A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index.
Płotka-Wasylka, J
2018-05-01
A new means for assessing analytical protocols relating to green analytical chemistry attributes has been developed. The new tool, called GAPI (Green Analytical Procedure Index), evaluates the green character of an entire analytical methodology, from sample collection to final determination, and was created using such tools as the National Environmental Methods Index (NEMI) or Analytical Eco-Scale to provide not only general but also qualitative information. In GAPI, a specific symbol with five pentagrams can be used to evaluate and quantify the environmental impact involved in each step of an analytical methodology, mainly from green through yellow to red depicting low, medium to high impact, respectively. The proposed tool was used to evaluate analytical procedures applied in the determination of biogenic amines in wine samples, and polycyclic aromatic hydrocarbon determination by EPA methods. GAPI tool not only provides an immediately perceptible perspective to the user/reader but also offers exhaustive information on evaluated procedures. Copyright © 2018 Elsevier B.V. All rights reserved.
Green approach using monolithic column for simultaneous determination of coformulated drugs.
Yehia, Ali M; Mohamed, Heba M
2016-06-01
Green chemistry and sustainability is now entirely encompassed across the majority of pharmaceutical companies and research labs. Researchers' attention is careworn toward implementing the green analytical chemistry principles for more eco-friendly analytical methodologies. Solvents play a dominant role in determining the greenness of the analytical procedure. Using safer solvents, the greenness profile of the methodology could be increased remarkably. In this context, a green chromatographic method has been developed and validated for the simultaneous determination of phenylephrine, paracetamol, and guaifenesin in their ternary pharmaceutical mixture. The chromatographic separation was carried out using monolithic column and green solvents as mobile phase. The use of monolithic column allows efficient separation protocols at higher flow rates, which results in short time of analysis. Two-factor three-level experimental design was used to optimize the chromatographic conditions. The greenness profile of the proposed methodology was assessed using eco-scale as a green metrics and was found to be an excellent green method with regard to the usage and production of hazardous chemicals and solvents, energy consumption, and amount of produced waste. The proposed method improved the environmental impact without compromising the analytical performance criteria and could be used as a safer alternate for the routine analysis of the studied drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
New insights into liquid chromatography for more eco-friendly analysis of pharmaceuticals.
Shaaban, Heba
2016-10-01
Greening the analytical methods used for analysis of pharmaceuticals has been receiving great interest aimed at eliminating or minimizing the amount of organic solvents consumed daily worldwide without loss in chromatographic performance. Traditional analytical LC techniques employed in pharmaceutical analysis consume tremendous amounts of hazardous solvents and consequently generate large amounts of waste. The monetary and ecological impact of using large amounts of solvents and waste disposal motivated the analytical community to search for alternatives to replace polluting analytical methodologies with clean ones. In this context, implementing the principles of green analytical chemistry (GAC) in analytical laboratories is highly desired. This review gives a comprehensive overview on different green LC pathways for implementing GAC principles in analytical laboratories and focuses on evaluating the greenness of LC analytical procedures. This review presents green LC approaches for eco-friendly analysis of pharmaceuticals in industrial, biological, and environmental matrices. Graphical Abstract Green pathways of liquid chromatography for more eco-friendly analysis of pharmaceuticals.
Shapira, Aviad; Shoshany, Maxim; Nir-Goldenberg, Sigal
2013-07-01
Environmental management and planning are instrumental in resolving conflicts arising between societal needs for economic development on the one hand and for open green landscapes on the other hand. Allocating green corridors between fragmented core green areas may provide a partial solution to these conflicts. Decisions regarding green corridor development require the assessment of alternative allocations based on multiple criteria evaluations. Analytical Hierarchy Process provides a methodology for both a structured and consistent extraction of such evaluations and for the search for consensus among experts regarding weights assigned to the different criteria. Implementing this methodology using 15 Israeli experts-landscape architects, regional planners, and geographers-revealed inherent differences in expert opinions in this field beyond professional divisions. The use of Agglomerative Hierarchical Clustering allowed to identify clusters representing common decisions regarding criterion weights. Aggregating the evaluations of these clusters revealed an important dichotomy between a pragmatist approach that emphasizes the weight of statutory criteria and an ecological approach that emphasizes the role of the natural conditions in allocating green landscape corridors.
NASA Astrophysics Data System (ADS)
Shapira, Aviad; Shoshany, Maxim; Nir-Goldenberg, Sigal
2013-07-01
Environmental management and planning are instrumental in resolving conflicts arising between societal needs for economic development on the one hand and for open green landscapes on the other hand. Allocating green corridors between fragmented core green areas may provide a partial solution to these conflicts. Decisions regarding green corridor development require the assessment of alternative allocations based on multiple criteria evaluations. Analytical Hierarchy Process provides a methodology for both a structured and consistent extraction of such evaluations and for the search for consensus among experts regarding weights assigned to the different criteria. Implementing this methodology using 15 Israeli experts—landscape architects, regional planners, and geographers—revealed inherent differences in expert opinions in this field beyond professional divisions. The use of Agglomerative Hierarchical Clustering allowed to identify clusters representing common decisions regarding criterion weights. Aggregating the evaluations of these clusters revealed an important dichotomy between a pragmatist approach that emphasizes the weight of statutory criteria and an ecological approach that emphasizes the role of the natural conditions in allocating green landscape corridors.
Cordeiro, Liliana; Valente, Inês M; Santos, João Rodrigo; Rodrigues, José A
2018-05-01
In this work, an analytical methodology for volatile carbonyl compounds characterization in green and roasted coffee beans was developed. The methodology relied on a recent and simple sample preparation technique, gas diffusion microextraction for extraction of the samples' volatiles, followed HPLC-DAD-MS/MS analysis. The experimental conditions in terms of extraction temperature and extraction time were studied. A profile for carbonyl compounds was obtained for both arabica and robusta coffee species (green and roasted samples). Twenty-seven carbonyl compounds were identified and further discussed, in light of reported literature, with different coffee characteristics: coffee ageing, organoleptic impact, presence of defective beans, authenticity, human's health implication, post-harvest coffee processing and roasting. The applied methodology showed to be a powerful analytical tool to be used for coffee characterization as it measures marker compounds of different coffee characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.
Salgueiro-González, N; Turnes-Carou, I; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D
2015-02-27
A novel and Green analytical methodology for the determination of alkylphenols (4-tert-octylphenol, 4-n-octylphenol, 4-n-nonylphenol, nonylphenol) in sediments was developed and validated. The method was based on pressurized hot water extraction (PHWE) followed by miniaturized membrane assisted solvent extraction (MASE) and liquid chromatography-electrospray ionization tandem mass spectrometry detection (LC-ESI-MS/MS). The extraction conditions were optimized by a Plackett-Burman design in order to minimize the number of assays according to Green principles. Matrix effect was studied and compensated using deuterated labeled standards as surrogate standards for the quantitation of the target compounds. The analytical features of the method were satisfactory: relative recoveries varied between 92 and 103% and repeatability and intermediate precision were <9% for all compounds. Quantitation limits of the method (MQL) ranged from 0.061 (4-n-nonylphenol) to 1.7ngg(-1) dry weight (nonylphenol). Sensitivity, selectivity, automaticity and fastness are the main advantages of the exposed methodology. Reagent consumption, analysis time and waste generation were minimized. The "greenness" of the proposed method was evaluated using an analytical Eco-Scale approach and satisfactory results were obtained. The applicability of the proposed method was demonstrated analysing sediment samples of Galicia coast (NW of Spain) and the ubiquity of alkylphenols in the environment was demonstrated. Copyright © 2015 Elsevier B.V. All rights reserved.
Shaaban, Heba; Górecki, Tadeusz
2015-01-01
Green analytical chemistry is an aspect of green chemistry which introduced in the late nineties. The main objectives of green analytical chemistry are to obtain new analytical technologies or to modify an old method to incorporate procedures that use less hazardous chemicals. There are several approaches to achieve this goal such as using environmentally benign solvents and reagents, reducing the chromatographic separation times and miniaturization of analytical devices. Traditional methods used for the analysis of pharmaceutically active compounds require large volumes of organic solvents and generate large amounts of waste. Most of them are volatile and harmful to the environment. With the awareness about the environment, the development of green technologies has been receiving increasing attention aiming at eliminating or reducing the amount of organic solvents consumed everyday worldwide without loss in chromatographic performance. This review provides the state of the art of green analytical methodologies for environmental analysis of pharmaceutically active compounds in the aquatic environment with special emphasis on strategies for greening liquid chromatography (LC). The current trends of fast LC applied to environmental analysis, including elevated mobile phase temperature, as well as different column technologies such as monolithic columns, fully porous sub-2 μm and superficially porous particles are presented. In addition, green aspects of gas chromatography (GC) and supercritical fluid chromatography (SFC) will be discussed. We pay special attention to new green approaches such as automation, miniaturization, direct analysis and the possibility of locating the chromatograph on-line or at-line as a step forward in reducing the environmental impact of chromatographic analyses. Copyright © 2014 Elsevier B.V. All rights reserved.
Berton, Paula; Lana, Nerina B; Ríos, Juan M; García-Reyes, Juan F; Altamirano, Jorgelina C
2016-01-28
Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003-2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek
2013-12-20
Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.
Tobiszewski, Marek; Orłowski, Aleksander
2015-03-27
The study presents the possibility of multi-criteria decision analysis (MCDA) application when choosing analytical procedures with low environmental impact. A type of MCDA, Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE), was chosen as versatile tool that meets all the analytical chemists--decision makers requirements. Twenty five analytical procedures for aldrin determination in water samples (as an example) were selected as input alternatives to MCDA analysis. Nine different criteria describing the alternatives were chosen from different groups--metrological, economical and the most importantly--environmental impact. The weights for each criterion were obtained from questionnaires that were sent to experts, giving three different scenarios for MCDA results. The results of analysis show that PROMETHEE is very promising tool to choose the analytical procedure with respect to its greenness. The rankings for all three scenarios placed solid phase microextraction and liquid phase microextraction--based procedures high, while liquid-liquid extraction, solid phase extraction and stir bar sorptive extraction--based procedures were placed low in the ranking. The results show that although some of the experts do not intentionally choose green analytical chemistry procedures, their MCDA choice is in accordance with green chemistry principles. The PROMETHEE ranking results were compared with more widely accepted green analytical chemistry tools--NEMI and Eco-Scale. As PROMETHEE involved more different factors than NEMI, the assessment results were only weakly correlated. Oppositely, the results of Eco-Scale assessment were well-correlated as both methodologies involved similar criteria of assessment. Copyright © 2015 Elsevier B.V. All rights reserved.
Lores, Marta; Llompart, Maria; Alvarez-Rivera, Gerardo; Guerra, Eugenia; Vila, Marlene; Celeiro, Maria; Lamas, J Pablo; Garcia-Jares, Carmen
2016-04-07
Cosmetic products placed on the market and their ingredients, must be safe under reasonable conditions of use, in accordance to the current legislation. Therefore, regulated and allowed chemical substances must meet the regulatory criteria to be used as ingredients in cosmetics and personal care products, and adequate analytical methodology is needed to evaluate the degree of compliance. This article reviews the most recent methods (2005-2015) used for the extraction and the analytical determination of the ingredients included in the positive lists of the European Regulation of Cosmetic Products (EC 1223/2009): comprising colorants, preservatives and UV filters. It summarizes the analytical properties of the most relevant analytical methods along with the possibilities of fulfilment of the current regulatory issues. The cosmetic legislation is frequently being updated; consequently, the analytical methodology must be constantly revised and improved to meet safety requirements. The article highlights the most important advances in analytical methodology for cosmetics control, both in relation to the sample pretreatment and extraction and the different instrumental approaches developed to solve this challenge. Cosmetics are complex samples, and most of them require a sample pretreatment before analysis. In the last times, the research conducted covering this aspect, tended to the use of green extraction and microextraction techniques. Analytical methods were generally based on liquid chromatography with UV detection, and gas and liquid chromatographic techniques hyphenated with single or tandem mass spectrometry; but some interesting proposals based on electrophoresis have also been reported, together with some electroanalytical approaches. Regarding the number of ingredients considered for analytical control, single analyte methods have been proposed, although the most useful ones in the real life cosmetic analysis are the multianalyte approaches. Copyright © 2016 Elsevier B.V. All rights reserved.
Mohamed, Heba M; Lamie, Nesrine T
2016-09-01
In the past few decades the analytical community has been focused on eliminating or reducing the usage of hazardous chemicals and solvents, in different analytical methodologies, that have been ascertained to be extremely dangerous to human health and environment. In this context, environmentally friendly, green, or clean practices have been implemented in different research areas. This study presents a greener alternative of conventional RP-HPLC methods for the simultaneous determination and quantitative analysis of a pharmaceutical ternary mixture composed of telmisartan, hydrochlorothiazide, and amlodipine besylate, using an ecofriendly mobile phase and short run time with the least amount of waste production. This solvent-replacement approach was feasible without compromising method performance criteria, such as separation efficiency, peak symmetry, and chromatographic retention. The greenness profile of the proposed method was assessed and compared with reported conventional methods using the analytical Eco-Scale as an assessment tool. The proposed method was found to be greener in terms of usage of hazardous chemicals and solvents, energy consumption, and production of waste. The proposed method can be safely used for the routine analysis of the studied pharmaceutical ternary mixture with a minimal detrimental impact on human health and the environment.
Kellogg, Joshua J.; Wallace, Emily D.; Graf, Tyler N.; Oberlies, Nicholas H.; Cech, Nadja B.
2018-01-01
Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. PMID:28787673
Mammana, Sabrina B; Berton, Paula; Camargo, Alejandra B; Lascalea, Gustavo E; Altamirano, Jorgelina C
2017-05-01
An analytical methodology based on coprecipitation-assisted coacervative extraction coupled to HPLC-UV was developed for determination of five organophosphorus pesticides (OPPs), including fenitrothion, guthion, parathion, methidathion, and chlorpyrifos, in water samples. It involves a green technique leading to an efficient and simple analytical methodology suitable for high-throughput analysis. Relevant physicochemical variables were studied and optimized on the analytical response of each OPP. Under optimized conditions, the resulting methodology was as follows: an aliquot of 9 mL of water sample was placed into a centrifuge tube and 0.5 mL sodium citrate 0.1 M, pH 4; 0.08 mL Al 2 (SO 4 ) 3 0.1 M; and 0.7 mL SDS 0.1 M were added and homogenized. After centrifugation the supernatant was discarded. A 700 μL aliquot of the coacervate-rich phase obtained was dissolved with 300 μL of methanol and 20 μL of the resulting solution was analyzed by HPLC-UV. The resulting LODs ranged within 0.7-2.5 ng/mL and the achieved RSD and recovery values were <8% (n = 3) and >81%, respectively. The proposed analytical methodology was successfully applied for the analysis of five OPPs in water samples for human consumption of different locations of Mendoza. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lopez-Garcia, Ignacio; Viñas, Pilar; Campillo, Natalia; Hernandez Cordoba, Manuel; Perez Sirvent, Carmen
2016-04-01
Microextraction techniques are a valuable tool at the analytical laboratory since they allow sensitive measurements of pollutants to be carried out by means of easily available instrumentation. There is a large number of such procedures involving miniaturized liquid-liquid or liquid-solid extractions with the common denominator of using very low amounts (only a few microliters) or even none of organic solvents. Since minimal amounts of reagents are involved, and the generation of residues is consequently minimized, the approach falls within the concept of Green Analytical Chemistry. This general methodology is useful both for inorganic and organic pollutants. Thus, low amounts of metallic ions can be measured without the need of using ICP-MS since this instrument can be replaced by a simple AAS spectrometer which is commonly present in any laboratory and involves low acquisition and maintenance costs. When dealing with organic pollutants, the microextracts obtained can be introduced into liquid or gas chromatographs equipped with common detectors and there is no need for the most sophisticated and expensive mass spectrometers. This communication reports an overview of the advantages of such a methodology, and gives examples for the determination of some particular contaminants in soil and water samples The authors are grateful to the Comunidad Autonóma de la Región de Murcia , Spain (Fundación Séneca, 19888/GERM/15) for financial support
Green analytical chemistry--theory and practice.
Tobiszewski, Marek; Mechlińska, Agata; Namieśnik, Jacek
2010-08-01
This tutorial review summarises the current state of green analytical chemistry with special emphasis on environmentally friendly sample preparation techniques. Green analytical chemistry is a part of the sustainable development concept; its history and origins are described. Miniaturisation of analytical devices and shortening the time elapsing between performing analysis and obtaining reliable analytical results are important aspects of green analytical chemistry. Solventless extraction techniques, the application of alternative solvents and assisted extractions are considered to be the main approaches complying with green analytical chemistry principles.
Salgueiro-González, N; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D
2017-04-15
In the last decade, the impact of alkylphenols and bisphenol A in the aquatic environment has been widely evaluated because of their high use in industrial and household applications as well as their toxicological effects. These compounds are well-known endocrine disrupting compounds (EDCs) which can affect the hormonal system of humans and wildlife, even at low concentrations. Due to the fact that these pollutants enter into the environment through waters, and it is the most affected compartment, analytical methods which allow the determination of these compounds in aqueous samples at low levels are mandatory. In this review, an overview of the most significant advances in the analytical methodologies for the determination of alkylphenols and bisphenol A in waters is considered (from 2002 to the present). Sample handling and instrumental detection strategies are critically discussed, including analytical parameters related to quality assurance and quality control (QA/QC). Special attention is paid to miniaturized sample preparation methodologies and approaches proposed to reduce time- and reagents consumption according to Green Chemistry principles, which have increased in the last five years. Finally, relevant applications of these methods to the analysis of water samples are examined, being wastewater and surface water the most investigated. Copyright © 2017 Elsevier B.V. All rights reserved.
Boussès, Christine; Ferey, Ludivine; Vedrines, Elodie; Gaudin, Karen
2015-11-10
An innovative combination of green chemistry and quality by design (QbD) approach is presented through the development of an UHPLC method for the analysis of the main degradation products of dextromethorphan hydrobromide. QbD strategy was integrated to the field of green analytical chemistry to improve method understanding while assuring quality and minimizing environmental impacts, and analyst exposure. This analytical method was thoroughly evaluated by applying risk assessment and multivariate analysis tools. After a scouting phase aimed at selecting a suitable stationary phase and an organic solvent in accordance with green chemistry principles, quality risk assessment tools were applied to determine the critical process parameters (CPPs). The effects of the CPPs on critical quality attributes (CQAs), i.e., resolutions, efficiencies, and solvent consumption were further evaluated by means of a screening design. A response surface methodology was then carried out to model CQAs as function of the selected CPPs and the optimal separation conditions were determined through a desirability analysis. Resulting contour plots enabled to establish the design space (DS) (method operable design region) where all CQAs fulfilled the requirements. An experimental validation of the DS proved that quality within the DS was guaranteed; therefore no more robustness study was required before the validation. Finally, this UHPLC method was validated using the concept of total error and was used to analyze a pharmaceutical drug product. Copyright © 2015 Elsevier B.V. All rights reserved.
Bigus, Paulina; Tsakovski, Stefan; Simeonov, Vasil; Namieśnik, Jacek; Tobiszewski, Marek
2016-05-01
This study presents an application of the Hasse diagram technique (HDT) as the assessment tool to select the most appropriate analytical procedures according to their greenness or the best analytical performance. The dataset consists of analytical procedures for benzo[a]pyrene determination in sediment samples, which were described by 11 variables concerning their greenness and analytical performance. Two analyses with the HDT were performed-the first one with metrological variables and the second one with "green" variables as input data. Both HDT analyses ranked different analytical procedures as the most valuable, suggesting that green analytical chemistry is not in accordance with metrology when benzo[a]pyrene in sediment samples is determined. The HDT can be used as a good decision support tool to choose the proper analytical procedure concerning green analytical chemistry principles and analytical performance merits.
Kellogg, Joshua J; Wallace, Emily D; Graf, Tyler N; Oberlies, Nicholas H; Cech, Nadja B
2017-10-25
Metabolomics has emerged as an important analytical technique for multiple applications. The value of information obtained from metabolomics analysis depends on the degree to which the entire metabolome is present and the reliability of sample treatment to ensure reproducibility across the study. The purpose of this study was to compare methods of preparing complex botanical extract samples prior to metabolomics profiling. Two extraction methodologies, accelerated solvent extraction and a conventional solvent maceration, were compared using commercial green tea [Camellia sinensis (L.) Kuntze (Theaceae)] products as a test case. The accelerated solvent protocol was first evaluated to ascertain critical factors influencing extraction using a D-optimal experimental design study. The accelerated solvent and conventional extraction methods yielded similar metabolite profiles for the green tea samples studied. The accelerated solvent extraction yielded higher total amounts of extracted catechins, was more reproducible, and required less active bench time to prepare the samples. This study demonstrates the effectiveness of accelerated solvent as an efficient methodology for metabolomics studies. Copyright © 2017. Published by Elsevier B.V.
The role of analytical chemistry in Niger Delta petroleum exploration: a review.
Akinlua, Akinsehinwa
2012-06-12
Petroleum and organic matter from which the petroleum is derived are composed of organic compounds with some trace elements. These compounds give an insight into the origin, thermal maturity and paleoenvironmental history of petroleum, which are essential elements in petroleum exploration. The main tool to acquire the geochemical data is analytical techniques. Due to progress in the development of new analytical techniques, many hitherto petroleum exploration problems have been resolved. Analytical chemistry has played a significant role in the development of petroleum resources of Niger Delta. Various analytical techniques that have aided the success of petroleum exploration in the Niger Delta are discussed. The analytical techniques that have helped to understand the petroleum system of the basin are also described. Recent and emerging analytical methodologies including green analytical methods as applicable to petroleum exploration particularly Niger Delta petroleum province are discussed in this paper. Analytical chemistry is an invaluable tool in finding the Niger Delta oils. Copyright © 2011 Elsevier B.V. All rights reserved.
Białk-Bielińska, Anna; Kumirska, Jolanta; Borecka, Marta; Caban, Magda; Paszkiewicz, Monika; Pazdro, Ksenia; Stepnowski, Piotr
2016-03-20
Recent developments and improvements in advanced instruments and analytical methodologies have made the detection of pharmaceuticals at low concentration levels in different environmental matrices possible. As a result of these advances, over the last 15 years residues of these compounds and their metabolites have been detected in different environmental compartments and pharmaceuticals have now become recognized as so-called 'emerging' contaminants. To date, a lot of papers have been published presenting the development of analytical methodologies for the determination of pharmaceuticals in aqueous and solid environmental samples. Many papers have also been published on the application of the new methodologies, mainly to the assessment of the environmental fate of pharmaceuticals. Although impressive improvements have undoubtedly been made, in order to fully understand the behavior of these chemicals in the environment, there are still numerous methodological challenges to be overcome. The aim of this paper therefore, is to present a review of selected recent improvements and challenges in the determination of pharmaceuticals in environmental samples. Special attention has been paid to the strategies used and the current challenges (also in terms of Green Analytical Chemistry) that exist in the analysis of these chemicals in soils, marine environments and drinking waters. There is a particular focus on the applicability of modern sorbents such as carbon nanotubes (CNTs) in sample preparation techniques, to overcome some of the problems that exist in the analysis of pharmaceuticals in different environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Becerra-Herrera, Mercedes; Honda, Luis; Richter, Pablo
2015-12-04
A novel analytical approach involving an improved rotating-disk sorptive extraction (RDSE) procedure and ultra-high-performance liquid chromatography (UHPLC) coupled to an ultraspray electrospray ionization source (UESI) and time-of-flight mass spectrometry (TOF/MS), in trap mode, was developed to identify and quantify four non-steroidal anti-inflammatory drugs (NSAIDs) (naproxen, ibuprofen, ketoprofen and diclofenac) and two anti-cholesterol drugs (ACDs) (clofibric acid and gemfibrozil) that are widely used and typically found in water samples. The method reduced the amount of both sample and reagents used and also the time required for the whole analysis, resulting in a reliable and green analytical strategy. The analytical eco-scale was calculated, showing that this methodology is an excellent green analysis, increasing its ecological worth. The detection limits (LOD) and precision (%RSD) were lower than 90ng/L and 10%, respectively. Matrix effects and recoveries were studied using samples from the influent of a wastewater treatment plant (WWTP). All the compounds exhibited suppression of their signals due to matrix effects, and the recoveries were approximately 100%. The applicability and reliability of this methodology were confirmed through the analysis of influent and effluent samples from a WWTP in Santiago, Chile, obtaining concentrations ranging from 1.1 to 20.5μg/L and from 0.5 to 8.6μg/L, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
A multi-product green supply chain under government supervision with price and demand uncertainty
NASA Astrophysics Data System (ADS)
Hafezalkotob, Ashkan; Zamani, Soma
2018-05-01
In this paper, a bi-level game-theoretic model is proposed to investigate the effects of governmental financial intervention on green supply chain. This problem is formulated as a bi-level program for a green supply chain that produces various products with different environmental pollution levels. The problem is also regard uncertainties in market demand and sale price of raw materials and products. The model is further transformed into a single-level nonlinear programming problem by replacing the lower-level optimization problem with its Karush-Kuhn-Tucker optimality conditions. Genetic algorithm is applied as a solution methodology to solve nonlinear programming model. Finally, to investigate the validity of the proposed method, the computational results obtained through genetic algorithm are compared with global optimal solution attained by enumerative method. Analytical results indicate that the proposed GA offers better solutions in large size problems. Also, we conclude that financial intervention by government consists of green taxation and subsidization is an effective method to stabilize green supply chain members' performance.
Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.
Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek
2015-06-12
The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.
Sang, Jun; Sang, Jie; Ma, Qun; Hou, Xiao-Fang; Li, Cui-Qin
2017-03-01
This study aimed to extract and identify anthocyanins from Nitraria tangutorun Bobr. seed meal and establish a green analytical method of anthocyanins. Ultrasound-assisted extraction of anthocyanins from N. tangutorun seed meal was optimized using response surface methodology. Extraction at 70°C for 32.73 min using 51.15% ethanol rendered an extract with 65.04mg/100g of anthocyanins and 947.39mg/100g of polyphenols. An in vitro antioxidant assay showed that the extract exhibited a potent DPPH radical-scavenging capacity. Eight anthocyanins in N. tangutorun seed meal were identified by HPLC-MS, and the main anthocyanin was cyanidin-3-O-(trans-p-coumaroyl)-diglucoside (18.17mg/100g). A green HPLC-DAD method was developed to analyse anthocyanins. A mixtures of ethanol and a 5% (v/v) formic acid aqueous solution at a 20:80 (v/v) ratio was used as the optimized mobile phase. The method was accurate, stable and reliable and could be used to investigate anthocyanins from N. tangutorun seed meal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ordoñez, Edgar Y; Rodil, Rosario; Quintana, José Benito; Cela, Rafael
2015-02-15
A new analytical procedure involving the use of water and a low percentage of ethanol combined to high temperature liquid chromatography-tandem mass spectrometry has been developed for the determination of nine high-intensity sweeteners in a variety of drink samples. The method permitted the analysis in 23min (including column reequilibration) and consuming only 0.85mL of a green organic solvent (ethanol). This methodology provided limits of detection (after 50-fold dilution) in the 0.05-10mg/L range, with recoveries (obtained from five different types of beverages) being in the 86-110% range and relative standard deviation values lower than 12%. Finally, the method was applied to 25 different samples purchased in Spain, where acesulfame and sucralose were the most frequently detected analytes (>50% of the samples) and cyclamate was found over the legislation limit set by the European Union in a sample and at the regulation boundary in three others. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Trinkle, Dallas R.
2017-10-01
A general solution for vacancy-mediated diffusion in the dilute-vacancy/dilute-solute limit for arbitrary crystal structures is derived from the master equation. A general numerical approach to the vacancy lattice Green function reduces to the sum of a few analytic functions and numerical integration of a smooth function over the Brillouin zone for arbitrary crystals. The Dyson equation solves for the Green function in the presence of a solute with arbitrary but finite interaction range to compute the transport coefficients accurately, efficiently and automatically, including cases with very large differences in solute-vacancy exchange rates. The methodology takes advantage of the space group symmetry of a crystal to reduce the complexity of the matrix inversion in the Dyson equation. An open-source implementation of the algorithm is available, and numerical results are presented for the convergence of the integration error of the bare vacancy Green function, and tracer correlation factors for a variety of crystals including wurtzite (hexagonal diamond) and garnet.
Hsueh, Sung-Lin; Yan, Min-Ren
2013-01-01
The trends of the green supply chain are attributed to pressures from the environment and from customers. Green innovation is a practice for creating competitive advantage in sustainable development. To keep up with the changing business environment, the construction industry needs an appropriate assessment tool to examine the intrinsic and extrinsic effects regarding corporate competitive advantage. From the viewpoint of energy and environmental protection, this study combines four scientific methodologies to develop an assessment model for the green innovation of contractors. System dynamics can be used to estimate the future trends for the overall industrial structure and is useful in predicting competitive advantage in the industry. The analytic hierarchy process (AHP) and utility theory focus on the customer's attitude toward risk and are useful for comprehending changes in objective requirements in the environment. Fuzzy logic can simplify complicated intrinsic and extrinsic factors and express them with a number or ratio that is easy to understand. The proposed assessment model can be used as a reference to guide the government in examining the public constructions that qualified green contractors participate in. Additionally, the assessment model serves an indicator of relative competitiveness that can help the general contractor and subcontractor to evaluate themselves and further green innovations.
2013-01-01
The trends of the green supply chain are attributed to pressures from the environment and from customers. Green innovation is a practice for creating competitive advantage in sustainable development. To keep up with the changing business environment, the construction industry needs an appropriate assessment tool to examine the intrinsic and extrinsic effects regarding corporate competitive advantage. From the viewpoint of energy and environmental protection, this study combines four scientific methodologies to develop an assessment model for the green innovation of contractors. System dynamics can be used to estimate the future trends for the overall industrial structure and is useful in predicting competitive advantage in the industry. The analytic hierarchy process (AHP) and utility theory focus on the customer's attitude toward risk and are useful for comprehending changes in objective requirements in the environment. Fuzzy logic can simplify complicated intrinsic and extrinsic factors and express them with a number or ratio that is easy to understand. The proposed assessment model can be used as a reference to guide the government in examining the public constructions that qualified green contractors participate in. Additionally, the assessment model serves an indicator of relative competitiveness that can help the general contractor and subcontractor to evaluate themselves and further green innovations. PMID:24311979
NASA Astrophysics Data System (ADS)
Pharr, Daniel Y.
2017-07-01
This chapter gives an introduction to the many practical uses of surfactants in analytical chemistry in replacing organic solvents to achieve greener chemistry. Taking a holistic approach, it covers some background of surfactants as chemical solvents, their properties and as green chemicals, including their environmental effects. The achievements of green analytical chemistry with micellar systems are reviewed in all the major areas of analytical chemistry where these reagents have been found to be useful.
López-Serna, Rebeca; Marín-de-Jesús, David; Irusta-Mata, Rubén; García-Encina, Pedro Antonio; Lebrero, Raquel; Fdez-Polanco, María; Muñoz, Raúl
2018-08-15
The work here presented aimed at developing an analytical method for the simultaneous determination of 22 pharmaceuticals and personal care products, including 3 transformation products, in sewage and sludge. A meticulous method optimization, involving an experimental design, was carried out. The developed method was fully automated and consisted of the online extraction of 17 mL of water sample by Direct Immersion Solid Phase MicroExtraction followed by On-fiber Derivatization coupled to Gas Chromatography - Mass Spectrometry (DI-SPME - On-fiber Derivatization - GC - MS). This methodology was validated for 12 of the initial compounds as a reliable (relative recoveries above 90% for sewage and 70% for sludge; repeatability as %RSD below 10% in all cases), sensitive (LODs below 20 ng L -1 in sewage and 10 ng g -1 in sludge), versatile (sewage and sewage-sludge samples up to 15,000 ng L -1 and 900 ng g -1 , respectively) and green analytical alternative for many medium-tech routine laboratories around the world to keep up with both current and forecast environmental regulations requirements. The remaining 10 analytes initially considered showed insufficient suitability to be included in the final method. The methodology was successfully applied to real samples generated in a pilot scale sewage treatment reactor. Copyright © 2018 Elsevier B.V. All rights reserved.
A square-wave adsorptive stripping voltammetric method for determination of fast green dye.
Al-Ghamdi, Ali F
2009-01-01
Square-wave adsorptive stripping voltammetric (SW-AdSV) determinations of trace concentrations of the coloring agent fast green were described. The analytical methodology used was based on the adsorptive preconcentration of the dye on the hanging mercury drop electrode, and then a negative sweep was initiated. In pH 10 carbonate supporting electrolyte, fast green gave a well-defined and sensitive SW-AdSV peak at -1220 mV. The electroanalytical determination of this dye was found to be optimized in carbonate buffer (pH 10) with the following experimental conditions: accumulation time (120 s); accumulation potential (-0.8 V); scan rate (800 mV/s); pulse amplitude (90 mV); frequency (90 Hz); surface area of the working electrode (0.6 mm2); and the convection rate (2000 rpm). Under these optimized conditions, the AdSV peak current was proportional over the concentration range 2 x 10(-8) -6 x 10(-7) M (r = 0.999), with an LOD of 1.63 x 10(-10) M (0.132 ppb). This analytical approach possessed more enhanced sensitivity than conventional chromatography or spectrophotometry, and was simple and quick. The precision of the method in terms of RSD was 0.17%, whereas the accuracy was evaluated via the mean recovery of 99.6%. Possible interferences by several substances usually present as food additive azo dyes (E110, E102, E123, and E129), natural and artificial sweeteners, and antioxidants were also investigated. Applicability of the developed electroanalysis method was illustrated via the determination of fast green in ice cream and soft drink samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cresti, Alessandro; Grosso, Giuseppe; Parravicini, Giuseppe Pastori
2006-05-15
We have derived closed analytic expressions for the Green's function of an electron in a two-dimensional electron gas threaded by a uniform perpendicular magnetic field, also in the presence of a uniform electric field and of a parabolic spatial confinement. A workable and powerful numerical procedure for the calculation of the Green's functions for a large infinitely extended quantum wire is considered exploiting a lattice model for the wire, the tight-binding representation for the corresponding matrix Green's function, and the Peierls phase factor in the Hamiltonian hopping matrix element to account for the magnetic field. The numerical evaluation of themore » Green's function has been performed by means of the decimation-renormalization method, and quite satisfactorily compared with the analytic results worked out in this paper. As an example of the versatility of the numerical and analytic tools here presented, the peculiar semilocal character of the magnetic Green's function is studied in detail because of its basic importance in determining magneto-transport properties in mesoscopic systems.« less
Zarzycki, Paweł K; Slączka, Magdalena M; Zarzycka, Magdalena B; Bartoszuk, Małgorzata A; Włodarczyk, Elżbieta; Baran, Michał J
2011-11-01
This paper is a continuation of our previous research focusing on development of micro-TLC methodology under temperature-controlled conditions. The main goal of present paper is to demonstrate separation and detection capability of micro-TLC technique involving simple analytical protocols without multi-steps sample pre-purification. One of the advantages of planar chromatography over its column counterpart is that each TLC run can be performed using non-previously used stationary phase. Therefore, it is possible to fractionate or separate complex samples characterized by heavy biological matrix loading. In present studies components of interest, mainly steroids, were isolated from biological samples like fish bile using single pre-treatment steps involving direct organic liquid extraction and/or deproteinization by freeze-drying method. Low-molecular mass compounds with polarity ranging from estetrol to progesterone derived from the environmental samples (lake water, untreated and treated sewage waters) were concentrated using optimized solid-phase extraction (SPE). Specific bands patterns for samples derived from surface water of the Middle Pomerania in northern part of Poland can be easily observed on obtained micro-TLC chromatograms. This approach can be useful as simple and non-expensive complementary method for fast control and screening of treated sewage water discharged by the municipal wastewater treatment plants. Moreover, our experimental results show the potential of micro-TLC as an efficient tool for retention measurements of a wide range of steroids under reversed-phase (RP) chromatographic conditions. These data can be used for further optimalization of SPE or HPLC systems working under RP conditions. Furthermore, we also demonstrated that micro-TLC based analytical approach can be applied as an effective method for the internal standard (IS) substance search. Generally, described methodology can be applied for fast fractionation or screening of the whole range of target substances as well as chemo-taxonomic studies and fingerprinting of complex mixtures, which are present in biological or environmental samples. Due to low consumption of eluent (usually 0.3-1mL/run) mainly composed of water-alcohol binary mixtures, this method can be considered as environmentally friendly and green chemistry focused analytical tool, supplementary to analytical protocols involving column chromatography or planar micro-fluidic devices. Copyright © 2011 Elsevier Ltd. All rights reserved.
Jędrkiewicz, Renata; Orłowski, Aleksander; Namieśnik, Jacek; Tobiszewski, Marek
2016-01-15
In this study we perform ranking of analytical procedures for 3-monochloropropane-1,2-diol determination in soy sauces by PROMETHEE method. Multicriteria decision analysis was performed for three different scenarios - metrological, economic and environmental, by application of different weights to decision making criteria. All three scenarios indicate capillary electrophoresis-based procedure as the most preferable. Apart from that the details of ranking results differ for these three scenarios. The second run of rankings was done for scenarios that include metrological, economic and environmental criteria only, neglecting others. These results show that green analytical chemistry-based selection correlates with economic, while there is no correlation with metrological ones. This is an implication that green analytical chemistry can be brought into laboratories without analytical performance costs and it is even supported by economic reasons. Copyright © 2015 Elsevier B.V. All rights reserved.
We propose a modified eco-efficiency (EE) framework and novel sustainability analysis methodology for green infrastructure (GI) practices used in water resource management. Green infrastructure practices such as rainwater harvesting (RWH), rain gardens, porous pavements, and gree...
Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján
2016-02-04
Simplicity, effectiveness, swiftness, and environmental friendliness - these are the typical requirements for the state of the art development of green analytical techniques. Liquid phase microextraction (LPME) stands for a family of elegant sample pretreatment and analyte preconcentration techniques preserving these principles in numerous applications. By using only fractions of solvent and sample compared to classical liquid-liquid extraction, the extraction kinetics, the preconcentration factor, and the cost efficiency can be increased. Moreover, significant improvements can be made by automation, which is still a hot topic in analytical chemistry. This review surveys comprehensively and in two parts the developments of automation of non-dispersive LPME methodologies performed in static and dynamic modes. Their advantages and limitations and the reported analytical performances are discussed and put into perspective with the corresponding manual procedures. The automation strategies, techniques, and their operation advantages as well as their potentials are further described and discussed. In this first part, an introduction to LPME and their static and dynamic operation modes as well as their automation methodologies is given. The LPME techniques are classified according to the different approaches of protection of the extraction solvent using either a tip-like (needle/tube/rod) support (drop-based approaches), a wall support (film-based approaches), or microfluidic devices. In the second part, the LPME techniques based on porous supports for the extraction solvent such as membranes and porous media are overviewed. An outlook on future demands and perspectives in this promising area of analytical chemistry is finally given. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhou, Xinhui; Zhang, Jiaran; Pan, Zhongli; Li, Daoliang
2018-05-14
Malachite green (MG) has been widely used in the aquaculture industry as a fungicide and parasiticide because of its high efficiency and low cost, and it is commonly found in aquatic products and environmental water. However, MG and its primary metabolite, leuco-malachite green (LMG), are also toxic inorganic contaminants that are hazardous to the health of humans and other organisms. A variety of methods have been proposed in recent years for detecting and monitoring MG and LMG. This article was compiled as a general review of the methods proposed for MG and LMG detection, and several important detection parameters, such as the limit of detection, recovery and relative standard deviation, were tabulated. The analytical methods for the determination of MG and LMG in various matrices include high-performance liquid chromatography separation-based methods, liquid chromatography tandem mass spectrometry, surface-enhanced Raman spectroscopy, electrochemical methods, immunological assays, spectrophotometry and fluorescent methods which were described in detail in this article. In addition, some sample preparation techniques were also described. This review can provide expert guidance to the reader on the advantages, disadvantages and applicability of the different methodologies. This review also discussed challenges and several perspectives on the future trends in the determination of MG and LMG.
Chen, Richie L C; Lin, Chun-Hsun; Chung, Chien-Yu; Cheng, Tzong-Jih
2005-11-02
A flow-injection analytical system was developed to determine tannin content in green tea infusions. The flow-injection system is based on measuring the quenching effect of tannin on the fluorescence of 3-aminophthalate. Fluorophore was obtained by auto-oxidation of luminol during solution preparation. System performance was satisfactory for routine analysis (sample throughput >20 h(-1); linear dynamic range for tannic acid, 0.005-0.3 mg/mL; linear dynamic range for green tea tannin, 0.02-1.0 mg/mL; CV < 3%). The flow-injection method is immune from interference by coexisting ascorbate in green tea infusion. Analytical results were verified by the ferrous tartrate method, the Japanese official analytical method.
Khezeli, Tahere; Daneshfar, Ali; Sahraei, Reza
2016-04-01
A simple, inexpensive and sensitive ultrasonic-assisted liquid-liquid microextraction method based on deep eutectic solvent (UALLME-DES) was used for the extraction of three phenolic acids (ferulic, caffeic and cinnamic) from vegetable oils. In a typical experiment, deep eutectic solvent as green extraction solvent was added to n-hexane (as a typical oil medium) containing target analytes. Subsequently, the extraction was accelerated by sonication. After the extraction, phase separation (DES rich phase/n-hexane phase) was performed by centrifugation. DES rich phase (lower phase) was withdrawn by a micro-syringe and submitted to isocratic reverse-phase HPLC with UV detection. Under optimum conditions obtained by response surface methodology (RSM) and desirability function (DF), the method has good linear calibration ranges (between 1.30 and 1000 µg L(-1)), coefficients of determination (r(2)>0.9949) and low limits of detection (between 0.39 and 0.63 µg L(-1)). This procedure was successfully applied to the determination of target analytes in olive, almond, sesame and cinnamon oil samples. The relative mean recoveries ranged from 94.7% to 104.6%. Copyright © 2015 Elsevier B.V. All rights reserved.
Classical Dynamics of Fullerenes
NASA Astrophysics Data System (ADS)
Sławianowski, Jan J.; Kotowski, Romuald K.
2017-06-01
The classical mechanics of large molecules and fullerenes is studied. The approach is based on the model of collective motion of these objects. The mixed Lagrangian (material) and Eulerian (space) description of motion is used. In particular, the Green and Cauchy deformation tensors are geometrically defined. The important issue is the group-theoretical approach to describing the affine deformations of the body. The Hamiltonian description of motion based on the Poisson brackets methodology is used. The Lagrange and Hamilton approaches allow us to formulate the mechanics in the canonical form. The method of discretization in analytical continuum theory and in classical dynamics of large molecules and fullerenes enable us to formulate their dynamics in terms of the polynomial expansions of configurations. Another approach is based on the theory of analytical functions and on their approximations by finite-order polynomials. We concentrate on the extremely simplified model of affine deformations or on their higher-order polynomial perturbations.
Green aspects, developments and perspectives of liquid phase microextraction techniques.
Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek
2014-02-01
Determination of analytes at trace levels in complex samples (e.g. biological or contaminated water or soils) are often required for the environmental assessment and monitoring as well as for scientific research in the field of environmental pollution. A limited number of analytical techniques are sensitive enough for the direct determination of trace components in samples and, because of that, a preliminary step of the analyte isolation/enrichment prior to analysis is required in many cases. In this work the newest trends and innovations in liquid phase microextraction, like: single-drop microextraction (SDME), hollow fiber liquid-phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME) have been discussed, including their critical evaluation and possible application in analytical practice. The described modifications of extraction techniques deal with system miniaturization and/or automation, the use of ultrasound and physical agitation, and electrochemical methods. Particular attention was given to pro-ecological aspects therefore the possible use of novel, non-toxic extracting agents, inter alia, ionic liquids, coacervates, surfactant solutions and reverse micelles in the liquid phase microextraction techniques has been evaluated in depth. Also, new methodological solutions and the related instruments and devices for the efficient liquid phase micoextraction of analytes, which have found application at the stage of procedure prior to chromatographic determination, are presented. © 2013 Published by Elsevier B.V.
Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions
NASA Astrophysics Data System (ADS)
Kraberger, Gernot J.; Triebl, Robert; Zingl, Manuel; Aichhorn, Markus
2017-10-01
We present a generalization of the maximum entropy method to the analytic continuation of matrix-valued Green's functions. To treat off-diagonal elements correctly based on Bayesian probability theory, the entropy term has to be extended for spectral functions that are possibly negative in some frequency ranges. In that way, all matrix elements of the Green's function matrix can be analytically continued; we introduce a computationally cheap element-wise method for this purpose. However, this method cannot ensure important constraints on the mathematical properties of the resulting spectral functions, namely positive semidefiniteness and Hermiticity. To improve on this, we present a full matrix formalism, where all matrix elements are treated simultaneously. We show the capabilities of these methods using insulating and metallic dynamical mean-field theory (DMFT) Green's functions as test cases. Finally, we apply the methods to realistic material calculations for LaTiO3, where off-diagonal matrix elements in the Green's function appear due to the distorted crystal structure.
EVALUATING METRICS FOR GREEN CHEMISTRIES: INFORMATION AND CALCULATION NEEDS
Research within the U.S. EPA's National Risk Management Research Laboratory is developing a methodology for the evaluation of green chemistries. This methodology called GREENSCOPE (Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Ob...
SIMPLIFYING EVALUATIONS OF GREEN CHEMISTRIES: HOW MUCH INFORMATION DO WE NEED?
Research within the U.S. EPA's National Risk Management Research Laboratory is developing a methodology for the evaluation of green chemistries. This methodology called GREENSCOPE (Gauging Reaction Effectiveness for the Environmental Sustainability of Chemistries with a multi-Ob...
Boutkhoum, Omar; Hanine, Mohamed; Boukhriss, Hicham; Agouti, Tarik; Tikniouine, Abdessadek
2016-01-01
At present, environmental issues become real critical barriers for many supply chain corporations concerning the sustainability of their businesses. In this context, several studies have been proposed from both academia and industry trying to develop new measurements related to green supply chain management (GSCM) practices to overcome these barriers, which will help create new environmental strategies, implementing those practices in their manufacturing processes. The objective of this study is to present the technical and analytical contribution that multi-criteria decision making analysis (MCDA) can bring to environmental decision making problems, and especially to GSCM field. For this reason, a multi-criteria decision-making methodology, combining fuzzy analytical hierarchy process and fuzzy technique for order preference by similarity to ideal solution (fuzzy TOPSIS), is proposed to contribute to a better understanding of new sustainable strategies through the identification and evaluation of the most appropriate GSCM practices to be adopted by industrial organizations. The fuzzy AHP process is used to construct hierarchies of the influential criteria, and then identify the importance weights of the selected criteria, while the fuzzy TOPSIS process employs these weighted criteria as inputs to evaluate and measure the performance of each alternative. To illustrate the effectiveness and performance of our MCDA approach, we have applied it to a chemical industry corporation located in Safi, Morocco.
Tabani, Hadi; Asadi, Sakine; Nojavan, Saeed; Parsa, Mitra
2017-05-12
Developing green methods for analyte extraction is one of the most important topics in the field of sample preparation. In this study, for the first time, agarose gel was used as membrane in electromembrane extraction (EME) without using any organic solvent, for the extraction of four model basic drugs (rivastigmine (RIV), verapamil (VER), amlodipine (AML), and morphine (MOR)) with a wide polarity window (log P from 0.43 to 3.7). Different variables playing vital roles in the proposed method were evaluated and optimized. As a driving force, a 25V electrical field was applied to make the analyte migrate from sample solution with pH 7.0, through the agarose gel 3% (w/v) with 5mm thickness, into an acceptor phase (AP) with pH 2.0. The best extraction efficiency was obtained with an extraction duration of 25min. With this new methodology, MOR with high polarity (log P=0.43) was efficiently extracted without using any carrier or ion pair reagents. Limits of detection (LODs) and quantification (LOQs) were in the ranges of 1.5-1.8ngmL -1 and 5.0-6.0ngmL -1 , respectively. Finally, the proposed method was successfully applied to determine concentrations of the model drugs in the wastewater sample. Copyright © 2017 Elsevier B.V. All rights reserved.
Cheng, Sy-Chyi; Huang, Min-Zong; Wu, Li-Chieh; Chou, Chih-Chiang; Cheng, Chu-Nian; Jhang, Siou-Sian; Shiea, Jentaie
2012-07-17
Interfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system. With the advantages of being readily available, cheap, reusable, and extremely easy to modify without consuming any material or reagent, the use of building blocks to develop the TLC-AMS interface is undoubtedly a green methodology. The TLC plate delivery system consists of a storage box, plate dealing component, conveyer, light sensor, and plate collecting box. During a TLC-AMS analysis, the TLC plate was sent to the conveyer from a stack of TLC plates placed in the storage box. As the TLC plate passed through the ELDI source, the chemical compounds separated on the plate would be desorbed by laser desorption and subsequently postionized by electrospray ionization. The samples, including a mixture of synthetic dyes and extracts of pharmaceutical drugs, were analyzed to demonstrate the capability of this TLC-ELDI/MS system for high-throughput analysis.
NASA Astrophysics Data System (ADS)
Zaccheo, T. S.; Pernini, T.; Botos, C.; Dobler, J. T.; Blume, N.; Braun, M.; Levine, Z. H.; Pintar, A. L.
2014-12-01
This work presents a methodology for constructing 2D estimates of CO2 field concentrations from integrated open path measurements of CO2 concentrations. It provides a description of the methodology, an assessment based on simulated data and results from preliminary field trials. The Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE) system, currently under development by Exelis and AER, consists of a set of laser-based transceivers and a number of retro-reflectors coupled with a cloud-based compute environment to enable real-time monitoring of integrated CO2 path concentrations, and provides 2D maps of estimated concentrations over an extended area of interest. The GreenLITE transceiver-reflector pairs provide laser absorption spectroscopy (LAS) measurements of differential absorption due to CO2 along intersecting chords within the field of interest. These differential absorption values for the intersecting chords of horizontal path are not only used to construct estimated values of integrated concentration, but also employed in an optimal estimation technique to derive 2D maps of underlying concentration fields. This optimal estimation technique combines these sparse data with in situ measurements of wind speed/direction and an analytic plume model to provide tomographic-like reconstruction of the field of interest. This work provides an assessment of this reconstruction method and preliminary results from the Fall 2014 testing at the Zero Emissions Research and Technology (ZERT) site in Bozeman, Montana. This work is funded in part under the GreenLITE program developed under a cooperative agreement between Exelis and the National Energy and Technology Laboratory (NETL) under the Department of Energy (DOE), contract # DE-FE0012574. Atmospheric and Environmental Research, Inc. is a major partner in this development.
ERIC Educational Resources Information Center
Armenta, Sergio; de la Guardia, Miguel
2011-01-01
Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…
ERIC Educational Resources Information Center
Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.
2013-01-01
Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…
Montesdeoca-Esponda, Sarah; Checchini, Leonardo; Del Bubba, Massimo; Sosa-Ferrera, Zoraida; Santana-Rodriguez, José Juan
2018-08-15
Contamination of the aquatic environment caused by multiple human activities may exert a negative impact on all living organisms. Several contaminants of emerging concern such as personal care products (PCPs) are continuously released into the aquatic environment where they are biologically active and persistent. This work reviews the current knowledge, provided by papers published after 2010 and indexed by SciFinder, Scopus, and Google search engines, about the determination and occurrence of PCPs in marine biota. Analytical methodologies have been critically reviewed, emphasizing the importance of green and high-throughput approaches and focusing the discussion on the complexity of the solute-matrix interaction in the extraction step, as well as the matrix effect in the instrumental determination. Finally, the worldwide distribution of PCPs is surveyed, taking into account the concentrations found in the same organism in different marine environments. Differences among various world areas have been highlighted, evidencing some critical aspects from an environmental point of view. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Poggialini, F.; Campanella, B.; Giannarelli, S.; Grifoni, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Safi, A.; Palleschi, V.
2018-03-01
When compared to other analytical techniques, LIBS shows relatively low precision and, generally, high Limits of Detection (LODs). Until recently, the attempts in improving the LIBS performances have been based on the use of more stable/powerful lasers, high sensitivity detectors or controlled environmental parameters. This can hinder the competitiveness of LIBS by increasing the instrumental setup cost and the difficulty of operation. Sample treatment has proved to be a viable and simple way to increase the LIBS signal; in particular, the Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) methodology uses a deposition of metal nanoparticles on the sample to greatly increase the emission of the LIBS plasma. In this work, we used a simple, fast, "green" and low-cost method to synthetize silver nanoparticles by using coffee extract as reducing agents for a silver nitrate solution. This allowed us to obtain nanoparticles of about 25 nm in diameter. We then explored the application of such nanoparticles to the NELIBS analysis of metallic samples with a mobile LIBS instrument. By adjusting the laser parameters and optimizing the sample preparation procedure, we obtained a NELIBS signal that is 4 times the LIBS one. This showed the potential of green-synthetized nanoparticle for NELIBS applications and suggests the possibility of an in-situ application of the technique.
The return of "Gasoline station-park" status into green-open space in DKI Jakarta Province
NASA Astrophysics Data System (ADS)
Kautsar, L. H. R.; Waryono, T.; Sobirin
2017-07-01
The development of gasoline stations in 1970 increased drastically due to the Government support through DKT Jaya Official Note (DKT Jakarta), resulting in a great number of the parks (green open space or RTH - Ruang Terbuka Hijau) converted into a gasoline station. Currently, to meet the RTH target (13.94 % RTH based RTRW [(Rencana Tata Ruang Wilayah) DKT Jakarta 2010], the policy was changed by Decree No.728 year 2009 and Governor Tnstruction No.75 year 2009. Land function of 27 gasoline stations unit must be returned. This study is to determine the appropriateness of gasoline Station-Park conversion into RTH based site and situation approach. The scope of this study was limited only to gasoline stations not converted into RTH. The methodology was the combination of AHP (Analytical Hierarchy Process) and ranking method. Site variables were meant for prone to flooding, the width of land for gasoline station, land status. Situation variables were meant for other public space, availability of other gasoline stations, gasoline stations service, road segments, and the proportions of built space. Analysis study used quantitative descriptive analysis. The results were three of the five gasoline stations were congruence to be converted into a green open space (RTH).
The basic traumatic situation in the analytical relationship.
Hartke, Raul
2005-04-01
The author attempts to develop a concept of psychic trauma which would comply with the nucleus of this Freudian notion, that is, an excess of excitations that cannot be processed by the mental apparatus, but which would also consider the functions and the crucial role of objects in the constitution of the psychism and in traumatic conditions, as well as taking into account the methodological positioning according to which the analytical relationship is the sole possible locus of observation, inference and intervention by the psychoanalyst. He considers as a basic or minimal traumatic psychoanalytical situation that in which a magnitude or quality of emotions exceeds the capacity for containment of the psychoanalytical pair, to the point of generating a period or area of dementalisation in the psyche of one or both of the participants, of requiring analytical work on the matter and promoting a significant positive or negative change in the relationship. Availing himself of Bion's theory about the alpha function and the metapsychological conceptions of Freud and Green concerning psychic representations, he presents two theoretical formulations relating to this traumatic situation, utilising them according to the 'altered focus' model proposed by Bion. He presents three clinical examples to illustrate the concept and the relevant theoretical formulations.
Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review.
Wieczerzak, M; Namieśnik, J; Kudłak, B
2016-09-01
For centuries, mankind has contributed to irreversible environmental changes, but due to the modern science of recent decades, scientists are able to assess the scale of this impact. The introduction of laws and standards to ensure environmental cleanliness requires comprehensive environmental monitoring, which should also meet the requirements of Green Chemistry. The broad spectrum of Green Chemistry principle applications should also include all of the techniques and methods of pollutant analysis and environmental monitoring. The classical methods of chemical analyses do not always match the twelve principles of Green Chemistry, and they are often expensive and employ toxic and environmentally unfriendly solvents in large quantities. These solvents can generate hazardous and toxic waste while consuming large volumes of resources. Therefore, there is a need to develop reliable techniques that would not only meet the requirements of Green Analytical Chemistry, but they could also complement and sometimes provide an alternative to conventional classical analytical methods. These alternatives may be found in bioassays. Commercially available certified bioassays often come in the form of ready-to-use toxkits, and they are easy to use and relatively inexpensive in comparison with certain conventional analytical methods. The aim of this study is to provide evidence that bioassays can be a complementary alternative to classical methods of analysis and can fulfil Green Analytical Chemistry criteria. The test organisms discussed in this work include single-celled organisms, such as cell lines, fungi (yeast), and bacteria, and multicellular organisms, such as invertebrate and vertebrate animals and plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barker, John R; Martinez, Antonio
2018-04-04
Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.
NASA Astrophysics Data System (ADS)
Barker, John R.; Martinez, Antonio
2018-04-01
Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.
Kim, Sungjune; Hong, Seokpyo; Ahn, Kilsoo; Gong, Sungyong
2015-01-01
This study presents the indicators and proxy variables for the quantitative assessment of green chemistry technologies and evaluates the relative importance of each assessment element by consulting experts from the fields of ecology, chemistry, safety, and public health. The results collected were subjected to an analytic hierarchy process to obtain the weights of the indicators and the proxy variables. These weights may prove useful in avoiding having to resort to qualitative means in absence of weights between indicators when integrating the results of quantitative assessment by indicator. This study points to the limitations of current quantitative assessment techniques for green chemistry technologies and seeks to present the future direction for quantitative assessment of green chemistry technologies.
Coupling of Multiple Coulomb Scattering with Energy Loss and Straggling in HZETRN
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Wilson, John W.; Walker, Steven A.; Tweed, John
2007-01-01
The new version of the HZETRN deterministic transport code based on Green's function methods, and the incorporation of ground-based laboratory boundary conditions, has lead to the development of analytical and numerical procedures to include off-axis dispersion of primary ion beams due to small-angle multiple Coulomb scattering. In this paper we present the theoretical formulation and computational procedures to compute ion beam broadening and a methodology towards achieving a self-consistent approach to coupling multiple scattering interactions with ionization energy loss and straggling. Our initial benchmark case is a 60 MeV proton beam on muscle tissue, for which we can compare various attributes of beam broadening with Monte Carlo simulations reported in the open literature.
Fabiano-Tixier, Anne-Sylvie; Elomri, Abdelhakim; Blanckaert, Axelle; Seguin, Elisabeth; Petitcolas, Emmanuel; Chemat, Farid
2011-01-01
Quinas contains several compounds, such as quinoline alkaloids, principally quinine, quinidine, cinchonine and cichonidine. Identified from barks of Cinchona, quinine is still commonly used to treat human malaria. Microwave-Integrated Extraction and Leaching (MIEL) is proposed for the extraction of quinoline alkaloids from bark of Cinchona succirubra. The process is performed in four steps, which ensures complete, rapid and accurate extraction of the samples. Optimal conditions for extraction were obtained using a response surface methodology reached from a central composite design. The MIEL extraction has been compared with a conventional technique soxhlet extraction. The extracts of quinoline alkaloids from C. succirubra obtained by these two different methods were compared by HPLC. The extracts obtained by MIEL in 32 min were quantitatively (yield) and qualitatively (quinine, quinidine, cinchonine, cinchonidine) similar to those obtained by conventional Soxhlet extraction in 3 hours. MIEL is a green technology that serves as a good alternative for the extraction of Cinchona alkaloids.
Fabiano-Tixier, Anne-Sylvie; Elomri, Abdelhakim; Blanckaert, Axelle; Seguin, Elisabeth; Petitcolas, Emmanuel; Chemat, Farid
2011-01-01
Quinas contains several compounds, such as quinoline alkaloids, principally quinine, quinidine, cinchonine and cichonidine. Identified from barks of Cinchona, quinine is still commonly used to treat human malaria. Microwave-Integrated Extraction and Leaching (MIEL) is proposed for the extraction of quinoline alkaloids from bark of Cinchona succirubra. The process is performed in four steps, which ensures complete, rapid and accurate extraction of the samples. Optimal conditions for extraction were obtained using a response surface methodology reached from a central composite design. The MIEL extraction has been compared with a conventional technique soxhlet extraction. The extracts of quinoline alkaloids from C. succirubra obtained by these two different methods were compared by HPLC. The extracts obtained by MIEL in 32 min were quantitatively (yield) and qualitatively (quinine, quinidine, cinchonine, cinchonidine) similar to those obtained by conventional Soxhlet extraction in 3 hours. MIEL is a green technology that serves as a good alternative for the extraction of Cinchona alkaloids. PMID:22174637
Microfluidic thread based electroanalytical system for green chromatographic separations.
Agustini, Deonir; Fedalto, Lucas; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto
2018-02-13
The use of miniaturized chromatographic systems is an important strategy for reducing the consumption of supplies related to separations, allowing the development of more sustainable analytical methodologies. However, the high cost and complexity in the production of these systems combined with the operational difficulties and the need for the use of solvent and sample pretreatment are challenges to be overcome in order to make the chromatographic methods greener. Here, we report the construction and development of a low cost microfluidic system for green and solvent-free chromatographic separations with electrochemical detection integrated into cotton threads without the use of any mechanical pumping to transport the solutions. The manufacture of the proposed system was performed by simple assembly of the components, with the separation of the species based on an ion exchange mechanism and detection using gold electrodes manufactured directly on the cotton threads. A linear range of 0.025-5.0 mM was obtained for the effective separation of ascorbic acid (AA) and dopamine (DA) with detection limits of 2.89 μM (for AA) and 4.41 μM (for DA). Each analysis was performed at a low cost (less than 0.01 dollars), and with a small volume of waste generated (107.1 μL). So, the proposed system was successfully employed to determine the levels of AA and DA present in the tears of healthy volunteers without sample pretreatment, indicating the good analytical performance of the system and the possibility of performing greener chromatographic separations.
Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green symmetries.
Brachet, M E; Bustamante, M D; Krstulovic, G; Mininni, P D; Pouquet, A; Rosenberg, D
2013-01-01
We investigate the ideal and incompressible magnetohydrodynamic (MHD) equations in three space dimensions for the development of potentially singular structures. The methodology consists in implementing the fourfold symmetries of the Taylor-Green vortex generalized to MHD, leading to substantial computer time and memory savings at a given resolution; we also use a regridding method that allows for lower-resolution runs at early times, with no loss of spectral accuracy. One magnetic configuration is examined at an equivalent resolution of 6144(3) points and three different configurations on grids of 4096(3) points. At the highest resolution, two different current and vorticity sheet systems are found to collide, producing two successive accelerations in the development of small scales. At the latest time, a convergence of magnetic field lines to the location of maximum current is probably leading locally to a strong bending and directional variability of such lines. A novel analytical method, based on sharp analysis inequalities, is used to assess the validity of the finite-time singularity scenario. This method allows one to rule out spurious singularities by evaluating the rate at which the logarithmic decrement of the analyticity-strip method goes to zero. The result is that the finite-time singularity scenario cannot be ruled out, and the singularity time could be somewhere between t=2.33 and t=2.70. More robust conclusions will require higher resolution runs and grid-point interpolation measurements of maximum current and vorticity.
Salgueiro-González, N; Turnes-Carou, I; Muniategui-Lorenzoa, S; López-Mahía, P; Prada-Rodríguez, D
2012-12-28
A novel and green analytical methodology for the determination of alkylphenols (4-tert-octylphenol, 4-n-octylphenol, 4-n-nonylphenol, nonylphenol technical mixture) and bisphenol A in bivalve mollusc samples was developed and validated. The method was based on selective pressurized liquid extraction (SPLE) with a simultaneous in cell clean up combined with liquid chromatography–electrospray ionization tandem mass spectrometry in negative mode (LC–ESI-MS/MS). Quantitation was performed by standard addition curves in order to correct matrix effects. The analytical features of the method were satisfactory: relative recoveries varied between 80 and 107% and repeatability and intermediate precision were <20% for all compounds. Uncertainty assessment of measurement was estimated on the basis of an in-house validation according to EURACHEM/CITAC guide. Quantitation limits of the method (MQL) ranged between 0.34 (4-n-octylphenol) and 3.6 ng g(−1) dry weight (nonylphenol). The main advantages of the method are sensitivity, selectivity, automaticity, low volumes of solvents required and low sample analysis time (according with the principles of Green Chemistry). The method was applied to the analysis of mussel samples of Galicia coast (NW of Spain). Nonylphenol and 4-tert-octylphenol were measured in all samples at concentrations between 9.3 and 372 ng g(−1) dw. As an approach, the human daily intake of these compounds was estimated and no risk for human health was found.
An integrated methodology to assess the benefits of urban green space.
De Ridder, K; Adamec, V; Bañuelos, A; Bruse, M; Bürger, M; Damsgaard, O; Dufek, J; Hirsch, J; Lefebre, F; Pérez-Lacorzana, J M; Thierry, A; Weber, C
2004-12-01
The interrelated issues of urban sprawl, traffic congestion, noise, and air pollution are major socioeconomic problems faced by most European cities. A methodology is currently being developed for evaluating the role of green space and urban form in alleviating the adverse effects of urbanisation, mainly focusing on the environment but also accounting for socioeconomic aspects. The objectives and structure of the methodology are briefly outlined and illustrated with preliminary results obtained from case studies performed on several European cities.
Kim, Sungjune; Hong, Seokpyo; Ahn, Kilsoo; Gong, Sungyong
2015-01-01
Objectives This study presents the indicators and proxy variables for the quantitative assessment of green chemistry technologies and evaluates the relative importance of each assessment element by consulting experts from the fields of ecology, chemistry, safety, and public health. Methods The results collected were subjected to an analytic hierarchy process to obtain the weights of the indicators and the proxy variables. Results These weights may prove useful in avoiding having to resort to qualitative means in absence of weights between indicators when integrating the results of quantitative assessment by indicator. Conclusions This study points to the limitations of current quantitative assessment techniques for green chemistry technologies and seeks to present the future direction for quantitative assessment of green chemistry technologies. PMID:26206364
GREEN CHEMICAL SYNTHESIS THROUGH CATALYSIS AND ALTERNATE REACTION CONDITIONS
Green chemical synthesis through catalysis and alternate reaction conditions
Encompassing green chemistry techniques and methodologies, we have initiated several projects at the National Risk Management Research laboratory that focus on the design and development of chemic...
This project will develop a model for place-based green building guidelines based on an analysis of local environmental, social, and land use conditions. The ultimate goal of this project is to develop a methodology and model for placing green buildings within their local cont...
S.S. Annunziata Church (L'Aquila, Italy) unveiled by non- and micro-destructive testing techniques
NASA Astrophysics Data System (ADS)
Sfarra, Stefano; Cheilakou, Eleni; Theodorakeas, Panagiotis; Paoletti, Domenica; Koui, Maria
2017-03-01
The present research work explores the potential of an integrated inspection methodology, combining Non-destructive testing and micro-destructive analytical techniques, for both the structural assessment of the S.S. Annunziata Church located in Roio Colle (L'Aquila, Italy) and the characterization of its wall paintings' pigments. The study started by applying passive thermal imaging for the structural monitoring of the church before and after the application of a consolidation treatment, while active thermal imaging was further used for assessing this consolidation procedure. After the earthquake of 2009, which seriously damaged the city of L'Aquila and its surroundings, part of the internal plaster fell off revealing the presence of an ancient mural painting that was subsequently investigated by means of a combined analytical approach involving portable VIS-NIR fiber optics diffuse reflectance spectroscopy (FORS) and laboratory methods, such as environmental scanning electron microscopy (ESEM) coupled with energy dispersive X-ray analysis (EDX), and attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR). The results obtained from the thermographic analysis provided information concerning the two different constrictive phases of the Church, enabled the assessment of the consolidation treatment, and contributed to the detection of localized problems mainly related to the rising damp phenomenon and to biological attack. In addition, the results obtained from the combined analytical approach allowed the identification of the wall painting pigments (red and yellow ochre, green earth, and smalt) and provided information on the binding media and the painting technique possibly applied by the artist. From the results of the present study, it is possible to conclude that the joint use of the above stated methods into an integrated methodology can produce the complete set of useful information required for the planning of the Church's restoration phase.
Accurate analytical modeling of junctionless DG-MOSFET by green's function approach
NASA Astrophysics Data System (ADS)
Nandi, Ashutosh; Pandey, Nilesh
2017-11-01
An accurate analytical model of Junctionless double gate MOSFET (JL-DG-MOSFET) in the subthreshold regime of operation is developed in this work using green's function approach. The approach considers 2-D mixed boundary conditions and multi-zone techniques to provide an exact analytical solution to 2-D Poisson's equation. The Fourier coefficients are calculated correctly to derive the potential equations that are further used to model the channel current and subthreshold slope of the device. The threshold voltage roll-off is computed from parallel shifts of Ids-Vgs curves between the long channel and short-channel devices. It is observed that the green's function approach of solving 2-D Poisson's equation in both oxide and silicon region can accurately predict channel potential, subthreshold current (Isub), threshold voltage (Vt) roll-off and subthreshold slope (SS) of both long & short channel devices designed with different doping concentrations and higher as well as lower tsi/tox ratio. All the analytical model results are verified through comparisons with TCAD Sentaurus simulation results. It is observed that the model matches quite well with TCAD device simulations.
Presidential Green Chemistry Challenge: 2009 Greener Reaction Conditions Award
Presidential Green Chemistry Challenge 2009 award winner, CEM Corporation, developed a fast, automated analytical process using less toxic reagents and less energy to distinguish protein from the food adulterant, melamine.
Degrande, G; Lombaert, G
2001-09-01
In Krylov's analytical prediction model, the free field vibration response during the passage of a train is written as the superposition of the effect of all sleeper forces, using Lamb's approximate solution for the Green's function of a halfspace. When this formulation is extended with the Green's functions of a layered soil, considerable computational effort is required if these Green's functions are needed in a wide range of source-receiver distances and frequencies. It is demonstrated in this paper how the free field response can alternatively be computed, using the dynamic reciprocity theorem, applied to moving loads. The formulation is based on the response of the soil due to the moving load distribution for a single axle load. The equations are written in the wave-number-frequency domain, accounting for the invariance of the geometry in the direction of the track. The approach allows for a very efficient calculation of the free field vibration response, distinguishing the quasistatic contribution from the effect of the sleeper passage frequency and its higher harmonics. The methodology is validated by means of in situ vibration measurements during the passage of a Thalys high-speed train on the track between Brussels and Paris. It is shown that the model has good predictive capabilities in the near field at low and high frequencies, but underestimates the response in the midfrequency band.
Improved surface-wave retrieval from ambient seismic noise by multi-dimensional deconvolution
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; Ruigrok, Elmer; van der Neut, Joost; Draganov, Deyan
2011-01-01
The methodology of surface-wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface-wave Green's function. A point-spread function, derived from the same ambient noise field, quantifies the smearing in space and time of the virtual source of the Green's function. By multidimensionally deconvolving the retrieved Green's function by the point-spread function, the virtual source becomes better focussed in space and time and hence the accuracy of the retrieved surface-wave Green's function may improve significantly. We illustrate this at the hand of a numerical example and discuss the advantages and limitations of this new methodology.
Zuin, Vânia G; Ramin, Luize Z
2018-01-17
New generations of biorefinery combine innovative biomass waste resources from different origins, chemical extraction and/or synthesis of biomaterials, biofuels, and bioenergy via green and sustainable processes. From the very beginning, identifying and evaluating all potentially high value-added chemicals that could be removed from available renewable feedstocks requires robust, efficient, selective, reproducible, and benign analytical approaches. With this in mind, green and sustainable separation of natural products from agro-industrial waste is clearly attractive considering both socio-environmental and economic aspects. In this paper, the concepts of green and sustainable separation of natural products will be discussed, highlighting the main studies conducted on this topic over the last 10 years. The principal analytical techniques (such as solvent, microwave, ultrasound, and supercritical treatments), by-products (e.g., citrus, coffee, corn, and sugarcane waste) and target compounds (polyphenols, proteins, essential oils, etc.) will be presented, including the emerging green and sustainable separation approaches towards bioeconomy and circular economy contexts.
A Big Data Analytics Methodology Program in the Health Sector
ERIC Educational Resources Information Center
Lawler, James; Joseph, Anthony; Howell-Barber, H.
2016-01-01
The benefits of Big Data Analytics are cited frequently in the literature. However, the difficulties of implementing Big Data Analytics can limit the number of organizational projects. In this study, the authors evaluate business, procedural and technical factors in the implementation of Big Data Analytics, applying a methodology program. Focusing…
Portable microwave assisted extraction: An original concept for green analytical chemistry.
Perino, Sandrine; Petitcolas, Emmanuel; de la Guardia, Miguel; Chemat, Farid
2013-11-08
This paper describes a portable microwave assisted extraction apparatus (PMAE) for extraction of bioactive compounds especially essential oils and aromas directly in a crop or in a forest. The developed procedure, based on the concept of green analytical chemistry, is appropriate to obtain direct in-field information about the level of essential oils in natural samples and to illustrate green chemical lesson and research. The efficiency of this experiment was validated for the extraction of essential oil of rosemary directly in a crop and allows obtaining a quantitative information on the content of essential oil, which was similar to that obtained by conventional methods in the laboratory. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Al Okab, Riyad Ahmed
2013-02-01
Green analytical methods using Cisapride (CPE) as green analytical reagent was investigated in this work. Rapid, simple, and sensitive spectrophotometric methods for the determination of bromate in water sample, bread and flour additives were developed. The proposed methods based on the oxidative coupling between phenoxazine and Cisapride in the presence of bromate to form red colored product with max at 520 nm. Phenoxazine and Cisapride and its reaction products were found to be environmentally friendly under the optimum experimental condition. The method obeys beers law in concentration range 0.11-4.00 g ml-1 and molar absorptivity 1.41 × 104 L mol-1 cm-1. All variables have been optimized and the presented reaction sequences were applied to the analysis of bromate in water, bread and flour additive samples. The performance of these method was evaluated in terms of Student's t-test and variance ratio F-test to find out the significance of proposed methods over the reference method. The combination of pharmaceutical drugs reagents with low concentration create some unique green chemical analyses.
Veillet, Sébastien; Tomao, Valérie; Ruiz, Karine; Chemat, Farid
2010-07-26
In the past 10 years, trends in analytical chemistry have turned toward the green chemistry which endeavours to develop new techniques that reduce the influence of chemicals on the environment. The challenge of the green analytical chemistry is to develop techniques that meet the request for information output while reducing the environmental impact of the analyses. For this purpose petroleum-based solvents have to be avoided. Therefore, increasing interest was given to new green solvents such as limonene and their potential as alternative solvents in analytical chemistry. In this work limonene was used instead of toluene in the Dean-Stark procedure. Moisture determination on wide range of food matrices was performed either using toluene or limonene. Both solvents gave similar water percentages in food materials, i.e. 89.3+/-0.5 and 89.5+/-0.7 for carrot, 68.0+/-0.7 and 68.6+/-1.9 for garlic, 64.1+/-0.5 and 64.0+/-0.3 for minced meat with toluene and limonene, respectively. Consequently limonene could be used as a good alternative solvent in the Dean-Stark procedure. Copyright 2010 Elsevier B.V. All rights reserved.
Salgueiro-González, N; Turnes-Carou, I; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D
2014-12-10
A less time-, solvent- and sorbent-consuming analytical methodology for the determination of bisphenol A and alkylphenols (4-tert-octylphenol, 4-octylphenol, 4-n-nonylphenol, nonylphenol) in marine sediment was developed and validated. The method was based on selective pressurized liquid extraction (SPLE) with a simultaneous in cell clean up combined with liquid chromatography-electrospray ionization tandem mass spectrometry in negative mode (LC-ESI-MS/MS). The SPLE extraction conditions were optimized by a Plackett-Burman design followed by a central composite design. Quantitation was performed by standard addition curves in order to correct matrix effects. The analytical features of the method were satisfactory: relative recoveries varied between 94 and 100% and repeatability and intermediate precision were <6% for all compounds. Uncertainty assessment of measurement was estimated on the basis of an in-house validation according to EURACHEM/CITAC guide. Quantitation limits of the method (MQL) ranged between 0.17 (4-n-nonylphenol) and 4.01 ng g(-1) dry weight (nonylphenol). Sensitivity, selectivity, automaticity and fastness are the main advantages of this green methodology. As an application, marine sediment samples from Galicia coast (NW of Spain) were analysed. Nonylphenol and 4-tert-octylphenol were measured in all samples at concentrations between 20.1 and 1409 ng g(-1) dry weight, respectively. Sediment toxicity was estimated and no risk to aquatic biota was found. Copyright © 2014 Elsevier B.V. All rights reserved.
Green Framework and Its Role in Sustainable City Development (by Example of Yekaterinburg)
NASA Astrophysics Data System (ADS)
Maltseva, A.
2017-11-01
The article focuses on the destruction of the city green framework in Yekaterinburg. The strategy of its recovery by means of a bioactive core represented by a botanic garden has been proposed. The analytical framework for modification in the proportion of green territories and the total city area has been described.
Valverde, Juan; This, Hervé
2008-01-23
Using 1H nuclear magnetic resonance spectroscopy (1D and 2D), the two types of photosynthetic pigments (chlorophylls, their derivatives, and carotenoids) of "green beans" (immature pods of Phaseolus vulgaris L.) were analyzed. Compared to other analytical methods (light spectroscopy or chromatography), 1H NMR spectroscopy is a fast analytical way that provides more information on chlorophyll derivatives (allomers and epimers) than ultraviolet-visible spectroscopy. Moreover, it gives a large amount of data without prior chromatographic separation.
Big Data Analytics Methodology in the Financial Industry
ERIC Educational Resources Information Center
Lawler, James; Joseph, Anthony
2017-01-01
Firms in industry continue to be attracted by the benefits of Big Data Analytics. The benefits of Big Data Analytics projects may not be as evident as frequently indicated in the literature. The authors of the study evaluate factors in a customized methodology that may increase the benefits of Big Data Analytics projects. Evaluating firms in the…
NASA Astrophysics Data System (ADS)
Adelina, W.; Kusumastuti, R. D.
2017-01-01
This study is about business strategy selection for green supply chain management (GSCM) for PT XYZ by using Analytic Network Process (ANP). GSCM is initiated as a response to reduce environmental impacts from industrial activities. The purposes of this study are identifying criteria and sub criteria in selecting GSCM Strategy, and analysing a suitable GSCM strategy for PT XYZ. This study proposes ANP network with 6 criteria and 29 sub criteria, which are obtained from the literature and experts’ judgements. One of the six criteria contains GSCM strategy options, namely risk-based strategy, efficiency-based strategy, innovation-based strategy, and closed loop strategy. ANP solves complex GSCM strategy-selection by using a more structured process and considering green perspectives from experts. The result indicates that innovation-based strategy is the most suitable green supply chain management strategy for PT XYZ.
Recent Policy Developments in Green Education in the Netherlands
ERIC Educational Resources Information Center
Kupper, Hendrik; Laurentzen, Ramona; Mulder, Martin
2012-01-01
Purpose: To present a description of recent developments in the Dutch green educational system (agriculture, living environment, food). The article builds on a previous 2006 contribution to "JAEE" where different scenarios for changes in green education were suggested. Design/methodology/approach: An analysis of policy documents from…
Variation of Greenness across China's Universities: Motivations and Resources
ERIC Educational Resources Information Center
Zhao, Wanxia; Zou, Yonghua
2018-01-01
Purpose: This study aims to examine the cross-institutional variation in university greenness and analyze its underlying dynamics. Design/methodology/approach: This study constructs a University Greenness Index (UGI) and conducts multivariate regression. Findings: This study finds variation within two dimensions; in the vertical dimension,…
Degradation and sorption of the fungicide tebuconazole in soils from golf greens.
Badawi, Nora; Rosenbom, Annette E; Jensen, Anne M D; Sørensen, Sebastian R
2016-12-01
The fungicide tebuconazole (TBZ) is used to repress fungal growth in golf greens and ensure their playability. This study determined the degradation and sorption of TBZ applied as an analytical grade compound, a commercial fungicide formulation or in combination with a surfactant product in thatch and soils below two types of greens (USGA and push-up greens) in 12-cm vertical profiles covered by three different types of turf grass. Only minor TBZ degradation was observed and it was most pronounced in treatments with the commercial fungicide product or in combination with the surfactant compared to the analytical grade compound alone. A tendency for higher TBZ sorption when applied as the formulated product and lowest sorption when applied as a formulated product in combination with the surfactant was observed, with this effect being most distinct on USGA greens. No correlation between occurrence of degradation and soil depth, green type or grass type was observed. Sorption seemed to be the main process governing the leaching risk of TBZ from the greens and a positive correlation to the organic matter content was shown. In light of these findings, organic matter content should be taken into consideration during the construction of golf courses, especially when following USGA guidelines. Copyright © 2016 Elsevier Ltd. All rights reserved.
Green's function methods in heavy ion shielding
NASA Technical Reports Server (NTRS)
Wilson, John W.; Costen, Robert C.; Shinn, Judy L.; Badavi, Francis F.
1993-01-01
An analytic solution to the heavy ion transport in terms of Green's function is used to generate a highly efficient computer code for space applications. The efficiency of the computer code is accomplished by a nonperturbative technique extending Green's function over the solution domain. The computer code can also be applied to accelerator boundary conditions to allow code validation in laboratory experiments.
2018-04-30
2017 Workplace and Gender Relations Survey of Reserve Component Members Statistical Methodology Report Additional copies of this report...Survey of Reserve Component Members Statistical Methodology Report Office of People Analytics (OPA) 4800 Mark Center Drive, Suite...RESERVE COMPONENT MEMBERS STATISTICAL METHODOLOGY REPORT Introduction The Office of People Analytics’ Center for Health and Resilience (OPA[H&R
ERIC Educational Resources Information Center
Karpudewan, Mageswary; Ismail, Zurida Hg; Mohamed, Norita
2009-01-01
Purpose: The purpose of this paper is to introduce green chemistry experiments as laboratory-based pedagogy and to evaluate effectiveness of green chemistry experiments in delivering sustainable development concepts (SDCs) and traditional environmental concepts (TECs). Design/methodology/approach: Repeated measure design was employed to evaluate…
This paper presents the data sources and methodology used to estimate Green Net Regional Product (GNRP), a green accounting approach, for the San Luis Basin (SLB). GNRP is equal to aggregate consumption minus the depreciation of man-made and natural capital. We measure the move...
NASA Technical Reports Server (NTRS)
Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.
1992-01-01
An improved methodology for quantitatively evaluating failure risk of spaceflight systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with analytical modeling of failure phenomena to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in analytical modeling, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which analytical models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. State-of-the-art analytical models currently employed for designs failure prediction, or performance analysis are used in this methodology. The rationale for the statistical approach taken in the PFA methodology is discussed, the PFA methodology is described, and examples of its application to structural failure modes are presented. The engineering models and computer software used in fatigue crack growth and fatigue crack initiation applications are thoroughly documented.
ERIC Educational Resources Information Center
Scully-Russ, Ellen
2013-01-01
Purpose: The aim of this paper is to review the policy literature on green jobs and green jobs training in the USA and to present findings of a qualitative study on the start-up of two Energy Training Partnerships (ETP) funded by the US Department of Labour to train workers for green jobs. Design/methodology/approach: The paper includes a review…
Maxwell, Eric J; Tong, William G
2016-05-01
An ultrasensitive label-free antibody-free detection method for malachite green and crystal violet is presented using nonlinear laser wave-mixing spectroscopy and capillary zone electrophoresis. Wave-mixing spectroscopy provides a sensitive absorption-based detection method for trace analytes. This is accomplished by forming dynamic gratings within a sample cell, which diffracts light to create a coherent laser-like signal beam with high optical efficiency and high signal-to-noise ratio. A cubic dependence on laser power and square dependence on analyte concentration make wave mixing sensitive enough to detect molecules in their native form without the use of fluorescent labels for signal enhancement. A 532 nm laser and a 635 nm laser were used for malachite green and crystal violet sample excitation. The use of two lasers of different wavelengths allows the method to simultaneously detect both analytes. Selectivity is obtained through the capillary zone electrophoresis separation, which results in characteristic migration times. Measurement in capillary zone electrophoresis resulted in a limit of detection of 6.9 × 10(-10)M (2.5 × 10(-19) mol) for crystal violet and 8.3 × 10(-11)M (3.0 × 10(-20) mol) for malachite green at S/N of 2. Copyright © 2016. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
Prior to conducting a collaborative study of AOAC First Action 2012.25 LC-MS/MS analytical method for the determination of residues of three triphenylmethane dyes (malachite green, crystal violet, and brilliant green) and their metabolites (leucomalachite green and leucocrystal violet) in seafood, a...
Harries, Bruce; Filiatrault, Lyne; Abu-Laban, Riyad B
2018-05-30
Quality improvement (QI) analytic methodology is rarely encountered in the emergency medicine literature. We sought to comparatively apply QI design and analysis techniques to an existing data set, and discuss these techniques as an alternative to standard research methodology for evaluating a change in a process of care. We used data from a previously published randomized controlled trial on triage-nurse initiated radiography using the Ottawa ankle rules (OAR). QI analytic tools were applied to the data set from this study and evaluated comparatively against the original standard research methodology. The original study concluded that triage nurse-initiated radiographs led to a statistically significant decrease in mean emergency department length of stay. Using QI analytic methodology, we applied control charts and interpreted the results using established methods that preserved the time sequence of the data. This analysis found a compelling signal of a positive treatment effect that would have been identified after the enrolment of 58% of the original study sample, and in the 6th month of this 11-month study. Our comparative analysis demonstrates some of the potential benefits of QI analytic methodology. We found that had this approach been used in the original study, insights regarding the benefits of nurse-initiated radiography using the OAR would have been achieved earlier, and thus potentially at a lower cost. In situations where the overarching aim is to accelerate implementation of practice improvement to benefit future patients, we believe that increased consideration should be given to the use of QI analytic methodology.
Educational Design as Conversation: A Conversation Analytical Perspective on Teacher Dialogue
ERIC Educational Resources Information Center
van Kruiningen, Jacqueline F.
2013-01-01
The aim of this methodological paper is to expound on and demonstrate the value of conversation-analytical research in the area of (informal) teacher learning. The author discusses some methodological issues in current research on interaction in teacher learning and holds a plea for conversation-analytical research on interactional processes in…
Chemat, Farid; Perino-Issartier, Sandrine; Petitcolas, Emmanuel; Fernandez, Xavier
2012-08-01
One of the principal objectives of sustainable and green processing development remains the dissemination and teaching of green chemistry in colleges, high schools, and academic laboratories. This paper describes simple glassware that illustrates the phenomenon of extraction in a conventional microwave oven as energy source and a process for green analytical chemistry. Simple glassware comprising a Dean-Stark apparatus (for extraction of aromatic plant material and recovery of essential oils and distilled water) and a Vigreux column (as an air-cooled condenser inside the microwave oven) was designed as an in-situ extraction vessel inside a microwave oven. The efficiency of this experiment was validated for extraction of essential oils from 30 g fresh orange peel, a by-product in the production of orange juice. Every laboratory throughout the world can use this equipment. The microwave power is 100 W and the irradiation time 15 min. The method is performed at atmospheric pressure without added solvent or water and furnishes essential oils similar to those obtained by conventional hydro or steam distillation. By use of GC-MS, 22 compounds in orange peel were separated and identified; the main compounds were limonene (72.1%), β-pinene (8.4%), and γ-terpinene (6.9%). This procedure is appropriate for the teaching laboratory, does not require any special microwave equipment, and enables the students to learn the skills of extraction, and chromatographic and spectroscopic analysis. They are also exposed to a dramatic visual example of rapid, sustainable, and green extraction of an essential oil, and are introduced to successful sustainable and green analytical chemistry.
Feasibility of Including Green Tea Products for an Analytically Verified Dietary Supplement Database
Saldanha, Leila; Dwyer, Johanna; Andrews, Karen; Betz, Joseph; Harnely, James; Pehrsson, Pamela; Rimmer, Catherine; Savarala, Sushma
2015-01-01
The Dietary Supplement Ingredient Database (DSID) is a federally funded, publicly accessible dietary supplement database that currently contains analytically-derived information on micronutrients in selected adult and children’s multivitamin and mineral (MVM) supplements. Other constituents in dietary supplement products such as botanicals are also of interest and thus are being considered for inclusion in the DSID. Thirty-eight constituents, mainly botanicals were identified and prioritized by a federal interagency committee. Green tea was selected from this list as the botanical for expansion of the DSID. This paper describes the process for prioritizing dietary ingredients in the DSID. It also discusses the criteria for inclusion of these ingredients, and the approach for selecting and testing products for the green tea pilot study. PMID:25817236
Green University Initiatives in China: A Case of Tsinghua University
ERIC Educational Resources Information Center
Zhao, Wanxia; Zou, Yonghua
2015-01-01
Purpose: The purpose of this paper is to examine green university initiatives in the context of China, using Tsinghua University, which is China's green university pioneer, as a case study. Design/methodology/approach: The research method used for this paper is a case study based on participant observation and document analysis. The approach to…
Maya, Fernando; Estela, José Manuel; Cerdà, Víctor
2009-07-01
In this work, the hyphenation of the multisyringe flow injection analysis technique with a 100-cm-long pathlength liquid core waveguide has been accomplished. The Cl-/Hg(SCN)2/Fe3+ reaction system for the spectrophotometric determination of chloride (Cl(-)) in waters was used as chemical model. As a result, this classic analytical methodology has been improved, minimizing dramatically the consumption of reagents, in particular, that of the highly biotoxic chemical Hg(SCN)2. The proposed method features a linear dynamic range composed of two steps between (1) 0.2-2 and (2) 2-8 mg Cl- L(-1), thus extended applicability due to on-line sample dilution (up to 400 mg Cl- L(-1)). It also presents improved limits of detection and quantification of 0.06 and 0.20 mg Cl- L(-1), respectively. The coefficient of variation and the injection throughput were 1.3% (n = 10, 2 mg Cl- L(-1)) and 21 h(-1). Furthermore, a very low consumption of reagents per Cl- determination of 0.2 microg Hg(II) and 28 microg Fe3+ has been achieved. The method was successfully applied to the determination of Cl- in different types of water samples. Finally, the proposed system is critically compared from a green analytical chemistry point of view against other flow systems for the same purpose.
NASA Technical Reports Server (NTRS)
Moore, N. R.; Ebbeler, D. H.; Newlin, L. E.; Sutharshana, S.; Creager, M.
1992-01-01
An improved methodology for quantitatively evaluating failure risk of spaceflights systems to assess flight readiness and identify risk control measures is presented. This methodology, called Probabilistic Failure Assessment (PFA), combines operating experience from tests and flights with analytical modeling of failure phenomena to estimate failure risk. The PFA methodology is of particular value when information on which to base an assessment of failure risk, including test experience and knowledge of parameters used in analytical modeling, is expensive or difficult to acquire. The PFA methodology is a prescribed statistical structure in which analytical models that characterize failure phenomena are used conjointly with uncertainties about analysis parameters and/or modeling accuracy to estimate failure probability distributions for specific failure modes. These distributions can then be modified, by means of statistical procedures of the PFA methodology, to reflect any test or flight experience. State-of-the-art analytical models currently employed for design, failure prediction, or performance analysis are used in this methodology. The rationale for the statistical approach taken in the PFA methodology is discussed, the PFA methodology is described, and examples of its application to structural failure modes are presented. The engineering models and computer software used in fatigue crack growth and fatigue crack initiation applications are thoroughly documented.
IMPLEMENTATION OF GREEN ROOF SUSTAINABILITY IN ARID CONDITIONS
We successfully designed and fabricated accurately scaled prototypes of a green roof and a conventional white roof and began testing in simulated conditions of 115-70°F with relative humidity of 13%. The design parameters were based on analytical models created through ver...
da Trindade, Mariana Teixeira; Kogawa, Ana Carolina; Salgado, Hérida Regina Nunes
2018-01-02
Diabetes mellitus (DM) is considered a public health problem. The initial treatment consists of improving the lifestyle and making changes in the diet. When these changes are not enough, the use of medication becomes necessary. The metformin aims to reduce the hepatic production of glucose and is the preferred treatment for type 2. The objective is to survey the characteristics and properties of metformin, as well as hold a discussion on the existing analytical methods to green chemistry and their impacts for both the operator and the environment. For the survey, data searches were conducted by scientific papers in the literature as well as in official compendium. The characteristics and properties are shown, also, methods using liquid chromatography techniques, titration, absorption spectrophotometry in the ultraviolet and the infrared region. Most of the methods presented are not green chemistry oriented. It is necessary the awareness of everyone involved in the optimization of the methods applied through the implementation of green chemistry to determine the metformin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean
A new field of research, visual analytics, has recently been introduced. This has been defined as “the science of analytical reasoning facilitated by visual interfaces." Visual analytic environments, therefore, support analytical reasoning using visual representations and interactions, with data representations and transformation capabilities, to support production, presentation and dissemination. As researchers begin to develop visual analytic environments, it will be advantageous to develop metrics and methodologies to help researchers measure the progress of their work and understand the impact their work will have on the users who will work in such environments. This paper presents five areas or aspects ofmore » visual analytic environments that should be considered as metrics and methodologies for evaluation are developed. Evaluation aspects need to include usability, but it is necessary to go beyond basic usability. The areas of situation awareness, collaboration, interaction, creativity, and utility are proposed as areas for initial consideration. The steps that need to be undertaken to develop systematic evaluation methodologies and metrics for visual analytic environments are outlined.« less
A METHODOLOGY FOR THE EVALUATION OF PROCESS SUSTAINABILITY
The twelve principles of green chemistry (Anastas and Warner, 1998) provide a foundation and pathway which allows researchers to incorporate greenness into existing reactions or when developing new technologies. Research from our laboratory (Gonzalez and Becker, 2002) has adopted...
Plasmonic Enhancement of Raman Scattering for Metal-Analyte Sandwich Configuration
NASA Astrophysics Data System (ADS)
Kulakovich, O. S.; Shabunya-Klyachkovskaya, E. V.; Matsukovich, A. S.; Trotsiuk, L. L.; Gaponenko, S. V.
2016-11-01
The effect of the mutual positions of plasmonic gold fi lms and a layer of analyte (malachite green and mitoxantrone molecules) on surface-enhanced Raman scattering (SERS) was investigated. When the excitation emission in the plasmon resonance region (531 nm and 632.8 nm) was used the SERS intensity of the analyte in a sandwich configuration was up to five times higher compared with the "analyte under gold film" arrangement and up to 60 times higher than for the "analyte on gold fi lm" case.
Evaluation of analytical performance based on partial order methodology.
Carlsen, Lars; Bruggemann, Rainer; Kenessova, Olga; Erzhigitov, Erkin
2015-01-01
Classical measurements of performances are typically based on linear scales. However, in analytical chemistry a simple scale may be not sufficient to analyze the analytical performance appropriately. Here partial order methodology can be helpful. Within the context described here, partial order analysis can be seen as an ordinal analysis of data matrices, especially to simplify the relative comparisons of objects due to their data profile (the ordered set of values an object have). Hence, partial order methodology offers a unique possibility to evaluate analytical performance. In the present data as, e.g., provided by the laboratories through interlaboratory comparisons or proficiency testings is used as an illustrative example. However, the presented scheme is likewise applicable for comparison of analytical methods or simply as a tool for optimization of an analytical method. The methodology can be applied without presumptions or pretreatment of the analytical data provided in order to evaluate the analytical performance taking into account all indicators simultaneously and thus elucidating a "distance" from the true value. In the present illustrative example it is assumed that the laboratories analyze a given sample several times and subsequently report the mean value, the standard deviation and the skewness, which simultaneously are used for the evaluation of the analytical performance. The analyses lead to information concerning (1) a partial ordering of the laboratories, subsequently, (2) a "distance" to the Reference laboratory and (3) a classification due to the concept of "peculiar points". Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Purcell, Sean C.; Pande, Prithvi; Lin, Yingxin; Rivera, Ernesto J.; Paw U, Latisha; Smallwood, Luisa M.; Kerstiens, Geri A.; Armstrong, Laura B.; Robak, MaryAnn T.; Baranger, Anne M.; Douskey, Michelle C.
2016-01-01
In this undergraduate analytical chemistry experiment, students quantitatively assess the antibacterial activity of essential oils found in thyme leaves ("Thymus vulgaris") in an authentic, research-like environment. This multi-week experiment aims to instill green chemistry principles as intrinsic to chemical problem solving. Students…
Methodology for the placement of maintenance area headquarters.
DOT National Transportation Integrated Search
1985-01-01
A methodology for strategically locating Virginia Department of Highways and Transportation maintenance area headquarters throughout the state was developed and pilot tested in the Charlottesville Residency (Albemarle and Greene counties). In the dev...
Feasibility of including green tea products for an analytically verified dietary supplement database
USDA-ARS?s Scientific Manuscript database
The Dietary Supplement Ingredient Database (DSID) is a federally-funded, publically-accessible dietary supplement database that currently contains analytically derived information on micronutrients in selected adult and children’s multivitamin and mineral (MVM) supplements. Other constituents in di...
Label-free functional nucleic acid sensors for detecting target agents
Lu, Yi; Xiang, Yu
2015-01-13
A general methodology to design label-free fluorescent functional nucleic acid sensors using a vacant site approach and an abasic site approach is described. In one example, a method for designing label-free fluorescent functional nucleic acid sensors (e.g., those that include a DNAzyme, aptamer or aptazyme) that have a tunable dynamic range through the introduction of an abasic site (e.g., dSpacer) or a vacant site into the functional nucleic acids. Also provided is a general method for designing label-free fluorescent aptamer sensors based on the regulation of malachite green (MG) fluorescence. A general method for designing label-free fluorescent catalytic and molecular beacons (CAMBs) is also provided. The methods demonstrated here can be used to design many other label-free fluorescent sensors to detect a wide range of analytes. Sensors and methods of using the disclosed sensors are also provided.
Prasad, Thatipamula R; Joseph, Siji; Kole, Prashant; Kumar, Anoop; Subramanian, Murali; Rajagopalan, Sudha; Kr, Prabhakar
2017-11-01
Objective of the current work was to develop a 'green chemistry' compliant selective and sensitive supercritical fluid chromatography-tandem mass spectrometry method for simultaneous estimation of risperidone (RIS) and its chiral metabolites in rat plasma. Methodology & results: Agilent 1260 Infinity analytical supercritical fluid chromatography system resolved RIS and its chiral metabolites within runtime of 6 min using a gradient chromatography method. Using a simple protein precipitation sample preparation followed by mass spectrometric detection achieved a sensitivity of 0.92 nM (lower limit of quantification). With linearity over four log units (0.91-7500 nM), the method was found to be selective, accurate, precise and robust. The method was validated and was successfully applied for simultaneous estimation of RIS and 9-hydroxyrisperidone metabolites (R & S individually) after intravenous and per oral administration to rats.
Analytical Utility of Campylobacter Methodologies
USDA-ARS?s Scientific Manuscript database
The National Advisory Committee on Microbiological Criteria for Foods (NACMCF, or the Committee) was asked to address the analytical utility of Campylobacter methodologies in preparation for an upcoming United States Food Safety and Inspection Service (FSIS) baseline study to enumerate Campylobacter...
Green design assessment of electromechanical products based on group weighted-AHP
NASA Astrophysics Data System (ADS)
Guo, Jinwei; Zhou, MengChu; Li, Zhiwu; Xie, Huiguang
2015-11-01
Manufacturing industry is the backbone of a country's economy while environmental pollution is a serious problem that human beings must face today. The green design of electromechanical products based on enterprise information systems is an important method to solve the environmental problem. The question on how to design green products must be answered by excellent designers via both advanced design methods and effective assessment methods of electromechanical products. Making an objective and precise assessment of green design is one of the problems that must be solved when green design is conducted. An assessment method of green design on electromechanical products based on Group Weighted-AHP (Analytic Hierarchy Process) is proposed in this paper, together with the characteristics of green products. The assessment steps of green design are also established. The results are illustrated via the assessment of a refrigerator design.
EVALUATING THE SUSTAINABILITY OF GREEN CHEMISTRIES
The U.S. EPA's National Risk Management Research Laboratory is developing a methodology for the evaluation of reaction chemistries. This methodology, called GREENSCOPE (Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Proc...
Developing strategic planning of green supply chain in refinery CPO company
NASA Astrophysics Data System (ADS)
Hidayati, J.; Mumtaz, G.; Hasibuan, S.
2018-02-01
We are conducted a research at the company of the manufacturing CPO into cooking oil, margarine and materials of oleochemical industries. Today palm oil based industries are facing global challenges related to environmental issues. To against these challenges, it is necessary to have an environmentally friendly supply chain. However, the limited resource owned by the company requires the integrated environmental strategy with the company’s business strategy. The model is developed based on management orientation towards external pressure, internal key resources and competitive advantage that can be obtained as the decision factor. The decision-making method used is Analytical Network Process (ANP). The results obtained institutional pressure becomes the criterion with the greatest influence on green supply chain initiatives and sub criteria of customer desires and stakeholder integration having the most significant influence on green supply chain initiatives. There are five green alternative initiatives that can be done: green product design, greening upstream, greening production, greening downstream and greening post use. For green supply chain initiative, greening upstream is the best priority.
Capela, Daniela; Homem, Vera; Alves, Arminda; Santos, Lúcia
2018-03-01
Recently, Pierre Germain from CES - Silicon Europe published a comment on the paper "Volatile methylsiloxanes in personal care products - Using QuEChERS as a "green" analytical approach", raising concerns that the artefacts employed in the analysis of cyclic volatile methylsiloxanes (cVMS) were not adequately controlled, while using this example as an opportunity to emphasize the difficulties associated with siloxanes analyses in complex matrices such as personal care products (PCPs). We are now addressing these concerns and conveying some clarifications regarding the experiments performed to validate the analytical method adequately. Those details were not included in the original publication because the objective was the quantification of VMS in several PCPs. Copyright © 2017 Elsevier B.V. All rights reserved.
Analytic network process model for sustainable lean and green manufacturing performance indicator
NASA Astrophysics Data System (ADS)
Aminuddin, Adam Shariff Adli; Nawawi, Mohd Kamal Mohd; Mohamed, Nik Mohd Zuki Nik
2014-09-01
Sustainable manufacturing is regarded as the most complex manufacturing paradigm to date as it holds the widest scope of requirements. In addition, its three major pillars of economic, environment and society though distinct, have some overlapping among each of its elements. Even though the concept of sustainability is not new, the development of the performance indicator still needs a lot of improvement due to its multifaceted nature, which requires integrated approach to solve the problem. This paper proposed the best combination of criteria en route a robust sustainable manufacturing performance indicator formation via Analytic Network Process (ANP). The integrated lean, green and sustainable ANP model can be used to comprehend the complex decision system of the sustainability assessment. The finding shows that green manufacturing is more sustainable than lean manufacturing. It also illustrates that procurement practice is the most important criteria in the sustainable manufacturing performance indicator.
Andersen, Wendy C; Casey, Christine R; Schneider, Marilyn J; Turnipseed, Sherri B
2015-01-01
Prior to conducting a collaborative study of AOAC First Action 2012.25 LC-MS/MS analytical method for the determination of residues of three triphenylmethane dyes (malachite green, crystal violet, and brilliant green) and their metabolites (leucomalachite green and leucocrystal violet) in seafood, a single-laboratory validation of method 2012.25 was performed to expand the scope of the method to other seafood matrixes including salmon, catfish, tilapia, and shrimp. The validation included the analysis of fortified and incurred residues over multiple weeks to assess analyte stability in matrix at -80°C, a comparison of calibration methods over the range 0.25 to 4 μg/kg, study of matrix effects for analyte quantification, and qualitative identification of targeted analytes. Method accuracy ranged from 88 to 112% with 13% RSD or less for samples fortified at 0.5, 1.0, and 2.0 μg/kg. Analyte identification and determination limits were determined by procedures recommended both by the U. S. Food and Drug Administration and the European Commission. Method detection limits and decision limits ranged from 0.05 to 0.24 μg/kg and 0.08 to 0.54 μg/kg, respectively. AOAC First Action Method 2012.25 with an extracted matrix calibration curve and internal standard correction is suitable for the determination of triphenylmethane dyes and leuco metabolites in salmon, catfish, tilapia, and shrimp by LC-MS/MS at a residue determination level of 0.5 μg/kg or below.
Moreira, Sandra; Vasconcelos, Lia; Silva Santos, Carlos
2017-09-28
This study aimed to develop a methodological tool to analyze and monitor the green jobs in the context of Occupational Health and Safety. A literature review in combination with an investigation of Occupational Health Indicators was performed. The resulting tool of Occupational Health Indicators was based on the existing information of "Single Report" and was validated by national's experts. The tool brings together 40 Occupational Health Indicators in four key fields established by World Health Organization in their conceptual framework "Health indicators of sustainable jobs." The tool proposed allows for assessing if the green jobs enabled to follow the principles and requirements of Occupational Health Indicators and if these jobs are as good for the environment as for the workers' health, so if they can be considered quality jobs. This shows that Occupational Health Indicators are indispensable for the assessment of the sustainability of green jobs and should be taken into account in the definition and evaluation of policies and strategies of the sustainable development.
RNA "traffic lights": an analytical tool to monitor siRNA integrity.
Holzhauser, Carolin; Liebl, Renate; Goepferich, Achim; Wagenknecht, Hans-Achim; Breunig, Miriam
2013-05-17
The combination of thiazole orange and thiazole red as an internal energy transfer-based fluorophore pair in oligonucleotides provides an outstanding analytical tool to follow DNA/RNA hybridization through a distinct fluorescence color change from red to green. Herein, we demonstrate that this concept can be applied to small interfering RNA (siRNA) to monitor RNA integrity in living cells in real time with a remarkable dynamic range and excellent contrast ratios in cellular media. Furthermore, we show that our siRNA-sensors still possess their gene silencing function toward the knockdown of enhanced green fluorescent protein in CHO-K1 cells.
Frechet derivatives for shallow water ocean acoustic inverse problems
NASA Astrophysics Data System (ADS)
Odom, Robert I.
2003-04-01
For any inverse problem, finding a model fitting the data is only half the problem. Most inverse problems of interest in ocean acoustics yield nonunique model solutions, and involve inevitable trade-offs between model and data resolution and variance. Problems of uniqueness and resolution and variance trade-offs can be addressed by examining the Frechet derivatives of the model-data functional with respect to the model variables. Tarantola [Inverse Problem Theory (Elsevier, Amsterdam, 1987), p. 613] published analytical formulas for the basic derivatives, e.g., derivatives of pressure with respect to elastic moduli and density. Other derivatives of interest, such as the derivative of transmission loss with respect to attenuation, can be easily constructed using the chain rule. For a range independent medium the analytical formulas involve only the Green's function and the vertical derivative of the Green's function for the medium. A crucial advantage of the analytical formulas for the Frechet derivatives over numerical differencing is that they can be computed with a single pass of any program which supplies the Green's function. Various derivatives of interest in shallow water ocean acoustics are presented and illustrated by an application to the sensitivity of measured pressure to shallow water sediment properties. [Work supported by ONR.
Barbosa, Marta O; Ribeiro, Ana R; Pereira, Manuel F R; Silva, Adrián M T
2016-11-01
Organic micropollutants present in drinking water (DW) may cause adverse effects for public health, and so reliable analytical methods are required to detect these pollutants at trace levels in DW. This work describes the first green analytical methodology for multi-class determination of 21 pollutants in DW: seven pesticides, an industrial compound, 12 pharmaceuticals, and a metabolite (some included in Directive 2013/39/EU or Decision 2015/495/EU). A solid-phase extraction procedure followed by ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (offline SPE-UHPLC-MS/MS) method was optimized using eco-friendly solvents, achieving detection limits below 0.20 ng L -1 . The validated analytical method was successfully applied to DW samples from different sources (tap, fountain, and well waters) from different locations in the north of Portugal, as well as before and after bench-scale UV and ozonation experiments in spiked tap water samples. Thirteen compounds were detected, many of them not regulated yet, in the following order of frequency: diclofenac > norfluoxetine > atrazine > simazine > warfarin > metoprolol > alachlor > chlorfenvinphos > trimethoprim > clarithromycin ≈ carbamazepine ≈ PFOS > citalopram. Hazard quotients were also estimated for the quantified substances and suggested no adverse effects to humans. Graphical Abstract Occurrence and removal of multi-class micropollutants in drinking water, analyzed by an eco-friendly LC-MS/MS method.
Recent Methodology in Ginseng Analysis
Baek, Seung-Hoon; Bae, Ok-Nam; Park, Jeong Hill
2012-01-01
As much as the popularity of ginseng in herbal prescriptions or remedies, ginseng has become the focus of research in many scientific fields. Analytical methodologies for ginseng, referred to as ginseng analysis hereafter, have been developed for bioactive component discovery, phytochemical profiling, quality control, and pharmacokinetic studies. This review summarizes the most recent advances in ginseng analysis in the past half-decade including emerging techniques and analytical trends. Ginseng analysis includes all of the leading analytical tools and serves as a representative model for the analytical research of herbal medicines. PMID:23717112
Big Data Analytics for a Smart Green Infrastructure Strategy
NASA Astrophysics Data System (ADS)
Barrile, Vincenzo; Bonfa, Stefano; Bilotta, Giuliana
2017-08-01
As well known, Big Data is a term for data sets so large or complex that traditional data processing applications aren’t sufficient to process them. The term “Big Data” is referred to using predictive analytics. It is often related to user behavior analytics, or other advanced data analytics methods which from data extract value, and rarely to a particular size of data set. This is especially true for the huge amount of Earth Observation data that satellites constantly orbiting the earth daily transmit.
"Greening up" the Suzuki Reaction
ERIC Educational Resources Information Center
Aktoudianakis, Evangelos; Chan, Elton; Edward, Amanda R.; Jarosz, Isabel; Lee, Vicki; Mui, Leo; Thatipamala, Sonya S.; Dicks, Andrew P.
2008-01-01
This article describes the rapid, green synthesis of a biaryl compound (4-phenylphenol) via a Pd(0)-catalyzed Suzuki cross-coupling reaction in water. Mild reaction conditions and operational simplicity makes this experiment especially amenable to both mid- and upper-level undergraduates. The methodology exposes students to purely aqueous…
Selection System for the "Stay-green" Drought Tolerance Trait in Sorghum Germplasm
USDA-ARS?s Scientific Manuscript database
Post-flowering drought tolerance is an essential trait for increasing cereal production in Mediterranean climates. Current methodologies for identifying the nonsenescent (stay-green) trait require the right intensity of drought stress at the right developmental stage to visually evaluate lines in t...
Selection System for the Stay-Green Drought Tolerance Trait in Sorghum Germplasm
USDA-ARS?s Scientific Manuscript database
Post-flowering drought tolerance is an essential trait for increasing the production of sorghum [Sorghum bicolor (L.) Moench] and other cereals in Mediterranean and semiarid tropical climates. Current methodologies for identifying the nonsenescent (stay-green) trait require the right intensity of dr...
The acoustic Green's function for swirling flow with variable entropy in a lined duct
NASA Astrophysics Data System (ADS)
Mathews, J. R.; Peake, N.
2018-04-01
This paper extends previous work by the authors (Journal of Sound and Vibration, 395:294-316,2017) on the acoustic field inside an annular duct with acoustic lining carrying mean axial and swirling flow so as to allow for non-uniform mean entropy, as would be found for instance in the turbine stage of an aeroengine. The main aim of this paper is to understand the effect of a non-uniform entropy on both the eigenmodes of the flow and the Green's function, which will allow noise prediction once we have identified acoustic sources. We first derive a new acoustic analogy in isentropic swirling flow, which allows us to derive the equation the tailored Green's function satisfies. The eigenmodes are split into two distinct families, acoustic and hydrodynamic modes, and are computed using different analytical methods; in the limit of high reduced frequency using the WKB method for the acoustic modes; and by considering a Frobenius expansion for the hydrodynamic modes. These are then compared with numerical results, with excellent agreement for all eigenmodes. The Green's function is also calculating analytically using the realistic limit of high reduced frequency, again with excellent agreement compared to numerical calculations. We see that for both the eigenmodes and Green's function the effect of non-uniform mean entropy is significant.
Weldegebreal, Blen; Redi-Abshiro, Mesfin; Chandravanshi, Bhagwan Singh
2017-12-05
This study was conducted to develop fast and cost effective methods for the determination of caffeine in green coffee beans. In the present work direct determination of caffeine in aqueous solution of green coffee bean was performed using FT-IR-ATR and fluorescence spectrophotometry. Caffeine was also directly determined in dimethylformamide solution using NIR spectroscopy with univariate calibration technique. The percentage of caffeine for the same sample of green coffee beans was determined using the three newly developed methods. The caffeine content of the green coffee beans was found to be 1.52 ± 0.09 (% w/w) using FT-IR-ATR, 1.50 ± 0.14 (% w/w) using NIR and 1.50 ± 0.05 (% w/w) using fluorescence spectroscopy. The means of the three methods were compared by applying one way analysis of variance and at p = 0.05 significance level the means were not significantly different. The percentage of caffeine in the same sample of green coffee bean was also determined by using the literature reported UV/Vis spectrophotometric method for comparison and found to be 1.40 ± 0.02 (% w/w). New simple, rapid and inexpensive methods were developed for direct determination of caffeine content in aqueous solution of green coffee beans using FT-IR-ATR and fluorescence spectrophotometries. NIR spectrophotometry can also be used as alternative choice of caffeine determination using reduced amount of organic solvent (dimethylformamide) and univariate calibration technique. These analytical methods may therefore, be recommended for the rapid, simple, safe and cost effective determination of caffeine in green coffee beans.
Martínez-Domínguez, Gerardo; Romero-González, Roberto; Garrido Frenich, Antonia
2016-04-15
A multi-class methodology was developed to determine pesticides and mycotoxins in food supplements. The extraction was performed using acetonitrile acidified with formic acid (1%, v/v). Different clean-up sorbents were tested, and the best results were obtained using C18 and zirconium oxide for green tea and royal jelly, respectively. The compounds were determined using ultra high performance liquid chromatography (UHPLC) coupled to Exactive-Orbitrap high resolution mass spectrometry (HRMS). The recovery rates obtained were between 70% and 120% for most of the compounds studied with a relative standard deviation <25%, at three different concentration levels. The calculated limits of quantification (LOQ) were <10 μg/kg. The method was applied to green tea (10) and royal jelly (8) samples. Nine (eight of green tea and one of royal jelly) samples were found to be positive for pesticides at concentrations ranging from 10.6 (cinosulfuron) to 47.9 μg/kg (paclobutrazol). The aflatoxin B1 (5.4 μg/kg) was also found in one of the green tea samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analytical and Numerical Results for an Adhesively Bonded Joint Subjected to Pure Bending
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III; Lundgren, Eric
2006-01-01
A one-dimensional, semi-analytical methodology that was previously developed for evaluating adhesively bonded joints composed of anisotropic adherends and adhesives that exhibit inelastic material behavior is further verified in the present paper. A summary of the first-order differential equations and applied joint loading used to determine the adhesive response from the methodology are also presented. The method was previously verified against a variety of single-lap joint configurations from the literature that subjected the joints to cases of axial tension and pure bending. Using the same joint configuration and applied bending load presented in a study by Yang, the finite element analysis software ABAQUS was used to further verify the semi-analytical method. Linear static ABAQUS results are presented for two models, one with a coarse and one with a fine element meshing, that were used to verify convergence of the finite element analyses. Close agreement between the finite element results and the semi-analytical methodology were determined for both the shear and normal stress responses of the adhesive bondline. Thus, the semi-analytical methodology was successfully verified using the ABAQUS finite element software and a single-lap joint configuration subjected to pure bending.
Luzardo, Octavio P; Almeida-González, Maira; Ruiz-Suárez, Norberto; Zumbado, Manuel; Henríquez-Hernández, Luis A; Meilán, María José; Camacho, María; Boada, Luis D
2015-09-01
Pesticides are frequently responsible for human poisoning and often the information on the involved substance is lacking. The great variety of pesticides that could be responsible for intoxication makes necessary the development of powerful and versatile analytical methodologies, which allows the identification of the unknown toxic substance. Here we developed a methodology for simultaneous identification and quantification in human blood of 109 highly toxic pesticides. The application of this analytical scheme would help in minimizing the cost of this type of chemical identification, maximizing the chances of identifying the pesticide involved. In the methodology that we present here, we use a liquid-liquid extraction, followed by one single purification step, and quantitation of analytes by a combination of liquid and gas chromatography, both coupled to triple quadrupole mass spectrometry, which is operated in the mode of multiple reaction monitoring. The methodology has been fully validated, and its applicability has been demonstrated in two recent cases involving one self-poisoning fatality and one non-fatal homicidal attempt. Copyright © 2015 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Hong, Seokpyo; Ahn, Kilsoo; Kim, Sungjune; Gong, Sungyong
2015-01-01
This study presents a methodology that enables a quantitative assessment of green chemistry technologies. The study carries out a quantitative evaluation of a particular case of material reutilization by calculating the level of "greenness" i.e., the level of compliance with the principles of green chemistry that was achieved by implementing a green chemistry technology. The results indicate that the greenness level was enhanced by 42% compared to the pre-improvement level, thus demonstrating the economic feasibility of green chemistry. The assessment technique established in this study will serve as a useful reference for setting the direction of industry-level and government-level technological R&D and for evaluating newly developed technologies, which can greatly contribute toward gaining a competitive advantage in the global market.
Besifloxacin: A Critical Review of Its Characteristics, Properties, and Analytical Methods.
Tótoli, Eliane Gandolpho; Salgado, Hérida Regina Nunes
2018-03-04
Bacterial conjunctivitis has high impact on the health of the population, since it represents more than a third of ocular pathologies reported by health services worldwide. There is a high incidence of bacterial resistance to the antimicrobials most commonly used for the treatment of conjunctivitis. In this context, besifloxacin stands out, since it is a fluoroquinolone developed exclusively for topical ophthalmic use, presenting a low risk of developing resistance due to its reduced systemic exposure. Bausch & Lomb markets it as ophthalmic suspension, under the trade name Besivance™. Literature review on besifloxacin is presented, covering its pharmaceutical and clinical characteristics, and the analytical methods used to measure the drug in pharmaceutical products and biological samples. High performance liquid chromatography is the most used method for this purpose. A discussion on Green Chemistry is also presented, focusing the importance of the development of green analytical methods for the analysis of drugs.
Smart phone: a popular device supports amylase activity assay in fisheries research.
Thongprajukaew, Karun; Choodum, Aree; Sa-E, Barunee; Hayee, Ummah
2014-11-15
Colourimetric determinations of amylase activity were developed based on a standard dinitrosalicylic acid (DNS) staining method, using maltose as the analyte. Intensities and absorbances of red, green and blue (RGB) were obtained with iPhone imaging and Adobe Photoshop image analysis. Correlation of green and analyte concentrations was highly significant, and the accuracy of the developed method was excellent in analytical performance. The common iPhone has sufficient imaging ability for accurate quantification of maltose concentrations. Detection limits, sensitivity and linearity were comparable to a spectrophotometric method, but provided better inter-day precision. In quantifying amylase specific activity from a commercial source (P>0.02) and fish samples (P>0.05), differences compared with spectrophotometric measurements were not significant. We have demonstrated that iPhone imaging with image analysis in Adobe Photoshop has potential for field and laboratory studies of amylase. Copyright © 2014 Elsevier Ltd. All rights reserved.
Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Self, Jesse G.
2010-01-01
Using a geology-based assessment methodology, the U.S. Geological Survey estimated a total of 1.32 trillion barrels of oil in place in 18 oil shale zones in the Eocene Green River Formation in the Uinta Basin, Utah and Colorado.
Living Green: Examining Sustainable Dorms and Identities
ERIC Educational Resources Information Center
Watson, Lesley; Johnson, Cathryn; Hegtvedt, Karen A.; Parris, Christie L.
2015-01-01
Purpose: The purpose of this study was to examine the effects of living in "green" dorms on students' environmentally responsible behaviors (ERBs), in concert with other factors, including individual identity and social context in the form of behavior modeling by peers. Design/methodology/approach: The sample of 243 consists of students…
Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis
The development of organic synthesis under sustainable conditions is a primary goal of practicing green chemists who want to prevent pollution and design safer pathways. Although, it is challenging to avoid the use of catalysts, or solvents in all the organic reactions but progre...
Force 2025 and Beyond Strategic Force Design Analytic Model
2017-01-12
depiction of the core ideas of our force design model. Figure 1: Description of Force Design Model Figure 2 shows an overview of our methodology ...the F2025B Force Design Analytic Model research conducted by TRAC- MTRY and the Naval Postgraduate School. Our research develops a methodology for...designs. We describe a data development methodology that characterizes the data required to construct a force design model using our approach. We
NASA Astrophysics Data System (ADS)
Xia, Qinghai; Yang, Yaling; Liu, Mousheng
2012-10-01
An aluminium sensitized spectrofluorimetric method coupled with salting-out assisted liquid-liquid ultrasonic extraction for the determination of four widely used fluoroquinolones (FQs) namely norfloxacin (NOR), ofloxacin (OFL), ciprofloxacin (CIP) and gatifloxacin (GAT) in bovine raw milk was described. The analytical procedure involves the fluorescence sensitization of aluminium (Al3+) by complexation with FQs, salting-out assisted liquid-liquid ultrasonic extraction (SALLUE), followed by spectrofluorometry. The influence of several parameters on the extraction (the salt species, the amount of salt, pH, temperature and phase volume ratio) was investigated. Under optimized experimental conditions, the detection limits of the method in milk varied from 0.009 μg/mL for NOR to 0.016 μg/mL for GAT (signal-to-noise ratio (S/N) = 3). The relative standard deviations (RSD) values were found to be relatively low (0.54-2.48% for four compounds). The calibration graph was linear from 0.015 to 2.25 μg/mL with coefficient of determinations not less than 0.9974. The methodology developed was applied to the determination of FQs in bovine raw milk samples. The main advantage of this method is simple, accurate and green. The method showed promising applications for analyzing polar analytes especially polar drugs in various sample matrices.
Reevaluation of analytical methods for photogenerated singlet oxygen
Nakamura, Keisuke; Ishiyama, Kirika; Ikai, Hiroyo; Kanno, Taro; Sasaki, Keiichi; Niwano, Yoshimi; Kohno, Masahiro
2011-01-01
The aim of the present study is to compare different analytical methods for singlet oxygen and to discuss an appropriate way to evaluate the yield of singlet oxygen photogenerated from photosensitizers. Singlet oxygen photogenerated from rose bengal was evaluated by electron spin resonance analysis using sterically hindered amines, spectrophotometric analysis of 1,3-diphenylisobenzofuran oxidation, and analysis of fluorescent probe (Singlet Oxygen Sensor Green®). All of the analytical methods could evaluate the relative yield of singlet oxygen. The sensitivity of the analytical methods was 1,3-diphenylisobenzofuran < electron spin resonance < Singlet Oxygen Sensor Green®. However, Singlet Oxygen Sensor Green® could be used only when the concentration of rose bengal was very low (<1 µM). In addition, since the absorption spectra of 1,3-diphenylisobenzofuran is considerably changed by irradiation of 405 nm laser, photosensitizers which are excited by light with a wavelength of around 400 nm such as hematoporphyrin cannot be used in the 1,3-diphenylisobenzofuran oxidation method. On the other hand, electron spin resonance analysis using a sterically hindered amine, especially 2,2,6,6-tetramethyl-4-piperidinol and 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide, had proper sensitivity and wide detectable range for the yield of photogenerated singlet oxygen. Therefore, in photodynamic therapy, it is suggested that the relative yield of singlet oxygen generated by various photosensitizers can be evaluated properly by electron spin resonance analysis. PMID:21980223
RUPTURES IN THE ANALYTIC SETTING AND DISTURBANCES IN THE TRANSFORMATIONAL FIELD OF DREAMS.
Brown, Lawrence J
2015-10-01
This paper explores some implications of Bleger's (1967, 2013) concept of the analytic situation, which he views as comprising the analytic setting and the analytic process. The author discusses Bleger's idea of the analytic setting as the depositary for projected painful aspects in either the analyst or patient or both-affects that are then rendered as nonprocess. In contrast, the contents of the analytic process are subject to an incessant process of transformation (Green 2005). The author goes on to enumerate various components of the analytic setting: the nonhuman, object relational, and the analyst's "person" (including mental functioning). An extended clinical vignette is offered as an illustration. © 2015 The Psychoanalytic Quarterly, Inc.
NASA Astrophysics Data System (ADS)
Plante, Ianik
2016-01-01
The exact Green's function of the diffusion equation (GFDE) is often considered to be the gold standard for the simulation of partially diffusion-controlled reactions. As the GFDE with angular dependency is quite complex, the radial GFDE is more often used. Indeed, the exact GFDE is expressed as a Legendre expansion, the coefficients of which are given in terms of an integral comprising Bessel functions. This integral does not seem to have been evaluated analytically in existing literature. While the integral can be evaluated numerically, the Bessel functions make the integral oscillate and convergence is difficult to obtain. Therefore it would be of great interest to evaluate the integral analytically. The first term was evaluated previously, and was found to be equal to the radial GFDE. In this work, the second term of this expansion was evaluated. As this work has shown that the first two terms of the Legendre polynomial expansion can be calculated analytically, it raises the question of the possibility that an analytical solution exists for the other terms.
Qiu, Huazhang; Wu, Namei; Zheng, Yanjie; Chen, Min; Weng, Shaohuang; Chen, Yuanzhong; Lin, Xinhua
2015-01-01
A robust and versatile signal-on fluorescence sensing strategy was developed to provide label-free detection of various target analytes. The strategy used SYBR Green I dye and graphene oxide as signal reporter and signal-to-background ratio enhancer, respectively. Multidrug resistance protein 1 (MDR1) gene and mercury ion (Hg2+) were selected as target analytes to investigate the generality of the method. The linear relationship and specificity of the detections showed that the sensitive and selective analyses of target analytes could be achieved by the proposed strategy with low detection limits of 0.5 and 2.2 nM for MDR1 gene and Hg2+, respectively. Moreover, the strategy was used to detect real samples. Analytical results of MDR1 gene in the serum indicated that the developed method is a promising alternative approach for real applications in complex systems. Furthermore, the recovery of the proposed method for Hg2+ detection was acceptable. Thus, the developed label-free signal-on fluorescence sensing strategy exhibited excellent universality, sensitivity, and handling convenience. PMID:25565810
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-20
... drill pipe green tubes and the labor wage rate in the less-than-fair-value investigation. \\1\\ Downhole... Department revised the labor wage rate and applied the wage rate methodology from Labor Methodologies.\\4\\ On... States, 604 F.3d 1363, 1372 (Fed. Cir. 2010) (``Dorbest''); see also Antidumping Methodologies in...
Multivariate Analysis and Prediction of Dioxin-Furan ...
Peer Review Draft of Regional Methods Initiative Final Report Dioxins, which are bioaccumulative and environmentally persistent, pose an ongoing risk to human and ecosystem health. Fish constitute a significant source of dioxin exposure for humans and fish-eating wildlife. Current dioxin analytical methods are costly, time-consuming, and produce hazardous by-products. A Danish team developed a novel, multivariate statistical methodology based on the covariance of dioxin-furan congener Toxic Equivalences (TEQs) and fatty acid methyl esters (FAMEs) and applied it to North Atlantic Ocean fishmeal samples. The goal of the current study was to attempt to extend this Danish methodology to 77 whole and composite fish samples from three trophic groups: predator (whole largemouth bass), benthic (whole flathead and channel catfish) and forage fish (composite bluegill, pumpkinseed and green sunfish) from two dioxin contaminated rivers (Pocatalico R. and Kanawha R.) in West Virginia, USA. Multivariate statistical analyses, including, Principal Components Analysis (PCA), Hierarchical Clustering, and Partial Least Squares Regression (PLS), were used to assess the relationship between the FAMEs and TEQs in these dioxin contaminated freshwater fish from the Kanawha and Pocatalico Rivers. These three multivariate statistical methods all confirm that the pattern of Fatty Acid Methyl Esters (FAMEs) in these freshwater fish covaries with and is predictive of the WHO TE
ERIC Educational Resources Information Center
Owens, Janel E.; Zimmerman, Laura B.; Gardner, Michael A.; Lowe, Luis E.
2016-01-01
Analysis of whiskey samples prepared by a green microextraction technique, dispersive liquid-liquid microextraction (DLLME), before analysis by a qualitative gas chromatography-mass spectrometry (GC/MS) method, is described as a laboratory experiment for an upper division instrumental methods of analysis laboratory course. Here, aroma compounds in…
ERIC Educational Resources Information Center
Azevedo, Roger
2015-01-01
Engagement is one of the most widely misused and overgeneralized constructs found in the educational, learning, instructional, and psychological sciences. The articles in this special issue represent a wide range of traditions and highlight several key conceptual, theoretical, methodological, and analytical issues related to defining and measuring…
ERIC Educational Resources Information Center
Dorney, Kevin M.; Baker, Joshua D.; Edwards, Michelle L.; Kanel, Sushil R.; O'Malley, Matthew; Pavel Sizemore, Ioana E.
2014-01-01
Numerous nanoparticle (NP) fabrication methodologies employ "bottom-up" syntheses, which may result in heterogeneous mixtures of NPs or may require toxic capping agents to reduce NP polydispersity. Tangential flow filtration (TFF) is an alternative "green" technique for the purification, concentration, and size-selection of…
Pedestrian Utterances on Space/less Green Awareness: Visualizing the Process
ERIC Educational Resources Information Center
Kosmala, Katarzyna; Imas, J. Miguel
2011-01-01
In the arts-informed teaching and learning spaces, knowledge is potentially produced and shared based on resonance that can involve a whole person. Concerned with educational processes enveloped in relational aesthetics, the authors designed a workshop to reconnect with green awareness, based as much as possible on the methodology that is located…
Promoting Sustainability in a College Café by Opposite-Sex Cashiers
ERIC Educational Resources Information Center
Tifferet, Sigal; Rosenblit, Niv; Shalev, Maya
2017-01-01
Purpose: People engage in green consumption for many reasons, both conscious and unconscious. This paper aims to draw on evolutionary psychology to propose that hard-wired mating strategies encourage both men and women to increase their green consumption in the presence of members of the opposite sex. Design/methodology/approach: Observations were…
This paper presents the data sources and methodology used to estimate Green Net National Product (GNNP), an economic metric of sustainability, for Puerto Rico. Using the change in GNNP as a one-sided test of weak sustainability (i.e., positive growth in GNNP is not enough to show...
Moreira, Sandra; Vasconcelos, Lia; Silva Santos, Carlos
2017-01-01
Objective: This study aimed to develop a methodological tool to analyze and monitor the green jobs in the context of Occupational Health and Safety. Methods: A literature review in combination with an investigation of Occupational Health Indicators was performed. The resulting tool of Occupational Health Indicators was based on the existing information of "Single Report" and was validated by national's experts. Results: The tool brings together 40 Occupational Health Indicators in four key fields established by World Health Organization in their conceptual framework "Health indicators of sustainable jobs." The tool proposed allows for assessing if the green jobs enabled to follow the principles and requirements of Occupational Health Indicators and if these jobs are as good for the environment as for the workers' health, so if they can be considered quality jobs. Conclusions: This shows that Occupational Health Indicators are indispensable for the assessment of the sustainability of green jobs and should be taken into account in the definition and evaluation of policies and strategies of the sustainable development. PMID:28794392
Dynamic calibration approach for determining catechins and gallic acid in green tea using LC-ESI/MS.
Bedner, Mary; Duewer, David L
2011-08-15
Catechins and gallic acid are antioxidant constituents of Camellia sinensis, or green tea. Liquid chromatography with both ultraviolet (UV) absorbance and electrospray ionization mass spectrometric (ESI/MS) detection was used to determine catechins and gallic acid in three green tea matrix materials that are commonly used as dietary supplements. The results from both detection modes were evaluated with 14 quantitation models, all of which were based on the analyte response relative to an internal standard. Half of the models were static, where quantitation was achieved with calibration factors that were constant over an analysis set. The other half were dynamic, with calibration factors calculated from interpolated response factor data at each time a sample was injected to correct for potential variations in analyte response over time. For all analytes, the relatively nonselective UV responses were found to be very stable over time and independent of the calibrant concentration; comparable results with low variability were obtained regardless of the quantitation model used. Conversely, the highly selective MS responses were found to vary both with time and as a function of the calibrant concentration. A dynamic quantitation model based on polynomial data-fitting was used to reduce the variability in the quantitative results using the MS data.
Analytic properties for the honeycomb lattice Green function at the origin
NASA Astrophysics Data System (ADS)
Joyce, G. S.
2018-05-01
The analytic properties of the honeycomb lattice Green function are investigated, where is a complex variable which lies in a plane. This double integral defines a single-valued analytic function provided that a cut is made along the real axis from w = ‑3 to . In order to analyse the behaviour of along the edges of the cut it is convenient to define the limit function where . It is shown that and can be evaluated exactly for all in terms of various hypergeometric functions, where the argument function is always real-valued and rational. The second-order linear Fuchsian differential equation satisfied by is also used to derive series expansions for and which are valid in the neighbourhood of the regular singular points and . Integral representations are established for and , where with . In particular, it is proved that where J 0(z) and Y 0(z) denote Bessel functions of the first and second kind, respectively. The results derived in the paper are utilized to evaluate the associated logarithmic integral where w lies in the cut plane. A new set of orthogonal polynomials which are connected with the honeycomb lattice Green function are also briefly discussed. Finally, a link between and the theory of Pearson random walks in a plane is established.
Green's function of radial inhomogeneous spheres excited by internal sources.
Zouros, Grigorios P; Kokkorakis, Gerassimos C
2011-01-01
Green's function in the interior of penetrable bodies with inhomogeneous compressibility by sources placed inside them is evaluated through a Schwinger-Lippmann volume integral equation. In the case of a radial inhomogeneous sphere, the radial part of the unknown Green's function can be expanded in a double Dini's series, which allows analytical evaluation of the involved cumbersome integrals. The simple case treated here can be extended to more difficult situations involving inhomogeneous density as well as to the corresponding electromagnetic or elastic problem. Finally, numerical results are given for various inhomogeneous compressibility distributions.
Eco-analytical Methodology in Environmental Problems Monitoring
NASA Astrophysics Data System (ADS)
Agienko, M. I.; Bondareva, E. P.; Chistyakova, G. V.; Zhironkina, O. V.; Kalinina, O. I.
2017-01-01
Among the problems common to all mankind, which solutions influence the prospects of civilization, the problem of ecological situation monitoring takes very important place. Solution of this problem requires specific methodology based on eco-analytical comprehension of global issues. Eco-analytical methodology should help searching for the optimum balance between environmental problems and accelerating scientific and technical progress. The fact that Governments, corporations, scientists and nations focus on the production and consumption of material goods cause great damage to environment. As a result, the activity of environmentalists is developing quite spontaneously, as a complement to productive activities. Therefore, the challenge posed by the environmental problems for the science is the formation of geo-analytical reasoning and the monitoring of global problems common for the whole humanity. So it is expected to find the optimal trajectory of industrial development to prevent irreversible problems in the biosphere that could stop progress of civilization.
NASA Astrophysics Data System (ADS)
Glezil, Dorothy
NEHRP's Provisions today currently governing conventional seismic resistant design. These provisions, though they ensure the life-safety of building occupants, extensive damage and economic losses may still occur in the structures. This minimum performance can be enhanced using the Performance-Based Earthquake Engineering methodology and passive control systems like base isolation and energy dissipation systems. Even though these technologies and the PBEE methodology are effective reducing economic losses and fatalities during earthquakes, getting them implemented into seismic resistant design has been challenging. One of the many barriers to their implementation has been their upfront costs. The green building community has faced some of the same challenges that the high performance seismic design community currently faces. The goal of this thesis is to draw on the success of the green building industry to provide recommendations that may be used overcome the barriers that high performance seismic design (HPSD) is currently facing.
Napolitano, José G.; Gödecke, Tanja; Lankin, David C.; Jaki, Birgit U.; McAlpine, James B.; Chen, Shao-Nong; Pauli, Guido F.
2013-01-01
The development of analytical methods for parallel characterization of multiple phytoconstituents is essential to advance the quality control of herbal products. While chemical standardization is commonly carried out by targeted analysis using gas or liquid chromatography-based methods, more universal approaches based on quantitative 1H NMR (qHNMR) measurements are being used increasingly in the multi-targeted assessment of these complex mixtures. The present study describes the development of a 1D qHNMR-based method for simultaneous identification and quantification of green tea constituents. This approach utilizes computer-assisted 1H iterative Full Spin Analysis (HiFSA) and enables rapid profiling of seven catechins in commercial green tea extracts. The qHNMR results were cross-validated against quantitative profiles obtained with an orthogonal LC-MS/MS method. The relative strengths and weaknesses of both approaches are discussed, with special emphasis on the role of identical reference standards in qualitative and quantitative analyses. PMID:23870106
A methodology to enhance electromagnetic compatibility in joint military operations
NASA Astrophysics Data System (ADS)
Buckellew, William R.
The development and validation of an improved methodology to identify, characterize, and prioritize potential joint EMI (electromagnetic interference) interactions and identify and develop solutions to reduce the effects of the interference are discussed. The methodology identifies potential EMI problems using results from field operations, historical data bases, and analytical modeling. Operational expertise, engineering analysis, and testing are used to characterize and prioritize the potential EMI problems. Results can be used to resolve potential EMI during the development and acquisition of new systems and to develop engineering fixes and operational workarounds for systems already employed. The analytic modeling portion of the methodology is a predictive process that uses progressive refinement of the analysis and the operational electronic environment to eliminate noninterfering equipment pairs, defer further analysis on pairs lacking operational significance, and resolve the remaining EMI problems. Tests are conducted on equipment pairs to ensure that the analytical models provide a realistic description of the predicted interference.
Hayes, J E; McGreevy, P D; Forbes, S L; Laing, G; Stuetz, R M
2018-08-01
Detection dogs serve a plethora of roles within modern society, and are relied upon to identify threats such as explosives and narcotics. Despite their importance, research and training regarding detection dogs has involved ambiguity. This is partially due to the fact that the assessment of effectiveness regarding detection dogs continues to be entrenched within a traditional, non-scientific understanding. Furthermore, the capabilities of detection dogs are also based on their olfactory physiology and training methodologies, both of which are hampered by knowledge gaps. Additionally, the future of detection dogs is strongly influenced by welfare and social implications. Most importantly however, is the emergence of progressively inexpensive and efficacious analytical methodologies including gas chromatography related techniques, "e-noses", and capillary electrophoresis. These analytical methodologies provide both an alternative and assistor for the detection dog industry, however the interrelationship between these two detection paradigms requires clarification. These factors, when considering their relative contributions, illustrate a need to address research gaps, formalise the detection dog industry and research process, as well as take into consideration analytical methodologies and their influence on the future status of detection dogs. This review offers an integrated assessment of the factors involved in order to determine the current and future status of detection dogs. Copyright © 2018 Elsevier B.V. All rights reserved.
On Green's function retrieval by iterative substitution of the coupled Marchenko equations
NASA Astrophysics Data System (ADS)
van der Neut, Joost; Vasconcelos, Ivan; Wapenaar, Kees
2015-11-01
Iterative substitution of the coupled Marchenko equations is a novel methodology to retrieve the Green's functions from a source or receiver array at an acquisition surface to an arbitrary location in an acoustic medium. The methodology requires as input the single-sided reflection response at the acquisition surface and an initial focusing function, being the time-reversed direct wavefield from the acquisition surface to a specified location in the subsurface. We express the iterative scheme that is applied by this methodology explicitly as the successive actions of various linear operators, acting on an initial focusing function. These operators involve multidimensional crosscorrelations with the reflection data and truncations in time. We offer physical interpretations of the multidimensional crosscorrelations by subtracting traveltimes along common ray paths at the stationary points of the underlying integrals. This provides a clear understanding of how individual events are retrieved by the scheme. Our interpretation also exposes some of the scheme's limitations in terms of what can be retrieved in case of a finite recording aperture. Green's function retrieval is only successful if the relevant stationary points are sampled. As a consequence, internal multiples can only be retrieved at a subsurface location with a particular ray parameter if this location is illuminated by the direct wavefield with this specific ray parameter. Several assumptions are required to solve the Marchenko equations. We show that these assumptions are not always satisfied in arbitrary heterogeneous media, which can result in incomplete Green's function retrieval and the emergence of artefacts. Despite these limitations, accurate Green's functions can often be retrieved by the iterative scheme, which is highly relevant for seismic imaging and inversion of internal multiple reflections.
Toward Green Acylation of (Hetero)arenes: Palladium-Catalyzed Carbonylation of Olefins to Ketones
2017-01-01
Green Friedel–Crafts acylation reactions belong to the most desired transformations in organic chemistry. The resulting ketones constitute important intermediates, building blocks, and functional molecules in organic synthesis as well as for the chemical industry. Over the past 60 years, advances in this topic have focused on how to make this reaction more economically and environmentally friendly by using green acylating conditions, such as stoichiometric acylations and catalytic homogeneous and heterogeneous acylations. However, currently well-established methodologies for their synthesis either produce significant amounts of waste or proceed under harsh conditions, limiting applications. Here, we present a new protocol for the straightforward and selective introduction of acyl groups into (hetero)arenes without directing groups by using available olefins with inexpensive CO. In the presence of commercial palladium catalysts, inter- and intramolecular carbonylative C–H functionalizations take place with good regio- and chemoselectivity. Compared to classical Friedel–Crafts chemistry, this novel methodology proceeds under mild reaction conditions. The general applicability of this methodology is demonstrated by the direct carbonylation of industrial feedstocks (ethylene and diisobutene) as well as of natural products (eugenol and safrole). Furthermore, synthetic applications to drug molecules are showcased. PMID:29392174
Vijayaraghavan, K; Joshi, Umid Man
2014-11-01
The present study examines whether green roofs act as a sink or source of contaminants based on various physico-chemical parameters (pH, conductivity and total dissolved solids) and metals (Na, K, Ca, Mg, Al, Fe, Cr, Cu, Ni, Zn, Cd and Pb). The performance of green roof substrate prepared using perlite, vermiculite, sand, crushed brick, and coco-peat, was compared with local garden soil based on improvement of runoff quality. Portulaca grandiflora was used as green roof vegetation. Four different green roof configurations, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). In general, the vegetated green roof assemblies generated better-quality runoff with less conductivity and total metal ion concentration compared to un-vegetated assemblies. Of the different green roof configurations examined, P. grandiflora planted on green roof substrate acted as sink for various metals and showed the potential to generate better runoff. Copyright © 2014 Elsevier Ltd. All rights reserved.
RE-EVALUATION OF APPLICABILITY OF AGENCY SAMPLE HOLDING TIMES
Holding times are the length of time a sample can be stored after collection and prior to analysis without significantly affecting the analytical results. Holding times vary with the analyte, sample matrix, and analytical methodology used to quantify the analytes concentration. ...
Using hybrid method to evaluate the green performance in uncertainty.
Tseng, Ming-Lang; Lan, Lawrence W; Wang, Ray; Chiu, Anthony; Cheng, Hui-Ping
2011-04-01
Green performance measure is vital for enterprises in making continuous improvements to maintain sustainable competitive advantages. Evaluation of green performance, however, is a challenging task due to the dependence complexity of the aspects, criteria, and the linguistic vagueness of some qualitative information and quantitative data together. To deal with this issue, this study proposes a novel approach to evaluate the dependence aspects and criteria of firm's green performance. The rationale of the proposed approach, namely green network balanced scorecard, is using balanced scorecard to combine fuzzy set theory with analytical network process (ANP) and importance-performance analysis (IPA) methods, wherein fuzzy set theory accounts for the linguistic vagueness of qualitative criteria and ANP converts the relations among the dependence aspects and criteria into an intelligible structural modeling used IPA. For the empirical case study, four dependence aspects and 34 green performance criteria for PCB firms in Taiwan were evaluated. The managerial implications are discussed.
As Green as We Think? The Case of the College of Charleston Green Building Initiative
ERIC Educational Resources Information Center
Owens, Katharine A.; Halfacre-Hitchcock, Angela
2006-01-01
Purpose: This paper seeks to disseminate knowledge regarding the experiences of a student team in implementing a campus-level sustainability initiative, outlining the strategy to measure the potential impact of this initiative. Design/methodology/approach: Project design is a case study. Via interviewing and surveys, the study observed student and…
ERIC Educational Resources Information Center
Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly; Arena, Anthony F.
2012-01-01
A one-term synthesis project that incorporates many of the principles of green chemistry is presented for the undergraduate organic laboratory. In this multistep scheme of reactions, students react, recycle, and ultimately convert cyclohexanol to nylon 6,6. The individual reactions in the project employ environmentally friendly methodologies, and…
Fernández, María de Los Ángeles; Espino, Magdalena; Gomez, Federico J V; Silva, María Fernanda
2018-01-15
An environmentally friendly method for the phenolic compound extraction from agro-food industrial by-products was developed in order to contribute with their sustainable valorization. A Natural Deep Eutectic Solvent was chemometrically-designed for the first time and compared with traditional solvents in terms of analyte stabilization. The combination of lactic acid, glucose and 15% water (LGH-15) was selected as optimal. A high-efficiency ultrasound-assisted extraction mediated by LGH-15 prior to HPLC-DAD allows the determination of 14 phenols in onion, olive, tomato and pear industrial by-products. NADES synthesis as well as the extraction procedures were optimized by Response Surface Methodology. Thus, phenolic determination in these complex samples was achieved by a simple, non-expensive, eco-friendly and robust system. The application to different matrices demonstrated the versatility of the proposed method. NADES opens interesting perspectives for their potential use as vehicles of bioactive compounds as food additives or pharmaceuticals. Copyright © 2017 Elsevier Ltd. All rights reserved.
A methodology for the assessment of manned flight simulator fidelity
NASA Technical Reports Server (NTRS)
Hess, Ronald A.; Malsbury, Terry N.
1989-01-01
A relatively simple analytical methodology for assessing the fidelity of manned flight simulators for specific vehicles and tasks is offered. The methodology is based upon an application of a structural model of the human pilot, including motion cue effects. In particular, predicted pilot/vehicle dynamic characteristics are obtained with and without simulator limitations. A procedure for selecting model parameters can be implemented, given a probable pilot control strategy. In analyzing a pair of piloting tasks for which flight and simulation data are available, the methodology correctly predicted the existence of simulator fidelity problems. The methodology permitted the analytical evaluation of a change in simulator characteristics and indicated that a major source of the fidelity problems was a visual time delay in the simulation.
In 1998, EPA published its draft revision to the methodology for deriving ambient water quality criteria to protect human health. Four methods were proposed to determine lipid-normalized bioaccumulation factors based on freely-dissolved water concentrations (BAFs) for nonpolar or...
Liao, S Matthew
2017-03-01
A number of people believe that results from neuroscience have the potential to settle seemingly intractable debates concerning the nature, practice, and reliability of moral judgments. In particular, Joshua Greene has argued that evidence from neuroscience can be used to advance the long-standing debate between consequentialism and deontology. This paper first argues that charitably interpreted, Greene's neuroscientific evidence can contribute to substantive ethical discussions by being part of an epistemic debunking argument. It then argues that taken as an epistemic debunking argument, Greene's argument falls short in undermining deontological judgments. Lastly, it proposes that accepting Greene's methodology at face value, neuroimaging results may in fact call into question the reliability of consequentialist judgments. The upshot is that Greene's empirical results do not undermine deontology and that Greene's project points toward a way by which empirical evidence such as neuroscientific evidence can play a role in normative debates.
Origin of Analyte-Induced Porous Silicon Photoluminescence Quenching.
Reynard, Justin M; Van Gorder, Nathan S; Bright, Frank V
2017-09-01
We report on gaseous analyte-induced photoluminescence (PL) quenching of porous silicon, as-prepared (ap-pSi) and oxidized (ox-pSi). By using steady-state and emission wavelength-dependent time-resolved intensity luminescence measurements in concert with a global analysis scheme, we find that the analyte-induced quenching is best described by a three-component static quenching model. In the model, there are blue, green, and red emitters (associated with the nanocrystallite core and surface trap states) that each exhibit unique analyte-emitter association constants and these association constants are a consequence of differences in the pSi surface chemistries.
Hydrotalcite catalysis for the synthesis of new chiral building blocks.
Rodilla, Jesus M; Neves, Patricia P; Pombal, Sofia; Rives, Vicente; Trujillano, Raquel; Díez, David
2016-01-01
The use of hydrotalcites for the synthesis of two chiral building blocks in a simple way is described as a new and green methodology. The synthesis of these compounds implies a regioselective Baeyer-Villiger reaction in a very selective way with ulterior opening and lactonisation. This methodology should be considered green for the use of hydrogen peroxide as the only oxidant and hydrotalcites as the catalyst, and because no residues are produced apart from water. The procedure is very adequate for using in gram scale, in order to increase the value of the obtained compounds. The conditions are excellent and can be applied for nonstable compounds, as they are very mild. The synthesised compounds are magnific starting materials for the synthesis of biologically active or natural compounds. The use of a cheap, commercial and chiral compound as carvone disposable in both enantiomeric forms adds an extra value to this methodology.
Smichowski, Patricia
2008-03-15
This review summarizes and discusses the research carried out on the determination of antimony and its predominant chemical species in atmospheric aerosols. Environmental matrices such as airborne particulate matter, fly ash and volcanic ash present a number of complex analytical challenges as very sensitive analytical techniques and highly selective separation methodologies for speciation studies. Given the diversity of instrumental approaches and methodologies employed for the determination of antimony and its species in environmental matrices, the objective of this review is to briefly discuss the most relevant findings reported in the last years for this remarkable element and to identify the future needs and trends. The survey includes 92 references and covers principally the literature published over the last decade.
Ide, A H; Nogueira, J M F
2018-05-10
The present contribution aims to design new-generation bar adsorptive microextraction (BAμE) devices that promote an innovative and much better user-friendly analytical approach. The novel BAμE devices were lab-made prepared having smaller dimensions by using flexible nylon-based supports (7.5 × 1.0 mm) coated with convenient sorbents (≈ 0.5 mg). This novel advance allows effective microextraction and back-extraction ('only single liquid desorption step') stages as well as interfacing enhancement with the instrumental systems dedicated for routine analysis. To evaluate the achievements of these improvements, four antidepressant agents (bupropion, citalopram, amitriptyline and trazodone) were used as model compounds in aqueous media combined with liquid chromatography (LC) systems. By using an N-vinylpyrrolidone based-polymer phase good selectivity and efficiency were obtained. Assays performed on 25 mL spiked aqueous samples, yielded average recoveries in between 67.8 ± 12.4% (bupropion) and 88.3 ± 12.1% (citalopram), under optimized experimental conditions. The analytical performance also showed convenient precision (RSD < 12%) and detection limits (50 ng L -1 ), as well as linear dynamic ranges (160-2000 ng L -1 ) with suitable determination coefficients (r 2 > 0.9820). The application of the proposed analytical approach on biological fluids showed negligible matrix effects by using the standard addition methodology. From the data obtained, the new-generation BAμE devices presented herein provide an innovative and robust analytical cycle, are simple to prepare, cost-effective, user-friendly and compatible with the current LC autosampler systems. Furthermore, the novel devices were designed to be disposable and used together with negligible amounts of organic solvents (100 μL) during back-extraction, in compliance with the green analytical chemistry principles. In short, the new-generation BAμE devices showed to be an eco-user-friendly approach for trace analysis of priority compounds in biological fluids and a versatile alternative over other well-stablished sorption-based microextraction techniques. Copyright © 2018 Elsevier B.V. All rights reserved.
A new numerical algorithm for the analytic continuation of Green`s functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natoli, V.D.; Cohen, M.H.; Fornberg, B.
1996-06-01
The need to calculate the spectral properties of a Hermitian operation H frequently arises in the technical sciences. A common approach to its solution involves the construction of the Green`s function operator G(z) = [z - H]{sup -1} in the complex z plane. For example, the energy spectrum and other physical properties of condensed matter systems can often be elegantly and naturally expressed in terms of the Kohn-Sham Green`s functions. However, the nonanalyticity of resolvents on the real axis makes them difficult to compute and manipulate. The Herglotz property of a Green`s function allows one to calculate it along anmore » arc with a small but finite imaginary part, i.e., G(x + iy), and then to continue it to the real axis to determine quantities of physical interest. In the past, finite-difference techniques have been used for this continuation. We present here a fundamentally new algorithm based on the fast Fourier transform which is both simpler and more effective. 14 refs., 9 figs.« less
Marzi Khosrowshahi, Elnaz; Razmi, Habib
2018-02-08
A green biocomposite of sunflower stalks and graphitic carbon nitride nanosheets has been applied as a solid-phase extraction adsorbent for sample preparation of five polycyclic aromatic hydrocarbons in different solutions using high-performance liquid chromatography with ultraviolet detection. Before the modification, sunflower stalks exhibited relatively low adsorption to the polycyclic aromatic hydrocarbons extraction. The modified sunflower stalks showed increased adsorption to the analytes extraction due to the increase in surface and existence of a π-π interaction between the analytes and graphitic carbon nitride nanosheets on the surface. Under the optimal conditions, the limits of detection and quantification for five polycyclic aromatic hydrocarbons compounds could reach 0.4-32 and 1.2-95 ng/L, respectively. The method accuracy was evaluated using recovery measurements in spiked real samples and good recoveries from 71 to 115% with relative standard deviations of <10% have been achieved. The developed method was successfully applied for polycyclic aromatic hydrocarbons determination in various samples-well water, tap water, soil, vegetable, and barbequed meat (kebab)-with analytes contents ranging from 0.065 to 13.3 μg/L. The prepared green composite as a new sorbent has some advantages including ease of preparation, low cost, and good reusability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reducing Energy Cost and Greenhouse Gas Emission in the Corporate Sector, a Delphi Study
ERIC Educational Resources Information Center
Kramer, Maxim L.
2013-01-01
The study is titled "Reducing energy cost and GreenHouse Gas emission in the corporate sector, A Delphi Study". The study applied the Delphi methodology and focused on the Green IT solutions that can help the modern corporate organizations with less than 1000 employees to decrease their energy costs and GHG emissions. The study presents…
ERIC Educational Resources Information Center
Armstrong, Cosette M. Joyner; Hustvedt, Gwendolyn; LeHew, Melody L. A.; Anderson, Barbara G.; Connell, Kim Y. Hiller
2016-01-01
Purpose: The purpose of this project is to provide an account of the student experience at a higher education institution known for its holistic approach to sustainability education. Design/methodology/approach: A qualitative study was conducted at Green Mountain College (GMC), an environmental liberal arts school in Poultney, VT; 55 students…
Cruz, Rebeca; Casal, Susana
2013-11-15
Vitamin E analysis in green vegetables is performed by an array of different methods, making it difficult to compare published data or choosing the adequate one for a particular sample. Aiming to achieve a consistent method with wide applicability, the current study reports the development and validation of a fast micro-method for quantification of vitamin E in green leafy vegetables. The methodology uses solid-liquid extraction based on the Folch method, with tocol as internal standard, and normal-phase HPLC with fluorescence detection. A large linear working range was confirmed, being highly reproducible, with inter-day precisions below 5% (RSD). Method sensitivity was established (below 0.02 μg/g fresh weight), and accuracy was assessed by recovery tests (>96%). The method was tested in different green leafy vegetables, evidencing diverse tocochromanol profiles, with variable ratios and amounts of α- and γ-tocopherol, and other minor compounds. The methodology is adequate for routine analyses, with a reduced chromatographic run (<7 min) and organic solvent consumption, and requires only standard chromatographic equipment available in most laboratories. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method for predicting dry mechanical properties from wet wood and standing trees
Meglen, Robert R.; Kelley, Stephen S.
2003-08-12
A method for determining the dry mechanical strength for a green wood comprising: illuminating a surface of the wood to be determined with light between 350-2,500 nm, the wood having a green moisture content; analyzing the surface using a spectrometric method, the method generating a first spectral data, and using a multivariate analysis to predict the dry mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data obtained from a reference wood having a green moisture content, the second spectral data correlated with a known mechanical strength analytical result obtained from a reference wood when dried and having a dry moisture content.
Collaborative Visual Analytics: A Health Analytics Approach to Injury Prevention.
Al-Hajj, Samar; Fisher, Brian; Smith, Jennifer; Pike, Ian
2017-09-12
Background : Accurate understanding of complex health data is critical in order to deal with wicked health problems and make timely decisions. Wicked problems refer to ill-structured and dynamic problems that combine multidimensional elements, which often preclude the conventional problem solving approach. This pilot study introduces visual analytics (VA) methods to multi-stakeholder decision-making sessions about child injury prevention; Methods : Inspired by the Delphi method, we introduced a novel methodology-group analytics (GA). GA was pilot-tested to evaluate the impact of collaborative visual analytics on facilitating problem solving and supporting decision-making. We conducted two GA sessions. Collected data included stakeholders' observations, audio and video recordings, questionnaires, and follow up interviews. The GA sessions were analyzed using the Joint Activity Theory protocol analysis methods; Results : The GA methodology triggered the emergence of ' common g round ' among stakeholders. This common ground evolved throughout the sessions to enhance stakeholders' verbal and non-verbal communication, as well as coordination of joint activities and ultimately collaboration on problem solving and decision-making; Conclusion s : Understanding complex health data is necessary for informed decisions. Equally important, in this case, is the use of the group analytics methodology to achieve ' common ground' among diverse stakeholders about health data and their implications.
Rivero, Anisleidy; Niell, Silvina; Cerdeiras, M Pía; Heinzen, Horacio; Cesio, María Verónica
2016-06-01
To assess recalcitrant pesticide bioremediation it is necessary to gradually increase the complexity of the biological system used in order to design an effective biobed assembly. Each step towards this effective biobed design needs a suitable, validated analytical methodology that allows a correct evaluation of the dissipation and bioconvertion. Low recovery yielding methods could give a false idea of a successful biodegradation process. To address this situation, different methods were developed and validated for the simultaneous determination of endosulfan, its main three metabolites, and chlorpyrifos in increasingly complex matrices where the bioconvertor basidiomycete Abortiporus biennis could grow. The matrices were culture media, bran, and finally a laboratory biomix composed of bran, peat and soil. The methodology for the analysis of the first evaluated matrix has already been reported. The methodologies developed for the other two systems are presented in this work. The targeted analytes were extracted from fungi growing over bran in semisolid media YNB (Yeast Nitrogen Based) with acetonitrile using shaker assisted extraction, The salting-out step was performed with MgSO4 and NaCl, and the extracts analyzed by GC-ECD. The best methodology was fully validated for all the evaluated analytes at 1 and 25mgkg(-1) yielding recoveries between 72% and 109% and RSDs <11% in all cases. The application of this methodology proved that A. biennis is able to dissipate 94% of endosulfan and 87% of chlorpyrifos after 90 days. Having assessed that A. biennis growing over bran can metabolize the studied pesticides, the next step faced was the development and validation of an analytical procedure to evaluate the analytes in a laboratory scale biobed composed of 50% of bran, 25% of peat and 25% of soil together with fungal micelium. From the different procedures assayed, only ultrasound assisted extraction with ethyl acetate allowed recoveries between 80% and 110% with RSDs <18%. Linearity, recovery, precision, matrix effect and LODs/LOQs of each method were studied for all the analytes: endosulfan isomers (α & β) and its metabolites (endosulfan sulfate, ether and diol) as well as for chlorpyrifos. In the first laboratory evaluation of these biobeds endosulfan was bioconverted up to 87% and chlorpyrifos more than 79% after 27 days. Copyright © 2016 Elsevier B.V. All rights reserved.
Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F
2017-01-01
Two new, simple, and specific green analytical methods are proposed: zero-crossing first-derivative and chemometric-based spectrophotometric artificial neural network (ANN). The proposed methods were used for the simultaneous estimation of two closely related antioxidant nutraceuticals, coenzyme Q10 (Q10) and vitamin E, in their mixtures and pharmaceutical preparations. The first method is based on the handling of spectrophotometric data with the first-derivative technique, in which both nutraceuticals were determined in ethanol, each at the zero crossing of the other. The amplitudes of the first-derivative spectra for Q10 and vitamin E were recorded at 285 and 235 nm respectively, and correlated with their concentrations. The linearity ranges of Q10 and vitamin E were 10-60 and 5.6-70 μg⋅mL-1, respectively. The second method, ANN, is a multivariate calibration method and it was developed and applied for the simultaneous determination of both analytes. A training set of 90 different synthetic mixtures containing Q10 and vitamin E in the ranges of 0-100 and 0-556 μg⋅mL-1, respectively, was prepared in ethanol. The absorption spectra of the training set were recorded in the spectral region of 230-300 nm. By relating the concentration sets (x-block) with their corresponding absorption data (y-block), gradient-descent back-propagation ANN calibration could be computed. To validate the proposed network, a set of 45 synthetic mixtures of the two drugs was used. Both proposed methods were successfully applied for the assay of Q10 and vitamin E in their laboratory-prepared mixtures and in their pharmaceutical tablets with excellent recovery. These methods offer advantages over other methods because of low-cost equipment, time-saving measures, and environmentally friendly materials. In addition, no chemical separation prior to analysis was needed. The ANN method was superior to the derivative technique because ANN can determine both drugs under nonlinear experimental conditions. Consequently, ANN would be the method of choice in the routine analysis of Q10 and vitamin E tablets. No interference from common pharmaceutical additives was observed. Student's t-test and the F-test were used to compare the two methods. No significant difference was recorded.
Bustamante, Julen; Navarro, Patricia; Arana, Gorka; de Diego, Alberto; Madariaga, Juan Manuel
2013-09-30
A new procedure based on ultrasound assisted dialysis (UAD) for the simultaneous and quantitative extraction of a wide number of persistent organic pollutants (POPs) such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) or some other organochlorinated pesticides (OCPs) contained in semi-permeable membrane devices (SPMDs) has been developed. This extraction technique combines the advantages of the organic solvent dialysis (OSD) and the speed of the ultrasound assisted extraction. The extraction was performed in an ultrasound bath for 32 min placing the SPMD in a glass flask covered with 80 mL of hexane. This set-up is able to extract simultaneously up to 8 samples. The proposed method entails good repeatabilities (RSD 2-13%) and recoveries (around 100% for almost every analyte). Limits of detection were at ng SPMD(-1) level and enough for the determination of the target analytes in a slightly polluted aquatic environment, as it was tested by successfully comparing the OSD to the proposed methodology. Therefore, the results obtained show that the UAD can be a good alternative for the extraction of POPs in SPMDs as it requires short extraction times and solvent volumes, and provides a cleaner extract for the subsequent clean-up step. Moreover, it fits better than the OSD to the general requirements of Green Chemistry. Copyright © 2013 Elsevier B.V. All rights reserved.
Fujimura, Yoshinori; Miura, Daisuke; Tachibana, Hirofumi
2017-09-27
Low-molecular-weight phytochemicals have health benefits and reduce the risk of diseases, but the mechanisms underlying their activities have remained elusive because of the lack of a methodology that can easily visualize the exact behavior of such small molecules. Recently, we developed an in situ label-free imaging technique, called mass spectrometry imaging, for visualizing spatially-resolved biotransformations based on simultaneous mapping of the major bioactive green tea polyphenol and its phase II metabolites. In addition, we established a mass spectrometry-based metabolic profiling technique capable of evaluating the bioactivities of diverse green tea extracts, which contain multiple phytochemicals, by focusing on their compositional balances. This methodology allowed us to simultaneously evaluate the relative contributions of the multiple compounds present in a multicomponent system to its bioactivity. This review highlights small molecule-sensing techniques for visualizing the complex behaviors of herbal components and linking such information to an enhanced understanding of the functionalities of multicomponent medicinal herbs.
Ge, Jia; Bai, Dong-Mei; -Geng, Xin; Hu, Ya-Lei; Cai, Qi-Yong; Xing, Ke; Zhang, Lin; Li, Zhao-Hui
2018-01-10
The authors describe a fluorometric method for the quantitation of nucleic acids by combining (a) cycled strand displacement amplification, (b) the unique features of the DNA probe SYBR Green, and (c) polydopamine nanotubes. SYBR Green undergoes strong fluorescence enhancement upon intercalation into double-stranded DNA (dsDNA). The polydopamine nanotubes selectively adsorb single-stranded DNA (ssDNA) and molecular beacons. In the absence of target DNA, the molecular beacon, primer and SYBR Green are adsorbed on the surface of polydopamine nanotubes. This results in quenching of the fluorescence of SYBR Green, typically measured at excitation/emission wavelengths of 488/518 nm. Upon addition of analyte (target DNA) and polymerase, the stem of the molecular beacon is opened so that it can bind to the primer. This triggers target strand displacement polymerization, during which dsDNA is synthesized. The hybridized target is then displaced due to the strand displacement activity of the polymerase. The displaced target hybridizes with another molecular beacon. This triggers the next round of polymerization. Consequently, a large amount of dsDNA is formed which is detected by addition of SYBR Green. Thus, sensitive and selective fluorometric detection is realized. The fluorescent sensing strategy shows very good analytical performances towards DNA detection, such as a wide linear range from 0.05 to 25 nM with a low limit of detection of 20 pM. Graphical abstract Schematic of a fluorometric strategy for highly sensitive and selective determination of nucleic acids by combining strand displacement amplification and the unique features of SYBR Green I (SG) and polydopamine nanotubes.
Hurtaud-Pessel, Dominique; Couëdor, Pierrick; Verdon, Eric; Dowell, Dawn
2013-01-01
During the AOAC Annual Meeting held from September 30 to October 3, 2012 in Las Vegas, NV, the Expert Review Panel (ERP) on Veterinary Drug Residues reviewed data for the method for determination of residues of three triphenylmethane dyes and their metabolites (malachite green, leuco malachite green, crystal violet, leuco crystal violet, and brilliant green) in aquaculture products by LC/MS/MS, previously published in the Journal of Chromatography A 1218, 1632-1645 (2006). The method data were reviewed and compared to the standard method performance requirements (SMPRs) found in SMPR 2009.001, published in AOAC's Official Methods of Analysis, 19th Ed. (2012). The ERP determined that the data were acceptable, and the method was approved AOAC Official First Action. The method uses acetonitrile to isolate the analyte from the matrix. Then determination is conducted by LCIMS/MS with positive electrospray ionization. Accuracy ranged from 100.1 to 109.8% for samples fortified at levels of 0.5, 0.75, 1.0, and 2.0 microg/kg. Precision ranged from 2.0 to 10.3% RSD for the intraday samples and 1.9 to 10.6% for the interday samples analyzed over 3 days. The described method is designed to accurately operate in the analytical range from 0.5 to 2 microg/kg, where the minimum required performance limit for laboratories has been fixed in the European Union at 2.0 microg/kg for these banned substances and their metabolites. Upper levels of concentrations (1-100 microg/kg) can be analyzed depending on the different optional calibrations used.
NASA Astrophysics Data System (ADS)
Diestra Cruz, Heberth Alexander
The Green's functions integral technique is used to determine the conduction heat transfer temperature field in flat plates, circular plates, and solid spheres with saw tooth heat generating sources. In all cases the boundary temperature is specified (Dirichlet's condition) and the thermal conductivity is constant. The method of images is used to find the Green's function in infinite solids, semi-infinite solids, infinite quadrants, circular plates, and solid spheres. The saw tooth heat generation source has been modeled using Dirac delta function and Heaviside step function. The use of Green's functions allows obtain the temperature distribution in the form of an integral that avoids the convergence problems of infinite series. For the infinite solid and the sphere, the temperature distribution is three-dimensional and in the cases of semi-infinite solid, infinite quadrant and circular plate the distribution is two-dimensional. The method used in this work is superior to other methods because it obtains elegant analytical or quasi-analytical solutions to complex heat conduction problems with less computational effort and more accuracy than the use of fully numerical methods.
Rusyn, Ivan; Greene, Nigel
2018-02-01
The field of experimental toxicology is rapidly advancing by incorporating novel techniques and methods that provide a much more granular view into the mechanisms of potential adverse effects of chemical exposures on human health. The data from various in vitro assays and computational models are useful not only for increasing confidence in hazard and risk decisions, but also are enabling better, faster and cheaper assessment of a greater number of compounds, mixtures, and complex products. This is of special value to the field of green chemistry where design of new materials or alternative uses of existing ones is driven, at least in part, by considerations of safety. This article reviews the state of the science and decision-making in scenarios when little to no data may be available to draw conclusions about which choice in green chemistry is "safer." It is clear that there is no "one size fits all" solution and multiple data streams need to be weighed in making a decision. Moreover, the overall level of familiarity of the decision-makers and scientists alike with new assessment methodologies, their validity, value and limitations is evolving. Thus, while the "impact" of the new developments in toxicology on the field of green chemistry is great already, it is premature to conclude that the data from new assessment methodologies have been widely accepted yet. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
An analytical procedure to assist decision-making in a government research organization
H. Dean Claxton; Giuseppe Rensi
1972-01-01
An analytical procedure to help management decision-making in planning government research is described. The objectives, activities, and restrictions of a government research organization are modeled in a consistent analytical framework. Theory and methodology is drawn from economics and mathe-matical programing. The major analytical aspects distinguishing research...
Analytical and simulator study of advanced transport
NASA Technical Reports Server (NTRS)
Levison, W. H.; Rickard, W. W.
1982-01-01
An analytic methodology, based on the optimal-control pilot model, was demonstrated for assessing longitidunal-axis handling qualities of transport aircraft in final approach. Calibration of the methodology is largely in terms of closed-loop performance requirements, rather than specific vehicle response characteristics, and is based on a combination of published criteria, pilot preferences, physical limitations, and engineering judgment. Six longitudinal-axis approach configurations were studied covering a range of handling qualities problems, including the presence of flexible aircraft modes. The analytical procedure was used to obtain predictions of Cooper-Harper ratings, a solar quadratic performance index, and rms excursions of important system variables.
NASA Technical Reports Server (NTRS)
Pieper, Jerry L.; Walker, Richard E.
1993-01-01
During the past three decades, an enormous amount of resources were expended in the design and development of Liquid Oxygen/Hydrocarbon and Hydrogen (LOX/HC and LOX/H2) rocket engines. A significant portion of these resources were used to develop and demonstrate the performance and combustion stability for each new engine. During these efforts, many analytical and empirical models were developed that characterize design parameters and combustion processes that influence performance and stability. Many of these models are suitable as design tools, but they have not been assembled into an industry-wide usable analytical design methodology. The objective of this program was to assemble existing performance and combustion stability models into a usable methodology capable of producing high performing and stable LOX/hydrocarbon and LOX/hydrogen propellant booster engines.
Zaslavsky, Oleg; Cochrane, Barbara B; Herting, Jerald R; Thompson, Hilaire J; Woods, Nancy F; Lacroix, Andrea
2014-02-01
Despite the variety of available analytic methods, longitudinal research in nursing has been dominated by use of a variable-centered analytic approach. The purpose of this article is to present the utility of person-centered methodology using a large cohort of American women 65 and older enrolled in the Women's Health Initiative Clinical Trial (N = 19,891). Four distinct trajectories of energy/fatigue scores were identified. Levels of fatigue were closely linked to age, socio-demographic factors, comorbidities, health behaviors, and poor sleep quality. These findings were consistent regardless of the methodological framework. Finally, we demonstrated that energy/fatigue levels predicted future hospitalization in non-disabled elderly. Person-centered methods provide unique opportunities to explore and statistically model the effects of longitudinal heterogeneity within a population. © 2013 Wiley Periodicals, Inc.
Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport
NASA Astrophysics Data System (ADS)
Kershaw, Vincent F.; Kosov, Daniel S.
2017-12-01
We develop nonequilibrium Green's function-based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast time scales in the equations of motion for Green's functions by means of the Wigner representation. Time derivatives with respect to central time serve as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce a series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives), which depend not solely on the instantaneous molecular geometry but likewise on nuclear velocities and accelerations. An extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction.
Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport.
Kershaw, Vincent F; Kosov, Daniel S
2017-12-14
We develop nonequilibrium Green's function-based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast time scales in the equations of motion for Green's functions by means of the Wigner representation. Time derivatives with respect to central time serve as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce a series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives), which depend not solely on the instantaneous molecular geometry but likewise on nuclear velocities and accelerations. An extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction.
Rational Design of a Green-Light-Mediated Unimolecular Platform for Fast Switchable Acidic Sensing.
Zhou, Yunyun; Zou, Qi; Qiu, Jing; Wang, Linjun; Zhu, Liangliang
2018-02-01
A controllable sensing ability strongly connects to complex and precise events in diagnosis and treatment. However, imposing visible light into the molecular-scale mediation of sensing processes is restricted by the lack of structural relevance. To address this critical challenge, we present the rational design, synthesis, and in vitro studies of a novel cyanostyryl-modified azulene system for green-light-mediated fast switchable acidic sensing. The advantageous features of the design include a highly efficient green-light-driven Z/E-isomerization (a quantum yield up to 61.3%) for fast erasing chromatic and luminescent expressions and a superior compatibility with control of ratiometric protonation. Significantly, these merits of the design enable the development of a microfluidic system to perform a green-light-mediated reusable sensing function toward a gastric acid analyte in a miniaturized platform. The results may provide new insights for building future integrated green materials.
An applied study using systems engineering methods to prioritize green systems options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sonya M; Macdonald, John M
2009-01-01
For many years, there have been questions about the effectiveness of applying different green solutions. If you're building a home and wish to use green technologies, where do you start? While all technologies sound promising, which will perform the best over time? All this has to be considered within the cost and schedule of the project. The amount of information available on the topic can be overwhelming. We seek to examine if Systems Engineering methods can be used to help people choose and prioritize technologies that fit within their project and budget. Several methods are used to gain perspective intomore » how to select the green technologies, such as the Analytic Hierarchy Process (AHP) and Kepner-Tregoe. In our study, subjects applied these methods to analyze cost, schedule, and trade-offs. Results will document whether the experimental approach is applicable to defining system priorities for green technologies.« less
ERIC Educational Resources Information Center
Richardson, Gregory R. A.; Lynes, Jennifer K.
2007-01-01
Purpose: To explore the barriers and motivations to the construction of green buildings at the University of Waterloo (UW) by documenting and analysing the UW building process. Design/methodology/approach: The authors conducted 13 semi-structured in-depth interviews with key UW individuals as well as analyzing numerous internal reports in order to…
Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.; Charpentier, Ronald R.; Klett, Timothy R.; Leathers, Heidi M.; Schenk, Christopher J.; Tennyson, Marilyn E.
2015-09-03
Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered resources of 214 million barrels of oil, 329 billion cubic feet of associated/dissolved natural gas, and 14 million barrels of natural gas liquids in the informal Uteland Butte member of the Green River Formation, Uinta Basin, Utah.
A Mathematical Account of the NEGF Formalism
NASA Astrophysics Data System (ADS)
Cornean, Horia D.; Moldoveanu, Valeriu; Pillet, Claude-Alain
2018-02-01
The main goal of this paper is to put on solid mathematical grounds the so-called Non-Equilibrium Green's Function (NEGF) transport formalism for open systems. In particular, we derive the Jauho-Meir-Wingreen formula for the time-dependent current through an interacting sample coupled to non-interacting leads. Our proof is non-perturbative and uses neither complex-time Keldysh contours, nor Langreth rules of 'analytic continuation'. We also discuss other technical identities (Langreth, Keldysh) involving various many body Green's functions. Finally, we study the Dyson equation for the advanced/retarded interacting Green's function and we rigorously construct its (irreducible) self-energy, using the theory of Volterra operators.
de Souza, Viviane P; Oliveira, Cristiane K; de Souza, Thiago M; Menezes, Paulo H; Alves, Severino; Longo, Ricardo L; Malvestiti, Ivani
2016-11-16
Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-12
... will consider candidates from the environmental scientific/technical fields, human health care... physics, aerosol chemistry, aerosol physics); Analytical Chemistry; Green Chemistry; Endocrinology...
SociAL Sensor Analytics: Measuring Phenomenology at Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corley, Courtney D.; Dowling, Chase P.; Rose, Stuart J.
The objective of this paper is to present a system for interrogating immense social media streams through analytical methodologies that characterize topics and events critical to tactical and strategic planning. First, we propose a conceptual framework for interpreting social media as a sensor network. Time-series models and topic clustering algorithms are used to implement this concept into a functioning analytical system. Next, we address two scientific challenges: 1) to understand, quantify, and baseline phenomenology of social media at scale, and 2) to develop analytical methodologies to detect and investigate events of interest. This paper then documents computational methods and reportsmore » experimental findings that address these challenges. Ultimately, the ability to process billions of social media posts per week over a period of years enables the identification of patterns and predictors of tactical and strategic concerns at an unprecedented rate through SociAL Sensor Analytics (SALSA).« less
7 CFR 91.23 - Analytical methods.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 3 2014-01-01 2014-01-01 false Analytical methods. 91.23 Section 91.23 Agriculture... SERVICES AND GENERAL INFORMATION Method Manuals § 91.23 Analytical methods. Most analyses are performed according to approved procedures described in manuals of standardized methodology. These standard methods...
7 CFR 91.23 - Analytical methods.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Analytical methods. 91.23 Section 91.23 Agriculture... SERVICES AND GENERAL INFORMATION Method Manuals § 91.23 Analytical methods. Most analyses are performed according to approved procedures described in manuals of standardized methodology. These standard methods...
7 CFR 91.23 - Analytical methods.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Analytical methods. 91.23 Section 91.23 Agriculture... SERVICES AND GENERAL INFORMATION Method Manuals § 91.23 Analytical methods. Most analyses are performed according to approved procedures described in manuals of standardized methodology. These standard methods...
Analytical Chemistry Division annual progress report for period ending November 30, 1977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyon, W.S.
1978-03-01
Activities for the year are summarized in sections on analytical methodology, mass and mass emission spectrometry, analytical services, bio-organic analysis, nuclear and radiochemical analysis, and quality assurance and safety. Presentations of research results in publications and reports are tabulated. (JRD)
Plakas, S.M.; El Said, K. R.; Stehly, G.R.; Gingerich, W.H.; Allen, J.L.
1996-01-01
The disposition of malachite green was determined in channel catfish (Ictalurus punctatus) after intravascular dosing (0.8 mg . Kg-1) or waterborne exposure (0.8 mg . L-1 for 1 h). After intravascular dosing, mean plasma concentrations of the parent compound exhibited a triphasic decline with a terminal elimination half-life of 6.2 h. Malachite green was rapidly absorbed and concentrated in the tissues during waterborne exposure. The rate of accumulation was directly related to pH of the exposure water. After waterborne exposure, elimination of the parent compound from plasma also was triphasic with a terminal half-life of 4.7 h. In muscle, the half-life of the parent compound was approximately 67 h. Malachite green and its metabolites were widely distributed in all tissues. In fish exposed to C-14-labeled malachite green, total drug equivalent concentrations were highest in abdominal fat and lowest in plasma. Malachite green was rapidly and extensively metabolized to its reduced form, leucomalachite green, which was slowly eliminated from the tissues. Leucomalachite green is an appropriate target analyte for monitoring exposure of channel catfish to this drug.
Analytic model of a multi-electron atom
NASA Astrophysics Data System (ADS)
Skoromnik, O. D.; Feranchuk, I. D.; Leonau, A. U.; Keitel, C. H.
2017-12-01
A fully analytical approximation for the observable characteristics of many-electron atoms is developed via a complete and orthonormal hydrogen-like basis with a single-effective charge parameter for all electrons of a given atom. The basis completeness allows us to employ the secondary-quantized representation for the construction of regular perturbation theory, which includes in a natural way correlation effects, converges fast and enables an effective calculation of the subsequent corrections. The hydrogen-like basis set provides a possibility to perform all summations over intermediate states in closed form, including both the discrete and continuous spectra. This is achieved with the help of the decomposition of the multi-particle Green function in a convolution of single-electronic Coulomb Green functions. We demonstrate that our fully analytical zeroth-order approximation describes the whole spectrum of the system, provides accuracy, which is independent of the number of electrons and is important for applications where the Thomas-Fermi model is still utilized. In addition already in second-order perturbation theory our results become comparable with those via a multi-configuration Hartree-Fock approach.
Vosough, Maryam; Rashvand, Masoumeh; Esfahani, Hadi M; Kargosha, Kazem; Salemi, Amir
2015-04-01
In this work, a rapid HPLC-DAD method has been developed for the analysis of six antibiotics (amoxicillin, metronidazole, sulfamethoxazole, ofloxacine, sulfadiazine and sulfamerazine) in the sewage treatment plant influent and effluent samples. Decreasing the chromatographic run time to less than 4 min as well as lowering the cost per analysis, were achieved through direct injection of the samples into the HPLC system followed by chemometric analysis. The problem of the complete separation of the analytes from each other and/or from the matrix ingredients was resolved as a posteriori. The performance of MCR/ALS and U-PLS/RBL, as second-order algorithms, was studied and comparable results were obtained from implication of these modeling methods. It was demonstrated that the proposed methods could be used promisingly as green analytical strategies for detection and quantification of the targeted pollutants in wastewater samples while avoiding the more complicated high cost instrumentations. Copyright © 2014 Elsevier B.V. All rights reserved.
Micromechanics of Interfaces in High Temperature Composites
1992-05-30
the development of analytical solutions to solve the eigenstrain problem of both a single fiber (treated as a cylindrical inclusion) in an elastic... eigenstrain in a half space by using Green’s functions. Green’s functions were obtained for problems of an elastic half space with a free surface or rigidly...normal to the crack surface, the eigenstrain £3, for the equivalent inclusion method is introduced to simulate the bridged crack. Specially £33 in DO
Relativistic calculation of correlational energy for a helium-like atom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palchikov, V.G.
This paper presents an analytical method for calculating the firstorder correlational energy from the electron interaction, taking account of lag effects. Explicit analytical expressions are obtained for radial matrix elements. The nonrelativistic limit is investigated. The given method may be used to calculate correlation effects in higher orders of perturbation theory (second and higher orders with respect to 1/z) using the Strum expansion for the Coulomb Green's functions.
Pharmacokinetics of reduced iso-α-acids in volunteers following clear bottled beer consumption.
Rodda, Luke N; Gerostamoulos, Dimitri; Drummer, Olaf H
2015-05-01
Reduced iso-α-acids (reduced IAA) consisting of the rho-, tetrahydro- and hexahydro-IAA groups (RIAA, TIAA and HIAA, respectively) are ingredient congeners specific to beer and generally found in clear and also occasionally green bottled beer. Concentrations of reduced IAA were determined in the blood and urine of five volunteers over 6h following the consumption of small volumes of beer containing each of the reduced IAA. The reduced IAA were absorbed and bioavailable with peak concentrations at 0.5h followed by a drop of generally fivefold by 2h. Preliminary pharmacokinetics of these compounds in humans shows relatively small inter-individual differences and an estimated short half-life varying between ∼38 and 46min for the three groups. Comparison of RIAA analyte ratios within the group indicate that some analytes eliminate relatively faster than others and the formation of metabolite products was observed. Preliminary urine analysis showed only unmodified RIAA analytes were detectable throughout 6h and suggests extensive phase I metabolism of TIAA and HIAA analytes. In authentic forensic casework where clear or green bottled beers are consumed, the identification of reduced IAA groups may provide a novel method to target ingredient congeners consistent with beer ingestion and suggest the type of beer consumed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
76 FR 55804 - Dicamba; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
... Considerations A. Analytical Enforcement Methodology Adequate enforcement methodologies, Methods I and II--gas chromatography with electron capture detection (GC/ECD), are available to enforce the tolerance expression. The...
A Hybrid Coarse-graining Approach for Lipid Bilayers at Large Length and Time Scales
Ayton, Gary S.; Voth, Gregory A.
2009-01-01
A hybrid analytic-systematic (HAS) coarse-grained (CG) lipid model is developed and employed in a large-scale simulation of a liposome. The methodology is termed hybrid analyticsystematic as one component of the interaction between CG sites is variationally determined from the multiscale coarse-graining (MS-CG) methodology, while the remaining component utilizes an analytic potential. The systematic component models the in-plane center of mass interaction of the lipids as determined from an atomistic-level MD simulation of a bilayer. The analytic component is based on the well known Gay-Berne ellipsoid of revolution liquid crystal model, and is designed to model the highly anisotropic interactions at a highly coarse-grained level. The HAS CG approach is the first step in an “aggressive” CG methodology designed to model multi-component biological membranes at very large length and timescales. PMID:19281167
Banitaba, Sayed Hossein; Safari, Javad; Khalili, Shiva Dehghan
2013-01-01
A green and simple approach to assembling of 2-amino-4,8-dihydropyrano[3,2-b]pyran-3-carbonitrile scaffolds via three-component reaction of kojic acid, malononitrile, and aromatic aldehydes in aqueous media under ultrasound irradiation is described. The combinatorial synthesis was achieved for this methodology with applying ultrasound irradiation while making use of water as green solvent. In comparison to conventional methods, experimental simplicity, good functional group tolerance, excellent yields, short routine, and selectivity without the need for a transition metal or base catalyst are prominent features of this green procedure. Copyright © 2012 Elsevier B.V. All rights reserved.
Bitar, Raoul; Nordt, Carlos; Grosshans, Martin; Herdener, Marcus; Seifritz, Erich; Mutschler, Jochen
2017-01-01
Methodological shortcomings of gambling studies relying on self-report or on data sets derived from gambling operators tend to result in biased conclusions. The aim of this study was to analyze online gambling behavior using a novel network database approach. From October 13 to October 26, 2014, telecommunications network data from a major telecommunications provider in Switzerland were analyzed. Netflows between mobile devices and a poker operator were quantified to measure the gambling duration and session number. Time spent gambling during night and working hours was compared between devices with longest (red group), intermediate (orange group), and shortest gambling time (green group). Online gambling behavior differed depending on overall gambling time, F (2, 3,143). Night and working hours gambling was the highest in the red group (53%), compared to the orange (50.1%) and the green groups (41.5%). Post hoc analyses indicated significant differences between the orange and green groups (p < 0.05). No differences were observed between the red and orange groups (p = 0.850), and the red and green groups (p = 0.053). On mobile devices, distinct gambling patterns were observed depending on the overall gambling time. This methodology could also be used to investigate online gaming, social media use, and online pornography. © 2017 S. Karger AG, Basel.
FASP, an analytic resource appraisal program for petroleum play analysis
Crovelli, R.A.; Balay, R.H.
1986-01-01
An analytic probabilistic methodology for resource appraisal of undiscovered oil and gas resources in play analysis is presented in a FORTRAN program termed FASP. This play-analysis methodology is a geostochastic system for petroleum resource appraisal in explored as well as frontier areas. An established geologic model considers both the uncertainty of the presence of the assessed hydrocarbon and its amount if present. The program FASP produces resource estimates of crude oil, nonassociated gas, dissolved gas, and gas for a geologic play in terms of probability distributions. The analytic method is based upon conditional probability theory and many laws of expectation and variance. ?? 1986.
Reducing Conservatism of Analytic Transient Response Bounds via Shaping Filters
NASA Technical Reports Server (NTRS)
Kwan, Aiyueh; Bedrossian, Nazareth; Jan, Jiann-Woei; Grigoriadis, Karolos; Hua, Tuyen (Technical Monitor)
1999-01-01
Recent results show that the peak transient response of a linear system to bounded energy inputs can be computed using the energy-to-peak gain of the system. However, analytically computed peak response bound can be conservative for a class of class bounded energy signals, specifically pulse trains generated from jet firings encountered in space vehicles. In this paper, shaping filters are proposed as a Methodology to reduce the conservatism of peak response analytic bounds. This Methodology was applied to a realistic Space Station assembly operation subject to jet firings. The results indicate that shaping filters indeed reduce the predicted peak response bounds.
Perrault, Justin R; Stacy, Nicole I; Lehner, Andreas F; Mott, Cody R; Hirsch, Sarah; Gorham, Jonathan C; Buchweitz, John P; Bresette, Michael J; Walsh, Catherine J
2017-12-15
Natural biotoxins and anthropogenic toxicants pose a significant risk to sea turtle health. Documented effects of contaminants include potential disease progression and adverse impacts on development, immune function, and survival in these imperiled species. The shallow seagrass habitats of Florida's northwest coast (Big Bend) serve as an important developmental habitat for Kemp's ridley (Lepidochelys kempii) and green (Chelonia mydas) sea turtles; however, few studies have been conducted in this area. Our objectives were (1) to evaluate plasma analytes (mass, minimum straight carapace length, body condition index [BCI], fibropapilloma tumor score, lysozyme, superoxide dismutase, reactive oxygen/nitrogen species, plasma protein electrophoresis, cholesterol, and total solids) in Kemp's ridleys and green turtles and their correlation to brevetoxins that were released from a red tide bloom event from July-October 2014 in the Gulf of Mexico near Florida's Big Bend, and (2) to analyze red blood cells in Kemp's ridleys and green turtles for toxic elements (arsenic, cadmium, lead, mercury, selenium, thallium) with correlation to the measured plasma analytes. Positive correlations were observed between brevetoxins and α 2 -globulins in Kemp's ridleys and α 2 - and γ-globulins in green turtles, indicating potential immunostimulation. Arsenic, cadmium, and lead positively correlated with superoxide dismutase in Kemp's ridleys, suggesting oxidative stress. Lead and mercury in green turtles negatively correlated with BCI, while mercury positively correlated with total tumor score of green turtles afflicted with fibropapillomatosis, suggesting a possible association with mercury and increased tumor growth. The total tumor score of green turtles positively correlated with total protein, total globulins, α 2 -globulins, and γ-globulins, further suggesting inflammation and immunomodulation as a result of fibropapillomatosis. Lastly, brevetoxin concentrations were positively related to tumor score, indicating potential tumor promotion by brevetoxin. These results signify that brevetoxins and toxic elements elicit various negative effects on sea turtle health, including immune function, oxidative stress, and possibly disease progression. Copyright © 2017 Elsevier B.V. All rights reserved.
Risk management of drinking water relies on quality analytical data. Analytical methodology can often be adapted from environmental monitoring sources. However, risk management sometimes presents special analytical challenges because data may be needed from a source for which n...
Microgenetic Learning Analytics Methods: Workshop Report
ERIC Educational Resources Information Center
Aghababyan, Ani; Martin, Taylor; Janisiewicz, Philip; Close, Kevin
2016-01-01
Learning analytics is an emerging discipline and, as such, benefits from new tools and methodological approaches. This work reviews and summarizes our workshop on microgenetic data analysis techniques using R, held at the second annual Learning Analytics Summer Institute in Cambridge, Massachusetts, on 30 June 2014. Specifically, this paper…
Validating Analytical Protocols to Determine Selected Pesticides and PCBs Using Routine Samples.
Pindado Jiménez, Oscar; García Alonso, Susana; Pérez Pastor, Rosa María
2017-01-01
This study aims at providing recommendations concerning the validation of analytical protocols by using routine samples. It is intended to provide a case-study on how to validate the analytical methods in different environmental matrices. In order to analyze the selected compounds (pesticides and polychlorinated biphenyls) in two different environmental matrices, the current work has performed and validated two analytical procedures by GC-MS. A description is given of the validation of the two protocols by the analysis of more than 30 samples of water and sediments collected along nine months. The present work also scopes the uncertainty associated with both analytical protocols. In detail, uncertainty of water sample was performed through a conventional approach. However, for the sediments matrices, the estimation of proportional/constant bias is also included due to its inhomogeneity. Results for the sediment matrix are reliable, showing a range 25-35% of analytical variability associated with intermediate conditions. The analytical methodology for the water matrix determines the selected compounds with acceptable recoveries and the combined uncertainty ranges between 20 and 30%. Analyzing routine samples is rarely applied to assess trueness of novel analytical methods and up to now this methodology was not focused on organochlorine compounds in environmental matrices.
2016 Workplace and Gender Relations Survey of Active Duty Members: Statistical Methodology Report
2017-03-01
2016 Workplace and Gender Relations Survey of Active Duty Members Statistical Methodology Report Additional copies of this report may be...MEMBERS: STATISTICAL METHODOLOGY REPORT Office of People Analytics (OPA) Defense Research, Surveys, and Statistics Center 4800 Mark Center Drive...20 1 2016 WORKPLACE AND GENDER RELATIONS SURVEY OF ACTIVE DUTY MEMBERS: STATISTICAL METHODOLOGY REPORT
GreenView and GreenLand Applications Development on SEE-GRID Infrastructure
NASA Astrophysics Data System (ADS)
Mihon, Danut; Bacu, Victor; Gorgan, Dorian; Mészáros, Róbert; Gelybó, Györgyi; Stefanut, Teodor
2010-05-01
The GreenView and GreenLand applications [1] have been developed through the SEE-GRID-SCI (SEE-GRID eInfrastructure for regional eScience) FP7 project co-funded by the European Commission [2]. The development of environment applications is a challenge for Grid technologies and software development methodologies. This presentation exemplifies the development of the GreenView and GreenLand applications over the SEE-GRID infrastructure by the Grid Application Development Methodology [3]. Today's environmental applications are used in vary domains of Earth Science such as meteorology, ground and atmospheric pollution, ground metal detection or weather prediction. These applications run on satellite images (e.g. Landsat, MERIS, MODIS, etc.) and the accuracy of output results depends mostly of the quality of these images. The main drawback of such environmental applications regards the need of computation power and storage power (some images are almost 1GB in size), in order to process such a large data volume. Actually, almost applications requiring high computation resources have approached the migration onto the Grid infrastructure. This infrastructure offers the computing power by running the atomic application components on different Grid nodes in sequential or parallel mode. The middleware used between the Grid infrastructure and client applications is ESIP (Environment Oriented Satellite Image Processing Platform), which is based on gProcess platform [4]. In its current format, gProcess is used for launching new processes on the Grid nodes, but also for monitoring the execution status of these processes. This presentation highlights two case studies of Grid based environmental applications, GreenView and GreenLand [5]. GreenView is used in correlation with MODIS (Moderate Resolution Imaging Spectroradiometer) satellite images and meteorological datasets, in order to produce pseudo colored temperature and vegetation maps for different geographical CEE (Central Eastern Europe) regions. On the other hand, GreenLand is used for generating maps for different vegetation indexes (e.g. NDVI, EVI, SAVI, GEMI) based on Landsat satellite images. Both applications are using interpolation and random value generation algorithms, but also specific formulas for computing vegetation index values. The GreenView and GreenLand applications have been experimented over the SEE-GRID infrastructure and the performance evaluation is reported in [6]. The improvement of the execution time (obtained through a better parallelization of jobs), the extension of geographical areas to other parts of the Earth, and new user interaction techniques on spatial data and large set of satellite images are the goals of the future work. References [1] GreenView application on Wiki, http://wiki.egee-see.org/index.php/GreenView [2] SEE-GRID-SCI Project, http://www.see-grid-sci.eu/ [3] Gorgan D., Stefanut T., Bâcu V., Mihon D., Grid based Environment Application Development Methodology, SCICOM, 7th International Conference on "Large-Scale Scientific Computations", 4-8 June, 2009, Sozopol, Bulgaria, (To be published by Springer), (2009). [4] Gorgan D., Bacu V., Stefanut T., Rodila D., Mihon D., Grid based Satellite Image Processing Platform for Earth Observation Applications Development. IDAACS'2009 - IEEE Fifth International Workshop on "Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications", 21-23 September, Cosenza, Italy, IEEE Published in Computer Press, 247-252 (2009). [5] Mihon D., Bacu V., Stefanut T., Gorgan D., "Grid Based Environment Application Development - GreenView Application". ICCP2009 - IEEE 5th International Conference on Intelligent Computer Communication and Processing, 27 Aug, 2009 Cluj-Napoca. Published by IEEE Computer Press, pp. 275-282 (2009). [6] Danut Mihon, Victor Bacu, Dorian Gorgan, Róbert Mészáros, Györgyi Gelybó, Teodor Stefanut, Practical Considerations on the GreenView Application Development and Execution over SEE-GRID. SEE-GRID-SCI User Forum, 9-10 Dec 2009, Bogazici University, Istanbul, Turkey, ISBN: 978-975-403-510-0, pp. 167-175 (2009).
Customer involvement in greening the supply chain: an interpretive structural modeling methodology
NASA Astrophysics Data System (ADS)
Kumar, Sanjay; Luthra, Sunil; Haleem, Abid
2013-04-01
The role of customers in green supply chain management needs to be identified and recognized as an important research area. This paper is an attempt to explore the involvement aspect of customers towards greening of the supply chain (SC). An empirical research approach has been used to collect primary data to rank different variables for effective customer involvement in green concept implementation in SC. An interpretive structural-based model has been presented, and variables have been classified using matrice d' impacts croises- multiplication appliqué a un classement analysis. Contextual relationships among variables have been established using experts' opinions. The research may help practicing managers to understand the interaction among variables affecting customer involvement. Further, this understanding may be helpful in framing the policies and strategies to green SC. Analyzing interaction among variables for effective customer involvement in greening SC to develop the structural model in the Indian perspective is an effort towards promoting environment consciousness.
Detection of macroalgae blooms by complex SAR imagery.
Shen, Hui; Perrie, William; Liu, Qingrong; He, Yijun
2014-01-15
Increased frequency and enhanced damage to the marine environment and to human society caused by green macroalgae blooms demand improved high-resolution early detection methods. Conventional satellite remote sensing methods via spectra radiometers do not work in cloud-covered areas, and therefore cannot meet these demands for operational applications. We present a methodology for green macroalgae bloom detection based on RADARSAT-2 synthetic aperture radar (SAR) images. Green macroalgae patches exhibit different polarimetric characteristics compared to the open ocean surface, in both the amplitude and phase domains of SAR-measured complex radar backscatter returns. In this study, new index factors are defined which have opposite signs in green macroalgae-covered areas, compared to the open water surface. These index factors enable unsupervised detection from SAR images, providing a high-resolution new tool for detection of green macroalgae blooms, which can potentially contribute to a better understanding of the mechanisms related to outbreaks of green macroalgae blooms in coastal areas throughout the world ocean. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Advances in Green Organic Sonochemistry.
Draye, Micheline; Kardos, Nathalie
2016-10-01
Over the past 15 years, sustainable chemistry has emerged as a new paradigm in the development of chemistry. In the field of organic synthesis, green chemistry rhymes with relevant choice of starting materials, atom economy, methodologies that minimize the number of chemical steps, appropriate use of benign solvents and reagents, efficient strategies for product isolation and purification and energy minimization. In that context, unconventional methods, and especially ultrasound, can be a fine addition towards achieving these green requirements. Undoubtedly, sonochemistry is considered as being one of the most promising green chemical methods (Cravotto et al. Catal Commun 63: 2-9, 2015). This review is devoted to the most striking results obtained in green organic sonochemistry between 2006 and 2016. Furthermore, among catalytic transformations, oxidation reactions are the most polluting reactions in the chemical industry; thus, we have focused a part of our review on the very promising catalytic activity of ultrasound for oxidative purposes.
NASA Astrophysics Data System (ADS)
Basten, Van; Latief, Yusuf; Berawi, Mohammed Ali; Budiman, Rachmat; Riswanto
2017-03-01
Total completed building construction value in Indonesia increased 116% during 2009 to 2011. That's followed by increasing 11% energy consumption in Indonesia in the last three years with 70% energy met to the electricity needs of commercial building. In addition, a few application of green building concept in Indonesia made the greenhouse gas emissions or CO2 amount increased by 25%. Construction, operation, and maintain of building cost consider relatively high. The evaluation in this research is used to improve the building performance with some of green concept alternatives. The research methodology is conducted by combination of qualitative and quantitative approaches through interview and case study. Assessing the successful of optimization functions in the existing green building is based on the operational and maintenance phase with the Life Cycle Assessment (LCA) Method. The result of optimization that is the largest efficiency and effective of building life cycle.
Approximate Green's function methods for HZE transport in multilayered materials
NASA Technical Reports Server (NTRS)
Wilson, John W.; Badavi, Francis F.; Shinn, Judy L.; Costen, Robert C.
1993-01-01
A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport in multilayered materials. The code is established to operate on the Langley nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code was found to be highly efficient and compared well with the perturbation approximation.
Zhang, Chenxi; Hu, Zhaochu; Zhang, Wen; Liu, Yongsheng; Zong, Keqing; Li, Ming; Chen, Haihong; Hu, Shenghong
2016-10-18
Sample preparation of whole-rock powders is the major limitation for their accurate and precise elemental analysis by laser ablation inductively-coupled plasma mass spectrometry (ICPMS). In this study, a green, efficient, and simplified fusion technique using a high energy infrared laser was developed for major and trace elemental analysis. Fusion takes only tens of milliseconds for each sample. Compared to the pressed pellet sample preparation, the analytical precision of the developed laser fusion technique is higher by an order of magnitude for most elements in granodiorite GSP-2. Analytical results obtained for five USGS reference materials (ranging from mafic to intermediate to felsic) using the laser fusion technique generally agree with recommended values with discrepancies of less than 10% for most elements. However, high losses (20-70%) of highly volatile elements (Zn and Pb) and the transition metal Cu are observed. The achieved precision is within 5% for major elements and within 15% for most trace elements. Direct laser fusion of rock powders is a green and notably simple method to obtain homogeneous samples, which will significantly accelerate the application of laser ablation ICPMS for whole-rock sample analysis.
Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.
2011-01-01
Using a geologic-based assessment methodology, the U.S. Geological Survey estimated an in-place oil shale resource of 906 billion barrels under Federal mineral rights, or 62 percent of the total oil shale in place, in the Green River and Washakie Basins, Wyoming. More than 67 percent of the total oil shale in-place resource, or 969 billion barrels, is under Federal surface management.
2002-01-01
Green River Basin ............................... 28 4.1. Economically Recoverable Oil and Gas in the United States (USGS...viable gas and oil resource. The next step will be to apply this methodology to estimate the viable resource in individual basins . RAND will begin this...effort by analyzing the Green River Basin . The analysis will specify the relationships among gas and oil deposits, technological options, economic
Validation of AN Hplc-Dad Method for the Classification of Green Teas
NASA Astrophysics Data System (ADS)
Yu, Jingbo; Ye, Nengsheng; Gu, Xuexin; Liu, Ni
A reversed phase high performance liquid chromatography (RP-HPLC) separation coupled with diode array detection (DAD) and electrospray ionization mass spectrometer (ESI/MS) was developed and optimized for the classification of green teas. Five catechins [epigallocatechin (EGC), epigallocatechin gallate (EGCG), epicatechin (EC), gallocatechin gallate (GCG), epicatechin gallate (ECG)] had been identified and quantified by the HPLC-DAD-ESI/MS/MS method. The limit of detection (LOD) of five catechins was within the range of 1.25-15 ng. All the analytes exhibited good linearity up to 2500 ng. These compounds were considered as chemical descriptors to define groups of green teas. Chemometric methods including principal component analysis (PCA) and hierarchical cluster analysis (HCA) were applied for the purpose. Twelve green tea samples originating from different regions were subjected to reveal the natural groups. The results showed that the analyzed green teas were differentiated mainly by provenance; HCA afforded an excellent performance in terms of recognition and prediction abilities. This method was accurate and reproducible, providing a potential approach for authentication of green teas.
Fang, Xinsheng; Wang, Jianhua; Hao, Jifu; Li, Xueke; Guo, Ning
2015-12-01
A simple and rapid method was developed using microwave-assisted extraction (MAE) combined with HPLC-DAD-ESI-MS/MS for the simultaneous extraction, identification, and quantification of phenolic compounds in Eclipta prostrata, a common herb and vegetable in China. The optimized parameters of MAE were: employing 50% ethanol as solvent, microwave power 400 W, temperature 70 °C, ratio of liquid/solid 30 mL/g and extraction time 2 min. Compared to conventional extraction methods, the optimized MAE can avoid the degradation of the phenolic compounds and simultaneously obtained the highest yields of all components faster with less consumption of solvent and energy. Six phenolic acids, six flavonoid glycosides and one coumarin were firstly identified. The phenolic compounds were quantified by HPLC-DAD with good linearity, precision, and accuracy. The extract obtained by MAE showed significant antioxidant activity. The proposed method provides a valuable and green analytical methodology for the investigation of phenolic components in natural plants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Confocal laser scanning microscopy to estimate nanoparticles' human skin penetration in vitro.
Zou, Ying; Celli, Anna; Zhu, Hanjiang; Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard
2017-01-01
With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human "viable" epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested.
Pendergrass, S M
1999-01-01
Glycol-based fluids are used in the production of theatrical smokes in theaters, concerts, and other stage productions. The fluids are heated and dispersed in aerosol form to create the effect of a smoke, mist, or fog. There have been reports of adverse health effects such as respiratory irritation, chest tightness, shortness of breath, asthma, and skin rashes. Previous attempts to collect and quantify the aerosolized glycols used in fogging agents have been plagued by inconsistent results, both in the efficiency of collection and in the chromatographic analysis of the glycol components. The development of improved sampling and analytical methodology for aerosolized glycols was required to assess workplace exposures more effectively. An Occupational Safety and Health Administration versatile sampler tube was selected for the collection of ethylene glycol, propylene glycol, 1,3-butylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol aerosols. Analytical methodology for the separation, identification, and quantitation of the six glycols using gas chromatography/flame ionization detection is described. Limits of detection of the glycol analytes ranged from 7 to 16 micrograms/sample. Desorption efficiencies for all glycol compounds were determined over the range of study and averaged greater than 90%. Storage stability results were acceptable after 28 days for all analytes except ethylene glycol, which was stable at ambient temperature for 14 days. Based on the results of this study, the new glycol method was published in the NIOSH Manual of Analytical Methods.
Oliveira, Elisabete; Bértolo, Emilia; Núñez, Cristina; Pilla, Viviane; Santos, Hugo M.; Fernández‐Lodeiro, Javier; Fernández‐Lodeiro, Adrian; Djafari, Jamila; Capelo, José Luis
2017-01-01
Abstract Red and green are two of the most‐preferred colors from the entire chromatic spectrum, and red and green dyes are widely used in biochemistry, immunohistochemistry, immune‐staining, and nanochemistry applications. Selective dyes with green and red excitable chromophores can be used in biological environments, such as tissues and cells, and can be irradiated with visible light without cell damage. This critical review, covering a period of five years, provides an overview of the most‐relevant results on the use of red and green fluorescent dyes in the fields of bio‐, chemo‐ and nanoscience. The review focuses on fluorescent dyes containing chromophores such as fluorescein, rhodamine, cyanine, boron–dipyrromethene (BODIPY), 7‐nitobenz‐2‐oxa‐1,3‐diazole‐4‐yl, naphthalimide, acridine orange, perylene diimides, coumarins, rosamine, Nile red, naphthalene diimide, distyrylpyridinium, benzophosphole P‐oxide, benzoresorufins, and tetrapyrrolic macrocycles. Metal complexes and nanomaterials with these dyes are also discussed. PMID:29318095
NASA Technical Reports Server (NTRS)
Sorensen, Ira J.
1998-01-01
The Thermal Radiation Group, a laboratory in the department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently working towards the development of a new technology for cavity-based radiometers. The radiometer consists of a 256-element linear-array thermopile detector mounted on the wall of a mirrored wedgeshaped cavity. The objective of this research is to provide analytical and experimental characterization of the proposed radiometer. A dynamic end-to-end opto-electrothermal model is developed to simulate the performance of the radiometer. Experimental results for prototype thermopile detectors are included. Also presented is the concept of the discrete Green's function to characterize the optical scattering of radiant energy in the cavity, along with a data-processing algorithm to correct for the scattering. Finally, a parametric study of the sensitivity of the discrete Green's function to uncertainties in the surface properties of the cavity is presented.
NASA Astrophysics Data System (ADS)
Frizyuk, Kristina; Hasan, Mehedi; Krasnok, Alex; Alú, Andrea; Petrov, Mihail
2018-02-01
Resonantly enhanced Raman scattering in dielectric nanostructures has been recently proven to be an efficient tool for nanothermometry and for the experimental determination of their mode composition. In this paper we develop a rigorous analytical theory based on the Green's function approach to calculate the Raman emission from crystalline high-index dielectric nanoparticles. As an example, we consider silicon nanoparticles which have a strong Raman response due to active optical phonon modes. We relate enhancement of Raman signal emission to the Purcell effect due to the excitation of Mie modes inside the nanoparticles. We also employ our numerical approach to calculate inelastic Raman emission in more sophisticated geometries, which do not allow a straightforward analytical form of the Green's function. The Raman response from a silicon nanodisk has been analyzed with the proposed method, and the contribution of various Mie modes has been revealed.
Green's functions in equilibrium and nonequilibrium from real-time bold-line Monte Carlo
NASA Astrophysics Data System (ADS)
Cohen, Guy; Gull, Emanuel; Reichman, David R.; Millis, Andrew J.
2014-03-01
Green's functions for the Anderson impurity model are obtained within a numerically exact formalism. We investigate the limits of analytical continuation for equilibrium systems, and show that with real time methods even sharp high-energy features can be reliably resolved. Continuing to an Anderson impurity in a junction, we evaluate two-time correlation functions, spectral properties, and transport properties, showing how the correspondence between the spectral function and the differential conductance breaks down when nonequilibrium effects are taken into account. Finally, a long-standing dispute regarding this model has involved the voltage splitting of the Kondo peak, an effect which was predicted over a decade ago by approximate analytical methods but never successfully confirmed by numerics. We settle the issue by demonstrating in an unbiased manner that this splitting indeed occurs. Yad Hanadiv-Rothschild Foundation, TG-DMR120085, TG-DMR130036, NSF CHE-1213247, NSF DMR 1006282, DOE ER 46932.
Gupta, Himanshu; Barua, Mukesh Kumar
2018-04-01
Incorporating green practices into the manufacturing process has gained momentum over the past few years and is a matter of great concern for both manufacturers as well as researchers. Regulatory pressures in developed countries have forced the organizations to adopt green practices; however, this issue still lacks attention in developing economies like India. There is an urgent need to identify enablers of green innovation for manufacturing organizations and also to identify prominent enablers among those. This study is an attempt to first identify enablers of green innovation and then establish a causal relationship among them to identify the enablers that can drive others. Grey DEMATEL (Decision Making Trial and Evaluation Laboratory) methodology is used for establishing the causal relationship among enablers. The novelty of this study lies in the fact that no study has been done in the past to identify the enablers of green innovation and then establishing the causal relationship among them. A total of 21 enablers of green innovation have been identified; research indicates developing green manufacturing capabilities, resources for green innovation, ease of getting loans from financial institutions, and environmental regulations as the most influential enablers of green innovation. Managerial and practical implications of the research are also presented to assist managers of the case company in adopting green innovation practices at their end.
Kellett, Stephen; Totterdell, Peter
2013-03-01
Credible evaluations of the psychological treatment of morbid jealousy are rare. The aim of this study was to evaluate temporal responsivity to cognitive behavioural therapy (CBT) and cognitive analytic therapy (CAT) for morbid jealousy. The methodology involved matched A/B single-case experimental designs (SCED) with extended follow-up, in which two patients and their partners completed daily jealousy target symptom items across the phases of the study. Patients also completed traditional psychometric outcome measures at assessment, post-therapy, and at final follow-up. Both patients received the same number of assessment (n = 3), treatment (n = 13), and follow-up (n = 1) sessions. Autoregressive Integrated Moving Average (ARIMA) models of the patients' daily target symptom jealousy SCED data indicate the effectiveness of the CAT intervention and the ineffectiveness of the CBT intervention, but both therapies produced large effect sizes. The partner of the CBT patient felt less controlled following therapy, whilst the partner of CAT patient did not perceive any change to his partner. The discussion calls for a stronger evidence base for the psychological treatment of morbid jealousy to be constructed and debates the routine measurement of outcomes for partners of morbidly jealous patients. Measuring outcomes for partners of jealous patients is indicated. CAT shows promise as an intervention for morbid jealousy. The evidence base for the treatment of morbid jealousy requires further development. © 2011 The British Psychological Society.
Ide, A H; Ahmad, S M; Neng, N R; Nogueira, J M F
2016-09-10
In this study, the enhancement for trace analysis of sulfonamide antibiotics (sulfathiazole, sulfamethoxazole and sulfadimethoxine) and trimethoprim in water matrices is proposed using bar adsorptive microextraction combined with micro-liquid desorption followed by high-performance liquid chromatography with diode array detection (BAμE-μLD/HPLC-DAD). By comparing different polymers and activated carbons as sorbent coatings for BAμE, the polystyrene-divinylbenzene polymer (PS-DVB) showed the best selectivity for the compounds under study. Assays performed through BAμE(PS-DVB)-μLD on 25mL of ultrapure water samples spiked at the 8.0μgL(-1) level showed recoveries ranging from 63.8±1.5% to 84.2±1.9%, under optimized experimental conditions. The validated method provided satisfactory limits of detection (0.08-0.16μgL(-1)) and good linear dynamic ranges (0.16-8.00μgL(-1)) with determination coefficients higher than 0.9958. The proposed analytical methodology was applied to real matrices, such as tap, estuarine and wastewater samples using the standard addition method. It showed to be easy to implement, with good reproducibility, sensitivity and requiring small amount of sample. Furthermore, negligible consumption of organic solvents was used in compliance with the green analytical chemistry principles. When compared to other well-established microextraction approaches, BAμE demonstrated better performance concerning recovery yields and sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.
An Analytic Hierarchy Process for School Quality and Inspection: Model Development and Application
ERIC Educational Resources Information Center
Al Qubaisi, Amal; Badri, Masood; Mohaidat, Jihad; Al Dhaheri, Hamad; Yang, Guang; Al Rashedi, Asma; Greer, Kenneth
2016-01-01
Purpose: The purpose of this paper is to develop an analytic hierarchy planning-based framework to establish criteria weights and to develop a school performance system commonly called school inspections. Design/methodology/approach: The analytic hierarchy process (AHP) model uses pairwise comparisons and a measurement scale to generate the…
A Progressive Approach to Teaching Analytics in the Marketing Curriculum
ERIC Educational Resources Information Center
Liu, Yiyuan; Levin, Michael A.
2018-01-01
With the emerging use of analytics tools and methodologies in marketing, marketing educators have provided students training and experiences beyond the soft skills associated with understanding consumer behavior. Previous studies have only discussed how to apply analytics in course designs, tools, and related practices. However, there is a lack of…
NASA Technical Reports Server (NTRS)
Fantano, Louis
2015-01-01
Thermal and Fluids Analysis Workshop Silver Spring, MD NCTS 21070-15 The Landsat 8 Data Continuity Mission, which is part of the United States Geologic Survey (USGS), launched February 11, 2013. A Landsat environmental test requirement mandated that test conditions bound worst-case flight thermal environments. This paper describes a rigorous analytical methodology applied to assess refine proposed thermal vacuum test conditions and the issues encountered attempting to satisfy this requirement.
Ghimire, Santosh R; Johnston, John M
2017-09-01
We propose a modified eco-efficiency (EE) framework and novel sustainability analysis methodology for green infrastructure (GI) practices used in water resource management. Green infrastructure practices such as rainwater harvesting (RWH), rain gardens, porous pavements, and green roofs are emerging as viable strategies for climate change adaptation. The modified framework includes 4 economic, 11 environmental, and 3 social indicators. Using 6 indicators from the framework, at least 1 from each dimension of sustainability, we demonstrate the methodology to analyze RWH designs. We use life cycle assessment and life cycle cost assessment to calculate the sustainability indicators of 20 design configurations as Decision Management Objectives (DMOs). Five DMOs emerged as relatively more sustainable along the EE analysis Tradeoff Line, and we used Data Envelopment Analysis (DEA), a widely applied statistical approach, to quantify the modified EE measures as DMO sustainability scores. We also addressed the subjectivity and sensitivity analysis requirements of sustainability analysis, and we evaluated the performance of 10 weighting schemes that included classical DEA, equal weights, National Institute of Standards and Technology's stakeholder panel, Eco-Indicator 99, Sustainable Society Foundation's Sustainable Society Index, and 5 derived schemes. We improved upon classical DEA by applying the weighting schemes to identify sustainability scores that ranged from 0.18 to 1.0, avoiding the nonuniqueness problem and revealing the least to most sustainable DMOs. Our methodology provides a more comprehensive view of water resource management and is generally applicable to GI and industrial, environmental, and engineered systems to explore the sustainability space of alternative design configurations. Integr Environ Assess Manag 2017;13:821-831. Published 2017. This article is a US Government work and is in the public domain in the USA. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). Published 2017. This article is a US Government work and is in the public domain in the USA. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Tennessee long-range transportation plan : project evaluation system
DOT National Transportation Integrated Search
2005-12-01
The Project Evaluation System (PES) Report is an analytical methodology to aid programming efforts and prioritize multimodal investments. The methodology consists of both quantitative and qualitative evaluation criteria built upon the Guiding Princip...
NASA Astrophysics Data System (ADS)
Pratiher, Sawon; Patra, Sayantani; Pratiher, Souvik
2017-06-01
A novel analytical methodology for segregating healthy and neurological disorders from gait patterns is proposed by employing a set of oscillating components called intrinsic mode functions (IMF's). These IMF's are generated by the Empirical Mode Decomposition of the gait time series and the Hilbert transformed analytic signal representation forms the complex plane trace of the elliptical shaped analytic IMFs. The area measure and the relative change in the centroid position of the polygon formed by the Convex Hull of these analytic IMF's are taken as the discriminative features. Classification accuracy of 79.31% with Ensemble learning based Adaboost classifier validates the adequacy of the proposed methodology for a computer aided diagnostic (CAD) system for gait pattern identification. Also, the efficacy of several potential biomarkers like Bandwidth of Amplitude Modulation and Frequency Modulation IMF's and it's Mean Frequency from the Fourier-Bessel expansion from each of these analytic IMF's has been discussed for its potency in diagnosis of gait pattern identification and classification.
PCB congener analysis with Hall electrolytic conductivity detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edstrom, R.D.
1989-01-01
This work reports the development of an analytical methodology for the analysis of PCB congeners based on integrating relative retention data provided by other researchers. The retention data were transposed into a multiple retention marker system which provided good precision in the calculation of relative retention indices for PCB congener analysis. Analytical run times for the developed methodology were approximately one hour using a commercially available GC capillary column. A Tracor Model 700A Hall Electrolytic Conductivity Detector (HECD) was employed in the GC detection of Aroclor standards and environmental samples. Responses by the HECD provided good sensitivity and were reasonablymore » predictable. Ten response factors were calculated based on the molar chlorine content of each homolog group. Homolog distributions were determined for Aroclors 1016, 1221, 1232, 1242, 1248, 1254, 1260, 1262 along with binary and ternary mixtures of the same. These distributions were compared with distributions reported by other researchers using electron capture detection as well as chemical ionization mass spectrometric methodologies. Homolog distributions acquired by the HECD methodology showed good correlation with the previously mentioned methodologies. The developed analytical methodology was used in the analysis of bluefish (Pomatomas saltatrix) and weakfish (Cynoscion regalis) collected from the York River, lower James River and lower Chesapeake Bay in Virginia. Total PCB concentrations were calculated and homolog distributions were constructed from the acquired data. Increases in total PCB concentrations were found in the analyzed fish samples during the fall of 1985 collected from the lower James River and lower Chesapeake Bay.« less
Measuring solids concentration in stormwater runoff: comparison of analytical methods.
Clark, Shirley E; Siu, Christina Y S
2008-01-15
Stormwater suspended solids typically are quantified using one of two methods: aliquot/subsample analysis (total suspended solids [TSS]) or whole-sample analysis (suspended solids concentration [SSC]). Interproject comparisons are difficult because of inconsistencies in the methods and in their application. To address this concern, the suspended solids content has been measured using both methodologies in many current projects, but the question remains about how to compare these values with historical water-quality data where the analytical methodology is unknown. This research was undertaken to determine the effect of analytical methodology on the relationship between these two methods of determination of the suspended solids concentration, including the effect of aliquot selection/collection method and of particle size distribution (PSD). The results showed that SSC was best able to represent the known sample concentration and that the results were independent of the sample's PSD. Correlations between the results and the known sample concentration could be established for TSS samples, but they were highly dependent on the sample's PSD and on the aliquot collection technique. These results emphasize the need to report not only the analytical method but also the particle size information on the solids in stormwater runoff.
Faraji, Hakim; Helalizadeh, Masoumeh; Kordi, Mohammad Reza
2018-01-01
A rapid, simple, and sensitive approach to the analysis of trihalomethanes (THMs) in swimming pool water samples has been developed. The main goal of this study was to overcome or to improve the shortcomings of conventional dispersive liquid-liquid microextraction (DLLME) and to maximize the realization of green analytical chemistry principles. The method involves a simple vortex-assisted microextraction step, in the absence of the dispersive solvent, followed by salting-out effect for the elimination of the centrifugation step. A bell-shaped device and a solidifiable solvent were used to simplify the extraction solvent collection after phase separation. Optimization of the independent variables was performed by using chemometric methods in three steps. The method was statistically validated based on authentic guidance documents. The completion time for extraction was less than 8 min, and the limits of detection were in the range between 4 and 72 ng L -1 . Using this method, good linearity and precision were achieved. The results of THMs determination in different real samples showed that in some cases the concentration of total THMs was more than threshold values of THMs determined by accredited healthcare organizations. This method indicated satisfactory analytical figures of merit. Graphical Abstract A novel green microextraction technique for overcoming the challenges of conventional DLLME. The proposed procedure complies with the principles of green/sustainable analytical chemistry, comprising decreasing the sample size, making easy automation of the process, reducing organic waste, diminishing energy consumption, replacing toxic reagents with safer reagents, and enhancing operator safety.
MS-based analytical methodologies to characterize genetically modified crops.
García-Cañas, Virginia; Simó, Carolina; León, Carlos; Ibáñez, Elena; Cifuentes, Alejandro
2011-01-01
The development of genetically modified crops has had a great impact on the agriculture and food industries. However, the development of any genetically modified organism (GMO) requires the application of analytical procedures to confirm the equivalence of the GMO compared to its isogenic non-transgenic counterpart. Moreover, the use of GMOs in foods and agriculture faces numerous criticisms from consumers and ecological organizations that have led some countries to regulate their production, growth, and commercialization. These regulations have brought about the need of new and more powerful analytical methods to face the complexity of this topic. In this regard, MS-based technologies are increasingly used for GMOs analysis to provide very useful information on GMO composition (e.g., metabolites, proteins). This review focuses on the MS-based analytical methodologies used to characterize genetically modified crops (also called transgenic crops). First, an overview on genetically modified crops development is provided, together with the main difficulties of their analysis. Next, the different MS-based analytical approaches applied to characterize GM crops are critically discussed, and include "-omics" approaches and target-based approaches. These methodologies allow the study of intended and unintended effects that result from the genetic transformation. This information is considered to be essential to corroborate (or not) the equivalence of the GM crop with its isogenic non-transgenic counterpart. Copyright © 2010 Wiley Periodicals, Inc.
Szuhai, Károly; Sandhaus, Emily; Kolkman-Uljee, Sandra M.; Lemaître, Marc; Truffert, Jean-Christophe; Dirks, Roeland W.; Tanke, Hans J.; Fleuren, Gert Jan; Schuuring, Ed; Raap, Anton K.
2001-01-01
Human papillomaviruses (HPVs) play an important role in the pathogenesis of cervical cancer. For identification of the large number of different HPV types found in (pre)malignant lesions, a robust methodology is needed that combines general HPV detection with HPV genotyping. We have developed for formaldehyde-fixed samples a strategy that, in a homogenous, real-time fluorescence polymerase chain reaction (PCR)-based assay, accomplishes general HPV detection by SybrGreen reporting of HPV-DNA amplicons, and genotyping of seven prevalent HPV types (HPV-6, -11, -16, -18, -31, -33, -45) by real-time molecular beacon PCR. The false-positive rate of the HPV SybrGreen-PCR was 4%, making it well suited as a prescreening, general HPV detection technology. The type specificity of the seven selected HPV molecular beacons was 100% and double infections were readily identified. The multiplexing capacity of the HPV molecular beacon PCR was analyzed and up to three differently labeled molecular beacons could be used in one PCR reaction without observing cross talk. The inherent quantitation capacities of real-time fluorescence PCR allowed the determination of average HPV copy number per cell. We conclude that the HPV SybrGreen-PCR in combination with the HPV molecular beacon PCR provides a robust, sensitive, and quantitative general HPV detection and genotyping methodology. PMID:11696426
Green's functions for analysis of dynamic response of wheel/rail to vertical excitation
NASA Astrophysics Data System (ADS)
Mazilu, Traian
2007-09-01
An analytical model to simulate wheel/rail interaction using the Green's functions method is proposed in this paper. The model consists of a moving wheel on a discretely supported rail. Particularly for this model of rail, the bending and the longitudinal displacement are coupled due to the rail pad and a complex model of the rail pad is adopted. An efficient method for solving a time-domain analysis for wheel/rail interaction is presented. The method is based on the properties of the rail's Green functions and starting to these functions, a track's Green matrix is assembled for the numerical simulations of wheel/rail response due to three kinds of vertical excitations: the steady-state interaction, the rail corrugation and the wheel flat. The study points to influence of the worn rail—rigid contact—on variation in the wheel/rail contact force. The concept of pinned-pinned inhibitive rail pad is also presented.
Dynamics of Hierarchical Urban Green Space Patches and Implications for Management Policy.
Yu, Zhoulu; Wang, Yaohui; Deng, Jinsong; Shen, Zhangquan; Wang, Ke; Zhu, Jinxia; Gan, Muye
2017-06-06
Accurately quantifying the variation of urban green space is the prerequisite for fully understanding its ecosystem services. However, knowledge about the spatiotemporal dynamics of urban green space is still insufficient due to multiple challenges that remain in mapping green spaces within heterogeneous urban environments. This paper uses the city of Hangzhou to demonstrate an analysis methodology that integrates sub-pixel mapping technology and landscape analysis to fully investigate the spatiotemporal pattern and variation of hierarchical urban green space patches. Firstly, multiple endmember spectral mixture analysis was applied to time series Landsat data to derive green space coverage at the sub-pixel level. Landscape metric analysis was then employed to characterize the variation pattern of urban green space patches. Results indicate that Hangzhou has experienced a significant loss of urban greenness, producing a more fragmented and isolated vegetation landscape. Additionally, a remarkable amelioration of urban greenness occurred in the city core from 2002 to 2013, characterized by the significant increase of small-sized green space patches. The green space network has been formed as a consequence of new urban greening strategies in Hangzhou. These strategies have greatly fragmented the built-up areas and enriched the diversity of the urban landscape. Gradient analysis further revealed a distinct pattern of urban green space landscape variation in the process of urbanization. By integrating both sub-pixel mapping technology and landscape analysis, our approach revealed the subtle variation of urban green space patches which are otherwise easy to overlook. Findings from this study will help us to refine our understanding of the evolution of heterogeneous urban environments.
Dynamics of Hierarchical Urban Green Space Patches and Implications for Management Policy
Yu, Zhoulu; Wang, Yaohui; Deng, Jinsong; Shen, Zhangquan; Wang, Ke; Zhu, Jinxia; Gan, Muye
2017-01-01
Accurately quantifying the variation of urban green space is the prerequisite for fully understanding its ecosystem services. However, knowledge about the spatiotemporal dynamics of urban green space is still insufficient due to multiple challenges that remain in mapping green spaces within heterogeneous urban environments. This paper uses the city of Hangzhou to demonstrate an analysis methodology that integrates sub-pixel mapping technology and landscape analysis to fully investigate the spatiotemporal pattern and variation of hierarchical urban green space patches. Firstly, multiple endmember spectral mixture analysis was applied to time series Landsat data to derive green space coverage at the sub-pixel level. Landscape metric analysis was then employed to characterize the variation pattern of urban green space patches. Results indicate that Hangzhou has experienced a significant loss of urban greenness, producing a more fragmented and isolated vegetation landscape. Additionally, a remarkable amelioration of urban greenness occurred in the city core from 2002 to 2013, characterized by the significant increase of small-sized green space patches. The green space network has been formed as a consequence of new urban greening strategies in Hangzhou. These strategies have greatly fragmented the built-up areas and enriched the diversity of the urban landscape. Gradient analysis further revealed a distinct pattern of urban green space landscape variation in the process of urbanization. By integrating both sub-pixel mapping technology and landscape analysis, our approach revealed the subtle variation of urban green space patches which are otherwise easy to overlook. Findings from this study will help us to refine our understanding of the evolution of heterogeneous urban environments. PMID:28587309
NASA Technical Reports Server (NTRS)
Brinson, H. F.
1985-01-01
The utilization of adhesive bonding for composite structures is briefly assessed. The need for a method to determine damage initiation and propagation for such joints is outlined. Methods currently in use to analyze both adhesive joints and fiber reinforced plastics is mentioned and it is indicated that all methods require the input of the mechanical properties of the polymeric adhesive and composite matrix material. The mechanical properties of polymers are indicated to be viscoelastic and sensitive to environmental effects. A method to analytically characterize environmentally dependent linear and nonlinear viscoelastic properties is given. It is indicated that the methodology can be used to extrapolate short term data to long term design lifetimes. That is, the method can be used for long term durability predictions. Experimental results for near adhesive resins, polymers used as composite matrices and unidirectional composite laminates is given. The data is fitted well with the analytical durability methodology. Finally, suggestions are outlined for the development of an analytical methodology for the durability predictions of adhesively bonded composite structures.
NASA Astrophysics Data System (ADS)
Cvetkovic, V.; Molin, S.
2012-02-01
We present a methodology that combines numerical simulations of groundwater flow and advective transport in heterogeneous porous media with analytical retention models for computing the infection risk probability from pathogens in aquifers. The methodology is based on the analytical results presented in [1,2] for utilising the colloid filtration theory in a time-domain random walk framework. It is shown that in uniform flow, the results from the numerical simulations of advection yield comparable results as the analytical TDRW model for generating advection segments. It is shown that spatial variability of the attachment rate may be significant, however, it appears to affect risk in a different manner depending on if the flow is uniform or radially converging. In spite of the fact that numerous issues remain open regarding pathogen transport in aquifers on the field scale, the methodology presented here may be useful for screening purposes, and may also serve as a basis for future studies that would include greater complexity.
Integrated corridor management analysis, modeling and simulation (AMS) methodology.
DOT National Transportation Integrated Search
2008-03-01
This AMS Methodologies Document provides a discussion of potential ICM analytical approaches for the assessment of generic corridor operations. The AMS framework described in this report identifies strategies and procedures for tailoring AMS general ...
DOT National Transportation Integrated Search
1995-01-01
This report describes the development of a methodology designed to assure that a sufficiently high level of safety is achieved and maintained in computer-based systems which perform safety cortical functions in high-speed rail or magnetic levitation ...
DOT National Transportation Integrated Search
1995-09-01
This report describes the development of a methodology designed to assure that a sufficiently high level of safety is achieved and maintained in computer-based systems which perform safety critical functions in high-speed rail or magnetic levitation ...
Analytical Electrochemistry: Methodology and Applications of Dynamic Techniques.
ERIC Educational Resources Information Center
Heineman, William R.; Kissinger, Peter T.
1980-01-01
Reports developments involving the experimental aspects of finite and current analytical electrochemistry including electrode materials (97 cited references), hydrodynamic techniques (56), spectroelectrochemistry (62), stripping voltammetry (70), voltammetric techniques (27), polarographic techniques (59), and miscellany (12). (CS)
Sosa-Ferrera, Zoraida; Mahugo-Santana, Cristina; Santana-Rodríguez, José Juan
2013-01-01
Endocrine-disruptor compounds (EDCs) can mimic natural hormones and produce adverse effects in the endocrine functions by interacting with estrogen receptors. EDCs include both natural and synthetic chemicals, such as hormones, personal care products, surfactants, and flame retardants, among others. EDCs are characterised by their ubiquitous presence at trace-level concentrations and their wide diversity. Since the discovery of the adverse effects of these pollutants on wildlife and human health, analytical methods have been developed for their qualitative and quantitative determination. In particular, mass-based analytical methods show excellent sensitivity and precision for their quantification. This paper reviews recently published analytical methodologies for the sample preparation and for the determination of these compounds in different environmental and biological matrices by liquid chromatography coupled with mass spectrometry. The various sample preparation techniques are compared and discussed. In addition, recent developments and advances in this field are presented. PMID:23738329
Dil, Ebrahim Alipanahpour; Ghaedi, Mehrorang; Asfaram, Arash; Hajati, Shaaker; Mehrabi, Fatemeh; Goudarzi, Alireza
2017-01-01
Copper oxide nanoparticle-loaded activated carbon (CuO-NP-AC) was synthesized and characterized using different techniques such as FE-SEM, XRD and FT-IR. It was successfully applied for the ultrasound-assisted simultaneous removal of Pb 2+ ions and malachite green (MG) dye in binary system from aqueous solution. The effect of important parameters was modeled and optimized by artificial neural network (ANN) and response surface methodology (RSM). Maximum simultaneous removal percentages (>99.0%) were found at 25mgL -1 , 20mgL -1 , 0.02g, 5min and 6.0 corresponding to initial Pb 2+ concentration, initial MG concentration, CuO-NP-AC amount, ultrasonication time and pH, respectively. The precision of the equation obtained by RSM was confirmed by the analysis of variance and calculation of correlation coefficient relating the predicted and the experimental values of ultrasound-assisted simultaneous removal of the analytes. A good agreement between experimental and predicted values was observed. A feed-forward neural network with a topology optimized by response surface methodology was successfully applied for the prediction of ultrasound-assisted simultaneous removal of Pb 2+ ions and MG dye in binary system by CuO-NPs-AC. The number of hidden neurons, MSE, R 2 , number of epochs and error histogram were chosen for ANN modeling. Then, Langmuir, Freundlich, Temkin and D-R isothermal models were applied for fitting the experimental data. It was found that the Langmuir model well describes the isotherm data with a maximum adsorption capacity of 98.328 and 87.719mgg -1 for Pb 2+ and MG, respectively. Kinetic studies at optimum condition showed that maximum Pb 2+ and MG adsorption is achieved within 5min of the start of most experiments. The combination of pseudo-second-order rate equation and intraparticle diffusion model was applicable to explain the experimental data of ultrasound-assisted simultaneous removal of Pb 2+ and MG at optimum condition obtained from RSM. Copyright © 2016 Elsevier B.V. All rights reserved.
Du, Xiaojiao; Jiang, Ding; Hao, Nan; Qian, Jing; Dai, Liming; Zhou, Lei; Hu, Jianping; Wang, Kun
2016-10-04
The development of novel detection methodologies in electrochemiluminescence (ECL) aptasensor fields with simplicity and ultrasensitivity is essential for constructing biosensing architectures. Herein, a facile, specific, and sensitive methodology was developed unprecedentedly for quantitative detection of microcystin-LR (MC-LR) based on three-dimensional boron and nitrogen codoped graphene hydrogels (BN-GHs) assisted steric hindrance amplifying effect between the aptamer and target analytes. The recognition reaction was monitored by quartz crystal microbalance (QCM) to validate the possible steric hindrance effect. First, the BN-GHs were synthesized via self-assembled hydrothermal method and then applied as the Ru(bpy) 3 2+ immobilization platform for further loading the biomolecule aptamers due to their nanoporous structure and large specific surface area. Interestingly, we discovered for the first time that, without the aid of conventional double-stranded DNA configuration, such three-dimensional nanomaterials can directly amplify the steric hindrance effect between the aptamer and target analytes to a detectable level, and this facile methodology could be for an exquisite assay. With the MC-LR as a model, this novel ECL biosensor showed a high sensitivity and a wide linear range. This strategy supplies a simple and versatile platform for specific and sensitive determination of a wide range of aptamer-related targets, implying that three-dimensional nanomaterials would play a crucial role in engineering and developing novel detection methodologies for ECL aptasensing fields.
Indocyanine green videoangiography methodological variations: review.
Simal-Julián, Juan A; Miranda-Lloret, Pablo; Evangelista-Zamora, Rocio; Sanromán-Álvarez, Pablo; Pérez de San Román, Laila; Pérez-Borredá, Pedro; Beltrán-Giner, Andrés; Botella-Asunción, Carlos
2015-01-01
Indocyanine green videoangiography (ICGVA) procedures have become widespread within the spectrum of microsurgical techniques for neurovascular pathologies. We have conducted a review to identify and assess the impact of all of the methodological variations of conventional ICGVA applied in the field of neurovascular pathology that have been published to date in the English literature. A total of 18 studies were included in this review, identifying four primary methodological variants compared to conventional ICGVA: techniques based on the transient occlusion, intra-arterial ICG administration via catheters, use of endoscope system with a filter to collect florescence of ICG, and quantitative fluorescence analysis. These variants offer some possibilities for resolving the limitations of the conventional technique (first, the vascular structure to be analyzed must be exposed and second, vascular filling with ICG follows an additive pattern) and allow qualitatively superior information to be obtained during surgery. Advantages and disadvantages of each procedure are discussed. More case studies with a greater number of patients are needed to compare the different procedures with their gold standard, in order to establish these results consistently.
Water hammer prediction and control: the Green's function method
NASA Astrophysics Data System (ADS)
Xuan, Li-Jun; Mao, Feng; Wu, Jie-Zhi
2012-04-01
By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy viscosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and minimized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated.
ERIC Educational Resources Information Center
Anderson, Craig A.; Shibuya, Akiko; Ihori, Nobuko; Swing, Edward L.; Bushman, Brad J.; Sakamoto, Akira; Rothstein, Hannah R.; Saleem, Muniba
2010-01-01
Meta-analytic procedures were used to test the effects of violent video games on aggressive behavior, aggressive cognition, aggressive affect, physiological arousal, empathy/desensitization, and prosocial behavior. Unique features of this meta-analytic review include (a) more restrictive methodological quality inclusion criteria than in past…
Close, Dan M.; Ripp, Steven; Sayler, Gary S.
2009-01-01
Whole-cell, genetically modified bioreporters are designed to emit detectable signals in response to a target analyte or related group of analytes. When integrated with a transducer capable of measuring those signals, a biosensor results that acts as a self-contained analytical system useful in basic and applied environmental, medical, pharmacological, and agricultural sciences. Historically, these devices have focused on signaling proteins such as green fluorescent protein, aequorin, firefly luciferase, and/or bacterial luciferase. The biochemistry and genetic development of these sensor systems as well as the advantages, challenges, and common applications of each one will be discussed. PMID:22291559
2017-03-06
design of antenna and radar systems, energy absorption and scattering by rough-surfaces. This work has lead to significant new methodologies , including...problems in the field of electromagnetic propagation and scattering, with applicability to design of antenna and radar systems, energy absorption...and scattering by rough-surfaces. This work has lead to significant new methodologies , including introduction of a certain Windowed Green Function
NASA Astrophysics Data System (ADS)
Pramanik, Tanay; Padan, Simarjit Kaur; Gupta, Richa; Bedi, Pooja; Singh, Gurinderpal
2017-07-01
Dihydropyrimidinones (DHPM) were synthesized via multi component condensation reaction employing urea, ethyl acetoacetate and aromatic aldehydes as reactants. Apple, pomegranate, grape juice were used individually as biodegradable, eco friendly, and green reaction medium whereas microwave, visible light and ultrasound irradiation were applied individually as green source of energy for carrying out the aforesaid reactions. It was observed that the reactions under microwave irradiation were taking minimum time to go for completion whereas the reactions under ultrasound and visible light irradiation were taking approximately same time duration to form products. This is the first of its kind study where the three different reaction methodologies based on three different sources of green energies were compared with each other for their effectiveness and efficiency towards multi component condensation reactions.
Quantitative 1H NMR: Development and Potential of an Analytical Method – an Update
Pauli, Guido F.; Gödecke, Tanja; Jaki, Birgit U.; Lankin, David C.
2012-01-01
Covering the literature from mid-2004 until the end of 2011, this review continues a previous literature overview on quantitative 1H NMR (qHNMR) methodology and its applications in the analysis of natural products (NPs). Among the foremost advantages of qHNMR is its accurate function with external calibration, the lack of any requirement for identical reference materials, a high precision and accuracy when properly validated, and an ability to quantitate multiple analytes simultaneously. As a result of the inclusion of over 170 new references, this updated review summarizes a wealth of detailed experiential evidence and newly developed methodology that supports qHNMR as a valuable and unbiased analytical tool for natural product and other areas of research. PMID:22482996
Absorption into fluorescence. A method to sense biologically relevant gas molecules
NASA Astrophysics Data System (ADS)
Strianese, Maria; Varriale, Antonio; Staiano, Maria; Pellecchia, Claudio; D'Auria, Sabato
2011-01-01
In this work we present an innovative optical sensing methodology based on the use of biomolecules as molecular gating nano-systems. Here, as an example, we report on the detection ofanalytes related to climate change. In particular, we focused our attention on the detection ofnitric oxide (NO) and oxygen (O2). Our methodology builds on the possibility of modulating the excitation intensity of a fluorescent probe used as a transducer and a sensor molecule whose absorption is strongly affected by the binding of an analyte of interest used as a filter. The two simple conditions that have to be fulfilled for the method to work are: (a) the absorption spectrum of the sensor placed inside the cuvette, and acting as the recognition element for the analyte of interest, should strongly change upon the binding of the analyte and (b) the fluorescence dye transducer should exhibit an excitation band which overlaps with one or more absorption bands of the sensor. The absorption band of the sensor affected by the binding of the specific analyte should overlap with the excitation band of the transducer. The high sensitivity of fluorescence detection combined with the use of proteins as highly selective sensors makes this method a powerful basis for the development of a new generation of analytical assays. Proof-of-principle results showing that cytochrome c peroxidase (CcP) for NO detection and myoglobin (Mb) for O2 detection can be successfully used by exploiting our new methodology are reported. The proposed technology can be easily expanded to the determination of different target analytes.
A Six Sigma Trial For Reduction of Error Rates in Pathology Laboratory.
Tosuner, Zeynep; Gücin, Zühal; Kiran, Tuğçe; Büyükpinarbaşili, Nur; Turna, Seval; Taşkiran, Olcay; Arici, Dilek Sema
2016-01-01
A major target of quality assurance is the minimization of error rates in order to enhance patient safety. Six Sigma is a method targeting zero error (3.4 errors per million events) used in industry. The five main principles of Six Sigma are defining, measuring, analysis, improvement and control. Using this methodology, the causes of errors can be examined and process improvement strategies can be identified. The aim of our study was to evaluate the utility of Six Sigma methodology in error reduction in our pathology laboratory. The errors encountered between April 2014 and April 2015 were recorded by the pathology personnel. Error follow-up forms were examined by the quality control supervisor, administrative supervisor and the head of the department. Using Six Sigma methodology, the rate of errors was measured monthly and the distribution of errors at the preanalytic, analytic and postanalytical phases was analysed. Improvement strategies were reclaimed in the monthly intradepartmental meetings and the control of the units with high error rates was provided. Fifty-six (52.4%) of 107 recorded errors in total were at the pre-analytic phase. Forty-five errors (42%) were recorded as analytical and 6 errors (5.6%) as post-analytical. Two of the 45 errors were major irrevocable errors. The error rate was 6.8 per million in the first half of the year and 1.3 per million in the second half, decreasing by 79.77%. The Six Sigma trial in our pathology laboratory provided the reduction of the error rates mainly in the pre-analytic and analytic phases.
Green's function calculations for semi-infinite carbon nanotubes
NASA Astrophysics Data System (ADS)
John, D. L.; Pulfrey, D. L.
2006-02-01
In the modeling of nanoscale electronic devices, the non-equilibrium Green's function technique is gaining increasing popularity. One complication in this method is the need for computation of the self-energy functions that account for the interactions between the active portion of a device and its leads. In the one-dimensional case, these functions may be computed analytically. In higher dimensions, a numerical approach is required. In this work, we generalize earlier methods that were developed for tight-binding Hamiltonians, and present results for the case of a carbon nanotube.
Burken, J.G.; Vroblesky, D.A.; Balouet, J.-C.
2011-01-01
As plants evolved to be extremely proficient in mass transfer with their surroundings and survive as earth's dominant biomass, they also accumulate and store some contaminants from surroundings, acting as passive samplers. Novel applications and analytical methods have been utilized to gain information about a wide range of contaminants in the biosphere soil, water, and air, with information available on both past (dendrochemistry) and present (phytoscreening). Collectively these sampling approaches provide rapid, cheap, ecologically friendly, and overall "green" tools termed "Phytoforensics". ?? 2011 American Chemical Society.
Bernstein-Greene-Kruskal Modes in a Three-Dimensional Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, C.S.; Bhattacharjee, A.
2005-12-09
Bernstein-Greene-Kruskal modes in a three-dimensional (3D) unmagnetized plasma are constructed. It is shown that 3D solutions that depend only on energy do not exist. However, 3D solutions that depend on energy and additional constants of motion (such as angular momentum) do exist. Exact analytical as well as numerical solutions are constructed assuming spherical symmetry, and their properties are contrasted with those of 1D solutions. Possible extensions to solutions with cylindrical symmetry with or without a finite magnetic guide field are discussed.
Potential for utilization of algal biomass for components of the diet in CELSS
NASA Technical Reports Server (NTRS)
Kamarei, A. R.; Nakhost, Z.; Karel, M.
1986-01-01
The major nutritional components of the green algae (Scenedesmus obliquus) grown in a Constant Cell Density Apparatus were determined. Suitable methodology to prepare proteins from which three major undesirable components of these cells (i.e., cell walls, nucleic acids, and pigments) were either removed or substantially reduced was developed. Results showed that processing of green algae to protein isolate enhances is potential nutritional and organoleptic acceptability as a diet component in controlled Ecological Life Support System.
Zhang, Hui; Fang, Congcong; Wu, Shijia; Duan, Nuo; Wang, Zhouping
2015-11-15
In this work, a biosensor based on luminescence resonance energy transfer (LRET) from NaYF4:Yb,Tm upconversion nanoparticles (UCNPs) to SYBR Green I has been developed. The aptamers are covalently linked to UCNPs and hybridized with their complementary strands. The subsequent addition of SYBR Green allows SYBR Green I to insert into the formed double-stranded DNA (dsDNA) duplex and brings the energy donor and acceptor into close proximity, leading to the fluorescence of UCNPs transferred to SYBR Green I. When excited at 980 nm, the UCNPs emit luminescence at 477 nm, and this energy is transferred to SYBR Green I, which emits luminescence at 530 nm. In the presence of oxytetracycline (OTC), the aptamers prefer to bind to its corresponding analyte and dehybridize with the complementary DNA. This dehybridization leads to the liberation of SYBR Green I, which distances SYBR Green I from the UCNPs and recovers the UCNPs' luminescence. Under optimal conditions, a linear calibration is obtained between the ratio of I530 to I477 nm (I530/I477) and the OTC concentration, which ranges from 0.1 to 10 ng/ml with a limit of detection (LOD) of 0.054 ng/ml. Copyright © 2015 Elsevier Inc. All rights reserved.
Web-based automation of green building rating index and life cycle cost analysis
NASA Astrophysics Data System (ADS)
Shahzaib Khan, Jam; Zakaria, Rozana; Aminuddin, Eeydzah; IzieAdiana Abidin, Nur; Sahamir, Shaza Rina; Ahmad, Rosli; Nafis Abas, Darul
2018-04-01
Sudden decline in financial markets and economic meltdown has slow down adaptation and lowered interest of investors towards green certified buildings due to their higher initial costs. Similarly, it is essential to fetch investor’s attention towards more development of green buildings through automated tools for the construction projects. Though, historical dearth is found on the automation of green building rating tools that brings up an essential gap to develop an automated analog computerized programming tool. This paper present a proposed research aim to develop an integrated web-based automated analog computerized programming that applies green building rating assessment tool, green technology and life cycle cost analysis. It also emphasizes to identify variables of MyCrest and LCC to be integrated and developed in a framework then transformed into automated analog computerized programming. A mix methodology of qualitative and quantitative survey and its development portray the planned to carry MyCrest-LCC integration to an automated level. In this study, the preliminary literature review enriches better understanding of Green Building Rating Tools (GBRT) integration to LCC. The outcome of this research is a pave way for future researchers to integrate other efficient tool and parameters that contributes towards green buildings and future agendas.
Analytical aspects of plant metabolite profiling platforms: current standings and future aims.
Seger, Christoph; Sturm, Sonja
2007-02-01
Over the past years, metabolic profiling has been established as a comprehensive systems biology tool. Mass spectrometry or NMR spectroscopy-based technology platforms combined with unsupervised or supervised multivariate statistical methodologies allow a deep insight into the complex metabolite patterns of plant-derived samples. Within this review, we provide a thorough introduction to the analytical hard- and software requirements of metabolic profiling platforms. Methodological limitations are addressed, and the metabolic profiling workflow is exemplified by summarizing recent applications ranging from model systems to more applied topics.
The design of traffic signal coordinated control
NASA Astrophysics Data System (ADS)
Guo, Xueting; Sun, Hongsheng; Wang, Xifu
2017-05-01
Traffic as the tertiary industry is an important pillar industry to support the normal development of the economy. But now China's road traffic development and economic development has shown a great imbalance and fault phenomenon, which greatly inhibited the normal development of China's economy. Now in many large and medium-sized cities in China are implementing green belt construction. The so-called green band is when the road conditions to meet the conditions for the establishment of the green band, the sections of the intersection of several planning to a traffic coordination control system, so that when the driver at a specific speed can be achieved without stopping the continuous Through the intersection. Green belt can effectively reduce the delay and queuing length of vehicle driving, the normal function of urban roads and reduce the economic losses caused by traffic congestion is a great help. In this paper, the theoretical basis of the design of the coordinated control system is described. Secondly, the green time offset is calculated by the analytic method and the green band is established. And then the VISSIM software is used to simulate the traffic system before and after the improvement. Finally, the results of the two simulations are compared.
Zischg, Jonatan; Goncalves, Mariana L R; Bacchin, Taneha Kuzniecow; Leonhardt, Günther; Viklander, Maria; van Timmeren, Arjan; Rauch, Wolfgang; Sitzenfrei, Robert
2017-09-01
In the urban water cycle, there are different ways of handling stormwater runoff. Traditional systems mainly rely on underground piped, sometimes named 'gray' infrastructure. New and so-called 'green/blue' ambitions aim for treating and conveying the runoff at the surface. Such concepts are mainly based on ground infiltration and temporal storage. In this work a methodology to create and compare different planning alternatives for stormwater handling on their pathways to a desired system state is presented. Investigations are made to assess the system performance and robustness when facing the deeply uncertain spatial and temporal developments in the future urban fabric, including impacts caused by climate change, urbanization and other disruptive events, like shifts in the network layout and interactions of 'gray' and 'green/blue' structures. With the Info-Gap robustness pathway method, three planning alternatives are evaluated to identify critical performance levels at different stages over time. This novel methodology is applied to a real case study problem where a city relocation process takes place during the upcoming decades. In this case study it is shown that hybrid systems including green infrastructures are more robust with respect to future uncertainties, compared to traditional network design.
NASA Astrophysics Data System (ADS)
Javier Romualdez, Luis
Scientific balloon-borne instrumentation offers an attractive, competitive, and effective alternative to space-borne missions when considering the overall scope, cost, and development timescale required to design and launch scientific instruments. In particular, the balloon-borne environment provides a near-space regime that is suitable for a number of modern astronomical and cosmological experiments, where the atmospheric interference suffered by ground-based instrumentation is negligible at stratospheric altitudes. This work is centered around the analytical strategies and implementation considerations for the attitude determination and control of SuperBIT, a scientific balloon-borne payload capable of meeting the strict sub-arcsecond pointing and image stability requirements demanded by modern cosmological experiments. Broadly speaking, the designed stability specifications of SuperBIT coupled with its observational efficiency, image quality, and accessibility rivals state-of-the-art astronomical observatories such as the Hubble Space Telescope. To this end, this work presents an end-to-end design methodology for precision pointing balloon-borne payloads such as SuperBIT within an analytical yet implementationally grounded context. Simulation models of SuperBIT are analytically derived to aid in pre-assembly trade-off and case studies that are pertinent to the dynamic balloon-borne environment. From these results, state estimation techniques and control methodologies are extensively developed, leveraging the analytical framework of simulation models and design studies. This pre-assembly design phase is physically validated during assembly, integration, and testing through implementation in real-time hardware and software, which bridges the gap between analytical results and practical application. SuperBIT attitude determination and control is demonstrated throughout two engineering test flights that verify pointing and image stability requirements in flight, where the post-flight results close the overall design loop by suggesting practical improvements to pre-design methodologies. Overall, the analytical and practical results presented in this work, though centered around the SuperBIT project, provide generically useful and implementationally viable methodologies for high precision balloon-borne instrumentation, all of which are validated, justified, and improved both theoretically and practically. As such, the continuing development of SuperBIT, built from the work presented in this thesis, strives to further the potential for scientific balloon-borne astronomy in the near future.
Incorporating Information Literacy Skills into Analytical Chemistry: An Evolutionary Step
ERIC Educational Resources Information Center
Walczak, Mary M.; Jackson, Paul T.
2007-01-01
The American Chemical Society (ACS) has recently decided to incorporate various information literacy skills for teaching analytical chemistry to the students. The methodology has been found to be extremely effective, as it provides better understanding to the students.
A Modern Approach to College Analytical Chemistry.
ERIC Educational Resources Information Center
Neman, R. L.
1983-01-01
Describes a course which emphasizes all facets of analytical chemistry, including sampling, preparation, interference removal, selection of methodology, measurement of a property, and calculation/interpretation of results. Includes special course features (such as cooperative agreement with an environmental protection center) and course…
Aronsson, T; Bjørnstad, P; Leskinen, E; Uldall, A; de Verdier, C H
1984-01-01
The aim of this investigation was primarily to assess analytical quality expressed as between-laboratory, within-laboratory, and total imprecision, not in order to detect laboratories with poor performance, but in the positive sense to provide data for improving critical steps in analytical methodology. The aim was also to establish the present state of the art in comparison with earlier investigations to see if improvement in analytical quality could be observed.
Prevalidation in pharmaceutical analysis. Part I. Fundamentals and critical discussion.
Grdinić, Vladimir; Vuković, Jadranka
2004-05-28
A complete prevalidation, as a basic prevalidation strategy for quality control and standardization of analytical procedure was inaugurated. Fast and simple, the prevalidation methodology based on mathematical/statistical evaluation of a reduced number of experiments (N < or = 24) was elaborated and guidelines as well as algorithms were given in detail. This strategy has been produced for the pharmaceutical applications and dedicated to the preliminary evaluation of analytical methods where linear calibration model, which is very often occurred in practice, could be the most appropriate to fit experimental data. The requirements presented in this paper should therefore help the analyst to design and perform the minimum number of prevalidation experiments needed to obtain all the required information to evaluate and demonstrate the reliability of its analytical procedure. In complete prevalidation process, characterization of analytical groups, checking of two limiting groups, testing of data homogeneity, establishment of analytical functions, recognition of outliers, evaluation of limiting values and extraction of prevalidation parameters were included. Moreover, system of diagnosis for particular prevalidation step was suggested. As an illustrative example for demonstration of feasibility of prevalidation methodology, among great number of analytical procedures, Vis-spectrophotometric procedure for determination of tannins with Folin-Ciocalteu's phenol reagent was selected. Favourable metrological characteristics of this analytical procedure, as prevalidation figures of merit, recognized the metrological procedure as a valuable concept in preliminary evaluation of quality of analytical procedures.
Nowak, Peter
2011-03-01
There is a broad range qualitative linguistic research (sequential analysis) on doctor-patient interaction that had only a marginal impact on clinical research and practice. At least in parts this is due to the lack of qualitative research synthesis in the field. Available research summaries are not systematic in their methodology. This paper proposes a synthesis methodology for qualitative, sequential analytic research on doctor-patient interaction. The presented methodology is not new but specifies standard methodology of qualitative research synthesis for sequential analytic research. This pilot review synthesizes twelve studies on German-speaking doctor-patient interactions, identifies 45 verbal actions of doctors and structures them in a systematics of eight interaction components. Three interaction components ("Listening", "Asking for information", and "Giving information") seem to be central and cover two thirds of the identified action types. This pilot review demonstrates that sequential analytic research can be synthesized in a consistent and meaningful way, thus providing a more comprehensive and unbiased integration of research. Future synthesis of qualitative research in the area of health communication research is very much needed. Qualitative research synthesis can support the development of quantitative research and of educational materials in medical training and patient training. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
RP-HPLC×HILIC chromatography for quantifying ertapenem sodium with a look at green chemistry.
Pedroso, Tahisa M; Medeiros, Ana C D; Salgado, Herida R N
2016-11-01
Ertapenem sodium is a polar and ionizable compound; therefore, it has little retention on traditional C18 columns in reverse-phase high-performance liquid chromatography, even using a highly-aqueous mobile phase that can result in dewetting in the stationary phase. Thus, the most coherent process for ERTM is to develop a method for Hydrophilic Interaction Chromatography. However, for the traditional methods in HILIC, the use of a highly organic mobile phase is necessary; usually an amount exceeding 80% acetonitrile is necessary. On the other hand, the RP-HPLC mode is considered for the analysis technique, which is more often used for quantification of substances, and new columns are often introduced to analyze different groups of compounds. Two new analytical methods have been developed for routine analysis. The proposed chromatographic method was adequate and advantageous by presenting simplicity, linearity, precision, accuracy, robustness, detection limits, and satisfactory quantification. Analytical methods are constantly undergoing changes and improvements. Researchers worldwide are rapidly adopting Green Chemistry. The development of new pharmaceutical methods based in Green chemistry has been encouraged by universities and the pharmaceutical industry. Issues related to green chemistry are in evidence and they have been featured in international journals of high impact. The methods described here have economic advantages and they feature an eco-friendly focus, which is discussed in this work. This work was developed with an environmental conscience, always looking to minimize the possible generated organic waste. Therefore, discussion on this aspect is included. Copyright © 2016 Elsevier B.V. All rights reserved.
2010-04-01
available [11]. Additionally, Table-3 is a guide for DMAIC methodology including 29 different methods [12]. RTO-MP-SAS-081 6 - 4 NATO UNCLASSIFIED NATO...Table 3: DMAIC Methodology (5-Phase Methodology). Define Measure Analyze Improve Control Project Charter Prioritization Matrix 5 Whys Analysis...Methodology Scope [13] DMAIC PDCA Develop performance priorities This is a preliminary stage that precedes specific improvement projects, and the aim
Model and Analytic Processes for Export License Assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Sandra E.; Whitney, Paul D.; Weimar, Mark R.
2011-09-29
This paper represents the Department of Energy Office of Nonproliferation Research and Development (NA-22) Simulations, Algorithms and Modeling (SAM) Program's first effort to identify and frame analytical methods and tools to aid export control professionals in effectively predicting proliferation intent; a complex, multi-step and multi-agency process. The report focuses on analytical modeling methodologies that alone, or combined, may improve the proliferation export control license approval process. It is a follow-up to an earlier paper describing information sources and environments related to international nuclear technology transfer. This report describes the decision criteria used to evaluate modeling techniques and tools to determinemore » which approaches will be investigated during the final 2 years of the project. The report also details the motivation for why new modeling techniques and tools are needed. The analytical modeling methodologies will enable analysts to evaluate the information environment for relevance to detecting proliferation intent, with specific focus on assessing risks associated with transferring dual-use technologies. Dual-use technologies can be used in both weapons and commercial enterprises. A decision-framework was developed to evaluate which of the different analytical modeling methodologies would be most appropriate conditional on the uniqueness of the approach, data availability, laboratory capabilities, relevance to NA-22 and Office of Arms Control and Nonproliferation (NA-24) research needs and the impact if successful. Modeling methodologies were divided into whether they could help micro-level assessments (e.g., help improve individual license assessments) or macro-level assessment. Macro-level assessment focuses on suppliers, technology, consumers, economies, and proliferation context. Macro-level assessment technologies scored higher in the area of uniqueness because less work has been done at the macro level. An approach to developing testable hypotheses for the macro-level assessment methodologies is provided. The outcome of this works suggests that we should develop a Bayes Net for micro-level analysis and continue to focus on Bayes Net, System Dynamics and Economic Input/Output models for assessing macro-level problems. Simultaneously, we need to develop metrics for assessing intent in export control, including the risks and consequences associated with all aspects of export control.« less
Contaminated site cleanups involving complex activities may benefit from a detailed environmental footprint analysis to inform decision-making about application of suitable best management practices for greener cleanups.
Mikkelsen, Be; Bruselius-Jensen, M; Andersen, Js; Lassen, A
2006-10-01
The present study aimed to investigate whether organic conversion in catering has positive effects on the nutritional quality of menus offered. The methodology was based on a self-administered questionnaire. The self-declared priority given to the use of organic foods was measured as the basis for assigning catering managers to one of two groups: 'green' or 'non-green' caterers. These groups were then compared with regard to the relative nutritional quality of the menu options offered to customers. The study was carried out among randomly selected Danish worksite catering outlets. The subjects participating in the study comprised 526 Danish worksite catering managers. The results showed a strong correlation between caterers' 'green-ness' and the nutritional quality of the menu options offered. Green caters had more healthy options in their menus than non-green caters, which is likely to result in improved nutritional quality of the diets of end consumers. The reason for this may partly be the increased service training efforts that green caterers practise in order to be able to implement organic foods successfully. It may also be associated with the fact that the price premiums and availability of the organic products forces caterers to serve menus with higher amounts of root and non-green leafy vegetables, pulses and seasonal vegetables. The present findings suggest that organic conversion of public canteens may be a good opportunity to promote healthier eating in public catering.
DOT National Transportation Integrated Search
2000-04-01
This report presents detailed analytic tools and results on dynamic response which are used to develop the safe dynamic performance limits of commuter passenger vehicles. The methodology consists of determining the critical parameters and characteris...
Xpey' Relational Environments: an analytic framework for conceptualizing Indigenous health equity.
Kent, Alexandra; Loppie, Charlotte; Carriere, Jeannine; MacDonald, Marjorie; Pauly, Bernie
2017-12-01
Both health equity research and Indigenous health research are driven by the goal of promoting equitable health outcomes among marginalized and underserved populations. However, the two fields often operate independently, without collaboration. As a result, Indigenous populations are underrepresented in health equity research relative to the disproportionate burden of health inequities they experience. In this methodological article, we present Xpey' Relational Environments, an analytic framework that maps some of the barriers and facilitators to health equity for Indigenous peoples. Health equity research needs to include a focus on Indigenous populations and Indigenized methodologies, a shift that could fill gaps in knowledge with the potential to contribute to 'closing the gap' in Indigenous health. With this in mind, the Equity Lens in Public Health (ELPH) research program adopted the Xpey' Relational Environments framework to add a focus on Indigenous populations to our research on the prioritization and implementation of health equity. The analytic framework introduced an Indigenized health equity lens to our methodology, which facilitated the identification of social, structural and systemic determinants of Indigenous health. To test the framework, we conducted a pilot case study of one of British Columbia's regional health authorities, which included a review of core policies and plans as well as interviews and focus groups with frontline staff, managers and senior executives. ELPH's application of Xpey' Relational Environments serves as an example of the analytic framework's utility for exploring and conceptualizing Indigenous health equity in BC's public health system. Future applications of the framework should be embedded in Indigenous research methodologies.
Jones, Barry R; Schultz, Gary A; Eckstein, James A; Ackermann, Bradley L
2012-10-01
Quantitation of biomarkers by LC-MS/MS is complicated by the presence of endogenous analytes. This challenge is most commonly overcome by calibration using an authentic standard spiked into a surrogate matrix devoid of the target analyte. A second approach involves use of a stable-isotope-labeled standard as a surrogate analyte to allow calibration in the actual biological matrix. For both methods, parallelism between calibration standards and the target analyte in biological matrix must be demonstrated in order to ensure accurate quantitation. In this communication, the surrogate matrix and surrogate analyte approaches are compared for the analysis of five amino acids in human plasma: alanine, valine, methionine, leucine and isoleucine. In addition, methodology based on standard addition is introduced, which enables a robust examination of parallelism in both surrogate analyte and surrogate matrix methods prior to formal validation. Results from additional assays are presented to introduce the standard-addition methodology and to highlight the strengths and weaknesses of each approach. For the analysis of amino acids in human plasma, comparable precision and accuracy were obtained by the surrogate matrix and surrogate analyte methods. Both assays were well within tolerances prescribed by regulatory guidance for validation of xenobiotic assays. When stable-isotope-labeled standards are readily available, the surrogate analyte approach allows for facile method development. By comparison, the surrogate matrix method requires greater up-front method development; however, this deficit is offset by the long-term advantage of simplified sample analysis.
Analytical technique characterizes all trace contaminants in water
NASA Technical Reports Server (NTRS)
Foster, J. N.; Lysyj, I.; Nelson, K. H.
1967-01-01
Properly programmed combination of advanced chemical and physical analytical techniques characterize critically all trace contaminants in both the potable and waste water from the Apollo Command Module. This methodology can also be applied to the investigation of the source of water pollution.
Quantifying construction and demolition waste: An analytical review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zezhou; Yu, Ann T.W., E-mail: bsannyu@polyu.edu.hk; Shen, Liyin
2014-09-15
Highlights: • Prevailing C and D waste quantification methodologies are identified and compared. • One specific methodology cannot fulfill all waste quantification scenarios. • A relevance tree for appropriate quantification methodology selection is proposed. • More attentions should be paid to civil and infrastructural works. • Classified information is suggested for making an effective waste management plan. - Abstract: Quantifying construction and demolition (C and D) waste generation is regarded as a prerequisite for the implementation of successful waste management. In literature, various methods have been employed to quantify the C and D waste generation at both regional and projectmore » levels. However, an integrated review that systemically describes and analyses all the existing methods has yet to be conducted. To bridge this research gap, an analytical review is conducted. Fifty-seven papers are retrieved based on a set of rigorous procedures. The characteristics of the selected papers are classified according to the following criteria - waste generation activity, estimation level and quantification methodology. Six categories of existing C and D waste quantification methodologies are identified, including site visit method, waste generation rate method, lifetime analysis method, classification system accumulation method, variables modelling method and other particular methods. A critical comparison of the identified methods is given according to their characteristics and implementation constraints. Moreover, a decision tree is proposed for aiding the selection of the most appropriate quantification method in different scenarios. Based on the analytical review, limitations of previous studies and recommendations of potential future research directions are further suggested.« less
Bulk diffusion in a kinetically constrained lattice gas
NASA Astrophysics Data System (ADS)
Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone
2018-03-01
In the hydrodynamic regime, the evolution of a stochastic lattice gas with symmetric hopping rules is described by a diffusion equation with density-dependent diffusion coefficient encapsulating all microscopic details of the dynamics. This diffusion coefficient is, in principle, determined by a Green-Kubo formula. In practice, even when the equilibrium properties of a lattice gas are analytically known, the diffusion coefficient cannot be computed except when a lattice gas additionally satisfies the gradient condition. We develop a procedure to systematically obtain analytical approximations for the diffusion coefficient for non-gradient lattice gases with known equilibrium. The method relies on a variational formula found by Varadhan and Spohn which is a version of the Green-Kubo formula particularly suitable for diffusive lattice gases. Restricting the variational formula to finite-dimensional sub-spaces allows one to perform the minimization and gives upper bounds for the diffusion coefficient. We apply this approach to a kinetically constrained non-gradient lattice gas in two dimensions, viz. to the Kob-Andersen model on the square lattice.
Symmetry breaking in optimal timing of traffic signals on an idealized two-way street.
Panaggio, Mark J; Ottino-Löffler, Bertand J; Hu, Peiguang; Abrams, Daniel M
2013-09-01
Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this "green-wave" scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.
Lévy flights in the presence of a point sink of finite strength
NASA Astrophysics Data System (ADS)
Janakiraman, Deepika
2017-01-01
In this paper, the absorption of a particle undergoing Lévy flight in the presence of a point sink of arbitrary strength and position is studied. The motion of such a particle is given by a modified Fokker-Planck equation whose exact solution in the Laplace domain can be described in terms of the Laplace transform of the unperturbed (absence of the sink) Green's function. This solution for the Green's function is a well-studied, generic result which applies to both fractional and usual Fokker-Planck equations alike. Using this result, the propagator and the absorption-time distribution are obtained for free Lévy flight and Lévy flight in linear and harmonic potentials in the presence of a delta function sink, and their dependence on the sink strength is analyzed. Analytical results are presented for the long-time behavior of the absorption-time distribution in all three above-mentioned potentials. Simulation results are found to corroborate closely with analytical results.
Symmetry breaking in optimal timing of traffic signals on an idealized two-way street
NASA Astrophysics Data System (ADS)
Panaggio, Mark J.; Ottino-Löffler, Bertand J.; Hu, Peiguang; Abrams, Daniel M.
2013-09-01
Simple physical models based on fluid mechanics have long been used to understand the flow of vehicular traffic on freeways; analytically tractable models of flow on an urban grid, however, have not been as extensively explored. In an ideal world, traffic signals would be timed such that consecutive lights turned green just as vehicles arrived, eliminating the need to stop at each block. Unfortunately, this “green-wave” scenario is generally unworkable due to frustration imposed by competing demands of traffic moving in different directions. Until now this has typically been resolved by numerical simulation and optimization. Here, we develop a theory for the flow in an idealized system consisting of a long two-way road with periodic intersections. We show that optimal signal timing can be understood analytically and that there are counterintuitive asymmetric solutions to this signal coordination problem. We further explore how these theoretical solutions degrade as traffic conditions vary and automotive density increases.
Dyadic Green's function of an eccentrically stratified sphere.
Moneda, Angela P; Chrissoulidis, Dimitrios P
2014-03-01
The electric dyadic Green's function (dGf) of an eccentrically stratified sphere is built by use of the superposition principle, dyadic algebra, and the addition theorem of vector spherical harmonics. The end result of the analytical formulation is a set of linear equations for the unknown vector wave amplitudes of the dGf. The unknowns are calculated by truncation of the infinite sums and matrix inversion. The theory is exact, as no simplifying assumptions are required in any one of the analytical steps leading to the dGf, and it is general in the sense that any number, position, size, and electrical properties can be considered for the layers of the sphere. The point source can be placed outside of or in any lossless part of the sphere. Energy conservation, reciprocity, and other checks verify that the dGf is correct. A numerical application is made to a stratified sphere made of gold and glass, which operates as a lens.
[Theoretical and methodological uses of research in Social and Human Sciences in Health].
Deslandes, Suely Ferreira; Iriart, Jorge Alberto Bernstein
2012-12-01
The current article aims to map and critically reflect on the current theoretical and methodological uses of research in the subfield of social and human sciences in health. A convenience sample was used to select three Brazilian public health journals. Based on a reading of 1,128 abstracts published from 2009 to 2010, 266 articles were selected that presented the empirical base of research stemming from social and human sciences in health. The sample was classified thematically as "theoretical/ methodological reference", "study type/ methodological design", "analytical categories", "data production techniques", and "analytical procedures". We analyze the sample's emic categories, drawing on the authors' literal statements. All the classifications and respective variables were tabulated in Excel. Most of the articles were self-described as qualitative and used more than one data production technique. There was a wide variety of theoretical references, in contrast with the almost total predominance of a single type of data analysis (content analysis). In several cases, important gaps were identified in expounding the study methodology and instrumental use of the qualitative research techniques and methods. However, the review did highlight some new objects of study and innovations in theoretical and methodological approaches.
LC-MS based analysis of endogenous steroid hormones in human hair.
Gao, Wei; Kirschbaum, Clemens; Grass, Juliane; Stalder, Tobias
2016-09-01
The quantification of endogenous steroid hormone concentrations in hair is increasingly used as a method for obtaining retrospective information on long-term integrated hormone exposure. Several different analytical procedures have been employed for hair steroid analysis, with liquid chromatography-mass spectrometry (LC-MS) being recognized as a particularly powerful analytical tool. Several methodological aspects affect the performance of LC-MS systems for hair steroid analysis, including sample preparation and pretreatment, steroid extraction, post-incubation purification, LC methodology, ionization techniques and MS specifications. Here, we critically review the differential value of such protocol variants for hair steroid hormones analysis, focusing on both analytical quality and practical feasibility issues. Our results show that, when methodological challenges are adequately addressed, LC-MS protocols can not only yield excellent sensitivity and specificity but are also characterized by relatively simple sample processing and short run times. This makes LC-MS based hair steroid protocols particularly suitable as a high-quality option for routine application in research contexts requiring the processing of larger numbers of samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Methodology for Conducting Integrative Mixed Methods Research and Data Analyses
Castro, Felipe González; Kellison, Joshua G.; Boyd, Stephen J.; Kopak, Albert
2011-01-01
Mixed methods research has gained visibility within the last few years, although limitations persist regarding the scientific caliber of certain mixed methods research designs and methods. The need exists for rigorous mixed methods designs that integrate various data analytic procedures for a seamless transfer of evidence across qualitative and quantitative modalities. Such designs can offer the strength of confirmatory results drawn from quantitative multivariate analyses, along with “deep structure” explanatory descriptions as drawn from qualitative analyses. This article presents evidence generated from over a decade of pilot research in developing an integrative mixed methods methodology. It presents a conceptual framework and methodological and data analytic procedures for conducting mixed methods research studies, and it also presents illustrative examples from the authors' ongoing integrative mixed methods research studies. PMID:22167325
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gałuszka, Agnieszka, E-mail: Agnieszka.Galuszka@ujk.edu.pl; Migaszewski, Zdzisław M.; Namieśnik, Jacek
The recent rapid progress in technology of field portable instruments has increased their applications in environmental sample analysis. These instruments offer a possibility of cost-effective, non-destructive, real-time, direct, on-site measurements of a wide range of both inorganic and organic analytes in gaseous, liquid and solid samples. Some of them do not require the use of reagents and do not produce any analytical waste. All these features contribute to the greenness of field portable techniques. Several stationary analytical instruments have their portable versions. The most popular ones include: gas chromatographs with different detectors (mass spectrometer (MS), flame ionization detector, photoionization detector),more » ultraviolet–visible and near-infrared spectrophotometers, X-ray fluorescence spectrometers, ion mobility spectrometers, electronic noses and electronic tongues. The use of portable instruments in environmental sample analysis gives a possibility of on-site screening and a subsequent selection of samples for routine laboratory analyses. They are also very useful in situations that require an emergency response and for process monitoring applications. However, quantification of results is still problematic in many cases. The other disadvantages include: higher detection limits and lower sensitivity than these obtained in laboratory conditions, a strong influence of environmental factors on the instrument performance and a high possibility of sample contamination in the field. This paper reviews recent applications of field portable instruments in environmental sample analysis and discusses their analytical capabilities. - Highlights: • Field portable instruments are widely used in environmental sample analysis. • Field portable instruments are indispensable for analysis in emergency response. • Miniaturization of field portable instruments reduces resource consumption. • In situ analysis is in agreement with green analytical chemistry principles. • Performance requirements in field analysis stimulate technological progress.« less
Testik, Özlem Müge; Shaygan, Amir; Dasdemir, Erdi; Soydan, Guray
It is often vital to identify, prioritize, and select quality improvement projects in a hospital. Yet, a methodology, which utilizes experts' opinions with different points of view, is needed for better decision making. The proposed methodology utilizes the cause-and-effect diagram to identify improvement projects and construct a project hierarchy for a problem. The right improvement projects are then prioritized and selected using a weighting scheme of analytical hierarchy process by aggregating experts' opinions. An approach for collecting data from experts and a graphical display for summarizing the obtained information are also provided. The methodology is implemented for improving a hospital appointment system. The top-ranked 2 major project categories for improvements were identified to be system- and accessibility-related causes (45%) and capacity-related causes (28%), respectively. For each of the major project category, subprojects were then ranked for selecting the improvement needs. The methodology is useful in cases where an aggregate decision based on experts' opinions is expected. Some suggestions for practical implementations are provided.
COMPARISON OF ANALYTICAL METHODS FOR THE MEASUREMENT OF NON-VIABLE BIOLOGICAL PM
The paper describes a preliminary research effort to develop a methodology for the measurement of non-viable biologically based particulate matter (PM), analyzing for mold, dust mite, and ragweed antigens and endotoxins. Using a comparison of analytical methods, the research obj...
Cognitive-Developmental and Behavior-Analytic Theories: Evolving into Complementarity
ERIC Educational Resources Information Center
Overton, Willis F.; Ennis, Michelle D.
2006-01-01
Historically, cognitive-developmental and behavior-analytic approaches to the study of human behavior change and development have been presented as incompatible alternative theoretical and methodological perspectives. This presumed incompatibility has been understood as arising from divergent sets of metatheoretical assumptions that take the form…
METHODS FOR EVALUATING THE SUSTAINABILITY OF GREEN PROCESSES
A methodology, called GREENSCOPE (Gauging Reaction Effectiveness for the ENvironmental Sustainability of Chemistries with a multi-Objective Process Evaluator), has been developed in the U.S. EPA's Office of Research and Development to directly compare the sustainability of proces...
Optimal Allocation of Restoration Practices Using Indexes for Stream Health
Methodologies that allocate the placement of agricultural and urban green infrastructure management practices with the intent to achieve both economic and environmental objectives typically use objectives related to individual intermediary environmental outputs, yet guidance is n...
Holistic Sustainability Assessment of Agricultural Rainwater Harvesting
We present a methodology for holistic sustainability assessment of green infrastructure, applied to agricultural rainwater harvesting (RWH) in the Albemarle-Pamlico river basin. It builds upon prior work in the region through the use of detailed, crop-level management information...
Bioinspired Methodology for Artificial Olfaction
Raman, Baranidharan; Hertz, Joshua L.; Benkstein, Kurt D.; Semancik, Steve
2008-01-01
Artificial olfaction is a potential tool for noninvasive chemical monitoring. Application of “electronic noses” typically involves recognition of “pretrained” chemicals, while long-term operation and generalization of training to allow chemical classification of “unknown” analytes remain challenges. The latter analytical capability is critically important, as it is unfeasible to pre-expose the sensor to every analyte it might encounter. Here, we demonstrate a biologically inspired approach where the recognition and generalization problems are decoupled and resolved in a hierarchical fashion. Analyte composition is refined in a progression from general (e.g., target is a hydrocarbon) to precise (e.g., target is ethane), using highly optimized response features for each step. We validate this approach using a MEMS-based chemiresistive microsensor array. We show that this approach, a unique departure from existing methodologies in artificial olfaction, allows the recognition module to better mitigate sensor-aging effects and to better classify unknowns, enhancing the utility of chemical sensors for real-world applications. PMID:18855409
NASA Technical Reports Server (NTRS)
Phatak, A. V.
1980-01-01
A systematic analytical approach to the determination of helicopter IFR precision approach requirements is formulated. The approach is based upon the hypothesis that pilot acceptance level or opinion rating of a given system is inversely related to the degree of pilot involvement in the control task. A nonlinear simulation of the helicopter approach to landing task incorporating appropriate models for UH-1H aircraft, the environmental disturbances and the human pilot was developed as a tool for evaluating the pilot acceptance hypothesis. The simulated pilot model is generic in nature and includes analytical representation of the human information acquisition, processing, and control strategies. Simulation analyses in the flight director mode indicate that the pilot model used is reasonable. Results of the simulation are used to identify candidate pilot workload metrics and to test the well known performance-work-load relationship. A pilot acceptance analytical methodology is formulated as a basis for further investigation, development and validation.
Meglen, Robert R.; Kelley, Stephen S.
2003-01-01
In a method for determining the dry mechanical strength for a green wood, the improvement comprising: (a) illuminating a surface of the wood to be determined with a reduced range of wavelengths in the VIS-NIR spectra 400 to 1150 nm, said wood having a green moisture content; (b) analyzing the surface of the wood using a spectrometric method, the method generating a first spectral data of a reduced range of wavelengths in VIS-NIR spectra; and (c) using a multivariate analysis technique to predict the mechanical strength of green wood when dry by comparing the first spectral data with a calibration model, the calibration model comprising a second spectrometric method of spectral data of a reduced range of wavelengths in VIS-NIR spectra obtained from a reference wood having a green moisture content, the second spectral being correlated with a known mechanical strength analytical result obtained from the reference wood when dried and a having a dry moisture content.
Green material selection for sustainability: A hybrid MCDM approach.
Zhang, Honghao; Peng, Yong; Tian, Guangdong; Wang, Danqi; Xie, Pengpeng
2017-01-01
Green material selection is a crucial step for the material industry to comprehensively improve material properties and promote sustainable development. However, because of the subjectivity and conflicting evaluation criteria in its process, green material selection, as a multi-criteria decision making (MCDM) problem, has been a widespread concern to the relevant experts. Thus, this study proposes a hybrid MCDM approach that combines decision making and evaluation laboratory (DEMATEL), analytical network process (ANP), grey relational analysis (GRA) and technique for order performance by similarity to ideal solution (TOPSIS) to select the optimal green material for sustainability based on the product's needs. A nonlinear programming model with constraints was proposed to obtain the integrated closeness index. Subsequently, an empirical application of rubbish bins was used to illustrate the proposed method. In addition, a sensitivity analysis and a comparison with existing methods were employed to validate the accuracy and stability of the obtained final results. We found that this method provides a more accurate and effective decision support tool for alternative evaluation or strategy selection.
Green material selection for sustainability: A hybrid MCDM approach
Zhang, Honghao; Peng, Yong; Tian, Guangdong; Wang, Danqi; Xie, Pengpeng
2017-01-01
Green material selection is a crucial step for the material industry to comprehensively improve material properties and promote sustainable development. However, because of the subjectivity and conflicting evaluation criteria in its process, green material selection, as a multi-criteria decision making (MCDM) problem, has been a widespread concern to the relevant experts. Thus, this study proposes a hybrid MCDM approach that combines decision making and evaluation laboratory (DEMATEL), analytical network process (ANP), grey relational analysis (GRA) and technique for order performance by similarity to ideal solution (TOPSIS) to select the optimal green material for sustainability based on the product's needs. A nonlinear programming model with constraints was proposed to obtain the integrated closeness index. Subsequently, an empirical application of rubbish bins was used to illustrate the proposed method. In addition, a sensitivity analysis and a comparison with existing methods were employed to validate the accuracy and stability of the obtained final results. We found that this method provides a more accurate and effective decision support tool for alternative evaluation or strategy selection. PMID:28498864
NASA Astrophysics Data System (ADS)
Ledet, Lasse S.; Sorokin, Sergey V.
2018-03-01
The paper addresses the classical problem of time-harmonic forced vibrations of a fluid-filled cylindrical shell considered as a multi-modal waveguide carrying infinitely many waves. The forced vibration problem is solved using tailored Green's matrices formulated in terms of eigenfunction expansions. The formulation of Green's matrix is based on special (bi-)orthogonality relations between the eigenfunctions, which are derived here for the fluid-filled shell. Further, the relations are generalised to any multi-modal symmetric waveguide. Using the orthogonality relations the transcendental equation system is converted into algebraic modal equations that can be solved analytically. Upon formulation of Green's matrices the solution space is studied in terms of completeness and convergence (uniformity and rate). Special features and findings exposed only through this modal decomposition method are elaborated and the physical interpretation of the bi-orthogonality relation is discussed in relation to the total energy flow which leads to derivation of simplified equations for the energy flow components.
Saratale, R G; Saratale, G D; Chang, J S; Govindwar, S P
2009-09-01
Micrococcus glutamicus NCIM-2168 exhibited complete decolorization and degradation of C.I. Reactive Green 19A (an initial concentration of 50 mg l(-1)) within 42 h at temperature 37 degrees C and pH 8, under static condition. Extent of mineralization was determined with total organic carbon (TOC) and chemical oxygen demand (COD) measurement, showing a satisfactory reduction of TOC (72%) and COD (66%) within 42 h. Enzyme studies shows involvement of oxidoreductive enzymes in decolorization/degradation process. Analytical studies of the extracted metabolites confirmed the significant degradation of Reactive Green 19A into various metabolites. The microbial toxicity and phytotoxicity assay revealed that the degradation of Reactive Green 19A produced nontoxic metabolites. In addition, the M. glutamicus strain was applied to decolorize a mixture of ten reactive dyes showing a 63% decolorization (in terms of decrease in ADMI value) within 72 h, along with 48% and 42% reduction in TOC and COD under static condition.
A Guided Tour of Mathematical Methods
NASA Astrophysics Data System (ADS)
Snieder, Roel
2009-04-01
1. Introduction; 2. Dimensional analysis; 3. Power series; 4. Spherical and cylindrical co-ordinates; 5. The gradient; 6. The divergence of a vector field; 7. The curl of a vector field; 8. The theorem of Gauss; 9. The theorem of Stokes; 10. The Laplacian; 11. Conservation laws; 12. Scale analysis; 13. Linear algebra; 14. The Dirac delta function; 15. Fourier analysis; 16. Analytic functions; 17. Complex integration; 18. Green's functions: principles; 19. Green's functions: examples; 20. Normal modes; 21. Potential theory; 22. Cartesian tensors; 23. Perturbation theory; 24. Asymptotic evaluation of integrals; 25. Variational calculus; 26. Epilogue, on power and knowledge; References.
Kondo dynamics of quasiparticle tunneling in a two-reservoir Anderson model.
Hong, Jongbae
2011-07-13
We study the Kondo dynamics in a two-reservoir Anderson impurity model in which quasiparticle tunneling occurs between two reservoirs. We show that singlet hopping is an essential component of Kondo dynamics in the quasiparticle tunneling. We prove that two resonant tunneling levels exist in the two-reservoir Anderson impurity model and the quasiparticle tunnels through one of these levels when a bias is applied. The Kondo dynamics is explained by obtaining the retarded Green's function. We obtain the analytic expressions of the spectral weights of coherent peaks by analyzing the Green's function at the atomic limit.
Closed-loop, pilot/vehicle analysis of the approach and landing task
NASA Technical Reports Server (NTRS)
Schmidt, D. K.; Anderson, M. R.
1985-01-01
Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.
Hybrid experimental/analytical models of structural dynamics - Creation and use for predictions
NASA Technical Reports Server (NTRS)
Balmes, Etienne
1993-01-01
An original complete methodology for the construction of predictive models of damped structural vibrations is introduced. A consistent definition of normal and complex modes is given which leads to an original method to accurately identify non-proportionally damped normal mode models. A new method to create predictive hybrid experimental/analytical models of damped structures is introduced, and the ability of hybrid models to predict the response to system configuration changes is discussed. Finally a critical review of the overall methodology is made by application to the case of the MIT/SERC interferometer testbed.
Effect of high-pressure processing on quality and stability of green mango blended mayonnaise.
Sethi, Swati; Chauhan, O P; Anurag, Rahul K
2017-07-01
The present work was aimed to study and optimize the high pressure treated green mango blended mayonnaise in terms of oxidative and emulsion stability, as a function of technical parameters; pressure intensity, dwell period and level of green mango pulp. Mayonnaise samples were treated at different combinations of pressure (400-600 MPa), holding time (5-10 min) and level of green mango pulp (10-30%) following Box-Behnken design. Mayonnaise quality was evaluated in terms of oxidative stability and emulsion stability using response surface methodology to optimize the best possible combination among all. Analysis of variance showed that the second-order polynomial model fitted well with the experimental results. Pressure and time were the most important factors determining the oxidative stability (free fatty acids, peroxide value and anisidine value) whereas; the emulsion stability (creaming and thermal creaming) was most significantly affected by the level of green mango pulp. The optimized conditions for preparing green mango blended mayonnaise with high oxidative and emulsion stability were: 435 MPa pressure, 5 min of holding time with the addition of green mango pulp at the rate of 28%. The product prepared at optimum conditions showed good correlations between predicted and actual values.
Analytical chemistry: Virulence caught green-handed
NASA Astrophysics Data System (ADS)
Sanchez, Laura M.; Dorrestein, Pieter C.
2013-03-01
Many of us eat mushrooms, but few of us have probably ever thought about -- let alone witnessed -- the epic battle of kingdoms that can occur between this delicacy and its bacterial pathogens. Now, imaging mass spectrometry has enabled the identification of a bacterium's potent antifungal weapon of choice.
NASA Technical Reports Server (NTRS)
Karel, M.; Kamarei, A. R.; Nakhost, Z.
1985-01-01
The major nutritional components of the green algae (Scenedesmus obliquus) grown in a Constant Cell density Apparatus were determined. Suitable methodology to prepare proteins from which three major undesirable components of these cells (i.e., cell walls, nucleic acids, and pigments) were either removed or substantially reduced was developed. Results showed that processing of green algae to protein isolate enhances its potential nutritional and organoleptic acceptability as a diet component in a Controlled Ecological Life Support System.
Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.
2013-01-01
Using a geology-based assessment methodology, the U.S. Geological Survey estimated a total of 4.285 trillion barrels of oil in-place in the oil shale of the three principal basins of the Eocene Green River Formation. Using oil shale cutoffs of potentially viable (15 gallons per ton) and high grade (25 gallons per ton), it is estimated that between 353 billion and 1.146 trillion barrels of the in-place resource have a high potential for development.
Big data analytics in healthcare: promise and potential.
Raghupathi, Wullianallur; Raghupathi, Viju
2014-01-01
To describe the promise and potential of big data analytics in healthcare. The paper describes the nascent field of big data analytics in healthcare, discusses the benefits, outlines an architectural framework and methodology, describes examples reported in the literature, briefly discusses the challenges, and offers conclusions. The paper provides a broad overview of big data analytics for healthcare researchers and practitioners. Big data analytics in healthcare is evolving into a promising field for providing insight from very large data sets and improving outcomes while reducing costs. Its potential is great; however there remain challenges to overcome.
Catastrophic incidents can generate a large number of samples with analytically diverse types including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface resid...
Galfi, Istvan; Virtanen, Jorma; Gasik, Michael M.
2017-01-01
A new, faster and more reliable analytical methodology for S(IV) species analysis at low pH solutions by bichromatometry is proposed. For decades the state of the art methodology has been iodometry that is still well justified method for neutral solutions, thus at low pH media possess various side reactions increasing inaccuracy. In contrast, the new methodology has no side reactions at low pH media, requires only one titration step and provides a clear color change if S(IV) species are present in the solution. The method is validated using model solutions with known concentrations and applied to analyses of gaseous SO2 from purged solution in low pH media samples. The results indicate that bichromatometry can accurately analyze SO2 from liquid samples having pH even below 0 relevant to metallurgical industrial processes. PMID:29145479
NASA Technical Reports Server (NTRS)
Jones, Thomas C.; Dorsey, John T.; Doggett, William R.
2015-01-01
The Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN) is a versatile long-reach robotic manipulator that is currently being tested at NASA Langley Research Center. TALISMAN is designed to be highly mass-efficient and multi-mission capable, with applications including asteroid retrieval and manipulation, in-space servicing, and astronaut and payload positioning. The manipulator uses a modular, periodic, tension-compression design that lends itself well to analytical modeling. Given the versatility of application for TALISMAN, a structural sizing methodology was developed that could rapidly assess mass and configuration sensitivities for any specified operating work space, applied loads and mission requirements. This methodology allows the systematic sizing of the key structural members of TALISMAN, which include the truss arm links, the spreaders and the tension elements. This paper summarizes the detailed analytical derivations and methodology that support the structural sizing approach and provides results from some recent TALISMAN designs developed for current and proposed mission architectures.
Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro
Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard
2017-01-01
Objective With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Methods Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. Results NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Conclusion Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. PMID:29184403
Introduction to TAFI - A Matlab® toolbox for analysis of flexural isostasy
NASA Astrophysics Data System (ADS)
Jha, S.; Harry, D. L.; Schutt, D.
2016-12-01
The isostatic response of vertical tectonic loads emplaced on thin elastic plates overlying inviscid substrate and the corresponding gravity anomalies are commonly modeled using well established theories and methodologies of flexural analysis. However, such analysis requires some mathematical and coding expertise on part of users. With that in mind, we designed a new interactive Matlab® toolbox called Toolbox for Analysis of Flexural Isostasy (TAFI). TAFI allows users to create forward models (2-D and 3-D) of flexural deformation of the lithosphere and resulting gravity anomaly. TAFI computes Green's Functions for flexure of the elastic plate subjected to point or line loads, and analytical solution for harmonic loads. Flexure due to non-impulsive, distributed 2-D or 3-D loads are computed by convolving the appropriate Green's function with a user-supplied spatially discretized load function. The gravity anomaly associated with each density interface is calculated by using the Fourier Transform of flexural deflection of these interfaces and estimating the gravity in the wavenumber domain. All models created in TAFI are based on Matlab's intrinsic functions and do not require any specialized toolbox, function or library except those distributed with TAFI. Modeling functions within TAFI can be called from Matlab workspace, from within user written programs or from the TAFI's graphical user interface (GUI). The GUI enables the user to model the flexural deflection of lithosphere interactively, enabling real time comparison of model fit with observed data constraining the flexural deformation and gravity, facilitating rapid search for best fitting flexural model. TAFI is a very useful teaching and research tool and have been tested rigorously in graduate level teaching and basic research environment.
Mekonen, Seblework; Ambelu, Argaw; Spanoghe, Pieter
2014-06-01
Samples of maize, teff, red pepper, and coffee (green bean and coffee bean with pulp) were collected from a local market in the Jimma Zone, Ethiopia. Samples were analyzed for the occurrence of cypermethrin, permethrin, deltamethrin, chlorpyrifos ethyl, DTT and its metabolites, and endosulfan (α, β). In the analytical procedure, the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction methodology with dispersive solid phase extraction clean up (d-SPE) technique was applied. Validation of the QuEChERS method was satisfactory. Recovery percentages of most pesticides were in the range of 70% to 120%, with good repeatability (%relative standard deviation < 20). The limit of detection and limit of quantification varied between 0.001 µg/g and 0.092 µg/g and between 0.002 µg/g and 0.307 µg/g, respectively. The main pesticides detected were DDT, endosulfan, cypermethrin, and permethrin. All of the pesticides analyzed were detected in red pepper and green coffee bean. Residues of DDT in coffee pulp significantly differed (p < 0.01) from other food items except for red pepper. The concentration of pesticides in the food items varied from 0.011 mg/kg to 1.115 mg/kg. All food items contained 1 or more pesticides. Two-thirds of the samples had residues below corresponding maximum residue limits, and the remaining one-third of samples were above the maximum residue limits. These results indicate the need for a good pesticide monitoring program to evaluate consumer risk for the Ethiopian people. © 2014 SETAC.
Background for Joint Systems Aspects of AIR 6000
2000-04-01
Checkland’s Soft Systems Methodology [7, 8,9]. The analytical techniques that are proposed for joint systems work are based on calculating probability...Supporting Global Interests 21 DSTO-CR-0155 SLMP Structural Life Management Plan SOW Stand-Off Weapon SSM Soft Systems Methodology UAV Uninhabited Aerial... Systems Methodology in Action, John Wiley & Sons, Chichester, 1990. [101 Pearl, Judea, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Heo, Ji-Young; Kim, Suna; Kang, Jae-Hyun; Moon, Bokyung
2014-05-01
We aimed to identify the optimum conditions for the extraction of lutein from green tea using accelerated solvent extraction, and achieve improved analytical resolution and sensitivity between lutein and zeaxanthin using an ultra performance liquid chromatography (UPLC) system. The optimized method employed 80% ethanol as the extraction solvent, 160 °C as the temperature, 2 static cycles, and 5 min of static time. In the validation of the UPLC method, recovery was found to be in the range approximately 93.73 to 108.79%, with a correlation coefficient of 0.9974 and a relative standard deviation of <9.29% in inter- and intraday precision analyses. Finally, the lutein contents of green tea and green tea by-products were measured as 32.67 ± 0.70 and 18.18 ± 0.68 mg/100g dw, respectively. Furthermore, we verified that green tea by-products, which are discarded after producing green tea beverages, might be used as a great resource for massive lutein production. We have demonstrated that the common problem of inadequate resolution between lutein and zeaxanthin during carotenoid analyses can be overcome by optimizing the combined techniques of accelerated solvent extraction and ultra performance liquid chromatography (UPLC). UPLC was highly effective for saving time, solvent, and labor, as well as providing better resolution. The results in this study demonstrated that green tea by-products could be used as new sources for industrial lutein production owing to their massive production during the extraction of green tea beverages. © 2014 Institute of Food Technologists®
Hierarchical Analytical Approaches for Unraveling the Composition of Proprietary Mixtures
The composition of commercial mixtures including pesticide inert ingredients, aircraft deicers, and aqueous film-forming foam (AFFF) formulations, and by analogy, fracking fluids, are proprietary. Quantitative analytical methodologies can only be developed for mixture components once their identities are known. Because proprietary mixtures may contain volatile and non-volatile components, a hierarchy of analytical methods is often required for the full identification of all proprietary mixture components.
2017-08-01
of metallic additive manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics...manufacturing processes and show that combining experimental data with modelling and advanced data processing and analytics methods will accelerate that...geometries, we develop a methodology that couples experimental data and modelling to convert the scan paths into spatially resolved local thermal histories
Collaborative Visual Analytics: A Health Analytics Approach to Injury Prevention
Fisher, Brian; Smith, Jennifer; Pike, Ian
2017-01-01
Background: Accurate understanding of complex health data is critical in order to deal with wicked health problems and make timely decisions. Wicked problems refer to ill-structured and dynamic problems that combine multidimensional elements, which often preclude the conventional problem solving approach. This pilot study introduces visual analytics (VA) methods to multi-stakeholder decision-making sessions about child injury prevention; Methods: Inspired by the Delphi method, we introduced a novel methodology—group analytics (GA). GA was pilot-tested to evaluate the impact of collaborative visual analytics on facilitating problem solving and supporting decision-making. We conducted two GA sessions. Collected data included stakeholders’ observations, audio and video recordings, questionnaires, and follow up interviews. The GA sessions were analyzed using the Joint Activity Theory protocol analysis methods; Results: The GA methodology triggered the emergence of ‘common ground’ among stakeholders. This common ground evolved throughout the sessions to enhance stakeholders’ verbal and non-verbal communication, as well as coordination of joint activities and ultimately collaboration on problem solving and decision-making; Conclusions: Understanding complex health data is necessary for informed decisions. Equally important, in this case, is the use of the group analytics methodology to achieve ‘common ground’ among diverse stakeholders about health data and their implications. PMID:28895928
Multi-center evaluation of analytical performance of the Beckman Coulter AU5822 chemistry analyzer.
Zimmerman, M K; Friesen, L R; Nice, A; Vollmer, P A; Dockery, E A; Rankin, J D; Zmuda, K; Wong, S H
2015-09-01
Our three academic institutions, Indiana University, Northwestern Memorial Hospital, and Wake Forest, were among the first in the United States to implement the Beckman Coulter AU5822 series chemistry analyzers. We undertook this post-hoc multi-center study by merging our data to determine performance characteristics and the impact of methodology changes on analyte measurement. We independently completed performance validation studies including precision, linearity/analytical measurement range, method comparison, and reference range verification. Complete data sets were available from at least one institution for 66 analytes with the following groups: 51 from all three institutions, and 15 from 1 or 2 institutions for a total sample size of 12,064. Precision was similar among institutions. Coefficients of variation (CV) were <10% for 97%. Analytes with CVs >10% included direct bilirubin and digoxin. All analytes exhibited linearity over the analytical measurement range. Method comparison data showed slopes between 0.900-1.100 for 87.9% of the analytes. Slopes for amylase, tobramycin and urine amylase were <0.8; the slope for lipase was >1.5, due to known methodology or standardization differences. Consequently, reference ranges of amylase, urine amylase and lipase required only minor or no modification. The four AU5822 analyzers independently evaluated at three sites showed consistent precision, linearity, and correlation results. Since installations, the test results had been well received by clinicians from all three institutions. Copyright © 2015. Published by Elsevier Inc.
Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N
2014-09-01
There has been much debate surrounding diagnostic strategies and the most appropriate training models for novices in oral radiology. It has been argued that an analytic approach, using a step-by-step analysis of the radiographic features of an abnormality, is ideal. Alternative research suggests that novices can successfully employ non-analytic reasoning. Many of these studies do not take instructional methodology into account. This study evaluated the effectiveness of non-analytic and analytic strategies in radiographic interpretation and explored the relationship between instructional methodology and diagnostic strategy. Second-year dental and dental hygiene students were taught four radiographic abnormalities using basic science instructions or a step-by-step algorithm. The students were tested on diagnostic accuracy and memory immediately after learning and one week later. A total of seventy-three students completed both immediate and delayed sessions and were included in the analysis. Students were randomly divided into two instructional conditions: one group provided a diagnostic hypothesis for the image and then identified specific features to support it, while the other group first identified features and then provided a diagnosis. Participants in the diagnosis-first condition (non-analytic reasoning) had higher diagnostic accuracy then those in the features-first condition (analytic reasoning), regardless of their learning condition. No main effect of learning condition or interaction with diagnostic strategy was observed. Educators should be mindful of the potential influence of analytic and non-analytic approaches on the effectiveness of the instructional method.
Elzanfaly, Eman S; Hegazy, Maha A; Saad, Samah S; Salem, Maissa Y; Abd El Fattah, Laila E
2015-03-01
The introduction of sustainable development concepts to analytical laboratories has recently gained interest, however, most conventional high-performance liquid chromatography methods do not consider either the effect of the used chemicals or the amount of produced waste on the environment. The aim of this work was to prove that conventional methods can be replaced by greener ones with the same analytical parameters. The suggested methods were designed so that they neither use nor produce harmful chemicals and produce minimum waste to be used in routine analysis without harming the environment. This was achieved by using green mobile phases and short run times. Four mixtures were chosen as models for this study; clidinium bromide/chlordiazepoxide hydrochloride, phenobarbitone/pipenzolate bromide, mebeverine hydrochloride/sulpiride, and chlorphenoxamine hydrochloride/caffeine/8-chlorotheophylline either in their bulk powder or in their dosage forms. The methods were validated with respect to linearity, precision, accuracy, system suitability, and robustness. The developed methods were compared to the reported conventional high-performance liquid chromatography methods regarding their greenness profile. The suggested methods were found to be greener and more time- and solvent-saving than the reported ones; hence they can be used for routine analysis of the studied mixtures without harming the environment. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An integrated approach for identifying priority contaminant in ...
Environmental assessment of complex mixtures typically requires integration of chemical and biological measurements. This study demonstrates the use of a combination of instrumental chemical analyses, effects-based monitoring, and bio-effects prediction approaches to help identify potential hazards and priority contaminants in two Great Lakes Areas of Concern (AOCs), the Lower Green Bay/Fox River located near Green Bay, WI, USA and the Milwaukee River Estuary, located near Milwaukee, WI, USA. Fathead minnows were caged at four sites within each AOC (eight sites total). Following 4 d of in situ exposure, tissues and biofluids were sampled and used for targeted biological effects analyses. Additionally, 4 d composite water samples were collected concurrently at each caged fish site and analyzed for 134 analytes as well as evaluated for total estrogenic and androgenic activity using cell-based bioassays. Of the analytes examined, 75 were detected in composite samples from at least one site. Based on multiple analyses, one site in the East River and another site near a paper mill discharge from lower Green Bay/Fox River AOC, were prioritized due to their estrogenic and androgenic acitvity, respectively. The water samples from other sites generally did not exhibit significant estrogenic or androgenic activity, nor was there evidence for endocrine disruption in the fish exposed at these sites as indicated the the lack of alterations in ex vivo steroid production, c
Rockwell, Barnaby W.
2013-01-01
Multispectral satellite data acquired by the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) and Landsat 7 Enhanced Thematic Mapper Plus (TM) sensors are being used to populate an online Geographic Information System (GIS) of the spatial occurrence of mineral groups and green vegetation across the western conterminous United States and Alaska. These geospatial data are supporting U.S. Geological Survey national-scale mineral deposit database development and other mineral resource and geoenvironmental research as a means of characterizing mineral exposures related to mined and unmined hydrothermally altered rocks and mine waste. This report introduces a new methodology for the automated analysis of Landsat TM data that has been applied to more than 180 scenes covering the western United States. A map of mineral groups and green vegetation produced using this new methodology that covers the western San Juan Mountains, Colorado, and the Four Corners Region is presented. The map is provided as a layered GeoPDF and in GIS-ready digital format. TM data analysis results from other well-studied and mineralogically characterized areas with strong hydrothermal alteration and (or) supergene weathering of near-surface sulfide minerals are also shown and compared with results derived from ASTER data analysis.
Shuttle payload bay dynamic environments: Summary and conclusion report for STS flights 1-5 and 9
NASA Technical Reports Server (NTRS)
Oconnell, M.; Garba, J.; Kern, D.
1984-01-01
The vibration, acoustic and low frequency loads data from the first 5 shuttle flights are presented. The engineering analysis of that data is also presented. Vibroacoustic data from STS-9 are also presented because they represent the only data taken on a large payload. Payload dynamic environment predictions developed by the participation of various NASA and industrial centers are presented along with a comparison of analytical loads methodology predictions with flight data, including a brief description of the methodologies employed in developing those predictions for payloads. The review of prediction methodologies illustrates how different centers have approached the problems of developing shuttle dynamic environmental predictions and criteria. Ongoing research activities related to the shuttle dynamic environments are also described. Analytical software recently developed for the prediction of payload acoustic and vibration environments are also described.
Schaafsma, Joanna D; van der Graaf, Yolanda; Rinkel, Gabriel J E; Buskens, Erik
2009-12-01
The lack of a standard methodology in diagnostic research impedes adequate evaluation before implementation of constantly developing diagnostic techniques. We discuss the methodology of diagnostic research and underscore the relevance of decision analysis in the process of evaluation of diagnostic tests. Overview and conceptual discussion. Diagnostic research requires a stepwise approach comprising assessment of test characteristics followed by evaluation of added value, clinical outcome, and cost-effectiveness. These multiple goals are generally incompatible with a randomized design. Decision-analytic models provide an important alternative through integration of the best available evidence. Thus, critical assessment of clinical value and efficient use of resources can be achieved. Decision-analytic models should be considered part of the standard methodology in diagnostic research. They can serve as a valid alternative to diagnostic randomized clinical trials (RCTs).
Selecting a software development methodology. [of digital flight control systems
NASA Technical Reports Server (NTRS)
Jones, R. E.
1981-01-01
The state of the art analytical techniques for the development and verification of digital flight control software is studied and a practical designer oriented development and verification methodology is produced. The effectiveness of the analytic techniques chosen for the development and verification methodology are assessed both technically and financially. Technical assessments analyze the error preventing and detecting capabilities of the chosen technique in all of the pertinent software development phases. Financial assessments describe the cost impact of using the techniques, specifically, the cost of implementing and applying the techniques as well as the relizable cost savings. Both the technical and financial assessment are quantitative where possible. In the case of techniques which cannot be quantitatively assessed, qualitative judgements are expressed about the effectiveness and cost of the techniques. The reasons why quantitative assessments are not possible will be documented.
Interdisciplinary Chemistry Experiment: An Environmentally Friendly Extraction of Lycopene
ERIC Educational Resources Information Center
Zhu, Jie; Zhang, Mingjie; Liu, Qingwei
2008-01-01
A novel experiment for the extraction of lycopene from tomato paste without the use of an organic solvent is described. The experiment employs polymer, green, and analytical chemistry. This environmentally friendly extraction is more efficient and requires less time than the traditional approach using an organic solvent. The extraction is…
ERIC Educational Resources Information Center
Martinez-Maldonado, Roberto; Pardo, Abelardo; Mirriahi, Negin; Yacef, Kalina; Kay, Judy; Clayphan, Andrew
2015-01-01
Designing, validating, and deploying learning analytics tools for instructors or students is a challenge that requires techniques and methods from different disciplines, such as software engineering, human-computer interaction, computer graphics, educational design, and psychology. Whilst each has established its own design methodologies, we now…
Optically stimulated luminescence dating of sediments
NASA Astrophysics Data System (ADS)
Troja, S. O.; Amore, C.; Barbagallo, G.; Burrafato, G.; Forzese, R.; Geremia, F.; Gueli, A. M.; Marzo, F.; Pirnaci, D.; Russo, M.; Turrisi, E.
2000-04-01
Optically stimulated luminescence (OSL) dating methodology was applied on the coarse grain fraction (100÷500 μm thick) of quartz crystals (green light stimulated luminescence, GLSL) and feldspar crystals (infrared stimulated luminescence, IRSL) taken from sections at different depths of cores bored in various coastal lagoons (Longarini, Cuba, Bruno) in the south-east coast of Sicily. The results obtained give a sequence of congruent relative ages and maximum absolute ages compatible with the sedimentary structure, thus confirming the excellent potential of the methodology.
Ishida, Naoyuki
2011-08-26
An improved separation method for chlorophyll metabolites in Oriental tobacco leaf was developed. While Oriental leaf still gives the green color even after the curing process, little attention has been paid to the detailed composition of the remaining green pigments. This study aimed to identify the green pigments using non aqueous reversed phase chromatography (NARPC). To this end, liquid chromatograph (LC) equipped with a photo diode array detector (DAD) and an atmospheric pressure chemical ionization/mass spectrometer (APCI/MSD) was selected, because it is useful for detecting low polar non-volatile compounds giving green color such as pheophytin a. Identification was based on the wavelength spectrum, mass spectrum and retention time, comparing the analytes in Oriental leaf with the commercially available and synthesized components. Consequently, several chlorophyll metabolites such as hydroxypheophytin a, solanesyl pheophorbide a and solanesyl hydroxypheophorbide a were newly identified, in addition to typical green pigments such as chlorophyll a and pheophytin a. Chlorophyll metabolites bound to solanesol were considered the tobacco specific components. NARPC expanded the number of detectable low polar chlorophyll metabolites in Oriental tobacco leaf. Copyright © 2011 Elsevier B.V. All rights reserved.
Frequency-domain Green's functions for radar waves in heterogeneous 2.5D media
Ellefsen, K.J.; Croize, D.; Mazzella, A.T.; McKenna, J.R.
2009-01-01
Green's functions for radar waves propagating in heterogeneous 2.5D media might be calculated in the frequency domain using a hybrid method. The model is defined in the Cartesian coordinate system, and its electromagnetic properties might vary in the x- and z-directions, but not in the y-direction. Wave propagation in the x- and z-directions is simulated with the finite-difference method, and wave propagation in the y-direction is simulated with an analytic function. The absorbing boundaries on the finite-difference grid are perfectly matched layers that have been modified to make them compatible with the hybrid method. The accuracy of these numerical Greens functions is assessed by comparing them with independently calculated Green's functions. For a homogeneous model, the magnitude errors range from -4.16% through 0.44%, and the phase errors range from -0.06% through 4.86%. For a layered model, the magnitude errors range from -2.60% through 2.06%, and the phase errors range from -0.49% through 2.73%. These numerical Green's functions might be used for forward modeling and full waveform inversion. ?? 2009 Society of Exploration Geophysicists. All rights reserved.
Functional Use Change in Green Spaces: A Case Study of Kirklareli Province
NASA Astrophysics Data System (ADS)
Sat Gungor, Beyza; Culha Ozanguc, Kadiriye
2017-10-01
Green spaces which are one of the most important public spaces in urban design have an important role on qualified daily urban life. People escape from intense work pressure and traffic jam of metropoles to those urban green areas to take a breath even they cover a small size. In time, people’s expectations from green spaces as functional and quantitative needs are changing. This change occurs due to increasing population and as the character of the urban life. This study examines the functional use and quantitative change of urban green spaces of Kırklareli Province from past to present. Kırklareli is a border city to Bulgaria which is located in north-west part of Turkey and this gives a transitional and a multicultural character to the city. The population is about 67360. In the course of time; green space needs have increased by the increasing population. In addition to this, green spaces’ functional use change has been identified. According to the results of the study; from the aspect of the green space standards, Kırklareli found above standards with 17.5 m2 per capita, but on the other hand, sport and playground areas found insufficient. The Oldest and the newest city plans of Kırklareli (1940s and 2012s cadastral plans) have been compared and site surveys implemented as the methodology. In site survey, current green spaces’ functional uses as sport or playground are observed and determined and also current quantitative measure of the green spaces are verified. Urban green spaces in Kırklareli Province evaluated through considering world’s most populated urban green space standards and Turkey’s standards. This study utilizes to compose a substructure of the urban green space. Determined deficiencies and inadequacies of green spaces and functional needs in this study, can guide to further studies and implementations of Kırklareli Municipality.
Hilbert transform evaluation for electron-phonon self-energies
NASA Astrophysics Data System (ADS)
Bevilacqua, Giuseppe; Menichetti, Guido; Pastori Parravicini, Giuseppe
2016-01-01
The electron tunneling current through nanostructures is considered in the presence of the electron-phonon interactions. In the Keldysh nonequilibrium formalism, the lesser, greater, advanced and retarded self-energies components are expressed by means of appropriate Langreth rules. We discuss the key role played by the entailed Hilbert transforms, and provide an analytic way for their evaluation. Particular attention is given to the current-conserving lowest-order-expansion for the treament of the electron-phonon interaction; by means of an appropriate elaboration of the analytic properties and pole structure of the Green's functions and of the Fermi functions, we arrive at a surprising simple, elegant, fully analytic and easy-to-use expression of the Hilbert transforms and involved integrals in the energy domain.
A METHODOLOGY TO EVALUATE PROCESS SUSTAINABILITY
Chemical and engineering research over the past five years has seen a dramatic increase in activity in the area of green chemistry. As these developments continue to be explored, it is reasonable that some of these chemistries or technologies have the potential to be implemented ...
Recovery of catechin compounds from Korean tea by solvent extraction.
Row, Kyung Ho; Jin, Yinzhe
2006-03-01
Catechin compounds from Korean green tea as potential sources of anticancer and antioxidant components were target materials in this work. The methodologies of solvent extraction and partition were utilized to recover catechin compounds from green tea. The optimum experimental condition was obtained by optimizing operating factors, such as, the extraction solvent, extraction time and operating temperature. After extracting the green tea with water at 80 degrees C for 40 min, the extract was partitioned with water/chloroform, which was best suited to remove caffeine impurity from the extract. Further, the resulting extract was partitioned water/ethyl acetate to deeply purify the catechin compounds of EGC, EC, EGCG and ECG. The experimental result in this work could be extended to preparative HPLC to obtain EGCG on commercial scale.
Horizon Missions Methodology - Using new paradigms to overcome conceptual blocks to innovation
NASA Technical Reports Server (NTRS)
Anderson, John L.
1993-01-01
The Horizon Mission Methodology was developed to provide a systematic analytical approach for evaluating and identifying technological requirements for breakthrough technology options (BTOs) and for assessing their potential to provide revolutionary capabilities for advanced space missions. Here, attention is given to the further use of the methodology as a new tool for a broader range of studies dealing with technology innovation and new technology paradigms.
Kirschner, Nicolas; Dias, Adriana Neves; Budziak, Dilma; da Silveira, Cristian Berto; Merib, Josias; Carasek, Eduardo
2017-12-15
A sustainable approach to TF-SPME is presented using recycled diatomaceous earth, obtained from a beer purification process, as a green sorbent phase for the determination of bisphenol A (BPA), benzophenone (BzP), triclocarban (TCC), 4-methylbenzylidene camphor (4-MBC) and 2-ethylhexyl-p-methoxycinnamate (EHMC) in environmental water samples. TF-SPME was combined with a 96-well plate system allowing for high-throughput analysis due to the simultaneous extraction/desorption up to 96 samples. The proposed sorbent phase exhibited good stability in organic solvents, as well as satisfactory analytical performance. The optimized method consisted of 240 min of extraction at pH 6 with the addition of NaCl (15% w/v). A mixture of MeOH:ACN (50:50 v/v) was used for the desorption the analytes, using a time of 30 min. Limits of detection varied from 1 μg L -1 for BzP and TCC to 8 μg L -1 for the other analytes, and R 2 ranged from 0.9926 for 4-MBC to 0.9988 for BPA. This novel and straightforward approach offers an environmentally-friendly and very promising alternative for routine analysis. . The total sample preparation time per sample was approximately 2.8 min, which is a significant advantage when a large number of analytical run is required. Copyright © 2017 Elsevier B.V. All rights reserved.
Integrated Response Time Evaluation Methodology for the Nuclear Safety Instrumentation System
NASA Astrophysics Data System (ADS)
Lee, Chang Jae; Yun, Jae Hee
2017-06-01
Safety analysis for a nuclear power plant establishes not only an analytical limit (AL) in terms of a measured or calculated variable but also an analytical response time (ART) required to complete protective action after the AL is reached. If the two constraints are met, the safety limit selected to maintain the integrity of physical barriers used for preventing uncontrolled radioactivity release will not be exceeded during anticipated operational occurrences and postulated accidents. Setpoint determination methodologies have actively been developed to ensure that the protective action is initiated before the process conditions reach the AL. However, regarding the ART for a nuclear safety instrumentation system, an integrated evaluation methodology considering the whole design process has not been systematically studied. In order to assure the safety of nuclear power plants, this paper proposes a systematic and integrated response time evaluation methodology that covers safety analyses, system designs, response time analyses, and response time tests. This methodology is applied to safety instrumentation systems for the advanced power reactor 1400 and the optimized power reactor 1000 nuclear power plants in South Korea. The quantitative evaluation results are provided herein. The evaluation results using the proposed methodology demonstrate that the nuclear safety instrumentation systems fully satisfy corresponding requirements of the ART.
Modern Instrumental Methods in Forensic Toxicology*
Smith, Michael L.; Vorce, Shawn P.; Holler, Justin M.; Shimomura, Eric; Magluilo, Joe; Jacobs, Aaron J.; Huestis, Marilyn A.
2009-01-01
This article reviews modern analytical instrumentation in forensic toxicology for identification and quantification of drugs and toxins in biological fluids and tissues. A brief description of the theory and inherent strengths and limitations of each methodology is included. The focus is on new technologies that address current analytical limitations. A goal of this review is to encourage innovations to improve our technological capabilities and to encourage use of these analytical techniques in forensic toxicology practice. PMID:17579968
Against Simplicity, against Ethics: Analytics of Disruption as Quasi-Methodology
ERIC Educational Resources Information Center
Childers, Sara M.
2012-01-01
Simplified understandings of qualitative inquiry as mere method overlook the complexity and nuance of qualitative practice. As is the call of this special issue, the author intervenes in the simplification of qualitative inquiry through a discussion of methodology to illustrate how theory and inquiry are inextricably linked and ethically…
The Integration of Project-Based Methodology into Teaching in Machine Translation
ERIC Educational Resources Information Center
Madkour, Magda
2016-01-01
This quantitative-qualitative analytical research aimed at investigating the effect of integrating project-based teaching methodology into teaching machine translation on students' performance. Data was collected from the graduate students in the College of Languages and Translation, at Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi…
Toddi A. Steelman; Branda Nowell; Deena Bayoumi; Sarah McCaffrey
2014-01-01
We leverage economic theory, network theory, and social network analytical techniques to bring greater conceptual and methodological rigor to understand how information is exchanged during disasters. We ask, "How can information relationships be evaluated more systematically during a disaster response?" "Infocentric analysis"a term and...
Centroid and Theoretical Rotation: Justification for Their Use in Q Methodology Research
ERIC Educational Resources Information Center
Ramlo, Sue
2016-01-01
This manuscript's purpose is to introduce Q as a methodology before providing clarification about the preferred factor analytical choices of centroid and theoretical (hand) rotation. Stephenson, the creator of Q, designated that only these choices allowed for scientific exploration of subjectivity while not violating assumptions associated with…
The recent discovery of the pollution of the environment with Kepone has resulted in a tremendous interest in the development of residue methodology for the compound. Current multiresidue methods for the determination of the common organochlorinated pesticides do not yield good q...
The Nature of Educational Research
ERIC Educational Resources Information Center
Gillett, Simon G.
2011-01-01
The paper is in two parts. The first part of the paper is a critique of current methodology in educational research: scientific, critical and interpretive. The ontological and epistemological assumptions of those methodologies are described from the standpoint of John Searle's analytic philosophy. In the second part two research papers with…
Disturbance characteristics of half-selected cells in a cross-point resistive switching memory array
NASA Astrophysics Data System (ADS)
Chen, Zhe; Li, Haitong; Chen, Hong-Yu; Chen, Bing; Liu, Rui; Huang, Peng; Zhang, Feifei; Jiang, Zizhen; Ye, Hongfei; Gao, Bin; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng; Wong, H.-S. Philip; Yu, Shimeng
2016-05-01
Disturbance characteristics of cross-point resistive random access memory (RRAM) arrays are comprehensively studied in this paper. An analytical model is developed to quantify the number of pulses (#Pulse) the cell can bear before disturbance occurs under various sub-switching voltage stresses based on physical understanding. An evaluation methodology is proposed to assess the disturb behavior of half-selected (HS) cells in cross-point RRAM arrays by combining the analytical model and SPICE simulation. The characteristics of cross-point RRAM arrays such as energy consumption, reliable operating cycles and total error bits are evaluated by the methodology. A possible solution to mitigate disturbance is proposed.
Analytical Methodology for Predicting the Onset of Widespread Fatigue Damage in Fuselage Structure
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Newman, James C., Jr.; Piascik, Robert S.; Starnes, James H., Jr.
1996-01-01
NASA has developed a comprehensive analytical methodology for predicting the onset of widespread fatigue damage in fuselage structure. The determination of the number of flights and operational hours of aircraft service life that are related to the onset of widespread fatigue damage includes analyses for crack initiation, fatigue crack growth, and residual strength. Therefore, the computational capability required to predict analytically the onset of widespread fatigue damage must be able to represent a wide range of crack sizes from the material (microscale) level to the global structural-scale level. NASA studies indicate that the fatigue crack behavior in aircraft structure can be represented conveniently by the following three analysis scales: small three-dimensional cracks at the microscale level, through-the-thickness two-dimensional cracks at the local structural level, and long cracks at the global structural level. The computational requirements for each of these three analysis scales are described in this paper.
Challenges and perspectives in quantitative NMR.
Giraudeau, Patrick
2017-01-01
This perspective article summarizes, from the author's point of view at the beginning of 2016, the major challenges and perspectives in the field of quantitative NMR. The key concepts in quantitative NMR are first summarized; then, the most recent evolutions in terms of resolution and sensitivity are discussed, as well as some potential future research directions in this field. A particular focus is made on methodologies capable of boosting the resolution and sensitivity of quantitative NMR, which could open application perspectives in fields where the sample complexity and the analyte concentrations are particularly challenging. These include multi-dimensional quantitative NMR and hyperpolarization techniques such as para-hydrogen-induced polarization or dynamic nuclear polarization. Because quantitative NMR cannot be dissociated from the key concepts of analytical chemistry, i.e. trueness and precision, the methodological developments are systematically described together with their level of analytical performance. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Latief, Yusuf; Berawi, Mohammed Ali; Basten, Van; Budiman, Rachmat; Riswanto
2017-06-01
Building has a big impact on the environmental developments. There are three general motives in building, namely the economy, society, and environment. Total completed building construction in Indonesia increased by 116% during 2009 to 2011. It made the energy consumption increased by 11% within the last three years. In fact, 70% of energy consumption is used for electricity needs on commercial buildings which leads to an increase of greenhouse gas emissions by 25%. Green Building cycle costs is known as highly building upfront cost in Indonesia. The purpose of optimization in this research improves building performance with some of green concept alternatives. Research methodology is mixed method of qualitative and quantitative approaches through questionnaire surveys and case study. Assessing the successful of optimization functions in the existing green building is based on the operational and maintenance phase with the Life Cycle Assessment Method. Choosing optimization results were based on the largest efficiency of building life cycle and the most effective cost to refund.
Towards Implementation of Green Technology in Sabah Construction Industry
NASA Astrophysics Data System (ADS)
Azland Jainudin, Noor; Jugah, Ivy; Nasrizal Awang Ali, Awang; Tawie, Rudy
2017-12-01
The construction industry in Sabah is one of the major roles for development of social, economic infrastructures and buildings in generating wealth to the state besides the tourism sector. The increasing number of construction projects particularly in the rapid developing city of Kota Kinabalu, green technology as a whole is becoming more significant as it helps to develop effective solutions to encounter global environmental issues. The objective of the research is to identify the awareness and implementation of green technology in construction industry in Kota Kinabalu, Sabah. The methodology of the research is through distributing the questionnaire to the contractors, developers, consultants, architects and state government agencies to the area in Kota Kinabalu only. The questionnaires had been analysed to find out the mean value. 100 questionnaires distributed to the respondents but merely 85 questionnaires collected have been analysed. Based on the findings, 83.5% organisations were aware with the concept of green technology in construction project. In terms of the implementation only 64.7% had been implemented in their organizations. More than 50% from the major players such as contractors, consultants, developers, architects and state government agencies were aware based on six green technology concepts in their organizations. As a conclusion, the awareness towards green policy concept in construction industry is very satisfied. Meanwhile, in terms of implementation need to be increased the number of organizations to be involved in green technology in construction industry.
A Guided Tour of Mathematical Methods for the Physical Sciences
NASA Astrophysics Data System (ADS)
Snieder, Roel; van Wijk, Kasper
2015-05-01
1. Introduction; 2. Dimensional analysis; 3. Power series; 4. Spherical and cylindrical coordinates; 5. Gradient; 6. Divergence of a vector field; 7. Curl of a vector field; 8. Theorem of Gauss; 9. Theorem of Stokes; 10. The Laplacian; 11. Scale analysis; 12. Linear algebra; 13. Dirac delta function; 14. Fourier analysis; 15. Analytic functions; 16. Complex integration; 17. Green's functions: principles; 18. Green's functions: examples; 19. Normal modes; 20. Potential-field theory; 21. Probability and statistics; 22. Inverse problems; 23. Perturbation theory; 24. Asymptotic evaluation of integrals; 25. Conservation laws; 26. Cartesian tensors; 27. Variational calculus; 28. Epilogue on power and knowledge.
Supercritical fluid chromatography: a promising alternative to current bioanalytical techniques.
Dispas, Amandine; Jambo, Hugues; André, Sébastien; Tyteca, Eva; Hubert, Philippe
2018-01-01
During the last years, chemistry was involved in the worldwide effort toward environmental problems leading to the birth of green chemistry. In this context, green analytical tools were developed as modern Supercritical Fluid Chromatography in the field of separative techniques. This chromatographic technique knew resurgence a few years ago, thanks to its high efficiency, fastness and robustness of new generation equipment. These advantages and its easy hyphenation to MS fulfill the requirements of bioanalysis regarding separation capacity and high throughput. In the present paper, the technical aspects focused on bioanalysis specifications will be detailed followed by a critical review of bioanalytical supercritical fluid chromatography methods published in the literature.
The gravitational potential of axially symmetric bodies from a regularized green kernel
NASA Astrophysics Data System (ADS)
Trova, A.; Huré, J.-M.; Hersant, F.
2011-12-01
The determination of the gravitational potential inside celestial bodies (rotating stars, discs, planets, asteroids) is a common challenge in numerical Astrophysics. Under axial symmetry, the potential is classically found from a two-dimensional integral over the body's meridional cross-section. Because it involves an improper integral, high accuracy is generally difficult to reach. We have discovered that, for homogeneous bodies, the singular Green kernel can be converted into a regular kernel by direct analytical integration. This new kernel, easily managed with standard techniques, opens interesting horizons, not only for numerical calculus but also to generate approximations, in particular for geometrically thin discs and rings.
Yisak, Hagos; Redi-Abshiro, Mesfin; Chandravanshi, Bhagwan Singh
2018-05-11
There is no fluorescence spectroscopic method for the determination of trigonelline and theobromine in green coffee beans. Therefore, the objective of this study was to develop a new fluorescence spectroscopic method to determine the alkaloids simultaneously in the aqueous extract of green coffee beans. The calibration curves were linear in the range 2-6, 1-6, 1-5 mg/L for caffeine, theobromine and trigonelline, respectively, with R 2 ≥ 0.9987. The limit of detection and limit of quantification were 2, 6 and 7 µg/L and 40, 20 and 20 µg/L for caffeine, theobromine and trigonelline, respectively. Caffeine and trigonelline exhibited well separated fluorescence excitation spectra and therefore the two alkaloids were selectively quantified in the aqueous extract of green coffee. While theobromine showed overlapping fluorescence excitation spectra with caffeine and hence theobromine could not be determined in the aqueous extract of green coffee beans. The amount of caffeine and trigonelline in the three samples of green coffee beans were found to be 0.95-1.10 and 1.00-1.10% (w/w), respectively. The relative standard deviations (RSD ≤ 4%) of the method for the three compounds of interest were of very good. The accuracy of the developed analytical method was evaluated by spiking standard caffeine and trigonelline to green coffee beans and the average recoveries were 99 ± 2% for both the alkaloids. A fast, sensitive and reliable fluorescence method for the simultaneous determination of caffeine and trigonelline in the aqueous extract of green coffee beans was developed and validated. The developed method reflected an effective performance to the direct determination of the two alkaloids in the aqueous extract of green coffee beans.
Performance of hybrid and single-frequency impulse GPR antennas on USGA sporting greens
USDA-ARS?s Scientific Manuscript database
The utility of employing ground-penetrating radar (GPR) technologies for environmental surveys can vary, depending upon the physical properties of the site. Environmental conditions can fluctuate, altering soil properties. Operator proficiency and survey methodology will also influence GPR findings....
NASA Astrophysics Data System (ADS)
Shi, Lihong; Li, Yanyan; Li, Xiaofeng; Wen, Xiangping; Zhang, Guomei; Yang, Jun; Dong, Chuan; Shuang, Shaomin
2015-04-01
We report a facile and eco-friendly strategy for the fabrication of green fluorescent carbon nanodots (CDs), and demonstrate their applications for bio-imaging, patterning, and staining. A one-pot hydrothermal method using various plant petals yields bright green-emitting CDs, providing an easy way for the production of green fluorescent CDs without the need for a tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. The as-prepared CDs show small size distribution and excellent dispersibility. Their strong green fluorescence is observed when the excitation wavelength is between 430 nm and 490 nm. Moreover, they exhibit high tolerance to various external conditions, such as pH values, external cations, and continuous excitation. Due to minimum toxicity as well as good photoluminescence properties, these CDs can be applied to in vitro and in vivo imaging, patterning, and staining. According to confocal fluorescence imaging of human uterine cervical squamous cell carcinoma cells, CDs penetrate into the cell and enter the cytoplasm and the nucleus. More strikingly, carp is directly fed with CDs for in vivo imaging and shows bright green fluorescence at an excitation wavelength of 470 nm. In addition, the obtained CDs are used as fluorescent inks for drawing luminescence patterns. Finally, we also apply the CDs as a fluorescent dye. Interestingly, the absorbent filter paper with staining emits dramatic fluorescence under 470 nm excitation.We report a facile and eco-friendly strategy for the fabrication of green fluorescent carbon nanodots (CDs), and demonstrate their applications for bio-imaging, patterning, and staining. A one-pot hydrothermal method using various plant petals yields bright green-emitting CDs, providing an easy way for the production of green fluorescent CDs without the need for a tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. The as-prepared CDs show small size distribution and excellent dispersibility. Their strong green fluorescence is observed when the excitation wavelength is between 430 nm and 490 nm. Moreover, they exhibit high tolerance to various external conditions, such as pH values, external cations, and continuous excitation. Due to minimum toxicity as well as good photoluminescence properties, these CDs can be applied to in vitro and in vivo imaging, patterning, and staining. According to confocal fluorescence imaging of human uterine cervical squamous cell carcinoma cells, CDs penetrate into the cell and enter the cytoplasm and the nucleus. More strikingly, carp is directly fed with CDs for in vivo imaging and shows bright green fluorescence at an excitation wavelength of 470 nm. In addition, the obtained CDs are used as fluorescent inks for drawing luminescence patterns. Finally, we also apply the CDs as a fluorescent dye. Interestingly, the absorbent filter paper with staining emits dramatic fluorescence under 470 nm excitation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00783f
Ceglie, Francesco Giovanni; Bustamante, Maria Angeles; Ben Amara, Mouna; Tittarelli, Fabio
2015-01-01
Peat replacement is an increasing demand in containerized and transplant production, due to the environmental constraints associated to peat use. However, despite the wide information concerning the use of alternative materials as substrates, it is very complex to establish the best materials and mixtures. This work evaluates the use of mixture design and surface response methodology in a peat substitution experiment using two alternative materials (green compost and palm fibre trunk waste) for transplant production of tomato (Lycopersicon esculentum Mill.); melon, (Cucumis melo L.); and lettuce (Lactuca sativa L.) in organic farming conditions. In general, the substrates showed suitable properties for their use in seedling production, showing the best plant response the mixture of 20% green compost, 39% palm fibre and 31% peat. The mixture design and applied response surface methodology has shown to be an useful approach to optimize substrate formulations in peat substitution experiments to standardize plant responses. PMID:26070163
NASA Astrophysics Data System (ADS)
Zhu, Zhenzhou; Guan, Qingyan; Guo, Ying; He, Jingren; Liu, Gang; Li, Shuyi; Barba, Francisco J.; Jaffrin, Michel Y.
2016-01-01
Response surface methodology was used to optimize experimental conditions for ultrasound-assisted extraction of valuable components (anthocyanins and phenolics) from purple sweet potatoes using water as a solvent. The Box-Behnken design was used for optimizing extraction responses of anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption. Conditions to obtain maximal anthocyanin extraction yield, maximal phenolic extraction yield, and minimal specific energy consumption were different; an overall desirability function was used to search for overall optimal conditions: extraction temperature of 68ºC, ultrasonic treatment time of 52 min, and a liquid/solid ratio of 20. The optimized anthocyanin extraction yield, phenolic extraction yield, and specific energy consumption were 4.91 mg 100 g-1 fresh weight, 3.24 mg g-1 fresh weight, and 2.07 kWh g-1, respectively, with a desirability of 0.99. This study indicates that ultrasound-assisted extraction should contribute to a green process for valorization of purple sweet potatoes.
Learning Analytics in Higher Education Development: A Roadmap
ERIC Educational Resources Information Center
Adejo, Olugbenga; Connolly, Thomas
2017-01-01
The increase in education data and advance in technology are bringing about enhanced teaching and learning methodology. The emerging field of Learning Analytics (LA) continues to seek ways to improve the different methods of gathering, analysing, managing and presenting learners' data with the sole aim of using it to improve the student learning…
ERIC Educational Resources Information Center
Brown, Steven D.; Tramayne, Selena; Hoxha, Denada; Telander, Kyle; Fan, Xiaoyan; Lent, Robert W.
2008-01-01
This study tested Social Cognitive Career Theory's (SCCT) academic performance model using a two-stage approach that combined meta-analytic and structural equation modeling methodologies. Unbiased correlations obtained from a previously published meta-analysis [Robbins, S. B., Lauver, K., Le, H., Davis, D., & Langley, R. (2004). Do psychosocial…
Operational Environmental Assessment
1988-09-01
Chemistry Branch - Physical Chemistry Branch " Analytical Research Division - Analytical Systems Branch - Methodology Research Branch - Spectroscopy Branch...electromagnetic frequency spec- trum and includes radio frequencies, infrared , visible light, ultraviolet, X-rays and gamma rays (in ascending order of...Verruculogen Aflatrem Picrotoxin Ciguatoxin Mycotoxins Simple Tr ichothecenes T-2 Toxin T-2 Tetraol Neosolaniol * Nivalenol Deoxynivalenol Verrucarol B-3 B lank
Analytical Chemistry Division. Annual progress report for period ending December 31, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyon, W.S.
1981-05-01
This report is divided into: analytical methodology; mass and emission spectrometry; technical support; bio/organic analysis; nuclear and radiochemical analysis; quality assurance, safety, and tabulation of analyses; supplementary activities; and presentation of research results. Separate abstracts were prepared for the technical support, bio/organic analysis, and nuclear and radiochemical analysis. (DLC)
A Multidimensional Reappraisal of Language in Autism: Insights from a Discourse Analytic Study
ERIC Educational Resources Information Center
Sterponi, Laura; de Kirby, Kenton
2016-01-01
In this article, we leverage theoretical insights and methodological guidelines of discourse analytic scholarship to re-examine language phenomena typically associated with autism. Through empirical analysis of the verbal behavior of three children with autism, we engage the question of how prototypical features of autistic language--notably…
Improvements in analytical methodology have allowed low-level detection of an ever increasing number of pharmaceuticals, personal care products, hormones, pathogens and other contaminants of emerging concern (CECs). The use of these improved analytical tools has allowed researche...
ERIC Educational Resources Information Center
Reinholz, Daniel L.; Shah, Niral
2018-01-01
Equity in mathematics classroom discourse is a pressing concern, but analyzing issues of equity using observational tools remains a challenge. In this article, we propose equity analytics as a quantitative approach to analyzing aspects of equity and inequity in classrooms. We introduce a classroom observation tool that focuses on relatively…
Analytical control test plan and microbiological methods for the water recovery test
NASA Technical Reports Server (NTRS)
Traweek, M. S. (Editor); Tatara, J. D. (Editor)
1994-01-01
Qualitative and quantitative laboratory results are important to the decision-making process. In some cases, they may represent the only basis for deciding between two or more given options or processes. Therefore, it is essential that handling of laboratory samples and analytical operations employed are performed at a deliberate level of conscientious effort. Reporting erroneous results can lead to faulty interpretations and result in misinformed decisions. This document provides analytical control specifications which will govern future test procedures related to all Water Recovery Test (WRT) Phase 3 activities to be conducted at the National Aeronautics and Space Administration/Marshall Space Flight Center (NASA/MSFC). This document addresses the process which will be used to verify analytical data generated throughout the test period, and to identify responsibilities of key personnel and participating laboratories, the chains of communication to be followed, and ensure that approved methodology and procedures are used during WRT activities. This document does not outline specifics, but provides a minimum guideline by which sampling protocols, analysis methodologies, test site operations, and laboratory operations should be developed.
NASA Astrophysics Data System (ADS)
Tahri, Meryem; Maanan, Mohamed; Hakdaoui, Mustapha
2016-04-01
This paper shows a method to assess the vulnerability of coastal risks such as coastal erosion or submarine applying Fuzzy Analytic Hierarchy Process (FAHP) and spatial analysis techniques with Geographic Information System (GIS). The coast of the Mohammedia located in Morocco was chosen as the study site to implement and validate the proposed framework by applying a GIS-FAHP based methodology. The coastal risk vulnerability mapping follows multi-parametric causative factors as sea level rise, significant wave height, tidal range, coastal erosion, elevation, geomorphology and distance to an urban area. The Fuzzy Analytic Hierarchy Process methodology enables the calculation of corresponding criteria weights. The result shows that the coastline of the Mohammedia is characterized by a moderate, high and very high level of vulnerability to coastal risk. The high vulnerability areas are situated in the east at Monika and Sablette beaches. This technical approach is based on the efficiency of the Geographic Information System tool based on Fuzzy Analytical Hierarchy Process to help decision maker to find optimal strategies to minimize coastal risks.
Vidal, Rocío B Pellegrino; Ibañez, Gabriela A; Escandar, Graciela M
2016-10-01
The aim of this study was to develop a novel analytical method for the determination of bisphenol A, nonylphenol, octylphenol, diethyl phthalate, dibutyl phthalate and diethylhexyl phthalate, compounds known for their endocrine-disruptor properties, based on liquid chromatography with simultaneous diode array and fluorescent detection. Following the principles of green analytical chemistry, solvent consumption and chromatographic run time were minimized. To deal with the resulting incomplete resolution in the chromatograms, a second-order calibration was proposed. Second-order data (elution time-absorbance wavelength and elution time-fluorescence emission wavelength matrices) were obtained and processed by multivariate curve resolution-alternating least-squares (MCR-ALS). Applying MCR-ALS allowed quantification of the analytes even in the presence of partially overlapped chromatographic and spectral bands among these compounds and the potential interferents. The obtained results from the analysis of beer, wine, soda, juice, water and distilled beverage samples were compared with gas chromatography-mass spectrometry (GC-MS). Limits of detection (LODs) in the range 0.04-0.38ngmL(-1) were estimated in real samples after a very simple solid-phase extraction. All the samples were found to contain at least three EDs, in concentrations as high as 334ngmL(-1). Copyright © 2016 Elsevier B.V. All rights reserved.
Yebra, M Carmen
2012-01-01
A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5-30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2-4.6%) and a sample throughput of ca. 25 samples h(-1) were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4-25.61 μg g(-1) for iron, 5.74-18.30 μg g(-1) for manganese, and 33.27-57.90 μg g(-1) for zinc in soluble solid food samples and 3.75-9.90 μg g(-1) for iron, 0.47-5.05 μg g(-1) for manganese, and 1.55-15.12 μg g(-1) for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors.
INTEGRATING DATA ANALYTICS AND SIMULATION METHODS TO SUPPORT MANUFACTURING DECISION MAKING
Kibira, Deogratias; Hatim, Qais; Kumara, Soundar; Shao, Guodong
2017-01-01
Modern manufacturing systems are installed with smart devices such as sensors that monitor system performance and collect data to manage uncertainties in their operations. However, multiple parameters and variables affect system performance, making it impossible for a human to make informed decisions without systematic methodologies and tools. Further, the large volume and variety of streaming data collected is beyond simulation analysis alone. Simulation models are run with well-prepared data. Novel approaches, combining different methods, are needed to use this data for making guided decisions. This paper proposes a methodology whereby parameters that most affect system performance are extracted from the data using data analytics methods. These parameters are used to develop scenarios for simulation inputs; system optimizations are performed on simulation data outputs. A case study of a machine shop demonstrates the proposed methodology. This paper also reviews candidate standards for data collection, simulation, and systems interfaces. PMID:28690363
Transport composite fuselage technology: Impact dynamics and acoustic transmission
NASA Technical Reports Server (NTRS)
Jackson, A. C.; Balena, F. J.; Labarge, W. L.; Pei, G.; Pitman, W. A.; Wittlin, G.
1986-01-01
A program was performed to develop and demonstrate the impact dynamics and acoustic transmission technology for a composite fuselage which meets the design requirements of a 1990 large transport aircraft without substantial weight and cost penalties. The program developed the analytical methodology for the prediction of acoustic transmission behavior of advanced composite stiffened shell structures. The methodology predicted that the interior noise level in a composite fuselage due to turbulent boundary layer will be less than in a comparable aluminum fuselage. The verification of these analyses will be performed by NASA Langley Research Center using a composite fuselage shell fabricated by filament winding. The program also developed analytical methodology for the prediction of the impact dynamics behavior of lower fuselage structure constructed with composite materials. Development tests were performed to demonstrate that the composite structure designed to the same operating load requirement can have at least the same energy absorption capability as aluminum structure.
Drought versus heat: What's the major constraint on Mediterranean green roof plants?
Savi, Tadeja; Dal Borgo, Anna; Love, Veronica L; Andri, Sergio; Tretiach, Mauro; Nardini, Andrea
2016-10-01
Green roofs are gaining momentum in the arid and semi-arid regions due to their multiple benefits as compared with conventional roofs. One of the most critical steps in green roof installation is the selection of drought and heat tolerant species that can thrive under extreme microclimate conditions. We monitored the water status, growth and survival of 11 drought-adapted shrub species grown on shallow green roof modules (10 and 13cm deep substrate) and analyzed traits enabling plants to cope with drought (symplastic and apoplastic resistance) and heat stress (root membrane stability). The physiological traits conferring efficiency/safety to the water transport system under severe drought influenced plant water status and represent good predictors of both plant water use and growth rates over green roofs. Moreover, our data suggest that high substrate temperature represents a stress factor affecting plant survival to a larger extent than drought per se. In fact, the major cause influencing seedling survival on shallow substrates was the species-specific root resistance to heat, a single and easy measurable trait that should be integrated into the methodological framework for screening and selection of suitable shrub species for roof greening in the Mediterranean. Copyright © 2016 Elsevier B.V. All rights reserved.
Developing the green house nursing care team: variations on development and implementation.
Bowers, Barbara J; Nolet, Kimberly
2014-02-01
A core component of the Green House nursing home model is an altered supervisory relationship between the nurse and direct care workers. Some have expressed concern that the Green House model might weaken professional nursing oversight, threatening the quality of clinical care. This qualitative research study explores the role of the nurse as implemented in the Green House model, focusing on how variations in the nursing team influence clinical care practices. Dimensional analysis, a "second generation" grounded theory methodology, was used to conduct this study. Data were collected through observations and interviews with 37 nurses, 68 CNAs, and 11 Guides working at 11 Green House sites. Implementation of the nursing role within the Green House model varied both within and across sites. Four nursing model types were identified: Traditional, Visitor, Parallel, and Integrated. Care processes, CNA/Shahbaz skill development, and worker stress varied with each nursing model. Government policies have been enacted to support culture change. However, there is currently little guidance for regulators, providers, or consumers regarding variability in how culture change practices are implemented and consequences of these variations. This article outlines the importance of understanding these practices at a level of detail that distinguishes and supports those that are most promising.
Developing the Green House Nursing Care Team: Variations on Development and Implementation
Bowers, Barbara J.
2014-01-01
Purpose of the Study: A core component of the Green House nursing home model is an altered supervisory relationship between the nurse and direct care workers. Some have expressed concern that the Green House model might weaken professional nursing oversight, threatening the quality of clinical care. This qualitative research study explores the role of the nurse as implemented in the Green House model, focusing on how variations in the nursing team influence clinical care practices. Design and Methods: Dimensional analysis, a “second generation” grounded theory methodology, was used to conduct this study. Data were collected through observations and interviews with 37 nurses, 68 CNAs, and 11 Guides working at 11 Green House sites. Results: Implementation of the nursing role within the Green House model varied both within and across sites. Four nursing model types were identified: Traditional, Visitor, Parallel, and Integrated. Care processes, CNA/Shahbaz skill development, and worker stress varied with each nursing model. Implications: Government policies have been enacted to support culture change. However, there is currently little guidance for regulators, providers, or consumers regarding variability in how culture change practices are implemented and consequences of these variations. This article outlines the importance of understanding these practices at a level of detail that distinguishes and supports those that are most promising. PMID:24443606
Yang, Xin-an; Zhang, Wang-bing
2013-01-01
A simple and green flow injection chemiluminescence (FI-CL) method for determination of the fungicide azoxystrobin was described for the first time. CL signal was generated when azoxystrobin was injected into a mixed stream of luminol and KMnO4 . The CL signal of azoxystrobin could be greatly improved when an off-line ultrasonic treatment was adopted. Meanwhile, the signal intensity increases with the analyte concentration proportionally. Several variables, such as the ultrasonic parameters, flow rate of reagents, concentrations of sodium hydroxide solution and CL reagents (potassium permanganate, luminol) were investigated, and the optimal CL conditions were obtained. Under optimal conditions, the linear range of 1-100 ng/mL for azoxystrobin was obtained and the detection limit (3σ) was determined as 0.13 ng/mL. The relative standard deviation was 1.5% for 10 consecutive measurements of 20 ng/mL azoxystrobin. The method has been applied to the determination of azoxystrobin residues in water samples. Copyright © 2012 John Wiley & Sons, Ltd.
Seismic reflection imaging, accounting for primary and multiple reflections
NASA Astrophysics Data System (ADS)
Wapenaar, Kees; van der Neut, Joost; Thorbecke, Jan; Broggini, Filippo; Slob, Evert; Snieder, Roel
2015-04-01
Imaging of seismic reflection data is usually based on the assumption that the seismic response consists of primary reflections only. Multiple reflections, i.e. waves that have reflected more than once, are treated as primaries and are imaged at wrong positions. There are two classes of multiple reflections, which we will call surface-related multiples and internal multiples. Surface-related multiples are those multiples that contain at least one reflection at the earth's surface, whereas internal multiples consist of waves that have reflected only at subsurface interfaces. Surface-related multiples are the strongest, but also relatively easy to deal with because the reflecting boundary (the earth's surface) is known. Internal multiples constitute a much more difficult problem for seismic imaging, because the positions and properties of the reflecting interfaces are not known. We are developing reflection imaging methodology which deals with internal multiples. Starting with the Marchenko equation for 1D inverse scattering problems, we derived 3D Marchenko-type equations, which relate reflection data at the surface to Green's functions between virtual sources anywhere in the subsurface and receivers at the surface. Based on these equations, we derived an iterative scheme by which these Green's functions can be retrieved from the reflection data at the surface. This iterative scheme requires an estimate of the direct wave of the Green's functions in a background medium. Note that this is precisely the same information that is also required by standard reflection imaging schemes. However, unlike in standard imaging, our iterative Marchenko scheme retrieves the multiple reflections of the Green's functions from the reflection data at the surface. For this, no knowledge of the positions and properties of the reflecting interfaces is required. Once the full Green's functions are retrieved, reflection imaging can be carried out by which the primaries and multiples are mapped to their correct positions, with correct reflection amplitudes. In the presentation we will illustrate this new methodology with numerical examples and discuss its potential and limitations.
Danel, J-F; Kazandjian, L; Zérah, G
2012-06-01
Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.
NASA Astrophysics Data System (ADS)
Danel, J.-F.; Kazandjian, L.; Zérah, G.
2012-06-01
Computations of the self-diffusion coefficient and viscosity in warm dense matter are presented with an emphasis on obtaining numerical convergence and a careful evaluation of the standard deviation. The transport coefficients are computed with the Green-Kubo relation and orbital-free molecular dynamics at the Thomas-Fermi-Dirac level. The numerical parameters are varied until the Green-Kubo integral is equal to a constant in the t→+∞ limit; the transport coefficients are deduced from this constant and not by extrapolation of the Green-Kubo integral. The latter method, which gives rise to an unknown error, is tested for the computation of viscosity; it appears that it should be used with caution. In the large domain of coupling constant considered, both the self-diffusion coefficient and viscosity turn out to be well approximated by simple analytical laws using a single effective atomic number calculated in the average-atom model.
Rapid sucrose monitoring in green coffee samples using multienzymatic biosensor.
Stredansky, Miroslav; Redivo, Luca; Magdolen, Peter; Stredansky, Adam; Navarini, Luciano
2018-07-15
Amperometric biosensor utilizing FAD-dependent glucose dehydrogenase (FAD-GDH) for a specific sucrose monitoring in green coffee is described. FAD-GDH was co-immobilized with invertase and mutarotase on a thin-layer gold planar electrode using chitosan. The biosensor showed a wide linearity (from 10 to 1200 μM), low detection limit (8.4 μM), fast response time (50 s), and appeared to be O2 independent. In addition the biosensors exhibited a good operational (3 days) and storage (1 year) stability. Finally, the results achieved from the biosensor measurements of sucrose in 17 samples of green coffee (Coffea arabica, C. canephora and C. liberica) were compared with those obtained by the standard HPLC method. The good correlation among results of real samples, satisfactory analytical performance and simple use of the presented biosensor make it suitable for application in coffee industry. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modeling Sound Propagation Through Non-Axisymmetric Jets
NASA Technical Reports Server (NTRS)
Leib, Stewart J.
2014-01-01
A method for computing the far-field adjoint Green's function of the generalized acoustic analogy equations under a locally parallel mean flow approximation is presented. The method is based on expanding the mean-flow-dependent coefficients in the governing equation and the scalar Green's function in truncated Fourier series in the azimuthal direction and a finite difference approximation in the radial direction in circular cylindrical coordinates. The combined spectral/finite difference method yields a highly banded system of algebraic equations that can be efficiently solved using a standard sparse system solver. The method is applied to test cases, with mean flow specified by analytical functions, corresponding to two noise reduction concepts of current interest: the offset jet and the fluid shield. Sample results for the Green's function are given for these two test cases and recommendations made as to the use of the method as part of a RANS-based jet noise prediction code.
Modeling direct interband tunneling. II. Lower-dimensional structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Andrew, E-mail: pandrew@ucla.edu; Chui, Chi On; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095
We investigate the applicability of the two-band Hamiltonian and the widely used Kane analytical formula to interband tunneling along unconfined directions in nanostructures. Through comparisons with k·p and tight-binding calculations and quantum transport simulations, we find that the primary correction is the change in effective band gap. For both constant fields and realistic tunnel field-effect transistors, dimensionally consistent band gap scaling of the Kane formula allows analytical and numerical device simulations to approximate non-equilibrium Green's function current characteristics without arbitrary fitting. This allows efficient first-order calibration of semiclassical models for interband tunneling in nanodevices.
Analytical procedure validation and the quality by design paradigm.
Rozet, Eric; Lebrun, Pierre; Michiels, Jean-François; Sondag, Perceval; Scherder, Tara; Boulanger, Bruno
2015-01-01
Since the adoption of the ICH Q8 document concerning the development of pharmaceutical processes following a quality by design (QbD) approach, there have been many discussions on the opportunity for analytical procedure developments to follow a similar approach. While development and optimization of analytical procedure following QbD principles have been largely discussed and described, the place of analytical procedure validation in this framework has not been clarified. This article aims at showing that analytical procedure validation is fully integrated into the QbD paradigm and is an essential step in developing analytical procedures that are effectively fit for purpose. Adequate statistical methodologies have also their role to play: such as design of experiments, statistical modeling, and probabilistic statements. The outcome of analytical procedure validation is also an analytical procedure design space, and from it, control strategy can be set.
Advances in analytical technologies for environmental protection and public safety.
Sadik, O A; Wanekaya, A K; Andreescu, S
2004-06-01
Due to the increased threats of chemical and biological agents of injury by terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat chemical and biochemical toxins. In addition to the right mix of policies and training of medical personnel on how to recognize symptoms of biochemical warfare agents, the major success in combating terrorism still lies in the prevention, early detection and the efficient and timely response using reliable analytical technologies and powerful therapies for minimizing the effects in the event of an attack. The public and regulatory agencies expect reliable methodologies and devices for public security. Today's systems are too bulky or slow to meet the "detect-to-warn" needs for first responders such as soldiers and medical personnel. This paper presents the challenges in monitoring technologies for warfare agents and other toxins. It provides an overview of how advances in environmental analytical methodologies could be adapted to design reliable sensors for public safety and environmental surveillance. The paths to designing sensors that meet the needs of today's measurement challenges are analyzed using examples of novel sensors, autonomous cell-based toxicity monitoring, 'Lab-on-a-Chip' devices and conventional environmental analytical techniques. Finally, in order to ensure that the public and legal authorities are provided with quality data to make informed decisions, guidelines are provided for assessing data quality and quality assurance using the United States Environmental Protection Agency (US-EPA) methodologies.
NASA Astrophysics Data System (ADS)
Perton, Mathieu; Contreras-Zazueta, Marcial A.; Sánchez-Sesma, Francisco J.
2016-06-01
A new implementation of indirect boundary element method allows simulating the elastic wave propagation in complex configurations made of embedded regions that are homogeneous with irregular boundaries or flat layers. In an older implementation, each layer of a flat layered region would have been treated as a separated homogeneous region without taking into account the flat boundary information. For both types of regions, the scattered field results from fictitious sources positioned along their boundaries. For the homogeneous regions, the fictitious sources emit as in a full-space and the wave field is given by analytical Green's functions. For flat layered regions, fictitious sources emit as in an unbounded flat layered region and the wave field is given by Green's functions obtained from the discrete wavenumber (DWN) method. The new implementation allows then reducing the length of the discretized boundaries but DWN Green's functions require much more computation time than the full-space Green's functions. Several optimization steps are then implemented and commented. Validations are presented for 2-D and 3-D problems. Higher efficiency is achieved in 3-D.
Cao, Yujuan; Wei, Jiongling; Wu, Wei; Wang, Song; Hu, Xiaogang; Yu, Ying
2015-09-01
In the present work, the CdTe quantum dots were covalently conjugated with permethylated-β-cyclodextrin (OMe-β-CD) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as cross-linking reagent. The obtained functional quantum dots (OMe-β-CD/QDs) showed highly luminescent, water solubility and photostability as well as good inclusion ability to malachite green. A sensitive fluorescence method was developed for the analysis of malachite green in different samples. The good linearity was 2.0 × 10(-7)-1.0 × 10(-5) mol/L and the limit of detect was 1.7 × 10(-8) mol/L. The recoveries for three environmental water samples were 92.0-108.2 % with relative standard deviation (RSD) of 0.24-1.87 %, while the recovery for the fish sample was 94.3 % with RSD of 1.04 %. The results showed that the present method was sensitive and convenient to determine malachite green in complex samples. Graphical Abstract The analytical mechanism of OMe-β-CD/QDs and its linear response to MG.
The Green's functions for peridynamic non-local diffusion.
Wang, L J; Xu, J F; Wang, J X
2016-09-01
In this work, we develop the Green's function method for the solution of the peridynamic non-local diffusion model in which the spatial gradient of the generalized potential in the classical theory is replaced by an integral of a generalized response function in a horizon. We first show that the general solutions of the peridynamic non-local diffusion model can be expressed as functionals of the corresponding Green's functions for point sources, along with volume constraints for non-local diffusion. Then, we obtain the Green's functions by the Fourier transform method for unsteady and steady diffusions in infinite domains. We also demonstrate that the peridynamic non-local solutions converge to the classical differential solutions when the non-local length approaches zero. Finally, the peridynamic analytical solutions are applied to an infinite plate heated by a Gauss source, and the predicted variations of temperature are compared with the classical local solutions. The peridynamic non-local diffusion model predicts a lower rate of variation of the field quantities than that of the classical theory, which is consistent with experimental observations. The developed method is applicable to general diffusion-type problems.
Martinez, Antonio; Barker, John R; Di Prieto, Riccardo
2018-06-13
A methodology describing Coulomb blockade in the Non-equilibrium Green Function formalism is presented. We carried out ballistic and dissipative simulations through a 1D quantum dot using an Einstein phonon model. Inelastic phonons with different energies have been considered. The methodology incorporates the short-range Coulomb interaction between two electrons through the use of a two-particle Green's function. Unlike previous work, the quantum dot has spatial resolution i.e. it is not just parameterized by the energy level and coupling constants of the dot. Our method intends to describe the effect of electron localization while maintaining an open boundary or extended wave function. The formalism conserves the current through the nanostructure. A simple 1D model is used to explain the increase of mobility in semi-crystalline polymers as a function of the electron concentration. The mechanism suggested is based on the lifting of energy levels into the transmission window as a result of the local electron-electron repulsion inside a crystalline domain. The results are aligned with recent experimental findings. Finally, as a proof of concept, we present a simulation of a low temperature resonant structure showing the stability diagram in the Coulomb blockade regime. . © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Lovell, Amy Elizabeth
Computational electromagnetics (CEM) provides numerical methods to simulate electromagnetic waves interacting with its environment. Boundary integral equation (BIE) based methods, that solve the Maxwell's equations in the homogeneous or piecewise homogeneous medium, are both efficient and accurate, especially for scattering and radiation problems. Development and analysis electromagnetic BIEs has been a very active topic in CEM research. Indeed, there are still many open problems that need to be addressed or further studied. A short and important list includes (1) closed-form or quasi-analytical solutions to time-domain integral equations, (2) catastrophic cancellations at low frequencies, (3) ill-conditioning due to high mesh density, multi-scale discretization, and growing electrical size, and (4) lack of flexibility due to re-meshing when increasing number of forward numerical simulations are involved in the electromagnetic design process. This dissertation will address those several aspects of boundary integral equations in computational electromagnetics. The first contribution of the dissertation is to construct quasi-analytical solutions to time-dependent boundary integral equations using a direct approach. Direct inverse Fourier transform of the time-harmonic solutions is not stable due to the non-existence of the inverse Fourier transform of spherical Hankel functions. Using new addition theorems for the time-domain Green's function and dyadic Green's functions, time-domain integral equations governing transient scattering problems of spherical objects are solved directly and stably for the first time. Additional, the direct time-dependent solutions, together with the newly proposed time-domain dyadic Green's functions, can enrich the time-domain spherical multipole theory. The second contribution is to create a novel method of moments (MoM) framework to solve electromagnetic boundary integral equation on subdivision surfaces. The aim is to avoid the meshing and re-meshing stages to accelerate the design process when the geometry needs to be updated. Two schemes to construct basis functions on the subdivision surface have been explored. One is to use the div-conforming basis function, and the other one is to create a rigorous iso-geometric approach based on the subdivision basis function with better smoothness properties. This new framework provides us better accuracy, more stability and high flexibility. The third contribution is a new stable integral equation formulation to avoid catastrophic cancellations due to low-frequency breakdown or dense-mesh breakdown. Many of the conventional integral equations and their associated post-processing operations suffer from numerical catastrophic cancellations, which can lead to ill-conditioning of the linear systems or serious accuracy problems. Examples includes low-frequency breakdown and dense mesh breakdown. Another instability may come from nontrivial null spaces of involving integral operators that might be related with spurious resonance or topology breakdown. This dissertation presents several sets of new boundary integral equations and studies their analytical properties. The first proposed formulation leads to the scalar boundary integral equations where only scalar unknowns are involved. Besides the requirements of gaining more stability and better conditioning in the resulting linear systems, multi-physics simulation is another driving force for new formulations. Scalar and vector potentials (rather than electromagnetic field) based formulation have been studied for this purpose. Those new contributions focus on different stages of boundary integral equations in an almost independent manner, e.g. isogeometric analysis framework can be used to solve different boundary integral equations, and the time-dependent solutions to integral equations from different formulations can be achieved through the same methodology proposed.
A Review of Meta-Analyses in Education: Methodological Strengths and Weaknesses
ERIC Educational Resources Information Center
Ahn, Soyeon; Ames, Allison J.; Myers, Nicholas D.
2012-01-01
The current review addresses the validity of published meta-analyses in education that determines the credibility and generalizability of study findings using a total of 56 meta-analyses published in education in the 2000s. Our objectives were to evaluate the current meta-analytic practices in education, identify methodological strengths and…
Designing Evaluations. 2012 Revision. Applied Research and Methods. GAO-12-208G
ERIC Educational Resources Information Center
US Government Accountability Office, 2012
2012-01-01
GAO assists congressional decision makers in their deliberations by furnishing them with analytical information on issues and options. Many diverse methodologies are needed to develop sound and timely answers to the questions the Congress asks. To provide GAO evaluators with basic information about the more commonly used methodologies, GAO's…
NASA Astrophysics Data System (ADS)
Madariaga, J. M.; Torre-Fdez, I.; Ruiz-Galende, P.; Aramendia, J.; Gomez-Nubla, L.; Fdez-Ortiz de Vallejuelo, S.; Maguregui, M.; Castro, K.; Arana, G.
2018-04-01
Advanced methodologies based on Raman spectroscopy are proposed to detect prebiotic and biotic molecules in returned samples from Mars: (a) optical microscopy with confocal micro-Raman, (b) the SCA instrument, (c) Raman Imaging. Examples for NWA 6148.
Technological Leverage in Higher Education: An Evolving Pedagogy
ERIC Educational Resources Information Center
Pillai, K. Rajasekharan; Prakash, Ashish Viswanath
2017-01-01
Purpose: The purpose of the study is to analyse the perception of students toward a computer-based exam on a custom-made digital device and their willingness to adopt the same for high-stake summative assessment. Design/methodology/approach: This study followed an analytical methodology using survey design. A modified version of students'…
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Gupta, Sandeep; Elliott, Kenny B.; Joshi, Suresh M.; Walz, Joseph E.
1994-01-01
This paper describes the first experimental validation of an optimization-based integrated controls-structures design methodology for a class of flexible space structures. The Controls-Structures-Interaction (CSI) Evolutionary Model, a laboratory test bed at Langley, is redesigned based on the integrated design methodology with two different dissipative control strategies. The redesigned structure is fabricated, assembled in the laboratory, and experimentally compared with the original test structure. Design guides are proposed and used in the integrated design process to ensure that the resulting structure can be fabricated. Experimental results indicate that the integrated design requires greater than 60 percent less average control power (by thruster actuators) than the conventional control-optimized design while maintaining the required line-of-sight performance, thereby confirming the analytical findings about the superiority of the integrated design methodology. Amenability of the integrated design structure to other control strategies is considered and evaluated analytically and experimentally. This work also demonstrates the capabilities of the Langley-developed design tool CSI DESIGN which provides a unified environment for structural and control design.
77 FR 44699 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
.../Chief Information Officer, Securities and Exchange Commission, c/o Remi Pavlik-Simon, 6432 General Green..., recordkeeping, financial reporting, and oversight rules with respect to registered credit rating agencies. In... methodologies in light of the role they played in determining credit ratings for securities collateralized by or...
Identifying chemicals that provide a specific function within a product, yet have minimal impact on the human body or environment, is the goal of most formulation chemists and engineers practicing green chemistry. We present a methodology to identify potential chemical functional...
Campus Sustainability Tours: Exploring an Uncharted Tool
ERIC Educational Resources Information Center
Trahan, Ellen R.; North, Leslie A.; Gripshover, Margaret M.; Huss, Jeanine M.
2017-01-01
Purpose: This paper aims to explore the development narrative and usage of environmental sustainability tours available at universities and takes an in-depth look into the Western Kentucky University (WKU) Green Tour. Design/methodology/approach: Questionnaires and interviews were conducted with sustainability leaders involved in tours at their…
An analytical study of double bend achromat lattice.
Fakhri, Ali Akbar; Kant, Pradeep; Singh, Gurnam; Ghodke, A D
2015-03-01
In a double bend achromat, Chasman-Green (CG) lattice represents the basic structure for low emittance synchrotron radiation sources. In the basic structure of CG lattice single focussing quadrupole (QF) magnet is used to form an achromat. In this paper, this CG lattice is discussed and an analytical relation is presented, showing the limitation of basic CG lattice to provide the theoretical minimum beam emittance in achromatic condition. To satisfy theoretical minimum beam emittance parameters, achromat having two, three, and four quadrupole structures is presented. In this structure, different arrangements of QF and defocusing quadruple (QD) are used. An analytical approach assuming quadrupoles as thin lenses has been followed for studying these structures. A study of Indus-2 lattice in which QF-QD-QF configuration in the achromat part has been adopted is also presented.
The general 2-D moments via integral transform method for acoustic radiation and scattering
NASA Astrophysics Data System (ADS)
Smith, Jerry R.; Mirotznik, Mark S.
2004-05-01
The moments via integral transform method (MITM) is a technique to analytically reduce the 2-D method of moments (MoM) impedance double integrals into single integrals. By using a special integral representation of the Green's function, the impedance integral can be analytically simplified to a single integral in terms of transformed shape and weight functions. The reduced expression requires fewer computations and reduces the fill times of the MoM impedance matrix. Furthermore, the resulting integral is analytic for nearly arbitrary shape and weight function sets. The MITM technique is developed for mixed boundary conditions and predictions with basic shape and weight function sets are presented. Comparisons of accuracy and speed between MITM and brute force are presented. [Work sponsored by ONR and NSWCCD ILIR Board.
Doughan, Samer; Noor, M Omair; Han, Yi; Krull, Ulrich J
2017-01-01
Quantum dots (QDs) and upconverting nanoparticles (UCNPs) are luminescent nanoparticles (NPs) commonly used in bioassays and biosensors as resonance energy transfer (RET) donors. The narrow and tunable emissions of both QDs and UCNPs make them versatile RET donors that can be paired with a wide range of acceptors. Ratiometric signal processing that compares donor and acceptor emission in RET-based transduction offers improved precision, as it accounts for fluctuations in the absolute photoluminescence (PL) intensities of the donor and acceptor that can result from experimental and instrumental variations. Immobilizing NPs on a solid support avoids problems such as those that can arise with their aggregation in solution, and allows for facile layer-by-layer assembly of the interfacial chemistry. Paper is an attractive solid support for the development of point-of-care diagnostic assays given its ubiquity, low-cost, and intrinsic fluid transport by capillary action. Integration of nanomaterials with paper-based analytical devices (PADs) provides avenues to augment the analytical performance of PADs, given the unique optoelectronic properties of nanomaterials. Herein, we describe methodology for the development of PADs using QDs and UCNPs as RET donors for optical transduction of nucleic acid hybridization. Immobilization of green-emitting QDs (gQDs) on imidazole functionalized cellulose paper is described for use as RET donors with Cy3 molecular dye as acceptors for the detection of SMN1 gene fragment. We also describe the covalent immobilization of blue-emitting UCNPs on aldehyde modified cellulose paper for use as RET donors with orange-emitting QDs (oQDs) as acceptors for the detection of HPRT1 gene fragment. The data described herein is acquired using an epifluorescence microscope, and can also be collected using technology such as a typical electronic camera.
Li, Ying; Fabiano-Tixier, Anne Sylvie; Tomao, Valérie; Cravotto, Giancarlo; Chemat, Farid
2013-01-01
A green, inexpensive and easy-to-use method for carotenoids extraction from fresh carrots assisted by ultrasound was designed in this work. Sunflower oil was applied as a substitute to organic solvents in this green ultrasound-assisted extraction (UAE): a process which is in line with green extraction and bio-refinery concepts. The processing procedure of this original UAE was first compared with conventional solvent extraction (CSE) using hexane as solvent. Moreover, the UAE optimal conditions for the subsequent comparison were optimized using response surface methodology (RSM) and ultra performance liquid chromatography--diode array detector--mass spectroscopy (UPLC-DAD-MS). The results showed that the UAE using sunflower as solvent has obtained its highest β-carotene yield (334.75 mg/l) in 20 min only, while CSE using hexane as solvent obtained a similar yield (321.35 mg/l) in 60 min. The green UAE performed under optimal extraction conditions (carrot to oil ratio of 2:10, ultrasonic intensity of 22.5 W cm(-2), temperature of 40 °C and sonication time of 20 min) gave the best yield of β-carotene. Copyright © 2012 Elsevier B.V. All rights reserved.
A framework to overcome barriers to green innovation in SMEs using BWM and Fuzzy TOPSIS.
Gupta, Himanshu; Barua, Mukesh Kumar
2018-08-15
Recent years have witnessed a significant rise in exploring the barriers which obstruct adoption of green practices by SMEs. There is a constant need to innovate in terms of products, processes, and management so that we can overcome these barriers to green practices adoption and implementation. This study employs a three-phase methodology to identify barriers and solutions to overcome these barriers to green innovation in SMEs. Through extensive literature review and the opinion of selective manager's, seven main category barriers, thirty-six sub-category barriers, and twenty solutions to overcome these barriers were identified. BWM is used to rank these barriers and Fuzzy TOPSIS is used to rank solutions to overcome these barriers. Four Indian SMEs are taken to exemplify the proposed three paged model. To check the robustness of the model, a sensitivity analysis was also performed. The results of the analysis can act as a stepping stone for SME managers to eliminate and overcome barriers to green innovation in their firm and compete healthily in the market. The paper sets a framework for future studies in this area of research-work. Copyright © 2018 Elsevier B.V. All rights reserved.
Petras, Daniel; Heiss, Paul; Harrison, Robert A; Süssmuth, Roderich D; Calvete, Juan J
2016-09-02
We report the characterization, by combination of high-resolution on-line molecular mass and disulfide bond profiling and top-down MS/MS analysis, of the venom proteomes of two congeneric African snake species of medical importance, Dendroaspis angusticeps (green mamba) and D. polylepis (black mamba). Each of these mamba venoms comprised more than two-hundred polypeptides belonging to just a few toxin families. Both venom proteomes are overwhelmingly composed of post-synaptically-acting short- and long-chain neurotoxins that potently inhibit muscle- and neuronal-type nicotinic acetylcholine receptors; muscarinic cardiotoxins; and dendrotoxins, that block some of the Kv1, n-class of K+ channels. However, the identity of the major proteins and their relative abundances exhibit marked interspecific variation. In addition, the greater resolution of the top-down venomic analytical approach revealed previously undetected protein species, isoforms and proteoforms, including the identification and precise location of modified lysine residues in a number of proteins in both venoms, but particularly in green mamba toxins. This comparative top-down venomic analysis unveiled the untapped complexity of Dendroaspis venoms and lays the foundations for rationalizing the notably different potency of green and black mamba lethal arsenals at locus resolution. We report the characterization, by combination of high-resolution on-line molecular mass and disulfide bond profiling and top-down MS/MS analysis, of the venom proteomes of two congeneric African snake species of medical importance, Dendroaspis angusticeps (green mamba) and D. polylepis (black mamba). Each of these mamba venoms comprised more than two-hundred polypeptides belonging to just a few toxin families. Both venom proteomes are overwhelmingly composed of post-synaptically-acting short- and long-chain neurotoxins that potently inhibit muscle- and neuronal-type nicotinic acetylcholine receptors; muscarinic cardiotoxins; and dendrotoxins, that block some of the Kv1, n-class of K+ channels. However, the identity of the major proteins and their relative abundances exhibit marked interspecific variation. In addition, the greater resolution of the top-down venomic analytical approach revealed previously undetected protein species, isoforms and proteoforms, including the identification and precise location of modified lysine residues in a number of proteins in both venoms, but particularly in green mamba toxins. This comparative top-down venomic analysis unveiled the untapped complexity of Dendroaspis venoms and lays the foundations for rationalizing the notably different potency of green and black mamba lethal arsenals at locus resolution.
Ho, Robin S T; Wu, Xinyin; Yuan, Jinqiu; Liu, Siya; Lai, Xin; Wong, Samuel Y S; Chung, Vincent C H
2015-01-08
Meta-analysis (MA) of randomised trials is considered to be one of the best approaches for summarising high-quality evidence on the efficacy and safety of treatments. However, methodological flaws in MAs can reduce the validity of conclusions, subsequently impairing the quality of decision making. To assess the methodological quality of MAs on COPD treatments. A cross-sectional study on MAs of COPD trials. MAs published during 2000-2013 were sampled from the Cochrane Database of Systematic Reviews and Database of Abstracts of Reviews of Effect. Methodological quality was assessed using the validated AMSTAR (Assessing the Methodological Quality of Systematic Reviews) tool. Seventy-nine MAs were sampled. Only 18% considered the scientific quality of primary studies when formulating conclusions and 49% used appropriate meta-analytic methods to combine findings. The problems were particularly acute among MAs on pharmacological treatments. In 48% of MAs the authors did not report conflict of interest. Fifty-eight percent reported harmful effects of treatment. Publication bias was not assessed in 65% of MAs, and only 10% had searched non-English databases. The methodological quality of the included MAs was disappointing. Consideration of scientific quality when formulating conclusions should be made explicit. Future MAs should improve on reporting conflict of interest and harm, assessment of publication bias, prevention of language bias and use of appropriate meta-analytic methods.
Ho, Robin ST; Wu, Xinyin; Yuan, Jinqiu; Liu, Siya; Lai, Xin; Wong, Samuel YS; Chung, Vincent CH
2015-01-01
Background: Meta-analysis (MA) of randomised trials is considered to be one of the best approaches for summarising high-quality evidence on the efficacy and safety of treatments. However, methodological flaws in MAs can reduce the validity of conclusions, subsequently impairing the quality of decision making. Aims: To assess the methodological quality of MAs on COPD treatments. Methods: A cross-sectional study on MAs of COPD trials. MAs published during 2000–2013 were sampled from the Cochrane Database of Systematic Reviews and Database of Abstracts of Reviews of Effect. Methodological quality was assessed using the validated AMSTAR (Assessing the Methodological Quality of Systematic Reviews) tool. Results: Seventy-nine MAs were sampled. Only 18% considered the scientific quality of primary studies when formulating conclusions and 49% used appropriate meta-analytic methods to combine findings. The problems were particularly acute among MAs on pharmacological treatments. In 48% of MAs the authors did not report conflict of interest. Fifty-eight percent reported harmful effects of treatment. Publication bias was not assessed in 65% of MAs, and only 10% had searched non-English databases. Conclusions: The methodological quality of the included MAs was disappointing. Consideration of scientific quality when formulating conclusions should be made explicit. Future MAs should improve on reporting conflict of interest and harm, assessment of publication bias, prevention of language bias and use of appropriate meta-analytic methods. PMID:25569783
ERIC Educational Resources Information Center
Ho, Hsuan-Fu; Hung, Chia-Chi
2008-01-01
Purpose: The purpose of this paper is to examine how a graduate institute at National Chiayi University (NCYU), by using a model that integrates analytic hierarchy process, cluster analysis and correspondence analysis, can develop effective marketing strategies. Design/methodology/approach: This is primarily a quantitative study aimed at…
ERIC Educational Resources Information Center
Cheung, Mike W. L.; Chan, Wai
2009-01-01
Structural equation modeling (SEM) is widely used as a statistical framework to test complex models in behavioral and social sciences. When the number of publications increases, there is a need to systematically synthesize them. Methodology of synthesizing findings in the context of SEM is known as meta-analytic SEM (MASEM). Although correlation…
Contextual and Analytic Qualities of Research Methods Exemplified in Research on Teaching
ERIC Educational Resources Information Center
Svensson, Lennart; Doumas, Kyriaki
2013-01-01
The aim of the present article is to discuss contextual and analytic qualities of research methods. The arguments are specified in relation to research on teaching. A specific investigation is used as an example to illustrate the general methodological approach. It is argued that research methods should be carefully grounded in an understanding of…
ERIC Educational Resources Information Center
Wilczek-Vera, Grazyna; Salin, Eric Dunbar
2011-01-01
An experiment on fluorescence spectroscopy suitable for an advanced analytical laboratory is presented. Its conceptual development used a combination of the expository and discovery styles. The "learn-as-you-go" and direct "hands-on" methodology applied ensures an active role for a student in the process of visualization and discovery of concepts.…
About Skinner and Time: Behavior-Analytic Contributions to Research on Animal Timing
ERIC Educational Resources Information Center
Lejeune, Helga; Richelle, Marc; Wearden, J. H.
2006-01-01
The article discusses two important influences of B. F. Skinner, and later workers in the behavior-analytic tradition, on the study of animal timing. The first influence is methodological, and is traced from the invention of schedules imposing temporal constraints or periodicities on animals in "The Behavior of Organisms," through the rate…
Capillary gas chromatography with GC/PFPD was used in the development of analytical methodology for determining both non-pesticidal and pesticidal organotin compounds in drinking water and other aqueous matrices. The method involves aqueous ethylation of organotin analytes with ...
Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Su-Jong; Sabharwall, Piyush; Kim, Eung-Soo
2013-09-01
The analytical methodologies for the thermal design, mechanical design and cost estimation of printed circuit heat exchanger are presented in this study. In this study, three flow arrangements of parallel flow, countercurrent flow and crossflow are taken into account. For each flow arrangement, the analytical solution of temperature profile of heat exchanger is introduced. The size and cost of printed circuit heat exchangers for advanced small modular reactors, which employ various coolants such as sodium, molten salts, helium, and water, are also presented.
Baharfar, Mahroo; Yamini, Yadollah; Seidi, Shahram; Arain, Muhammad Balal
2018-05-30
A new design of electromembrane extraction (EME) as a lab on-a-chip device was proposed for the extraction and determination of phenazopyridine as the model analyte. The extraction procedure was accomplished by coupling of EME and the packing of a sorbent. The analyte was extracted under the applied electrical field across a membrane sheet impregnated by nitrophenyl octylether (NPOE) into an acceptor phase. It was followed by the absorption of the analyte on strong cation exchanger as a sorbent. The designed chip contained separate spiral channels for donor and acceptor phases featuring embedded platinum electrodes to enhance extraction efficiency. The selected donor and acceptor phases were 0 mM HCl and 100 mM HCl, respectively. The on-chip electromembrane extraction was carried out under the voltage level of 70 V for 50 min. The analysis was carried out by two modes of a simple Red-Green-Blue (RGB) image analysis tool and a conventional HPLC-UV system. After the absorption of the analyte on the solid phase, its color changed and a digital picture of the sorbent was taken for the RGB analysis. The effective parameters on the performance of the chip device, comprising the EME and solid phase microextraction steps, were distinguished and optimized. The accumulation of the analyte on the solid phase showed excellent sensitivity and a limit of detection (LOD) lower than 1.0 μg L-1 achieved by an image analysis using a smartphone. This device also offered acceptable intra- and inter-assay RSD% (<10%). The calibration curves were linear within the range of 10-1000 μg L-1 and 30-1000 μg L-1 (r2 > 0.9969) for HPLC-UV and RGB analysis, respectively. To investigate the applicability of the method in complicated matrices, urine samples of patients being treated with phenazopyridine were analyzed.
Greening Transportation and Parking at University of Coimbra
ERIC Educational Resources Information Center
Cruz, Luís; Barata, Eduardo; Ferreira, João-Pedro; Freire, Fausto
2017-01-01
Purpose: This paper aims to explore the potential contribution of integrated traffic and parking management strategies to ensure more rational use of available parking spaces and to reduce fuel consumption and greenhouse gas emissions by commuters traveling to the University of Coimbra (UC) main campus. Design/methodology/approach: An integrated…
Evaluating a Health Risk Reduction Program.
ERIC Educational Resources Information Center
Nagelberg, Daniel B.
1981-01-01
A health risk reduction program at Bowling Green State University (Ohio) tested the efficacy of peer education against the efficacy of returning (by mail) health questionnaire results. A peer health education program did not appear to be effective in changing student attitudes or lifestyles; however, the research methodology may not have been…
Greening of Business Schools: A Systemic View
ERIC Educational Resources Information Center
Jabbour, Charbel Jose Chiappetta
2010-01-01
Purpose: The purpose of this paper is to present a model for the analysis of business schools as creators, disseminators, and adopters of knowledge on environmental management. Design/methodology/approach: A review of the importance of higher education institutions for sustainability, and more specifically, about their relevance for the creation,…
Higher Education for a Sustainable World
ERIC Educational Resources Information Center
Blewitt, John
2010-01-01
Purpose: The paper aims to explore the nature and purpose of higher education (HE) in the twenty-first century, focussing on how it can help fashion a green knowledge-based economy by developing approaches to learning and teaching that are social, networked and ecologically sensitive. Design/methodology/approach: The paper presents a discursive…
Ecological connectivity networks in rapidly expanding cities.
Nor, Amal Najihah M; Corstanje, Ron; Harris, Jim A; Grafius, Darren R; Siriwardena, Gavin M
2017-06-01
Urban expansion increases fragmentation of the landscape. In effect, fragmentation decreases connectivity, causes green space loss and impacts upon the ecology and function of green space. Restoration of the functionality of green space often requires restoring the ecological connectivity of this green space within the city matrix. However, identifying ecological corridors that integrate different structural and functional connectivity of green space remains vague. Assessing connectivity for developing an ecological network by using efficient models is essential to improve these networks under rapid urban expansion. This paper presents a novel methodological approach to assess and model connectivity for the Eurasian tree sparrow ( Passer montanus ) and Yellow-vented bulbul ( Pycnonotus goiavier ) in three cities (Kuala Lumpur, Malaysia; Jakarta, Indonesia and Metro Manila, Philippines). The approach identifies potential priority corridors for ecological connectivity networks. The study combined circuit models, connectivity analysis and least-cost models to identify potential corridors by integrating structure and function of green space patches to provide reliable ecological connectivity network models in the cities. Relevant parameters such as landscape resistance and green space structure (vegetation density, patch size and patch distance) were derived from an expert and literature-based approach based on the preference of bird behaviour. The integrated models allowed the assessment of connectivity for both species using different measures of green space structure revealing the potential corridors and least-cost pathways for both bird species at the patch sites. The implementation of improvements to the identified corridors could increase the connectivity of green space. This study provides examples of how combining models can contribute to the improvement of ecological networks in rapidly expanding cities and demonstrates the usefulness of such models for biodiversity conservation and urban planning.
Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam
2017-01-18
While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels.
NASA Astrophysics Data System (ADS)
Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam
2017-03-01
While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels. Dedicated to Professor Kankan Bhattacharyya.
A Case Study of a Mixed Methods Study Engaged in Integrated Data Analysis
ERIC Educational Resources Information Center
Schiazza, Daniela Marie
2013-01-01
The nascent field of mixed methods research has yet to develop a cohesive framework of guidelines and procedures for mixed methods data analysis (Greene, 2008). To support the field's development of analytical frameworks, this case study reflects on the development and implementation of a mixed methods study engaged in integrated data analysis.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Thomas; Trail, Jessica; Gevondyan, Erna
During times of crisis, communities and regions rely heavily on critical infrastructure systems to support their emergency management response and recovery activities. Therefore, the resilience of critical infrastructure systems to crises is a pivotal factor to a community’s overall resilience. Critical infrastructure resilience can be influenced by many factors, including State policies – which are not always uniform in their structure or application across the United States – were identified by the U.S. Department of Homeland Security as an area of particular interest with respect to their the influence on the resilience of critical infrastructure systems. This study focuses onmore » developing an analytical methodology to assess links between policy and resilience, and applies that methodology to critical infrastructure in the Transportation Systems Sector. Specifically, this study seeks to identify potentially influential linkages between State transportation capital funding policies and the resilience of bridges located on roadways that are under the management of public agencies. This study yielded notable methodological outcomes, including the general capability of the analytical methodology to yield – in the case of some States – significant results connecting State policies with critical infrastructure resilience, with the suggestion that further refinement of the methodology may be beneficial.« less
NASA Astrophysics Data System (ADS)
Coughlin, J.; Mital, R.; Nittur, S.; SanNicolas, B.; Wolf, C.; Jusufi, R.
2016-09-01
Operational analytics when combined with Big Data technologies and predictive techniques have been shown to be valuable in detecting mission critical sensor anomalies that might be missed by conventional analytical techniques. Our approach helps analysts and leaders make informed and rapid decisions by analyzing large volumes of complex data in near real-time and presenting it in a manner that facilitates decision making. It provides cost savings by being able to alert and predict when sensor degradations pass a critical threshold and impact mission operations. Operational analytics, which uses Big Data tools and technologies, can process very large data sets containing a variety of data types to uncover hidden patterns, unknown correlations, and other relevant information. When combined with predictive techniques, it provides a mechanism to monitor and visualize these data sets and provide insight into degradations encountered in large sensor systems such as the space surveillance network. In this study, data from a notional sensor is simulated and we use big data technologies, predictive algorithms and operational analytics to process the data and predict sensor degradations. This study uses data products that would commonly be analyzed at a site. This study builds on a big data architecture that has previously been proven valuable in detecting anomalies. This paper outlines our methodology of implementing an operational analytic solution through data discovery, learning and training of data modeling and predictive techniques, and deployment. Through this methodology, we implement a functional architecture focused on exploring available big data sets and determine practical analytic, visualization, and predictive technologies.
Albuquerque De Almeida, Fernando; Al, Maiwenn; Koymans, Ron; Caliskan, Kadir; Kerstens, Ankie; Severens, Johan L
2018-04-01
Describing the general and methodological characteristics of decision-analytical models used in the economic evaluation of early warning systems for the management of chronic heart failure patients and performing a quality assessment of their methodological characteristics is expected to provide concise and useful insight to inform the future development of decision-analytical models in the field of heart failure management. Areas covered: The literature on decision-analytical models for the economic evaluation of early warning systems for the management of chronic heart failure patients was systematically reviewed. Nine electronic databases were searched through the combination of synonyms for heart failure and sensitive filters for cost-effectiveness and early warning systems. Expert commentary: The retrieved models show some variability with regards to their general study characteristics. Overall, they display satisfactory methodological quality, even though some points could be improved, namely on the consideration and discussion of any competing theories regarding model structure and disease progression, identification of key parameters and the use of expert opinion, and uncertainty analyses. A comprehensive definition of early warning systems and further research under this label should be pursued. To improve the transparency of economic evaluation publications, authors should make available detailed technical information regarding the published models.
Towards an Airframe Noise Prediction Methodology: Survey of Current Approaches
NASA Technical Reports Server (NTRS)
Farassat, Fereidoun; Casper, Jay H.
2006-01-01
In this paper, we present a critical survey of the current airframe noise (AFN) prediction methodologies. Four methodologies are recognized. These are the fully analytic method, CFD combined with the acoustic analogy, the semi-empirical method and fully numerical method. It is argued that for the immediate need of the aircraft industry, the semi-empirical method based on recent high quality acoustic database is the best available method. The method based on CFD and the Ffowcs William- Hawkings (FW-H) equation with penetrable data surface (FW-Hpds ) has advanced considerably and much experience has been gained in its use. However, more research is needed in the near future particularly in the area of turbulence simulation. The fully numerical method will take longer to reach maturity. Based on the current trends, it is predicted that this method will eventually develop into the method of choice. Both the turbulence simulation and propagation methods need to develop more for this method to become useful. Nonetheless, the authors propose that the method based on a combination of numerical and analytical techniques, e.g., CFD combined with FW-H equation, should also be worked on. In this effort, the current symbolic algebra software will allow more analytical approaches to be incorporated into AFN prediction methods.
4-Nonylphenol (NP) in food-contact materials: analytical methodology and occurrence.
Fernandes, A R; Rose, M; Charlton, C
2008-03-01
Nonylphenol is a recognized environmental contaminant, but it is unclear whether its occurrence in food arises only through environmental pathways or also during the processing or packaging of food, as there are reports that indicate that materials in contact with food such as rubber products and polyvinylchloride wraps can contain nonylphenol. A review of the literature has highlighted the scarcity of robust analytical methodology or data on the occurrence of nonylphenol in packaging materials. This paper describes a methodology for the determination of nonylphenol in a variety of packaging materials, which includes plastics, paper and rubber. The method uses either Soxhlet extraction or dissolution followed by solvent extraction (depending on the material type), followed by purification using adsorption chromatography. Procedures were internally standardized using 13C-labelled nonylphenol and the analytes were measured by gas chromatography-mass spectrometry. The method is validated and data relating to quality parameters such as limits of detection, recovery, precision and linearity of measurement are provided. Analysis of a range of 25 food-contact materials found nonylphenol at concentrations of 64-287 microg g(-1) in some polystyrene and polyvinylchloride samples. Far lower concentrations (<0.03-1.4 microg g(-1)) were detected in the other materials. It is possible that occurrence at the higher levels has the potential for migration to food.
Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates: Phase I Results
NASA Technical Reports Server (NTRS)
Wells, D. N.; Allen, P. A.
2012-01-01
An analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted with 15 participants. Experimental results from a surface crack tension test in 2219-T8 aluminum plate provided the basis for the inter-laboratory study (ILS). The study proceeded in a blind fashion given that the analysis methodology was not specified to the participants, and key experimental results were withheld. This approach allowed the ILS to serve as a current measure of the state of the art for elastic-plastic fracture mechanics analysis. The analytical results and the associated methodologies were collected for comparison, and sources of variability were studied and isolated. The results of the study revealed that the J-integral analysis methodology using the domain integral method is robust, providing reliable J-integral values without being overly sensitive to modeling details. General modeling choices such as analysis code, model size (mesh density), crack tip meshing, or boundary conditions, were not found to be sources of significant variability. For analyses controlled only by far-field boundary conditions, the greatest source of variability in the J-integral assessment is introduced through the constitutive model. This variability can be substantially reduced by using crack mouth opening displacements to anchor the assessment. Conclusions provide recommendations for analysis standardization.
DOT National Transportation Integrated Search
2010-10-01
The Volvo-Ford-UMTRI project: Safety Impact Methodology (SIM) for Lane Departure Warning is part of the U.S. Department of Transportation's Advanced Crash Avoidance Technologies (ACAT) program. The project developed a basic analytical framework for e...
ERIC Educational Resources Information Center
Palma, Lisiane Celia; Pedrozo, Eugênio Ávila
2015-01-01
Several papers propose analytical methods relating to the inclusion of sustainability in courses and universities. However, as sustainability is a complex subject, methodological proposals on the topic must avoid making disjointed analyses which focus exclusively on curricula or on organisational strategy, as often seen in the literature.…
ERIC Educational Resources Information Center
Barrett, Paula M.; Cooper, Marita; Stallard, Paul; Zeggio, Larissa; Gallegos- Guajardo, Julia
2017-01-01
This response aims to critically evaluate the methodology and aims of the meta-analytic review written by Maggin and Johnson (2014). The present authors systematically provide responses for each of the original criticisms and highlight concerns regarding Maggin and Johnson's methodology, while objectively describing the current state of evidence…
ERIC Educational Resources Information Center
Kelly, Kathleen; Lee, Seung Hwan; Bowen Ray, Heather; Kandaurova, Maria
2018-01-01
Barriers to cross-cultural instruction challenge even experienced educators and their students. To increase cross-cultural competence and bridge learning gaps, professors in two countries adapted the Photovoice methodology to develop shared visual vocabularies with students and unearth hidden assumptions. Results from an anonymous evaluation…
ERIC Educational Resources Information Center
Geisler, Cheryl
2018-01-01
Coding, the analytic task of assigning codes to nonnumeric data, is foundational to writing research. A rich discussion of methodological pluralism has established the foundational importance of systematicity in the task of coding, but less attention has been paid to the equally important commitment to language complexity. Addressing the interplay…
NASA Astrophysics Data System (ADS)
Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen
2017-04-01
In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn't exist for both spatially and temporally variations of dispersion coefficient and velocity. In this study, the existing analytical solutions from previous widely known studies are used for comparison as validation tools to verify the proposed analytical solution as well as the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) code and the developed 1D finite difference code (FDM). All such solutions show perfect match with the respective proposed solutions.
Two-dimensional fruit ripeness estimation using thermal imaging
NASA Astrophysics Data System (ADS)
Sumriddetchkajorn, Sarun; Intaravanne, Yuttana
2013-06-01
Some green fruits do not change their color from green to yellow when being ripe. As a result, ripeness estimation via color and fluorescent analytical approaches cannot be applied. In this article, we propose and show for the first time how a thermal imaging camera can be used to two-dimensionally classify fruits into different ripeness levels. Our key idea relies on the fact that the mature fruits have higher heat capacity than the immature ones and therefore the change in surface temperature overtime is slower. Our experimental proof of concept using a thermal imaging camera shows a promising result in non-destructively identifying three different ripeness levels of mangoes Mangifera indica L.
Oxidation of Octopus vulgaris hemocyanin by nitrogen oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvato, B.; Giacometti, G.M.; Beltramini, M.
1989-01-24
The reaction of Octopus vulgaris hemocyanin with nitrite was studied under a variety of conditions in which the green half-met derivative is formed. Analytical evidence shows that the amount of chemically detectable nitrite in various samples of the derivative is not proportional to the cupric copper detected by EPR. The kinetics of oxidation of hemocyanin as a function of protein concentration and pH, in the presence of nitrite and ascorbate, is consistent with a scheme in which NO/sub 2/ is the reactive oxidant. We suggest that the green half-methemocyanin contains a metal center with one cuprous and one cupric coppermore » without an exogenous nitrogen oxide ligand.« less
Lismont, Jasmien; Janssens, Anne-Sophie; Odnoletkova, Irina; Vanden Broucke, Seppe; Caron, Filip; Vanthienen, Jan
2016-10-01
The aim of this study is to guide healthcare instances in applying process analytics on healthcare processes. Process analytics techniques can offer new insights in patient pathways, workflow processes, adherence to medical guidelines and compliance with clinical pathways, but also bring along specific challenges which will be examined and addressed in this paper. The following methodology is proposed: log preparation, log inspection, abstraction and selection, clustering, process mining, and validation. It was applied on a case study in the type 2 diabetes mellitus domain. Several data pre-processing steps are applied and clarify the usefulness of process analytics in a healthcare setting. Healthcare utilization, such as diabetes education, is analyzed and compared with diabetes guidelines. Furthermore, we take a look at the organizational perspective and the central role of the GP. This research addresses four challenges: healthcare processes are often patient and hospital specific which leads to unique traces and unstructured processes; data is not recorded in the right format, with the right level of abstraction and time granularity; an overflow of medical activities may cloud the analysis; and analysts need to deal with data not recorded for this purpose. These challenges complicate the application of process analytics. It is explained how our methodology takes them into account. Process analytics offers new insights into the medical services patients follow, how medical resources relate to each other and whether patients and healthcare processes comply with guidelines and regulations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modeling energy/economy interactions for conservation and renewable energy-policy analysis
NASA Astrophysics Data System (ADS)
Groncki, P. J.
Energy policy and the implications for policy analysis and the methodological tools are discussed. The evolution of one methodological approach and the combined modeling system of the component models, their evolution in response to changing analytic needs, and the development of the integrated framework are reported. The analyses performed over the past several years are summarized. The current philosophy behind energy policy is discussed and compared to recent history. Implications for current policy analysis and methodological approaches are drawn.
Do abnormal responses show utilitarian bias?
Kahane, Guy; Shackel, Nicholas
2008-03-20
Neuroscience has recently turned to the study of utilitarian and non-utilitarian moral judgement. Koenigs et al. examine the responses of normal subjects and those with ventromedial-prefrontal-cortex (VMPC) damage to moral scenarios drawn from functional magnetic resonance imaging studies by Greene et al., and claim that patients with VMPC damage have an abnormally "utilitarian" pattern of moral judgement. It is crucial to the claims of Koenigs et al. that the scenarios of Greene et al. pose a conflict between utilitarian consequence and duty: however, many of them do not meet this condition. Because of this methodological problem, it is too early to claim that VMPC patients have a utilitarian bias.
Shi, Lihong; Li, Yanyan; Li, Xiaofeng; Wen, Xiangping; Zhang, Guomei; Yang, Jun; Dong, Chuan; Shuang, Shaomin
2015-04-28
We report a facile and eco-friendly strategy for the fabrication of green fluorescent carbon nanodots (CDs), and demonstrate their applications for bio-imaging, patterning, and staining. A one-pot hydrothermal method using various plant petals yields bright green-emitting CDs, providing an easy way for the production of green fluorescent CDs without the need for a tedious synthetic methodology or the use of toxic/expensive solvents and starting materials. The as-prepared CDs show small size distribution and excellent dispersibility. Their strong green fluorescence is observed when the excitation wavelength is between 430 nm and 490 nm. Moreover, they exhibit high tolerance to various external conditions, such as pH values, external cations, and continuous excitation. Due to minimum toxicity as well as good photoluminescence properties, these CDs can be applied to in vitro and in vivo imaging, patterning, and staining. According to confocal fluorescence imaging of human uterine cervical squamous cell carcinoma cells, CDs penetrate into the cell and enter the cytoplasm and the nucleus. More strikingly, carp is directly fed with CDs for in vivo imaging and shows bright green fluorescence at an excitation wavelength of 470 nm. In addition, the obtained CDs are used as fluorescent inks for drawing luminescence patterns. Finally, we also apply the CDs as a fluorescent dye. Interestingly, the absorbent filter paper with staining emits dramatic fluorescence under 470 nm excitation.
1991-09-01
iv III. THE ANALYTIC HIERARCHY PROCESS ..... ........ 15 A. INTRODUCTION ...... ................. 15 B. THE AHP PROCESS ...... ................ 16 C...INTRODUCTION ...... ................. 26 B. IMPLEMENTATION OF CERTS USING AHP ........ .. 27 1. Consistency ...... ................ 29 2. User Interface...the proposed technique into a Decision Support System. Expert Choice implements the Analytic Hierarchy Process ( AHP ), an approach to multi- criteria
Probabilistic assessment methodology for continuous-type petroleum accumulations
Crovelli, R.A.
2003-01-01
The analytic resource assessment method, called ACCESS (Analytic Cell-based Continuous Energy Spreadsheet System), was developed to calculate estimates of petroleum resources for the geologic assessment model, called FORSPAN, in continuous-type petroleum accumulations. The ACCESS method is based upon mathematical equations derived from probability theory in the form of a computer spreadsheet system. ?? 2003 Elsevier B.V. All rights reserved.
Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis.
Canela, Núria; Herrero, Pol; Mariné, Sílvia; Nadal, Pedro; Ras, Maria Rosa; Rodríguez, Miguel Ángel; Arola, Lluís
2016-01-08
In recent years, sphingolipidomics has emerged as an interesting omic science that encompasses the study of the full sphingolipidome characterization, content, structure and activity in cells, tissues or organisms. Like other omics, it has the potential to impact biomarker discovery, drug development and systems biology knowledge. Concretely, dietary food sphingolipids have gained considerable importance due to their extensively reported bioactivity. Because of the complexity of this lipid family and their diversity among foods, powerful analytical methodologies are needed for their study. The analytical tools developed in the past have been improved with the enormous advances made in recent years in mass spectrometry (MS) and chromatography, which allow the convenient and sensitive identification and quantitation of sphingolipid classes and form the basis of current sphingolipidomics methodologies. In addition, novel hyphenated nuclear magnetic resonance (NMR) strategies, new ionization strategies, and MS imaging are outlined as promising technologies to shape the future of sphingolipid analyses. This review traces the analytical methods of sphingolipidomics in food analysis concerning sample extraction, chromatographic separation, the identification and quantification of sphingolipids by MS and their structural elucidation by NMR. Copyright © 2015 Elsevier B.V. All rights reserved.
Modern data science for analytical chemical data - A comprehensive review.
Szymańska, Ewa
2018-10-22
Efficient and reliable analysis of chemical analytical data is a great challenge due to the increase in data size, variety and velocity. New methodologies, approaches and methods are being proposed not only by chemometrics but also by other data scientific communities to extract relevant information from big datasets and provide their value to different applications. Besides common goal of big data analysis, different perspectives and terms on big data are being discussed in scientific literature and public media. The aim of this comprehensive review is to present common trends in the analysis of chemical analytical data across different data scientific fields together with their data type-specific and generic challenges. Firstly, common data science terms used in different data scientific fields are summarized and discussed. Secondly, systematic methodologies to plan and run big data analysis projects are presented together with their steps. Moreover, different analysis aspects like assessing data quality, selecting data pre-processing strategies, data visualization and model validation are considered in more detail. Finally, an overview of standard and new data analysis methods is provided and their suitability for big analytical chemical datasets shortly discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Arena, Matteo P.; Porter, Marc D.; Fritz, James S.
2002-01-01
A new, rapid methodology for trace analysis using solid-phase extraction is described. The two-step methodology is based on the concentration of an analyte onto a membrane disk and on the determination by diffuse reflectance spectroscopy of the amount of analyte extracted on the disk surface. This method, which is adaptable to a wide range of analytes, has been used for monitoring ppm levels of iodine and iodide in spacecraft water. Iodine is used as a biocide in spacecraft water. For these determinations, a water sample is passed through a membrane disk by means of a 10-mL syringe that is attached to a disk holder assembly. The disk, which is a polystyrene-divinylbenzene composite, is impregnated with poly(vinylpyrrolidone) (PVP), which exhaustively concentrates iodine as a yellow iodine-PVP complex. The amount of concentrated iodine is then determined in only 2 s by using a hand-held diffuse reflectance spectrometer by comparing the result with a calibration curve based on the Kubelka-Munk function. The same general procedure can be used to determine iodide levels after its facile and exhaustive oxidation to iodine by peroxymonosulfate (i.e., Oxone reagent). For samples containing both analytes, a two-step procedure can be used in which the iodide concentration is calculated from the difference in iodine levels before and after treatment of the sample with peroxymonosulfate. With this methodology, iodine and iodide levels in the 0.1-5.0 ppm range can be determined with a total workup time of approximately 60 s with a RSD of approximately 6%.
New visible and selective DNA staining method in gels with tetrazolium salts.
Paredes, Aaron J; Naranjo-Palma, Tatiana; Alfaro-Valdés, Hilda M; Barriga, Andrés; Babul, Jorge; Wilson, Christian A M
2017-01-15
DNA staining in gels has historically been carried out using silver staining and fluorescent dyes like ethidium bromide and SYBR Green I (SGI). Using fluorescent dyes allows recovery of the analyte, but requires instruments such as a transilluminator or fluorimeter to visualize the DNA. Here we described a new and simple method that allows DNA visualization to the naked eye by generating a colored precipitate. It works by soaking the acrylamide or agarose DNA gel in SGI and nitro blue tetrazolium (NBT) solution that, when exposed to sunlight, produces a purple insoluble formazan precipitate that remains in the gel after exposure to light. A calibration curve made with a DNA standard established a detection limit of approximately 180 pg/band at 500 bp. Selectivity of this assay was determined using different biomolecules, demonstrating a high selectivity for DNA. Integrity and functionality of the DNA recovered from gels was determined by enzymatic cutting with a restriction enzyme and by transforming competent cells after the different staining methods, respectively. Our method showed the best performance among the dyes employed. Based on its specificity, low cost and its adequacy for field work, this new methodology has enormous potential benefits to research and industry. Copyright © 2016 Elsevier Inc. All rights reserved.
da Rosa Neng, Nuno; Sequeiros, Rute C P; Florêncio Nogueira, José Manuel
2014-09-01
In this contribution, bar adsorptive microextraction coated with a mixed-mode anion exchange/RP followed by liquid desorption was combined for the first time with a capillary electrophoresis-diode array detection system (BAμE(MAX)-LD/CE-DAD), for the determination of phenolic acids in food matrices, using chlorogenic, ferulic, cumaric, and caffeic acids as model compounds. Assays performed in aqueous media spiked at the 0.8 mg/L level yielded average recoveries up to 40% for all four phenolic acids, under optimized experimental conditions. The analytical performance showed also good precision (RSD < 15%), convenient LODs (18.0-85.0 μg/L) and linear dynamic ranges (0.8-8.0 mg/L) with convenient determination coefficients (r(2) > 0.9900). By using the standard addition method, the application to food matrices such as green tea, red fruit juice, and honey allowed very good performances for the determination of minor amounts of phenolic acids. The proposed methodology proved to be a suitable alternative for the analysis of polar to ionic compounds, showing to be easy to implement, reliable, sensitive, and requiring a low sample volume to determine phenolic acids in food samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microwave-assisted extraction of green coffee oil and quantification of diterpenes by HPLC.
Tsukui, A; Santos Júnior, H M; Oigman, S S; de Souza, R O M A; Bizzo, H R; Rezende, C M
2014-12-01
The microwave-assisted extraction (MAE) of 13 different green coffee beans (Coffea arabica L.) was compared to Soxhlet extraction for oil obtention. The full factorial design applied to the microwave-assisted extraction (MAE), related to time and temperature parameters, allowed to develop a powerful fast and smooth methodology (10 min at 45°C) compared to a 4h Soxhlet extraction. The quantification of cafestol and kahweol diterpenes present in the coffee oil was monitored by HPLC/UV and showed satisfactory linearity (R(2)=0.9979), precision (CV 3.7%), recovery (<93%), limit of detection (0.0130 mg/mL), and limit of quantification (0.0406 mg/mL). The space-time yield calculated on the diterpenes content for sample AT1 (Arabica green coffee) showed a six times higher value compared to the traditional Soxhlet method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sachdeva, Harshita; Saroj, Rekha
2013-01-01
An extremely efficient catalytic protocol for the synthesis of a series of pyranopyrazole derivatives developed in a one-pot four-component approach in the presence of ZnO nanoparticles as heterogeneous catalyst using water as a green solvent is reported. Greenness of the process is well instituted as water is exploited both as reaction media and medium for synthesis of catalyst. The ZnO nanoparticles exhibited excellent catalytic activity, and the proposed methodology is capable of providing the desired products in good yield (85-90%) and short reaction time. After reaction course, ZnO nanoparticles can be recycled and reused without any apparent loss of activity which makes this process cost effective and hence ecofriendly. All the synthesized compounds have been characterized on the basis of elemental analysis, IR, ¹H NMR, and ¹³C NMR spectral studies.
NASA Astrophysics Data System (ADS)
Taha, M. P. M.; Drew, G. H.; Longhurst, P. J.; Smith, R.; Pollard, S. J. T.
The passive and active release of bioaerosols during green waste composting, measured at source is reported for a commercial composting facility in South East (SE) England as part of a research programme focused on improving risk assessments at composting facilities. Aspergillus fumigatus and actinomycetes concentrations of 9.8-36.8×10 6 and 18.9-36.0×10 6 cfu m -3, respectively, measured during the active turning of green waste compost, were typically 3-log higher than previously reported concentrations from static compost windrows. Source depletion curves constructed for A. fumigatus during compost turning and modelled using SCREEN3 suggest that bioaerosol concentrations could reduce to background concentrations of 10 3 cfu m -3 within 100 m of this site. Authentic source term data produced from this study will help to refine the risk assessment methodologies that support improved permitting of compost facilities.
Antipodal correlation on the meron wormhole and a bang-crunch universe
NASA Astrophysics Data System (ADS)
Betzios, Panagiotis; Gaddam, Nava; Papadoulaki, Olga
2018-06-01
We present a covariant Euclidean wormhole solution to Einstein Yang-Mills system and study scalar perturbations analytically. The fluctuation operator has a positive definite spectrum. We compute the Euclidean Green's function, which displays maximal antipodal correlation on the smallest three sphere at the center of the throat. Upon analytic continuation, it corresponds to the Feynman propagator on a compact bang-crunch universe. We present the connection matrix that relates past and future modes. We thoroughly discuss the physical implications of the antipodal map in both the Euclidean and Lorentzian geometries and give arguments on how to assign a physical probability to such solutions.
Brownian systems with spatially inhomogeneous activity
NASA Astrophysics Data System (ADS)
Sharma, A.; Brader, J. M.
2017-09-01
We generalize the Green-Kubo approach, previously applied to bulk systems of spherically symmetric active particles [J. Chem. Phys. 145, 161101 (2016), 10.1063/1.4966153], to include spatially inhomogeneous activity. The method is applied to predict the spatial dependence of the average orientation per particle and the density. The average orientation is given by an integral over the self part of the Van Hove function and a simple Gaussian approximation to this quantity yields an accurate analytical expression. Taking this analytical result as input to a dynamic density functional theory approximates the spatial dependence of the density in good agreement with simulation data. All theoretical predictions are validated using Brownian dynamics simulations.
Yebra, M. Carmen
2012-01-01
A simple and rapid analytical method was developed for the determination of iron, manganese, and zinc in soluble solid samples. The method is based on continuous ultrasonic water dissolution of the sample (5–30 mg) at room temperature followed by flow injection flame atomic absorption spectrometric determination. A good precision of the whole procedure (1.2–4.6%) and a sample throughput of ca. 25 samples h–1 were obtained. The proposed green analytical method has been successfully applied for the determination of iron, manganese, and zinc in soluble solid food samples (soluble cocoa and soluble coffee) and pharmaceutical preparations (multivitamin tablets). The ranges of concentrations found were 21.4–25.61 μg g−1 for iron, 5.74–18.30 μg g−1 for manganese, and 33.27–57.90 μg g−1 for zinc in soluble solid food samples and 3.75–9.90 μg g−1 for iron, 0.47–5.05 μg g−1 for manganese, and 1.55–15.12 μg g−1 for zinc in multivitamin tablets. The accuracy of the proposed method was established by a comparison with the conventional wet acid digestion method using a paired t-test, indicating the absence of systematic errors. PMID:22567553
Tautin, J.; Lebreton, J.-D.; North, P.M.
1993-01-01
Capture-recapture methodology has advanced greatly in the last twenty years and is now a major factor driving the continuing evolution of the North American bird banding program. Bird banding studies are becoming more scientific with improved study designs and analytical procedures. Researchers and managers are gaining more reliable knowledge which in turn betters the conservation of migratory birds. The advances in capture-recapture methodology have benefited gamebird studies primarily, but nongame bird studies will benefit similarly as they expand greatly in the next decade. Further theoretical development of capture-recapture methodology should be encouraged, and, to maximize benefits of the methodology, work on practical applications should be increased.
Lee, ZhongPing; Arnone, Robert; Hu, Chuanmin; Werdell, P Jeremy; Lubac, Bertrand
2010-01-20
Following the theory of error propagation, we developed analytical functions to illustrate and evaluate the uncertainties of inherent optical properties (IOPs) derived by the quasi-analytical algorithm (QAA). In particular, we evaluated the effects of uncertainties of these optical parameters on the inverted IOPs: the absorption coefficient at the reference wavelength, the extrapolation of particle backscattering coefficient, and the spectral ratios of absorption coefficients of phytoplankton and detritus/gelbstoff, respectively. With a systematically simulated data set (46,200 points), we found that the relative uncertainty of QAA-derived total absorption coefficients in the blue-green wavelengths is generally within +/-10% for oceanic waters. The results of this study not only establish theoretical bases to evaluate and understand the effects of the various variables on IOPs derived from remote-sensing reflectance, but also lay the groundwork to analytically estimate uncertainties of these IOPs for each pixel. These are required and important steps for the generation of quality maps of IOP products derived from satellite ocean color remote sensing.
Characteristics, Properties and Analytical Methods of Amoxicillin: A Review with Green Approach.
de Marco, Bianca Aparecida; Natori, Jéssica Sayuri Hisano; Fanelli, Stefany; Tótoli, Eliane Gandolpho; Salgado, Hérida Regina Nunes
2017-05-04
Bacterial infections are the second leading cause of global mortality. Considering this fact, it is extremely important studying the antimicrobial agents. Amoxicillin is an antimicrobial agent that belongs to the class of penicillins; it has bactericidal activity and is widely used in the Brazilian health system. In literature, some analytical methods are found for the identification and quantification of this penicillin, which are essential for its quality control, which ensures maintaining the product characteristics, therapeutic efficacy and patient's safety. Thus, this study presents a brief literature review on amoxicillin and the analytical methods developed for the analysis of this drug in official and scientific papers. The major analytical methods found were high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography (U-HPLC), capillary electrophoresis and iodometry and diffuse reflectance infrared Fourier transform. It is essential to note that most of the developed methods used toxic and hazardous solvents, which makes necessary industries and researchers choose to develop environmental-friendly techniques to provide enhanced benefits to environment and staff.
NASA Astrophysics Data System (ADS)
Bescond, Marc; Li, Changsheng; Mera, Hector; Cavassilas, Nicolas; Lannoo, Michel
2013-10-01
We present a one-shot current-conserving approach to model the influence of electron-phonon scattering in nano-transistors using the non-equilibrium Green's function formalism. The approach is based on the lowest order approximation (LOA) to the current and its simplest analytic continuation (LOA+AC). By means of a scaling argument, we show how both LOA and LOA+AC can be easily obtained from the first iteration of the usual self-consistent Born approximation (SCBA) algorithm. Both LOA and LOA+AC are then applied to model n-type silicon nanowire field-effect-transistors and are compared to SCBA current characteristics. In this system, the LOA fails to describe electron-phonon scattering, mainly because of the interactions with acoustic phonons at the band edges. In contrast, the LOA+AC still well approximates the SCBA current characteristics, thus demonstrating the power of analytic continuation techniques. The limits of validity of LOA+AC are also discussed, and more sophisticated and general analytic continuation techniques are suggested for more demanding cases.
D'Amato, Marilena; Turrini, Aida; Aureli, Federica; Moracci, Gabriele; Raggi, Andrea; Chiaravalle, Eugenio; Mangiacotti, Michele; Cenci, Telemaco; Orletti, Roberta; Candela, Loredana; di Sandro, Alessandra; Cubadda, Francesco
2013-01-01
This article presents the methodology of the Italian Total Diet Study 2012-2014 aimed at assessing the dietary exposure of the general Italian population to selected nonessential trace elements (Al, inorganic As, Cd, Pb, methyl-Hg, inorganic Hg, U) and radionuclides (40K, 134Cs, 137Cs, 90Sr). The establishment of the TDS food list, the design of the sampling plan, and details about the collection of food samples, their standardized culinary treatment, pooling into analytical samples and subsequent sample treatment are described. Analytical techniques and quality assurance are discussed, with emphasis on the need for speciation data and for minimizing the percentage of left-censored data so as to reduce uncertainties in exposure assessment. Finally the methodology for estimating the exposure of the general population and of population subgroups according to age (children, teenagers, adults, and the elderly) and gender, both at the national level and for each of the four main geographical areas of Italy, is presented.
Precision medicine: Towards complexity science age.
Yuan, Bing
2016-04-01
Precision medicine (PM) refers to the tailoring of the prevention and treatment strategies to the individual characteristics of each patient. Following the vigorous advocacy of the U.S. President Obama and China's President Xi, PM has now become a hot topic of common concern worldwide. PM does not merely refer to the skill set level but rather a comprehensive medical methodology. Hence, there is PM that builds on the analytical methodology of Western medical system as well as PM that builds on Chinese medicine (CM). The differences between the two systems, fundamentally speaking, are the differences in methodology to describe the body constitution that based on reductionism and holism. Today, as science advances to complex systems, the mainstream analytical reductionism advances to the holistic synthesis era, it is imperative to introduce CM's holistic body constitution to the modern medical system in order to progress to PM. PM with its foundation on holistic body constitution, is a medical system that integrates Western medicine and CM, is the highest attainment of "PM" in the future.
2018-01-01
The data collection and reporting approaches of four major altmetric data aggregators are studied. The main aim of this study is to understand how differences in social media tracking and data collection methodologies can have effects on the analytical use of altmetric data. For this purpose, discrepancies in the metrics across aggregators have been studied in order to understand how the methodological choices adopted by these aggregators can explain the discrepancies found. Our results show that different forms of accessing the data from diverse social media platforms, together with different approaches of collecting, processing, summarizing, and updating social media metrics cause substantial differences in the data and metrics offered by these aggregators. These results highlight the importance that methodological choices in the tracking, collecting, and reporting of altmetric data can have in the analytical value of the data. Some recommendations for altmetric users and data aggregators are proposed and discussed. PMID:29772003
Olkowska, Ewa; Polkowska, Żaneta; Namieśnik, Jacek
2013-11-15
A new analytical procedure for the simultaneous determination of individual cationic surfactants (alkyl benzyl dimethyl ammonium chlorides) in surface water samples has been developed. We describe this methodology for the first time: it involves the application of solid phase extraction (SPE-for sample preparation) coupled with ion chromatography-conductivity detection (IC-CD-for the final determination). Mean recoveries of analytes between 79% and 93%, and overall method quantification limits in the range from 0.0018 to 0.038 μg/mL for surface water and CRM samples were achieved. The methodology was applied to the determination of individual alkyl benzyl quaternary ammonium compounds in environmental samples (reservoir water) and enables their presence in such types of waters to be confirmed. In addition, it is a simpler, less time-consuming, labour-intensive, avoiding use of toxic chloroform and significantly less expensive methodology than previously described approaches (liquid-liquid extraction coupled with liquid chromatography-mass spectrometry). Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1977-01-01
Samples of liquid oxygen, high pressure nitrogen, low pressure nitrogen, and missile grade air were studied to determine the hydrocarbon concentrations. Concentration of the samples was achieved by adsorption on a molecular sieve and activated charcoal. The trapped hydrocarbons were then desorbed and transferred to an analytical column in a gas chromatograph. The sensitivity of the method depends on the volume of gas passed through the adsorbent tubes. The value of the method was verified through recoverability and reproducibility studies. The use of this method enables LOX, GN2, and missile grade air systems to be routinely monitored to determine low level increases in specific hydrocarbon concentration that could lead to potentially hazardous conditions.
ERIC Educational Resources Information Center
Osler, James Edward
2015-01-01
This monograph provides a neuroscience-based systemological, epistemological, and methodological rational for the design of an advanced and novel parametric statistical analytics designed for the biological sciences referred to as "Biotrichotomy". The aim of this new arena of statistics is to provide dual metrics designed to analyze the…
ERIC Educational Resources Information Center
Sideridis, Georgios D.; Tsaousis, Ioannis; Al-harbi, Khaleel A.
2015-01-01
The purpose of the present study was to extend the model of measurement invariance by simultaneously estimating invariance across multiple populations in the dichotomous instrument case using multi-group confirmatory factor analytic and multiple indicator multiple causes (MIMIC) methodologies. Using the Arabic version of the General Aptitude Test…
ERIC Educational Resources Information Center
Moskovkin, Vladimir M.; Bocharova, Emilia A.; Balashova, Oksana V.
2014-01-01
Purpose: The purpose of this paper is to introduce and develop the methodology of journal benchmarking. Design/Methodology/ Approach: The journal benchmarking method is understood to be an analytic procedure of continuous monitoring and comparing of the advance of specific journal(s) against that of competing journals in the same subject area,…
ERIC Educational Resources Information Center
Porter, Kristin E.; Balu, Rekha; Hendra, Richard
2017-01-01
This post is one in a series highlighting MDRC's methodological work. Contributors discuss the refinement and practical use of research methods being employed across the organization. Across policy domains, practitioners and researchers are benefiting from a trend of greater access to both more detailed and frequent data and the increased…
A micromechanics-based strength prediction methodology for notched metal matrix composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1992-01-01
An analytical micromechanics based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and post fatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.
A micromechanics-based strength prediction methodology for notched metal-matrix composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1993-01-01
An analytical micromechanics-based strength prediction methodology was developed to predict failure of notched metal matrix composites. The stress-strain behavior and notched strength of two metal matrix composites, boron/aluminum (B/Al) and silicon-carbide/titanium (SCS-6/Ti-15-3), were predicted. The prediction methodology combines analytical techniques ranging from a three-dimensional finite element analysis of a notched specimen to a micromechanical model of a single fiber. In the B/Al laminates, a fiber failure criteria based on the axial and shear stress in the fiber accurately predicted laminate failure for a variety of layups and notch-length to specimen-width ratios with both circular holes and sharp notches when matrix plasticity was included in the analysis. For the SCS-6/Ti-15-3 laminates, a fiber failure based on the axial stress in the fiber correlated well with experimental results for static and postfatigue residual strengths when fiber matrix debonding and matrix cracking were included in the analysis. The micromechanics-based strength prediction methodology offers a direct approach to strength prediction by modeling behavior and damage on a constituent level, thus, explicitly including matrix nonlinearity, fiber matrix debonding, and matrix cracking.
The Case for Sustainable Laboratories: First Steps at Harvard University
ERIC Educational Resources Information Center
Woolliams, Jessica; Lloyd, Matthew; Spengler, John D.
2005-01-01
Purpose: Laboratories typically consume 4-5 times more energy than similarly-sized commercial space. This paper adds to a growing dialogue about how to "green" a laboratory's design and operations. Design/methodology/approach: The paper is divided into three sections. The first section reviews the background and theoretical issues. A…
Use of Problem-Based Learning in the Teaching and Learning of Horticultural Production
ERIC Educational Resources Information Center
Abbey, Lord; Dowsett, Eric; Sullivan, Jan
2017-01-01
Purpose: Problem-based learning (PBL), a relatively novel teaching and learning process in horticulture, was investigated. Proper application of PBL can potentially create a learning context that enhances student learning. Design/Methodology/Approach: Students worked on two complex ill-structured problems: (1) to produce fresh baby greens for a…
Green Energy: Powering Education from a STEM Education Methodology
ERIC Educational Resources Information Center
Hughes, Bill
2011-01-01
With the pressing energy needs that the global population is facing, renewable energies are rapidly becoming prominent science and engineering challenges throughout the world. Where will the young scientific and engineering minds come from to meet these demands? With some creative, open-minded thinking, it could be from one's very own classrooms.…