DRP (M = 0.19, F = 0.09, C = 0.08 mg L(-1)) and K (M = 1.13, F = 0.79, C = 0.62 mg L(-1)) compared with fertilizer and control plots. Average DRP and K runoff mass losses were 2.0 to 2.4 times greater in manure treatments than in control plots. Neither F or M affected season-long cumulative infiltration. Runoff DRP and inorganic-N losses appeared to be influenced more by the timing of the amendment application and environmental conditions than by the quantity of nutrients applied. Nutrient additions to furrow irrigated soils, whether from fertilizer or manure, can potentially increase nutrient losses in irrigation runoff, with the degree of impact depending on the nutrient, amount, and timing of application and whether inorganic fertilizer or manure was applied.

  16. Variation in wood nutrients along a tropical soil fertility gradient.

    PubMed

    Heineman, Katherine D; Turner, Benjamin L; Dalling, James W

    2016-07-01

    Wood contains the majority of the nutrients in tropical trees, yet controls over wood nutrient concentrations and their function are poorly understood. We measured wood nutrient concentrations in 106 tree species in 10 forest plots spanning a regional fertility gradient in Panama. For a subset of species, we quantified foliar nutrients and wood density to test whether wood nutrients scale with foliar nutrients at the species level, or wood nutrient storage increases with wood density as predicted by the wood economics spectrum. Wood nutrient concentrations varied enormously among species from fourfold in nitrogen (N) to > 30-fold in calcium (Ca), potassium (K), magnesium (Mg) and phosphorus (P). Community-weighted mean wood nutrient concentrations correlated positively with soil Ca, K, Mg and P concentrations. Wood nutrients scaled positively with leaf nutrients, supporting the hypothesis that nutrient allocation is conserved across plant organs. Wood P was most sensitive to variation in soil nutrient availability, and significant radial declines in wood P indicated that tropical trees retranslocate P as sapwood transitions to heartwood. Wood P decreased with increasing wood density, suggesting that low wood P and dense wood are traits associated with tree species persistence on low fertility soils. Substantial variation among species and communities in wood nutrient concentrations suggests that allocation of nutrients to wood, especially P, influences species distributions and nutrient dynamics in tropical forests. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. Stormwater runoff mitigation and nutrient leaching from a green roof designed to attract native pollinating insects

    NASA Astrophysics Data System (ADS)

    Fogarty, S.; Grogan, D. S.; Hale, S. R.

    2013-12-01

    A green roof is typically installed for one of two reasons: to mitigate the 'urban heat island' effect, reducing ambient temperatures and creating energy savings, or to reduce both the quantity and intensity of stormwater runoff, which is a major cause of river erosion and eutrophication. The study of green roofs in the United States has focused on commercial systems that use a proprietary expanded shale or clay substrate, along with succulent desert plants (mainly Sedum species). The green roof has the potential not only to provide thermal insulation and reduce storm runoff, but also to reclaim some of the natural habitat that has been lost to the built environment. Of special importance is the loss of habitat for pollinating insects, particularly native bees, which have been in decline for at least two decades. These pollinators are essential for crop production and for the reproduction of at least 65% of wild plants globally. Our study involves the installation of a small (4ft by 4ft), self-designed green roof system built with readily available components from a hardware store. The garden will be filled with a soilless potting mix, combined with 15% compost, and planted with grasses and wildflowers native to the Seacoast, New Hampshire region. Some of the plant species are used by bees for nesting materials, while others provide food in the form of nectar, pollen, and seeds for bees, butterflies, hummingbirds, and granivorous birds. We monitor precipitation on the roof and runoff from the garden on a per storm basis, and test grab samples of runoff for dissolved organic nitrogen and phosphorous. Runoff and nutrient concentration results are compared to a non-vegetated roof surface, and a proprietary Green Grid green roof system. This project is designed to address three main questions of interest: 1) Can these native plant species, which potentially provide greater ecosystem services than Sedum spp. in the form of food and habitat, survive in the conditions on a rooftop? 2) How does this design compare with the performance of the extant Green Grid green roof system on the roof in regard to storm water runoff mitigation and nutrient leaching? and 3) Using GIS, can this information be scaled to a larger region (i.e. UNH campus, the NH Seacoast, NH cities, etc.) to determine areas of particular interest for pollinator conservation? Runoff mitigation, as a percentage of precipitation, is expected to be greater than that on the roof with proprietary substrate, though nutrient leaching may be greater as well due to the higher organic matter content. Paired with GIS data on NH ecoregions, these results will help to identify areas in the state that would benefit from the construction of pollinator habitat corridors, including urban areas that may not have been previously considered.

  18. Computational Investigation of Environment-Noise Interaction in Single-Cell Organisms: The Merit of Expression Stochasticity Depends on the Quality of Environmental Fluctuations.

    PubMed

    Lück, Anja; Klimmasch, Lukas; Großmann, Peter; Germerodt, Sebastian; Kaleta, Christoph

    2018-01-10

    Organisms need to adapt to changing environments and they do so by using a broad spectrum of strategies. These strategies include finding the right balance between expressing genes before or when they are needed, and adjusting the degree of noise inherent in gene expression. We investigated the interplay between different nutritional environments and the inhabiting organisms' metabolic and genetic adaptations by applying an evolutionary algorithm to an agent-based model of a concise bacterial metabolism. Our results show that constant environments and rapidly fluctuating environments produce similar adaptations in the organisms, making the predictability of the environment a major factor in determining optimal adaptation. We show that exploitation of expression noise occurs only in some types of fluctuating environment and is strongly dependent on the quality and availability of nutrients: stochasticity is generally detrimental in fluctuating environments and beneficial only at equal periods of nutrient availability and above a threshold environmental richness. Moreover, depending on the availability and nutritional value of nutrients, nutrient-dependent and stochastic expression are both strategies used to deal with environmental changes. Overall, we comprehensively characterize the interplay between the quality and periodicity of an environment and the resulting optimal deterministic and stochastic regulation strategies of nutrient-catabolizing pathways.

  19. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions.

    PubMed

    Gebremikael, Mesfin T; Steel, Hanne; Buchan, David; Bert, Wim; De Neve, Stefaan

    2016-09-08

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.

  20. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions

    NASA Astrophysics Data System (ADS)

    Gebremikael, Mesfin T.; Steel, Hanne; Buchan, David; Bert, Wim; de Neve, Stefaan

    2016-09-01

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.

  1. Effects of nutrient addition on leaf chemistry, morphology, and photosynthetic capacity of three bog shrubs

    Treesearch

    Jill L. Bubier; Rose Smith; Sari Juutinen; Tim R. Moore; Rakesh Minocha; Stephanie Long; Subash Minocha

    2011-01-01

    Plants in nutrient-poor environments typically have low foliar nitrogen (N) concentrations, long-lived tissues with leaf traits designed to use nutrients efficiently, and low rates of photosynthesis. We postulated that increasing N availability due to atmospheric deposition would increase photosynthetic capacity, foliar N, and specific leaf area (SLA) of bog shrubs. We...

  2. Food Availability in School Stores in Seoul, South Korea after Implementation of Food- and Nutrient-Based Policies

    ERIC Educational Resources Information Center

    Choi, Seul Ki; Frongillo, Edward A.; Blake, Christine E.; Thrasher, James F.

    2017-01-01

    Background: To improve school store food environments, the South Korean government implemented 2 policies restricting unhealthy food sales in school stores. A food-based policy enacted in 2007 restricts specific food sales (soft drinks); and a nutrient-based policy enacted in 2009 restricts energy-dense and nutrient-poor (EDNP) food sales. The…

  3. Evaluation of growth, nutrient retention, health, and resistance to bacterial challenge in sunshine bass fed diets with new varieties of non-genetically modified soybeans

    USDA-ARS?s Scientific Manuscript database

    We evaluated the effects of meals made from new strains of soybeans with high protein and reduced anti-nutritional factors (ANFs) on hybrid striped bass ("Sunshine bass", Morone chrysops x M. saxatilis) nutrient availability, growth rates, nutrient retention, gut histology, non-specific immune respo...

  4. Plant and soil nutrients in young versus mature central Appalachian hardwood stands

    Treesearch

    Frank S. Gilliam; Mary Beth Adams

    1995-01-01

    Most models of forest succession and forest recovery following disturbance predict changes in nutrient availability. The purpose of this study was to compare soil and herbaceous layer plant nutrients between two young (~20 yr) and two mature (~80 yr) forest stands on Fernow Experimental Forest, Parsons, West Virginia. All sampling was carried out within 15 circular 0....

  5. Scale-location specific relations between soil nutrients and topographic factors in the Fen River Basin, Chinese Loess Plateau

    NASA Astrophysics Data System (ADS)

    Zhu, Hongfen; Bi, Rutian; Duan, Yonghong; Xu, Zhanjun

    2017-06-01

    Understanding scale- and location-specific variations of soil nutrients in cultivated land is a crucial consideration for managing agriculture and natural resources effectively. In the present study, wavelet coherency was used to reveal the scale-location specific correlations between soil nutrients, including soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK), as well as topographic factors (elevation, slope, aspect, and wetness index) in the cultivated land of the Fen River Basin in Shanxi Province, China. The results showed that SOM, TN, AP, and AK were significantly inter-correlated, and that the scales at which soil nutrients were correlated differed in different landscapes, and were generally smaller in topographically rougher terrain. All soil nutrients but TN were significantly influenced by the wetness index at relatively large scales (32-72 km) and AK was significantly affected by the aspect at large scales at partial locations, showing localized features. The results of this study imply that the wetness index should be taken into account during farming practices to improve the soil nutrients of cultivated land in the Fen River Basin at large scales.

  6. Parasite infection alters nitrogen cycling at the ecosystem scale.

    PubMed

    Mischler, John; Johnson, Pieter T J; McKenzie, Valerie J; Townsend, Alan R

    2016-05-01

    Despite growing evidence that parasites often alter nutrient flows through their hosts and can comprise a substantial amount of biomass in many systems, whether endemic parasites influence ecosystem nutrient cycling, and which nutrient pathways may be important, remains conjectural. A framework to evaluate how endemic parasites alter nutrient cycling across varied ecosystems requires an understanding of the following: (i) parasite effects on host nutrient excretion; (ii) ecosystem nutrient limitation; (iii) effects of parasite abundance, host density, host functional role and host excretion rate on nutrient flows; and (iv) how this infection-induced nutrient flux compares to other pools and fluxes. Pathogens that significantly increase the availability of a limiting nutrient within an ecosystem should produce a measurable ecosystem-scale response. Here, we combined field-derived estimates of trematode parasite infections in aquatic snails with measurements of snail excretion and tissue stoichiometry to show that parasites are capable of altering nutrient excretion in their intermediate host snails (dominant grazers). We integrated laboratory measurements of host nitrogen excretion with field-based estimates of infection in an ecosystem model and compared these fluxes to other pools and fluxes of nitrogen as measured in the field. Eighteen nitrogen-limited ponds were examined to determine whether infection had a measurable effect on ecosystem-scale nitrogen cycling. Because of their low nitrogen content and high demand for host carbon, parasites accelerated the rate at which infected hosts excreted nitrogen to the water column in a dose-response manner, thereby shifting nutrient stoichiometry and availability at the ecosystem scale. Infection-enhanced fluxes of dissolved inorganic nitrogen were similar to other commonly important environmental sources of bioavailable nitrogen to the system. Additional field measurements within nitrogen-limited ponds indicated that nitrogen flux rates from the periphyton to the water column in high-snail density/high-infection ponds were up to 50% higher than low-infection ponds. By altering host nutrient assimilation/excretion flexibility, parasites could play a widespread, but currently unrecognized, role in ecosystem nutrient cycling, especially when parasite and host abundances are high and hosts play a central role in ecosystem nutrient cycling. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  7. Effect of phosphorous concentrations on sedimentary distributions and isotopic composition of algal lipid biomarkers in lakes from central Switzerland

    NASA Astrophysics Data System (ADS)

    Ladd, N.; Dubois, N.; Schubert, C. J.

    2015-12-01

    Lakes in the Swiss central plateau experienced increasing anthropogenic phosphorous loading throughout much of the 20th century. Since the 1980s concerted remediation efforts on the part of the Swiss government have significantly reduced P concentrations in most lakes and reversed previous eutrophication. However, P concentrations remain elevated above their preindustrial levels in many sites. High quality monitoring of lake nutrient levels since the 1950s, along with several lakes of wide-ranging P concentrations in close proximity, make central Switzerland an ideal location for studying the ways in which nutrient loading affects the organic composition of lacustrine sediments. Results of such studies can be used to develop proxies of eutrophication in sites where fewer historical data exist, and to reconstruct historical P concentrations in local lakes from the time before record keeping began. We analyzed the distributions of algal lipid biomarkers from surface sediment and sediment traps collected in the spring of 2015 from ten lakes with variable P concentrations in central Switzerland. Sedimentary lipid distributions from these lakes confirm that biomarkers associated with algal and cyanobacterial sources are more abundant in the sediment of lakes with greater P loading. The dry sedimentary concentrations of biomarkers such as brassicasterol (primarily diatom source) and diplopterol (cyanobacteria source), as well as the less source specific short-chain n-alkanols, linearly increase from 0.3 - 1.9 μg/g as total phosphorous in the upper water column increases by 1 μg/L over a range of 7 - 50 μg/L. We also present preliminary hydrogen isotope data from these biomarkers. Hydrogen isotopes of algal lipids primarily reflect the source water in which the algae grew, and this relationship has been developed as a paleohydrologic proxy. However, laboratory cultures of marine algae demonstrate that they discriminate more against 2H under nutrient replete conditions. We present the first field assessment of how nutrient availability influences 2H fractionation in freshwater algae, and demonstrate how such measurements can be used to infer past information about anthropogenic nutrient loading.

  8. A novel nanoparticle approach for imaging nutrient uptake by soil bacteria

    NASA Astrophysics Data System (ADS)

    O'Brien, S. L.; Whiteside, M. D.; Sholto-Douglas, D.; Antonopoulos, D. A.; Boyanov, M.; Durall, D. M.; Jones, M. D.; Lai, B.; O'Loughlin, E. J.; Kemner, K. M.

    2014-12-01

    The metabolic activities of soil microbes are the primary drivers of biogeochemical processes controlling the terrestrial carbon cycle, nutrient availability to plants, contaminant remediation, water quality, and other ecosystem services. However, we have a limited understanding of microbial metabolic processes such as nutrient uptake rates, substrate preferences, or how microbes and microbial metabolism are distributed throughout their habitat. Here we use a novel imaging technique with quantum dots (QDs, engineered semiconductor nanoparticles that produce size or composition-dependent fluorescence) to measure bacterial uptake of substrates of varying complexity. Cultures of two organisms differing in cell wall structure — Bacillus subtilis and Pseudomonas fluorescens — were grown in one of four ecologically relevant experimental conditions: nitrogen (N) limitation, phosphorus (P) limitation, N and P limitation, or no nutrient limitation. The cultures were then exposed to QDs with and without organic nutrients attached. X-ray fluorescence imaging was performed at 2ID-D at the Advanced Photon Source (APS) to determine the elemental distributions within both planktonic and surface-adhered (i.e, biofilms) cells. Uptake of unconjugated QDs was neglibible, and QDs conjugated to organic substrates varied depending on growth conditions and substrate, suggesting that they are a useful indicator of bacterial ecology. Cellular uptake was similar for the two bacterial species (2212 ± 273 nanoparticles per cm3 of cell volume for B. subtilis and 1682 ± 264 for P. fluorescens). On average, QD assimilation was six times greater when N or P was limiting, and cells took up about twice as much phosphoserine compared to other substrates, likely because it was the only compound providing both N and P. These results showed that regardless of their cell wall structure, bacteria can selectively take up quantifiable levels of QDs based on substrate and environmental conditions. APS images are consistent with those produced with confocal and optical microscopes, indicating that the XRF approach can detect bacterial uptake of CdSe-core QDs. These findings offer a new way to experimentally investigate basic bacterial ecology such as metabolic activity and biofilm development and function.

  9. Enhanced bioremediation of nutrient-amended, petroleum hydrocarbon-contaminated soils over a cold-climate winter: The rate and extent of hydrocarbon biodegradation and microbial response in a pilot-scale biopile subjected to natural seasonal freeze-thaw temperatures.

    PubMed

    Kim, Jihun; Lee, Aslan Hwanhwi; Chang, Wonjae

    2018-01-15

    A pilot-scale biopile field experiment for nutrient-amended petroleum-contaminated fine-grained soils was performed over the winter at a cold-climate site. The rate and extent of hydrocarbon biodegradation and microbial responses were determined and corresponded to the on-site soil phase changes (from unfrozen to partially frozen, deeply frozen, and thawed) associated with natural seasonal freeze-thaw conditions. Treated and untreated biopiles were constructed (~3500kg each) on an open outdoor surface at a remediation facility in Saskatoon, Canada. The treated biopile received N-P-K-based nutrient and humate amendments before seasonal freezing. Real-time field monitoring indicated significant unfrozen water content in the treated and untreated biopiles throughout the freezing period, from the middle of November to early March. Unfrozen water was slightly more available in the treated biopile due to the aqueous nutrient supply. Soil CO 2 production and O 2 consumption in the treated biopile were generally greater than in the untreated biopile. Total removal percentages for F2 (>C10-C16), F3 (>C16-C34), and total petroleum hydrocarbons (TPH) in the treated biopile were 57, 58, and 58%, respectively, of which 26, 39, and 33% were removed during seasonal freezing and early thawing between November to early March. F3 degradation largely occurred during freezing while F2 hydrocarbons were primarily removed during thawing. Biomarker-based hydrocarbon analyses confirmed enhanced biodegradation in the treated biopile during freezing. The soil treatment increased the first-order rate constants for F2, F3, and TPH degradation by a factor of 2 to 7 compared to the untreated biopile. Shifts in bacterial community appeared in both biopiles as the biopile soils seasonally froze and thawed. Increased alkB1 gene copy numbers in the treated biopile, especially in the partially thawed phase during early thawing, suggest extended hydrocarbon biodegradation to the seasonal freeze-thaw season, due to the nutrients supplied prior to seasonal freezing. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Short-term fate of intertidal microphytobenthos carbon under enhanced nutrient availability: a 13C pulse-chase experiment

    NASA Astrophysics Data System (ADS)

    Riekenberg, Philip M.; Oakes, Joanne M.; Eyre, Bradley D.

    2018-05-01

    Shallow coastal waters in many regions are subject to nutrient enrichment. Microphytobenthos (MPB) can account for much of the carbon (C) fixation in these environments, depending on the depth of the water column, but the effect of enhanced nutrient availability on the processing and fate of MPB-derived C (MPB-C) is relatively unknown. In this study, MPB was labeled (stable isotope enrichment) in situ using 13C-sodium bicarbonate. The processing and fate of the newly fixed MPB-C was then traced using ex situ incubations over 3.5 days under different concentrations of nutrients (NH4+ and PO43-: ambient, 2 × ambient, 5 × ambient, and 10 × ambient). After 3.5 days, sediments incubated with increased nutrient concentrations (amended treatments) had increased loss of 13C from sediment organic matter (OM) as a portion of initial uptake (95 % remaining in ambient vs. 79-93 % for amended treatments) and less 13C in MPB (52 % ambient, 26-49 % amended), most likely reflecting increased turnover of MPB-derived C supporting increased production of extracellular enzymes and storage products. Loss of MPB-derived C to the water column via dissolved organic C (DOC) was minimal regardless of treatment (0.4-0.6 %). Loss due to respiration was more substantial, with effluxes of dissolved inorganic C (DIC) increasing with additional nutrient availability (4 % ambient, 6.6-19.8 % amended). These shifts resulted in a decreased turnover time for algal C (419 days ambient, 134-199 days amended). This suggests that nutrient enrichment of estuaries may ultimately lead to decreased retention of carbon within MPB-dominated sediments.

  11. The role of environmental factors in oak decline and mortality in the Ozark Highlands

    Treesearch

    John M. Kabrick; Daniel C. Dey; Randy G. Jensen; Michael Wallendorf

    2008-01-01

    Oak decline is a chronic problem in Missouri Ozark forests. Red oak group species are most susceptible and decline is reportedly more severe on droughty, nutrient-poor sites. However, it was not clear whether greater decline severity was caused by poor site conditions or is simply due to the greater abundance of red oak group species found on poorer sites. We conducted...

  12. Comparative digestibility of energy and nutrients and fermentability of dietary fiber in eight cereal grains fed to pigs.

    PubMed

    Cervantes-Pahm, Sarah K; Liu, Yanhong; Stein, Hans H

    2014-03-30

    Cereal grains provide a large portion of caloric intake in diets for humans, but not all cereal grains provide the same amount of energy. Therefore, an experiment was conducted to determine and compare the metabolizable energy (ME), the apparent ileal digestibility (AID), and the apparent total tract digestibility (ATTD) of gross energy (GE) and nutrients in eight cereal grains when fed to pigs. Rice had greater (P < 0.05) AID of GE than other cereal grains, greater (P < 0.05) AID of starch than yellow dent corn, dehulled barley, rye, and wheat, and greater (P < 0.05) ATTD of GE than yellow dent corn, rye, sorghum, and wheat. Dehulled barley, rye, and sorghum had less (P < 0.05) AID of starch than other cereal grains. Dehulled barley had greater (P < 0.05) ATTD of GE than rye. Dehulled oats had the greatest (P < 0.05) ME compared with other cereal grains, whereas rye had the least (P < 0.05) ME. Dehulled oats provide more energy to diets and should be used if the goal is to increase caloric intake. In contrast, sorghum and rye may be more suitable to control diabetes and manage body weight of humans. © 2013 Society of Chemical Industry.

  13. Phenotyping nutritional and antinutritional traits

    USDA-ARS?s Scientific Manuscript database

    Evolution of nutrient-rich food systems to calorie-focused production agriculture has created serious agricultural and human health issues: marginalization of traditional agricultural crops, greater dependence of agricultural inputs, and creation of both energy and micronutrient malnutrition. To dat...

  14. Quantifying the Urban and Rural Nutrient Fluxes to Lake Erie Using a Paired Watershed Approach

    NASA Astrophysics Data System (ADS)

    Hopkins, M.; Beck, M.; Rossi, E.; Luh, N.; Allen-King, R. M.; Lowry, C.

    2016-12-01

    Excess nutrients have a detrimental impact on the water quality of Lake Erie, specifically nitrate and phosphate, which can lead to toxic algae blooms. Algae blooms have negatively impacted Lake Erie, which is the main source of drinking water for many coastal Great Lake communities. In 2014 the city of Toledo, Ohio was forced to shut down its water treatment plant due to these toxic algae blooms. The objective of this research is to quantify surface water nutrient fluxes to the eastern basin of Lake Erie using a paired watershed approach. Three different western New York watersheds that feed Lake Erie were chosen based on land use and areal extent: one small urban, one small rural, and one large rural. These paired watersheds were chosen to represent a range of sources of potential nutrient loading to the lake. Biweekly water samples were taken from the streams during the 2015-2016 winter to summer seasonal transition to quantify springtime snow melt effects on nutrient fluxes. These results were compared to the previous year samples, collected over the summer of 2015, which represented wetter conditions. Phosphorous levels were assessed using the ascorbic acid colorimetric assay, while nitrate was analyzed by anion-exchange chromatography. Stream gaging was used to obtain flow measurements and establish a rating curve, which was incorporated to quantify seasonal nutrient fluxes entering the lake. Patterns in the nutrient levels show higher level of nutrients in the rural watersheds with a decrease in concentration over the winter to spring transition. However, nutrient patterns in the urban stream show relatively constant patters of nutrient flux, which is independent of seasonal transition or stream discharge. A comparison of wet and dry seasons shows higher nutrient concentrations during summers with greater rainfall. By identifying the largest contributors of each nutrient, we can better allocate limited attenuation resources.

  15. Effect of Meloidogyne arenaria and Mulch Type on Okra in Microplot Experiments.

    PubMed

    Ritzinger, C H; McSorley, R; Gallaher, R N

    1998-12-01

    The effects of perennial peanut (Arachis glabrata) hay, an aged yard-waste compost (mainly woodchips), and a control treatment without amendment were determined on two population levels of root-knot (Melaidogyne arenaria) nematode over three consecutive years in field microplots. Okra (Hibiscus esculentus, susceptible to the root-knot nematode) and a rye (Secale cereale) cover crop (poor nematode host) were used in the summer and winter seasons, respectively. The organic amendment treatments affected plant growth parameters. In the first year, okra yields were greatest in peanut-amended plots. Yield differences with amendment treatment diminished in the second and third years. Okra plant height, total fruit weight, and fruit number were greater with the lower population level of the root-knot nematode. Residual levels of nutrients in soil were greater where root-knot nematode levels and damage were higher and plant growth was poor. Nutrient levels affected the growth of a subsequent rye cover crop.

  16. The effects of CO2 and nutrient fertilisation on the growth and temperature response of the mangrove Avicennia germinans.

    PubMed

    Reef, Ruth; Slot, Martijn; Motro, Uzi; Motro, Michal; Motro, Yoav; Adame, Maria F; Garcia, Milton; Aranda, Jorge; Lovelock, Catherine E; Winter, Klaus

    2016-08-01

    In order to understand plant responses to both the widespread phenomenon of increased nutrient inputs to coastal zones and the concurrent rise in atmospheric CO2 concentrations, CO2-nutrient interactions need to be considered. In addition to its potential stimulating effect on photosynthesis and growth, elevated CO2 affects the temperature response of photosynthesis. The scarcity of experiments testing how elevated CO2 affects the temperature response of tropical trees hinders our ability to model future primary productivity. In a glasshouse study, we examined the effects of elevated CO2 (800 ppm) and nutrient availability on seedlings of the widespread mangrove Avicennia germinans. We assessed photosynthetic performance, the temperature response of photosynthesis, seedling growth and biomass allocation. We found large synergistic gains in both growth (42 %) and photosynthesis (115 %) when seedlings grown under elevated CO2 were supplied with elevated nutrient concentrations relative to their ambient growing conditions. Growth was significantly enhanced under elevated CO2 only under high-nutrient conditions, mainly in above-ground tissues. Under low-nutrient conditions and elevated CO2, root volume was more than double that of seedlings grown under ambient CO2 levels. Elevated CO2 significantly increased the temperature optimum for photosynthesis by ca. 4 °C. Rising CO2 concentrations are likely to have a significant positive effect on the growth rate of A. germinans over the next century, especially in areas where nutrient availability is high.

  17. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies

    PubMed Central

    Wernerehl, Robert W.; Givnish, Thomas J.

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis’ continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward “drier” sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500–1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward “wetter” sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the first to quantify the effects of soil mechanical impedance on community ecology. PMID:26368936

  18. Relative Roles of Soil Moisture, Nutrient Supply, Depth, and Mechanical Impedance in Determining Composition and Structure of Wisconsin Prairies.

    PubMed

    Wernerehl, Robert W; Givnish, Thomas J

    2015-01-01

    Ecologists have long classified Midwestern prairies based on compositional variation assumed to reflect local gradients in moisture availability. The best known classification is based on Curtis' continuum index (CI), calculated using the presence of indicator species thought centered on different portions of an underlying moisture gradient. Direct evidence of the extent to which CI reflects differences in moisture availability has been lacking, however. Many factors that increase moisture availability (e.g., soil depth, silt content) also increase nutrient supply and decrease soil mechanical impedance; the ecological effects of the last have rarely been considered in any ecosystem. Decreased soil mechanical impedance should increase the availability of soil moisture and nutrients by reducing the root costs of retrieving both. Here we assess the relative importance of soil moisture, nutrient supply, and mechanical impedance in determining prairie composition and structure. We used leaf δ13C of C3 plants as a measure of growing-season moisture availability, cation exchange capacity (CEC) x soil depth as a measure of mineral nutrient availability, and penetrometer data as a measure of soil mechanical impedance. Community composition and structure were assessed in 17 remnant prairies in Wisconsin which vary little in annual precipitation. Ordination and regression analyses showed that δ13C increased with CI toward "drier" sites, and decreased with soil depth and % silt content. Variation in δ13C among remnants was 2.0‰, comparable to that along continental gradients from ca. 500-1500 mm annual rainfall. As predicted, LAI and average leaf height increased significantly toward "wetter" sites. CI accounted for 54% of compositional variance but δ13C accounted for only 6.2%, despite the strong relationships of δ13C to CI and CI to composition. Compositional variation reflects soil fertility and mechanical impedance more than moisture availability. This study is the first to quantify the effects of soil mechanical impedance on community ecology.

  19. Phosphorus-containing food additives and the accuracy of nutrient databases: implications for renal patients.

    PubMed

    Sullivan, Catherine M; Leon, Janeen B; Sehgal, Ashwini R

    2007-09-01

    Phosphorus-containing additives are increasingly being added to food products. We sought to determine the potential impact of these additives. We focused on chicken products as an example. We purchased a variety of chicken products, prepared them according to package directions, and performed laboratory analyses to determine their actual phosphorus content. We used ESHA Food Processor SQL Software (version 9.8, ESHA Research, Salem, OR) to determine the expected phosphorus content of each product. Of 38 chicken products, 35 (92%) had phosphorus-containing additives listed among their ingredients. For every category of chicken products containing additives, the actual phosphorus content was greater than the content expected from nutrient database. For example, actual phosphorus content exceeded expected phosphorus content by an average of 84 mg/100 g for breaded breast strips. There was also a great deal of variation within each category. For example, the difference between actual and expected phosphorus content ranged from 59-165 mg/100 g for breast patties. Two 100-g servings of additive-containing products contained, on average, 440 mg of phosphorus, or about half the total daily recommended intake for dialysis patients. Phosphorus-containing additives significantly increase the amount of phosphorus in chicken products. Available nutrient databases do not reflect this higher phosphorus content, and the variation between similar products makes it impossible for patients and dietitians to accurately estimate phosphorus content. We recommend that dialysis patients limit their intake of additive-containing products, and that the phosphorus content of food products be included on nutrition facts labels.

  20. Redefining the impact of nutrition on breast cancer incidence: is epigenetics involved?

    PubMed Central

    Teegarden, Dorothy; Romieu, Isabelle; Lelièvre, Sophie A.

    2014-01-01

    Breast cancer incidence is rising worldwide with an increase in aggressive neoplasias in young women. Possible factors involved include lifestyle changes, notably diet that is known to make an impact on gene transcription. However, among dietary factors, there is sufficient support for only greater body weight and alcohol consumption whereas numerous studies revealing an impact of specific diets and nutrients on breast cancer risk show conflicting results. Also, little information is available from middle- and low-income countries. The diversity of gene expression profiles found in breast cancers indicates that transcription control is critical for the outcome of the disease. This suggests the need for studies on nutrients that affect epigenetic mechanisms of transcription, such as DNA methylation and post-translational modifications of histones. In the present review, a new examination of the relationship between diet and breast cancer based on transcription control is proposed in light of epidemiological, animal and clinical studies. The mechanisms underlying the impact of diets on breast cancer development and factors that impede reaching clear conclusions are discussed. Understanding the interaction between nutrition and epigenetics (gene expression control via chromatin structure) is critical in light of the influence of diet during early stages of mammary gland development on breast cancer risk, suggesting a persistent effect on gene expression as shown by the influence of certain nutrients on DNA methylation. Successful development of breast cancer prevention strategies will require appropriate models, identification of biological markers for rapid assessment of preventive interventions, and coordinated worldwide research to discern the effects of diet. PMID:22853843

Top