Greening the curriculum: augmenting engineering and technology courses with sustainability topics
USDA-ARS?s Scientific Manuscript database
Duties of engineers and technologists often entail designing and implementing solutions to problems. It is their responsibility to be cognizant of the impacts of their designs on, and thus their accountability to society in general. They must also be aware of subsequent effects upon the environment....
Leveraging algal omics to reveal potential targets for augmenting TAG accumulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Neha; Pienkos, Philip T.; Pruthi, Vikas
Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. Here, this review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and informmore » future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.« less
Leveraging Algal Omics to Reveal Potential Targets for Augmenting TAG Accumulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guarnieri, Michael T; Pienkos, Philip T; Arora, Neha
2018-04-18
Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform futuremore » metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.« less
Leveraging algal omics to reveal potential targets for augmenting TAG accumulation
Arora, Neha; Pienkos, Philip T.; Pruthi, Vikas; ...
2018-04-18
Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. Here, this review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and informmore » future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy.« less
Leveraging algal omics to reveal potential targets for augmenting TAG accumulation.
Arora, Neha; Pienkos, Philip T; Pruthi, Vikas; Poluri, Krishna Mohan; Guarnieri, Michael T
2018-04-18
Ongoing global efforts to commercialize microalgal biofuels have expedited the use of multi-omics techniques to gain insights into lipid biosynthetic pathways. Functional genomics analyses have recently been employed to complement existing sequence-level omics studies, shedding light on the dynamics of lipid synthesis and its interplay with other cellular metabolic pathways, thus revealing possible targets for metabolic engineering. Here, we review the current status of algal omics studies to reveal potential targets to augment TAG accumulation in various microalgae. This review specifically aims to examine and catalog systems level data related to stress-induced TAG accumulation in oleaginous microalgae and inform future metabolic engineering strategies to develop strains with enhanced bioproductivity, which could pave a path for sustainable green energy. Copyright © 2018. Published by Elsevier Inc.
Green Infrastructure Design Evaluation Using the Automated Geospatial Watershed Assessment Tool
In arid and semi-arid regions, green infrastructure (GI) can address several issues facing urban environments, including augmenting water supply, mitigating flooding, decreasing pollutant loads, and promoting greenness in the built environment. An optimum design captures stormwat...
Evaluation of Green Infrastructure Designs Using the Automated Geospatial Watershed Assessment Tool
In arid and semi-arid regions, green infrastructure (GI) can address several issues facing urban environments, including augmenting water supply, mitigating flooding, decreasing pollutant loads, and promoting greenness in the built environment. An optimum design captures stormwat...
Stormwater management and ecosystem services: a review
NASA Astrophysics Data System (ADS)
Prudencio, Liana; Null, Sarah E.
2018-03-01
Researchers and water managers have turned to green stormwater infrastructure, such as bioswales, retention basins, wetlands, rain gardens, and urban green spaces to reduce flooding, augment surface water supplies, recharge groundwater, and improve water quality. It is increasingly clear that green stormwater infrastructure not only controls stormwater volume and timing, but also promotes ecosystem services, which are the benefits that ecosystems provide to humans. Yet there has been little synthesis focused on understanding how green stormwater management affects ecosystem services. The objectives of this paper are to review and synthesize published literature on ecosystem services and green stormwater infrastructure and identify gaps in research and understanding, establishing a foundation for research at the intersection of ecosystems services and green stormwater management. We reviewed 170 publications on stormwater management and ecosystem services, and summarized the state-of-the-science categorized by the four types of ecosystem services. Major findings show that: (1) most research was conducted at the parcel-scale and should expand to larger scales to more closely understand green stormwater infrastructure impacts, (2) nearly a third of papers developed frameworks for implementing green stormwater infrastructure and highlighted barriers, (3) papers discussed ecosystem services, but less than 40% quantified ecosystem services, (4) no geographic trends emerged, indicating interest in applying green stormwater infrastructure across different contexts, (5) studies increasingly integrate engineering, physical science, and social science approaches for holistic understanding, and (6) standardizing green stormwater infrastructure terminology would provide a more cohesive field of study than the diverse and often redundant terminology currently in use. We recommend that future research provide metrics and quantify ecosystem services, integrate disciplines to measure ecosystem services from green stormwater infrastructure, and better incorporate stormwater management into environmental policy. Our conclusions outline promising future research directions at the intersection of stormwater management and ecosystem services.
Evaluation of green infrastructure designs using the Automated Geospatial Watershed Assessment Tool
USDA-ARS?s Scientific Manuscript database
In arid and semi-arid regions, green infrastructure (GI) designs can address several issues facing urban environments, including augmenting water supply, mitigating flooding, decreasing pollutant loads, and promoting greenness in the built environment. An optimum design captures stormwater, addressi...
Usability engineering: domain analysis activities for augmented-reality systems
NASA Astrophysics Data System (ADS)
Gabbard, Joseph; Swan, J. E., II; Hix, Deborah; Lanzagorta, Marco O.; Livingston, Mark; Brown, Dennis B.; Julier, Simon J.
2002-05-01
This paper discusses our usability engineering process for the Battlefield Augmented Reality System (BARS). Usability engineering is a structured, iterative, stepwise development process. Like the related disciplines of software and systems engineering, usability engineering is a combination of management principals and techniques, formal and semi- formal evaluation techniques, and computerized tools. BARS is an outdoor augmented reality system that displays heads- up battlefield intelligence information to a dismounted warrior. The paper discusses our general usability engineering process. We originally developed the process in the context of virtual reality applications, but in this work we are adapting the procedures to an augmented reality system. The focus of this paper is our work on domain analysis, the first activity of the usability engineering process. We describe our plans for and our progress to date on our domain analysis for BARS. We give results in terms of a specific urban battlefield use case we have designed.
Green engineering education through a U.S. EPA/academia collaboration.
Shonnard, David R; Allen, David T; Nguyen, Nhan; Austin, Sharon Weil; Hesketh, Robert
2003-12-01
The need to use resources efficiently and reduce environmental impacts of industrial products and processes is becoming increasingly important in engineering design; therefore, green engineering principles are gaining prominence within engineering education. This paper describes a general framework for incorporating green engineering design principles into engineering curricula, with specific examples for chemical engineering. The framework for teaching green engineering discussed in this paper mirrors the 12 Principles of Green Engineering proposed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), especially in methods for estimating the hazardous nature of chemicals, strategies for pollution prevention, and approaches leading to efficient energy and material utilization. The key elements in green engineering education, which enlarge the "box" for engineering design, are environmental literacy, environmentally conscious design, and beyond-the-plant boundary considerations.
NASA Technical Reports Server (NTRS)
Useller, James W.; Auble, Carmon M.; Harvey, Ray W., Sr.
1952-01-01
An investigation was conducted at simulated high-altitude flight conditions to evaluate the use of compressor evaporative cooling as a means of turbojet-engine thrust augmentation. Comparison of the performance of the engine with water-alcohol injection at the compressor inlet, at the sixth stage of the compressor, and at the sixth and ninth stages was made. From consideration of the thrust increases achieved, the interstage injection of the coolant was considered more desirable preferred over the combined sixth- and ninth-stage injection because of its relative simplicity. A maximum augmented net-thrust ratio of 1.106 and a maximum augmented jet-thrust ratio of 1.062 were obtained at an augmented liquid ratio of 2.98 and an engine-inlet temperature of 80 F. At lower inlet temperatures (-40 to 40 F), the maximum augmented net-thrust ratios ranged from 1.040 to 1.076 and the maximum augmented jet-thrust ratios ranged from 1.027 to 1.048, depending upon the inlet temperature. The relatively small increase in performance at the lower inlet-air temperatures can be partially attributed to the inadequate evaporation of the water-alcohol mixture, but the more significant limitation was believed to be caused by the negative influence of the liquid coolant on engine- component performance. In general, it is concluded that the effectiveness of the injection of a coolant into the compressor as a means of thrust augmentation is considerably influenced by the design characteristics of the components of the engine being used.
Teaching Teachers to Teach Green Engineering
ERIC Educational Resources Information Center
Flynn, Ann Marie; Naraghi, Mohammad H.; Austin, Nicole; Helak, Sean; Manzer, Jarrod
2006-01-01
The work provides guidelines for instructors who wish to incorporate green engineering concepts into a typical non-green engineering course without diluting course content or modifying the course syllabus by identifying 5 critical elements necessary to the successful integration of green engineering concepts into any traditional, design-oriented,…
Green Engineering Textbook and Training Modules
EPA's Green Engineering textbook, Green Engineering: Environmentally Conscious Design of Chemical Processes, is a college senior-to-graduate-level engineering textbook. The primary authors are Dr. David Allen and Dr. David Shonnard.
Dr. Johney Green Jr. - Associate Laboratory Director for Mechanical and
Thermal Engineering Sciences | NREL Dr. Johney Green Jr. - Associate Laboratory Director for Mechanical and Thermal Engineering Sciences Dr. Johney Green Jr. - Associate Laboratory Director for Mechanical and Thermal Engineering Sciences A photo of Johney Green In his role, Johney Green oversees early
Augmentation cystoplasty in neurogenic bladder
Kocjancic, Ervin; Demirdağ, Çetin
2016-01-01
The aim of this review is to update the indications, contraindications, technique, complications, and the tissue engineering approaches of augmentation cystoplasty (AC) in patients with neurogenic bladder. PubMed/MEDLINE was searched for the keywords "augmentation cystoplasty," "neurogenic bladder," and "bladder augmentation." Additional relevant literature was determined by examining the reference lists of articles identified through the search. The update review of of the indications, contraindications, technique, outcome, complications, and tissue engineering approaches of AC in patients with neurogenic bladder is presented. Although some important progress has been made in tissue engineering AC, conventional AC still has an important role in the surgical treatment of refractory neurogenic lower urinary tract dysfunction. PMID:27617312
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-13
... Office is requesting public nominations for scientists and engineers to augment the SAB Scientific and... STAA Program was established in 1980 to recognize Agency scientists and engineers who published their... seeking nominations of nationally and internationally recognized scientists and engineers having...
Thrust Augmentation Measurements for a Pulse Detonation Engine Driven Ejector
NASA Technical Reports Server (NTRS)
Pal, S.; Santoro, Robert J.; Shehadeh, R.; Saretto, S.; Lee, S.-Y.
2005-01-01
Thrust augmentation results of an ongoing study of pulse detonation engine driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE) setup with various ejector configurations. The PDE used in these experiments utilizes ethylene (C2H4) as the fuel, and an equi-molar mixture of oxygen and nitrogen as the oxidizer at an equivalence ratio of one. High fidelity thrust measurements were made using an integrated spring damper system. The baseline thrust of the PDE engine was first measured and agrees with experimental and modeling results found in the literature. Thrust augmentation measurements were then made for constant diameter ejectors. The parameter space for the study included ejector length, PDE tube exit to ejector tube inlet overlap distance, and straight versus rounded ejector inlets. The relationship between the thrust augmentation results and various physical phenomena is described. To further understand the flow dynamics, shadow graph images of the exiting shock wave front from the PDE were also made. For the studied parameter space, the results showed a maximum augmentation of 40%. Further increase in augmentation is possible if the geometry of the ejector is tailored, a topic currently studied by numerous groups in the field.
NASA Technical Reports Server (NTRS)
1948-01-01
The conference on Turbojet-Engine Thrust-Augmentation Research was organized by the NACA to present in summarized form the results of the latest experimental and analytical investigations conducted at the Lewis Flight Propulsion Laboratory on methods of augmenting the thrust of turbojet engines. The technical discussions are reproduced herewith in the same form in which they were presented. The original presentation in this record are considered as complementary to, rather than substitutes for, the committee's system of complete and formal reports.
Usability engineering for augmented reality: employing user-based studies to inform design.
Gabbard, Joseph L; Swan, J Edward
2008-01-01
A major challenge, and thus opportunity, in the field of human-computer interaction and specifically usability engineering is designing effective user interfaces for emerging technologies that have no established design guidelines or interaction metaphors or introduce completely new ways for users to perceive and interact with technology and the world around them. Clearly, augmented reality is one such emerging technology. We propose a usability engineering approach that employs user-based studies to inform design, by iteratively inserting a series of user-based studies into a traditional usability engineering lifecycle to better inform initial user interface designs. We present an exemplar user-based study conducted to gain insight into how users perceive text in outdoor augmented reality settings and to derive implications for design in outdoor augmented reality. We also describe lessons learned from our experiences conducting user-based studies as part of the design process.
Thrust augmentation nozzle (TAN) concept for rocket engine booster applications
NASA Astrophysics Data System (ADS)
Forde, Scott; Bulman, Mel; Neill, Todd
2006-07-01
Aerojet used the patented thrust augmented nozzle (TAN) concept to validate a unique means of increasing sea-level thrust in a liquid rocket booster engine. We have used knowledge gained from hypersonic Scramjet research to inject propellants into the supersonic region of the rocket engine nozzle to significantly increase sea-level thrust without significantly impacting specific impulse. The TAN concept overcomes conventional engine limitations by injecting propellants and combusting in an annular region in the divergent section of the nozzle. This injection of propellants at moderate pressures allows for obtaining high thrust at takeoff without overexpansion thrust losses. The main chamber is operated at a constant pressure while maintaining a constant head rise and flow rate of the main propellant pumps. Recent hot-fire tests have validated the design approach and thrust augmentation ratios. Calculations of nozzle performance and wall pressures were made using computational fluid dynamics analyses with and without thrust augmentation flow, resulting in good agreement between calculated and measured quantities including augmentation thrust. This paper describes the TAN concept, the test setup, test results, and calculation results.
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Sarmiento, Charles; Marshall, William
2012-01-01
The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.
Wang, Shaoyi; Zhang, Zhiyuan; Xia, Lunguo; Zhao, Jun; Sun, Xiaojuan; Zhang, Xiuli; Ye, Dongxia; Uludağ, Hasan; Jiang, Xinquan
2010-01-01
The objective of this study is to systematically evaluate the effects of a tissue-engineered bone complex for maxillary sinus augmentation in a canine model. Twelve sinus floor augmentation surgeries in 6 animals were performed bilaterally and randomly repaired with the following 3 groups of grafts: group A consisted of tissue-engineered osteoblasts/beta-TCP complex (n=4); group B consisted of beta-TCP alone (n=4); group C consisted of autogenous bone obtained from iliac crest as a positive control (n=4). All dogs had uneventful healings following the surgery. Sequential polychrome fluorescent labeling, maxillofacial CT, microhardness tests, as well as histological and histomorphometric analyses indicated that the tissue-engineered osteoblasts/beta-TCP complex dramatically promoted bone formation and mineralization and maximally maintained the height and volume of elevated maxillary sinus. By comparison, both control groups of beta-TCP or autologous iliac bone showed considerable resorption and replacement by fibrous or fatty tissue. We thus conclude that beta-TCP alone could barely maintain the height and volume of the elevated sinus floor, and that the transplantation of autogenous osteoblasts on beta-TCP could promote earlier bone formation and mineralization, maximally maintain height, volume and increase the compressive strength of augmented maxillary sinus. This tissue engineered bone complex might be a better alternative to autologous bone for the clinical edentulous maxillary sinus augmentation. Copyright (c) 2009 Elsevier Inc. All rights reserved.
Contingency power for small turboshaft engines using water injection into turbine cooling air
NASA Technical Reports Server (NTRS)
Biesiadny, Thomas J.; Klann, Gary A.; Clark, David A.; Berger, Brett
1987-01-01
Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.
Applying Augmented Reality in practical classes for engineering students
NASA Astrophysics Data System (ADS)
Bazarov, S. E.; Kholodilin, I. Yu; Nesterov, A. S.; Sokhina, A. V.
2017-10-01
In this article the Augmented Reality application for teaching engineering students of electrical and technological specialties is introduced. In order to increase the motivation for learning and the independence of students, new practical guidelines on Augmented Reality were developed in the application to practical classes. During the application development, the authors used software such as Unity 3D and Vuforia. The Augmented Reality content consists of 3D-models, images and animations, which are superimposed on real objects, helping students to study specific tasks. A user who has a smartphone, a tablet PC, or Augmented Reality glasses can visualize on-screen virtual objects added to a real environment. Having analyzed the current situation in higher education: the learner’s interest in studying, their satisfaction with the educational process, and the impact of the Augmented Reality application on students, a questionnaire was developed and offered to students; the study involved 24 learners.
Lynch, William T
2015-10-01
The article examines and extends work bringing together engineering ethics and Science and Technology Studies, which had built upon Diane Vaughan's analysis of the Challenger shuttle accident as a test case. Reconsidering the use of her term "normalization of deviance," the article argues for a middle path between moralizing against and excusing away engineering practices contributing to engineering disaster. To explore an illustrative pedagogical case and to suggest avenues for constructive research developing this middle path, it examines the emergence of green chemistry and green engineering. Green chemistry began when Paul Anastas and John Warner developed a set of new rules for chemical synthesis that sought to learn from missed opportunities to avoid environmental damage in the twentieth century, an approach that was soon extended to engineering as well. Examination of tacit assumptions about historical counterfactuals in recent, interdisciplinary discussions of green chemistry illuminate competing views about the field's prospects. An integrated perspective is sought, addressing how both technical practice within chemistry and engineering and the influence of a wider "social movement" can play a role in remedying environmental problems.
Augmented Reality for the Improvement of Remote Laboratories: An Augmented Remote Laboratory
ERIC Educational Resources Information Center
Andujar, J. M.; Mejias, A.; Marquez, M. A.
2011-01-01
Augmented reality (AR) provides huge opportunities for online teaching in science and engineering, as these disciplines place emphasis on practical training and unsuited to completely nonclassroom training. This paper proposes a new concept in virtual and remote laboratories: the augmented remote laboratory (ARL). ARL is being tested in the first…
1988-06-01
upgrading of the depot’s FPI inspection facility, In the forme- case, a realistic projection based while augmenting it with enhanced inspection systems...number of models, powers the twin engined F-15 and the single engined F-16 fighter aircraft. It is an augmented turbofan engine in the 25,000 pound...move from an idea in 1972 to reality today for military gas turbine engines. Special acknowledgement is accorded to the Materials Laboratory of the Air
Advanced supersonic propulsion system technology study, phase 2
NASA Technical Reports Server (NTRS)
Allan, R. D.
1975-01-01
Variable cycle engines were identified, based on the mixed-flow low-bypass-ratio augmented turbofan cycle, which has shown excellent range capability in the AST airplane. The best mixed-flow augmented turbofan engine was selected based on range in the AST Baseline Airplane. Selected variable cycle engine features were added to this best conventional baseline engine, and the Dual-Cycle VCE and Double-Bypass VCE were defined. The conventional mixed-flow turbofan and the Double-Bypass VCE were on the subjects of engine preliminary design studies to determine mechanical feasibility, confirm weight and dimensional estimates, and identify the necessary technology considered not yet available. Critical engine components were studied and incorporated into the variable cycle engine design.
Contingency power for a small turboshaft engine by using water injection into turbine cooling air
NASA Technical Reports Server (NTRS)
Biesiadny, Thomas J.; Klann, Gary A.
1992-01-01
Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.
40 CFR 92.508 - Calculation and reporting of test results.
Code of Federal Regulations, 2010 CFR
2010-07-01
... specified in § 92.506(a). These results must also include the green engine factor, if applicable. The... engine, including: (A) Configuration and engine family identification; (B) Year, make, and build date; (C... accumulated on locomotive or locomotive engine prior to testing; and (E) Description of green engine factor...
Low Bandwidth Robust Controllers for Flight
NASA Technical Reports Server (NTRS)
Biezad, Daniel J.; Chou, Hwei-Lan
1993-01-01
Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.
Low bandwidth robust controllers for flight
NASA Technical Reports Server (NTRS)
Biezad, Daniel J.; Chou, Hwei-Lan
1993-01-01
Through throttle manipulations, engine thrust can be used for emergency flight control for multi-engine aircraft. Previous study by NASA Dryden has shown the use of throttles for emergency flight control to be very difficult. In general, manual fly-by-throttle is extremely difficult - with landing almost impossible, but control augmentation makes runway landings feasible. Flight path control using throttles-only to achieve safe emergency landing for a large jet transport airplane, Boeing 720, was investigated using Quantitative Feedback Theory (QFT). Results were compared to an augmented control developed in a previous simulation study. The control augmentation corrected the unsatisfactory open-loop characteristics by increasing system bandwidth and damping, but increasing the control bandwidth substantially proved very difficult. The augmented pitch control is robust under no or moderate turbulence. The augmented roll control is sensitive to configuration changes.
Teaching Green Engineering: The Case of Ethanol Lifecycle Analysis
ERIC Educational Resources Information Center
Vallero, Daniel A.; Braiser, Chris
2008-01-01
Lifecycle assessment (LCA) is a valuable tool in teaching green engineering and has been used to assess biofuels, including ethanol. An undergraduate engineering course at Duke University has integrated LCA with other interactive teaching techniques to enhance awareness and to inform engineering decision making related to societal issues, such as…
NASA Technical Reports Server (NTRS)
Landry, K.
2005-01-01
Studies were performed in order to characterize the thrust augmentation potential of an ejector in a Pulse Detonation Engine application. A 49-mm diameter tube of 0.914-m length was constructed with one open end and one closed end. Ethylene, oxygen, and nitrogen were introduced into the tube at the closed end through the implementation of a fast mixing injector. The tube was completely filled with a stoichiometric mixture containing a one to one molar ratio of nitrogen to oxygen. Ethylene was selected as the fuel due to its detonation sensitivity and the molar ratio of the oxidizer was chosen for heat transfer purposes. Detonations were initiated in the tube through the use of a spark ignition system. The PDE was operated in a multi-cycle mode at frequencies ranging from 20-Hz to 50-Hz. Baseline thrust measurements with no ejector present were performed while operating the engine at various frequencies and compared to theoretical estimates. The baseline values were observed to agree with the theoretical model at low operating frequencies and proved to be increasingly lower than the predicted values as the operating frequency was increased. The baseline thrust measurements were observed to agree within 15 percent of the model for all operating frequencies. A straight 152-mm diameter ejector was installed and thrust augmentation percentages were measured. The length of the ejector was varied while the overlap percentage (percent of the ejector length which overlapped the tube) was maintained at 25 percent for all tests. In addition, the effect of ejector inlet geometry was investigated by comparing results with a straight inlet to those of a 38-mm inlet diameter. The thrust augmentation of the straight inlet ejector proved to be independent of engine operating frequency, augmenting thrust by 40 percent for the 0.914-m length ejector. In contrast, the rounded lip ejector of the same length seemed to be highly dependent on the engine operating frequency. An optimum operating frequency observed with the rounded inlet occurred at an operating frequency of 30-Hz, resulting in thrust augmentation percentages greater than 100 percent. The effect that the engine operating frequency had on thrust augmentation levels attained with an ejector was characterized and optimum performance parameters were established. Insight into the frequency dependent nature of the ejector performance was pursued. Suggestions for future experiments which are needed to fully understand the means in which thrust augmentation is achieved in a PDE-ejector configuration were noted.
40 CFR 94.508 - Calculation and reporting of test results.
Code of Federal Regulations, 2010 CFR
2010-07-01
... must also include the Green Engine Factor, if applicable. Round these results to the number of decimal... engine, including: (A) Configuration and engine family identification; (B) Year, make, and build date; (C... (E) Description of Green Engine Factor; how it is determined and how it is applied; (ii) Location(s...
Magnetohydrodynamic Augmentation of Pulse Detonation Rocket Engines (Preprint)
2010-09-28
augmentation of the thrust . Ejectors typically transfer energy between streams through shear stress between separate flow streams, where a portion of the...the opportunity to extract energy and apply it to a separate stream where the net thrust can be increased. With MHD augmentation , such as in the Pulse...with the PDRIME for separate or additional thrust augmentation . Results show potential performance gains under many flight and operating conditions
Mandelaris, George A; Spagnoli, Daniel B; Rosenfeld, Alan L; McKee, James; Lu, Mei
2015-01-01
This case report describes a tissue-engineered reconstruction with recombinant human bone morphogenetic protein 2/acellular collagen sponge (rhBMP-2/ ACS) + cancellous allograft and space maintenance via Medpor Contain mesh in the treatment of a patient requiring maxillary and mandibular horizontal ridge augmentation to enable implant placement. The patient underwent a previously unsuccessful corticocancellous bone graft at these sites. Multiple and contiguous sites in the maxilla and in the mandibular anterior, demonstrating advanced lateral ridge deficiencies, were managed using a tissue engineering approach as an alternative to autogenous bone harvesting. Four maxillary and three mandibular implants were placed 9 and 10 months, respectively, after tissue engineering reconstruction, and all were functioning successfully after 24 months of follow-up. Histomorphometric analysis of a bone core obtained at the time of the maxillary implant placement demonstrated a mean of 76.1% new vital bone formation, 22.2% marrow/cells, and 1.7% residual graft tissue. Tissue engineering for lateral ridge augmentation with combination therapy requires further research to determine predictability and limitations.
Biological augmentation and tissue engineering approaches in meniscus surgery.
Moran, Cathal J; Busilacchi, Alberto; Lee, Cassandra A; Athanasiou, Kyriacos A; Verdonk, Peter C
2015-05-01
The purpose of this review was to evaluate the role of biological augmentation and tissue engineering strategies in meniscus surgery. Although clinical (human), preclinical (animal), and in vitro tissue engineering studies are included here, we have placed additional focus on addressing preclinical and clinical studies reported during the 5-year period used in this review in a systematic fashion while also providing a summary review of some important in vitro tissue engineering findings in the field over the past decade. A search was performed on PubMed for original works published from 2009 to March 31, 2014 using the term "meniscus" with all the following terms: "scaffolds," "constructs," "cells," "growth factors," "implant," "tissue engineering," and "regenerative medicine." Inclusion criteria were the following: English-language articles and original clinical, preclinical (in vivo), and in vitro studies of tissue engineering and regenerative medicine application in knee meniscus lesions published from 2009 to March 31, 2014. Three clinical studies and 18 preclinical studies were identified along with 68 tissue engineering in vitro studies. These reports show the increasing promise of biological augmentation and tissue engineering strategies in meniscus surgery. The role of stem cell and growth factor therapy appears to be particularly useful. A review of in vitro tissue engineering studies found a large number of scaffold types to be of promise for meniscus replacement. Limitations include a relatively low number of clinical or preclinical in vivo studies, in addition to the fact there is as yet no report in the literature of a tissue-engineered meniscus construct used clinically. Neither does the literature provide clarity on the optimal meniscus scaffold type or biological augmentation with which meniscus repair or replacement would be best addressed in the future. There is increasing focus on the role of mechanobiology and biomechanical and biochemical cues in this process, however, and it is hoped that this may lead to improvements in this strategy. There appears to be significant potential for biological augmentation and tissue engineering strategies in meniscus surgery to enhance options for repair and replacement. However, there are still relatively few clinical studies being reported in this regard. There is a strong need for improved translational activities and infrastructure to link the large amounts of in vitro and preclinical biological and tissue engineering data to clinical application. Level IV, systematic review of Level I-IV studies. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images.
Watson, Jeffrey R; Gainer, Christian F; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G Michael; Anton, Rein; Romanowski, Marek
2015-10-01
Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.
Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images
NASA Astrophysics Data System (ADS)
Watson, Jeffrey R.; Gainer, Christian F.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael, Jr.; Anton, Rein; Romanowski, Marek
2015-10-01
Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures.
Greening the Engineering and Technology Curriculum via Real Life Hands-on Projects
USDA-ARS?s Scientific Manuscript database
This paper aims at demonstrating how greening efforts can be embedded into science and engineering courses without major curricular changes. In this regard, examples of final projects assigned in a statistical quality control, a 500-level, graduate engineering course, focusing on campus sustainabili...
NASA Astrophysics Data System (ADS)
Latief, Yusuf; Berawi, Mohammed Ali; Basten, Van; Riswanto; Budiman, Rachmat
2017-07-01
Green building concept becomes important in current building life cycle to mitigate environment issues. The purpose of this paper is to optimize building construction performance towards green building premium cost, achieving green building rating tools with optimizing life cycle cost. Therefore, this study helps building stakeholder determining building fixture to achieve green building certification target. Empirically the paper collects data of green building in the Indonesian construction industry such as green building fixture, initial cost, operational and maintenance cost, and certification score achievement. After that, using value engineering method optimized green building fixture based on building function and cost aspects. Findings indicate that construction performance optimization affected green building achievement with increasing energy and water efficiency factors and life cycle cost effectively especially chosen green building fixture.
Augmenting Your Own Reality: Student Authoring of Science-Based Augmented Reality Games
ERIC Educational Resources Information Center
Klopfer, Eric; Sheldon, Josh
2010-01-01
Augmented Reality (AR) simulations superimpose a virtual overlay of data and interactions onto a real-world context. The simulation engine at the heart of this technology is built to afford elements of game play that support explorations and learning in students' natural context--their own community and surroundings. In one of the more recent…
Green Engineering is the design, commercialization and use of processes and products that are feasible and economical while reducing the generation of pollution at the source and minimizing the risk to human health and the environment.
Green's function multiple-scattering theory with a truncated basis set: An augmented-KKR formalism
NASA Astrophysics Data System (ADS)
Alam, Aftab; Khan, Suffian N.; Smirnov, A. V.; Nicholson, D. M.; Johnson, Duane D.
2014-11-01
The Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an efficient site-centered, electronic-structure technique for addressing an assembly of N scatterers. Wave functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number Lmax=(l,mmax), while scattering matrices, which determine spectral properties, are truncated at Lt r=(l,mt r) where phase shifts δl >ltr are negligible. Historically, Lmax is set equal to Lt r, which is correct for large enough Lmax but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for Lmax>Lt r with δl >ltr set to zero [X.-G. Zhang and W. H. Butler, Phys. Rev. B 46, 7433 (1992), 10.1103/PhysRevB.46.7433]. We present a numerically efficient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [R3 process with rank N (ltr+1 ) 2 ] and includes higher-L contributions via linear algebra [R2 process with rank N (lmax+1) 2 ]. The augmented-KKR approach yields properly normalized wave functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe, and L 1 0 CoPt and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus Lmax for a given Lt r.
Green's function multiple-scattering theory with a truncated basis set: An augmented-KKR formalism
Alam, Aftab; Khan, Suffian N.; Smirnov, A. V.; ...
2014-11-04
Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an ecient sitecentered, electronic-structure technique for addressing an assembly of N scatterers. Wave-functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number L max = (l,m) max, while scattering matrices, which determine spectral properties, are truncated at L tr = (l,m) tr where phase shifts δl>l tr are negligible. Historically, L max is set equal to L tr, which is correct for large enough L max but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for L maxmore » > L tr with δl>l tr set to zero [Zhang and Butler, Phys. Rev. B 46, 7433]. We present a numerically ecient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [R 3 process with rank N(l tr + 1) 2] and includes higher-L contributions via linear algebra [R 2 process with rank N(l max +1) 2]. Augmented-KKR approach yields properly normalized wave-functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe and L1 0 CoPt, and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus L max for a given L tr.« less
Development of CFD model for augmented core tripropellant rocket engine
NASA Astrophysics Data System (ADS)
Jones, Kenneth M.
1994-10-01
The Space Shuttle era has made major advances in technology and vehicle design to the point that the concept of a single-stage-to-orbit (SSTO) vehicle appears more feasible. NASA presently is conducting studies into the feasibility of certain advanced concept rocket engines that could be utilized in a SSTO vehicle. One such concept is a tripropellant system which burns kerosene and hydrogen initially and at altitude switches to hydrogen. This system will attain a larger mass fraction because LOX-kerosene engines have a greater average propellant density and greater thrust-to-weight ratio. This report describes the investigation to model the tripropellant augmented core engine. The physical aspects of the engine, the CFD code employed, and results of the numerical model for a single modular thruster are discussed.
NASA Technical Reports Server (NTRS)
Warren, E. L.
1980-01-01
The Chrysler/ERDA baseline automotive gas turbine engine was used to experimentally determine the power augmentation and emissions reductions achieved by the effect of variable compressor and power engine geometry, water injection downstream of the compressor, and increases in gas generator speed. Results were dependent on the mode of variable geometry utilization. Over 20 percent increase in power was accompanied by over 5 percent reduction in SFC. A fuel economy improvement of at least 6 percent was estimated for a vehicle with a 75 kW (100 hp) engine which could be augmented to 89 kW (120 hp) relative to an 89 Kw (120 hp) unaugmented engine.
Augmented Reality Simulations on Handheld Computers
ERIC Educational Resources Information Center
Squire, Kurt; Klopfer, Eric
2007-01-01
Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…
CO2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass
Liu, Xinyao; Fallon, Sarah; Sheng, Jie; Curtiss, Roy
2011-01-01
Using genetically modified cyanobacterial strains, we engineered a Green Recovery strategy to convert membrane lipids into fatty acids for economical and environmentally sustainable biofuel production. The Green Recovery strategy utilizes lipolytic enzymes under the control of promoters induced by CO2 limitation. Data indicate that strains of the cyanobacterium Synechocystis sp. PCC6803 engineered for Green Recovery underwent degradation of membrane diacylglycerols upon CO2 limitation, leading to release of fatty acids into the culture medium. Recovered fatty acid yields of 36.1 × 10-12 mg/cell were measured in one of the engineered strains (SD239). Green Recovery can be incorporated into previously constructed fatty-acid-secretion strains, enabling fatty acid recovery from the remaining cyanobacterial biomass that will be generated during fatty acid biofuel production in photobioreactors. PMID:21482802
Augmented microscopy: real-time overlay of bright-field and near-infrared fluorescence images
Watson, Jeffrey R.; Gainer, Christian F.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek
2015-01-01
Abstract. Intraoperative applications of near-infrared (NIR) fluorescent contrast agents can be aided by instrumentation capable of merging the view of surgical field with that of NIR fluorescence. We demonstrate augmented microscopy, an intraoperative imaging technique in which bright-field (real) and electronically processed NIR fluorescence (synthetic) images are merged within the optical path of a stereomicroscope. Under luminance of 100,000 lx, representing typical illumination of the surgical field, the augmented microscope detects 189 nM concentration of indocyanine green and produces a composite of the real and synthetic images within the eyepiece of the microscope at 20 fps. Augmentation described here can be implemented as an add-on module to visualize NIR contrast agents, laser beams, or various types of electronic data within the surgical microscopes commonly used in neurosurgical, cerebrovascular, otolaryngological, and ophthalmic procedures. PMID:26440760
Tissue Engineering for Rotator Cuff Repair: An Evidence-Based Systematic Review
Maffulli, Nicola; Longo, Umile Giuseppe; Loppini, Mattia; Berton, Alessandra; Spiezia, Filippo; Denaro, Vincenzo
2012-01-01
The purpose of this systematic review was to address the treatment of rotator cuff tears by applying tissue engineering approaches to improve tendon healing, specifically platelet rich plasma (PRP) augmentation, stem cells, and scaffolds. Our systematic search was performed using the combination of the following terms: “rotator cuff”, “shoulder”, “PRP”, “platelet rich plasma”, “stemcells”, “scaffold”, “growth factors”, and “tissue engineering”. No level I or II studies were found on the use of scaffolds and stem cells for rotator cuff repair. Three studies compared rotator cuff repair with or without PRP augmentation. All authors performed arthroscopic rotator cuff repair with different techniques of suture anchor fixation and different PRP augmentation. The three studies found no difference in clinical rating scales and functional outcomes between PRP and control groups. Only one study showed clinical statistically significant difference between the two groups at the 3-month follow up. Any statistically significant difference in the rates of tendon rerupture between the control group and the PRP group was found using the magnetic resonance imaging. The current literature on tissue engineering application for rotator cuff repair is scanty. Comparative studies included in this review suggest that PRP augmented repair of a rotator cuff does not yield improved functional and clinical outcome compared with non-augmented repair at a medium and long-term followup. PMID:25098365
Green tribology: principles, research areas and challenges.
Nosonovsky, Michael; Bhushan, Bharat
2010-10-28
In this introductory paper for the Theme Issue on green tribology, we discuss the concept of green tribology and its relation to other areas of tribology as well as other 'green' disciplines, namely, green engineering and green chemistry. We formulate the 12 principles of green tribology: the minimization of (i) friction and (ii) wear, (iii) the reduction or complete elimination of lubrication, including self-lubrication, (iv) natural and (v) biodegradable lubrication, (vi) using sustainable chemistry and engineering principles, (vii) biomimetic approaches, (viii) surface texturing, (ix) environmental implications of coatings, (x) real-time monitoring, (xi) design for degradation, and (xii) sustainable energy applications. We further define three areas of green tribology: (i) biomimetics for tribological applications, (ii) environment-friendly lubrication, and (iii) the tribology of renewable-energy application. The integration of these areas remains a primary challenge for this novel area of research. We also discuss the challenges of green tribology and future directions of research.
Microbial isoprenoid production: an example of green chemistry through metabolic engineering.
Maury, Jérôme; Asadollahi, Mohammad A; Møller, Kasper; Clark, Anthony; Nielsen, Jens
2005-01-01
Saving energy, cost efficiency, producing less waste, improving the biodegradability of products, potential for producing novel and complex molecules with improved properties, and reducing the dependency on fossil fuels as raw materials are the main advantages of using biotechnological processes to produce chemicals. Such processes are often referred to as green chemistry or white biotechnology. Metabolic engineering, which permits the rational design of cell factories using directed genetic modifications, is an indispensable strategy for expanding green chemistry. In this chapter, the benefits of using metabolic engineering approaches for the development of green chemistry are illustrated by the recent advances in microbial production of isoprenoids, a diverse and important group of natural compounds with numerous existing and potential commercial applications. Accumulated knowledge on the metabolic pathways leading to the synthesis of the principal precursors of isoprenoids is reviewed, and recent investigations into isoprenoid production using engineered cell factories are described.
The Use of Steady and Unsteady Detonation Waves for Propulsion Systems
NASA Technical Reports Server (NTRS)
Adelman, Henry G.; Menees, Gene P.; Cambier, Jean-Luc; Bowles, Jeffrey V.; Cavolowsky, John A. (Technical Monitor)
1995-01-01
Detonation wave enhanced supersonic combustors such as the Oblique Detonation Wave Engine (ODWE) are attractive propulsion concepts for hypersonic flight. These engines utilize detonation waves to enhance fuel-air mixing and combustion. The benefits of wave combustion systems include shorter and lighter engines which require less cooling and generate lower internal drag. These features allow air-breathing operation at higher Mach numbers than the diffusive burning scramjet delaying the need for rocket engine augmentation. A comprehensive vehicle synthesis code has predicted the aerodynamic characteristics and structural size and weight of a typical single-stage-to-orbit vehicle using an ODWE. Other studies have focused on the use of unsteady or pulsed detonation waves. For low speed applications, pulsed detonation engines (PDE) have advantages in low weight and higher efficiency than turbojets. At hypersonic speeds, the pulsed detonations can be used in conjunction with a scramjet type engine to enhance mixing and provide thrust augmentation.
NASA Technical Reports Server (NTRS)
Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.
1974-01-01
A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.
Scaffolds in Tendon Tissue Engineering
Longo, Umile Giuseppe; Lamberti, Alfredo; Petrillo, Stefano; Maffulli, Nicola; Denaro, Vincenzo
2012-01-01
Tissue engineering techniques using novel scaffold materials offer potential alternatives for managing tendon disorders. Tissue engineering strategies to improve tendon repair healing include the use of scaffolds, growth factors, cell seeding, or a combination of these approaches. Scaffolds have been the most common strategy investigated to date. Available scaffolds for tendon repair include both biological scaffolds, obtained from mammalian tissues, and synthetic scaffolds, manufactured from chemical compounds. Preliminary studies support the idea that scaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potential. However, available data are lacking to allow definitive conclusion on the use of scaffolds for tendon augmentation. We review the current basic science and clinical understanding in the field of scaffolds and tissue engineering for tendon repair. PMID:22190961
Theoretical Investigations on the Efficiency and the Conditions for the Realization of Jet Engines
NASA Technical Reports Server (NTRS)
Roy, Maurice
1950-01-01
Contents: Preliminary notes on the efficiency of propulsion systems; Part I: Propulsion systems with direct axial reaction rockets and rockets with thrust augmentation; Part II: Helicoidal reaction propulsion systems; Appendix I: Steady flow of viscous gases; Appendix II: On the theory of viscous fluids in nozzles; and Appendix III: On the thrusts augmenters, and particularly of gas augmenters
Preliminary Flight Results of a Fly-by-throttle Emergency Flight Control System on an F-15 Airplane
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Wells, Edward A.
1993-01-01
A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.
Cole, Helen V S; Garcia Lamarca, Melisa; Connolly, James J T; Anguelovski, Isabelle
2017-11-01
While access and exposure to green spaces has been shown to be beneficial for the health of urban residents, interventions focused on augmenting such access may also catalyse gentrification processes, also known as green gentrification. Drawing from the fields of public health, urban planning and environmental justice, we argue that public health and epidemiology researchers should rely on a more dynamic model of community that accounts for the potential unintended social consequences of upstream health interventions. In our example of green gentrification, the health benefits of greening can only be fully understood relative to the social and political environments in which inequities persist. We point to two key questions regarding the health benefits of newly added green space: Who benefits in the short and long term from greening interventions in lower income or minority neighbourhoods undergoing processes of revitalisation? And, can green cities be both healthy and just? We propose the Green Gentrification and Health Equity model which provides a framework for understanding and testing whether gentrification associated with green space may modify the effect of exposure to green space on health. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Detonation wave augmentation of gas turbines
NASA Technical Reports Server (NTRS)
Wortman, A.
1984-01-01
The results of a feasibility study that examined the effects of using detonation waves to augment the performance of gas turbines are reported. The central ideas were to reduce compressor requirements and to maintain high performance in jet engines. Gasdynamic equations were used to model the flows associated with shock waves generated by the detonation of fuel in detonator tubes. Shock wave attenuation to the level of Mach waves was found possible, thus eliminating interference with the compressor and the necessity of valves and seals. A preliminary parametric study of the performance of a compressor working at a 4:1 ratio in a conceptual design of a detonation wave augmented jet engine in subsonic flight indicated a clear superiority over conventional designs in terms of fuel efficiency and thrust.
Tissue engineering of the bladder--reality or myth? A systematic review.
Sloff, Marije; Simaioforidis, Vasileios; de Vries, Rob; Oosterwijk, Egbert; Feitz, Wout
2014-10-01
We systematically reviewed preclinical studies in the literature to evaluate the potential of tissue engineering of the bladder. Study outcomes were compared to the available clinical evidence to assess the feasibility of tissue engineering for future clinical use. Preclinical studies of tissue engineering for bladder augmentation were identified through a systematic search of PubMed and Embase™ from January 1, 1980 to January 1, 2014. Primary studies in English were included if bladder reconstruction after partial cystectomy was performed using a tissue engineered biomaterial in any animal species, with cystometric bladder capacity as an outcome measure. Outcomes were compared to clinical studies available at http://www.clinicaltrials.gov and published clinical studies. A total of 28 preclinical studies are included, demonstrating remarkable heterogeneity in study characteristics and design. Studies in which preoperative bladder volumes were compared to postoperative volumes were considered the most clinically relevant (18 studies). Bladder augmentation through tissue engineering resulted in a normal bladder volume in healthy animals, with the influence of a cellular component being negligible. Furthermore, experiments in large animal models (pigs and dogs) approximated the desired bladder volume more accurately than in smaller species. The initial clinical experience was based on seemingly predictive healthy animal models with a promising outcome. Unfortunately these results were not substantiated in all clinical trials, revealing dissimilar outcomes in different clinical/disease backgrounds. Thus, the translational predictability of a model using healthy animals might be questioned. Through this systematic approach we present an unbiased overview of all published preclinical studies investigating the effect of bladder tissue engineering on cystometric bladder capacity. Preclinical research in healthy animals appears to show the feasibility of bladder augmentation by tissue engineering. However, in view of the disappointing clinical results based on healthy animal models new approaches should also be evaluated in preclinical models using dysfunctional/diseased bladders. This endeavor may aid in the development of clinically applicable tissue engineered bladder augmentation with satisfactory long-term outcome. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
1994-12-01
THIS REPORT DOCUMENTS THE DEVELOPMENT OF RECOMMENDATIONS FOR A NATIONAL APPROACH TO AUGMENTED GLOBAL POSITIONING SYSTEM (GPS) SERVICES. THE INSTITUTE FOR TELECOMMUNICATION SCIENCES LED A STUDY TEAM THAT INCLUDED THE U.S. ARMY TOPOGRAPHIC ENGINEERING ...
Chen, Bor-Yann; Liao, Jia-Hui; Hsu, An-Wei; Tsai, Po-Wei; Hsueh, Chung-Chuan
2018-05-01
This first-attempt study used extracts of appropriate antioxidant abundant Camellia and non-Camellia tea and medicinal herbs as model ESs to stably intensify bioelectricity generation performance in microbial fuel cells (MFCs). As electron shuttles (ESs) could stimulate electron transport phenomena by significant reduction of electron transfer resistance, the efficiency of power generation for energy extraction in microbial fuel cells (MFCs) could be appreciably augmented. Using environmentally friendly natural bioresource as green bioresource of ESs is the most promising to sustainable practicability. As comparison of power-density profiles indicated, supplement of Camellia tea extracts would be the most appropriate, then followed non-Camellia Chrysanthemum tea and medicinal herbs. Antioxidant activities, total phenolic contents and power stimulating activities were all electrochemically associated. In particular, the extract of unfermented Camellia tea (i.e., green tea) was the most promising ESs to augment bioenergy extraction compared to other refreshing medicinal herb extracts. Copyright © 2018 Elsevier Ltd. All rights reserved.
Green Engineering Principle #4 Maximize Efficiency
As one reads the twelve principles of Green Engineering, there is one message that stands out and becomes ever increasingly more evident with each principle. Moreover, that message is simplicity! It is simplicity that will allow us, as a society, to become more sustainable.Althou...
Engineering of a green-light inducible gene expression system in Synechocystis sp. PCC6803.
Abe, Koichi; Miyake, Kotone; Nakamura, Mayumi; Kojima, Katsuhiro; Ferri, Stefano; Ikebukuro, Kazunori; Sode, Koji
2014-03-01
In order to construct a green-light-regulated gene expression system for cyanobacteria, we characterized a green-light sensing system derived from Synechocystis sp. PCC6803, consisting of the green-light sensing histidine kinase CcaS, the cognate response regulator CcaR, and the promoter of cpcG2 (PcpcG 2 ). CcaS and CcaR act as a genetic controller and activate gene expression from PcpcG 2 with green-light illumination. The green-light induction level of the native PcpcG 2 was investigated using GFPuv as a reporter gene inserted in a broad-host-range vector. A clear induction of protein expression from native PcpcG 2 under green-light illumination was observed; however, the expression level was very low compared with Ptrc , which was reported to act as a constitutive promoter in cyanobacteria. Therefore, a Shine-Dalgarno-like sequence derived from the cpcB gene was inserted in the 5' untranslated region of the cpcG2 gene, and the expression level of CcaR was increased. Thus, constructed engineered green-light sensing system resulted in about 40-fold higher protein expression than with the wild-type promoter with a high ON/OFF ratio under green-light illumination. The engineered green-light gene expression system would be a useful genetic tool for controlling gene expression in the emergent cyanobacterial bioprocesses. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. G.; Wells, Edward A.
1993-01-01
A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies have been followed by flight tests. This paper discusses the principles of throttles-only control, the F-15 airplane, the augmented system, and the flight results including landing approaches with throttles-only control to within 10 ft of the ground.
Cecil Green receives Smith Medal
NASA Astrophysics Data System (ADS)
Press, Frank; Green, Cecil
The Waldo E. Smith Medal, which is awarded for extraordinary service to geophysics, was presented to Cecil H. Green at the 1994 AGU Fall Meeting Honors Ceremony on December 7, 1994 in San Francisco. The award citation and Green's response are given here.“It would take a book to do justice to Cecil Green's extraordinary contributions to the geophysics and electronics industries, to the training of scientists, physicians, and engineers, and to strengthening education and research institutions. In fact, such a book has been written about Cecil's multiple lives as engineer, geophysicist, cofounder of Texas Instruments, and partner with his wife, Ida, in international philanthropy.
Preparation of biopolymers from plant oils in green media
USDA-ARS?s Scientific Manuscript database
Use of plant oils as starting materials to prepare polymers has attracted renewed attention in recent years to replace or augment the traditional petrochemical based polymers and resins. This is because of concern for the environment, waste disposal, and depletion of fossil and non renewable feedsto...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-21
... areas related to lead: environmental engineering, drinking water exposure assessment, epidemiology... ENVIRONMENTAL PROTECTION AGENCY [FRL-9241-7] Science Advisory Board Staff Office; Request for Nominations of Experts To Augment the SAB Drinking Water Committee (DWC) AGENCY: Environmental Protection...
The concepts of green chemistry and engineering (GC&E) have been promoted as an effective qualitative framework for developing more sustainable chemical syntheses, processes, and material management techniques. This has been demonstrated by many theoretical and practical cases. I...
NASA Technical Reports Server (NTRS)
Foster, Richard W.; Escher, William J. D.; Robinson, John W.
1989-01-01
The present comparative performance study has established that rocket-based combined cycle (RBCC) propulsion systems, when incorporated by essentially axisymmetric SSTO launch vehicle configurations whose conical forebody maximizes both capture-area ratio and total capture area, are capable of furnishing payload-delivery capabilities superior to those of most multistage, all-rocket launchers. Airbreathing thrust augmentation in the rocket-ejector mode of an RBCC powerplant is noted to make a major contribution to final payload capability, by comparison to nonair-augmented rocket engine propulsion systems.
14 CFR 25.941 - Inlet, engine, and exhaust compatibility.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both— (a) The system comprised of the inlet, engine (including thrust augmentation systems, if incorporated... configurations; (b) The dynamic effects of the operation of these (including consideration of probable...
40 CFR 1033.320 - Calculation and reporting of test results.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicable non-deterioration adjustments such as a Green Engine Factor or regeneration adjustment factor... following are true: (1) The catalyst was in a green condition when tested initially. (2) The locomotive met... locomotive, including: (A) Configuration and engine family identification. (B) Year, make, and build date. (C...
Preparation of biopolymers from plant oils in green media
USDA-ARS?s Scientific Manuscript database
The conversion of plant oils to polymers has attracted renewed attention in recent years to replace or augment the traditional petro-chemical based polymers and resins. This is because of concern for the environment, waste disposal, and depletion of fossil and non-renewable feedstocks. In this study...
Introduction to the Thematic Minireview Series: Green biological chemistry.
Jez, Joseph M
2018-04-06
Plants and their green cousins cyanobacteria and algae use sunlight to drive the chemistry that lets them grow, survive, and perform an amazing range of biochemical reactions. The ability of these organisms to use a freely available energy source makes them attractive as sustainable and renewable platforms for more than just food production. They are also a source of metabolic tools for engineering microbes for "green" chemistry. This Thematic Minireview Series discusses how green organisms capture light and protect their photosynthetic machinery from too much light; new structural snapshots of the clock complex that orchestrates signaling during the light/dark cycle; challenges for improving stress responses in crops; harnessing cyanobacteria as biofactories; and efforts to engineer microbes for "green" biopolymer production. © 2018 Jez.
EPA NRMRL green Infrastructure research
Green Infrastructure is an engineering approach to wet weather flow management that uses infiltration, evapotranspiration, capture and reuse to better mimic the natural drainage processes than traditional gray systems. Green technologies supplement gray infrastructure to red...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giorgi, Albert E.; Schlecte, J.Warren
1997-07-01
The purpose of this evaluation was to estimate the volume and shape of flow augmentation water delivered in the Snake Basin during the years 1991 through 1995, and to assess the biological consequences to ESA-listed salmon stocks in that drainage. HDR Engineering, Inc. calculated flow augmentation estimates and compared their values to those reported by agencies in the Northwest. BioAnalysts, Inc. conducted the biological evaluation.
Positive Energy: Green-Jobs Training Prepares Students for New Careers
ERIC Educational Resources Information Center
Coyle, Kevin; Flynn, Maria
2010-01-01
The emerging green economy will create not just jobs, but--if done right--career opportunities across the United States as green manufacturing, green products, and green services fuel demand for workers at all skill levels. Sixty-one percent of the members of the Association of Energy Engineers report a growing shortage of qualified professionals…
Code of Federal Regulations, 2010 CFR
2010-07-01
... test engine, including the engine family's identification and the engine's model year, build date... you developed and applied the Green Engine Factor, if applicable. (5) Identify how you accumulated...
Aircraft and Engine Development Testing
1986-09-01
Control in Flight * Integrated Inlet- engine * Power/weight Exceeds Unity F-lll * Advanced Engines * Augmented Turbofan * High Turbine Temperature...residence times). Also, fabrication of a small scale "hot" engine with rotating components such as compressors and turbines with cooled blades , is...capabil- ities are essential to meet the needs of current and projected aircraft and engine programs. The required free jet nozzles should be capable of
NASA Astrophysics Data System (ADS)
Goma, Sergio R.
2015-03-01
In current times, mobile technologies are ubiquitous and the complexity of problems is continuously increasing. In the context of advancement of engineering, we explore in this paper possible reasons that could cause a saturation in technology evolution - namely the ability of problem solving based on previous results and the ability of expressing solutions in a more efficient way, concluding that `thinking outside of brain' - as in solving engineering problems that are expressed in a virtual media due to their complexity - would benefit from mobile technology augmentation. This could be the necessary evolutionary step that would provide the efficiency required to solve new complex problems (addressing the `running out of time' issue) and remove the communication of results barrier (addressing the human `perception/expression imbalance' issue). Some consequences are discussed, as in this context the artificial intelligence becomes an automation tool aid instead of a necessary next evolutionary step. The paper concludes that research in modeling as problem solving aid and data visualization as perception aid augmented with mobile technologies could be the path to an evolutionary step in advancing engineering.
Development of a Simplified Sustainable Facilities Guide
2003-04-18
Government Through Efficient Energy Management , June 3, 1999 EO 13148 Greening the Government Through Leadership in Environmental Management ...architects, engineers, and project managers . - The United States Green Building Council (USGBC) has created the " Leadership in Energy and...SIMPLIFIED SUSTAINABLE FACILITIES GUIDE THESIS Presented to the Faculty Department of Systems and Engineering Management
Polymeric Medical Sutures: An Exploration of Polymers and Green Chemistry
ERIC Educational Resources Information Center
Knutson, Cassandra M.; Schneiderman, Deborah K.; Yu, Ming; Javner, Cassidy H.; Distefano, Mark D.; Wissinger, Jane E.
2017-01-01
With new K-12 national science standards emerging, there is an increased need for experiments that integrate engineering into the context of society. Here we describe a chemistry experiment that combines science and engineering principles while introducing basic polymer and green chemistry concepts. Using medical sutures as a platform for…
Development and Deployment of the Purdue TAP Green Enterprise Development Program
ERIC Educational Resources Information Center
Rogers, Ethan A.
2013-01-01
Purdue University--Mechanical, Engineering, and Technology (MET) faculty and Purdue Technical Assistance Program (TAP) staff partnered with the Society of Manufacturing Engineers (SME) to create a new workforce training program and certificate exam in the field of green manufacturing. This article describes how the body of knowledge for the…
ERIC Educational Resources Information Center
Ruller, Roberto; Silva-Rocha, Rafael; Silva, Artur; Schneider, Maria Paula Cruz; Ward, Richard John
2011-01-01
Protein engineering is a powerful tool, which correlates protein structure with specific functions, both in applied biotechnology and in basic research. Here, we present a practical teaching course for engineering the green fluorescent protein (GFP) from "Aequorea victoria" by a random mutagenesis strategy using error-prone polymerase…
Going "Green": Environmental Jobs for Scientists and Engineers
ERIC Educational Resources Information Center
Ramey, Alice
2009-01-01
Green is often used as a synonym for environmental or ecological, especially as it relates to products and activities aimed at minimizing damage to the planet. Scientists and engineers have long had important roles in the environmental movement. Their expertise is focused on a variety of issues, including increasing energy efficiency, improving…
Awney, Hala
2011-05-01
The effect of green tea (GT) and green tea with olive oil (GT+OL) as antioxidants on the formation and mutagenic activity of heterocyclic aromatic amines (HCAs) extracted from beef shawerma, grilled chicken and fried beef liver was examined. HCAs were extracted by blue rayon, analyzed as spiked and unspiked samples with high-performance liquid chromatography and its mutagenic response was assessed by Sallmonela typhimurium 100 in the Ames test. Surprisingly, GT and GT+OL augmented HCAs measured in beef shawerma and grilled chicken but total HCAs measured in GT+OL were less than GT treatment. Both treatments altered the HCA profile as imidazoquinoline type became the most abundant. In control and GT+OL fried beef liver no HCAs were detected, but Trp-P1 was detected in GT treatment. Generally, the mutagenic response of HCAs measured in GT+OL was less than GT in beef shawerma and grilled chicken. However, the mutagenic response of control and 2% GT+OL fried liver was negative. These data suggest that GT concentrations used in this study may induce free radical formation during the Millared reaction due to its pro-oxidative effect, which augmented the HCAs formed and its mutagenic response. In order to optimize both safety and quality of our diets, more need to be done to fully understand the risk of HCAs in food.
Spark Ignition Characteristics of a L02/LCH4 Engine at Altitude Conditions
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Sarmiento, Charles; Marshall, William
2012-01-01
The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine s augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.
Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions
NASA Technical Reports Server (NTRS)
Kleinhenz, Julie; Sarmiento, Charles; Marshall, William
2012-01-01
The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.
Plant oil-based polymers prepared in green media and functionalized into useful materials
USDA-ARS?s Scientific Manuscript database
The conversion of plant oils to polymers has attracted renewed attention in recent years in order to replace or augment the traditional petro-chemical based polymers and resins. This is due to concern for the environment, waste disposal, and depletion of fossil and non renewable feedstocks. In this ...
A Microprocessor-Based Real-Time Simulator of a Turbofan Engine
1988-01-01
NASA AVSCOM Technical Memorandum 100889 Technical Report 88-C-011 Lfl A Microprocessor-Based Real-Time Simulator of a Turbofan Engine CD I Jonathan S...Accession For NTIS GRA&I A MICROPROCESSOR-BASED REAL-TIME SIMULATOR DTIC TABUnannounced OF A TURBOFAN ENGINE Justifiaation, Jonathan S. Litt Propulsion...the F100 engine without augmentation (without afterburning). HYTESS is a simplified simulation written in FORTRAN of a generalized turbofan engine . To
NASA Astrophysics Data System (ADS)
Candon, M. J.; Ogawa, H.
2018-06-01
Scramjets are a class of hypersonic airbreathing engine that offer promise for economical, reliable and high-speed access-to-space and atmospheric transport. The expanding flow in the scramjet nozzle comprises of unburned hydrogen. An after-burning scheme can be used to effectively utilize the remaining hydrogen by supplying additional oxygen into the nozzle, aiming to augment the thrust. This paper presents the results of a single-objective design optimization for a strut fuel injection scheme considering four design variables with the objective of maximizing thrust augmentation. Thrust is found to be augmented significantly owing to a combination of contributions from aerodynamic and combustion effects. Further understanding and physical insights have been gained by performing variance-based global sensitivity analysis, scrutinizing the nozzle flowfields, analyzing the distributions and contributions of the forces acting on the nozzle wall, and examining the combustion efficiency.
Samarium Cobalt (SmCo) Generator/Engine Integration Study
1980-04-01
110o1110 (Cole Ms -W~ Daiwa. to* J11 tuo.in Wfi wee -004"ni Aircraft Generator/starter Samarium Cobalt Turbine Engine , Feasibility Secondary Power...integration into the main rotor system of typical aircraft gas turbine engines . A major objective is the definition of the engine interface for such... Engine The F404 is a low bypass, augmented turbofan Pngine developed for application in advanced fighter aircraft (F-18). This type of engine benefits most
ERIC Educational Resources Information Center
Paluri, Sesha L. A.; Edwards, Michelle L.; Lam, Nhi H.; Williams, Elizabeth M.; Meyerhoefer, Allie; Pavel Sizemore, Ioana E.
2015-01-01
In recent years, nanoscience and nanotechnology have been drawing enormous attention due to the numerous applications of nanomaterials. In an attempt to nurture interest towards these areas in young minds and to develop the next generation of environmentally conscious scientists and engineers, this new laboratory module focuses on the green and…
Augmented reality application for industrial non-destructive inspection training
NASA Astrophysics Data System (ADS)
Amza, Catalin Gheorghe; Zapciu, Aurelian; Teodorescu, Octav
2018-02-01
Such a technology - Augmented Reality (AR) has great potential of use, especially for training purposes of new operators on using expensive equipment. In this context, the paper presents an augmented reality training system developed for phased-array ultrasonic non-destructive testing (NDT) equipment. The application has been developed using Unity 5.6.0 game-engine platform integrated with Vuforia sdk toolkit for devices with Android operating system. The test results performed by several NDT operators showed good results, thus proving the potential of using the application in the industrial field.
NASA Technical Reports Server (NTRS)
Sizlo, T. R.; Berg, R. A.; Gilles, D. L.
1979-01-01
An augmentation system for a 230 passenger, twin engine aircraft designed with a relaxation of conventional longitudinal static stability was developed. The design criteria are established and candidate augmentation system control laws and hardware architectures are formulated and evaluated with respect to reliability, flying qualities, and flight path tracking performance. The selected systems are shown to satisfy the interpreted regulatory safety and reliability requirements while maintaining the present DC 10 (study baseline) level of maintainability and reliability for the total flight control system. The impact of certification of the relaxed static stability augmentation concept is also estimated with regard to affected federal regulations, system validation plan, and typical development/installation costs.
NASA Astrophysics Data System (ADS)
Viparelli, Enrica; Gaeuman, David; Wilcock, Peter; Parker, Gary
2011-02-01
Major changes in the morphology of the Trinity River in California, such as narrowing of the cross section and sedimentation of fine sediment in pools, occurred after the closure of a system of dams. These changes caused a dramatic reduction in the salmonid population and a resulting decline of the fishery. Gravel augmentation, regulated flood releases, and mechanical channel rehabilitation are currently being implemented to help restore the aquatic habitat of the river. The present paper describes a tool, named the Spawning Gravel Refresher, for designing and predicting the effects of gravel augmentation in gravel bed rivers. The tool assumes an imposed, cycled hydrograph. The model is calibrated and applied to the regulated reach of the Trinity River in four steps: (1) zeroing runs to reproduce conditions of mobile bed equilibrium as best can be estimated for the predam Trinity River, (2) runs to compare the predictions with the results of previous studies, (3) runs at an engineering time scale to reproduce the effects of the dams, and (4) runs to design gravel augmentation schemes. In the fourth group of runs, the combined effects of engineered flood flow releases and gravel augmentation are predicted. At an engineering time scale, the model indicates that the fraction of fine sediment in the surface layer and in the topmost part of the substrate should decrease when subjected to these two restoration measures, with a consequent improvement of the quality of the spawning gravel.
ERIC Educational Resources Information Center
Scheibe, Kevin P.; Mennecke, Brian E.; Luse, Andy
2007-01-01
Computing technology augments learning in education in a number of ways. One particular method uses interactive programs to demonstrate complex concepts. The purpose of this article is to examine one type of interactive learning technology, the transparent engine. The transparent engine allows instructors and students to view and directly interact…
And the Walls Came Tumbling Down: Augmenting the Distance Education Experience.
ERIC Educational Resources Information Center
Jones, Charles M.; Klopfenstein, Bruce C.
This project examined whether the quality of instruction delivered to both an on-site and a reception classroom could be equalized through the multimedia combination of interactive video and the Internet. The course was a telecommunications class offered by Bowling Green State University (Ohio). The transmission site was a tele-teaching room at…
Caliskan, S.; Laref, A.
2014-01-01
Using non-equilibrium Green function formalism in conjunction with density functional theory, we explore the spin-polarized transport characteristics of several planar n-acene molecules suspended between two semi-infinite Ni electrodes via the thiol group. We examine the spin-dependence transport on Ni-n-acenes-Ni junctions, while the number of fused benzene rings varies between 1 and 15. Intriguingly, the induced magnetic moments of small acene molecules are higher than that of longer acene rings. The augmentation of fused benzene rings affects both the magnetic and transport features, such as the transmission function and conductance owing to their coupling to the Ni surface contacts via the anchoring group. The interplay between the spin-polarized transport properties, structural configuration and molecular electronic is a fortiori essential in these attractive molecular devices. Thus, this can conduct to the engineering of the electron spin transport in atomistic and molecular junctions. These prominent molecules convincingly infer that the molecular spin valves can conduct to thriving molecular devices. PMID:25482076
NASA Technical Reports Server (NTRS)
Pryor, D.; Hyde, E. H.; Escher, W. J. D.
1999-01-01
Airbreathing/Rocket combined-cycle, and specifically rocket-based combined- cycle (RBCC), propulsion systems, typically employ an internal engine flow-path installed primary rocket subsystem. To achieve acceptably short mixing lengths in effecting the "air augmentation" process, a large rocket-exhaust/air interfacial mixing surface is needed. This leads, in some engine design concepts, to a "cluster" of small rocket units, suitably arrayed in the flowpath. To support an early (1964) subscale ground-test of a specific RBCC concept, such a 12-rocket cluster was developed by NASA's Marshall Space Flight Center (MSFC). The small primary rockets used in the cluster assembly were modified versions of an existing small kerosene/oxygen water-cooled rocket engine unit routinely tested at MSFC. Following individual thrust-chamber tests and overall subsystem qualification testing, the cluster assembly was installed at the U. S. Air Force's Arnold Engineering Development Center (AEDC) for RBCC systems testing. (The results of the special air-augmented rocket testing are not covered here.) While this project was eventually successfully completed, a number of hardware integration problems were met, leading to catastrophic thrust chamber failures. The principal "lessons learned" in conducting this early primary rocket subsystem experimental effort are documented here as a basic knowledge-base contribution for the benefit of today's RBCC research and development community.
An applied study using systems engineering methods to prioritize green systems options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sonya M; Macdonald, John M
2009-01-01
For many years, there have been questions about the effectiveness of applying different green solutions. If you're building a home and wish to use green technologies, where do you start? While all technologies sound promising, which will perform the best over time? All this has to be considered within the cost and schedule of the project. The amount of information available on the topic can be overwhelming. We seek to examine if Systems Engineering methods can be used to help people choose and prioritize technologies that fit within their project and budget. Several methods are used to gain perspective intomore » how to select the green technologies, such as the Analytic Hierarchy Process (AHP) and Kepner-Tregoe. In our study, subjects applied these methods to analyze cost, schedule, and trade-offs. Results will document whether the experimental approach is applicable to defining system priorities for green technologies.« less
Feasibility of Reburning for Controlling NOx Emissions from Air Force Jet Engine Test Cells
1989-06-01
the engine exhaust by the augmenter air. For this reason, it is important to examine the effect of inlet NOX concentration on achieved reduction...Schedule at Tinker AFB .... ......... 8 3 Typical Nonafterburning Turbine Engine Emission Trends. . 9 4 Temperature of Diluted Exhaust J-79 Engine ... Exhaust Temperature on Reburner NOX Reduction .......... ......................... . 43 24 Effect of Exhaust Gas Inlet Flow Rate on Reburner NOx
Rocketdyne RBCC Engine Concept Development
NASA Technical Reports Server (NTRS)
Ratckin, G.; Goldman, A.; Ortwerth, P.; Weisberg, S.
1999-01-01
Boeing Rocketdyne is pursuing the development of Rocket Based Combined Cycle (RBCC), propulsion systems as demonstrated by significant contract work in the hypersonic arena (ART, NASP, SCT, system studies) and over 12 years of steady company discretionary investment. The Rocketdyne concept is a fixed geometry integrated rocket, ramjet, scramjet which is hydrogen fueled and uses hydrogen regenerative cooling. The baseline engine structural configuration uses an integral structure that eliminates panel seals. seal purge gas, and closeout side attachments. Rocketdyne's experimental RBCC engine (Engine A5) was constructed under contract with the NASA Marshall Space Flight Center. Engine A5 models the complete flight engine flowpath consisting of an inlet, isolator, airbreathing combustor and nozzle. High performance rocket thrusters are integrated into the engine to enable both air-augmented rocket (AAR) and pure rocket operation. Engine A5 was tested in CASL's new FAST facility as an air-augmented rocket, a ramjet and a pure rocket. Measured performance demonstrated vision vehicle performance levels for Mach 3 AAR operation and ramjet operation from Mach 3 to 4. Rocket mode performance was above predictions. For the first time. testing also demonstrated transition from AAR operation to ramjet operation. This baseline configuration has also been shown, in previous testing, to perform well in the scramjet mode.
Investigation of Thrust Augmentation and Acoustic Performance by Ejectors on PDE
NASA Astrophysics Data System (ADS)
Xu, Gui-yang; Weng, Chun-sheng; Li, Ning; Huang, Xiao-long
2016-04-01
Thrust augmentation and acoustic performance of a Pulse Detonation Engine (PDE) with ejector system is experimentally investigated. For these tests the LEjector/DEjector is varied from 1.18 to 4 and the axial placement of the ejector relative to the PDE exhaust is varied from an x/DPDE of -3 to 3. Results from the tests show that the optimum LEjector/DEjector based on thrust augmentation and Overall Sound Pressure Level (OASPL) is found to be 2.61. The divergent ejector performed the best based on thrust augmentation, while the reduction effect for OASPL and Peak Sound Pressure Level (PSPL) at 60° is most prominent for the convergent ejector. The optimum axial position based on thrust augmentation is determined to be x/DPDE = 2, while, x/DPDE = 0 based on OASPL and PSPL.
NASA Astrophysics Data System (ADS)
Phuc Nguyen, Van; Oh, Yunok; Ha, Kanglyeol; Oh, Junghwan; Kang, Hyun Wook
2015-07-01
The current study indicates the feasibility of photoacoustic imaging (PAI) enhanced with contrast agents. A single-element ultrasound transducer (20 MHz) was used to detect PA signals for image reconstruction. To improve PA sensitivity, single-walled carbon nanotubes (SWNTs) conjugated with indocyanine green (ICG) were injected into samples at various concentrations. PA signal amplitudes linearly increased with SWNT-ICG concentration owing to strong light absorption. Compared with SWNTs, SWNT-ICG augmented the signal intensity by approximately 2-fold (concentration: 300 nM). The enhanced optical absorption can allow the application of SWNT-ICG to enable PAI for specifically identifying tumors with high sensitivity.
NASA Technical Reports Server (NTRS)
Van Fossen, G. J.
1983-01-01
It is pointed out that in certain emergency situations it may be desirable to obtain power from a helicopter engine at levels greater than the maximum rating. Yost (1976) has reported studies concerning methods of power augmentation in the one engine inoperative (OEI) case. It was found that a combination of water/alcohol injection into the inlet and overtemperature/overspeed could provide adequate emergency power. The present investigation is concerned with the results of a feasibility study which analytically investigated the maximum possible level of augmentation with constant gas generator turbine stress rupture life as a constraint. In the proposed scheme, the increased engine output is obtained by turbine overtemperature, however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water.
Thrust augmentation options for the Beta 2 two-stage-to-orbit vehicle
NASA Technical Reports Server (NTRS)
Snyder, Christopher A.
1993-01-01
NASA LeRC is continuing to study propulsion concepts for a horizontal takeoff and landing, fully reusable, two-stage-to-orbit vehicle. This will be capable of launching and returning a 10,000 pound payload to a 100 nautical mile polar orbit using low-risk technology. The vehicle, Beta 2, is a derivative of the USAF/Boeing Beta vehicle which was designed to deliver a 50,000 pound payload to a similar orbit. Beta 2 stages at Mach 6.5 and about 100,000 ft altitude. The propulsion system for the booster is an over/under turbine bypass engine/ramjet configuration. In this paper, several options for thrust augmentation were studied in order to improve the performance of this engine where there was a critical need. Options studies were turbine engine overspeed in the transonic region, water injection at a various turbine engine locations also during the transonic region, and water injection at the turbine engine face during high speed operation. The methodology, constraints, propulsion performance, and mission study results are presented.
Presidential Green Chemistry Challenge: 2014 Greener Synthetic Pathways Award
Presidential Green Chemistry Challenge 2014 award winner, Solazyme, engineered microalgae to produce oils tailored to customers’ needs that can mimic or enhance properties of traditional vegetable oils.
Fiia: A Model-Based Approach to Engineering Collaborative Augmented Reality
NASA Astrophysics Data System (ADS)
Wolfe, Christopher; Smith, J. David; Phillips, W. Greg; Graham, T. C. Nicholas
Augmented reality systems often involve collaboration among groups of people. While there are numerous toolkits that aid the development of such augmented reality groupware systems (e.g., ARToolkit and Groupkit), there remains an enormous gap between the specification of an AR groupware application and its implementation. In this chapter, we present Fiia, a toolkit which simplifies the development of collaborative AR applications. Developers specify the structure of their applications using the Fiia modeling language, which abstracts details of networking and provides high-level support for specifying adapters between the physical and virtual world. The Fiia.Net runtime system then maps this conceptual model to a runtime implementation. We illustrate Fiia via Raptor, an augmented reality application used to help small groups collaboratively prototype video games.
Engine Component Retirement for Cause. Volume 1. Executive Summary
1987-08-01
components of all future engines. A mejor factor in the success of this progrm in taking Retirement for Cause from a concept to reality was the high level of...engine was chosen as the demonstration/validation vehicle for the Retirement for Cause (RCF) program. It is an augmented turbofan engine in the...inspections using surface replication; aspect ratios were determined from post test fractography . The crack size observed from the testing was compared to
Augmentor transient capability of an F100 engine equipped with a digital electronic engine control
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Pai, G. D.
1984-01-01
An F100 augmented turbofan engine equipped with digital electronic engine control (DEEC) system was evaluated. The engine was equipped with a specially modified augmentor to provide improved steady state and transient augmentor capability. The combination of the DEEC and the modified augmentor was evaluated in sea level and altitude facility tests and then in four different flight phases in an F-15 aircraft. The augmentor configuration, logic, and test results are presented.
Effective augmentation of networked systems and enhancing pinning controllability
NASA Astrophysics Data System (ADS)
Jalili, Mahdi
2018-06-01
Controlling dynamics of networked systems to a reference state, known as pinning control, has many applications in science and engineering. In this paper, we introduce a method for effective augmentation of networked systems, while also providing high levels of pinning controllability for the final augmented network. The problem is how to connect a sub-network to an already existing network such that the pinning controllability is maximised. We consider the eigenratio of the augmented Laplacian matrix as a pinning controllability metric, and use graph perturbation theory to approximate the influence of edge addition on the eigenratio. The proposed metric can be effectively used to find the inter-network links connecting the disjoint networks. Also, an efficient link rewiring approach is proposed to further optimise the pinning controllability of the augmented network. We provide numerical simulations on synthetic networks and show that the proposed method is more effective than heuristic ones.
Presidential Green Chemistry Challenge: 2010 Small Business Award
Presidential Green Chemistry Challenge 2010 award winner, LS9, engineered microorganisms to convert fermentable sugars selectively to alkanes, olefins, fatty alcohols, or fatty esters, each in a single-unit biorefinery.
Presidential Green Chemistry Challenge: 2003 Greener Reaction Conditions Award
Presidential Green Chemistry Challenge 2003 award winner, DuPont, developed a genetically engineered microorganism jointly with Genencor International to manufacture 1,3-propanediol, a building block for Sorona polyester.
Klein, Annette; Bäumler, Wolfgang; Koller, Michael; Shafirstein, Gal; Kohl, Elisabeth A; Landthaler, Michael; Babilas, Philipp
2012-07-01
Telangiectatic leg veins, which affect about 40-50% of adults, represent a frequent cosmetic rather than a medical problem. Besides sclerotherapy, various laser devices are common treatment options. However, complete clearance rates can only be achieved in a small number of patients. In this proof-of-concept study, the safety and efficacy of indocyanine green (ICG)-augmented diode laser therapy (808 nm) was evaluated for the treatment of telangiectatic leg veins. ICG (2 mg/kg body weight) was intravenously administered in 15 female patients (skin type II to III) with telangiectatic leg veins (measuring between 0.25 and 3 mm in diameter). Immediately after ICG injection, diode laser pulses with different radiant exposures (50-110 J/cm(2)) were applied as one single treatment. Safety and efficacy were assessed 1 and 3 months after treatment by a blinded investigator and the patient. Treatments with the pulsed dye laser (PDL) and the diode laser without ICG served as reference therapies. The safety of ICG application and diode laser treatment was excellent in all patients with no persisting side effects. Vessel clearance was dose-dependent. Diode laser treatment at radiant exposures between 100 and 110 J/cm(2) resulted in good vessel clearance, which even improved to excellent after the application of double pulses. Diode laser therapy without ICG and PDL treatment induced poor to moderate clearance of telangiectatic leg veins. ICG-augmented diode laser therapy has proved to be a safe and effective treatment option for telangiectatic leg veins. Copyright © 2012 Wiley Periodicals, Inc.
Engine Yaw Augmentation for Hybrid-Wing-Body Aircraft via Optimal Control Allocation Techniques
NASA Technical Reports Server (NTRS)
Taylor, Brian R.; Yoo, Seung Yeun
2011-01-01
Asymmetric engine thrust was implemented in a hybrid-wing-body non-linear simulation to reduce the amount of aerodynamic surface deflection required for yaw stability and control. Hybrid-wing-body aircraft are especially susceptible to yaw surface deflection due to their decreased bare airframe yaw stability resulting from the lack of a large vertical tail aft of the center of gravity. Reduced surface deflection, especially for trim during cruise flight, could reduce the fuel consumption of future aircraft. Designed as an add-on, optimal control allocation techniques were used to create a control law that tracks total thrust and yaw moment commands with an emphasis on not degrading the baseline system. Implementation of engine yaw augmentation is shown and feasibility is demonstrated in simulation with a potential drag reduction of 2 to 4 percent. Future flight tests are planned to demonstrate feasibility in a flight environment.
Gas-Generator Augmented Expander Cycle Rocket Engine
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2011-01-01
An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.
Assessing equitable access to urban green space: the role of engineered water infrastructure.
Wendel, Heather E Wright; Downs, Joni A; Mihelcic, James R
2011-08-15
Urban green space and water features provide numerous social, environmental, and economic benefits, yet disparities often exist in their distribution and accessibility. This study examines the link between issues of environmental justice and urban water management to evaluate potential improvements in green space and surface water access through the revitalization of existing engineered water infrastructures, namely stormwater ponds. First, relative access to green space and water features were compared for residents of Tampa, Florida, and an inner-city community of Tampa (East Tampa). Although disparities were not found in overall accessibility between Tampa and East Tampa, inequalities were apparent when quality, diversity, and size of green spaces were considered. East Tampa residents had significantly less access to larger, more desirable spaces and water features. Second, this research explored approaches for improving accessibility to green space and natural water using three integrated stormwater management development scenarios. These scenarios highlighted the ability of enhanced water infrastructures to increase access equality at a variety of spatial scales. Ultimately, the "greening" of gray urban water infrastructures is advocated as a way to address environmental justice issues while also reconnecting residents with issues of urban water management.
Discussion on the Development of Green Chemistry and Chemical Engineering
NASA Astrophysics Data System (ADS)
Zhang, Yunshen
2017-11-01
Chemical industry plays a vital role in the development process of national economy. However, in view of the special nature of the chemical industry, a large number of poisonous and harmful substances pose a great threat to the ecological environment and human health in the entire process of raw material acquisition, production, transportation, product manufacturing, and the final practical application. Therefore, it is a general trend to promote the development of chemistry and chemical engineering towards a greener environment. This article will focus on some basic problems occurred in the development process of green chemistry and chemical engineering.
14 CFR 33.69 - Ignitions system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system. Each..., except that only one igniter is required for fuel burning augmentation systems. [Amdt. 33-6, 39 FR 35466... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ignitions system. 33.69 Section 33.69...
14 CFR 33.69 - Ignitions system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system. Each..., except that only one igniter is required for fuel burning augmentation systems. [Amdt. 33-6, 39 FR 35466... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ignitions system. 33.69 Section 33.69...
14 CFR 33.69 - Ignitions system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system. Each..., except that only one igniter is required for fuel burning augmentation systems. [Amdt. 33-6, 39 FR 35466... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ignitions system. 33.69 Section 33.69...
eLearning Hands-On: Blending Interactive eLearning with Practical Engineering Laboratory
ERIC Educational Resources Information Center
Kiravu, Cheddi; Yanev, Kamen M.; Tunde, Moses O.; Jeffrey, Anna M.; Schoenian, Dirk; Renner, Ansel
2016-01-01
Purpose: Integrating laboratory work into interactive engineering eLearning contents augments theory with practice while simultaneously ameliorating the apparent theory-practice gap in traditional eLearning. The purpose of this paper is to assess and recommend media that currently fulfil this desirable dual pedagogical goal.…
Intraoperative imaging using intravascular contrast agent
NASA Astrophysics Data System (ADS)
Watson, Jeffrey R.; Martirosyan, Nikolay; Garland, Summer; Lemole, G. Michael; Romanowski, Marek
2016-03-01
Near-infrared (NIR) contrast agents are becoming more frequently studied in medical imaging due to their advantageous characteristics, most notably the ability to capture near-infrared signal across the tissue and the safety of the technique. This produces a need for imaging technology that can be specific for both the NIR dye and medical application. Indocyanine green (ICG) is currently the primary NIR dye used in neurosurgery. Here we report on using the augmented microscope we described previously for image guidance in a rat glioma resection. Luc-C6 cells were implanted in a rat in the left-frontal lobe and grown for 22 days. Surgical resection was performed by a neurosurgeon using augmented microscopy guidance with ICG contrast. Videos and images were acquired to evaluate image quality and resection margins. ICG accumulated in the tumor tissue due to enhanced permeation and retention from the compromised bloodbrain- barrier. The augmented microscope was capable of guiding the rat glioma resection and intraoperatively highlighted tumor tissue regions via ICG fluorescence under normal illumination of the surgical field.
Baseline automotive gas turbine engine development program
NASA Technical Reports Server (NTRS)
Wagner, C. E. (Editor); Pampreen, R. C. (Editor)
1979-01-01
Tests results on a baseline engine are presented to document the automotive gas turbine state-of-the-art at the start of the program. The performance characteristics of the engine and of a vehicle powered by this engine are defined. Component improvement concepts in the baseline engine were evaluated on engine dynamometer tests in the complete vehicle on a chassis dynamometer and on road tests. The concepts included advanced combustors, ceramic regenerators, an integrated control system, low cost turbine material, a continuously variable transmission, power-turbine-driven accessories, power augmentation, and linerless insulation in the engine housing.
Yu, Peigen; Low, Mei Yin; Zhou, Weibiao
2018-01-01
In order to develop products that would be preferred by consumers, the effects of the chemical compositions of ready-to-drink green tea beverages on consumer liking were studied through regression analyses. Green tea model systems were prepared by dosing solutions of 0.1% green tea extract with differing concentrations of eight flavour keys deemed to be important for green tea aroma and taste, based on a D-optimal experimental design, before undergoing commercial sterilisation. Sensory evaluation of the green tea model system was carried out using an untrained consumer panel to obtain hedonic liking scores of the samples. Regression models were subsequently trained to objectively predict the consumer liking scores of the green tea model systems. A linear partial least squares (PLS) regression model was developed to describe the effects of the eight flavour keys on consumer liking, with a coefficient of determination (R 2 ) of 0.733, and a root-mean-square error (RMSE) of 3.53%. The PLS model was further augmented with an artificial neural network (ANN) to establish a PLS-ANN hybrid model. The established hybrid model was found to give a better prediction of consumer liking scores, based on its R 2 (0.875) and RMSE (2.41%). Copyright © 2017 Elsevier Ltd. All rights reserved.
GREEN OAK AS A SUSTAINABLE BUILDING MATERIAL
Technical documentation necessary for a project demonstrating the viability of green oak as a contemporary structural material. These will include material grading guidelines, mechanical testing, architectural construction documents and details, specifications, engineering cal...
NASA Technical Reports Server (NTRS)
Barret, Chris
1995-01-01
Report describes study of aerodynamic flight-control-augmentation devices proposed for use in increasing payload capabilities of future launch vehicles by allowing more aft centers of gravity. Proposed all-movable devices not only provide increased control authority during ascent trajectory, but also reduce engine gimballing requirements and enhance crew safety. Report proposes various aerodynamic control surfaces mounted fore and aft on Saturn-class launch vehicle.
NASA Technical Reports Server (NTRS)
1983-01-01
The engineering and fabrication of the test ACT system, produced in the third program element of the IAAC Project is documented. The system incorporates pitch-augmented stability and wing-load alleviation, plus full authority fly-by-wire control of the elevators. The pitch-augmented stability is designed to have reliability sufficient to allow flight with neutral or negative inherent longitudinal stability.
Upon Further Review: A Commodity Chemist on Green Chemistry
NASA Astrophysics Data System (ADS)
Carroll, William F.
2016-09-01
Green chemistry is most often thought of in the context of specialty or pharmaceutical chemicals where many synthetic chemistry approaches are in play. However, principles similar to those of green chemistry and engineering were employed over the years in reducing cost and increasing volume of chemicals that became commodities. This paper considers some of those principles, their impact, and some perspectives on the potential and limits associated with green chemistry for commodity chemicals.
Engineering the Kentucky River: The Commonwealth’s Waterway
1999-01-01
durable dugout canoes hollowed from the trunks of trees.6 After felling a tree, usually a poplar, sycamore, or pine , and stripping it of branches and...Skiles and Warren County interests to improve Green and Barren river navigation up to Bowling Green. Metcalfe be- came the first state official to...engi- neers employed to plan slackwater navigation on the Green and Barren rivers which would provide year-round navigation to Bowling Green. This was
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
..., proposing to study the feasibility of Project Green Dream (Project No. 13625), to be located at the New... Dam are owned and operated by the U.S. Army Corps of Engineers. Project Green Dream would include new...
Presidential Green Chemistry Challenge: 2014 Small Business Award
Presidential Green Chemistry Challenge 2014 award winner, Amyris, engineered yeast to make a chemical called farnesene, which is a building block hydrocarbon that can be converted into a renewable, drop-in replacement for petroleum diesel.
Presidential Green Chemistry Challenge: 1998 Academic Award (Draths and Frost)
Presidential Green Chemistry Challenge 1998 award winners, Dr. Karen M. Draths and Professor John W. Frost, used benign, genetically engineered microbes and sugars (instead of benzene) to synthesize adipic acid and catechol.
ERIC Educational Resources Information Center
Wu, Wei
2010-01-01
Building information modeling (BIM) and green building are currently two major trends in the architecture, engineering and construction (AEC) industry. This research recognizes the market demand for better solutions to achieve green building certification such as LEED in the United States. It proposes a new strategy based on the integration of BIM…
NASA Technical Reports Server (NTRS)
Carros, R. J.; Boissevain, A. G.; Aoyagi, K.
1975-01-01
Data are presented from an investigation of the aerodynamic characteristics of large-scale wind tunnel aircraft model that utilized a hybrid-upper surface blown flap to augment lift. The hybrid concept of this investigation used a portion of the turbofan exhaust air for blowing over the trailing edge flap to provide boundary layer control. The model, tested in the Ames 40- by 80-foot Wind Tunnel, had a 27.5 deg swept wing of aspect ratio 8 and 4 turbofan engines mounted on the upper surface of the wing. The lift of the model was augmented by turbofan exhaust impingement on the wind upper-surface and flap system. Results were obtained for three flap deflections, for some variation of engine nozzle configuration and for jet thrust coefficients from 0 to 3.0. Six-component longitudinal and lateral data are presented with four engine operation and with the critical engine out. In addition, a limited number of cross-plots of the data are presented. All of the tests were made with a downwash rake installed instead of a horizontal tail. Some of these downwash data are also presented.
Control system and method for a hybrid electric vehicle
Tamor, Michael Alan
2001-03-06
Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.
The Propulsive-Only Flight Control Problem
NASA Technical Reports Server (NTRS)
Blezad, Daniel J.
1996-01-01
Attitude control of aircraft using only the throttles is investigated. The long time constants of both the engines and of the aircraft dynamics, together with the coupling between longitudinal and lateral aircraft modes make piloted flight with failed control surfaces hazardous, especially when attempting to land. This research documents the results of in-flight operation using simulated failed flight controls and ground simulations of piloted propulsive-only control to touchdown. Augmentation control laws to assist the pilot are described using both optimal control and classical feedback methods. Piloted simulation using augmentation shows that simple and effective augmented control can be achieved in a wide variety of failed configurations.
Misra, Namrata; Panda, Prasanna Kumar
2013-04-01
The triacylglycerol (TAG) pathway provides several targets for genetic engineering to optimize microalgal lipid productivity. GPAT (glycerol-3-phosphate acyltransferase) is a crucial enzyme that catalyzes the initial step of TAG biosynthesis. Despite many recent biochemical studies, a comprehensive sequence-structure analysis of GPAT across diverse lipid-yielding organisms is lacking. Hence, we performed a comparative genomic analysis of plastid-located GPAT proteins from 7 microalgae and 3 higher plants species. The close evolutionary relationship observed between red algae/diatoms and green algae/plant lineages in the phylogenetic tree were further corroborated by motif and gene structure analysis. The predicted molecular weight, amino acid composition, Instability Index, and hydropathicity profile gave an overall representation of the biochemical features of GPAT protein across the species under study. Furthermore, homology models of GPAT from Chlamydomonas reinhardtii, Arabidopsis thaliana, and Glycine max provided deep insights into the protein architecture and substrate binding sites. Despite low sequence identity found between algal and plant GPATs, the developed models exhibited strikingly conserved topology consisting of 14α helices and 9β sheets arranged in two domains. However, subtle variations in amino acids of fatty acyl binding site were identified that might influence the substrate selectivity of GPAT. Together, the results will provide useful resources to understand the functional and evolutionary relationship of GPAT and potentially benefit in development of engineered enzyme for augmenting algal biofuel production.
MATLAB Meets LEGO Mindstorms--A Freshman Introduction Course into Practical Engineering
ERIC Educational Resources Information Center
Behrens, A.; Atorf, L.; Schwann, R.; Neumann, B.; Schnitzler, R.; Balle, J.; Herold, T.; Telle, A.; Noll, T. G.; Hameyer, K.; Aach, T.
2010-01-01
In today's teaching and learning approaches for first-semester students, practical courses more and more often complement traditional theoretical lectures. This practical element allows an early insight into the real world of engineering, augments student motivation, and enables students to acquire soft skills early. This paper describes a new…
A Puzzle-Based Seminar for Computer Engineering Freshmen
ERIC Educational Resources Information Center
Parhami, Behrooz
2008-01-01
We observe that recruitment efforts aimed at alleviating the shortage of skilled workforce in computer engineering must be augmented with strategies for retaining and motivating the students after they have enrolled in our educational programmes. At the University of California, Santa Barbara, we have taken a first step in this direction by…
Augmented microscopy with near-infrared fluorescence detection
NASA Astrophysics Data System (ADS)
Watson, Jeffrey R.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek
2015-03-01
Near-infrared (NIR) fluorescence has become a frequently used intraoperative technique for image-guided surgical interventions. In procedures such as cerebral angiography, surgeons use the optical surgical microscope for the color view of the surgical field, and then switch to an electronic display for the NIR fluorescence images. However, the lack of stereoscopic, real-time, and on-site coregistration adds time and uncertainty to image-guided surgical procedures. To address these limitations, we developed the augmented microscope, whereby the electronically processed NIR fluorescence image is overlaid with the anatomical optical image in real-time within the optical path of the microscope. In vitro, the augmented microscope can detect and display indocyanine green (ICG) concentrations down to 94.5 nM, overlaid with the anatomical color image. We prepared polyacrylamide tissue phantoms with embedded polystyrene beads, yielding scattering properties similar to brain matter. In this model, 194 μM solution of ICG was detectable up to depths of 5 mm. ICG angiography was then performed in anesthetized rats. A dynamic process of ICG distribution in the vascular system overlaid with anatomical color images was observed and recorded. In summary, the augmented microscope demonstrates NIR fluorescence detection with superior real-time coregistration displayed within the ocular of the stereomicroscope. In comparison to other techniques, the augmented microscope retains full stereoscopic vision and optical controls including magnification and focus, camera capture, and multiuser access. Augmented microscopy may find application in surgeries where the use of traditional microscopes can be enhanced by contrast agents and image guided delivery of therapeutics, including oncology, neurosurgery, and ophthalmology.
Presidential Green Chemistry Challenge: 2012 Greener Synthetic Pathways Award
Presidential Green Chemistry Challenge 2012 award winner, Codexis and Professor Yi Tang, developed a synthesis for the high cholesterol drug, simvastatin, using an engineered acyltransferase enzyme and a low-cost acyl donor as a feedstock.
An Investigation of Wing Lift Augmentation with Spanwise Tip Blowing.
1987-04-22
ON8 Michael R. Mendenhall Steven C. CarusoS Co) D Daniel J. Lesieutre Nielsen Engineering & Research, Inc. 510 Clyde Avenue Mountain View, CA 94043...Augmentation with Spanwise Tip Blowing 12. PERSONALAUTHOR(S) Michael R. Mendenhall, Steven C. Caruso, Daniel J. Lesieutre, and Robert E. Childs 13a. TYPE OF...hardware and associated electronics for the flowfield survey 99 traverse rig mechanism. Mrs. Susana N. Nazario contributed tne software necessary for the
Green materials for sustainable development
NASA Astrophysics Data System (ADS)
Purwasasmita, B. S.
2017-03-01
Sustainable development is an integrity of multidiscipline concept combining ecological, social and economic aspects to construct a liveable human living system. The sustainable development can be support through the development of green materials. Green materials offers a unique characteristic and properties including abundant in nature, less toxic, economically affordable and versatility in term of physical and chemical properties. Green materials can be applied for a numerous field in science and technology applications including for energy, building, construction and infrastructures, materials science and engineering applications and pollution management and technology. For instance, green materials can be developed as a source for energy production. Green materials including biomass-based source can be developed as a source for biodiesel and bioethanol production. Biomass-based materials also can be transformed into advanced functionalized materials for advanced bio-applications such as the transformation of chitin into chitosan which further used for biomedicine, biomaterials and tissue engineering applications. Recently, cellulose-based material and lignocellulose-based materials as a source for the developing functional materials attracted the potential prospect for biomaterials, reinforcing materials and nanotechnology. Furthermore, the development of pigment materials has gaining interest by using the green materials as a source due to their unique properties. Eventually, Indonesia as a large country with a large biodiversity can enhance the development of green material to strengthen our nation competitiveness and develop the materials technology for the future.
NASA Technical Reports Server (NTRS)
Kubiak, Jonathan M.; Arnett, Lori A.
2016-01-01
The NASA Glenn Research Center (GRC) is committed to providing simulated altitude rocket test capabilities to NASA programs, other government agencies, private industry partners, and academic partners. A primary facility to support those needs is the Altitude Combustion Stand (ACS). ACS provides the capability to test combustion components at a simulated altitude up to 100,000 ft. (approx.0.2 psia/10 Torr) through a nitrogen-driven ejector system. The facility is equipped with an axial thrust stand, gaseous and cryogenic liquid propellant feed systems, data acquisition system with up to 1000 Hz recording, and automated facility control system. Propellant capabilities include gaseous and liquid hydrogen, gaseous and liquid oxygen, and liquid methane. A water-cooled diffuser, exhaust spray cooling chamber, and multi-stage ejector systems can enable run times up to 180 seconds to 16 minutes. The system can accommodate engines up to 2000-lbf thrust, liquid propellant supply pressures up to 1800 psia, and test at the component level. Engines can also be fired at sea level if needed. The NASA GRC is in the process of modifying ACS capabilities to enable the testing of green propellant (GP) thrusters and components. Green propellants are actively being explored throughout government and industry as a non-toxic replacement to hydrazine monopropellants for applications such as reaction control systems or small spacecraft main propulsion systems. These propellants offer increased performance and cost savings over hydrazine. The modification of ACS is intended to enable testing of a wide range of green propellant engines for research and qualification-like testing applications. Once complete, ACS will have the capability to test green propellant engines up to 880 N in thrust, thermally condition the green propellants, provide test durations up to 60 minutes depending on thrust class, provide high speed control and data acquisition, as well as provide advanced imaging and diagnostics such as infrared (IR) imaging.
Structural changes of green roof growing substrate layer studied by X-ray CT
NASA Astrophysics Data System (ADS)
Jelinkova, Vladimira; Sacha, Jan; Dohnal, Michal; Snehota, Michal
2017-04-01
Increasing interest in green infrastructure linked with newly implemented legislation/rules/laws worldwide opens up research potential for field of soil hydrology. A better understanding of function of engineered soils involved in green infrastructure solutions such as green roofs or rain garden is needed. A soil layer is considered as a highly significant component of the aforesaid systems. In comparison with a natural soil, the engineered soil is assumed to be the more challenging case due to rapid structure changes early stages after its build-up. The green infrastructure efficiency depends on the physical and chemical properties of the soil, which are, in the case of engineered soils, a function of its initial composition and subsequent soil formation processes. The project presented in this paper is focused on fundamental processes in the relatively thick layer of engineered soil. The initial structure development, during which the pore geometry is altered by the growth of plant roots, water influx, solid particles translocation and other soil formation processes, is investigated with the help of noninvasive imaging technique X-ray computed tomography. The soil development has been studied on undisturbed soil samples taken periodically from green roof test system during early stages of its life cycle. Two approaches and sample sizes were employed. In the first approach, undisturbed samples (volume of about 63 cm3) were taken each time from the test site and scanned by X-ray CT. In the second approach, samples (volume of about 630 cm3) were permanently installed at the test site and has been repeatedly removed to perform X-ray CT imaging. CT-derived macroporosity profiles reveal significant temporal changes of soil structure. Clogging of pores by fine particles and fissures development are two most significant changes that would affect the green roof system efficiency. This work has been supported by the Ministry of Education, Youth and Sports within National Sustainability Programme I, project number LO1605 and with financial support from the Czech Science Foundation under project number GAČR 17-21011S.
A Determinate Model of Thrust-Augmenting Ejectors
NASA Astrophysics Data System (ADS)
Whitley, N.; Krothapalli, A.; van Dommelen, L.
1996-01-01
A theoretical analysis of the compressible flow through a constant-area jet-engine ejector in which a primary jet mixes with ambient fluid from a uniform free stream is pursued. The problem is reduced to a determinate mathematical one by prescribing the ratios of stagnation properties between the primary and secondary flows. For some selections of properties and parameters more than one solution is possible and the meaning of these solutions is discussed by means of asymptotic expansions. Our results further show that while under stationary conditions the thrust-augmentation ratio assumes a value of 2 in the large area-ratio limit, for a free-stream Mach number greater than 0.6 very little thrust augmentation is left. Due to the assumptions made, the analysis provides idealized values for the thrust-augmentation ratio and the mass flux entrainment factor.
Presidential Green Chemistry Challenge 2010 award winner, Dr. James C. Liao, genetically engineered microorganisms to make higher alcohols (with 3 to 8 carbon atoms) from glucose or directly from carbon dioxide (CO2).
Scanning laser beam displays based on a 2D MEMS
NASA Astrophysics Data System (ADS)
Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason
2010-05-01
The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.
Virtually-augmented interfaces for tactical aircraft.
Haas, M W
1995-05-01
The term Fusion Interface is defined as a class of interface which integrally incorporates both virtual and non-virtual concepts and devices across the visual, auditory and haptic sensory modalities. A fusion interface is a multi-sensory virtually-augmented synthetic environment. A new facility has been developed within the Human Engineering Division of the Armstrong Laboratory dedicated to exploratory development of fusion-interface concepts. One of the virtual concepts to be investigated in the Fusion Interfaces for Tactical Environments facility (FITE) is the application of EEG and other physiological measures for virtual control of functions within the flight environment. FITE is a specialized flight simulator which allows efficient concept development through the use of rapid prototyping followed by direct experience of new fusion concepts. The FITE facility also supports evaluation of fusion concepts by operational fighter pilots in a high fidelity simulated air combat environment. The facility was utilized by a multi-disciplinary team composed of operational pilots, human-factors engineers, electronics engineers, computer scientists, and experimental psychologists to prototype and evaluate the first multi-sensory, virtually-augmented cockpit. The cockpit employed LCD-based head-down displays, a helmet-mounted display, three-dimensionally localized audio displays, and a haptic display. This paper will endeavor to describe the FITE facility architecture, some of the characteristics of the FITE virtual display and control devices, and the potential application of EEG and other physiological measures within the FITE facility.
History of greenness mapping at the EROS data center
Van Beek, Carolyn; Vandersnick, Richard
1993-01-01
In 1987, the U.S. Geological Survey's EROS Data Center (EDC)installed a system to acquire, process, and distribute advanced very high resolution radiometer (AVHRR) satellite image data collected over North America. Using this system, the EDC began an experimental greenness mapping program as part of the U.S. Agency for the International Development Famine Early Warning System. The program used the greenness information derived from AVHRR data to identify potential outbreaks of locusts and grasshoppers in the Sahelian region of Africa. In 1988, the EDC began greenness mapping projects in Africa and the northern Great Plains of the United States. In 1989, the system was augmented to acquire AVHRR information for the rest of the world. As a result, the greenness mapping program was able to collect data for fire danger assessment, agricultural assessment, and land characterization. Illustrations of each of the mapping projects trace the chronology of the greenness mapping program at the EDC. Displays represent the initial activity in Africa and the transition of the north Great Plains project to the current conterminous U.S. project. The program's expansion to include Alaska, Eurasia, a prototype North America data set, and ultimately, an experimental global land 1-km product is also shown. The poster describes major technical advances in data processing, the development of derivative products, the magnitude of the data volume of each level, and major applications.
Supersonic fan engines for military aircraft
NASA Technical Reports Server (NTRS)
Franciscus, L. C.
1983-01-01
Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines.
Improving Professionalism in the Engineering Curriculum through a Novel Use of Oral Presentations
ERIC Educational Resources Information Center
Berjano, Enrique; Sales-Nebot, Laura; Lozano-Nieto, Albert
2013-01-01
This hypothesis is based on the fact that oral presentations in the context of engineering education could be used not only to develop oral communication skills but also to augment the professionalism in the curriculum. The methodological innovation is first described, which allows encouraging the capacity of summarising ideas, teamwork,…
Bionic Manufacturing: Towards Cyborg Cells and Sentient Microbots.
Srivastava, Sarvesh Kumar; Yadav, Vikramaditya G
2018-05-01
Bio-inspired engineering applies biological design principles towards developing engineering solutions but is not practical as a manufacturing paradigm. We advocate 'bionic manufacturing', a synergistic fusion of biotic and abiotic components, to transition away from bio-inspiration toward bio-augmentation to address current limitations in bio-inspired manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Army Water Reuse Policy - A Decision Document
2010-06-01
Marsh enhancement Streamflow augmentation Fisheries Nonpotable urban uses Fire protection Air conditioning Toilet flushing Water features US Army Corps...policy Use of IPR from suppliers or to practice on Army facilities Impact of privatization US Army Corps of Engineers® Engineer Research and...Development Center Definitions Graywater = Greywater = Gray Water = Grey Water Blackwater Toilet , Kitchen Wastewater Reclaimed Water Wastewater Treated
Cai, Pei-qiang; Tang, Xun; Lin, Yue-qiu; Martin, Oudega; Sun, Guang-yun; Xu, Lin; Yang, Yun-kang; Zhou, Tian-hua
2006-02-01
To explore the feasibility to construct genetic engineering human neural stem cells (hNSCs) mediated by lentivirus to express multigene in order to provide a graft source for further studies of spinal cord injury (SCI). Human neural stem cells from the brain cortex of human abortus were isolated and cultured, then gene was modified by lentivirus to express both green fluorescence protein (GFP) and rat neurotrophin-3 (NT-3); the transgenic expression was detected by the methods of fluorescence microscope, dorsal root ganglion of fetal rats and slot blot. Genetic engineering hNSCs were successfully constructed. All of the genetic engineering hNSCs which expressed bright green fluorescence were observed under the fluorescence microscope. The conditioned medium of transgenic hNSCs could induce neurite flourishing outgrowth from dorsal root ganglion (DRG). The genetic engineering hNSCs expressed high level NT-3 which could be detected by using slot blot. Genetic engineering hNSCs mediated by lentivirus can be constructed to express multigene successfully.
A summary of NASA/Air Force full scale engine research programs using the F100 engine
NASA Technical Reports Server (NTRS)
Deskin, W. J.; Hurrell, H. G.
1979-01-01
A full scale engine research (FSER) program conducted with the F100 engine is presented. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items were addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology and distortion sensitivity. The associated test programs are described. The FSER approach utilizes existing state of the art engine hardware to evaluate advanced technology concepts and problem areas. Aerodynamic phenomenon previously not considered by design systems were identified and incorporated into industry design tools.
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Zeller, J. R.
1984-01-01
An instability in the nozzle of the F100 engine, equipped with a digital electronic engine control (DEEC), was observed during a flight evaluation on an F-15 aircraft. The instability occurred in the upper left hand corner (ULMC) of the flight envelope during augmentation. The instability was not predicted by stability analysis, closed-loop simulations of the the engine, or altitude testing of the engine. The instability caused stalls and augmentor blowouts. The nozzle instability and the altitude testing are described. Linear analysis and nonlinear digital simulation test results are presented. Software modifications on further flight test are discussed.
Application of real-time engine simulations to the development of propulsion system controls
NASA Technical Reports Server (NTRS)
Szuch, J. R.
1975-01-01
The development of digital controls for turbojet and turbofan engines is presented by the use of real-time computer simulations of the engines. The engine simulation provides a test-bed for evaluating new control laws and for checking and debugging control software and hardware prior to engine testing. The development and use of real-time, hybrid computer simulations of the Pratt and Whitney TF30-P-3 and F100-PW-100 augmented turbofans are described in support of a number of controls research programs at the Lewis Research Center. The role of engine simulations in solving the propulsion systems integration problem is also discussed.
Description and test results of a digital supersonic propulsion system integrated control
NASA Technical Reports Server (NTRS)
Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.
1976-01-01
A digitally implemented integrated inlet/engine control system was developed and tested on a mixed compression, Mach 2.5, supersonic inlet and augmented turbofan engine. The control matched engine airflow to available inlet airflow so that in steady state, the shock would be at the desired location, and the overboard bypass doors would be closed. During engine induced transients, such as augmentor lights and cutoffs, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart.
Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Conners, Timothy R.; Sims, Robert L.
1998-01-01
Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.
39. ENGINE LATHE, SANDER, AND LATHE WITH PATTERNS AND SHAFTS ...
39. ENGINE LATHE, SANDER, AND LATHE WITH PATTERNS AND SHAFTS ABOVE-LOOKING NORTHWEST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA
NASA Technical Reports Server (NTRS)
Vanfossen, G. J.
1983-01-01
A system which would allow a substantially increased output from a turboshaft engine for brief periods in emergency situations with little or no loss of turbine stress rupture life is proposed and studied analytically. The increased engine output is obtained by overtemperaturing the turbine; however, the temperature of the compressor bleed air used for hot section cooling is lowered by injecting and evaporating water. This decrease in cooling air temperature can offset the effect of increased gas temperature and increased shaft speed and thus keep turbine blade stress rupture life constant. The analysis utilized the NASA-Navy-Engine-Program or NNEP computer code to model the turboshaft engine in both design and off-design modes. This report is concerned with the effect of the proposed method of power augmentation on the engine cycle and turbine components. A simple cycle turboshaft engine with a 16:1 pressure ratio and a 1533 K (2760 R) turbine inlet temperature operating at sea level static conditions was studied to determine the possible power increase and the effect on turbine stress rupture life that could be expected using the proposed emergency cooling scheme. The analysis showed a 54 percent increse in output power can be achieved with no loss in gas generator turbine stress rupture life. A 231 K (415 F) rise in turbine inlet temperature is required for this level of augmentation. The required water flow rate was found to be .0109 kg water per kg of engine air flow.
Holographic Rovers: Augmented Reality and the Microsoft HoloLens
NASA Technical Reports Server (NTRS)
Toler, Laura
2017-01-01
Augmented Reality is an emerging field in technology, and encompasses Head Mounted Displays, smartphone apps, and even projected images. HMDs include the Meta 2, Magic Leap, Avegant Light Field, and the Microsoft HoloLens, which is evaluated specifically. The Microsoft HoloLens is designed to be used as an AR personal computer, and is being optimized with that goal in mind. Microsoft allied with the Unity3D game engine to create an SDK for interested application developers that can be used in the Unity environment.
The Marshall Engineering Thermosphere (MET) Model. Volume 1; Technical Description
NASA Technical Reports Server (NTRS)
Smith, R. E.
1998-01-01
Volume 1 presents a technical description of the Marshall Engineering Thermosphere (MET) model atmosphere and a summary of its historical development. Various programs developed to augment the original capability of the model are discussed in detail. The report also describes each of the individual subroutines developed to enhance the model. Computer codes for these subroutines are contained in four appendices.
Advances in Explosively Formed Fuse Opening Switches
1987-06-01
ADVANCES IN EXPLOSIVELY FORMED FUSE OPENING SWITCHES* J. H. Goforth, R. S. Caird, A. E. Greene, I. R. Lindemuth, S. P. Marsh, H. Oona, and R. E...conductor into a series of thin sections. Augmented by an undetermined amount of heating due to the extrusion process, Joule heating in the thin...with initial field fed directly into the generator by a capacitor bank. As described in Ref. 2, these tests demonstrated that the switch would
ERIC Educational Resources Information Center
Schaffhauser, Dian
2009-01-01
In the world of higher education, even the most ambitious sustainability plans often begin with tiny steps taken by individual departments. Michael Crowley, a program manager for Environmental Health & Engineering (EH&E) and former assistant director of the Harvard (Massachusetts) Green Campus Initiative, explains that going for small wins through…
Plant functional traits predict green roof ecosystem services.
Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke
2015-02-17
Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.
Supersonic fan engines for military aircraft
NASA Technical Reports Server (NTRS)
Franciscus, L. C.
1983-01-01
Engine performance and mission studies were performed for turbofan engines with supersonic through-flow fans. A Mach 2.4 CTOL aircraft was used in the study. Two missions were considered: a long range penetrator mission and a long range intercept mission. The supersonic fan engine is compared with an augmented mixed flow turbofan in terms of mission radius for a fixed takeoff gross weight of 75,000 lbm. The mission radius of aircraft powered by supersonic fan engines could be 15 percent longer than aircraft powered with conventional turbofan engines at moderate thrust to gross weight ratios. The climb and acceleration performance of the supersonic fan engines is better than that of the conventional turbofan engines. Previously announced in STAR as N83-34947
18. VIEW TOWARD MAIN ENTRANCE OF AMERICAN TOOL ENGINE LATHE, ...
18. VIEW TOWARD MAIN ENTRANCE OF AMERICAN TOOL ENGINE LATHE, JIB CRANE ABOVE-LOOKING NORTH. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA
17. TRACTOR ENGINE POWERING SHAFT SYSTEM IN FOREGROUND, BELT CONNECTS ...
17. TRACTOR ENGINE POWERING SHAFT SYSTEM IN FOREGROUND, BELT CONNECTS WITH MAIN SHAFT LOOKING EAST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA
13. RADIAL DRILL, ENGINE LATHE, DRILL PRESS, AND GRINDER (L ...
13. RADIAL DRILL, ENGINE LATHE, DRILL PRESS, AND GRINDER (L TO R)-LOOKING SOUTHEAST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA
1978-12-01
not retumn it to the originator. Unclassified READ INSTRUCTIONSJ EPORT DOCUMENTATION PAGE BEFORE COMPLETING FORMJ. GOVT ACCESSr - ECIPIENT’S CATALOG...responsible for low engine performance of an installed engine. In the case of the T700, a study was completed in Nov. 197 7 which def8 nod an analytical...ECM study has been completed . T" e results of the various systems considered areo presented below. &sateim A - Az exponsive system foaturing in- X ~(X
Real-time augmented reality overlay for an energy-efficient car study
NASA Astrophysics Data System (ADS)
Wozniak, Peter; Javahiraly, Nicolas; Curticapean, Dan
2017-06-01
Our university carries out various research projects. Among others, the project Schluckspecht is an interdisciplinary work on different ultra-efficient car concepts for international contests. Besides the engineering work, one part of the project deals with real-time data visualization. In order to increase the efficiency of the vehicle, an online monitoring of the runtime parameters is necessary. The driving parameters of the vehicle are transmitted to a processing station via a wireless network connection. We plan to use an augmented reality (AR) application to visualize different data on top of the view of the real car. By utilizing a mobile Android or iOS device a user can interactively view various real-time and statistical data. The car and its components are meant to be augmented by various additional information, whereby that information should appear at the correct position of the components. An engine e.g. could show the current rpm and consumption values. A battery on the other hand could show the current charge level. The goal of this paper is to evaluate different possible approaches, their suitability and to expand our application to other projects at our university.
NASA Technical Reports Server (NTRS)
Vomaske, R. F.; Innis, R. C.; Swan, B. E.; Grossmith, S. W.
1978-01-01
The stability, control, and handling qualities of an augmented jet flap STOL airplane are presented. The airplane is an extensively modified de Havilland Buffalo military transport. The modified airplane has two fan-jet engines which provide vectorable thrust and compressed air for the augmentor jet flap and Boundary-Layer Control (BLC). The augmentor and BLC air is cross ducted to minimize asymmetric moments produced when one engine is inoperative. The modifications incorporated in the airplane include a Stability Augmentation System (SAS), a powered elevator, and a powered lateral control system. The test gross weight of the airplane was between 165,000 and 209,000 N (37,000 and 47,000 lb). Stability, control, and handling qualities are presented for the airspeed range of 40 to 180 knots. The lateral-directional handling qualities are considered satisfactory for the normal operating range of 65 to 160 knots airspeed when the SAS is functioning. With the SAS inoperative, poor turn coordination and spiral instability are primary deficiencies contributing to marginal handling qualities in the landing approach. The powered elevator control system enhanced the controllability in pitch, particularly in the landing flare and stall recovery.
Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh
2005-01-01
Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study and operated at frequencies up to 50 Hz. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results at each desired frequency agree with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various ejector lengths, the radius of curvature for the ejector inlets and various detonation tube/ejector tube overlap distances. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.
ERIC Educational Resources Information Center
Borrero, A. Mejias; Marquez, J. M. Andujar
2012-01-01
Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real…
Real-time simulation of an F110/STOVL turbofan engine
NASA Technical Reports Server (NTRS)
Drummond, Colin K.; Ouzts, Peter J.
1989-01-01
A traditional F110-type turbofan engine model was extended to include a ventral nozzle and two thrust-augmenting ejectors for Short Take-Off Vertical Landing (STOVL) aircraft applications. Development of the real-time F110/STOVL simulation required special attention to the modeling approach to component performance maps, the low pressure turbine exit mixing region, and the tailpipe dynamic approximation. Simulation validation derives by comparing output from the ADSIM simulation with the output for a validated F110/STOVL General Electric Aircraft Engines FORTRAN deck. General Electric substantiated basic engine component characteristics through factory testing and full scale ejector data.
NASA Technical Reports Server (NTRS)
Jones, William L.; Dowman, Harry W.
1947-01-01
Investigations were conducted to determine effectiveness of refrigerants in increasing thrust of turbojet engines. Mixtures of water an alcohol were injected for a range of total flows up to 2.2 lb/sec. Kerosene was injected into inlets covering a range of injected flows up to approximately 30% of normal engine fuel flow. Injection of 2.0 lb/sec of water alone produced an increase in thrust of 35.8% of rate engine conditions and kerosene produced a negligible increase in thrust. Carbon dioxide increased thrust 23.5 percent.
Ulijasz, Andrew T.; Vierstra, Richard D.
2016-06-14
Genetically-engineered cyanochrome fluorophore molecules (fluorophores) with increased fluorescence and with absorbing fluorescence in the blue and green (blue/green) portion of the light spectrum are provided. These fluorophores are derived from the domains of phytochromes, and in particular cyanobacterial phytochromes. Methods for generating these fluorophores and various applications of these fluorophores are also provided.
Green Action through Education: A Model for Fostering Positive Attitudes about STEM
ERIC Educational Resources Information Center
Wheland, Ethel R.; Donovan, William J.; Dukes, J. Thomas; Qammar, Helen K.; Smith, Gregory A.; Williams, Bonnie L.
2013-01-01
This paper describes an innovative collaboration between instructors of non-STEM (science, technology, engineering, and mathematics) courses and scientists who teach STEM courses in the GATE (Green Action Through Education) learning community. The scientists in this project presented engaging science--in such diverse locations as a sewage…
Pioneering Mars: Turning the Red Planet Green with Earth's Smallest Settlers
ERIC Educational Resources Information Center
Cwikla, Julie; Milroy, Scott; Reider, David; Skelton, Tara
2014-01-01
Pioneering Mars: Turning the Red Planet Green with the Earth's Smallest Settlers (http://pioneeringmars.org) provides a partnership model for STEM (science, technology, engineering, and mathematics) learning that brings university scientists together with high school students to investigate whether cyanobacteria from Antarctica could survive on…
Pickering, Tyler R; Poirier, Luke A; Barrett, Timothy J; McKenna, Shawn; Davidson, Jeff; Quijón, Pedro A
2017-06-01
Non-indigenous green crabs (Carcinus maenas) are emerging as important predators of autogenic engineers like American oysters (Crassostrea virginica) throughout the eastern seaboard of Canada and the United States. To document the spreading distribution of green crabs, we carried out surveys in seven sites of Prince Edward Island during three fall seasons. To assess the potential impact of green crabs on oyster mortality in relation to predator and prey size, we conducted multiple predator-prey manipulations in the field and laboratory. The surveys confirmed an ongoing green crab spread into new productive oyster habitats while rapidly increasing in numbers in areas where crabs had established already. The experiments measured mortality rates on four sizes of oysters exposed to three sizes of crab, and lasted 3-5 days. The outcomes of experiments conducted in Vexar ® bags, laboratory tanks and field cages were consistent and were heavily dependent on both crab size and oyster size: while little predation occurred on large oysters, large and medium green crabs preyed heavily on small sizes. Oysters reached a refuge within the 35-55 mm shell length range; below that range, oysters suffered high mortality due to green crab predation and thus require management measures to enhance their survival. These results are most directly applicable to aquaculture operations and restoration initiatives but have implications for oyster sustainability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Analysis of a topping-cycle, aircraft, gas-turbine-engine system which uses cryogenic fuel
NASA Technical Reports Server (NTRS)
Turney, G. E.; Fishbach, L. H.
1984-01-01
A topping-cycle aircraft engine system which uses a cryogenic fuel was investigated. This system consists of a main turboshaft engine that is mechanically coupled (by cross-shafting) to a topping loop, which augments the shaft power output of the system. The thermodynamic performance of the topping-cycle engine was analyzed and compared with that of a reference (conventional) turboshaft engine. For the cycle operating conditions selected, the performance of the topping-cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping-cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping-cycle engine is comparable with that of the reference turboshaft engine.
Study of LH2-fueled topping cycle engine for aircraft propulsion
NASA Technical Reports Server (NTRS)
Turney, G. E.; Fishbach, L. H.
1983-01-01
An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine.
Impacts of software and its engineering on the carbon footprint of ICT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kern, Eva, E-mail: e.kern@umwelt-campus.de; Dick, Markus, E-mail: sustainablesoftwareblog@gmail.com; Naumann, Stefan, E-mail: s.naumann@umwelt-campus.de
2015-04-15
The energy consumption of information and communication technology (ICT) is still increasing. Even though several solutions regarding the hardware side of Green IT exist, the software contribution to Green IT is not well investigated. The carbon footprint is one way to rate the environmental impacts of ICT. In order to get an impression of the induced CO{sub 2} emissions of software, we will present a calculation method for the carbon footprint of a software product over its life cycle. We also offer an approach on how to integrate some aspects of carbon footprint calculation into software development processes and discussmore » impacts and tools regarding this calculation method. We thus show the relevance of energy measurements and the attention to impacts on the carbon footprint by software within Green Software Engineering.« less
NASA Conducts Final RS-25 Rocket Engine Test of 2017
2017-12-13
NASA engineers at Stennis Space Center capped a year of Space Launch System testing with a final RS-25 rocket engine hot fire on Dec. 13. The 470-second test on the A-1 Test Stand was a “green run” test of an RS-25 flight controller. The engine tested also included a large 3-D-printed part, a pogo accumulator assembly, scheduled for use on future RS-25 flight engines.
Current Status of Tissue-Engineered Scaffolds for Rotator Cuff Repair.
Chainani, Abby; Little, Dianne
2016-06-01
Rotator cuff tears continue to be at significant risk for re-tear or for failure to heal after surgical repair despite the use of a variety of surgical techniques and augmentation devices. Therefore, there is a need for functionalized scaffold strategies to provide sustained mechanical augmentation during the critical first 12-weeks following repair, and to enhance the healing potential of the repaired tendon and tendon-bone interface. Tissue engineered approaches that combine the use of scaffolds, cells, and bioactive molecules towards promising new solutions for rotator cuff repair are reviewed. The ideal scaffold should have adequate initial mechanical properties, be slowly degrading or non-degradable, have non-toxic degradation products, enhance cell growth, infiltration and differentiation, promote regeneration of the tendon-bone interface, be biocompatible and have excellent suture retention and handling properties. Scaffolds that closely match the inhomogeneity and non-linearity of the native rotator cuff may significantly advance the field. While substantial pre-clinical work remains to be done, continued progress in overcoming current tissue engineering challenges should allow for successful clinical translation.
Current Status of Tissue-Engineered Scaffolds for Rotator Cuff Repair
Chainani, Abby; Little, Dianne
2015-01-01
Rotator cuff tears continue to be at significant risk for re-tear or for failure to heal after surgical repair despite the use of a variety of surgical techniques and augmentation devices. Therefore, there is a need for functionalized scaffold strategies to provide sustained mechanical augmentation during the critical first 12-weeks following repair, and to enhance the healing potential of the repaired tendon and tendon-bone interface. Tissue engineered approaches that combine the use of scaffolds, cells, and bioactive molecules towards promising new solutions for rotator cuff repair are reviewed. The ideal scaffold should have adequate initial mechanical properties, be slowly degrading or non-degradable, have non-toxic degradation products, enhance cell growth, infiltration and differentiation, promote regeneration of the tendon-bone interface, be biocompatible and have excellent suture retention and handling properties. Scaffolds that closely match the inhomogeneity and non-linearity of the native rotator cuff may significantly advance the field. While substantial pre-clinical work remains to be done, continued progress in overcoming current tissue engineering challenges should allow for successful clinical translation. PMID:27346922
Flight evaluation of a digital electronic engine control system in an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.
1982-01-01
Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.
NASA Astrophysics Data System (ADS)
Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.
2016-12-01
This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.
Zhou, Zhe; Yan, Hao; Liu, Yidong; Xiao, Dongdong; Li, Wei; Wang, Qiong; Zhao, Yang; Sun, Kang; Zhang, Ming; Lu, Mujun
2018-04-01
The study investigated the feasibility of seeding adipose-derived stem cells (ASCs) onto a poly(ϵ-caprolactone)/chitosan (PCL/CS) scaffold for bladder reconstruction using a rat model of bladder augmentation. In the experimental group, the autologous ASCs were seeded onto the PCL/CS scaffold for bladder augmentation. An unseeded scaffold was used for bladder augmentation as control group. The sham group was also set. 8 weeks after implantation, more densely smooth muscles were detected in the experimental group with a larger bladder capacity and more intensive blood vessels. Immunofluorescence staining demonstrated that some of the smooth muscle cells were transdifferentiated from the ASCs. Our findings indicated that ASC-seeded PCL/CS may be a potential scaffold for bladder tissue engineering.
Preliminary design-lift/cruise fan research and technology airplane flight control system
NASA Technical Reports Server (NTRS)
Gotlieb, P.; Lewis, G. E.; Little, L. J.
1976-01-01
This report presents the preliminary design of a stability augmentation system for a NASA V/STOL research and technology airplane. This stability augmentation system is postulated as the simplest system that meets handling qualities levels for research and technology missions flown by NASA test pilots. The airplane studied in this report is a T-39 fitted with tilting lift/cruise fan nacelles and a nose fan. The propulsion system features a shaft interconnecting the three variable pitch fans and three power plants. The mathematical modeling is based on pre-wind tunnel test estimated data. The selected stability augmentation system uses variable gains scheduled with airspeed. Failure analysis of the system illustrates the benign effect of engine failure. Airplane rate sensor failure must be solved with redundancy.
The preliminary design of a lift-cruise fan airplane flight control system
NASA Technical Reports Server (NTRS)
Gotlieb, P.
1977-01-01
This paper presents the preliminary design of a stability augmentation system for a NASA V/STOL research and technology airplane. This stability augmentation system is postulated as the simplest system that meets handling-quality levels for research and technology missions flown by NASA test pilots. The airplane studied in this report is a modified T-39 fitted with tilting lift/cruise fan nacelles and a nose fan. The propulsion system features a shaft that interconnects three variable-pitch fans and three powerplants. The mathematical modeling is based on pre-wind tunnel test estimated data. The selected stability augmentation system uses variable gains scheduled with airspeed. Failure analysis of the system illustrates the benign effect of engine failure. Airplane rate sensor failure must be solved with redundancy.
Code of Federal Regulations, 2013 CFR
2013-07-01
... RESOURCE POLICIES AND AUTHORITIES: CORPS OF ENGINEERS PARTICIPATION IN IMPROVEMENTS FOR ENVIRONMENTAL... land resources has gradually broadened over the past century. Starting with the development of..., water quality, fish and wildlife and low-flow augmentation. Laws, executive orders, and national...
Code of Federal Regulations, 2014 CFR
2014-07-01
... RESOURCE POLICIES AND AUTHORITIES: CORPS OF ENGINEERS PARTICIPATION IN IMPROVEMENTS FOR ENVIRONMENTAL... land resources has gradually broadened over the past century. Starting with the development of..., water quality, fish and wildlife and low-flow augmentation. Laws, executive orders, and national...
Code of Federal Regulations, 2012 CFR
2012-07-01
... RESOURCE POLICIES AND AUTHORITIES: CORPS OF ENGINEERS PARTICIPATION IN IMPROVEMENTS FOR ENVIRONMENTAL... land resources has gradually broadened over the past century. Starting with the development of..., water quality, fish and wildlife and low-flow augmentation. Laws, executive orders, and national...
Improving Word Similarity by Augmenting PMI with Estimates of Word Polysemy
2011-12-29
radiator, brake , throttle, speeding, uptown, curb, auto, skid, balloon, truck, refrigerator, driver, downtown, parachute, gasoline, steering, spin...chauffeur, garage, motor, trolley, locomotive, conductor, automobile, limousine, freight, headlight, train, driver, brake , siding, passenger, engine
Heater head for stirling engine
Corey, John A.
1985-07-09
A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.
NASA Technical Reports Server (NTRS)
Phelps, A. E., III; Letko, W.; Henderson, R. L.
1973-01-01
An investigation of the static longitudinal aerodynamic characteristics of a semispan STOL jet transport wing-body with an upper-surface blown jet flap for lift augmentation was conducted in a low-speed wind tunnel having a 12-ft octagonal test section. The semispan swept wing had an aspect ratio of 3.92 (7.84 for the full span) and had two simulated turbofan engines mounted ahead of and above the wing in a siamese pod equipped with an exhaust deflector. The purpose of the deflector was to spread the engine exhaust into a jet sheet attached to the upper surface of the wing so that it would turn downward over the flap and provide lift augmentation. The wing also had optional boundary-layer control provided by air blowing through a thin slot over a full-span plain trailing-edge flap.
12. VIEW FROM MAIN ENTRANCE OF STOVE, ENGINE LATHE, AND ...
12. VIEW FROM MAIN ENTRANCE OF STOVE, ENGINE LATHE, AND GRINDER (L TO R) IN FOREGROUND, SHAFTING ABOVE LOOKING SOUTH. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA
Engineered Plants Make Potential Precursor to Raw Material for Plastics
Shanklin, John
2018-06-12
In a first step toward achieving industrial-scale green production, scientists from BNL and collaborators at Dow AgroSciences report engineering a plant that produces industrially relevant levels of chemicals that could potentially be used to make plastics.
Research Apprenticeships for Disadvantaged High Schoolers (RADHS)
1982-07-09
DISADVANTAGED hIGH SCHOOLER (RADHS) 61102-FCD AUTI4ORM$ 2313/D3N% Roy B. Cowin t PWOFiIMG OGANZATbON NAME(S) AND ADORE SS(1S) L PIRFOMMG OlIGANUZATMO CN ABET...that the Air Force Research Apprenticeships for Disadvantaged High Schoolers (RADHS) should augment its Uninitiates Introduction To Engineering (UNITE...mechanical engineering. Numerous projects deal with energy con - servation and alternative energy sources, protective clothing, and electrical safey
Video File - NASA Conducts Final RS-25 Rocket Engine Test of 2017
2017-12-13
NASA engineers at Stennis Space Center capped a year of Space Launch System testing with a final RS-25 rocket engine hot fire on Dec. 13. The 470-second test on the A-1 Test Stand was a “green run” test of an RS-25 flight controller. The engine tested also included a large 3-D-printed part, a pogo accumulator assembly, scheduled for use on future RS-25 flight engines.
ERIC Educational Resources Information Center
Dorney, Kevin M.; Baker, Joshua D.; Edwards, Michelle L.; Kanel, Sushil R.; O'Malley, Matthew; Pavel Sizemore, Ioana E.
2014-01-01
Numerous nanoparticle (NP) fabrication methodologies employ "bottom-up" syntheses, which may result in heterogeneous mixtures of NPs or may require toxic capping agents to reduce NP polydispersity. Tangential flow filtration (TFF) is an alternative "green" technique for the purification, concentration, and size-selection of…
40 CFR 52.2625 - Compliance schedules.
Code of Federal Regulations, 2011 CFR
2011-07-01
...), (h) Jan. 26, 1973 ......do Jan. 31, 1974. Basins Engineering Wheatland 14 (b), (e), (f), (g) June 6, 1974 ......do Apr. 5, 1974. Stauffer Chemical Co Green River 14 (b), (e), (f), (g) ......do ......do.... Allied Chemical Green River 14 (b), (e), (f), (g) ......do ......do Aug. 1, 1976. IMC Corp Colony 14 (b...
40 CFR 52.2625 - Compliance schedules.
Code of Federal Regulations, 2012 CFR
2012-07-01
...), (h) Jan. 26, 1973 ......do Jan. 31, 1974. Basins Engineering Wheatland 14 (b), (e), (f), (g) June 6, 1974 ......do Apr. 5, 1974. Stauffer Chemical Co Green River 14 (b), (e), (f), (g) ......do ......do.... Allied Chemical Green River 14 (b), (e), (f), (g) ......do ......do Aug. 1, 1976. IMC Corp Colony 14 (b...
40 CFR 52.2625 - Compliance schedules.
Code of Federal Regulations, 2010 CFR
2010-07-01
...), (h) Jan. 26, 1973 ......do Jan. 31, 1974. Basins Engineering Wheatland 14 (b), (e), (f), (g) June 6, 1974 ......do Apr. 5, 1974. Stauffer Chemical Co Green River 14 (b), (e), (f), (g) ......do ......do.... Allied Chemical Green River 14 (b), (e), (f), (g) ......do ......do Aug. 1, 1976. IMC Corp Colony 14 (b...
Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate.
Chen, Haiwei; Weng, Yishi; Xu, Daming; Tabiryan, Nelson V; Wu, Shin-Tson
2016-04-04
We proposed a switchable beam steering device with cycloidal diffractive waveplate (CDW) for eye tracking in a virtual reality (VR) or augmented reality (AR) display system. Such a CDW diffracts the incident circularly polarized light to the first order with over 95% efficiency. To convert the input linearly polarized light to right-handed or left-handed circular polarization, we developed a broadband polarization switch consisting of a twisted nematic liquid crystal cell and an achromatic quarter-wave retardation film. By cascading 2-3 CDWs together, multiple diffraction angles can be achieved. To suppress the color dispersion, we proposed two approaches to obtain the same diffraction angle for red, green, and blue LEDs-based full color displays. Our device exhibits several advantages, such as high diffraction efficiency, fast response time, low power consumption, and low cost. It holds promise for the emerging VR/AR displays.
Designing a 'neotissue' using the principles of biology, chemistry and engineering.
Nannaparaju, Madhusudhan; Oragui, Emeka; Khan, Wasim S
2012-01-01
The traditional methods of treating musculoskeletal injuries and disorders are not completely effective and have several limitations. Tissue engineering involves using the principles of biology, chemistry and engineering to design a 'neotissue' that augments a malfunctioning in vivo tissue. The main requirements for functional engineered tissue include reparative cellular components that proliferate on a scaffold grown within a bioreactor that provides specific biochemical and physical signals to regulate cell differentiation and tissue assembly. In this review we provide an overview of the biology of common musculoskeletal tissue and discuss their common pathologies. We also describe the commonly used stem cells, scaffolds and bioreactors and evaluate their role in issue engineering.
Extremely Vivid, Highly Transparent, and Ultrathin Quantum Dot Light-Emitting Diodes.
Choi, Moon Kee; Yang, Jiwoong; Kim, Dong Chan; Dai, Zhaohe; Kim, Junhee; Seung, Hyojin; Kale, Vinayak S; Sung, Sae Jin; Park, Chong Rae; Lu, Nanshu; Hyeon, Taeghwan; Kim, Dae-Hyeong
2018-01-01
Displaying information on transparent screens offers new opportunities in next-generation electronics, such as augmented reality devices, smart surgical glasses, and smart windows. Outstanding luminance and transparency are essential for such "see-through" displays to show vivid images over clear background view. Here transparent quantum dot light-emitting diodes (Tr-QLEDs) are reported with high brightness (bottom: ≈43 000 cd m -2 , top: ≈30 000 cd m -2 , total: ≈73 000 cd m -2 at 9 V), excellent transmittance (90% at 550 nm, 84% over visible range), and an ultrathin form factor (≈2.7 µm thickness). These superb characteristics are accomplished by novel electron transport layers (ETLs) and engineered quantum dots (QDs). The ETLs, ZnO nanoparticle assemblies with ultrathin alumina overlayers, dramatically enhance durability of active layers, and balance electron/hole injection into QDs, which prevents nonradiative recombination processes. In addition, the QD structure is further optimized to fully exploit the device architecture. The ultrathin nature of Tr-QLEDs allows their conformal integration on various shaped objects. Finally, the high resolution patterning of red, green, and blue Tr-QLEDs (513 pixels in. -1 ) shows the potential of the full-color transparent display. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Slat Cove Noise Modeling: A Posteriori Analysis of Unsteady RANS Simulations
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Khorrami, Mehdi R.; Lockard, David P.; Atkins, Harold L.; Lilley, Geoffrey M.
2002-01-01
A companion paper by Khorrami et al demonstrates the feasibility of simulating the (nominally) self-sustained, large-scale unsteadiness within the leading-edge slat-cove region of multi-element airfoils using unsteady Reynolds-Averaged Navier-Stokes (URANS) equations, provided that the turbulence production term in the underlying two-equation turbulence model is switched off within the cove region. In conjunction with a FfowesWilliams-Hawkings solver, the URANS computations were shown to capture the dominant portion of the acoustic spectrum attributed to slat noise, as well as reproducing the increased intensity of slat cove motions (and, correspondingly, far-field noise as well) at the lower angles of attack. This paper examines that simulation database, augmented by additional simulations, with the objective of transitioning this apparent success to aeroacoustic predictions in an engineering context. As a first step towards this goal, the simulated flow and acoustic fields are compared with experiment and simplified analytical model. Rather intense near-field fluctuations in the simulated flow are found to be associated with unsteady separation along the slat bottom surface, relatively close to the slat cusp. Accuracy of the laminar-cove simulations in this near-wall region is raised to be an open issue. The adjoint Green's function approach is also explored in an attempt to identify the most efficient noise source locations.
NASA Astrophysics Data System (ADS)
Wang, Ruozhu; Liu, Pengda; Qian, Yongmei
2018-02-01
This paper analyzes the design technology of controlling indoor quality in engineering practice, it is proposed that, in framework system of green residential building design, how to realize the design idea of controlling the indoor environment quality, and the design technology with feasibility, including the sunshine and lighting, indoor air quality and thermal environment, sound insulation and noise reduction measures, etc.. The results of all will provide a good theoretical supportting for the design of green residential building.
ERIC Educational Resources Information Center
Dell, Cindy Ann; Harrold, Barbara; Dell, Thomas
2008-01-01
The Wide Range Achievement Test-Fourth Edition (WRAT4) is designed to provide "a quick, simple, psychometrically sound assessment of academic skills". The test was first published in 1946 by Joseph F. Jastak, with the purpose of augmenting the cognitive performance measures of the Wechsler-Bellevue Scales, developed by David Wechsler.…
Hybrid Reality Lab Capabilities - Video 2
NASA Technical Reports Server (NTRS)
Delgado, Francisco J.; Noyes, Matthew
2016-01-01
Our Hybrid Reality and Advanced Operations Lab is developing incredibly realistic and immersive systems that could be used to provide training, support engineering analysis, and augment data collection for various human performance metrics at NASA. To get a better understanding of what Hybrid Reality is, let's go through the two most commonly known types of immersive realities: Virtual Reality, and Augmented Reality. Virtual Reality creates immersive scenes that are completely made up of digital information. This technology has been used to train astronauts at NASA, used during teleoperation of remote assets (arms, rovers, robots, etc.) and other activities. One challenge with Virtual Reality is that if you are using it for real time-applications (like landing an airplane) then the information used to create the virtual scenes can be old (i.e. visualized long after physical objects moved in the scene) and not accurate enough to land the airplane safely. This is where Augmented Reality comes in. Augmented Reality takes real-time environment information (from a camera, or see through window, and places digitally created information into the scene so that it matches with the video/glass information). Augmented Reality enhances real environment information collected with a live sensor or viewport (e.g. camera, window, etc.) with the information-rich visualization provided by Virtual Reality. Hybrid Reality takes Augmented Reality even further, by creating a higher level of immersion where interactivity can take place. Hybrid Reality takes Virtual Reality objects and a trackable, physical representation of those objects, places them in the same coordinate system, and allows people to interact with both objects' representations (virtual and physical) simultaneously. After a short period of adjustment, the individuals begin to interact with all the objects in the scene as if they were real-life objects. The ability to physically touch and interact with digitally created objects that have the same shape, size, location to their physical object counterpart in virtual reality environment can be a game changer when it comes to training, planning, engineering analysis, science, entertainment, etc. Our Project is developing such capabilities for various types of environments. The video outlined with this abstract is a representation of an ISS Hybrid Reality experience. In the video you can see various Hybrid Reality elements that provide immersion beyond just standard Virtual Reality or Augmented Reality.
Can greening of aquaculture sequester blue carbon?
Ahmed, Nesar; Bunting, Stuart W; Glaser, Marion; Flaherty, Mark S; Diana, James S
2017-05-01
Globally, blue carbon (i.e., carbon in coastal and marine ecosystems) emissions have been seriously augmented due to the devastating effects of anthropogenic pressures on coastal ecosystems including mangrove swamps, salt marshes, and seagrass meadows. The greening of aquaculture, however, including an ecosystem approach to Integrated Aquaculture-Agriculture (IAA) and Integrated Multi-Trophic Aquaculture (IMTA) could play a significant role in reversing this trend, enhancing coastal ecosystems, and sequestering blue carbon. Ponds within IAA farming systems sequester more carbon per unit area than conventional fish ponds, natural lakes, and inland seas. The translocation of shrimp culture from mangrove swamps to offshore IMTA could reduce mangrove loss, reverse blue carbon emissions, and in turn increase storage of blue carbon through restoration of mangroves. Moreover, offshore IMTA may create a barrier to trawl fishing which in turn could help restore seagrasses and further enhance blue carbon sequestration. Seaweed and shellfish culture within IMTA could also help to sequester more blue carbon. The greening of aquaculture could face several challenges that need to be addressed in order to realize substantial benefits from enhanced blue carbon sequestration and eventually contribute to global climate change mitigation.
RNA aptamers that functionally interact with green fluorescent protein and its derivatives
Shui, Bo; Ozer, Abdullah; Zipfel, Warren; Sahu, Nevedita; Singh, Avtar; Lis, John T.; Shi, Hua; Kotlikoff, Michael I.
2012-01-01
Green Fluorescent Protein (GFP) and related fluorescent proteins (FPs) have been widely used to tag proteins, allowing their expression and subcellular localization to be examined in real time in living cells and animals. Similar fluorescent methods are highly desirable to detect and track RNA and other biological molecules in living cells. For this purpose, we have developed a group of RNA aptamers that bind GFP and related proteins, which we term Fluorescent Protein-Binding Aptamers (FPBA). These aptamers bind GFP, YFP and CFP with low nanomolar affinity and binding decreases GFP fluorescence, whereas slightly augmenting YFP and CFP brightness. Aptamer binding results in an increase in the pKa of EGFP, decreasing the 475 nm excited green fluorescence at a given pH. We report the secondary structure of FPBA and the ability to synthesize functional multivalent dendrimers. FPBA expressed in live cells decreased GFP fluorescence in a valency-dependent manner, indicating that the RNA aptamers function within cells. The development of aptamers that bind fluorescent proteins with high affinity and alter their function, markedly expands their use in the study of biological pathways. PMID:22189104
Fiberoptic sensors for rocket engine applications
NASA Technical Reports Server (NTRS)
Ballard, R. O.
1992-01-01
A research effort was completed to summarize and evaluate the current level of technology in fiberoptic sensors for possible applications in integrated control and health monitoring (ICHM) systems in liquid propellant engines. The environment within a rocket engine is particuarly severe with very high temperatures and pressures present combined with extremely rapid fluid and gas flows, and high-velocity and high-intensity acoustc waves. Application of fiberoptic technology to rocket engine health monitoring is a logical evolutionary step in ICHM development and presents a significant challenge. In this extremely harsh environment, the additional flexibility of fiberoptic techniques to augment conventional sensor technologies offer abundant future potential.
The Augmented REality Sandtable (ARES)
2015-10-01
Engineering; 2008; Wuhan, China. Kalphat H, Martin J. Tactical digital holograms in support of mission planning and training. Paper presented at: The...2011; Scottsdale, AZ. Petrasova A, Harmon B, Petras V, Mitasova, H. GIS-based environmental modeling with tangible interaction and dynamic
Cognitive Enhancement and Education
ERIC Educational Resources Information Center
Buchanan, Allen
2011-01-01
Cognitive enhancement--augmenting normal cognitive capacities--is not new. Literacy, numeracy, computers, and the practices of science are all cognitive enhancements. Science is now making new cognitive enhancements possible. Biomedical cognitive enhancements (BCEs) include the administration of drugs, implants of genetically engineered or…
Responsive Education Applied to Engineering Mechanics.
ERIC Educational Resources Information Center
Brillhart, Lia V.
1981-01-01
With less time to spend with individual students, teachers of large classes may need course materials that augment texts and lectures. The author discusses what criteria such materials must meet and gives examples from a course in statics. (Author/DS)
Plumlee, Megan H; Gurr, Christopher J; Reinhard, Martin
2012-11-01
Stream flow augmentation with recycled water has the potential to improve stream habitat and increase potable water supply, but the practice is not yet well understood or documented. The objectives of this report are to present a short review illustrated by a case study, followed by recommendations for future stream flow augmentation projects. Despite the fact that wastewater discharge to streams is commonplace, a water agency pursuing stream flow augmentation with recycled water will face unique challenges. For example, recycled water typically contains trace amounts of organic wastewater-derived compounds (OWCs) for which the potential ecological risks must be balanced against the benefits of an augmentation project. Successful stream flow augmentation with recycled water requires that the lead agency clearly articulate a strong project rationale and identify key benefits. It must be assumed that the public will have some concerns about water quality. Public acceptance may be better if an augmentation project has co-benefits beyond maintaining stream ecosystems, such as improving water system supply and reliability (i.e. potable use offset). Regulatory or project-specific criteria (acceptable concentrations of priority OWCs) would enable assessment of ecosystem impacts and demonstration of practitioner compliance. Additional treatment (natural or engineered) of the recycled water may be considered. If it is not deemed necessary or feasible, existing recycled water quality may be adequate to achieve project goals depending on project rationale, site and water quality evaluation, and public acceptance.
Rothrauff, Benjamin B; Pauyo, Thierry; Debski, Richard E; Rodosky, Mark W; Tuan, Rocky S; Musahl, Volker
2017-08-01
The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.
Green Chemistry: An Introductory Text (Mike Lancaster)
NASA Astrophysics Data System (ADS)
Rosan, Alan M.
2003-10-01
With the unrealistic and irreconcilable choice of either technical or environmental performance still dominating the consumer view, the need for green teaching, green thinking, and green practice is paramount. Replete with extensive and varied examples, detailed analyses, and critical comparisons, this text is an important contribution to the training of future chemists and chemical engineers who will need to work together to plan and conduct syntheses requiring atom economy, energy efficiency, waste minimization, safe reactor design and operation all linked by an overarching environmental ethic. If these laudable goals are ever attained it will be as a consequence of the insightful knowledge and forthright teachings of texts like this one.
A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum
Shaner, Nathan C.; Lambert, Gerard G.; Chammas, Andrew; Ni, Yuhui; Cranfill, Paula J.; Baird, Michelle A.; Sell, Brittney R.; Allen, John R.; Day, Richard N.; Israelsson, Maria; Davidson, Michael W.; Wang, Jiwu
2013-01-01
Despite the existence of fluorescent proteins spanning the entire visual spectrum, the bulk of modern imaging experiments continue to rely on variants of the green fluorescent protein derived from Aequorea victoria. Meanwhile, a great deal of recent effort has been devoted to engineering and improving red fluorescent proteins, and relatively little attention has been given to green and yellow variants. Here we report a novel monomeric yellow-green fluorescent protein, mNeonGreen, which is derived from a tetrameric fluorescent protein from the cephalochordate Branchiostoma lanceolatum. This fluorescent protein is the brightest monomeric green or yellow fluorescent protein yet described, performs exceptionally well as a fusion tag for traditional imaging as well as stochastic single-molecule superresolution imaging, and is an excellent FRET acceptor for the newest generation of cyan fluorescent proteins. PMID:23524392
Progreen Online Engineering Diploma in the Middle East: Assessment of the Educational Experience
ERIC Educational Resources Information Center
Baytiyeh, Hoda
2018-01-01
Little is known about the status of online learning in the Middle East. This study investigates educational experiences of engineers enrolled in the new joint online ProGreen diploma programme offered by three universities, two in Lebanon and one in Egypt. Forty-eight working engineers responded to an online survey based on the three components of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Close, Devin W.; Paul, Craig Don; Langan, Patricia S.
In this paper, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction ofmore » high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.« less
Close, Devin W.; Paul, Craig Don; Langan, Patricia S.; ...
2015-05-08
In this paper, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction ofmore » high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization.« less
ERIC Educational Resources Information Center
Giron, Maria D.; Salto, Rafael
2011-01-01
Structure-function relationship studies in proteins are essential in modern Cell Biology. Laboratory exercises that allow students to familiarize themselves with basic mutagenesis techniques are essential in all Genetic Engineering courses to teach the relevance of protein structure. We have implemented a laboratory course based on the…
Code of Federal Regulations, 2010 CFR
2010-07-01
... Engineer District, Sacramento, Federal and Courts Building, 650 Capitol Avenue, Sacramento, California. His... green light is flashing, lock is ready for entrance, the vessel may proceed with caution into the lock... or canal. Vessel may enter canal with caution. When the green light is on, vessel may enter canal and...
Injected Water Augments Cooling In Turboshaft Engine
NASA Technical Reports Server (NTRS)
Biesiadny, Thomas J.; Berger, Brett; Klann, Gary A.; Clark, David A.
1989-01-01
Report describes experiments in which water injected into compressor-bleed cooling air of aircraft turboshaft engine. Injection of water previously suggested as way to provide additional cooling needed to sustain operation at power levels higher than usual. Involves turbine-inlet temperatures high enough to shorten lives of first-stage high-pressure turbine blades. Latent heat of vaporization of injected water serves as additional heat sink to maintain blades at design operating temperatures during high-power operation.
Direct Fusion Drive for a Human Mars Orbital Mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paluszek, Michael; Pajer, Gary; Razin, Yosef
2014-08-01
The Direct Fusion Drive (DFD) is a nuclear fusion engine that produces both thrust and electric power. It employs a field reversed configuration with an odd-parity rotating magnetic field heating system to heat the plasma to fusion temperatures. The engine uses deuterium and helium-3 as fuel and additional deuterium that is heated in the scrape-off layer for thrust augmentation. In this way variable exhaust velocity and thrust is obtained.
Flight evaluation of an extended engine life mode on an F-15 airplane
NASA Technical Reports Server (NTRS)
Myers, Lawrence P.; Conners, Timothy R.
1992-01-01
An integrated flight and propulsion control system designed to reduce the rate of engine deterioration was developed and evaluated in flight on the NASA Dryden F-15 research aircraft. The extended engine life mode increases engine pressure ratio while reducing engine airflow to lower the turbine temperature at constant thrust. The engine pressure ratio uptrim is modulated in real time based on airplane maneuver requirements, flight conditions, and engine information. The extended engine life mode logic performed well, significantly reducing turbine operating temperature. Reductions in fan turbine inlet temperature of up to 80 F were obtained at intermediate power and up to 170 F at maximum augmented power with no appreciable loss in thrust. A secondary benefit was the considerable reduction in thrust-specific fuel consumption. The success of the extended engine life mode is one example of the advantages gained from integrating aircraft flight and propulsion control systems.
Study of a LH2-fueled topping cycle engine for aircraft propulsion
NASA Technical Reports Server (NTRS)
Turney, G. E.; Fishbach, L. H.
1983-01-01
An analytical investigation was made of a topping cycle aircraft engine system which uses a cryogenic fuel. This system consists of a main turboshaft engine which is mechanically coupled (by cross-shafting) to a topping loop which augments the shaft power output of the system. The thermodynamic performance of the topping cycle engine was analyzed and compared with that of a reference (conventional-type) turboshaft engine. For the cycle operating conditions selected, the performance of the topping cycle engine in terms of brake specific fuel consumption (bsfc) was determined to be about 12 percent better than that of the reference turboshaft engine. Engine weights were estimated for both the topping cycle engine and the reference turboshaft engine. These estimates were based on a common shaft power output for each engine. Results indicate that the weight of the topping cycle engine is comparable to that of the reference turboshaft engine. Previously announced in STAR as N83-34942
Biomaterials: An Introduction for Librarians.
ERIC Educational Resources Information Center
Bush, Renee B.
1996-01-01
Contains an overview of biomaterials, an interdisciplinary field in which research combines medicine, biological sciences, physical sciences, and engineering. Biomaterials are substances which improve quality of life by augmenting or replacing bodily tissues or functions. Highlights problems associated with collection development and literature…
Human-in-the-loop evaluation of RMS Active Damping Augmentation
NASA Technical Reports Server (NTRS)
Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.
1993-01-01
Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).
Customized biomaterials to augment chondrocyte gene therapy.
Aguilar, Izath Nizeet; Trippel, Stephen; Shi, Shuiliang; Bonassar, Lawrence J
2017-04-15
A persistent challenge in enhancing gene therapy is the transient availability of the target gene product. This is particularly true in tissue engineering applications. The transient exposure of cells to the product could be insufficient to promote tissue regeneration. Here we report the development of a new material engineered to have a high affinity for a therapeutic gene product. We focus on insulin-like growth factor-I (IGF-I) for its highly anabolic effects on many tissues such as spinal cord, heart, brain and cartilage. One of the ways that tissues store IGF-I is through a group of insulin like growth factor binding proteins (IGFBPs), such as IGFBP-5. We grafted the IGF-I binding peptide sequence from IGFBP-5 onto alginate in order to retain the endogenous IGF-I produced by transfected chondrocytes. This novel material bound IGF-I and released the growth factor for at least 30days in culture. We found that this binding enhanced the biosynthesis of transfected cells up to 19-fold. These data demonstrate the coordinated engineering of cell behavior and material chemistry to greatly enhance extracellular matrix synthesis and tissue assembly, and can serve as a template for the enhanced performance of other therapeutic proteins. The present manuscript focuses on the enhancement of chondrocyte gene therapy through the modification of scaffold materials to enhance the retention of targeted gene products. This study combined tissue engineering and gene therapy, where customized biomaterials augmented the action of IGF-I by enhancing the retention of protein produced by transfection of the IGF-I gene. This approach enabled tuning of binding of IGF-I to alginate, which increased GAG and HYPRO production by transfected chondrocytes. To our knowledge, peptide-based modification of materials to augment growth factor-targeted gene therapy has not been reported previously. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
STS-55 pad abort: Engine 2011 oxidizer preburner augmented spark igniter check valve leak
NASA Technical Reports Server (NTRS)
1993-01-01
The STS-55 initial launch attempt of Columbia (OV102) was terminated on KSC launch pad A March 22, 1993 at 9:51 AM E.S.T. due to violation of an ME-3 (Engine 2011) Launch Commit Criteria (LCC) limit exceedance. The event description and timeline are summarized. Propellant loading was initiated on 22 March, 1993 at 1:15 AM EST. All SSME chill parameters and launch commit criteria (LCC) were nominal. At engine start plus 1.44 seconds, a Failure Identification (FID) was posted against Engine 2011 for exceeding the 50 psia Oxidizer Preburner (OPB) purge pressure redline. The engine was shut down at 1.50 seconds followed by Engines 2034 and 2030. All shut down sequences were nominal and the mission was safely aborted. The OPB purge pressure redline violation and the abort profile/overlay for all three engines are depicted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 013-414, OPB purge pressure redline exceeded. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to the oxidizer preburner augmented spark igniter purge check valve not being fully closed due to contamination. The source of the contaminant was traced to a cut segment from a rubber O-ring which was used in a fine clean tool during valve production prior to 1992. The valve was apparently contaminated during its fabrication in 1985. The valve had performed acceptably on four previous flights of the engine, and SSME flight history shows 780 combined check valve flights without failure. The failure of an Engine 3 (SSME No. 2011) check valve to close was sensed by onboard engine instruments even though all other engine operations were normal. This resulted in an engine shutdown and safe sequential shutdown of all three engines prior to ignition of the solid boosters.
2007-07-01
engineering of a process or system that mimics biology, to investigate behaviours in robots that emulate animals such as self - healing and swarming [2...7.3.5 References 7-25 7.4 Adaptive Automation for Robotic Military Systems 7-29 7.4.1 Introduction 7-29 7.4.2 Human Performance Issues for...Figure 6-7 Integrated Display of Video, Range Readings, and Robot Representation 6-31 Figure 6-8 Representing the Pose of a Panning Camera 6-32 Figure
Altitude Performance Characteristics of Tail-pipe Burner with Variable-area Exhaust Nozzle
NASA Technical Reports Server (NTRS)
Jansen, Emmert T; Thorman, H Carl
1950-01-01
An investigation was conducted in the NACA Lewis altitude wind tunnel to determine effect of altitude and flight Mach number on performance of tail-pipe burner equipped with variable-area exhaust nozzle and installed on full-scale turbojet engine. At a given flight Mach number, with constant exhaust-gas and turbine-outlet temperatures, increasing altitude lowered the tail-pipe combustion efficiency and raised the specific fuel consumption while the augmented thrust ratio remained approximately constant. At a given altitude, increasing flight Mach number raised the combustion efficiency and augmented thrust ratio and lowered the specific fuel consumption.
Aerodynamic and acoustic performance of ejectors for engine-under-the-wing concepts
NASA Technical Reports Server (NTRS)
Vonglahn, U.; Goodykoontz, J. H.; Groesbeck, D.
1974-01-01
Subsonic thrust augmentation, exhaust plume velocity contours and acoustic characteristics of a small-scale, 6-tube mixer nozzle with ejector were obtained with and without a wing. Thrust augmentation up to 30 percent was achieved. Aerodynamic results showed that at a given location, greater downstream velocities are obtained with an ejector than with the baseline nozzle. Ejectors reduce high frequency noise; however, low frequency noise amplification also occurs. Acoustic reflections off the wing increase the noise level to a ground observer. With an ejector, the acoustic benefits of forward velocity may be significantly reduced compared with the baseline nozzle.
1991-12-01
lequel e110 as fonde n’est en pratique gubre virifi6 par 1’exp~rtence industriolle. Augmenter Is variabilit6 d’un procd diminue rarement lea cofits do...analyses pour sanctionnor los non- -conformitdo. augmentation des retouches et rebuts, Is tout gdndrant une digradation Importante des cycles ot...is a priori dangerous since the principle which It is based on Is scarcely verified in the industrial reality . The increase of the variability of a
A preliminary evaluation of an F100 engine parameter estimation process using flight data
NASA Technical Reports Server (NTRS)
Maine, Trindel A.; Gilyard, Glenn B.; Lambert, Heather H.
1990-01-01
The parameter estimation algorithm developed for the F100 engine is described. The algorithm is a two-step process. The first step consists of a Kalman filter estimation of five deterioration parameters, which model the off-nominal behavior of the engine during flight. The second step is based on a simplified steady-state model of the compact engine model (CEM). In this step, the control vector in the CEM is augmented by the deterioration parameters estimated in the first step. The results of an evaluation made using flight data from the F-15 aircraft are presented, indicating that the algorithm can provide reasonable estimates of engine variables for an advanced propulsion control law development.
A preliminary evaluation of an F100 engine parameter estimation process using flight data
NASA Technical Reports Server (NTRS)
Maine, Trindel A.; Gilyard, Glenn B.; Lambert, Heather H.
1990-01-01
The parameter estimation algorithm developed for the F100 engine is described. The algorithm is a two-step process. The first step consists of a Kalman filter estimation of five deterioration parameters, which model the off-nominal behavior of the engine during flight. The second step is based on a simplified steady-state model of the 'compact engine model' (CEM). In this step the control vector in the CEM is augmented by the deterioration parameters estimated in the first step. The results of an evaluation made using flight data from the F-15 aircraft are presented, indicating that the algorithm can provide reasonable estimates of engine variables for an advanced propulsion-control-law development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alam, Aftab; Khan, Suffian N.; Smirnov, A. V.
Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an ecient sitecentered, electronic-structure technique for addressing an assembly of N scatterers. Wave-functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number L max = (l,m) max, while scattering matrices, which determine spectral properties, are truncated at L tr = (l,m) tr where phase shifts δl>l tr are negligible. Historically, L max is set equal to L tr, which is correct for large enough L max but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for L maxmore » > L tr with δl>l tr set to zero [Zhang and Butler, Phys. Rev. B 46, 7433]. We present a numerically ecient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [R 3 process with rank N(l tr + 1) 2] and includes higher-L contributions via linear algebra [R 2 process with rank N(l max +1) 2]. Augmented-KKR approach yields properly normalized wave-functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe and L1 0 CoPt, and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus L max for a given L tr.« less
distributed computing, Web information systems engineering, software engineering, computer graphics, and Dashboard, NREL Energy Story visualization, Green Button data integration, as well as a large number of Web of an R&D 100 Award. Prior to joining NREL, Alex worked as a system administrator, Web developer
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
..., identified by Docket No. FEMA-B- 1190 to Luis Rodriguez, Chief, Engineering Management Branch, Federal..., DC 20472, (202) 646-4064, or (email) Luis[email protected] . FOR FURTHER INFORMATION CONTACT: Luis Rodriguez, Chief, Engineering Management Branch, Federal Insurance and Mitigation Administration...
Additive Manufacturing for Affordable Rocket Engines
NASA Technical Reports Server (NTRS)
West, Brian; Robertson, Elizabeth; Osborne, Robin; Calvert, Marty
2016-01-01
Additive manufacturing (also known as 3D printing) technology has the potential to drastically reduce costs and lead times associated with the development of complex liquid rocket engine systems. NASA is using 3D printing to manufacture rocket engine components including augmented spark igniters, injectors, turbopumps, and valves. NASA is advancing the process to certify these components for flight. Success Story: MSFC has been developing rocket 3D-printing technology using the Selective Laser Melting (SLM) process. Over the last several years, NASA has built and tested several injectors and combustion chambers. Recently, MSFC has 3D printed an augmented spark igniter for potential use the RS-25 engines that will be used on the Space Launch System. The new design is expected to reduce the cost of the igniter by a factor of four. MSFC has also 3D printed and tested a liquid hydrogen turbopump for potential use on an Upper Stage Engine. Additive manufacturing of the turbopump resulted in a 45% part count reduction. To understanding how the 3D printed parts perform and to certify them for flight, MSFC built a breadboard liquid rocket engine using additive manufactured components including injectors, turbomachinery, and valves. The liquid rocket engine was tested seven times in 2016 using liquid oxygen and liquid hydrogen. In addition to exposing the hardware to harsh environments, engineers learned to design for the new manufacturing technique, taking advantage of its capabilities and gaining awareness of its limitations. Benefit: The 3D-printing technology promises reduced cost and schedule for rocket engines. Cost is a function of complexity, and the most complicated features provide the largest opportunities for cost reductions. This is especially true where brazes or welds can be eliminated. The drastic reduction in part count achievable with 3D printing creates a waterfall effect that reduces the number of processes and drawings, decreases the amount of touch labor required, and increases reliability. When certification is achieved, NASA missions will be able to realize these benefits.
Variable mixture ratio performance through nitrogen augmentation
NASA Technical Reports Server (NTRS)
Beichel, R.; Obrien, C. J.; Bair, E. K.
1988-01-01
High/variable mixture ratio O2/H2 candidate engine cycles are examined for earth-to-orbit vehicle application. Engine performance and power balance information are presented for the candidate cycles relative to chamber pressure, bulk density, and mixture ratio. Included in the cycle screening are concepts where a third fluid (liquid nitrogen) is used to achieve a variable mixture ratio over the trajectory from liftoff to earth orbit. The third fluid cycles offer a very low risk, fully reusable, low operation cost alternative to high/variable mixture ratio bipropellant cycles. Variable mixture ratio engines with extendible nozzle are slightly lower performing than a single mixture ratio engine (MR = 7:1) with extendible nozzle. Dual expander engines (MR = 7:1) have slightly better performance than the single mixture ratio engine. Dual fuel dual expander engines offer a 16 percent improvement over the single mixture ratio engine.
How to be Green and Stay in the Black: Environmental Guideline Document.
1997-10-01
of the studies were within the American Society of Heating, Refrigera- tion, and Air conditioning Engineers (ASHRAE) Guidelines. Polaroid plans to...Whitney, Texas Instru- ments-Defense Group, Hughes Missile Systems, Boeing Defense Systems, and General Electric Air - craft Engines . The methodology...boxes, and the need to install space air thermostats. Description For Polaroid’s needs, engineers installed inte- grated, self-contained, thermally
Application of advanced control techniques to aircraft propulsion systems
NASA Technical Reports Server (NTRS)
Lehtinen, B.
1984-01-01
Two programs are described which involve the application of advanced control techniques to the design of engine control algorithms. Multivariable control theory is used in the F100 MVCS (multivariable control synthesis) program to design controls which coordinate the control inputs for improved engine performance. A systematic method for handling a complex control design task is given. Methods of analytical redundancy are aimed at increasing the control system reliability. The F100 DIA (detection, isolation, and accommodation) program, which investigates the uses of software to replace or augment hardware redundancy for certain critical engine sensor, is described.
Turbofan forced mixer lobe flow modeling. Part 3: Application to augment engines
NASA Technical Reports Server (NTRS)
Barber, T.; Moore, G. C.; Blatt, J. R.
1988-01-01
Military engines frequently need large quantities of thrust for short periods of time. The addition of an augmentor can provide such thrust increases but with a penalty of increased duct length and engine weight. The addition of a forced mixer to the augmentor improves performance and reduces the penalty, as well as providing a method for siting the required flame holders. In this report two augmentor concepts are investigated: a swirl-mixer augmentor and a mixer-flameholder augmentor. Several designs for each concept are included and an experimental assessment of one of the swirl-mixer augmentors is presented.
NASA Astrophysics Data System (ADS)
Mizumoto, Ikuro; Tsunematsu, Junpei; Fujii, Seiya
2016-09-01
In this paper, a design method of an output feedback control system with a simple feedforward input for a combustion model of diesel engine will be proposed based on the almost strictly positive real-ness (ASPR-ness) of the controlled system for a combustion control of diesel engines. A parallel feedforward compensator (PFC) design scheme which renders the resulting augmented controlled system ASPR will also be proposed in order to design a stable output feedback control system for the considered combustion model. The effectiveness of our proposed method will be confirmed through numerical simulations.
Small Island States Green Energy Initiative. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khattak, Nasir
1999-10-15
This report covers the activities carried out during a one year period from 7/15/99 to 7/15/00 as part of the Small Islands Green Energy Initiative. The three activities were: 1) Energy Ministerial conference in the Caribbean; 2) Training session on renewable energy for utility engineers; and 3) Case studies compilation on renewable energy in the Caribbean.
2014-08-18
THE INTERIOR OF THE MARSHALL SPACE FLIGHT CENTER’S NEWLY OPENED BUILDING 4220, PRIMARILY HOME TO THE SPACE LAUNCH SYSTEM PROGRAM, REFLECTS A BLEND OF AESTHETICS, PRACTICALITY AND HIGH EFFICIENCY. THE COST-CONSCIOUS NEW FACILITY IS ENVIRONMENTALLY FRIENDLY ON ALL FRONTS, FEATURING STATE-OF-THE-ART GREEN TECHNOLOGIES AND ENERGY-CONSERVATION SYSTEMS THROUGHOUT THE BUILDING. THE ENTIRE STRUCTURE IS SPECIALLY INSULATED, WITH MUCH OF THE EXTERIOR COVERED IN LOW-EMISSIVITY GLASS THAT DEFLECTS HEAT TO REDUCE COOLING COSTS WITHIN. ROOFTOP SOLAR-POWER UNITS ABSORB ENERGY TO AUGMENT ELECTRICAL POWER, AND A 10,000-GALLON CISTERN COLLECTS STORMWATER TO IRRIGATE THE SURROUNDING GREENERY. EVEN THE FACILITY'S NEW PARKING LOT HAS A GREEN ELEMENT: RATHER THAN GUTTERS, IT INCLUDES A "BIOSWALE," A NATURAL, SOIL-AND-VEGETATION-BASED MEANS OF CAPTURING AND FILTERING STORMWATER RUNOFF, WHICH IS DIRECTED INTO A NEARBY COLLECTING POND. ONCE CERTIFICATION IS COMPLETE, BUILDING 4220 WILL BECOME THE SEVENTH LEED CERTIFIED MARSHALL STRUCTURE ON CAMPUS
2014-08-18
THE INTERIOR OF THE MARSHALL SPACE FLIGHT CENTER’S NEWLY OPENED BUILDING 4220, PRIMARILY HOME TO THE SPACE LAUNCH SYSTEM PROGRAM, REFLECTS A BLEND OF AESTHETICS, PRACTICALITY AND HIGH EFFICIENCY. THE COST-CONSCIOUS NEW FACILITY IS ENVIRONMENTALLY FRIENDLY ON ALL FRONTS, FEATURING STATE-OF-THE-ART GREEN TECHNOLOGIES AND ENERGY-CONSERVATION SYSTEMS THROUGHOUT THE BUILDING. THE ENTIRE STRUCTURE IS SPECIALLY INSULATED, WITH MUCH OF THE EXTERIOR COVERED IN LOW-EMISSIVITY GLASS THAT DEFLECTS HEAT TO REDUCE COOLING COSTS WITHIN. ROOFTOP SOLAR-POWER UNITS ABSORB ENERGY TO AUGMENT ELECTRICAL POWER, AND A 10,000-GALLON CISTERN COLLECTS STORMWATER TO IRRIGATE THE SURROUNDING GREENERY. EVEN THE FACILITY'S NEW PARKING LOT HAS A GREEN ELEMENT: RATHER THAN GUTTERS, IT INCLUDES A "BIOSWALE," A NATURAL, SOIL-AND-VEGETATION-BASED MEANS OF CAPTURING AND FILTERING STORMWATER RUNOFF, WHICH IS DIRECTED INTO A NEARBY COLLECTING POND. ONCE CERTIFICATION IS COMPLETE, BUILDING 4220 WILL BECOME THE SEVENTH LEED CERTIFIED MARSHALL STRUCTURE ON CAMPUS
THRUST AUGMENTED NOZZLE (TAN) the New Paradigm for Booster Rockets
2006-07-12
station. The engine has to throttle to 34 percent (3X or 1020 psia) to keep from exceeding the acceleration limits. Figure 6. Baseline SSTO ...vehicle powered by seven up-sized SSME class engines. Figure 7. Baseline SSTO vehicle trajectory. With a payload fraction of 1 percent, it does not...want to invest in such a risky endeavor. American Institute of Aeronautics and Astronautics 6 B. TAN-Powered SSTO Vehicle For the Dual Fuel TAN
A Nonparametric Statistical Approach to the Validation of Computer Simulation Models
1985-11-01
Ballistic Research Laboratory, the Experimental Design and Analysis Branch of the Systems Engineering and Concepts Analysis Division was funded to...2 Winter. E M. Wisemiler. D P. azd UjiharmJ K. Venrgcation ad Validatiot of Engineering Simulatiots with Minimal D2ta." Pmeedinr’ of the 1976 Summer...used by numerous authors. Law%6 has augmented their approach with specific suggestions for each of the three stage’s: 1. develop high face-validity
A design study of a reaction control system for a V/STOL fighter/attack aircraft
NASA Technical Reports Server (NTRS)
Beard, B. B.; Foley, W. H.
1983-01-01
Attention is given to a short takeoff vertical landing (STOVL) aircraft reaction control system (RCS) design study. The STOVL fighter/attack aircraft employs an existing turbofan engine, and its hover requirement places a premium on weight reduction, which eliminates prospective nonairbreathing RCSs. A simple engine compressor bleed RCS degrades overall performance to an unacceptable degree, and the supersonic requirement precludes the large volume alternatives of thermal or ejector thrust augmentation systems as well as the ducting of engine exhaust gases and the use of a dedicated turbojet. The only system which addressed performance criteria without requiring major engine modifications was a dedicated load compressor driven by an auxilliary power unit.
Mechatronics Learning Studio: From "Play and Learn" to Industry-Inspired Green Energy Applications
ERIC Educational Resources Information Center
Habash, R. W. Y.; Suurtamm, C.; Necsulescu, D.
2011-01-01
This paper describes the evolution of the teaching of electrical engineering to mechanical engineering students based on motivation and a pedagogical strategy incorporating interdisciplinary mechatronics projects in a learning studio environment. Implementation of student projects within the curriculum has been demonstrated to be highly…
X-34 40K Fastrac II Engine Test
NASA Technical Reports Server (NTRS)
1997-01-01
This is a photo of an X-34 40K Fastrac II duration test performed at the Marshall Space Flight Center test stand 116 (TS116) in June 1997. Engine ignition is started with Tea-Gas which makes the start burn green. The X-34 program was cancelled in 2001.
76 FR 34063 - Procurement List; Additions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-10
.... Coast Guard. NSN: 8415-01-588-2047--Neckdam, Chemical, Protective, JPACE, CPC, JC3, Green. NPA: Peckham..., & Engineering Command, Natick, MA. Coverage: C-List for 100% of the requirement of the U.S. Army, as aggregated by the Department of the Army Research, Development, & Engineering Command, Natick, MA. Self-stick...
Using Concept Maps to Assess Interdisciplinary Integration of Green Engineering Knowledge
ERIC Educational Resources Information Center
Borrego, Maura; Newswander, Chad B.; McNair, Lisa D.; McGinnis, Sean; Paretti, Marie C.
2009-01-01
Engineering education, like many fields, has started to explore the benefits of concept maps as an assessment technique for knowledge integration. Because they allow students to graphically link topics and represent complex interconnections among diverse concepts, we argue that concept maps are particularly appropriate for assessing…
NASA Astrophysics Data System (ADS)
Borowski, Stanley K.; Corban, Robert R.; Culver, Donald W.; Bulman, Melvin J.; McIlwain, Mel C.
1994-08-01
The concept of a liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) engine is introduced, and its potential for revolutionizing lunar space transportation system (LTS) performance using extraterrestrial 'lunar-derived' liquid oxygen (LUNOX) is outlined. The LOX-augmented NTR (LANTR) represents the marriage of conventional liquid hydrogen (LH2)-cooled NTR and airbreathing engine technologies. The large divergent section of the NTR nozzle functions as an 'afterburner' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the NTR's choked sonic throat: 'scramjet propulsion in reverse.' By varying the oxygen-to-fuel mixture ratio (MR), the LANTR concept can provide variable thrust and specific impulse (Isp) capability with a LH2-cooled NTR operating at relatively constant power output. For example, at a MR = 3, the thrust per engine can be increased by a factor of 2.75 while the Isp decreases by only 30 percent. With this thrust augmentation option, smaller, 'easier to develop' NTR's become more acceptable from a mission performance standpoint (e.g., earth escape gravity losses are reduced and perigee propulsion requirements are eliminated). Hydrogen mass and volume is also reduced resulting in smaller space vehicles. An evolutionary NTR-based lunar architecture requiring only Shuttle C and/or 'in-line' shuttle-derived launch vehicles (SDV's) would operate initially in an 'expandable mode' with NTR lunar transfer vehicles (LTV's) delivering 80 percent more payload on piloted missions than their LOX/LH2 chemical propulsion counterparts. With the establishment of LUNOX production facilities on the lunar surface and 'fuel/oxidizer' depot in low lunar orbit (LLO), monopropellant NTR's would be outfitted with an oxygen propellant module, feed system, and afterburner nozzle for 'bipropellant' operation. The LANTR cislunar LTV now transitions to a reusable mode with smaller vehicle and payload doubling benefits on each piloted round trip mission. As the initial lunar outposts grow to centralized bases and settlements with a substantial permanent human presence, a LANTR-powered shuttle capable of 36 to 24 hour 'one-way' trip times to the moon and back becomes possible with initial mass in low earth orbit (IMLEO) requirements of approximately 160 to 240 metric tons, respectively.
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Corban, Robert R.; Culver, Donald W.; Bulman, Melvin J.; Mcilwain, Mel C.
1994-01-01
The concept of a liquid oxygen (LOX)-augmented nuclear thermal rocket (NTR) engine is introduced, and its potential for revolutionizing lunar space transportation system (LTS) performance using extraterrestrial 'lunar-derived' liquid oxygen (LUNOX) is outlined. The LOX-augmented NTR (LANTR) represents the marriage of conventional liquid hydrogen (LH2)-cooled NTR and airbreathing engine technologies. The large divergent section of the NTR nozzle functions as an 'afterburner' into which oxygen is injected and supersonically combusted with nuclear preheated hydrogen emerging from the NTR's choked sonic throat: 'scramjet propulsion in reverse.' By varying the oxygen-to-fuel mixture ratio (MR), the LANTR concept can provide variable thrust and specific impulse (Isp) capability with a LH2-cooled NTR operating at relatively constant power output. For example, at a MR = 3, the thrust per engine can be increased by a factor of 2.75 while the Isp decreases by only 30 percent. With this thrust augmentation option, smaller, 'easier to develop' NTR's become more acceptable from a mission performance standpoint (e.g., earth escape gravity losses are reduced and perigee propulsion requirements are eliminated). Hydrogen mass and volume is also reduced resulting in smaller space vehicles. An evolutionary NTR-based lunar architecture requiring only Shuttle C and/or 'in-line' shuttle-derived launch vehicles (SDV's) would operate initially in an 'expandable mode' with NTR lunar transfer vehicles (LTV's) delivering 80 percent more payload on piloted missions than their LOX/LH2 chemical propulsion counterparts. With the establishment of LUNOX production facilities on the lunar surface and 'fuel/oxidizer' depot in low lunar orbit (LLO), monopropellant NTR's would be outfitted with an oxygen propellant module, feed system, and afterburner nozzle for 'bipropellant' operation. The LANTR cislunar LTV now transitions to a reusable mode with smaller vehicle and payload doubling benefits on each piloted round trip mission. As the initial lunar outposts grow to centralized bases and settlements with a substantial permanent human presence, a LANTR-powered shuttle capable of 36 to 24 hour 'one-way' trip times to the moon and back becomes possible with initial mass in low earth orbit (IMLEO) requirements of approximately 160 to 240 metric tons, respectively.
2006-01-09
Water vapor surges from the flame deflector of the A-2 Test Stand at NASA's Stennis Space Center on Jan. 9 during the first space shuttle main engine test of the year. The test was an engine acceptance test of flight engine 2058. It's the first space shuttle main engine to be completely assembled at Kennedy Space Center. Objectives also included first-time (green run) tests of a high-pressure oxidizer turbo pump and an Advanced Health System Monitor engine controller. The test ran for the planned duration of 520 seconds.
Ruller, Roberto; Silva-Rocha, Rafael; Silva, Artur; Cruz Schneider, Maria Paula; Ward, Richard John
2011-01-01
Protein engineering is a powerful tool, which correlates protein structure with specific functions, both in applied biotechnology and in basic research. Here, we present a practical teaching course for engineering the green fluorescent protein (GFP) from Aequorea victoria by a random mutagenesis strategy using error-prone polymerase chain reaction. Screening of bacterial colonies transformed with random mutant libraries identified GFP variants with increased fluorescence yields. Mapping the three-dimensional structure of these mutants demonstrated how alterations in structural features such as the environment around the fluorophore and properties of the protein surface can influence functional properties such as the intensity of fluorescence and protein solubility. Copyright © 2011 Wiley Periodicals, Inc.
Preserving the Near-Earth Space Environment with Green Engineering and Operations
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2009-01-01
Green engineering and operations are essential to preserving the near-Earth space environment for future generations. The U.S. and the international aerospace community have been proactive in addressing the threat of the increasing orbital debris population and the risks to people and property from reentering debris. NASA has led this activity first by devoting resources to thoroughly understand the technical issues and then by developing effective and acceptable policies and guidelines. NASA also worked closely with the international community to ensure that the US aerospace industry was not placed at an economic disadvantage. In the long term, the removal of large orbital debris will be essential to the sustainability of space operations.
REDUCING ENERGY AND SPACE REQUIREMENTS BY ELECTROSTATIC AUGMENTATION OF A PULSE-JET FABRIC FILTER
In work performed several years ago by EPA's research lab then known as Air and Energy Engineering Research Laboratory (EPA/AEERL), small-scale testing and modeling of electrostatically stimulated fabric filtration (ESFF) has indicated than substantial performance benefits could ...
Design and test of a prototype scale ejector wing
NASA Technical Reports Server (NTRS)
Mefferd, L. A.; Alden, R. E.; Bevilacqua, P. M.
1979-01-01
A two dimensional momentum integral analysis was used to examine the effect of changing inlet area ratio, diffuser area ratio, and the ratio of ejector length to width. A relatively wide range of these parameters was considered. It was found that for constant inlet area ratio the augmentation increases with the ejector length, and for constant length: width ratio the augmentation increases with inlet area ratio. Scale model tests were used to verify these trends and to examine th effect of aspect ratio. On the basis of these results, an ejector configuration was selected for fabrication and testing at a scale representative of an ejector wing aircraft. The test ejector was powered by a Pratt-Whitney F401 engine developing approximately 12,000 pounds of thrust. The results of preliminary tests indicate that the ejector develops a thrust augmentation ratio better than 1.65.
Thrust Measurements for a Pulse Detonation Engine Driven Ejector
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pak, Sibtosh; Shehadeh, R.; Saretto, S. R.; Lee, S.-Y.
2005-01-01
Results of an experimental effort on pulse detonation driven ejectors aimed at probing different aspects of PDE ejector processes, are presented and discussed. The PDE was operated using ethylene as the fuel and an equimolar oxygen/nitrogen mixture as the oxidizer at an equivalence ratio of one. The thrust measurements for the PDE alone are in excellent agreement with experimental and modeling results reported in the literature and serve as a Baseline for the ejector studies. These thrust measurements were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups using constant diameter ejector tubes and various detonation tube/ejector tube overlap distances. The results show that for the geometries studied here, a maximum thrust augmentation of 24% is achieved. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.
Active stability augmentation of large space structures: A stochastic control problem
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1987-01-01
A problem in SCOLE is that of slewing an offset antenna on a long flexible beam-like truss attached to the space shuttle, with rather stringent pointing accuracy requirements. The relevant methodology aspects in robust feedback-control design for stability augmentation of the beam using on-board sensors is examined. It is framed as a stochastic control problem, boundary control of a distributed parameter system described by partial differential equations. While the framework is mathematical, the emphasis is still on an engineering solution. An abstract mathematical formulation is developed as a nonlinear wave equation in a Hilbert space. That the system is controllable is shown and a feedback control law that is robust in the sense that it does not require quantitative knowledge of system parameters is developed. The stochastic control problem that arises in instrumenting this law using appropriate sensors is treated. Using an engineering first approximation which is valid for small damping, formulas for optimal choice of the control gain are developed.
LANTR Engine Optimization for Lunar Missions
NASA Astrophysics Data System (ADS)
Bulman, M. J.; Poth, Greg; Borowski, Stan
2006-01-01
Propulsion requirements for sustainable Lunar missions are very demanding. The high Delta V for short transit times and/or reusable vehicles are best served with the High Isp of Nuclear Propulsion. High thrust is needed to reduce gravity losses during earth departure. The LOX-Augmented Nuclear Thermal Rocket (LANTR) is a concept whereby thrust from a nuclear thermal rocket can be doubled, or even quadrupled, by the injection and combustion of gaseous oxygen downstream of the throat. This has many advantages for the mission including a reduction in the size of the reactor(s) and propellant tank volume for a given payload delivered to Low Lunar Orbit. In this paper, we conduct mission studies to define the optimum basic (Unaugmented) engine thrust, Lox augmentation level and Lox loading for minimum initial mass in low earth orbit. 35% mass savings are seen for NTR powered LTVs with over twice the propellant Volume. The LANTR powered LTV has a similar mass savings with minimal volume penalties.
NASA Technical Reports Server (NTRS)
Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.
2003-01-01
The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system that produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.
NASA Technical Reports Server (NTRS)
Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.
2002-01-01
The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system thai: produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.
Liver cell therapy and tissue engineering for transplantation.
Vacanti, Joseph P; Kulig, Katherine M
2014-06-01
Liver transplantation remains the only definitive treatment for liver failure and is available to only a tiny fraction of patients with end-stage liver diseases. Major limitations for the procedure include donor organ shortage, high cost, high level of required expertise, and long-term consequences of immune suppression. Alternative cell-based liver therapies could potentially greatly expand the number of patients provided with effective treatment. Investigative research into augmenting or replacing liver function extends into three general strategies. Bioartificial livers (BALs) are extracorporeal devices that utilize cartridges of primary hepatocytes or cell lines to process patient plasma. Injection of liver cell suspensions aims to foster organ regeneration or provide a missing metabolic function arising from a genetic defect. Tissue engineering recreates the organ in vitro for subsequent implantation to augment or replace patient liver function. Translational models and clinical trials have highlighted both the immense challenges involved and some striking examples of success. Copyright © 2014. Published by Elsevier Inc.
Delaney, Alexander M; Adams, Christopher F; Fernandes, Alinda R; Al-Shakli, Arwa F; Sen, Jon; Carwardine, Darren R; Granger, Nicolas; Chari, Divya M
2017-06-29
Olfactory ensheathing cells (OECs) promote axonal regeneration and improve locomotor function when transplanted into the injured spinal cord. A recent clinical trial demonstrated improved motor function in domestic dogs with spinal injury following autologous OEC transplantation. Their utility in canines offers promise for human translation, as dogs are comparable to humans in terms of clinical management and genetic/environmental variation. Moreover, the autologous, minimally invasive derivation of OECs makes them viable for human spinal injury investigation. Genetic engineering of transplant populations may augment their therapeutic potential, but relies heavily on viral methods which have several drawbacks for clinical translation. We present here the first proof that magnetic particles deployed with applied magnetic fields and advanced DNA minicircle vectors can safely bioengineer OECs to secrete a key neurotrophic factor, with an efficiency approaching that of viral vectors. We suggest that our alternative approach offers high translational potential for the delivery of augmented clinical cell therapies.
NASA Technical Reports Server (NTRS)
Yost, J. H.
1976-01-01
The research and technology demonstration requirements to achieve emergency-power capability for a civil helicopter are documented. The goal for emergency power is the ability to hover with one engine inoperative, transition to minimum-power forward flight, and continue to a safe landing where emergency power may or may not be required. The best method to obtain emergency power is to augment the basic engine power by increasing the engine's speed and turbine-inlet temperature, combined with water-alcohol injection at the engine inlet. Other methods, including turbine boost power and flywheel energy, offer potential for obtaining emergency power for minimum time durations. Costs and schedules are estimated for a research and development program to bring emergency power through a hardware-demonstration test. Interaction of engine emergency-power capability with other helicopter systems is examined.
Progress with variable cycle engines
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.
1980-01-01
The evaluation of components of an advanced propulsion system for a future supersonic cruise vehicle is discussed. These components, a high performance duct burner for thrust augmentation and a low jet noise coannular exhaust nozzle, are part of the variable stream control engine. An experimental test program involving both isolated component and complete engine tests was conducted for the high performance, low emissions duct burner with excellent results. Nozzle model tests were completed which substantiate the inherent jet noise benefit associated with the unique velocity profile possible of a coannular exhaust nozzle system on a variable stream control engine. Additional nozzle model performance tests have established high thrust efficiency levels at takeoff and supersonic cruise for this nozzle system. Large scale testing of these two critical components is conducted using an F100 engine as the testbed for simulating the variable stream control engine.
NASA Technical Reports Server (NTRS)
Kohlman, D. L.
1982-01-01
An assessment is presented of the performance gains and economic impact of the integration in general aviation aircraft of advanced technologies, relating to such aspects of design as propulsion, natural laminar flow, lift augmentation, unconventional configurations, and advanced aluminum and composite structures. All considerations are with reference to a baseline mission of 1300 nm range and 300-knot cruise speed with a 1300-lb payload, and a baseline aircraft with a 40 lb/sq ft wing loading and an aspect ratio of 8. Extensive analytical results are presented from the NASA-sponsored General Aviation Synthesis Program. Attention is given to the relative performance gains to be expected from the single-engined baseline aircraft's use of a low cost general aviation turbine engine, a spark-ignited reciprocating engine, a diesel engine, and a Wankel rotary engine.
Coal-Oil Mixtures Problems and Opportunities,
1982-01-15
Ernest C. Friedrich Ashland Oil, Inc. New Richmond, Ohio Cleveland, Ohio Florida Power Corporation American Refining Co., Inc. 3201 34th St. South...Room 1A 518, The Pentagon USAF Institute of Technology Washington, DC 20310 AFIT/DED Wright Patterson AFB, OH 45433 Commander-in-Chief USA, Europe...Engineer Facilities Engineer Fort A P Hill Lone Star Army Ammunition Plant Bowling Green, VA 22427 Texarkana , TX 75501 Facilities Engineer Facilities
Experimental Study of a Pulse Detonation Engine Driven Ejector
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh; Shehadeh, R.; Saretto, S.; Lee, S.-Y.
2005-01-01
Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen (O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results are in excellent agreement with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various detonation tube/ejector tube overlap distances. The results show that for the geometries studied here, a maximum thrust augmentation of 24% is achieved. Further increases are possible by tailoring the ejector geometry based on CFD predictions conducted elsewhere. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.
NASA Astrophysics Data System (ADS)
Bespalov, V.; Kotlyarova, E.
2017-10-01
In modern conditions of a stable urban areas development special place is occupied by the problem of ecological security of built-up areas, including residential, recreational, industrial areas and objects of transport and engineering infrastructure. The main results of the study are to establish the basis of formation of the concept of choice of energy-efficient technologies and tools of forming an ecologically efficient “green frame” of urban areas on the basis of a single integrated scientific concept. Analysis allowed us to divide the measures for improvement into the following main groups: organizational and planning, engineering and technical and special engineering and environmental. The significance of these results for the construction industry, including transport infrastructure, is to increase the level of environmental safety in the construction and reconstruction of urban areas due to the organization of their improvement on the basis suggested by the authors scientific approach. Its basis is integrated accounting of the natural and climatic features of the landscaping territory, the types and level of environmental impact of negative anthropogenic factors, the features of architectural and planning solutions of the existing or projected on the studied area, the structure and types of green spaces and their functional ecological properties.
Guihéneuf, Freddy; Khan, Asif; Tran, Lam-Son P.
2016-01-01
As we march into the 21st century, the prevailing scenario of depleting energy resources, global warming and ever increasing issues of human health and food security will quadruple. In this context, genetic and metabolic engineering of green microalgae complete the quest toward a continuum of environmentally clean fuel and food production. Evolutionarily related, but unlike land plants, microalgae need nominal land or water, and are best described as unicellular autotrophs using light energy to fix atmospheric carbon dioxide (CO2) into algal biomass, mitigating fossil CO2 pollution in the process. Remarkably, a feature innate to most microalgae is synthesis and accumulation of lipids (60–65% of dry weight), carbohydrates and secondary metabolites like pigments and vitamins, especially when grown under abiotic stress conditions. Particularly fruitful, such an application of abiotic stress factors such as nitrogen starvation, salinity, heat shock, etc., can be used in a biorefinery concept for production of multiple valuable products. The focus of this mini-review underlies metabolic reorientation practices and tolerance mechanisms as applied to green microalgae under specific stress stimuli for a sustainable pollution-free future. Moreover, we entail current progress on genetic engineering as a promising tool to grasp adaptive processes for improving strains with potential biotechnological interests. PMID:27066043
Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO2 fixation in microalgae.
Yang, Bo; Liu, Jin; Ma, Xiaonian; Guo, Bingbing; Liu, Bin; Wu, Tao; Jiang, Yue; Chen, Feng
2017-01-01
Photosynthetic microalgae are emerging as potential biomass feedstock for sustainable production of biofuels and value-added bioproducts. CO 2 biomitigation through these organisms is considered as an eco-friendly and promising alternative to the existing carbon sequestration methods. Nonetheless, the inherent relatively low photosynthetic capacity of microalgae has hampered the practical use of this strategy for CO 2 biomitigation applications. Here, we demonstrate the feasibility of improving photosynthetic capacity by the genetic manipulation of the Calvin cycle in the typical green microalga Chlorella vulgaris . Firstly, we fused a plastid transit peptide to upstream of the enhanced green fluorescent protein (EGFP) and confirmed its expression in the chloroplast of C. vulgaris . Then we introduced the cyanobacterial fructose 1,6-bisphosphate aldolase, guided by the plastid transit peptide, into C. vulgaris chloroplast, leading to enhanced photosynthetic capacity (~ 1.2-fold) and cell growth. Molecular and physiochemical analyses suggested a possible role for aldolase overexpression in promoting the regeneration of ribulose 1,5-bisphosphate in the Calvin cycle and energy transfer in photosystems. Our work represents a proof-of-concept effort to enhance photosynthetic capacity by the engineering of the Calvin cycle in green microalgae. Our work also provides insights into targeted genetic engineering toward algal trait improvement for CO 2 biomitigation uses.
Present and Future Water Supply for Mammoth Cave National Park, Kentucky
Cushman, R.V.; Krieger, R.A.; McCabe, John A.
1965-01-01
The increase in the number of visitors during the past several years at Mammoth Cave National Park has rendered the present water supply inadequate. Emergency measures were necessary during August 1962 to supplement the available supply. The Green River is the largest potential source of water supply for Mammoth Cave. The 30-year minimum daily discharge is 40 mgd (million gallons per day) . The chemical quality is now good, but in the past the river has been contaminated by oil-field-brine wastes. By mixing it with water from the existing supply, Green River water could be diluted to provide water of satisfactory quality in the event of future brine pollution. The Nolin River is the next largest potential source of water (minimum releases from Nolin Reservoir, 97-129 mgd). The quality is satisfactory, but use of this source would require a 8-mile pipeline. The present water supply comes from springs draining a perched aquifer in the Haney Limestone Member of the Golconda Formation on Flint Ridge. Chemical quality is excellent but the minimum observed flow of all the springs on Flint Ridge plus Bransford well was only 121,700 gpd (gallons per day). This supply is adequate for present needs but not for future requirements; it could be augmented with water from the Green River. Wet Prong Buffalo Creek is the best of several small-stream supplies in the vicinity of Mammoth Cave. Minimum flow of the creek is probably about 300,000 gpd and the quality is good. The supply is about 5 miles from Mammoth Cave. This supply also may be utilized for a future separate development in the northern part of the park. The maximum recorded yield of wells drilled into the basal ground water in the Ste. Genevieve and St. Louis Limestone is 36 gpm (gallons per minute). Larger supplies may be developed if a large underground stream is struck. Quality can be expected to be good unless the well is drilled too far below the basal water table and intercepts poorer quality water at a lower level. This source of supply might be used to augment the present supply, but locating the trunk conduits might be difficult. Water in alluvium adjacent to the Green River and perched water in the Big Clifty Sandstone Member of the Golconda Formation and Girkin Formation have little potential as a water supply.
Richard D. Bergman
2015-01-01
Developing wood product LCI data helps construct product LCAs that are then incorporated into developing whole building LCAs in environmental footprint software such as the Athena Impact Estimator for Buildings (ASMI 2015). Conducting whole building LCAs provide for points that go toward green building certification in rating systems such as LEED v4, Green Globes, and...
Lee, Jaebum; Wikesjö, Ulf M E
2014-08-01
Growth/differentiation factor-5 (GDF-5) plays critical roles in mesenchymal cell differentiation and stimulates human periodontal ligament cell proliferation. Potentially, GDF-5 may also play roles in wound healing including periodontal regeneration and alveolar augmentation. The objective of this review was to provide up-to-date information from pre-clinical/clinical studies evaluating GDF-5 for these indications. A comprehensive search using PubMed and Google search engines was conducted to identify reports on GDF-5 applied to periodontal and alveolar indications. Two reviewers independently screened the titles and abstracts from a total of 479 reports. Full-length articles of 17 pre-clinical and four clinical studies were selected and reviewed. Canine-, porcine- and non-human primate-based models as well as human clinical trials were used in the evaluation of GDF-5 in support of periodontal regeneration and alveolar augmentation. An absorbable collagen sponge (ACS), β-tricalcium phosphate (β-TCP) and a poly(lactic-co-glycolic) acid (PLGA) were evaluated as candidate carriers for GDF-5 using various dose and healing intervals demonstrating significantly enhanced periodontal regeneration/alveolar augmentation including cementum, periodontal ligament and alveolar bone with limited, if any, adverse effects. Growth/differentiation factor-5 supports periodontal regeneration/alveolar augmentation without aberrant healing events documented in qualified pre-clinical models and clinical pilot studies. In perspective, GDF-5 appears a promising technology for periodontal regeneration/alveolar augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A general-purpose optimization program for engineering design
NASA Technical Reports Server (NTRS)
Vanderplaats, G. N.; Sugimoto, H.
1986-01-01
A new general-purpose optimization program for engineering design is described. ADS (Automated Design Synthesis) is a FORTRAN program for nonlinear constrained (or unconstrained) function minimization. The optimization process is segmented into three levels: Strategy, Optimizer, and One-dimensional search. At each level, several options are available so that a total of nearly 100 possible combinations can be created. An example of available combinations is the Augmented Lagrange Multiplier method, using the BFGS variable metric unconstrained minimization together with polynomial interpolation for the one-dimensional search.
Design and Testing of Scaled Ejector-Diffusers for Jet Engine Test Facility Applications.
1983-09-01
the test cell such that the exhaust will be vented into an augmenting tube which acts as an ejector -diffuser assembly. 11 The kinetic energy of the...OF STANDARDS-1963-A ..’I -Dy , - 77 *4********* Z 7.77- NAVAL POSTGRADUATE SCHOOL Monterey, California W I THESIS DESIGN AND TESTING OF SCALED EJECTOR ...PERIOD COVERED Design and Testing of Scaled Ejector - "flglfeerls Thesis~ Diffusers for Jet Engine Test Facility Spebr18 S. PERFORMING ORG. REPORT
NASA Technical Reports Server (NTRS)
Gokoglu, S. A.; Rosner, D. E.
1984-01-01
Modification of the code STAN5 to properly include thermophoretic mass transport, and examination of selected test cases developing boundary layers which include variable properties, viscous dissipation, transition to turbulence and transpiration cooling. Under conditions representative of current and projected GT operation, local application of St(M)/St(M),o correlations evidently provides accurate and economical engineering design predictions, especially for suspended particles characterized by Schmidt numbers outside of the heavy vapor range.
Multiple-cycle Simulation of a Pulse Detonation Engine Ejector
NASA Technical Reports Server (NTRS)
Yungster, S.; Perkins, H. D.
2002-01-01
This paper presents the results of a study involving single and multiple-cycle numerical simulations of various PDE-ejector configurations utilizing hydrogen-oxygen mixtures. The objective was to investigate the thrust, impulse and mass flow rate characteristics of these devices. The results indicate that ejector systems can utilize the energy stored in the strong shock wave exiting the detonation tube to augment the impulse obtained from the detonation tube alone. Impulse augmentation ratios of up to 1.9 were achieved. The axial location of the converging-diverging ejectors relative to the end of the detonation tube were shown to affect the performance of the system.
NASA Technical Reports Server (NTRS)
Johnson, Lavern A; Meyer, Carl L
1950-01-01
A tail-pipe burner with a variable-area exhaust nozzle was investigated. From five configurations a fuel-distribution system and a flame holder were selected. The best configuration was investigated over a range of altitudes and flight Mach numbers. For the best configuration, an increase in altitude lowered the augmented thrust ratio, exhaust-gas total temperature, and tail-pipe combustion efficiency, and raised the specific fuel consumption. An increase in flight Mach number raised the augmented thrust ratio but had no apparent effect on exhaust-gas total temperature, tail-pipe combustion efficiency, or specific fuel consumption.
Overall, the implementation of a computer-controlled hydrogen generation system and subsequent conversion of small engine equipment for hydrogen use has been surprisingly straightforward from an engineering and technology standpoint. More testing is required to get a better gr...
Green Energy: Powering Education from a STEM Education Methodology
ERIC Educational Resources Information Center
Hughes, Bill
2011-01-01
With the pressing energy needs that the global population is facing, renewable energies are rapidly becoming prominent science and engineering challenges throughout the world. Where will the young scientific and engineering minds come from to meet these demands? With some creative, open-minded thinking, it could be from one's very own classrooms.…
ERIC Educational Resources Information Center
Luster-Teasley, Stephanie; Hargrove-Leak, Sirena; Gibson, Willietta; Leak, Roland
2017-01-01
This educational research seeks to develop novel laboratory modules by using Case Studies in the Science Teaching method to introduce sustainability and environmental engineering laboratory concepts to 21st century learners. The increased interest in "going green" has led to a surge in the number of engineering students studying…
Role of Biocatalysis in Sustainable Chemistry.
Sheldon, Roger A; Woodley, John M
2018-01-24
Based on the principles and metrics of green chemistry and sustainable development, biocatalysis is both a green and sustainable technology. This is largely a result of the spectacular advances in molecular biology and biotechnology achieved in the past two decades. Protein engineering has enabled the optimization of existing enzymes and the invention of entirely new biocatalytic reactions that were previously unknown in Nature. It is now eminently feasible to develop enzymatic transformations to fit predefined parameters, resulting in processes that are truly sustainable by design. This approach has successfully been applied, for example, in the industrial synthesis of active pharmaceutical ingredients. In addition to the use of protein engineering, other aspects of biocatalysis engineering, such as substrate, medium, and reactor engineering, can be utilized to improve the efficiency and cost-effectiveness and, hence, the sustainability of biocatalytic reactions. Furthermore, immobilization of an enzyme can improve its stability and enable its reuse multiple times, resulting in better performance and commercial viability. Consequently, biocatalysis is being widely applied in the production of pharmaceuticals and some commodity chemicals. Moreover, its broader application will be further stimulated in the future by the emerging biobased economy.
1969-01-01
As part of the Space Task Group's recommendations for more commonality and integration in America's space program, Marshall Space Flight Center engineers proposed an orbiting propellant storage facility to augment Space Shuttle missions. In this artist's concept from 1969 an early version of the Space Shuttle is shown refueling at the facility.
ACOUSTIC INSULATION, *TURBOJET EXHAUST NOZZLES, *JET ENGINE NOISE, REDUCTION, JET TRANSPORT AIRCRAFT, THRUST AUGMENTATION , SUPERSONIC NOZZLES, DUCT...INLETS, CONVERGENT DIVERGENT NOZZLES, SUBSONIC FLOW, SUPERSONIC FLOW, SUPPRESSORS, TURBOJET INLETS, BAFFLES, JET PUMPS, THRUST , DRAG, TEMPERATURE
Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Iida, Ryuji; Wang, Qilong; Zou, Ming-Hui; Barlic-Dicen, Jana
2012-01-01
The major event initiating atherosclerosis is hypercholesterolemia-induced disruption of vascular endothelium integrity. In settings of endothelial damage, endothelial progenitor cells (EPCs) are mobilized from bone marrow into circulation and home to sites of vascular injury where they aid endothelial regeneration. Given the beneficial effects of EPCs in vascular repair, we hypothesized that these cells play a pivotal role in atherosclerosis regression. We tested our hypothesis in the atherosclerosis-prone mouse model in which hypercholesterolemia, one of the main factors affecting EPC homeostasis, is reversible (Reversa mice). In these mice normalization of plasma lipids decreased atherosclerotic burden; however, plaque regression was incomplete. To explore whether endothelial progenitors contribute to atherosclerosis regression, bone marrow EPCs from a transgenic strain expressing green fluorescent protein under the control of endothelial cell-specific Tie2 promoter (Tie2-GFP+) were isolated. These cells were then adoptively transferred into atheroregressing Reversa recipients where they augmented plaque regression induced by reversal of hypercholesterolemia. Advanced plaque regression correlated with engraftment of Tie2-GFP+ EPCs into endothelium and resulted in an increase in atheroprotective nitric oxide and improved vascular relaxation. Similarly augmented plaque regression was also detected in regressing Reversa mice treated with the stem cell mobilizer AMD3100 which also mobilizes EPCs to peripheral blood. We conclude that correction of hypercholesterolemia in Reversa mice leads to partial plaque regression that can be augmented by AMD3100 treatment or by adoptive transfer of EPCs. This suggests that direct cell therapy or indirect progenitor cell mobilization therapy may be used in combination with statins to treat atherosclerosis. PMID:23081735
NASA Astrophysics Data System (ADS)
Zhang, Min; He, Weiyi
2018-06-01
Under the guidance of principal-agent theory and modular theory, the collaborative innovation of green technology-based companies, design contractors and project builders based on united agency will provide direction for the development of green construction supply chain in the future. After analyzing the existing independent agencies, this paper proposes the industry-university-research bilateral collaborative innovation network architecture and modularization with the innovative function of engineering design in the context of non-standard transformation interfaces, analyzes the innovation responsibility center, and gives some countermeasures and suggestions to promote the performance of bilateral cooperative innovation network.
NASA Technical Reports Server (NTRS)
Glasser, Philip W
1950-01-01
An experimental investigation of the effects of injecting a water-alcohol mixture of 2:1 at the compressor inlet of a centrifugal-flow type turbojet engine was conducted in an altitude test chamber at static sea-level conditions and at an altitude of 20,000 feet with a flight Mach number of 0.78 with an engine operating at rated speed. The net thrust was augmented by 0.16 for both flight conditions with a ratio of injected liquid to air flow of 0.05. Further increases in the liquid-air ratio did not give comparable increases in thrust.
A design support simulation of the augmentor wing jet STOL research aircraft
NASA Technical Reports Server (NTRS)
Rumsey, P. C.; Spitzer, R. E.; Glende, W. L. B.
1972-01-01
The modification of a C-8A (De Havilland Buffalo) aircraft to a STOL configuration is discussed. The modification consisted of the installation of an augmentor-wing jet flap system. System design requirements were investigated for the lateral and directional flight control systems, the lateral and directional axes stability augmentation systems, the engine and Pegasus nozzle control systems, and the hydraulic systems. Operational techniques for STOL landings, control of engine failures, and pilot techniques for improving engine-out go-around performance were examined. Design changes have been identified to correct deficiencies in areas of the airplane control sytems and to improve the airplane flying qualities.
ASIL determination for motorbike's Electronics Throttle Control System (ETCS) mulfunction
NASA Astrophysics Data System (ADS)
Zaman Rokhani, Fakhrul; Rahman, Muhammad Taqiuddin Abdul; Ain Kamsani, Noor; Sidek, Roslina Mohd; Saripan, M. Iqbal; Samsudin, Khairulmizam; Khair Hassan, Mohd
2017-11-01
Electronics Throttle Control System (ETCS) is the principal electronic unit in all fuel injection engine motorbike, augmenting the engine performance efficiency in comparison to the conventional carburetor based engine. ETCS is regarded as a safety-critical component, whereby ETCS malfunction can cause unintended acceleration or deceleration event, which can be hazardous to riders. In this study, Hazard Analysis and Risk Assessment, an ISO26262 functional safety standard analysis has been applied on motorbike's ETCS to determine the required automotive safety integrity level. Based on the analysis, the established automotive safety integrity level can help to derive technical and functional safety measures for ETCS development.
Model-Based Fault Diagnosis for Turboshaft Engines
NASA Technical Reports Server (NTRS)
Green, Michael D.; Duyar, Ahmet; Litt, Jonathan S.
1998-01-01
Tests are described which, when used to augment the existing periodic maintenance and pre-flight checks of T700 engines, can greatly improve the chances of uncovering a problem compared to the current practice. These test signals can be used to expose and differentiate between faults in various components by comparing the responses of particular engine variables to the expected. The responses can be processed on-line in a variety of ways which have been shown to reveal and identify faults. The combination of specific test signals and on-line processing methods provides an ad hoc approach to the isolation of faults which might not otherwise be detected during pre-flight checkout.
Lean Stability augmentation study
NASA Technical Reports Server (NTRS)
Mcvey, J. B.; Kennedy, J. B.
1979-01-01
An analytical and experimental program was conducted to investigate techniques and develop technology for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. Three concepts for improving lean stability limits were selected for experimental evaluation among twelve approaches considered. Concepts were selected on the basis of the potential for improving stability limits and achieving emission goals, the technological risks associated with development of practical burners employing the concepts, and the penalties to airline direct operating costs resulting from decreased combustor performance, increased engine cost, increased maintenance cost and increased engine weight associated with implementation of the concepts. Tests of flameholders embodying the selected concepts were conducted.
2012 Anthropometric Survey of U.S. Army Pilot Personnel: Methods and Summary Statistics
2016-05-01
distribution is unlimited U.S. Army Natick Soldier Research, Development and Engineering Center Natick, Massachusetts 01760-2642 REPORT...NAME(S) AND ADDRESS(ES) Natick Soldier Research, Development and Engineering Center ATTN: RDNS-WSH 10 General Greene Avenue, Natick, MA 01760-2642 8...Development and Engineering Center. Goals of the survey were to acquire a large body of data from comparably measured males and females to serve the Army
Wide range operation of advanced low NOx aircraft gas turbine combustors
NASA Technical Reports Server (NTRS)
Roberts, P. B.; Fiorito, R. J.; Butze, H. F.
1978-01-01
The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.
Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.
We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast–myoblast adhesion, myotube formation,more » myonuclear number, myotube alignment, myotube–myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube–myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. - Highlights: • We examined mechanisms through which skeletal muscle cell expression of ICAM-1 facilitates events of in vitro myogenesis. • Expression of ICAM-1 by cultured myoblasts did not influence their ability to proliferate or differentiate. • Skeletal muscle cell expression of ICAM-1 augmented myoblast fusion, myotube alignment, myotube–myotube fusion, and myotube size. • ICAM-1 augmented myogenic processes through mechanisms involving its adhesive and signaling functions.« less
Dynamic ecological observations from satellites inform aerobiology of allergenic grass pollen.
Devadas, Rakhesh; Huete, Alfredo R; Vicendese, Don; Erbas, Bircan; Beggs, Paul J; Medek, Danielle; Haberle, Simon G; Newnham, Rewi M; Johnston, Fay H; Jaggard, Alison K; Campbell, Bradley; Burton, Pamela K; Katelaris, Constance H; Newbigin, Ed; Thibaudon, Michel; Davies, Janet M
2018-08-15
Allergic diseases, including respiratory conditions of allergic rhinitis (hay fever) and asthma, affect up to 500 million people worldwide. Grass pollen are one major source of aeroallergens globally. Pollen forecast methods are generally site-based and rely on empirical meteorological relationships and/or the use of labour-intensive pollen collection traps that are restricted to sparse sampling locations. The spatial and temporal dynamics of the grass pollen sources themselves, however, have received less attention. Here we utilised a consistent set of MODIS satellite measures of grass cover and seasonal greenness (EVI) over five contrasting urban environments, located in Northern (France) and Southern Hemispheres (Australia), to evaluate their utility for predicting airborne grass pollen concentrations. Strongly seasonal and pronounced pollinating periods, synchronous with satellite measures of grass cover greenness, were found at the higher latitude temperate sites in France (46-50° N. Lat.), with peak pollen activity lagging peak greenness, on average by 2-3weeks. In contrast, the Australian sites (34-38° S. Lat.) displayed pollinating periods that were less synchronous with satellite greenness measures as peak pollen concentrations lagged peak greenness by as much as 4 to 7weeks. The Australian sites exhibited much higher spatial and inter-annual variations compared to the French sites and at the Sydney site, broader and multiple peaks in both pollen concentrations and greenness data coincided with flowering of more diverse grasses including subtropical species. Utilising generalised additive models (GAMs) we found the satellite greenness data of grass cover areas explained 80-90% of airborne grass pollen concentrations across the three French sites (p<0.001) and accounted for 34 to 76% of grass pollen variations over the two sites in Australia (p<0.05). Our results demonstrate the potential of satellite sensing to augment forecast models of grass pollen aerobiology as a tool to reduce the health and socioeconomic burden of pollen-sensitive allergic diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yi; Ye, Quanliang; Liu, An; Meng, Fangang; Zhang, Wenlong; Xiong, Wei; Wang, Peifang; Wang, Chao
2017-07-01
Urban rainwater management need to achieve an optimal compromise among water resource augmentation, water loggings alleviation, economic investment and pollutants reduction. Rainwater harvesting (RWH) systems, such as green rooftops, porous pavements, and green lands, have been successfully implemented as viable approaches to alleviate water-logging disasters and water scarcity problems caused by rapid urbanization. However, there is limited guidance to determine the construction areas of RWH systems, especially for stormwater runoff control due to increasing extreme precipitation. This study firstly developed a multi-objective model to optimize the construction areas of green rooftops, porous pavements and green lands, considering the trade-offs among 24 h-interval RWH volume, stormwater runoff volume control ratio (R), economic cost, and rainfall runoff pollutant reduction. Pareto fronts of RWH system areas for 31 provinces of China were obtained through nondominated sorting genetic algorithm. On the national level, the control strategies for the construction rate (the ratio between the area of single RWH system and the total areas of RWH systems) of green rooftops (ηGR), porous pavements (ηPP) and green lands (ηGL) were 12%, 26% and 62%, and the corresponding RWH volume and total suspended solids reduction was 14.84 billion m3 and 228.19 kilotons, respectively. Optimal ηGR , ηPP and ηGL in different regions varied from 1 to 33%, 6 to 54%, and 30 to 89%, respectively. Particularly, green lands were the most important RWH system in 25 provinces with ηGL more than 50%, ηGR mainly less than 15%, and ηPP mainly between 10 and 30%. Results also indicated whether considering the objective MaxR made a non-significant difference for RWH system areas whereas exerted a great influence on the result of stormwater runoff control. Maximum daily rainfall under control increased, exceeding 200% after the construction of the optimal RWH system compared with that before construction. Optimal RWH system areas presented a general picture for urban development policy makers in China.
Geng, Peng; Tan, Qinming; Zhang, Chunhui; Wei, Lijiang; He, Xianzhong; Cao, Erming; Jiang, Kai
2016-12-01
In recent years, marine auxiliary diesel engine has been widely used to produce electricity in the large ocean-going ship. One of the main technical challenges for ocean-going ship is to reduce pollutant emissions from marine auxiliary diesel engine and to meet the criteria of disposal on ships pollutants of IMO (International Maritime Organization). Different technical changes have been introduced in marine auxiliary diesel engine to apply clean fuels to reduce pollutant emissions. The ultralow sulfur light fuel will be applied in diesel engine for emission reductions in China. This study is aimed to investigate the impact of fuel (ultralow sulfur light fuel) on the combustion characteristic, NOx and green house gas emissions in a marine auxiliary diesel engine, under the 50%-90% engine speeds and the 25%-100% engine torques. The experimental results show that, in the marine auxiliary diesel engine, the cylinder pressure and peak heat release rate increase slightly with the increase of engine torques, while the ignition advances and combustion duration become longer. With the increases of the engine speed and torque, the fuel consumption decreases significantly, while the temperature of the exhaust manifold increases. The NOx emissions increase significantly with the increases of the engine speed and torque. The NO emission increases with the increases of the engine speed and torque, while the NO 2 emission decreases. Meanwhile, the ratio of NO 2 and NO is about 1:1 when the diesel engine operated in the low speed and load, while the ratio increases significantly with the increases of engine speed and torque, due to the increase of the cylinder temperature in the diffusive combustion mode. Moreover, the CO 2 emission increases with the increases of engine speed and torque by the use of ultralow sulfur light fuel. Copyright © 2016. Published by Elsevier B.V.
Thrust Augmentation with Mixer/Ejector Systems
NASA Technical Reports Server (NTRS)
Presz, Walter M., Jr.; Reynolds, Gary; Hunter, Craig
2002-01-01
Older commercial aircraft often exceed FAA (Federal Aviation Administration) sideline noise regulations. The major problem is the jet noise associated with the high exhaust velocities of the low bypass ratio engines on such aircraft. Mixer/ejector exhaust systems can provide a simple means of reducing the jet noise on these aircraft by mixing cool ambient air with the high velocity engine gases before they are exhausted to ambient. This paper presents new information on thrust performance predictions, and thrust augmentation capabilities of mixer/ejectors. Results are presented from the recent development program of the patented Alternating Lobe Mixer Ejector Concept (ALMEC) suppressor system for the Gulfstream GII, GIIB and GIII aircraft. Mixer/ejector performance procedures are presented which include classical control volume analyses, compound compressible flow theory, lobed nozzle loss correlations and state of the art computational fluid dynamic predictions. The mixer/ejector thrust predictions are compared to subscale wind tunnel test model data and actual aircraft flight test measurements. The results demonstrate that a properly designed mixer/ejector noise suppressor can increase effective engine bypass ratio and generate large thrust gains at takeoff conditions with little or no thrust loss at cruise conditions. The cruise performance obtained for such noise suppressor systems is shown to be a strong function of installation effects on the aircraft.
Collaborative Estimation in Distributed Sensor Networks
ERIC Educational Resources Information Center
Kar, Swarnendu
2013-01-01
Networks of smart ultra-portable devices are already indispensable in our lives, augmenting our senses and connecting our lives through real time processing and communication of sensory (e.g., audio, video, location) inputs. Though usually hidden from the user's sight, the engineering of these devices involves fierce tradeoffs between energy…
ERIC Educational Resources Information Center
Achuthan, Krishnashree; Francis, Saneesh P.; Diwakar, Shyam
2017-01-01
Learning theories converge on the principles of reflective learning processes and perceive them as fundamental to effective learning. Traditional laboratory education in science and engineering often happens in highly resource-constrained environments that compromise some of the learning objectives. This paper focuses on characterizing three…
Use of Communication Resources in a Networked Collaborative Design Environment.
ERIC Educational Resources Information Center
Gay, Geri; Lentini, Marc
1995-01-01
Examines student use of a prototype networked collaborative design environment to support or augment learning about engineering design. Finds that students use the channels for a variety of activities to increase depth of communication, increase breadth of communication, and overcome technical difficulty. Suggests that students need multiple…
Communication Resource Use in a Networked Collaborative Design Environment.
ERIC Educational Resources Information Center
Gay, Geri; Lentini, Marc
The purpose of this exploratory study was to examine student use of a prototype networked collaborative design environment to support or augment learning about engineering design. The theoretical framework is based primarily on Vygotsky's social construction of knowledge and the belief that collaboration and communication are critical components…
The prediction of engineering cost for green buildings based on information entropy
NASA Astrophysics Data System (ADS)
Liang, Guoqiang; Huang, Jinglian
2018-03-01
Green building is the developing trend in the world building industry. Additionally, construction costs are an essential consideration in building constructions. Therefore, it is necessary to investigate the problems of cost prediction in green building. On the basis of analyzing the cost of green building, this paper proposes the forecasting method of actual cost in green building based on information entropy and provides the forecasting working procedure. Using the probability density obtained from statistical data, such as labor costs, material costs, machinery costs, administration costs, profits, risk costs a unit project quotation and etc., situations can be predicted which lead to cost variations between budgeted cost and actual cost in constructions, through estimating the information entropy of budgeted cost and actual cost. The research results of this article have a practical significance in cost control of green building. Additionally, the method proposed in this article can be generalized and applied to a variety of other aspects in building management.
Wang, Xiaochen; Zhao, Xinhua; Peng, Chenrui; Zhang, Xinbo; Wang, Jianghai
2013-01-01
The objectives of this study are to investigate the impact of different factors on the nutrient pollutant concentrations in green roof runoff and to provide reference data for the engineering design of dual substrate layer green roofs. The data were collected from eight different trays under three kinds of artificial rains. The results showed that except for total phosphorus, dual substrate layer green roofs behaved as a sink for most of the nutrient pollutants (significant at p < 0.05), and the first-flush effect did not occur during the 27 simulated rain events. The results also revealed that the concentration of these nutrient pollutants in the runoff strongly depended on the features of the nutrient substrates used in the green roof and the depth of the adsorption substrates. Compared with the influence of the substrates, the influence of the plant density and drainage systems was small.
Green ergonomics: combining sustainability and ergonomics.
Pilczuk, Davana; Barefield, Kevin
2014-01-01
When discussing ergonomics, the term 'sustainability' usually refers to the preservation of the human workforce. However, in 2010 Gulfstream Aerospace Corporation made a conscious effort to combine ergonomics and environmental sustainability in order to increase employee engagement for both programs. They introduced a companywide campaign called Green Ergo which is the idea of creating ergonomic solutions from scrap material found on site. This concept embraced the true meaning of 'green' and encouraged engineers and employees all across the company to design innovative green ergonomic solutions. The idea generated over 35 new ergo solutions, reduced waste production, and solved over 700 ergo problems for a fraction of the cost of newly purchased items. The demand for these items grew large enough that the company outsourced their manufacturing to a local non-profit. The Green Ergo campaign has changed the culture of the company and has increased the level of buy-in for both the ergonomics and sustainability programs.
Hydrologists in the City: Re-envisioning How We Manage Water in Urban Areas
NASA Astrophysics Data System (ADS)
McPhillips, L. E.
2014-12-01
As the footprint of our urban areas expands, so does our manipulation of the hydrology. For decades we have channeled runoff into storm sewers, wreaking havoc on downstream water bodies with pulses of polluted stormwater. Recently, there has been a push for 'green infrastructure' to replace this hard, grey infrastructure, where green infrastructure- from rain gardens to green roofs to restored riparian areas- would detain stormwater and promote pollutant removal, in addition to a plethora of other ecosystem services. Primarily, it has been landscape architects, engineers, and urban planners who have jumped on the green infrastructure bandwagon. I believe there is also a niche for hydrologists and biogeochemists in re-envisioning how we manage stormwater in urban areas. Developed areas may not be as enticing as a remote mountain field site and their hydrology may be a lot more complicated to model than that of a forest hillslope, but these areas are where the majority of people live and where we could have a great impact on informing better water management practices. In collaboration with more applied fields like landscape architecture and engineering, we can provide crucial insight on existing hydrology as well as how certain green infrastructure or other alternative considerations could support a more sustainable and resilient city, particularly in the face of climate change. Our knowledge on landscape hydrological processes and biogeochemical cycling- combined with the expertise of these other fields- can inform design of truly multi-functional green infrastructure that can effectively manage storm runoff in addition to providing wildlife habitat, carbon sequestration, improved aesthetics, and even an opportunity to engage with citizens. While there are certainly some hydrologists that have recognized this opportunity, I hope to see many more pursuing research and seeking solutions for better management of water in urbanized areas.
Educating the humanitarian engineer.
Passino, Kevin M
2009-12-01
The creation of new technologies that serve humanity holds the potential to help end global poverty. Unfortunately, relatively little is done in engineering education to support engineers' humanitarian efforts. Here, various strategies are introduced to augment the teaching of engineering ethics with the goal of encouraging engineers to serve as effective volunteers for community service. First, codes of ethics, moral frameworks, and comparative analysis of professional service standards lay the foundation for expectations for voluntary service in the engineering profession. Second, standard coverage of global issues in engineering ethics educates humanitarian engineers about aspects of the community that influence technical design constraints encountered in practice. Sample assignments on volunteerism are provided, including a prototypical design problem that integrates community constraints into a technical design problem in a novel way. Third, it is shown how extracurricular engineering organizations can provide a theory-practice approach to education in volunteerism. Sample completed projects are described for both undergraduates and graduate students. The student organization approach is contrasted with the service-learning approach. Finally, long-term goals for establishing better infrastructure are identified for educating the humanitarian engineer in the university, and supporting life-long activities of humanitarian engineers.
Engineers with nozzles fabricated using a freeform-directed ener
2018-03-15
Engineers from NASA Marshall Space Flight Center's Propulsion Department examine nozzles fabricated using a freeform-directed energy wire deposition process. From left are Paul Gradl, Will Brandsmeier, Ian Johnston and Sandy Greene, with the nozzles, which were built using a NASA-patented technology that has the potential to reduce build time from several months to several weeks.
An analytical study of hybrid ejector/internal combustion engine-driven heat pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, R.W.
1988-01-01
Because ejectors can combine high reliability with low maintenance cost in a package requiring little capital investment, they may provide attractive heat pumping capability in situations where the importance of their inefficiencies is minimized. One such concept, a hybrid system in which an ejector driven by engine reject heat is used to increase the performance of an internal combustion engine-driven heat pump, was analyzed by modifying an existing ejector heat pump model and combining it with generic compressor and internal combustion engine models. Under the model assumptions for nominal cooling mode conditions, the results showed that hybrid systems could providemore » substantial performance augmentation/emdash/up to 17/percent/ increase in system coefficient of performance for a parallel arrangement of an enhanced ejector with the engine-driven compressor. 4 refs., 4 figs., 4 tabs.« less
A summary of NASA/Air Force Full Scale Engine Research programs using the F100 engine
NASA Technical Reports Server (NTRS)
Deskin, W. J.; Hurrell, H. G.
1979-01-01
This paper summarizes a joint NASA/Air Force Full Scale Engine Research (FSER) program conducted with the F100 engine during the period 1974 through 1979. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items which have been addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology, and distortion sensitivity are identified and the associated test programs conducted at the NASA-Lewis Research Center are described. Results presented show that the FSER approach, which utilizes existing state-of-the-art engine hardware to evaluate advanced technology concepts and problem areas, can contribute a significant data base for future system applications. Aerodynamic phenomenon previously not considered by current design systems have been identified and incorporated into current industry design tools.
Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis.
Goh, Qingnian; Dearth, Christopher L; Corbett, Jacob T; Pierre, Philippe; Chadee, Deborah N; Pizza, Francis X
2015-02-15
We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. Copyright © 2014 Elsevier Inc. All rights reserved.
Intercellular Adhesion Molecule-1 Expression by Skeletal Muscle Cells Augments Myogenesis
Goh, Qingnian; Dearth, Christopher L.; Corbett, Jacob T.; Pierre, Philippe; Chadee, Deborah N.; Pizza, Francis X.
2014-01-01
We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle. PMID:25281303
Vignoletti, Fabio; Nunez, Javier; Sanz, Mariano
2014-04-01
To review the biological processes of wound healing following periodontal and periimplant plastic surgery when different technologies are used in a) the coverage of root and implant dehiscences, b) the augmentation of keratinized tissue (KT) and c) the augmentation of soft tissue volume. An electronic search from The National Library of Medicine (MEDLINE-PubMed) was performed: English articles with research focus in oral soft tissue regeneration, providing histological outcomes, either from animal experimental studies or human biopsy material were included. Barrier membranes, enamel matrix derivatives, growth factors, allogeneic and xenogeneic soft tissue substitutes have been used in soft tissue regeneration demonstrating different degrees of regeneration. In root coverage, these technologies were able to improve new attachment, although none has shown complete regeneration. In KT augmentation, tissue-engineered allogenic products and xenogeneic collagen matrixes demonstrated integration within the host connective tissue and promotion of keratinization. In soft tissue augmentation and peri-implant plastic surgery there are no histological data currently available. Soft tissue substitutes, growth differentiation factors demonstrated promising histological results in terms of soft tissue regeneration and keratinization, whereas there is a need for further studies to prove their added value in soft tissue augmentation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Damayanti, Latifah Adelina; Ikhsan, Jaslin
2017-05-01
Integration of information technology in education more rapidly performed in a medium of learning. Three-dimensional (3D) molecular modeling was performed in Augmented Reality as a tangible manifestation of increasingly modern technology utilization. Based on augmented reality, three-dimensional virtual object is projected in real time and the exact environment. This paper reviewed the uses of chemical learning supplement book of aldehydes and ketones which are equipped with three-dimensional molecular modeling by which students can inspect molecules from various viewpoints. To plays the 3D illustration printed on the book, smartphones with the open-source software of the technology based integrated Augmented Reality can be used. The aims of this research were to develop the monograph of aldehydes and ketones with 3 dimensional (3D) illustrations, to determine the specification of the monograph, and to determine the quality of the monograph. The quality of the monograph is evaluated by experiencing chemistry teachers on the five aspects of contents/materials, presentations, language and images, graphs, and software engineering, resulted in the result that the book has a very good quality to be used as a chemistry learning supplement book.
NASA Technical Reports Server (NTRS)
Crowe, Kathryn; Williams, Michael
2015-01-01
Test site selection is a critical element of the design, development and production of a new system. With the advent of the new Space Launch System (SLS), the National Aeronautics and Space Administration (NASA) had a number of test site selection decisions that needed to be made early enough in the Program to support the planned Launch Readiness Date (LRD). This case study focuses on decisions that needed to be made in 2011 and 2012 in preparation for the April 2013 DPMC decision about where to execute the Main Propulsion Test that is commonly referred to as "Green Run." Those decisions relied upon cooperative analysis between the Program, the Test Lab and Center Operations. The SLS is a human spaceflight vehicle designed to carry a crew farther into space than humans have previously flown. The vehicle consists of four parts: the crew capsule, the upper stage, the core stage, and the first stage solid rocket boosters. The crew capsule carries the astronauts, while the upper stage, the core stage, and solid rocket boosters provide thrust for the vehicle. In other words, the stages provide the "lift" part of the lift vehicle. In conjunction with the solid rocket boosters, the core stage provides the initial "get-off-the-ground" thrust to the vehicle. The ignition of the four core stage engines and two solid rocket boosters is the first step in the launch portion of the mission. The solid rocket boosters burn out after about 2 minutes of flight, and are then jettisoned. The core stage provides thrust until the vehicle reaches a specific altitude and speed, at which point the core stage is shut off and jettisoned, and the upper stage provides vehicle thrust for subsequent mission trajectories. The integrated core stage primarily consists of a liquid oxygen tank, a liquid hydrogen tank, and the four core stage engines. For the SLS program, four RS-25 engines were selected as the four core stage engines. The RS-25 engine is the same engine that was used for Space Shuttle. The test plan for the integrated core stage was broken down into several segments: Component testing, system level testing, and element level testing. In this context, components are items such as valves, controllers, sensors, etc. Systems are items such as an entire engine, a tank, or the outer stage body. The core stage itself is considered to be an element. The rocket engines are also considered an element. At the program level, it was decided to perform a single green run test on the integrated core stage prior to shipment of it to Kennedy Space Center (KSC) for use in the EM-1 test flight of the SLS vehicle. A green run test is the first live fire of the new integrated core stage and engine elements - without boosters of course. The SLS Program had to decide where to perform SLS green run testing.
NASA Astrophysics Data System (ADS)
Mejías Borrero, A.; Andújar Márquez, J. M.
2012-10-01
Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real world, which can generate specific problems in laboratory classes. Current proposals of virtual labs (VL) and remote labs (RL) do not either cover new needs properly or contribute remarkable improvement to traditional labs—except that they favor distance training. Therefore, online teaching and learning in lab practices demand a further step beyond current VL and RL. This paper poses a new reality and new teaching/learning concepts in the field of lab practices in engineering. The developed augmented reality-based lab system (augmented remote lab, ARL) enables teachers and students to work remotely (Internet/intranet) in current CL, including virtual elements which interact with real ones. An educational experience was conducted to assess the developed ARL with the participation of a group of 10 teachers and another group of 20 students. Both groups have completed lab practices of the contents in the subjects Digital Systems and Robotics and Industrial Automation, which belong to the second year of the new degree in Electronic Engineering (adapted to the European Space for Higher Education). The labs were carried out by means of three different possibilities: CL, VL and ARL. After completion, both groups were asked to fill in some questionnaires aimed at measuring the improvement contributed by ARL relative to CL and VL. Except in some specific questions, the opinion of teachers and students was rather similar and positive regarding the use and possibilities of ARL. Although the results are still preliminary and need further study, seems to conclude that ARL remarkably improves the possibilities of current VL and RL. Furthermore, ARL can be concluded to allow further possibilities when used online than traditional laboratory lessons completed in CL.
Quality of water of the Colorado River in 1928-1930
Howard, C.S.
1932-01-01
This report gives the results obtained in the continuation of a study of the Colorado River begun in 1925.1 The analyses represent composites of daily samples collected by the observers at the gaging stations on the Colorado River at Cisco, Utah, and Lees Ferry and Grand Canyon, Ariz.; on the Green River at Green River, Utah; and on the San Juan River near Bluff, Utah. Analyses are given for samples collected about once a month from the Williams River at Planet, Ariz. The Arizona stations are operated under the direction of W. E. Dickinson, district engineer of the Geological Survey at Tucson, Ariz., and the Utah stations under the direction of A. B. Purton, district engineer of the Geological Survey at Salt Lake City, Utah. The average discharges given in Table 3 were calculated from data furnished by these district engineers. Complete discharge . data for this period will be published in the regular series of water-supply papers.
Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.
Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen
2016-04-01
To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.
Hot-Fire Testing of 100 LB(sub F) LOX/LCH4 Reaction Control Engine at Altitude Conditions
NASA Technical Reports Server (NTRS)
Marshall, William M.; Kleinhenz, Julie E.
2010-01-01
Liquid oxygen/liquid methane (LO2/LCH4 ) has recently been viewed as a potential green propulsion system for both the Altair ascent main engine (AME) and reaction control system (RCS). The Propulsion and Cryogenic Advanced Development Project (PCAD) has been tasked by NASA to develop these green propellant systems to enable safe and cost effective exploration missions. However, experience with LO2/LCH4 as a propellant combination is limited, so testing of these systems is critical to demonstrating reliable ignition and performance. A test program of a 100 lb f reaction control engine (RCE) is underway at the Altitude Combustion Stand (ACS) of the NASA Glenn Research Center, with a focus on conducting tests at altitude conditions. These tests include a unique propellant conditioning feed system (PCFS) which allows for the inlet conditions of the propellant to be varied to test warm to subcooled liquid propellant temperatures. Engine performance, including thrust, c* and vacuum specific impulse (I(sub sp,vac)) will be presented as a function of propellant temperature conditions. In general, the engine performed as expected, with higher performance at warmer propellant temperatures but better efficiency at lower propellant temperatures. Mixture ratio effects were inconclusive within the uncertainty bands of data, but qualitatively showed higher performance at lower ratios.
Plant species richness enhances nitrogen retention in green roof plots.
Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi
2016-10-01
Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters downstream of green roofs. © 2016 by the Ecological Society of America.
Satellites observed widespread greening of Earth and increase of woody biomass
NASA Astrophysics Data System (ADS)
Chen, C.; Park, T.; Myneni, R.; Xu, L.; Saatchi, S. S.; Liu, Y.; Knyazikhin, Y.
2017-12-01
Global terrestrial vegetation is an important modulator of the planetary climate system that alters Earth's hydrology, atmosphere and energy circulations through biophysical and biochemical processes. Yet the internal structural change of the vegetation is not well understood. Leaf area index (LAI), unlike radiometric parameters (e.g. NDVI), is a well-defined and ground-measurable biophysical variable, which can better represent the greenness of vegetation. We evaluate 17-year (2000-2016) satellite-derived LAI from two MODIS sensors onboard Terra and Aqua. Results show that the global annual-averaged LAI has an increasing trend at 0.036 m2m-2 per decade (2.3% per decade). The widespread greening takes up 32.5% of the vegetated area, while only 5.2% of such exhibits browning. We further investigate the biome- and regional-specific patterns of the evolution of LAI: 1) Croplands (0.062 m2m-2 per decade) and forests (0.044 m2m-2 per decade) are the paramount contributors of the greening; 2) Temperate vegetation (0.052 m2m-2 per decade) greening outperform other regions, followed by high-latitude vegetation (0.031 m2m-2 per decade), and tropical vegetation (0.025 m2m-2 per decade) at the minimum. Two independent satellite-observed datasets from multiple bandwidths (optical, thermal and microwave) provide evidence that this large-scale LAI trend is mainly owing to the spatiotemporal transition of woody biomass and the change of canopy structure. The greening (browning) at the global scale is concordant with the increase (decrease) of tree cover and vegetation optical depth (VOD), while little correlation is found for herbaceous biomass (i.e. non-tree cover). The observed greening and expansion of woody biomass will lead to a smaller land surface diurnal temperature range (DTR) due to the increase of a) the evapotranspiration, b) the water storage (higher the specific heat capacity) and c) the aerodynamic resistance (vertical mixture) of the canopy. a) and c) can augment daytime cooling, while b) and c) can boost nighttime warming. We find, consistently, the MODIS observed land surface DTR decreases over greening regions, and increases over browning regions.
Homogenizing Properties of Diblock Polymers in Blends of Corresponding Homopolymers.
1983-08-22
pared wiLth current theores of phase behavor for blends of dblock cpolyners and SI 2 a2 .. ’ • . a a . * , - . Acc -. ..- , ". ’". .-- _ T...Division 1030 East Green Street China. Lake, California 93555 Pasadena, California 91106 1 Naval Civil Engineering Laboratory Commander, Naval Air Systems...Charles H. Sherman Dr. G. Goodman Code TD 121 Globe Union Incorporated Naval Underwater Systems Center 5757 North Green Bay Avenue New London, Connecticut
GPIM AF-M315E Propulsion System
NASA Technical Reports Server (NTRS)
Spores, Ronald A.; Masse, Robert; Kimbrel, Scott; McLean, Chris
2014-01-01
The NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) will demonstrate an operational AF-M315E green propellant propulsion system. Aerojet-Rocketdyne is responsible for the development of the propulsion system payload. This paper statuses the propulsion system module development, including thruster design and system design; Initial test results for the 1N engineering model thruster are presented. The culmination of this program will be high-performance, green AF-M315E propulsion system technology at TRL 7+, with components demonstrated to TRL 9, ready for direct infusion to a wide range of applications for the space user community.
An in-flight simulation of approach and landing of a STOL transport with adverse ground effect
NASA Technical Reports Server (NTRS)
Ellis, D. R.
1976-01-01
The results of an in-flight simulation program undertaken to study the problems of landing a representative STOL transport in the presence of adverse ground effects are presented. Landings were performed with variations in ground effect magnitude, ground effect lag, and thrust response. Other variations covered the effects of augmented lift response, SAS-failures, turbulence, segmented approach, and flare warning. The basic STOL airplane required coordinated use of both stick and throttle for consistently acceptable landings, and the presence of adverse ground effects made the task significantly more difficult. Ground effect lag and good engine response gave noticeable improvement, as did augmented lift response.
1948-10-28
N . E. Harvey, Lt. Col. J. A. Hartman, E. P. Hildestad, H. L. Eolbrook, G. E, Hopkins, Lt. Comdr. L. A...velocity and diffuser efficiency on augmentation. 1041A H oo \\=> K H n w E-i O 33 1.6 1.4 E-i co !=> Pi E-i § 1.0 o 1.2 .8...xutm E"H N 1 DO E-i O £3 E-i DO £) E-H o ^ 00 :=> ex E-t Co o Is i.5 i.O .5 :.0 ,5 2 - 750 40G <C < CD-1 T Q lg 3800°
Goncalves, Elton C; Wilkie, Ann C; Kirst, Matias; Rathinasabapathi, Bala
2016-08-01
The great need for more sustainable alternatives to fossil fuels has increased our research interests in algal biofuels. Microalgal cells, characterized by high photosynthetic efficiency and rapid cell division, are an excellent source of neutral lipids as potential fuel stocks. Various stress factors, especially nutrient-starvation conditions, induce an increased formation of lipid bodies filled with triacylglycerol in these cells. Here we review our knowledge base on glycerolipid synthesis in the green algae with an emphasis on recent studies on carbon flux, redistribution of lipids under nutrient-limiting conditions and its regulation. We discuss the contributions and limitations of classical and novel approaches used to elucidate the algal triacylglycerol biosynthetic pathway and its regulatory network in green algae. Also discussed are gaps in knowledge and suggestions for much needed research both on the biology of triacylglycerol accumulation and possible avenues to engineer improved algal strains. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Improving professionalism in the engineering curriculum through a novel use of oral presentations
NASA Astrophysics Data System (ADS)
Berjano, Enrique; Sales-Nebot, Laura; Lozano-Nieto, Albert
2013-05-01
This hypothesis is based on the fact that oral presentations in the context of engineering education could be used not only to develop oral communication skills but also to augment the professionalism in the curriculum. The methodological innovation is first described, which allows encouraging the capacity of summarising ideas, teamwork, assertiveness, listening skills and constructive criticism. Second, the preliminary results from two pilot groups of students during two academic years are analysed. Finally, the paper reflects on the possibilities of expanding this method to pre-university studies.
Design of a V/STOL propulsion system for a large-scale fighter model
NASA Technical Reports Server (NTRS)
Willis, W. S.
1981-01-01
Modifications were made to the existing Large-Scale STOL fighter model to simulate a V/STOL configuration. Modifications include the substitutions of two dimensional lift/cruise exhaust nozzles in the nacelles, and the addition of a third J97 engine in the fuselage to suppy a remote exhaust nozzle simulating a Remote Augmented Lift System. A preliminary design of the inlet and exhaust ducting for the third engine was developed and a detailed design was completed of the hot exhaust ducting and remote nozzle.
NASA Technical Reports Server (NTRS)
Rosner, D. E.; Gokoglu, S. A.; Israel, R.
1982-01-01
A multiparameter correlation approach to the study of particle deposition rates in engineering applications is discussed with reference to two specific examples, one dealing with thermophoretically augmented small particle convective diffusion and the other involving larger particle inertial impaction. The validity of the correlations proposed here is demonstrated through rigorous computations including all relevant phenomena and interactions. Such representations are shown to minimize apparent differences between various geometric, flow, and physicochemical parameters, allowing many apparently different physicochemical situations to be described in a unified way.
2007-02-01
and Astronautics 11 PS3C W3 P3 T3 FAR3 Ps3 W41 P41 T41 FAR41 Ps41 W4 P4 T4 FAR4 Ps4 7 NozFlow 6 Flow45 5 Flow44 4 Flow41 3 Flow4 2 Flow3 1 N2Bal... Motivation for Modeling and Simulation Work The Augmented Generic Engine Model (AGEM) Model Verification and Validation (V&V) Assessment of AGEM V&V
NASA Technical Reports Server (NTRS)
Gaffin, W. O.
1979-01-01
The JT9D-70/59 high pressure turbine active clearance control system was modified to provide reduction of blade tip clearance when the system is activated during cruise operation. The modification increased the flow capacity and air impingement effectiveness of the cooling air manifold to augment turbine case shrinkage capability, and increased responsiveness of the airseal clearance to case shrinkage. The simulated altitude engine testing indicated a significant improvement in specific fuel consumption with the modified system. A 1000 cycle engine endurance test showed no unusual wear or performance deterioration effects on the engine or the clearance control system. Rig tests indicated that the air impingement and seal support configurations used in the engine tests are near optimum.
ERIC Educational Resources Information Center
Woodruff, Allison; Rosenholtz, Ruth; Morrison, Julie B.; Faulring, Andrew; Pirolli, Peter
2002-01-01
Discussion of Web search strategies focuses on a comparative study of textual and graphical summarization mechanisms applied to search engine results. Suggests that thumbnail images (graphical summaries) can increase efficiency in processing results, and that enhanced thumbnails (augmented with readable textual elements) had more consistent…
Integrated Flight-propulsion Control Concepts for Supersonic Transport Airplanes
NASA Technical Reports Server (NTRS)
Burcham, Frank W., Jr.; Gilyard, Glenn B.; Gelhausen, Paul A.
1990-01-01
Integration of propulsion and flight control systems will provide significant performance improvements for supersonic transport airplanes. Increased engine thrust and reduced fuel consumption can be obtained by controlling engine stall margin as a function of flight and engine operating conditions. Improved inlet pressure recovery and decreased inlet drag can result from inlet control system integration. Using propulsion system forces and moments to augment the flight control system and airplane stability can reduce the flight control surface and tail size, weight, and drag. Special control modes may also be desirable for minimizing community noise and for emergency procedures. The overall impact of integrated controls on the takeoff gross weight for a generic high speed civil transport is presented.
NASA Technical Reports Server (NTRS)
Clements, T. R.
1972-01-01
A performance development program has been conducted on a short length, double-annular, ram-induction combustor. The combustor was designed for a large augmented turbofan engine capable of sustained flight speeds up to Mach 3.0. Performance tests were conducted at an inlet temperature and Mach number simulating engine sea level takeoff conditions. At the design temperature rise of 1600 F, combustion efficiency was 100%, pattern factor was 0.20, and combined diffuser-combustor pressure loss was 4.4% or 1.12 times the diffuser inlet velocity head. A temperature rise in excess of 2400 F with a combustion efficiency of 94% was demonstrated.
NASA's Hybrid Reality Lab: One Giant Leap for Full Dive
NASA Technical Reports Server (NTRS)
Delgado, Francisco J.; Noyes, Matthew
2017-01-01
This presentation demonstrates how NASA is using consumer VR headsets, game engine technology and NVIDIA's GPUs to create highly immersive future training systems augmented with extremely realistic haptic feedback, sound, additional sensory information, and how these can be used to improve the engineering workflow. Include in this presentation is an environment simulation of the ISS, where users can interact with virtual objects, handrails, and tracked physical objects while inside VR, integration of consumer VR headsets with the Active Response Gravity Offload System, and a space habitat architectural evaluation tool. Attendees will learn how the best elements of real and virtual worlds can be combined into a hybrid reality environment with tangible engineering and scientific applications.
Augmenting your own reality: student authoring of science-based augmented reality games.
Klopfer, Eric; Sheldon, Josh
2010-01-01
Augmented Reality (AR) simulations superimpose a virtual overlay of data and interactions onto a real-world context. The simulation engine at the heart of this technology is built to afford elements of game play that support explorations and learning in students' natural context--their own community and surroundings. In one of the more recent games, TimeLab 2100, players role-play citizens of the early 22nd century when global climate change is out of control. Through AR, they see their community as it might be nearly one hundred years in the future. TimeLab and other similar AR games balance location specificity and portability--they are games that are tied to a location and games that are movable from place to place. Focusing students on developing their own AR games provides the best of both virtual and physical worlds: a more portable solution that deeply connects young people to their own surroundings. A series of initiatives has focused on technical and pedagogical solutions to supporting students authoring their own games.
Bone Replacement Materials and Techniques Used for Achieving Vertical Alveolar Bone Augmentation
Sheikh, Zeeshan; Sima, Corneliu; Glogauer, Michael
2015-01-01
Alveolar bone augmentation in vertical dimension remains the holy grail of periodontal tissue engineering. Successful dental implant placement for restoration of edentulous sites depends on the quality and quantity of alveolar bone available in all spatial dimensions. There are several surgical techniques used alone or in combination with natural or synthetic graft materials to achieve vertical alveolar bone augmentation. While continuously improving surgical techniques combined with the use of auto- or allografts provide the most predictable clinical outcomes, their success often depends on the status of recipient tissues. The morbidity associated with donor sites for auto-grafts makes these techniques less appealing to both patients and clinicians. New developments in material sciences offer a range of synthetic replacements for natural grafts to address the shortcoming of a second surgical site and relatively high resorption rates. This narrative review focuses on existing techniques, natural tissues and synthetic biomaterials commonly used to achieve vertical bone height gain in order to successfully restore edentulous ridges with implant-supported prostheses.
Raising the IQ in full-text searching via intelligent querying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kero, R.; Russell, L.; Swietlik, C.
1994-11-01
Current Information Retrieval (IR) technologies allow for efficient access to relevant information, provided that user selected query terms coincide with the specific linguistical choices made by the authors whose works constitute the text-base. Therefore, the challenge is to enhance the limited searching capability of state-of-the-practice IR. This can be done either with augmented clients that overcome current server searching deficiencies, or with added capabilities that can augment searching algorithms on the servers. The technology being investigated is that of deductive databases, with a set of new techniques called cooperative answering. This technology utilizes semantic networks to allow for navigation betweenmore » possible query search term alternatives. The augmented search terms are passed to an IR engine and the results can be compared. The project utilizes the OSTI Environment, Safety and Health Thesaurus to populate the domain specific semantic network and the text base of ES&H related documents from the Facility Profile Information Management System as the domain specific search space.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.; McClung, R.W.; Janney, M.A.
1987-08-01
A needs assessment was performed for nondestructive testing and materials characterization to achieve improved reliability in ceramic materials for heat engine applications. Raw materials, green state bodies, and sintered ceramics were considered. The overall approach taken to improve reliability of structural ceramics requires key inspections throughout the fabrication flowsheet, including raw materials, greed state, and dense parts. The applications of nondestructive inspection and characterization techniques to ceramic powders and other raw materials, green ceramics, and sintered ceramics are discussed. The current state of inspection technology is reviewed for all identified attributes and stages of a generalized flowsheet for advanced structuralmore » ceramics, and research and development requirements are identified and listed in priority order. 164 refs., 3 figs.« less
Rocket-Induced Magnetohydrodynamic Ejector: A Single-Stage-to-Orbit Advanced Propulsion Concept
NASA Technical Reports Server (NTRS)
Cole, John; Campbell, Jonathan; Robertson, Anthony
1995-01-01
During the atmospheric boost phase of a rocket trajectory, magnetohydrodynamic (MHD) principles can be utilized to augment the thrust by several hundred percent without the input of additional energy. The concept is an MHD implementation of a thermodynamic ejector. Some ejector history is described and some test data showing the impressive thrust augmentation capabilities of thermodynamic ejectors are provided. A momentum and energy balance is used to derive the equations to predict the MHD ejector performance. Results of these equations are compared with the test data and then applied to a specific performance example. The rocket-induced MHD ejector (RIME) engine is described and a status of the technology and availability of the engine components is provided. A top level vehicle sizing analysis is performed by scaling existing MHD designs to the required flight vehicle levels. The vehicle can achieve orbit using conservative technology. Modest improvements are suggested using recently developed technologies, such as superconducting magnets, which can improve predicted performance well beyond those expected for current single-stage-to-orbit (SSTO) designs.
Hu, Michael Z.; Zhu, Ting
2015-12-04
This study reviews the experimental synthesis and engineering developments that focused on various green approaches and large-scale process production routes for quantum dots. Fundamental process engineering principles were illustrated. In relation to the small-scale hot injection method, our discussions focus on the non-injection route that could be scaled up with engineering stir-tank reactors. In addition, applications that demand to utilize quantum dots as "commodity" chemicals are discussed, including solar cells and solid-state lightings.
NASA Conducts 2nd RS-25 Engine Hot Fire of 2018
2018-02-01
A 365-second hot fire test on Feb. 1, 2018, at NASA’s Stennis Space Center in Mississippi marks the completion of “green run” testing, or flight certification, for all new RS-25 engine flight controllers slated for Exploration Mission-2, the first Space Launch System mission with astronauts on board. In addition to the flight controller, the Feb. 1 hot fire also marked the third test of a 3D printed pogo accumulator assembly for the RS-25 engine.
New shipyard layout design for the preliminary phase & case study for the green field project
NASA Astrophysics Data System (ADS)
Song, Young Joo; Woo, Jong Hun
2013-03-01
For several decades, Asian nations such as Korea, Japan and China have been leading the shipbuilding industry since the decline in Europe and America. However, several developing countries such as India, Brazil, etc. are going to make an entrance into the shipbuilding industry. These developing countries are finding technical partners or information providers because they are in situation of little experiences and technologies. Now, the shipbuilding engineering companies of shipbuilding advanced countries are getting a chance of engineering business against those developing countries. The starting point of this business model is green field project for the construction of new shipyard. This business model is started with a design of the shipyard layout. For the conducting of the shipyard layout design, four kinds of engineering parts are required. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is the foundation of the other engineering parts and it determines the shipyard capacity during the shipyard operation lifecycle. Previous researches about the shipyard layout design are out of the range from the business requirements because most research cases are in the tower of ivory, which means that there are little consideration of real ship and shipbuilding operation. In this paper, a shipyard layout design for preliminary phase is conducted for the target of newly planned shipyard at Venezuela of South America with an integrated method that is capable of dealing with actual master data from the shipyard. The layout design method of this paper is differentiated from the previous researches in that the actual product data from the target ship and the actual shipbuilding operation data are used for the required area estimation.
Advanced Propulsion System Studies in High Speed Research
NASA Technical Reports Server (NTRS)
Zola, Charles L.
2000-01-01
Propulsion for acceptable supersonic passenger transport aircraft is primarily impacted by the very high jet noise characteristics of otherwise attractive engines. The mixed flow turbofan, when equipped with a special ejector nozzle seems to be the best candidate engine for this task of combining low jet noise with acceptable flight performance. Design, performance, and operation aspects of mixed flow turbofans are discussed. If the special silencing nozzle is too large, too heavy, or not as effective as expected, alternative concepts in mixed flow engines should be examined. Presented herein is a brief summary of efforts performed under cooperative agreement NCC3-193. Three alternative engine concepts, conceived during this study effort, are herein presented and their limitations and potentials are described. These three concepts intentionally avoid the use of special silencing nozzles and achieve low jet noise by airflow augmentation of the engine cycle.
Video File - NASA Conducts 2nd RS-25 Engine Hot Fire of 2018 - 2018-02-01
2018-02-01
NASA Conducts 2nd RS-25 Engine Hot Fire of 2018. A 365-second hot fire test on Feb. 1, 2018, at NASA’s Stennis Space Center in Mississippi marks the completion of “green run” testing, or flight certification, for all new RS-25 engine flight controllers slated for Exploration Mission-2, the first Space Launch System mission with astronauts on board. In addition to the flight controller, the Feb. 1 hot fire also marked the third test of a 3D printed pogo accumulator assembly for the RS-25 engine.
Achieving environmental excellence through a multidisciplinary grassroots movement.
Herechuk, Bryan; Gosse, Carolyn; Woods, John N
2010-01-01
St. Joseph's Healthcare Hamilton (SJHH) supports a grassroots green team, called Environmental Vision and Action (EVA). Since the creation of EVA, a healthy balance between corporate projects led by corporate leaders and grassroots initiatives led by informal leaders has resulted in many successful environmental initiatives. Over a relatively short period of time, environmental successes at SJHH have included waste diversion programs, energy efficiency and reduction initiatives, alternative commuting programs, green purchasing practices, clinical and pharmacy greening and increased staff engagement and awareness. Knowledge of social movements theory helped EVA leaders to understand the internal processes of a grassroots movement and helped to guide it. Social movements theory may also have broader applicability in health care by understanding the passionate engagement that people bring to a common cause and how to evolve sources of opposition into engines for positive change. After early successes, as the limitations of a grassroots movement began to surface, the EVA team revived the concept of evolving the grassroots green program into a corporate program for environmental stewardship. It is hard to quantify the importance of allowing our staff, physicians, volunteers and patients to engage in changes that they feel passionately about. However, at SJHH, the transformation of a group of people unsatisfied with the organization's environmental performance into an 'engine for change' has led to a rapid improvement in environmental stewardship at SJHH that is now regarded as a success.
Porosity structure of green polybag of medium density fiberboard from seaweed waste
NASA Astrophysics Data System (ADS)
Alamsjah, M. A.; Subekti, S.; Lamid, M.; Pujiastuti, D. Y.; Kurnia, H.; Rifadi, R. R.
2018-04-01
The last decade shown that the needs Medium Density Fibreboard (MDF) rapidly growing in Asia Pacific and Europe up to more 15 % per year. MDF made up of fibers lignoselulosa which combined with synthetic resin or tied other suitable but high temperatures and pressure. Technology engineering for green polybag of MDF from seaweed waste of Kappaphycus alvarezii and Gracilaria verrucosa is an alternative effort for ecosystem stability and technological innovations that is environmentally friendly. Structure porosity from the shape of green polybag shows that performance seaweed waste of K. alvarezii is better than seaweed waste of G. verrucosa. The circulation of water happened more optimal in green polybag formed from MDF of seaweed waste of K. alvarezii with size porosity 3.976 µm, while size porosity of seaweed waste of G. verrucosa measurable 4.794 µm. Structure of green polybag of MDF from seaweed waste showed that C components greater 50 % to K. alvarezii while C components less than 50 % to G. verrucosa. This resulted in the ties to structure of MDF stronger found in green polybag derived from seaweed waste of K. alvarezii than G. verrucosa.
The eco-origins, actions and demonstration roles of Beijing Green Olympic Game.
Wang, R S
2001-10-01
The 29th Olympic Game will be held in Beijing in 2008. It will be a green game to promote sustainable development of men, cities and regions through ecological development advocating "man and nature be in one". "Eco" here means a process, a driving force, an action, a culture and a kind of vitality leading to sustainable development. It is a mechanism embodying the Olympic spirit of competition, cooperation and self-reliance. The paper explained the ecological significance, connotation and objectives of Beijing Green Olympic Game. Ten major ecological heritages of Beijing have been investigated including ecologically sound landscape, culture, transportation, physical exercise, health care, sanitation, food, family relationship, agriculture, and human ecological totality. To preserve or restore the above mentioned old tradition, a green Olympic action plan has been made out in Beijing initiated by NGOs, supported by entrepreneurs and coordinated by government agencies. Four kinds of eco-engineering have been planned for blue sky, clean water, green land and eco-city development. The demonstration role of Beijing Green Olympic Game to developing regions and countries is also discussed.
NASA Astrophysics Data System (ADS)
Apple, M. E.; Ricketts, M. K.
2016-12-01
On the stair-stepped solifluction terraces of the periglacial patterned ground at Glacier National Park, Montana, the clearly visible striped pattern of green alternating with brown is formed by contrasts in the percent cover of plants with different functional traits. The sloping green risers dominated by the mat-forming dwarf shrubs, Dryas octopetela (Mountain Dryad) and Salix arctica (Arctic Willow) alternate with the relatively flat, sparsely covered brown rocky treads which are inhabitated by herbaceous, and often taprooted plants. Eleven species were restricted to the brown treads, including the rare arctic-alpine species Papaver pygmaeum (Pygmy Poppy), Aqiulegia jonesii (Jones' Columbine), Draba macounii, and Erigeron lanatus. Of these, the first three arise from taproots or branched rootcrowns. They are restricted to the brown rocky treads while E. lanatus arises from a caudex and grows on the treads and risers. The relative abundance of rare plants was significantly higher on the brown treads and no rare species were restricted to the green risers. The community weighted trait means were significantly higher for Raunkiaer cryptophytes and hemicryptophytes, graminoid, herbaceous and rosetted forms, and stolons, Underground traits varied significantly as well, since taproots, caudices, and other substantial roots had higher incidences on the brown treads than on the green risers. The brown, rocky treads are relatively flat with low percent plant cover and likely a water-stressed environment, hence the substantial investment in underground structures. In contrast, the sloped green risers are essentially covered by the mat-forming dwarf shrubs, D. octopetela and S. arctica, which augment their woody roots with the anchorage of adventitious roots and which provide shade and water retention for other plants, including seedlings of Abies lasiocarpa (Subalpine fir) and Pinus albicaulus (Whitebark Pine). Water from summer thunderstorms and seasonal melting supplies the periglacial patterned ground, which is by definition close to Glacier National Park's vanishing snowfields and glaciers, so their loss will likely influence water availability for these alpine plants.
Klein, A; Buschmann, M; Babilas, P; Landthaler, M; Bäumler, W
2013-08-01
Telangiectatic leg veins (TLV) represent a common cosmetic problem. Near infrared lasers have been widely used in treatment because of their deeper penetration into the dermis, but with varying degrees of success, particularly because of different vessel diameters. Indocyanine green (ICG)-augmented diode laser treatment (ICG+DL) may present an alternative treatment option. This trial evaluates the efficacy of ICG+DL in the treatment of TLV and compares the safety and efficacy of therapy with the standard treatment, the long-pulsed neodymium-doped yttrium aluminium garnet (Nd:YAG) laser. In a prospective randomized controlled clinical trial, 29 study participants with TLV were treated with a Nd:YAG laser (λem = 1064 nm, 160-240 J cm(-2) , 65-ms pulse duration, 5-mm spot size) and ICG+DL (λem = 810 nm, 60-110 J cm(-2) , 48-87-ms pulse duration, 6-mm spot size; total ICG dose 4 mg kg(-1) ) in a side-by-side comparison in one single treatment setting that included histological examination in four participants. Two blinded investigators and the participants assessed clearance rate, cosmetic appearance and adverse events up to 3 months after treatment. According to both the investigators' and participants' assessment, clearance rates were significantly better after ICG+DL therapy than after Nd:YAG laser treatment (P < 0·05). On a 10-point scale indicating pain during treatment, participants rated ICG+DL therapy to be more painful (6·1 ± 2·0) than Nd:YAG laser (5·4 ± 2·0). ICG+DL therapy represents a new and promising treatment modality for TLV, with high clearance rates and a very good cosmetic outcome after one single treatment session. © 2013 British Association of Dermatologists.
Contemplating Transport Characteristics by Augmenting the Length of Molecule
NASA Astrophysics Data System (ADS)
Kaur, Milanpreet; Sawhney, Ravinder Singh; Engles, Derick
2013-11-01
In this paper, we contemplated the transport characteristics of a single molecular device junction by augmenting the length of the molecule in the scattering region. The molecules considered here belongs to class of alkanedithiols (CnH2n+2S2). Specifically, we used a tight binding semi-empirical model to compute the transport characteristics of butanedithiol, pentanedithiol, hexanedithiol and heptanedithiol connected to semi-infinite gold electrodes through thiol anchoring elements. The exploration of transport properties of considered alkanes was completed for different bias voltages within the sphere of Keldysh's Non Equilibrium Green's Function (NEGF) and Extended Hückel Theory (EHT), for studying the self-consistent steady-state solution, analyzing the out-of-equilibrium electron distribution, and the behavior of the self-consistent potential. We perceived that the current and conductance retrenches with aggravation with the increase in length of the molecule with exhibition of single electron tunneling. We observed that the coupling regime shifts from strong coupling to weak for higher order alkanedithiols and the transmission is function of evenness or oddness of the carbon atoms forming an alkane.
Augmenting Primary and Secondary Education with Polymer Science and Engineering
ERIC Educational Resources Information Center
Cersonsky, Rose K.; Foster, Leanna L.; Ahn, Taeyong; Hall, Ryan J.; van der Laan, Harry L.; Scott, Timothy F.
2017-01-01
Despite the prevalence of polymers in modern everyday life, there is little introduction to the topic in science education throughout primary or secondary schooling in the United States. Of the few states that do include polymer education, this is only found at the high school level, primarily in biology or chemistry. Over the past year, we have…
Augmenting Oracle Text with the UMLS for enhanced searching of free-text medical reports.
Ding, Jing; Erdal, Selnur; Dhaval, Rakesh; Kamal, Jyoti
2007-10-11
The intrinsic complexity of free-text medical reports imposes great challenges for information retrieval systems. We have developed a prototype search engine for retrieving clinical reports that leverages the powerful indexing and querying capabilities of Oracle Text, and the rich biomedical domain knowledge and semantic structures that are captured in the UMLS Metathesaurus.
Development of Casting Process for Pressings of Pistons of Car Augmented Engines
NASA Astrophysics Data System (ADS)
Korostelev, V. F.; Denisov, M. S.
2017-01-01
Results of a study aimed at formation of a single-phase fine-grained structure in pistons during their production process involving isostatic pressing of liquid metal prior to the start of crystallization, pressing of the crystallizing metal, and holding under pressure in the process of cooling to the shop temperature are presented.
ERIC Educational Resources Information Center
Shirazi, Arezoo; Behzadan, Amir H.
2015-01-01
Recent studies suggest that the number of students pursuing science, technology, engineering, and mathematics (STEM) degrees has been generally decreasing. An extensive body of research cites the lack of motivation and engagement in the learning process as a major underlying reason of this decline. It has been discussed that if properly…
Clinical applications of cell-based approaches in alveolar bone augmentation: a systematic review.
Shanbhag, Siddharth; Shanbhag, Vivek
2015-01-01
Cell-based approaches, utilizing adult mesenchymal stem cells (MSCs), are reported to overcome the limitations of conventional bone augmentation procedures. The study aims to systematically review the available evidence on the characteristics and clinical effectiveness of cell-based ridge augmentation, socket preservation, and sinus-floor augmentation, compared to current evidence-based methods in human adult patients. MEDLINE, EMBASE, and CENTRAL databases were searched for related literature. Both observational and experimental studies reporting outcomes of "tissue engineered" or "cell-based" augmentation in ≥5 adult patients alone, or in comparison with non-cell-based (conventional) augmentation methods, were eligible for inclusion. Primary outcome was histomorphometric analysis of new bone formation. Effectiveness of cell-based augmentation was evaluated based on outcomes of controlled studies. Twenty-seven eligible studies were identified. Of these, 15 included a control group (8 randomized controlled trials [RCTs]), and were judged to be at a moderate-to-high risk of bias. Most studies reported the combined use of cultured autologous MSCs with an osteoconductive bone substitute (BS) scaffold. Iliac bone marrow and mandibular periosteum were frequently reported sources of MSCs. In vitro culture of MSCs took between 12 days and 1.5 months. A range of autogenous, allogeneic, xenogeneic, and alloplastic scaffolds was identified. Bovine bone mineral scaffold was frequently reported with favorable outcomes, while polylactic-polyglycolic acid copolymer (PLGA) scaffold resulted in graft failure in three studies. The combination of MSCs and BS resulted in outcomes similar to autogenous bone (AB) and BS. Three RCTs and one controlled trial reported significantly greater bone formation in cell-based than conventionally grafted sites after 3 to 8 months. Based on limited controlled evidence at a moderate-to-high risk of bias, cell-based approaches are comparable, if not superior, to current evidence-based bone grafting methods, with a significant advantage of avoiding AB harvesting. Future clinical trials should additionally evaluate patient-based outcomes and the time-/cost-effectiveness of these approaches. © 2013 Wiley Periodicals, Inc.
2016-02-04
Truss-braced wind model installed in the Ames 11x11 Foot Wind Tunnel for testing as part of the Subsonic Ultra Green Aircraft Research Project (SUGAR) Shown here with test engineer Greg Gatlin, Langley Research Center.
1985-03-01
Invertebrates (Pacific Southwest) BLACK, GREEN, AND RED ABALONES by Jerald S. Ault Cooperative Institute for Marine and Atmospheric Studies 4600...F, 7AD-A162 638 SPECIES PROFILES LIFE HISTORIES AND ENVIRONMENTAL 1/ REQUIREMENTS OF COASTAL (U) COOPERATIVE INST FOR MARINE AND ATMOSPHERIC STUDIES...histories and environmental requirements of coastal fishes and invertebrates . U.S. Fish Wildl. Serv. Biol. Rep. 82(11). U.S. Army Corps of Engineers, TR
Approximate Green's function methods for HZE transport in multilayered materials
NASA Technical Reports Server (NTRS)
Wilson, John W.; Badavi, Francis F.; Shinn, Judy L.; Costen, Robert C.
1993-01-01
A nonperturbative analytic solution of the high charge and energy (HZE) Green's function is used to implement a computer code for laboratory ion beam transport in multilayered materials. The code is established to operate on the Langley nuclear fragmentation model used in engineering applications. Computational procedures are established to generate linear energy transfer (LET) distributions for a specified ion beam and target for comparison with experimental measurements. The code was found to be highly efficient and compared well with the perturbation approximation.
Multiple Site-Directed and Saturation Mutagenesis by the Patch Cloning Method.
Taniguchi, Naohiro; Murakami, Hiroshi
2017-01-01
Constructing protein-coding genes with desired mutations is a basic step for protein engineering. Herein, we describe a multiple site-directed and saturation mutagenesis method, termed MUPAC. This method has been used to introduce multiple site-directed mutations in the green fluorescent protein gene and in the moloney murine leukemia virus reverse transcriptase gene. Moreover, this method was also successfully used to introduce randomized codons at five desired positions in the green fluorescent protein gene, and for simple DNA assembly for cloning.
Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 1
NASA Technical Reports Server (NTRS)
Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.
1985-01-01
An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. The test engine delivered 78kW indicated power from 1007cc displacement, operating at 3500 RPM on Schnuerle loop scavenged two-stroke cycle. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude, in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications; including injection system requirement, turbocharging, heat rejection, breathing, scavenging, and structural requirements. The multicylinder engine concept is configured to operate with an augmented turbocharger, but with no primary scavenge blower. The test program is oriented to provide a balanced turbocharger compressor to turbine power balance without an auxiliary scavenging system. Engine cylinder heat rejection to the ambient air has been significantly reduced and the minimum overall turbocharger efficiency required is within the range of commercially available turbochargers. Analytical studies and finite element modeling is made of insulated configurations of the engines - including both ceramic and metallic versions. A second generation test engine is designed based on current test results.
NASA Technical Reports Server (NTRS)
Prince, William R; Mcaulay, John E
1950-01-01
An investigation of turbojet-engine thrust augmentation by means of tail-pipe burning was conducted in the NACA Lewis altitude wind tunnel. Performance data were obtained with a tail-pipe burner having a converging conical burner section installed on an axial-flow-compressor type turbojet engine over a range of simulated flight conditions and tail-pipe fuel-air ratios with a fixed-area exhaust nozzle. A maximum tail-pipe combustion efficiency of 0.86 was obtained at an altitude of 15,000 feet and a flight Mach number of 0.23. Tail-pipe burner operation was possible up to an altitude of 45,000 feet at a flight Mach number of 0.23.
NASA Astrophysics Data System (ADS)
Chardon, V.; Laurent, S.; Piegay, H.; Arnaud, F.; Houssier, J.; Serouilou, J.; Clutier, A.
2017-12-01
The Old Rhine is a 50 km by-passed reach downstream from the Kembs diversion dam in the Alsacian plain (France/Germany). It has been impacted by engineering works since the 19th century. This reach exhibits poor ecological functionalities due to severe geomorphological alterations (e.g., channel bed stabilization, narrowing, degradation and armoring, sediment deficit). In the frame of the Kembs power plant relicensing (2010), Électricité de France has undertaken two gravel augmentations (18 000 and 30 000 m3) and three controlled bank erosions following riprap protection removal over 300 m bank length to enhance bedload transport and habitat diversification. A first pilot gravel augmentation was also implemented in 2010 (23 000 m3). A geomorphological monitoring based on bedload tracking, grain size analyses and topo-bathymetric surveys has been performed on the three gravel augmentation reaches and one of the controlled bank erosion sites to assess the efficiency and sustainability of these actions (2010-2017). Results show that augmented gravels are entrained for a Q2 flood. Gravels moved several hundred meters for moderate floods and up to one kilometer for more intense floods (Q15), while sediment deposition mainly diffused within the channel. Morphological and grain size diversification, including sediment refinement, are still relatively limited following gravel augmentation. Furthermore, sediment armoring reestablished once the sediment wave moved more downstream, after only four to six years, due to the stability and the narrowness of the channel but also by the absence of upstream bedload supply. Habitat diversification was higher on the controlled bank erosion site thanks to the presence of two artificial groynes, even though eroded sediment volumes were lower than expected (less than 1500m3 for a Q15 flood). This monitoring demonstrates gravel augmentations are not sufficient to really diversify geomorphological conditions of the Old Rhine. Channel enlargements by controlled bank erosion and other actions should be carried out downstream from gravel augmentations to create channel geometry conditions promoting bar development and habitat diversification.
The CREST Simulation Development Process: Training the Next Generation.
Sweet, Robert M
2017-04-01
The challenges of training and assessing endourologic skill have driven the development of new training systems. The Center for Research in Education and Simulation Technologies (CREST) has developed a team and a methodology to facilitate this development process. Backwards design principles were applied. A panel of experts first defined desired clinical and educational outcomes. Outcomes were subsequently linked to learning objectives. Gross task deconstruction was performed, and the primary domain was classified as primarily involving decision-making, psychomotor skill, or communication. A more detailed cognitive task analysis was performed to elicit and prioritize relevant anatomy/tissues, metrics, and errors. Reference anatomy was created using a digital anatomist and clinician working off of a clinical data set. Three dimensional printing can facilitate this process. When possible, synthetic or virtual tissue behavior and textures were recreated using data derived from human tissue. Embedded sensors/markers and/or computer-based systems were used to facilitate the collection of objective metrics. A learning Verification and validation occurred throughout the engineering development process. Nine endourology-relevant training systems were created by CREST with this approach. Systems include basic laparoscopic skills (BLUS), vesicourethral anastomosis, pyeloplasty, cystoscopic procedures, stent placement, rigid and flexible ureteroscopy, GreenLight PVP (GL Sim), Percutaneous access with C-arm (CAT), Nephrolithotomy (NLM), and a vascular injury model. Mixed modalities have been used, including "smart" physical models, virtual reality, augmented reality, and video. Substantial validity evidence for training and assessment has been collected on systems. An open source manikin-based modular platform is under development by CREST with the Department of Defense that will unify these and other commercial task trainers through the common physiology engine, learning management system, standard data connectors, and standards. Using the CREST process has and will ensure that the systems we create meet the needs of training and assessing endourologic skills.
Jointly Optimal Design for MIMO Radar Frequency-Hopping Waveforms Using Game Theory
2016-04-01
Washington University in St . Louis St . Louis, MO, USA Using a colocated multiple input/multiple output (MIMO) radar system, we consider the problem of...Authors’ address: Preston M. Green Department of Electrical and Systems Engineering, Washington University in St . Louis, St . Louis, MO, 63130...engineering from Washington University in St . Louis, under the guidance of Dr. Arye Nehorai, in 2012 and 2015, respectively. His research interests
Methods for Functional Connectivity Analyses
2012-12-13
motor , or hand motor function (green, red, or blue shading, respectively). Thus, this work produced the first comprehensive analysis of ECoG...Computer Engineering, University of Texas at El Paso , TX, USA 3Department of Neurology, Albany Medical College, Albany, NY, USA 4Department of Computer...Department of Health, Albany, NY, USA bDepartment of Electrical and Computer Engineering, University of Texas at El Paso , TX, USA cDepartment of Neurology
Performance deterioration based on in-service engine data: JT9D jet engine diagnostics program
NASA Technical Reports Server (NTRS)
Sallee, G. P.
1979-01-01
Results of analyses of engine performance deterioration trends and levels with respect to service usage are presented. Thirty-two JT9D-7A engines were selected for this purpose. The selection of this engine fleet provided the opportunity of obtaining engine performance data starting before the first flight through initial service such that the trend and levels of engine deterioration related to both short and long term deterioration could be more carefully defined. The performance data collected and analyzed included in-flight, on wing (ground), and test stand prerepair and postrepair performance calibrations with expanded instrumentation where feasible. The results of the analyses of these data were used to: (1) close gaps in previously obtained historical data as well as augment the historical data with more carefully obtained data; (2) refine preliminary models of performance deterioration with respect to usage; (3) establish an understanding of the relationships between ground and altitude performance deterioration trends; (4) refine preliminary recommendations concerning means to reduce and control deterioration; and (5) identify areas where additional effort is required to develop an understanding of complex deterioration issues.
Contingency Power Study for Short Haul Civil Tiltrotor
NASA Technical Reports Server (NTRS)
D'Angelo, Marin M.
2004-01-01
NASA has concluded from previous studies that the twin engine tiltrotor is the most economical and technologically viable rotorcraft for near-term civil applications. Twin engine civil rotorcraft must be able to hover safely on one engine in an emergency. This emergency power requirement generally results in engines 20 to 50 percent larger than needed for normal engine operation, negatively impacting aircraft economics. This study identifies several contingency power enhancement concepts, and quantifies their potential to reduce aircraft operating costs. Many unique concepts were examined, and the selected concepts are simple, reliable, and have a high potential for near term realization. These engine concepts allow extremely high turbine temperatures during emergency operation by providing cooling to the power turbine and augmenting cooling of both turbines and structural hardware. Direct operating cost are reduced 3 to percent, which could yield a 30 to 80 percent increase in operating profits. The study consists of the definition of an aircraft economics model and a baseline engine, and an engine concept screening study, and a preliminary definition of the selected concepts. The selected concepts are evaluated against the baseline engine, and the critical technologies and development needs are identified, along with applications for this technology.
Power blue and green laser diodes and their applications
NASA Astrophysics Data System (ADS)
Hager, Thomas; Strauß, Uwe; Eichler, Christoph; Vierheilig, Clemens; Tautz, Sönke; Brüderl, Georg; Stojetz, Bernhard; Wurm, Teresa; Avramescu, Adrian; Somers, André; Ristic, Jelena; Gerhard, Sven; Lell, Alfred; Morgott, Stefan; Mehl, Oliver
2013-03-01
InGaN based green laser diodes with output powers up to 50mW are now well established for variety of applications ranging from leveling to special lighting effects and mobile projection of 12lm brightness. In future the highest market potential for visible single mode profile lasers might be laser projection of 20lm. Therefore direct green single-mode laser diodes with higher power are required. We found that self heating was the limiting factor for higher current operation. We present power-current characteristics of improved R and D samples with up to 200mW in cw-operation. An optical output power of 100mW is reached at 215mA, a current level which is suitable for long term operation. Blue InGaN laser diodes are also the ideal source for phosphor based generation of green light sources of high luminance. We present a light engine based on LARP (Laser Activated Remote Phosphor) which can be used in business projectors of several thousand lumens on screen. We discuss the advantages of a laser based systems in comparison with LED light engines. LARP requires highly efficient blue power laser diodes with output power above 1W. Future market penetration of LARP will require lower costs. Therefore we studied new designs for higher powers levels. R and D chips with power-current characteristics up to 4W in continuous wave operation on C-mount at 25°C are presented.
Green Toxicology: a strategy for sustainable chemical and material development.
Crawford, Sarah E; Hartung, Thomas; Hollert, Henner; Mathes, Björn; van Ravenzwaay, Bennard; Steger-Hartmann, Thomas; Studer, Christoph; Krug, Harald F
2017-01-01
Green Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of "Green Chemistry" and "Green Engineering", "Green Toxicology" aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies. Due to the costly development and preparation of new materials and chemicals for market entry, it is no longer practical to ignore the safety and environmental status of new products during product development stages. However, this is only possible if toxicologists and chemists work together early on in the development of materials and chemicals to utilize safe design strategies and innovative in vitro and in silico tools. This paper discusses some of the most relevant aspects, advances and limitations of the emergence of Green Toxicology from the perspective of different industry and research groups. The integration of new testing methods and strategies in product development, testing and regulation stages are presented with examples of the application of in silico, omics and in vitro methods. Other tools for Green Toxicology, including the reduction of animal testing, alternative test methods, and read-across approaches are also discussed.
Reliability Analysis of a Green Roof Under Different Storm Scenarios
NASA Astrophysics Data System (ADS)
William, R. K.; Stillwell, A. S.
2015-12-01
Urban environments continue to face the challenges of localized flooding and decreased water quality brought on by the increasing amount of impervious area in the built environment. Green infrastructure provides an alternative to conventional storm sewer design by using natural processes to filter and store stormwater at its source. However, there are currently few consistent standards available in North America to ensure that installed green infrastructure is performing as expected. This analysis offers a method for characterizing green roof failure using a visual aid commonly used in earthquake engineering: fragility curves. We adapted the concept of the fragility curve based on the efficiency in runoff reduction provided by a green roof compared to a conventional roof under different storm scenarios. We then used the 2D distributed surface water-groundwater coupled model MIKE SHE to model the impact that a real green roof might have on runoff in different storm events. We then employed a multiple regression analysis to generate an algebraic demand model that was input into the Matlab-based reliability analysis model FERUM, which was then used to calculate the probability of failure. The use of reliability analysis as a part of green infrastructure design code can provide insights into green roof weaknesses and areas for improvement. It also supports the design of code that is more resilient than current standards and is easily testable for failure. Finally, the understanding of reliability of a single green roof module under different scenarios can support holistic testing of system reliability.
ERIC Educational Resources Information Center
Cutright, Teresa J.; Evans, Edward
2016-01-01
The last year of a National Science Foundation (NSF) funded scholarship program was used to provide pseudo-formal peer mentoring activities to engineering, mathematics, and science undergraduates. A one-credit class was used to afford time for peer mentors and mentees to interact. During the fall semester, seniors augmented each week's topics with…
ERIC Educational Resources Information Center
Azevedo, Roger; Mudrick, Nicholas; Taub, Michelle; Wortha, Franz
2017-01-01
Metacognition and emotions play a critical role in learners' ability to monitor and regulate their learning about 21st-century skills related to science, technology, engineering, and mathematics (STEM) content while using advanced learning technologies (ALTs; e.g., intelligent tutoring systems, serious games, hypermedia, augmented reality). In…
ERIC Educational Resources Information Center
Bottia, Martha Cecilia; Stearns, Elizabeth; Mickelson, Roslyn Arlin; Moller, Stephanie; Parker, Ashley Dawn
2015-01-01
Background/Context: Schools are integral to augmenting and diversifying the science, technology, engineering, and mathematics (STEM) workforce. This is because K-12 schools can inspire and reinforce students' interest in STEM, in addition to academically preparing them to pursue a STEM career. Previous literature emphasizes the importance of…
CPU and GPU-based Numerical Simulations of Combustion Processes
2012-04-27
Distribution unlimited UCLA MAE Research and Technology Review April 27, 2012 Magnetohydrodynamic Augmentation of the Pulse Detonation Rocket Engines...Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) – Energy extract from exhaust flow by MHD generator – Seeded air stream acceleration by MHD...accelerator for thrust enhancement and control • Alternative concept: Magnetic piston – During PDE blowdown process, MHD extracts energy and
ERIC Educational Resources Information Center
AAI Corp., Baltimore, MD.
This report covers a two-year and seven-month solar space heating and cooling experiment conducted at the Timonium Elementary School, Timonium, Maryland. The system was designed to provide a minimum of 50 percent of the energy required during the heating season and to determine the feasibility of using solar energy to power absorption-type…
Software Testbed for Developing and Evaluating Integrated Autonomous Systems
2015-03-01
EUROPA planning system for plan generation. The adaptive controller executes the new plan, using augmented, hierarchical finite state machines to...using the Internet Communications Engine ( ICE ), an object-oriented toolkit for building distributed applications. TABLE OF CONTENTS 1...ANML model is translated into the New Domain Definition Language (NDDL) and sent to NASA???s EUROPA planning system for plan generation. The adaptive
Magnetohydrodynamic Augmented Propulsion Experiment: I. Performance Analysis and Design
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Cole, J. W.; Lineberry, J. T.; Chapman, J. N.; Schmidt, H. J.; Lineberry, C. W.
2003-01-01
The performance of conventional thermal propulsion systems is fundamentally constrained by the specific energy limitations associated with chemical fuels and the thermal limits of available materials. Electromagnetic thrust augmentation represents one intriguing possibility for improving the fuel composition of thermal propulsion systems, thereby increasing overall specific energy characteristics; however, realization of such a system requires an extremely high-energy-density electrical power source as well as an efficient plasma acceleration device. This Technical Publication describes the development of an experimental research facility for investigating the use of cross-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In this experiment,a 1.5-MW(sub e) Aerotherm arc heater is used to drive a 2-MW(sub e) MHD accelerator. The heatsink MHD accelerator is configured as an externally diagonalized, segmented channel, which is inserted into a large-bore, 2-T electromagnet. The performance analysis and engineering design of the flow path are described as well as the parameter measurements and flow diagnostics planned for the initial series of test runs.
Pilots Rate Augmented Generalized Predictive Control for Reconfiguration
NASA Technical Reports Server (NTRS)
Soloway, Don; Haley, Pam
2004-01-01
The objective of this paper is to report the results from the research being conducted in reconfigurable fight controls at NASA Ames. A study was conducted with three NASA Dryden test pilots to evaluate two approaches of reconfiguring an aircraft's control system when failures occur in the control surfaces and engine. NASA Ames is investigating both a Neural Generalized Predictive Control scheme and a Neural Network based Dynamic Inverse controller. This paper highlights the Predictive Control scheme where a simple augmentation to reduce zero steady-state error led to the neural network predictor model becoming redundant for the task. Instead of using a neural network predictor model, a nominal single point linear model was used and then augmented with an error corrector. This paper shows that the Generalized Predictive Controller and the Dynamic Inverse Neural Network controller perform equally well at reconfiguration, but with less rate requirements from the actuators. Also presented are the pilot ratings for each controller for various failure scenarios and two samples of the required control actuation during reconfiguration. Finally, the paper concludes by stepping through the Generalized Predictive Control's reconfiguration process for an elevator failure.
Green Mono Propulsion Activities at MSFC
NASA Technical Reports Server (NTRS)
Robinson, Joel W.
2014-01-01
In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01) for Launch Propulsion Systems and TA-02 In-Space Propulsion are two of the fourteen TAs that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within these documents are future needs of green propellant use. Green ionic liquid monopropellants and propulsion systems are beginning to be demonstrated in space flight environments. Starting in 2010 with the flight of Prisma, a 1-N thruster system began on-orbit demonstrations operating on ammonium dinitramide based propellant. The NASA Green Propellant Infusion Mission (GPIM) plans to demonstrate both 1-N, and 22-N hydroxyl ammonium nitrate (HAN)-based thrusters in a 2015 flight demonstration. In addition, engineers at MSFC have been evaluating green propellant alternatives for both thrusters and auxiliary power units (APUs). This paper summarizes the status of these development/demonstration activities and investigates the potential for evolution of green propellants from small spacecraft and satellites to larger spacecraft systems, human exploration, and launch system auxiliary propulsion applications.
Green Mono Propulsion Activities at MSFC
NASA Technical Reports Server (NTRS)
Robinson, Joel W.
2014-01-01
In 2012, the National Aeronautics & Space Administration (NASA) Space Technology Mission Directorate (STMD) began the process of building an integrated technology roadmap, including both technology pull and technology push strategies. Technology Area 1 (TA-01) for Launch Propulsion Systems and TA-02 In-Space Propulsion are two of the fourteen TA's that provide recommendations for the overall technology investment strategy and prioritization of NASA's space technology activities. Identified within these documents are future needs of green propellant use. Green ionic liquid monopropellants and propulsion systems are beginning to be demonstrated in space flight environments. Starting in 2010 with the flight of PRISMA, a one Newton thruster system began on-orbit demonstrations operating on ammonium dinitramide based propellant. The NASA Green Propellant Infusion Mission (GPIM) plans to demonstrate both 1 N, and 22 N hydroxyl ammonium nitrate based thrusters in a 2015 flight demonstration. In addition, engineers at MSFC have been evaluating green propellant alternatives for both thrusters and auxiliary power units. This paper summarizes the status of these development/demonstration activities and investigates the potential for evolution of green propellants from small spacecraft and satellites to larger spacecraft systems, human exploration, and launch system auxiliary propulsion applications.
Effect of Operating Frequency on PDE Driven Ejector Thrust Performance
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh; Landry, K.; Shehadeh, R.; Bouvet, N.; Lee, S.-Y.
2005-01-01
Results of an on-going study of pulse detonation engine driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE) designed to operate at frequencies up to 50 Hz. The PDE used in these experiments utilizes an equi-molar mixture of oxygen and nitrogen as the oxidizer, and ethylene (C2H4) as the fuel, with the propellant mixture having an equivalence ratio of one. A line of sight laser absorption technique was used to determine the time needed for proper filling of the tube. Thrust measurements were made using an integrated spring damper system coupled with a linear variable displacement transducer. The baseline thrust of the PDE was first measured at each desired frequency and agrees with experimental and modeling results found in the literature. Thrust augmentation measurements were then made for constant diameter ejectors. The ejectors had varying lengths, and two different inlet geometries were tested for each ejector configuration. The parameter space for the study included PDE operation frequency, ejector length, overlap distance and the radius of curvature for the ejector inlets. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz.
Martin, Neil R W; Turner, Mark C; Farrington, Robert; Player, Darren J; Lewis, Mark P
2017-10-01
The amino acid leucine is thought to be important for skeletal muscle growth by virtue of its ability to acutely activate mTORC1 and enhance muscle protein synthesis, yet little data exist regarding its impact on skeletal muscle size and its ability to produce force. We utilized a tissue engineering approach in order to test whether supplementing culture medium with leucine could enhance mTORC1 signaling, myotube growth, and muscle function. Phosphorylation of the mTORC1 target proteins 4EBP-1 and rpS6 and myotube hypertrophy appeared to occur in a dose dependent manner, with 5 and 20 mM of leucine inducing similar effects, which were greater than those seen with 1 mM. Maximal contractile force was also elevated with leucine supplementation; however, although this did not appear to be enhanced with increasing leucine doses, this effect was completely ablated by co-incubation with the mTOR inhibitor rapamycin, showing that the augmented force production in the presence of leucine was mTOR sensitive. Finally, by using electrical stimulation to induce chronic (24 hr) contraction of engineered skeletal muscle constructs, we were able to show that the effects of leucine and muscle contraction are additive, since the two stimuli had cumulative effects on maximal contractile force production. These results extend our current knowledge of the efficacy of leucine as an anabolic nutritional aid showing for the first time that leucine supplementation may augment skeletal muscle functional capacity, and furthermore validates the use of engineered skeletal muscle for highly-controlled investigations into nutritional regulation of muscle physiology. © 2017 The Authors. Journal of Cellular Physiology Published by wiley periodicals, Inc.
Martin, Neil R.W.; Turner, Mark C.; Farrington, Robert; Player, Darren J.
2017-01-01
The amino acid leucine is thought to be important for skeletal muscle growth by virtue of its ability to acutely activate mTORC1 and enhance muscle protein synthesis, yet little data exist regarding its impact on skeletal muscle size and its ability to produce force. We utilized a tissue engineering approach in order to test whether supplementing culture medium with leucine could enhance mTORC1 signaling, myotube growth, and muscle function. Phosphorylation of the mTORC1 target proteins 4EBP‐1 and rpS6 and myotube hypertrophy appeared to occur in a dose dependent manner, with 5 and 20 mM of leucine inducing similar effects, which were greater than those seen with 1 mM. Maximal contractile force was also elevated with leucine supplementation; however, although this did not appear to be enhanced with increasing leucine doses, this effect was completely ablated by co‐incubation with the mTOR inhibitor rapamycin, showing that the augmented force production in the presence of leucine was mTOR sensitive. Finally, by using electrical stimulation to induce chronic (24 hr) contraction of engineered skeletal muscle constructs, we were able to show that the effects of leucine and muscle contraction are additive, since the two stimuli had cumulative effects on maximal contractile force production. These results extend our current knowledge of the efficacy of leucine as an anabolic nutritional aid showing for the first time that leucine supplementation may augment skeletal muscle functional capacity, and furthermore validates the use of engineered skeletal muscle for highly‐controlled investigations into nutritional regulation of muscle physiology. PMID:28409828
NASA Technical Reports Server (NTRS)
Lohmann, R. A.; Riecke, G. T.
1977-01-01
An analytical screening study was conducted to identify duct burner concepts capable of providing low emissions and high performance in advanced supersonic engines. Duct burner configurations ranging from current augmenter technology to advanced concepts such as premix-prevaporized burners were defined. Aerothermal and mechanical design studies provided the basis for screening these configurations using the criteria of emissions, performance, engine compatibility, cost, weight and relative risk. Technology levels derived from recently defined experimental low emissions main burners are required to achieve both low emissions and high performance goals. A configuration based on the Vorbix (Vortex burning and mixing) combustor concept was analytically determined to meet the performance goals and is consistent with the fan duct envelope of a variable cycle engine. The duct burner configuration has a moderate risk level compatible with the schedule of anticipated experimental programs.
Teaching problem solving: Don't forget the problem solver(s)
NASA Astrophysics Data System (ADS)
Ranade, Saidas M.; Corrales, Angela
2013-05-01
The importance of intrapersonal and interpersonal intelligences has long been known but educators have debated whether to and how to incorporate those topics in an already crowded engineering curriculum. In 2010, the authors used the classroom as a laboratory to observe the usefulness of including selected case studies and exercises from the fields of neurology, artificial intelligence, cognitive sciences and social psychology in a new problem-solving course. To further validate their initial findings, in 2012, the authors conducted an online survey of engineering students and engineers. The main conclusion is that engineering students will benefit from learning more about the impact of emotions, culture, diversity and cognitive biases when solving problems. Specifically, the work shows that an augmented problem-solving curriculum needs to include lessons on labelling emotions and cognitive biases, 'evidence-based' data on the importance of culture and diversity and additional practice on estimating conditional probability.
NASA Tests 2nd RS-25 Flight Engine for Space Launch System
2018-01-16
On Jan. 16, 2018, engineers at NASA’s Stennis Space Center in Mississippi conducted a certification test of another RS-25 engine flight controller on the A-1 Test Stand at Stennis Space Center. The 365-second, full-duration test came a month after the space agency capped a year of RS-25 testing with a flight controller test in mid-December. For the “green run” test the flight controller was installed on RS-25 developmental engine E0528 and fired just as during an actual launch. Once certified, the flight controller will be removed and installed on a flight engine for use by NASA’s new deep-space rocket, the Space Launch System (SLS).
Phytoremediation, the use of green plants to treat and control wastes in water, soil, and air, is an important part of the new field of ecological engineering. In situ and ex situ applications are governed by site soil and water characteristics, nutrient sustainability, meteorolo...
Workplace Safety and Health Topics: Safety & Prevention
... Health Records (EHRs) and Patient Work Information Engineering Controls Equipment Design in Mining Falls in the Workplace Green, Safe, and Healthy Jobs – Prevention through Design Hierarchy of Controls Industry and Occupation Coding and Support Logging Safety ...
Improving Scientific Metadata Interoperability And Data Discoverability using OAI-PMH
NASA Astrophysics Data System (ADS)
Devarakonda, Ranjeet; Palanisamy, Giri; Green, James M.; Wilson, Bruce E.
2010-12-01
While general-purpose search engines (such as Google or Bing) are useful for finding many things on the Internet, they are often of limited usefulness for locating Earth Science data relevant (for example) to a specific spatiotemporal extent. By contrast, tools that search repositories of structured metadata can locate relevant datasets with fairly high precision, but the search is limited to that particular repository. Federated searches (such as Z39.50) have been used, but can be slow and the comprehensiveness can be limited by downtime in any search partner. An alternative approach to improve comprehensiveness is for a repository to harvest metadata from other repositories, possibly with limits based on subject matter or access permissions. Searches through harvested metadata can be extremely responsive, and the search tool can be customized with semantic augmentation appropriate to the community of practice being served. However, there are a number of different protocols for harvesting metadata, with some challenges for ensuring that updates are propagated and for collaborations with repositories using differing metadata standards. The Open Archive Initiative Protocol for Metadata Handling (OAI-PMH) is a standard that is seeing increased use as a means for exchanging structured metadata. OAI-PMH implementations must support Dublin Core as a metadata standard, with other metadata formats as optional. We have developed tools which enable our structured search tool (Mercury; http://mercury.ornl.gov) to consume metadata from OAI-PMH services in any of the metadata formats we support (Dublin Core, Darwin Core, FCDC CSDGM, GCMD DIF, EML, and ISO 19115/19137). We are also making ORNL DAAC metadata available through OAI-PMH for other metadata tools to utilize, such as the NASA Global Change Master Directory, GCMD). This paper describes Mercury capabilities with multiple metadata formats, in general, and, more specifically, the results of our OAI-PMH implementations and the lessons learned. References: [1] R. Devarakonda, G. Palanisamy, B.E. Wilson, and J.M. Green, "Mercury: reusable metadata management data discovery and access system", Earth Science Informatics, vol. 3, no. 1, pp. 87-94, May 2010. [2] R. Devarakonda, G. Palanisamy, J.M. Green, B.E. Wilson, "Data sharing and retrieval using OAI-PMH", Earth Science Informatics DOI: 10.1007/s12145-010-0073-0, (2010). [3] Devarakonda, R.; Palanisamy, G.; Green, J.; Wilson, B. E. "Mercury: An Example of Effective Software Reuse for Metadata Management Data Discovery and Access", Eos Trans. AGU, 89(53), Fall Meet. Suppl., IN11A-1019 (2008).
Nonlinear Control of a Reusable Rocket Engine for Life Extension
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok
1998-01-01
This paper presents the conceptual development of a life-extending control system where the objective is to achieve high performance and structural durability of the plant. A life-extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel (H2) and oxidizer (O2) turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. The design procedure makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life-extending controller module to augment a conventional performance controller of the rocket engine. The nonlinear aspect of the design is achieved using non-linear parameter optimization of a prescribed control structure. Fatigue damage in fuel and oxidizer turbine blades is primarily caused by stress cycling during start-up, shutdown, and transient operations of a rocket engine. Fatigue damage in the turbine blades is one of the most serious causes for engine failure.
An overview of game-based learning in building services engineering education
NASA Astrophysics Data System (ADS)
Alanne, Kari
2016-03-01
To ensure proper competence development and short graduation times for engineering students, it is essential that the study motivation is encouraged by new learning methods. In game-based learning, the learner's engagement is increased and learning is made meaningful by applying game-like features such as competition and rewarding through virtual promotions or achievement badges. In this paper, the state of the art of game-based learning in building services engineering education at university level is reviewed and discussed. A systematic literature review indicates that educational games have been reported in the field of related disciplines, such as mechanical and civil engineering. The development of system-level educational games that realistically simulate work life in building services engineering is still in its infancy. Novel rewarding practices and more comprehensive approaches entailing the state-of-the-art information tools such as building information modelling, geographic information systems, building management systems and augmented reality are needed in the future.
Single-stage-to-orbit performance enhancement from take-off thrust augmentation
NASA Astrophysics Data System (ADS)
Galati, Terence; Elkins, Travis
1997-01-01
Thrust augmentation offers the Single Stage to Orbit (SSTO) space launch vehicle improved payload capability while reducing vehicle weight and cost. Optimization of vehicle configuration and flight profile are studied. Using a 612,000 kg Gross Lift Off Weight (GLOW) SSTO with three Castor® strap-on motors, payloads in excess of 18,000 kg to Low Earth Orbit (LEO) are achievable. Emphasis is placed on finding vehicle optimums in the 9,000 kg payload range to capture over 80% of commercial payloads. Strap-on boosters allow a small SSTO vehicle to fly with a mass fraction of only 0.88 and LOX/H2 engines operating at 445 sec vacuum specific impulse. Payload sensitivity due to variations of mass fraction, Isp and pitch rate are quantified.
NASA Astrophysics Data System (ADS)
Lin, Chien-Liang; Su, Yu-Zheng; Hung, Min-Wei; Huang, Kuo-Cheng
2010-08-01
In recent years, Augmented Reality (AR)[1][2][3] is very popular in universities and research organizations. The AR technology has been widely used in Virtual Reality (VR) fields, such as sophisticated weapons, flight vehicle development, data model visualization, virtual training, entertainment and arts. AR has characteristics to enhance the display output as a real environment with specific user interactive functions or specific object recognitions. It can be use in medical treatment, anatomy training, precision instrument casting, warplane guidance, engineering and distance robot control. AR has a lot of vantages than VR. This system developed combines sensors, software and imaging algorithms to make users feel real, actual and existing. Imaging algorithms include gray level method, image binarization method, and white balance method in order to make accurate image recognition and overcome the effects of light.
Shear flow simulations of biaxial nematic liquid crystals
NASA Astrophysics Data System (ADS)
Sarman, Sten
1997-08-01
We have calculated the viscosities of a biaxial nematic liquid crystal phase of a variant of the Gay-Berne fluid [J. G. Gay and B. J. Berne, J. Chem. Phys. 74, 3316 (1981)] by performing molecular dynamics simulations. The equations of motion have been augmented by a director constraint torque that fixes the orientation of the directors. This makes it possible to fix them at different angles relative to the stream lines in shear flow simulations. In equilibrium simulations the constraints generate a new ensemble. One finds that the Green-Kubo relations for the viscosities become linear combinations of time correlation function integrals in this ensemble whereas they are complicated rational functions in the conventional canonical ensemble. We have evaluated these Green-Kubo relations for all the shear viscosities and all the twist viscosities. We have also calculated the alignment angles, which are functions of the viscosity coefficients. We find that there are three real alignment angles but a linear stability analysis shows that only one of them corresponds to a stable director orientation. The Green-Kubo results have been cross checked by nonequilibrium shear flow simulations. The results from the different methods agree very well. Finally, we have evaluated the Miesowicz viscosities [D. Baalss, Z. Naturforsch. Teil A 45, 7 (1990)]. They vary by more than 2 orders of magnitude. The viscosity is consequently highly orientation dependent.
NASA Astrophysics Data System (ADS)
Chen, Jingqin; Liu, Chengbo; Zeng, Guang; You, Yujia; Wang, Huina; Gong, Xiaojing; Zheng, Rongqin; Kim, Jeesu; Kim, Chulhong; Song, Liang
2016-02-01
Multimodality imaging based on multifunctional nanocomposites holds great promise to fundamentally augment the capability of biomedical imaging. Specifically, photoacoustic and fluorescence dual-modality imaging is gaining much interest because of their non-invasiveness and the complementary nature of the two modalities in terms of imaging resolution, depth, sensitivity, and speed. Herein, using a green and facile method, we synthesize indocyanine green (ICG) loaded, polyethylene glycol (PEG)ylated, reduced nano-graphene oxide nanocomposite (rNGO-PEG/ICG) as a new type of fluorescence and photoacoustic dual-modality imaging contrast. The nanocomposite is shown to have minimal toxicity and excellent photoacoustic/fluorescence signals both in vitro and in vivo. Compared with free ICG, the nanocomposite is demonstrated to possess greater stability, longer blood circulation time, and superior passive tumor targeting capability. In vivo study shows that the circulation time of rNGO-PEG/ICG in the mouse body can sustain up to 6 h upon intravenous injection; while after 1 day, no obvious accumulation of rNGO-PEG/ICG is found in any major organs except the tumor regions. The demonstrated high fluorescence/photoacoustic dual contrasts, together with its low toxicity and excellent circulation life time, suggest that the synthesized rNGO-PEG/ICG can be a promising candidate for further translational studies on both the early diagnosis and image-guided therapy/surgery of cancer.
Historic Properties Report: Stratford Army Engine Plant, Connecticut.
1984-07-01
aircraft, Pan American began flights to Argentina, Hawaii, and New Zealand , and by August 1934 the Sikorsky S-42 airplane had set world records for...384;or a lengthy discussion of the Corsair , see William Green, Famous Fighters of the Second World War (Garden City, New York: Doubleday), pp. 79-92...manufacture the Corsair fighter plane. Presently, the Avco Lycoming Division uses the facility to develop and manufacture gas turbine engines. There are
Large space antennas: A systems analysis case history
NASA Technical Reports Server (NTRS)
Keafer, Lloyd S. (Compiler); Lovelace, U. M. (Compiler)
1987-01-01
The value of systems analysis and engineering is aptly demonstrated by the work on Large Space Antennas (LSA) by the NASA Langley Spacecraft Analysis Branch. This work was accomplished over the last half-decade by augmenting traditional system engineering, analysis, and design techniques with computer-aided engineering (CAE) techniques using the Langley-developed Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system. This report chronicles the research highlights and special systems analyses that focused the LSA work on deployable truss antennas. It notes developmental trends toward greater use of CAE techniques in their design and analysis. A look to the future envisions the application of improved systems analysis capabilities to advanced space systems such as an advanced space station or to lunar and Martian missions and human habitats.
NASA Technical Reports Server (NTRS)
Karel, M.; Kamarei, A. R.; Nakhost, Z.
1985-01-01
The major nutritional components of the green algae (Scenedesmus obliquus) grown in a Constant Cell density Apparatus were determined. Suitable methodology to prepare proteins from which three major undesirable components of these cells (i.e., cell walls, nucleic acids, and pigments) were either removed or substantially reduced was developed. Results showed that processing of green algae to protein isolate enhances its potential nutritional and organoleptic acceptability as a diet component in a Controlled Ecological Life Support System.
Torrao, G; Fontes, T; Coelho, M; Rouphail, N
2016-07-01
In general, car manufacturers face trade-offs between safety, efficiency and environmental performance when choosing between mass, length, engine power, and fuel efficiency. Moreover, the information available to the consumers makes difficult to assess all these components at once, especially when aiming to compare vehicles across different categories and/or to compare vehicles in the same category but across different model years. The main objective of this research was to develop an integrated tool able to assess vehicle's performance simultaneously for safety and environmental domains, leading to the research output of a Safety, Fuel Efficiency and Green Emissions (SEG) indicator able to evaluate and rank vehicle's performance across those three domains. For this purpose, crash data was gathered in Porto (Portugal) for the period 2006-2010 (N=1374). The crash database was analyzed and crash severity prediction models were developed using advanced logistic regression models. Following, the methodology for the SEG indicator was established combining the vehicle's safety and the environmental evaluation into an integrated analysis. The obtained results for the SEG indicator do not show any trade-off between vehicle's safety, fuel consumption and emissions. The best performance was achieved for newer gasoline passenger vehicles (<5year) with a smaller engine size (<1400cm(3)). According to the SEG indicator, a vehicle with these characteristics can be recommended for a safety-conscious profile user, as well as for a user more interested in fuel economy and/or in green performance. On the other hand, for larger engine size vehicles (>2000cm(3)) the combined score for safety user profile was in average more satisfactory than for vehicles in the smaller engine size group (<1400cm(3)), which suggests that in general, larger vehicles may offer extra protection. The achieved results demonstrate that the developed SEG integrated methodology can be a helpful tool for consumers to evaluate their vehicle selection through different domains (safety, fuel efficiency and green emissions). Furthermore, SEG indicator allows the comparison of vehicles across different categories and vehicle model years. Hence, this research is intended to support the decision-making process for transportation policy, safety and sustainable mobility, providing insights not only to policy makers, but also for general public guidance. Copyright © 2016 Elsevier Ltd. All rights reserved.
A remote augmentor lift system with a turbine bypass engine
NASA Technical Reports Server (NTRS)
Fishbach, L. H.; Franciscus, L. C.
1982-01-01
Two supersonic vertical takeoff or landing (VTOL) aircraft engine types, a conventional medium bypass ratio turbofan, and a turbine bypass turbojet were studied. The aircraft assumed was a clipped delta wing with canard configuration. A VTOL deck launched intercept, DLI, mission with Mach 1.6 dash and cruise segments was used as the design mission. Several alternate missions requiring extended subsonic capabilities were analyzed. Comparisons were made between the turbofan (TF) and the turbine bypass turbojet (TBE) engines in airplane types using a Remote Augmented Lift Systems, RALS and a Lift plus Lift Cruise system (L+LC). The figure of merit was takeoff gross weight for the VTOL DLI mission. The results of the study show that the turbine bypass turbojet and the conventional turbofan are competitive engines for both type of aircraft in terms of takeoff gross weight and range. However, the turbine bypass turbojet would be a simpler engine and may result in more attractive life cycle costs and reduced maintenance. The RALS and L+LC airplane types with either TBE or TF engines have approximately the same aircraft takeoff gross weight.
Human Exploration and Settlement of the Moon Using LUNOX-Augmented NTR Propulsion
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Culver, Donald W.; Bulman, Melvin J.
1995-01-01
An innovative trimodal nuclear thermal rocket (NTR) concept is described which combines conventional liquid hydrogen (LH2)-cooled NTR, Brayton cycle power generation and supersonic combustion ramjet (scramjet) technologies. Known as the liquid oxygen (LOX) augmented NTR (LANTR), this concept utilizes the large divergent section of the NTR nozzle as an 'afterburner' into which LOX is injected and supersonically combusted with nuclear preheated hydrogen emerging from the LANTR's choked sonic throat--'scramjet propulsion in reverse.' By varying the oxygen-to-hydrogen mixture ratio (MR), the LANTR can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. As the MR varies from zero to seven, the thrust-to-weight ratio for a 15 thousand pound force (klbf) NTR increases by approximately 440%--from 3 to 13--while the Isp decreases by only approximately 45%--from 940 to 515 seconds. This thrust augmentation feature of the LANTR means that 'big engine' performance can be obtained using smaller more affordable, easier to test NTR engines. 'Reoxidizing' the bipropellant LANTR system in low lunar orbit (LLO) with high density 'lunar-derived' LOX (LUNOX) enables a reusable, reduced size and mass lunar transfer vehicle (LTV) which can be deployed and resupplied using two 66 t-class Shuttle-derived launch vehicles. The reusable LANTR can also transport 200 to 300% more payload on each piloted round trip mission than an expendable 'all LH2' NTR system. As initial outposts grow to eventual lunar settlements and LUNOX production capacity increases, the LANTR concept can also enable a rapid 'commuter' shuttle capable of 36 to 24 hour 'one way' trips to the Moon and back with reasonable size vehicles and initial mass in low Earth orbit (IMLEO) requirements.
Pulsed Ejector Thrust Amplification Tested and Modeled
NASA Technical Reports Server (NTRS)
Wilson, Jack
2004-01-01
There is currently much interest in pulsed detonation engines for aeronautical propulsion. This, in turn, has sparked renewed interest in pulsed ejectors to increase the thrust of such engines, since previous, though limited, research had indicated that pulsed ejectors could double the thrust in a short device. An experiment has been run at the NASA Glenn Research Center, using a shrouded Hartmann-Sprenger tube as a source of pulsed flow, to measure the thrust augmentation of a statistically designed set of ejectors. A Hartmann- Sprenger tube directs the flow from a supersonic nozzle (Mach 2 in the present experiment) into a closed tube. Under appropriate conditions, an oscillation is set up in which the jet flow alternately fills the tube and then spills around flow emerging from the tube. The tube length determines the frequency of oscillation. By shrouding the tube, the flow was directed out of the shroud as an axial stream. The set of ejectors comprised three different ejector lengths, three ejector diameters, and three nose radii. The thrust of the jet alone, and then of the jet plus ejector, was measured using a thrust plate. The arrangement is shown in this photograph. Thrust augmentation is defined as the thrust of the jet with an ejector divided by the thrust of the jet alone. The experiments exhibited an optimum ejector diameter and length for maximizing the thrust augmentation, but little dependence on nose radius. Different frequencies were produced by changing the length of the Hartmann-Sprenger tube, and the experiment was run at a total of four frequencies. Additional measurements showed that the major feature of the pulsed jet was a starting vortex ring. The size of the vortex ring depended on the frequency, as did the optimum ejector diameter.
Human exploration and settlement of the Moon using LUNOX-augmented NTR propulsion
NASA Astrophysics Data System (ADS)
Borowski, Stanley K.; Culver, Donald W.; Bulman, Melvin J.
1995-10-01
An innovative trimodal nuclear thermal rocket (NTR) concept is described which combines conventional liquid hydrogen (LH2)-cooled NTR, Brayton cycle power generation and supersonic combustion ramjet (scramjet) technologies. Known as the liquid oxygen (LOX) augmented NTR (LANTR), this concept utilizes the large divergent section of the NTR nozzle as an 'afterburner' into which LOX is injected and supersonically combusted with nuclear preheated hydrogen emerging from the LANTR's choked sonic throat--'scramjet propulsion in reverse.' By varying the oxygen-to-hydrogen mixture ratio (MR), the LANTR can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. As the MR varies from zero to seven, the thrust-to-weight ratio for a 15 thousand pound force (klbf) NTR increases by approximately 440%--from 3 to 13--while the Isp decreases by only approximately 45%--from 940 to 515 seconds. This thrust augmentation feature of the LANTR means that 'big engine' performance can be obtained using smaller more affordable, easier to test NTR engines. 'Reoxidizing' the bipropellant LANTR system in low lunar orbit (LLO) with high density 'lunar-derived' LOX (LUNOX) enables a reusable, reduced size and mass lunar transfer vehicle (LTV) which can be deployed and resupplied using two 66 t-class Shuttle-derived launch vehicles. The reusable LANTR can also transport 200 to 300% more payload on each piloted round trip mission than an expendable 'all LH2' NTR system. As initial outposts grow to eventual lunar settlements and LUNOX production capacity increases, the LANTR concept can also enable a rapid 'commuter' shuttle capable of 36 to 24 hour 'one way' trips to the Moon and back with reasonable size vehicles and initial mass in low Earth orbit (IMLEO) requirements.
Human exploration and settlement of the moon using lunox-augmented NTR propulsion
NASA Astrophysics Data System (ADS)
Borowski, Stanley K.; Culver, Donald W.; Bulman, Melvin J.
1995-01-01
An innovative trimodal nuclear thermal rocket (NTR) concept is described which combines conventional liquid hydrogen (LH2)-cooled NTR, Brayton cycle power generation and supersonic combustion ramjet (scramjet) technologies. Known as the liquid oxygen (LOS)-augmented NTR (LANTR), this concept utilizes the large divergent section of the NTR nozzle as an ``afterburner'' into which LOX is injected and supersonically combusted with nuclear preheated hydrogen emerging from the LANTR's choked sonic throat—``scramjet propulsion in reverse.'' By varying the oxygen-to-hydrogen mixture ratio (MR), the LANTR can operate over a wide range of thrust and specific impulse (Isp) values while the reactor core power level remains relatively constant. As the MR varies from zero to seven, the thrust-to-weight ratio for a 15 thousand pound force (klbf) NTR increases by ˜440%—from 3 to 13—while the Isp decreases by only ˜45%—from 940 to 515 seconds. This thrust augmentation feature of the LANTR means that ``big engine'' performance can be obtained using smaller, more affordable, easier to test NTR engines. ``Reoxidizing'' the bipropellant LANTR system in low lunar orbit (LLO) with high density ``lunar-derived'' LOX (LUNOX) enables a reusable, reduced size and mass lunar transfer vehicle (LTV) which can be deployed and resupplied using two 66 t-class Shuttle-derived launch vehicles. The reusable LANTR can also transport 200 to 300% more payload on each piloted round trip mission than an expendable ``all LH2'' NTR system. As initial outposts grow to eventual lunar settlements and LUNOX production capacity increases, the LANTR concept can also enable a rapid ``commuter'' shuttle capable of 36 to 24 hour ``one way'' trip to the Moon and back with reasonable size vehicles and initial mass in low Earth orbit (IMLEO) requirements.
Efficient 3M PBS enhancing miniature projection optics
NASA Astrophysics Data System (ADS)
Yun, Zhisheng; Nevitt, Timothy; Willett, Stephen; Mortenson, Dave; Le, John; McDowell, Erin; Kent, Susan; Wong, Timothy; Beniot, Gilles J.; Ouderkirk, Andrew
2016-09-01
Over the past decade, 3M has developed a number of mobile projectors, with a goal towards providing the world's smallest, most efficient projection systems. Compact size and efficiency are required characteristics for projection systems used in mobile devices and more lately, in augmented reality systems. In this paper we summarize the main generations of 3M light engine optical designs. We present the optical architectures of four light engines, including the rationale behind the illumination designs and the projection systems. In particular, we describe various configurations relating to the 3M polarizing beam splitter (PBS) which is key to enhanced efficiency of the miniature projection systems.
ERIC Educational Resources Information Center
Lee, Mark J. W.; Nikolic, Sasha; Vial, Peter J.; Ritz, Christian H.; Li, Wanqing; Goldfinch, Tom
2016-01-01
Project-based learning is a widely used pedagogical strategy in engineering education shown to be effective in fostering problem-solving, design, and teamwork skills. There are distinct benefits to be gained from giving students autonomy in determining the nature and scope of the projects that they wish to undertake, but a lack of expert guidance…
The Development of Mobile Augmented Reality
2012-01-01
working jointly with NRL, performed a domain analysis ( Gabbard et al., 2002) to create a context for usability engineering effort, performed formative...rectangle to provide a background enabled the fastest user performance ( Gabbard et al., 2007). Tracking the user’s head position relative to the real...thank Yohan Baillot, Reinhold Behringer, Blaine Bell, Dennis Brown, Aaron Bryden, Enylton Coelho, Elliot Cooper-Balis, Deborah Hix, Joseph Gabbard
A Performance Management Framework for Civil Engineering
1990-09-01
cultural change. A non - equivalent control group design was chosen to augment the case analysis. Figure 3.18 shows the form of the quasi-experiment. The...The non - equivalent control group design controls the following obstacles to internal validity: history, maturation, testing, and instrumentation. The...and Stanley, 1963:48,50) Table 7. Validity of Quasi-Experiment The non - equivalent control group experimental design controls the following obstacles to
Enhanced verification test suite for physics simulation codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.
2008-09-01
This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.
Industrial Design in Aerospace/Role of Aesthetics
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M.
2006-01-01
Industrial design creates and develops concepts and specifications that seek to simultaneously and synergistically optimize function, production, value and appearance. The inclusion of appearance, or esthetics, as a major design metric represents both an augmentation of conventional engineering design and an intersection with artistic endeavor(s). Report surveys past and current industrial design practices and examples across aerospace including aircraft and spacecraft, both exterior and interior.
Fluidically Augmented Nozzles for Pulse Detonation Engine Applications
2011-12-01
25 captured the flow soon after the leading shock wave passed through the diverging section of the nozzle. As can be seen, the “pillow” has begun to...35 Figure 25. Initial Detonation Wave Enters the Diverging Section of the Nozzle...charging the combustor with an appropriate fuel/air mixture. This mixture is then ignited, producing a flame that is initially a deflagration wave . A
Hu, Hongwei; Salim, Teddy; Chen, Bingbing; Lam, Yeng Ming
2016-01-01
Organic-inorganic hybrid perovskites have the potential to be used as a new class of emitters with tunable emission, high color purity and good ease of fabrication. Recent studies have so far been focused on three-dimensional (3D) perovskites, such as CH3NH3PbBr3 and CH3NH3PbI3 for green and infrared emission. Here, we explore a new series of hybrid perovskite emitters with a general formula of (C4H9NH3)2(CH3NH3)n−1PbnI3n+1 (where n = 1, 2, 3), which possesses a multiple quantum well structure. The quantum well thickness of these materials is adjustable through simple molecular engineering which results in a continuously tunable bandgap and emission spectra. Deep saturated red emission was obtained with a peak external quantum efficiency of 2.29% and a maximum luminance of 214 cd/m2. Green and blue LEDs were also demonstrated through halogen substitutions in these hybrid perovskites. We expect these results to open up the way towards high performance perovskite LEDs through molecular-structure engineering of these perovskite emitters. PMID:27633084
Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.
Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia
2018-02-01
Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.
Bajar, Bryce T; Wang, Emily S; Lam, Amy J; Kim, Bongjae B; Jacobs, Conor L; Howe, Elizabeth S; Davidson, Michael W; Lin, Michael Z; Chu, Jun
2016-02-16
Many genetically encoded biosensors use Förster resonance energy transfer (FRET) to dynamically report biomolecular activities. While pairs of cyan and yellow fluorescent proteins (FPs) are most commonly used as FRET partner fluorophores, respectively, green and red FPs offer distinct advantages for FRET, such as greater spectral separation, less phototoxicity, and lower autofluorescence. We previously developed the green-red FRET pair Clover and mRuby2, which improves responsiveness in intramolecular FRET reporters with different designs. Here we report the engineering of brighter and more photostable variants, mClover3 and mRuby3. mClover3 improves photostability by 60% and mRuby3 by 200% over the previous generation of fluorophores. Notably, mRuby3 is also 35% brighter than mRuby2, making it both the brightest and most photostable monomeric red FP yet characterized. Furthermore, we developed a standardized methodology for assessing FP performance in mammalian cells as stand-alone markers and as FRET partners. We found that mClover3 or mRuby3 expression in mammalian cells provides the highest fluorescence signals of all jellyfish GFP or coral RFP derivatives, respectively. Finally, using mClover3 and mRuby3, we engineered an improved version of the CaMKIIα reporter Camuiα with a larger response amplitude.
Saei, Amir Ata; Omidi, Amir Ali; Barzegari, Abolfazl
2013-01-01
Curiosity has driven humankind to explore and conquer space. However, today, space research is not a means to relieve this curiosity anymore, but instead has turned into a need. To support the crew in distant expeditions, supplies should either be delivered from the Earth, or prepared for short durations through physiochemical methods aboard the space station. Thus, research continues to devise reliable regenerative systems. Biological life support systems may be the only answer to human autonomy in outposts beyond Earth. For construction of an artificial extraterrestrial ecosystem, it is necessary to search for highly adaptable super-organisms capable of growth in harsh space environments. Indeed, a number of organisms have been proposed for cultivation in space. Meanwhile, some manipulations can be done to increase their photosynthetic potential and stress tolerance. Genetic manipulation and screening of plants, microalgae and cyanobacteria is currently a fascinating topic in space bioengineering. In this commentary, we will provide a viewpoint on the realities, limitations and promises in designing biological life support system based on engineered and/or selected green organism. Special focus will be devoted to the engineering of key photosynthetic enzymes in pioneer green organisms and their potential use in establishment of transgenic photobioreactors in space.
Saei, Amir Ata; Omidi, Amir Ali; Barzegari, Abolfazl
2013-01-01
Curiosity has driven humankind to explore and conquer space. However, today, space research is not a means to relieve this curiosity anymore, but instead has turned into a need. To support the crew in distant expeditions, supplies should either be delivered from the Earth, or prepared for short durations through physiochemical methods aboard the space station. Thus, research continues to devise reliable regenerative systems. Biological life support systems may be the only answer to human autonomy in outposts beyond Earth. For construction of an artificial extraterrestrial ecosystem, it is necessary to search for highly adaptable super-organisms capable of growth in harsh space environments. Indeed, a number of organisms have been proposed for cultivation in space. Meanwhile, some manipulations can be done to increase their photosynthetic potential and stress tolerance. Genetic manipulation and screening of plants, microalgae and cyanobacteria is currently a fascinating topic in space bioengineering. In this commentary, we will provide a viewpoint on the realities, limitations and promises in designing biological life support system based on engineered and/or selected green organism. Special focus will be devoted to the engineering of key photosynthetic enzymes in pioneer green organisms and their potential use in establishment of transgenic photobioreactors in space. PMID:22992434
Dhami, Navdeep K.; Alsubhi, Walaa R.; Watkin, Elizabeth; Mukherjee, Abhijit
2017-01-01
Microbially-induced CaCO3 precipitation (MICP) is a naturally occurring process wherein durable carbonates are formed as a result of microbial metabolic activities. In recent years, MICP technology has been widely harnessed for applications in civil engineering wherein synthesis of calcium carbonate crystals occurs at ambient temperature paving way for low energy biocement. MICP using pure urease (UA) and carbonic anhydrase (CA) producing bacteria has been promising in laboratory conditions. In the current study we enriched ureolytic and carbonic anhydrase communities in calcareous soil under biostimulation and bioaugmentation conditions and investigated the effect of microbial dynamics on carbonate precipitation, calcium carbonate polymorph selection and consolidation of biological sand column under nutrient limited and rich conditions. All treatments for stimulation and augmentation led to significant changes in the composition of indigenous bacterial population. Biostimulation as well as augmentation through the UA route was found to be faster and more effective compared to the CA route in terms of extracellular enzyme production and carbonate precipitation. Synergistic role of augmented cultures along with indigenous communities was recorded via both the routes of UA and CA as more effective calcification was seen in case of augmentation compared to stimulation. The survival of supplemented isolates in presence of indigenous bacterial communities was confirmed through sequencing of total diversity and it was seen that both UA and CA isolate had the potential to survive along with native communities under high nutrient conditions. Nutrient conditions played significant role in determining calcium carbonate polymorph fate as calcitic crystals dominated under high carbon supplementation. Finally, the consolidation of sand columns via stimulation and augmentation was successfully achieved through both UA and CA route under high nutrient conditions but higher consolidation in short time period was noticed in UA route. The study reports that based upon the organic carbon content in native soils, stimulation can be favored at sites with high organic carbon content while augmentation with repeated injections of nutrients can be applied on poor nutrient soils via different enrichment routes of microbial metabolism. PMID:28744265
Green Infrastructure Research at NRMRL’s Urban Watershed Research Facility
USEPA’s National Risk Management Research Laboratory (NRMRL) examined several options for completing water quality research supporting the Clean Water Act and the Safe Drinking Water Act. NRMRL concluded that developing and understanding the engineering unit processes within gre...
SWALE RESEARCH AT NRMRL’S URBAN WATERSHED RESEARCH FACILITY
Swales are “engineered ditches” that provide stable routing for stormwater runoff. Swales are green infrastructure, a low-cost drainage option for highways, farms, industrial, and commercial areas. Beyond enhancing local aesthetics, swales mitigate the pollutants carried by the...
BEYOND GREEN BUILDINGS: AN INTEGRATED HOLISTIC DESIGN APPROACH
Technical Challenge: The Urban Sustainable Infrastructure Engineering Program (USIEP) at the University of Colorado at Denver is designing a Sustainable Youth Zone (SYZ) building in a disadvantaged community in Commerce City, CO. The SYZ utilizes a holistic ...
Commercialization of an Advanced Gearless Midsize Wind Turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKay, Chris; Ellis, Kyle
The objective of this project was the development and eventual commercialization of a Gearless Wind Turbine of rated power 450 kW. While the product was to be based on existing technology, a significant amount of new engineering effort was expected to be required to ensure maximum efficiency and realistic placement within the market. Expected benefits included positive impact on green job creation in over 15 states as well as strengthen the U.S. domestic capacity for turbine engineering.
Shin, Hong-In; Sohn, Dong-Seok
2005-12-01
To augment the atrophic posterior maxilla, a sinus bone graft has been widely used for sinus floor augmentation. Various bone substitutes have been developed and grafted in the maxillary sinus with and without membranes perforation, although autogenous bone is recommended as a gold standard of grafting materials. Membrane perforation is the most common complication associated with sinus bone graft. To repair a perforation, various methods have been developed. This case report is focused on histologic findings of 1 bovine hydroxyapatite (Bio-Oss; Geistlich Pharma AG, Wolhusen, Switzerland) and 2 kinds of human mineral allograft- Tutoplast cancellous microchips (TutoGen Medical GmbH, Neunkirchen am. Brand Germany), and irradiated allogeniccancellous bone and marrow (ICB; Rocky Mountain Tissue Bank, Aurora, CO) used for sinus graft in the same patient with membrane perforation after various healing periods. Mineral allograft showed favorable new bone regeneration with the repair of membrane perforation. This case report also describes a technique regarding how to repair completely perforated sinus membrane after the removal of a mucocele using human collagen membrane (Tutoplast pericardium; TutoGen Medical GmbH) and fibrin adhesive (Greenplast; Green Cross Co., Youngin, Korea) to stabilize collagen membrane.
Fekrazad, Reza; Poorsattar Bejeh Mir, Arash; Ghasemi Barghi, Vadood; Shams-Ghahfarokhi, Masoomeh
2015-06-01
We aimed to evaluate the efficacy of alternative therapies rather than the current antifungal conventional therapy and with assessing the hypothesis of photoactivation of citrus essential oil, fluconazole and Indocyanine green to treat two common mucocutaneous fungal infections. Suspensions of Candida albicans and Tricophyton rubrum containing 10(6)cells/ml was prepared. Equal samples were treated with infrared (IR) laser irradiation (810 nm, 55 J/cm(2)) in the presence of Indocyanine green (Emundo, 1 mg/ml) (IRLE), photoactivated Citrus aurantifolia essential oil (EO) with sequential exposure to natural and tungsten lights (CE), control non-activated essential oil (CC), laser alone (IRL), indocyanine green alone (E) and neither of treatments as the control group (C). Additional fluconazole (FL, 25.6 μg/ml) and IR activated fluconazole (IRLFL) groups were designed for T. rubrum fungi. Inoculums were serially diluted to 10(-2) and 10(-4) and streaked on Sabouraud dextrose agar plates. Final outcomes were assessed as the percent of reduction. Cell reduction rates (%) in C. albicans groups were 99.99 (CE), 91.67 (IRLE), 86.67 (CC), 72.37 (E) and 67.27 (RL). Whereas, a 99.99 (CE), 89.99 (CC), 74.5 (IRLE), 64.5 (E), 38.5 (IRLF), 37.5 (RL), and 31 (FL) percent eradication was achieved in T. rubrum groups. Photoactivation of Citrus EO increased the killing capability by 10-13%. A modest 7.5% augmented effect was observed with IR activation of Fluconazole. Both Citrus EO and photothermal-photodynamic therapy with ICG and IR diode laser exhibited remarkable lethal effect on fungal cells. Candida viable cells are more susceptible to laser only and ICG only treatments than Tricophyton cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Performance and environmental impact assessment of pulse detonation based engine systems
NASA Astrophysics Data System (ADS)
Glaser, Aaron J.
Experimental research was performed to investigate the feasibility of using pulse detonation based engine systems for practical aerospace applications. In order to carry out this work a new pulse detonation combustion research facility was developed at the University of Cincinnati. This research covered two broad areas of application interest. The first area is pure PDE applications where the detonation tube is used to generate an impulsive thrust directly. The second focus area is on pulse detonation based hybrid propulsion systems. Within each of these areas various studies were performed to quantify engine performance. Comparisons of the performance between detonation and conventional deflagration based engine cycles were made. Fundamental studies investigating detonation physics and flow dynamics were performed in order to gain physical insight into the observed performance trends. Experimental studies were performed on PDE-driven straight and diverging ejectors to determine the system performance. Ejector performance was quantified by thrust measurements made using a damped thrust stand. The effects of PDE operating parameters and ejector geometric parameters on thrust augmentation were investigated. For all cases tested, the maximum thrust augmentation is found to occur at a downstream ejector placement. The optimum ejector geometry was determined to have an overall length of LEJECT/DEJECT =5.61, including an intermediate-straight section length of LSTRT /DEJECT=2, and diverging exhaust section with 4 deg half-angle. A maximum thrust augmentation of 105% was observed while employing the optimized ejector geometry and operating the PDE at a fill-fraction of 0.6 and a frequency of 10 Hz. When operated at a fill-fraction of 1.0 and a frequency of 30 Hz, the thrust augmentation of the optimized PDE-driven ejector system was observed to be 71%. Static pressure was measured along the interior surface of the ejector, including the inlet and exhaust sections. The diverging ejector pressure distribution shows that the diverging section acts as a subsonic diffuser. To provide a better explanation of the observed performance trends, shadowgraph images of the detonation wave and starting vortex interacting with the ejector inlet were obtained. The acoustic signature of a pulse detonation engine was characterized in both the near-field and far-field regimes. Experimental measurements were performed in an anechoic test facility designed for jet noise testing. Both shock strength and speed were mapped as a function of radial distance and direction from the PDE exhaust plane. It was found that the PDE generated pressure field can be reasonably modeled by a theoretical point-source explosion. The effect of several exit nozzle configurations on the PDE acoustic signature was studies. These included various chevron nozzles, a perforated nozzle, and a set of proprietary noise attenuation mufflers. Experimental studies were carried out to investigate the performance of a hybrid propulsion system integrating an axial flow turbine with multiple pulse detonation combustors. The integrated system consisted of a circular array of six pulse detonation combustor (PDC) tubes exhausting through an axial flow turbine. Turbine component performance was quantified by measuring the amount of power generated by the turbine section. Direct comparisons of specific power output and turbine efficiency between a PDC-driven turbine and a turbine driven by steady-flow combustors were made. It was found that the PDC-driven turbine had comparable performance to that of a steady-burner-driven turbine across the operating map of the turbine.
Jeon, Jin; Kim, Jae Kwang; Kim, HyeRan; Kim, Yeon Jeong; Park, Yun Ji; Kim, Sun Ju; Kim, Changsoo; Park, Sang Un
2018-02-15
Kale (Brassica oleracea var. acephala) is a rich source of numerous health-benefiting compounds, including vitamins, glucosinolates, phenolic compounds, and carotenoids. However, the genetic resources for exploiting the phyto-nutritional traits of kales are limited. To acquire precise information on secondary metabolites in kales, we performed a comprehensive analysis of the transcriptome and metabolome of green and red kale seedlings. Kale transcriptome datasets revealed 37,149 annotated genes and several secondary metabolite biosynthetic genes. HPLC analysis revealed 14 glucosinolates, 20 anthocyanins, 3 phenylpropanoids, and 6 carotenoids in the kale seedlings that were examined. Red kale contained more glucosinolates, anthocyanins, and phenylpropanoids than green kale, whereas the carotenoid contents were much higher in green kale than in red kale. Ultimately, our data will be a valuable resource for future research on kale bio-engineering and will provide basic information to define gene-to-metabolite networks in kale. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Zongchao; Chen, Xueliang; Gao, Mengtan; Jiang, Han; Li, Tiefei
2017-03-01
Earthquake engineering parameters are very important in the engineering field, especially engineering anti-seismic design and earthquake disaster prevention. In this study, we focus on simulating earthquake engineering parameters by the empirical Green's function method. The simulated earthquake (MJMA6.5) occurred in Kyushu, Japan, 1997. Horizontal ground motion is separated as fault parallel and fault normal, in order to assess characteristics of two new direction components. Broadband frequency range of ground motion simulation is from 0.1 to 20 Hz. Through comparing observed parameters and synthetic parameters, we analyzed distribution characteristics of earthquake engineering parameters. From the comparison, the simulated waveform has high similarity with the observed waveform. We found the following. (1) Near-field PGA attenuates radically all around with strip radiation patterns in fault parallel while radiation patterns of fault normal is circular; PGV has a good similarity between observed record and synthetic record, but has different distribution characteristic in different components. (2) Rupture direction and terrain have a large influence on 90 % significant duration. (3) Arias Intensity is attenuating with increasing epicenter distance. Observed values have a high similarity with synthetic values. (4) Predominant period is very different in the part of Kyushu in fault normal. It is affected greatly by site conditions. (5) Most parameters have good reference values where the hypo-central is less than 35 km. (6) The GOF values of all these parameters are generally higher than 45 which means a good result according to Olsen's classification criterion. Not all parameters can fit well. Given these synthetic ground motion parameters, seismic hazard analysis can be performed and earthquake disaster analysis can be conducted in future urban planning.
Advanced Combustor in the Four Burner Area
1966-03-21
Engineer Frank Kutina and a National Aeronautics and Space Administration (NASA) mechanic examine the setup of an advanced combustor rig inside one of the test cells at the Lewis Research Center’s Four Burner Area in the Engine Research Building. Kutina, of the Research Operations Branch, served as go-between for the researchers and the mechanics. He helped develop the test configurations and get the hardware installed. At the time of this photograph, Lewis Center Director Abe Silverstein had just established the Airbreathing Engine Division to address the new propulsion of the 1960s. After nearly a decade of focusing almost exclusively on space, NASA Lewis began tackling issues relating to the new turbofan engine, noise reduction, energy efficiency, supersonic transport, and the never-ending quest for higher performance levels with smaller and more lightweight engines. The Airbreathing Engine Division’s Combustion Branch was dedicated to the study and mitigation of the high temperatures and pressures found in advanced combustor designs. These high temperatures and pressures could destroy engine components. The Lewis investigation included film cooling, diffuser flow, and jet mixing. Components were tested in smaller test cells, but a full-scale augmenting burner rig, seen here, was tested extensively in the Four Burner Area test cell.
Rocket-Based Combined Cycle Engine Concept Development
NASA Technical Reports Server (NTRS)
Ratekin, G.; Goldman, Allen; Ortwerth, P.; Weisberg, S.; McArthur, J. Craig (Technical Monitor)
2001-01-01
The development of rocket-based combined cycle (RBCC) propulsion systems is part of a 12 year effort under both company funding and contract work. The concept is a fixed geometry integrated rocket, ramjet, scramjet, which is hydrogen fueled and uses hydrogen regenerative cooling. The baseline engine structural configuration uses an integral structure that eliminates panel seals, seal purge gas, and closeout side attachments. Engine A5 is the current configuration for NASA Marshall Space Flight Center (MSFC) for the ART program. Engine A5 models the complete flight engine flowpath of inlet, isolator, airbreathing combustor, and nozzle. High-performance rocket thrusters are integrated into the engine enabling both low speed air-augmented rocket (AAR) and high speed pure rocket operation. Engine A5 was tested in GASL's new Flight Acceleration Simulation Test (FAST) facility in all four operating modes, AAR, RAM, SCRAM, and Rocket. Additionally, transition from AAR to RAM and RAM to SCRAM was also demonstrated. Measured performance demonstrated vision vehicle performance levels for Mach 3 AAR operation and ramjet operation from Mach 3 to 4. SCRAM and rocket mode performance was above predictions. For the first time, testing also demonstrated transition between operating modes.
Turner, Alex; Subramanian, Ramnath; Thomas, David F M; Hinley, Jennifer; Abbas, Syed Khawar; Stahlschmidt, Jens; Southgate, Jennifer
2011-03-01
Enterocystoplasty is associated with serious complications resulting from the chronic interaction between intestinal epithelium and urine. Composite cystoplasty is proposed as a means of overcoming these complications by substituting intestinal epithelium with tissue-engineered autologous urothelium. To develop a robust surgical procedure for composite cystoplasty and to determine if outcome is improved by transplantation of a differentiated urothelium. Bladder augmentation with in vitro-generated autologous tissues was performed in 11 female Large-White hybrid pigs in a well-equipped biomedical centre with operating facilities. Participants were a team comprising scientists, urologists, a veterinary surgeon, and a histopathologist. Urothelium harvested by open biopsy was expanded in culture and used to develop sheets of nondifferentiated or differentiated urothelium. The sheets were transplanted onto a vascularised, de-epithelialised, seromuscular colonic segment at the time of bladder augmentation. After removal of catheters and balloon at two weeks, voiding behaviour was monitored and animals were sacrificed at 3 months for immunohistology. Eleven pigs underwent augmentation, but four were lost to complications. Voiding behaviour was normal in the remainder. At autopsy, reconstructed bladders were healthy, lined by confluent urothelium, and showed no fibrosis, mucus, calculi, or colonic regrowth. Urothelial morphology was transitional with variable columnar attributes consistent between native and augmented segments. Bladders reconstructed with differentiated cell sheets had fewer lymphocytes infiltrating the lamina propria, indicating more effective urinary barrier function. The study endorses the potential for composite cystoplasty by (1) successfully developing reliable techniques for transplanting urothelium onto a prepared, vascularised, smooth muscle segment and (2) creating a functional urothelium-lined augmentation to overcome the complications of conventional enterocystoplasty. Copyright © 2010 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Turner, Alex; Subramanian, Ramnath; Thomas, David F.M.; Hinley, Jennifer; Abbas, Syed Khawar; Stahlschmidt, Jens; Southgate, Jennifer
2011-01-01
Background Enterocystoplasty is associated with serious complications resulting from the chronic interaction between intestinal epithelium and urine. Composite cystoplasty is proposed as a means of overcoming these complications by substituting intestinal epithelium with tissue-engineered autologous urothelium. Objective To develop a robust surgical procedure for composite cystoplasty and to determine if outcome is improved by transplantation of a differentiated urothelium. Design, setting, and participants Bladder augmentation with in vitro–generated autologous tissues was performed in 11 female Large-White hybrid pigs in a well-equipped biomedical centre with operating facilities. Participants were a team comprising scientists, urologists, a veterinary surgeon, and a histopathologist. Measurements Urothelium harvested by open biopsy was expanded in culture and used to develop sheets of nondifferentiated or differentiated urothelium. The sheets were transplanted onto a vascularised, de-epithelialised, seromuscular colonic segment at the time of bladder augmentation. After removal of catheters and balloon at two weeks, voiding behaviour was monitored and animals were sacrificed at 3 months for immunohistology. Results and limitations Eleven pigs underwent augmentation, but four were lost to complications. Voiding behaviour was normal in the remainder. At autopsy, reconstructed bladders were healthy, lined by confluent urothelium, and showed no fibrosis, mucus, calculi, or colonic regrowth. Urothelial morphology was transitional with variable columnar attributes consistent between native and augmented segments. Bladders reconstructed with differentiated cell sheets had fewer lymphocytes infiltrating the lamina propria, indicating more effective urinary barrier function. Conclusions The study endorses the potential for composite cystoplasty by (1) successfully developing reliable techniques for transplanting urothelium onto a prepared, vascularised, smooth muscle segment and (2) creating a functional urothelium-lined augmentation to overcome the complications of conventional enterocystoplasty. PMID:21195539
NASA Technical Reports Server (NTRS)
Dennehy, Cornelius J.; VanZwieten, Tannen S.; Hanson, Curtis E.; Wall, John H.; Miller, Chris J.; Gilligan, Eric T.; Orr, Jeb S.
2014-01-01
The Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an adaptive augmenting control (AAC) algorithm for launch vehicles that improves robustness and performance on an as-needed basis by adapting a classical control algorithm to unexpected environments or variations in vehicle dynamics. This was baselined as part of the Space Launch System (SLS) flight control system. The NASA Engineering and Safety Center (NESC) was asked to partner with the SLS Program and the Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP) to flight test the AAC algorithm on a manned aircraft that can achieve a high level of dynamic similarity to a launch vehicle and raise the technology readiness of the algorithm early in the program. This document reports the outcome of the NESC assessment.
NASA Technical Reports Server (NTRS)
Stephenson, J. D.
1983-01-01
Flight experiments with an augmented jet flap STOL aircraft provided data from which the lateral directional stability and control derivatives were calculated by applying a linear regression parameter estimation procedure. The tests, which were conducted with the jet flaps set at a 65 deg deflection, covered a large range of angles of attack and engine power settings. The effect of changing the angle of the jet thrust vector was also investigated. Test results are compared with stability derivatives that had been predicted. The roll damping derived from the tests was significantly larger than had been predicted, whereas the other derivatives were generally in agreement with the predictions. Results obtained using a maximum likelihood estimation procedure are compared with those from the linear regression solutions.
Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Litchford, Ron J.
2008-01-01
Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing
Status of Magnetohydrodynamic Augmented Propulsion Experiment
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Lineberry, John T.
2007-01-01
Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems, The baseline configuration for this high-power experimental facility utilizes a 1,5-MW, multi-gas arc-heater as a thermal driver for a 2-MW, MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable beat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing
NAESA Augmentation Pilot Project
NASA Technical Reports Server (NTRS)
Hoover, John J.
1998-01-01
This project was one project within the Native American Earth and Space Academy (NAESA). NAESA is a national initiative comprised of several organizations that support programs which focus on 1) enhancing the technological, scientific and pedagogical skills of K-14 teachers who instruct Native Americans, 2) enhancing the understanding and applications of science, technology, and engineering of college-bound Native Americans and teaching them general college "survival skills" (e.g., test taking, time management, study habits), 3) enhancing the scientific and pedagogical skills of the faculty of tribally-controllcd colleges and community colleges with large Native American enrollments, and 4) strengthening the critical relationships between students, their parents, tribal elders, and their communities. This Augmentation Pilot Project focused on the areas of community-school alliances and intemet technology use in teaching and learning and daily living addressing five major objectives.
A Flight Investigation of the STOL Characteristics of an Augmented Jet Flap STOL Research Aircraft
NASA Technical Reports Server (NTRS)
Quigley, H. C.; Innis, R. C.; Grossmith, S.
1974-01-01
The flight test program objectives are: (1) To determine the in-flight aerodynamic, performance, and handling qualities of a jet STOL aircraft incorporating the augmented jet flap concept; (2) to compare the results obtained in flight with characteristics predicted from wind tunnel and simulator test results; (3) to contribute to the development of criteria for design and operation of jet STOL transport aircraft; and (4) to provide a jet STOL transport aircraft for STOL systems research and development. Results obtained during the first 8 months of proof-of-concept flight testing of the aircraft in STOL configurations are reported. Included are a brief description of the aircraft, fan-jet engines, and systems; a discussion of the aerodynamic, stability and control, and STOL performance; and pilot opinion of the handling qualities and operational characteristics.
DOT National Transportation Integrated Search
2016-06-01
Finding constructive uses for construction waste byproducts contributes to green engineering principles. One such plentiful material is recycled asphalt pavement (RAP). This report looks at the mechanical viability of including RAP in a high strength...
A METHODOLOGY TO EVALUATE PROCESS SUSTAINABILITY
Chemical and engineering research over the past five years has seen a dramatic increase in activity in the area of green chemistry. As these developments continue to be explored, it is reasonable that some of these chemistries or technologies have the potential to be implemented ...
SWMM is a model for urban hydrology. It has a long history and is relied upon by professional engineers in the US and around the world. SWMM provides both gray and green Infrastructure modeling capabilities. As such, it is a convenient tool for understanding the tradeoff between ...
E3 Success Story - Transforming and Promoting Sustainable Manufacturing in Alabama
Alabama E3 is expanding to other manufacturing sectors and expanding its scope. Alabama E3 now includes a workforce training and education component and is also developing a new innovation engineering green module that focuses on improving sustainability
Rotary wave-ejector enhanced pulse detonation engine
NASA Astrophysics Data System (ADS)
Nalim, M. R.; Izzy, Z. A.; Akbari, P.
2012-01-01
The use of a non-steady ejector based on wave rotor technology is modeled for pulse detonation engine performance improvement and for compatibility with turbomachinery components in hybrid propulsion systems. The rotary wave ejector device integrates a pulse detonation process with an efficient momentum transfer process in specially shaped channels of a single wave-rotor component. In this paper, a quasi-one-dimensional numerical model is developed to help design the basic geometry and operating parameters of the device. The unsteady combustion and flow processes are simulated and compared with a baseline PDE without ejector enhancement. A preliminary performance assessment is presented for the wave ejector configuration, considering the effect of key geometric parameters, which are selected for high specific impulse. It is shown that the rotary wave ejector concept has significant potential for thrust augmentation relative to a basic pulse detonation engine.
Progreen online engineering diploma in the Middle East: assessment of the educational experience
NASA Astrophysics Data System (ADS)
Baytiyeh, Hoda
2018-03-01
Little is known about the status of online learning in the Middle East. This study investigates educational experiences of engineers enrolled in the new joint online ProGreen diploma programme offered by three universities, two in Lebanon and one in Egypt. Forty-eight working engineers responded to an online survey based on the three components of the community of inquiry model: social presence, teaching presence, and cognitive presence. Exploratory factor analysis identified five factors: sense of belonging, self-directedness, self-actualisation, interaction, and instructional guidance. The findings showed that sense of belonging was the factor engineers rated highest but it did not correlate with instructional guidance. However, instructional guidance highly correlated with self-directedness and self-actualisation.
Coping with Variability in Model-Based Systems Engineering: An Experience in Green Energy
NASA Astrophysics Data System (ADS)
Trujillo, Salvador; Garate, Jose Miguel; Lopez-Herrejon, Roberto Erick; Mendialdua, Xabier; Rosado, Albert; Egyed, Alexander; Krueger, Charles W.; de Sosa, Josune
Model-Based Systems Engineering (MBSE) is an emerging engineering discipline whose driving motivation is to provide support throughout the entire system life cycle. MBSE not only addresses the engineering of software systems but also their interplay with physical systems. Quite frequently, successful systems need to be customized to cater for the concrete and specific needs of customers, end-users, and other stakeholders. To effectively meet this demand, it is vital to have in place mechanisms to cope with the variability, the capacity to change, that such customization requires. In this paper we describe our experience in modeling variability using SysML, a leading MBSE language, for developing a product line of wind turbine systems used for the generation of electricity.
Selected advanced aerodynamic and active control concepts development
NASA Technical Reports Server (NTRS)
1981-01-01
A task for the Energy Efficient Transport program conducted: (1) The design and wind tunnel development of high-aspect-ratio supercritical wings, investigating the cruise speed regime and also high-lift. (2) The preliminary design and evaluation of an aircraft combining a high-aspect-ratio supercritical wing with a winglet. (3) Active Controls: The determination of criteria, configuration, and flying qualities associated with augmented longitudinal stability of a level likely to be acceptable for the next generation transport; and the design of a practical augmentation system. The baseline against which the work was performed and evaluated was the Douglas DC-X-200 twin engine derivative of the DC-10 transport. The supercritical wing development showed that the cruise and buffet requirements could be achieved and that the wing could be designed to realize a sizable advantage over today's technology. Important advances in high lift performance were shown. The design study of an aircraft with supercritical wing and winglet suggested advantages in weight and fuel economy could be realized. The study of augmented stability, conducted with the aid of a motion base simulator, concluded that a negative static margin was acceptable for the baseline unaugmented aircraft.
The NASA Augmented/Virtual Reality Lab: The State of the Art at KSC
NASA Technical Reports Server (NTRS)
Little, William
2017-01-01
The NASA Augmented Virtual Reality (AVR) Lab at Kennedy Space Center is dedicated to the investigation of Augmented Reality (AR) and Virtual Reality (VR) technologies, with the goal of determining potential uses of these technologies as human-computer interaction (HCI) devices in an aerospace engineering context. Begun in 2012, the AVR Lab has concentrated on commercially available AR and VR devices that are gaining in popularity and use in a number of fields such as gaming, training, and telepresence. We are working with such devices as the Microsoft Kinect, the Oculus Rift, the Leap Motion, the HTC Vive, motion capture systems, and the Microsoft Hololens. The focus of our work has been on human interaction with the virtual environment, which in turn acts as a communications bridge to remote physical devices and environments which the operator cannot or should not control or experience directly. Particularly in reference to dealing with spacecraft and the oftentimes hazardous environments they inhabit, it is our hope that AR and VR technologies can be utilized to increase human safety and mission success by physically removing humans from those hazardous environments while virtually putting them right in the middle of those environments.
Contingency Base Camp Operations and Management: Staffing and Organization
2013-09-17
security, safety , environmental and health risks to deployed forces. This study was undertaken to address operations and management (O&M) requirements...security, safety , envi- ronmental and health risks to deployed forces. This study was undertaken to address operations and management (O&M) requirements... food service oversight • Joint Visitor Bureau ERDC/CERL TR-13-18 16 • MWR. TF Archer was significantly augmented with engineer personnel to
iPSC-Derived MSCs that Are Genetically Engineered for Systemic Bone Augmentation
2013-08-01
cloned into a pJET1.2 vector (Fermentas, Glen Burnie, MD) and sequenced by MCLAB (San Francisco, CA). Karyotyping and G-banding. GTG -banding chromosome...publication [25]. Karyotyping and G-banding Giemsa ( GTG )-banding chromosome analysis was carried out in the LLU Radiation Research Laboratories. Standard...banding GTG -banding chromosome analysis was carried out in the LLU Radiation Research Laboratories. Standard DNA spectral karyo- typing procedures
Compressor Stability and Control: Review and Practical Implications
2001-06-01
and control technology is being built. 1. INTRODUCTION The concept of a ’smart engine ’, which utilizes augmented sensing, actuation, and computational...research mix. Concentration has been primarily on combustion control, and on stability and control of compressors and compression systems. The latter...at least a functional description of the processes at work during stall inception can effective control Paper presented at the RTO A VT Symposium on
Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh
2003-01-01
The present NASA GRC-funded three-year research project is focused on studying PDE driven ejectors applicable to a hybrid Pulse Detonation/Turbofan Engine. The objective of the study is to characterize the PDE-ejector thrust augmentation. A PDE-ejector system has been designed to provide critical experimental data for assessing the performance enhancements possible with this technology. Completed tasks include demonstration of a thrust stand for measuring average thrust for detonation tube multi-cycle operation, and design of a 72-in.-long, 2.25-in.-diameter (ID) detonation tube and modular ejector assembly. This assembly will allow testing of both straight and contoured ejector geometries. Initial ejectors that have been fabricated are 72-in.-long-constant-diameter tubes (4-, 5-, and 6-in.-diameter) instrumented with high-frequency pressure transducers. The assembly has been designed such that the detonation tube exit can be positioned at various locations within the ejector tube. PDE-ejector system experiments with gaseous ethylene/ nitrogen/oxygen propellants will commence in the very near future. The program benefits from collaborations with Prof. Merkle of University of Tennessee whose PDE-ejector analysis helps guide the experiments. The present research effort will increase the TRL of PDE-ejectors from its current level of 2 to a level of 3.
Algae to Bio-Crude in Less Than 60 Minutes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Doug
Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.
2016-06-01
Coastal Storm Protection . The Director of ERDC-CHL was José E. Sánchez. At the time of publication of this report, COL Bryan S. Green was the...Marielys Ramos-Villanueva, and Ronald E. Heath Coastal and Hydraulics Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry...behavior. The work was performed by the River Engineering Branch (CEERD-HFR) of the Flood and Storm Protection Division (CEERD-HF), U.S. Army
Algae to Bio-Crude in Less Than 60 Minutes
Elliott, Doug
2018-01-16
Engineers have created a chemical process that produces useful crude oil just minutes after engineers pour in harvested algae -- a verdant green paste with the consistency of pea soup. The PNNL team combined several chemical steps into one continuous process that starts with an algae slurry that contains as much as 80 to 90 percent water. Most current processes require the algae to be dried -- an expensive process that takes a lot of energy. The research has been licensed by Genifuel Corp.
2008-05-22
Washington D.C: Government Printing Office, 1976), 1-1 to 1-5. 43 Ibid, 2-1 to 2-32. 16 “orchestrated ballet of farm implements.”44 The Army’s...Orchestrated Ballet of Farm Implements”, Engineer Bulletin, August 1996, http://fas.org/man/dod 101/sys/land/docs /960800-greene2.htm (accessed 5 April...An Alternative to the Orchestrated Ballet of Farm Implements” Engineer Bulletin (August 1996), http://fas.org/man/dod_101/sys/land/docs/960800
Iles, Alastair; Mulvihill, Martin J
2012-06-05
Sustainable solutions to our nation's material and energy needs must consider environmental, health, and social impacts while developing new technologies. Building a framework to support interdisciplinary interactions and incorporate sustainability goals into the research and development process will benefit green chemistry and other sciences. This paper explores the contributions that diverse disciplines can provide to the design of greener technologies. These interactions have the potential to create technologies that simultaneously minimize environmental and health impacts by drawing on the combined expertise of students and faculty in chemical sciences, engineering, environmental health, social sciences, public policy, and business.
Human Factors Affecting Pilot Performance in Vertical and Translational Instrument Flight.
1983-12-01
measures. DD I 1473 EDITION OF I NOV SS 0WITI UnclassifiedS’N 002-L-014-601 d Mhoi~~ ~~~~~~~ SEUIYCASFCAINO HSP BEHAVORAL ENGINEERING LABORATORY e.-)(Co...Dr. A. L. Slafkosky Mr. R. Lawson Scientific Advisor ONR Detachment Commandant of the Marine Corps 1030 East Green Street Code RD-i SPasadena, CA 91106...Center ONR Detachment Orlando, FL 32b13 1030 East Green Street3. Pasadena, CA 911u6 CDR INouiian ’L. Lane Code N-7A Naval Training Equipment Center
The Advancing State of AF-M315E Technology
NASA Technical Reports Server (NTRS)
Masse, Robert; Spores, Ronald A.; McLean, Chris
2014-01-01
The culmination of twenty years of applied research in hydroxyl ammonium nitrate (HAN)-based monopropellants, the NASA Space Technology mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) will achieve the first on-orbit demonstration of an operational AF-M315E green propellant propulsion system by the end of 2015. Following an contextual overview of the completed flight design of the GPIM propellant storage and feed system, results of first operation of a flight-representative heavyweight 20-N engineering model thruster (to be conducted in mid-2014) are presented with performance comparisons to prior lab model (heavyweight) test articles.
Yeatts, Andrew B.; Choquette, Daniel T.; Fisher, John P.
2012-01-01
Background Mesenchymal stem cells (MSCs) are a promising cell source for bone and cartilage tissue engineering as they can be easily isolated from the body and differentiated into osteoblasts and chondrocytes. A cell based tissue engineering strategy using MSCs often involves the culture of these cells on three-dimensional scaffolds; however the size of these scaffolds and the cell population they can support can be restricted in traditional static culture. Thus dynamic culture in bioreactor systems provides a promising means to culture and differentiate MSCs in vitro. Scope of Review This review seeks to characterize key MSC differentiation signaling pathways and provides evidence as to how dynamic culture is augmenting these pathways. Following an overview of dynamic culture systems, discussion will be provided on how these systems can effectively modify and maintain important culture parameters including oxygen content and shear stress. Literature is reviewed for both a highlight of key signaling pathways and evidence for regulation of these signaling pathways via dynamic culture systems. Major Conclusions The ability to understand how these culture systems are affecting MSC signaling pathways could lead to a shear or oxygen regime to direct stem cell differentiation. In this way the efficacy of in vitro culture and differentiation of MSCs on three-dimensional scaffolds could be greatly increased. General Significance Bioreactor systems have the ability to control many key differentiation stimuli including mechanical stress and oxygen content. The further integration of cell signaling investigations within dynamic culture systems will lead to a quicker realization of the promise of tissue engineering and regenerative medicine. PMID:22705676
Development and validation of sustainability criteria of administrative green schools in Iran.
Meiboudi, Hossein; Lahijanian, Akramolmolok; Shobeiri, Seyed Mohammad; Jozi, Seyed Ali; Azizinezhad, Reza
2017-07-15
Environmental responsibility in school has led to the emergence of a variety of criteria to administer green schools' contributions to sustainability. Sustainability criteria of administrative green schools need validity, reliability and norms. The aim of the current study was to develop and validate assessment criteria for green schools in Iran based on the role of academia. A national survey was conducted to obtain data on sustainability criteria initiatives for green schools and the Iranian profile was defined. An initial pool of 71 items was generated and after its first edition, 63 items were selected to comprise the sustainability criteria. Engineering-architectural and behavioral aspects of this sustainability criteria were evaluated through a sample of 1218 graduate students with environmental degrees from Iran's universities. Exploratory factor analysis using principal components and promax rotation method showed that these 9 criteria have simple structures and are consistent with the theoretical framework. The reliability coefficients of subscales ranged between 0.62 (participation) and 0.84 (building location and position). The study's survey of correlation coefficients between items and subscales illustrated that those coefficients varied between 0.24 and 0.68. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evolving technologies drive the new roles of Biomedical Engineering.
Frisch, P H; St Germain, J; Lui, W
2008-01-01
Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.
Spectroscopic Characterization of a Green Copper Site in a Single-Domain Cupredoxin
Roger, Magali; Biaso, Frédéric; Castelle, Cindy J.; Bauzan, Marielle; Chaspoul, Florence; Lojou, Elisabeth; Sciara, Giuliano; Caffarri, Stefano; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne
2014-01-01
Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought. PMID:24932914
Spectroscopic characterization of a green copper site in a single-domain cupredoxin.
Roger, Magali; Biaso, Frédéric; Castelle, Cindy J; Bauzan, Marielle; Chaspoul, Florence; Lojou, Elisabeth; Sciara, Giuliano; Caffarri, Stefano; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne
2014-01-01
Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.
International Conference of Applied Science and Technology for Infrastructure Engineering
NASA Astrophysics Data System (ADS)
Elvina Santoso, Shelvy; Hardianto, Ekky
2017-11-01
Preface: International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017. The International Conference of Applied Science and Technology for Infrastructure Engineering (ICASIE) 2017 has been scheduled and successfully taken place at Swiss-Bell Inn Hotel, Surabaya, Indonesia, on August 5th 2017 organized by Department of Civil Infrastructure Engineering, Faculty of Vocation, Institut Teknologi Sepuluh Nopember (ITS). This annual event aims to create synergies between government, private sectors; employers; practitioners; and academics. This conference has different theme each year and “MATERIAL FOR INFRASTUCTURE ENGINEERING” will be taken for this year’s main theme. In addition, we also provide a platform for various other sub-theme topic including but not limited to Geopolymer Concrete and Materials Technology, Structural Dynamics, Engineering, and Sustainability, Seismic Design and Control of Structural Vibrations, Innovative and Green Buildings, Project Management, Transportation and Highway Engineering, Geotechnical Engineering, Water Engineering and Resources Management, Surveying and Geospatial Engineering, Coastal Engineering, Geophysics, Energy, Electronic and Mechatronic, Industrial Process, and Data Mining. List of Organizers, Journal Editors, Steering Committee, International Scientific Committee, Chairman, Keynote Speakers are available in this pdf.
High-luminosity blue and blue-green gallium nitride light-emitting diodes.
Morkoç, H; Mohammad, S N
1995-01-06
Compact and efficient sources of blue light for full color display applications and lighting eluded and tantalized researchers for many years. Semiconductor light sources are attractive owing to their reliability and amenability to mass manufacture. However, large band gaps are required to achieve blue color. A class of compound semiconductors formed by metal nitrides, GaN and its allied compounds AIGaN and InGaN, exhibits properties well suited for not only blue and blue-green emitters, but also for ultraviolet emitters and detectors. What thwarted engineers and scientists from fabricating useful devices from these materials in the past was the poor quality of material and lack of p-type doping. Both of these obstacles have recently been overcome to the point where highluminosity blue and blue-green light-emitting diodes are now available in the marketplace.
Code of Federal Regulations, 2010 CFR
2010-07-01
... lock is available, a green light, semaphore or flag will be displayed; when not available, a red light... booms and piling must be obtained by written permit from the District Engineer. (8) The building...
SUSTAINABILITY AND THE ROLE OF THE CHEMIST
Chemical and engineering research over the past ten years has seen a dramatic increase in activity in the area of green chemistry. As these developments continue to be explored, it is reasonable that some of these chemistries or technologies have the potential to be implemented o...
Green Approach to the Synthesis of Nanomaterials and Sustainable Applications of Nano-Catalysts
The generation of engineered nanomaterials represents a major breakthrough and the successful commercialization of this disruptive technology is important for varied applications to humans and global growth but serious attention is needed for the assessment of potential health an...
Engineering photosynthetic organisms for the production of biohydrogen
Dubini, Alexandra; Ghirardi, Maria L.
2014-03-27
Oxygenic photosynthetic organisms such as green algae are capable of absorbing sunlight and converting the chemical energy into hydrogen gas. This process takes advantage of the photosynthetic apparatus of these organisms which links water oxidation to H 2 production. Biological H 2 has therefore the potential to be an alternative fuel of the future and shows great promise for generating large scale sustainable energy. Microalgae are able to produce H 2 under light anoxic or dark anoxic condition by activating 3 different pathways that utilize the hydrogenases as catalysts. In this review, we highlight the principal barriers that prevent hydrogenmore » production in green algae and how those limitations are being addressed, through metabolic and genetic engineering. We also discuss the major challenges and bottlenecks facing the development of future commercial algal photobiological systems for H 2 production. Lastly we provide suggestions for future strategies and potential new techniques to be developed towards an integrated system with optimized hydrogen production.« less
A Perspective on the Clinical Translation of Scaffolds for Tissue Engineering
Webber, Matthew J.; Khan, Omar F.; Sydlik, Stefanie A.; Tang, Benjamin C.; Langer, Robert
2016-01-01
Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine. PMID:25201605
Progress on Variable Cycle Engines
NASA Technical Reports Server (NTRS)
Westmoreland, J. S.; Howlett, R. A.; Lohmann, R. P.
1979-01-01
Progress in the development and future requirements of the Variable Stream Control Engine (VSCE) are presented. The two most critical components of this advanced system for future supersonic transports, the high performance duct burner for thrust augmentation, and the low jet coannular nozzle were studied. Nozzle model tests substantiated the jet noise benefit associated with the unique velocity profile possible with a coannular nozzle system on a VSCE. Additional nozzle model performance tests have established high thrust efficiency levels only at takeoff and supersonic cruise for this nozzle system. An experimental program involving both isolated component and complete engine tests has been conducted for the high performance, low emissions duct burner with good results and large scale testing of these two components is being conducted using a F100 engine as the testbed for simulating the VSCE. Future work includes application of computer programs for supersonic flow fields to coannular nozzle geometries, further experimental testing with the duct burner segment rig, and the use of the Variable Cycle Engine (VCE) Testbed Program for evaluating the VSCE duct burner and coannular nozzle technologies.
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
1994-01-01
The design of coolant passages in regeneratively cooled thrust chambers is critical to the operation and safety of a rocket engine system. Designing a coolant passage is a complex thermal and hydraulic problem requiring an accurate understanding of the heat transfer between the combustion gas and the coolant. Every major rocket engine company has invested in the development of thrust chamber computer design and analysis tools; two examples are Rocketdyne's REGEN code and Aerojet's ELES program. In an effort to augment current design capabilities for government and industry, the NASA Lewis Research Center is developing a computer model to design coolant passages for advanced regeneratively cooled thrust chambers. The RECOP code incorporates state-of-the-art correlations, numerical techniques and design methods, certainly minimum requirements for generating optimum designs of future space chemical engines. A preliminary version of the RECOP model was recently completed and code validation work is in progress. This paper introduces major features of RECOP and compares the analysis to design points for the first test case engine; the Pratt & Whitney RL10A-3-3A thrust chamber.
A perspective on the clinical translation of scaffolds for tissue engineering.
Webber, Matthew J; Khan, Omar F; Sydlik, Stefanie A; Tang, Benjamin C; Langer, Robert
2015-03-01
Scaffolds have been broadly applied within tissue engineering and regenerative medicine to regenerate, replace, or augment diseased or damaged tissue. For a scaffold to perform optimally, several design considerations must be addressed, with an eye toward the eventual form, function, and tissue site. The chemical and mechanical properties of the scaffold must be tuned to optimize the interaction with cells and surrounding tissues. For complex tissue engineering, mass transport limitations, vascularization, and host tissue integration are important considerations. As the tissue architecture to be replaced becomes more complex and hierarchical, scaffold design must also match this complexity to recapitulate a functioning tissue. We outline these design constraints and highlight creative and emerging strategies to overcome limitations and modulate scaffold properties for optimal regeneration. We also highlight some of the most advanced strategies that have seen clinical application and discuss the hurdles that must be overcome for clinical use and commercialization of tissue engineering technologies. Finally, we provide a perspective on the future of scaffolds as a functional contributor to advancing tissue engineering and regenerative medicine.
A New Turbo-shaft Engine Control Law during Variable Rotor Speed Transient Process
NASA Astrophysics Data System (ADS)
Hua, Wei; Miao, Lizhen; Zhang, Haibo; Huang, Jinquan
2015-12-01
A closed-loop control law employing compressor guided vanes is firstly investigated to solve unacceptable fuel flow dynamic change in single fuel control for turbo-shaft engine here, especially for rotorcraft in variable rotor speed process. Based on an Augmented Linear Quadratic Regulator (ALQR) algorithm, a dual-input, single-output robust control scheme is proposed for a turbo-shaft engine, involving not only the closed loop adjustment of fuel flow but also that of compressor guided vanes. Furthermore, compared to single fuel control, some digital simulation cases using this new scheme about variable rotor speed have been implemented on the basis of an integrated system of helicopter and engine model. The results depict that the command tracking performance to the free turbine rotor speed can be asymptotically realized. Moreover, the fuel flow transient process has been significantly improved, and the fuel consumption has been dramatically cut down by more than 2% while keeping the helicopter level fight unchanged.
Flight-determined benefits of integrated flight-propulsion control systems
NASA Technical Reports Server (NTRS)
Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.
1992-01-01
Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.
Mean Flow Augmented Acoustics in Rocket Systems
NASA Technical Reports Server (NTRS)
Fischbach, Sean R.
2015-01-01
Combustion instability in solid rocket motors and liquid engines is a complication that continues to plague designers and engineers. Many rocket systems experience violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. During sever cases of combustion instability fluctuation amplitudes can reach values equal to or greater than the average chamber pressure. Large amplitude oscillations lead to damaged injectors, loss of rocket performance, damaged payloads, and in some cases breach of case/loss of mission. Historic difficulties in modeling and predicting combustion instability has reduced most rocket systems experiencing instability into a costly fix through testing paradigm or to scrap the system entirely.
Development of self-acting seals for helicopter engines
NASA Technical Reports Server (NTRS)
Lynwander, P.
1974-01-01
An experimental evaluation of a NASA-designed self-acting face seal for use in advanced gas turbine main shaft positions was conducted. The seal incorporated Rayleigh step pads (self-acting geometry) for lift augmentation. Satisfactory performance of the gas film seal was demonstrated in a 500-hour endurance test at speeds to 183 m/s (600 ft/sec, 54,000 rpm) and air pressure differential of 137 newtons per square centimeter (198.7 psi). Carbon wear was minor. Tests were also conducted with seal seat runout greater than that expected in engine operation and in a severe sand and dust environment. Seal operation was satisfactory in both these detrimental modes of operation.
Chelation technology: a promising green approach for resource management and waste minimization.
Chauhan, Garima; Pant, K K; Nigam, K D P
2015-01-01
Green chemical engineering recognises the concept of developing innovative environmentally benign technologies to protect human health and ecosystems. In order to explore this concept for minimizing industrial waste and for reducing the environmental impact of hazardous chemicals, new greener approaches need to be adopted for the extraction of heavy metals from industrial waste. In this review, a range of conventional processes and new green approaches employed for metal extraction are discussed in brief. Chelation technology, a modern research trend, has shown its potential to develop sustainable technology for metal extraction from various metal-contaminated sites. However, the interaction mechanism of ligands with metals and the ecotoxicological risk associated with the increased bioavailability of heavy metals due to the formation of metal-chelant complexes is still not sufficiently explicated in the literature. Therefore, a need was felt to provide a comprehensive state-of-the-art review of all aspects associated with chelation technology to promote this process as a green chemical engineering approach. This article elucidates the mechanism and thermodynamics associated with metal-ligand complexation in order to have a better understanding of the metal extraction process. The effects of various process parameters on the formation and stability of complexes have been elaborately discussed with respect to optimizing the chelation efficiency. The non-biodegradable attribute of ligands is another important aspect which is currently of concern. Therefore, biotechnological approaches and computational tools have been assessed in this review to illustrate the possibility of ligand degradation, which will help the readers to look for new environmentally safe mobilizing agents. In addition, emerging trends and opportunities in the field of chelation technology have been summarized and the diverse applicability of chelation technology in metal extraction from contaminated sites has also been reviewed.
28. HOISTING CHAIN, ELECTRIC GENERATOR (FORMERLY USED TO DRIVE BELTS), ...
28. HOISTING CHAIN, ELECTRIC GENERATOR (FORMERLY USED TO DRIVE BELTS), ACETYLENE TANK, ENGINE LATHE, WELDING AREA, SCREW PRESS, AND AIR COMPRESSOR (L TO R)-LOOKING NORTHEAST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA
Solar Heating Considerations for Green Schools
ERIC Educational Resources Information Center
Kelley, Brian; Fiedler, Lon
2012-01-01
As energy costs continue to rise, many schools and universities are considering energy-saving solutions, including solar heating options, to lower costs and to attract students and staff that support environmentally friendly practices. However, administrators and facility engineers should take several issues into account before pursuing a solar…
Technical note: stress analysis of cellulosic-manure composites
Y.H. Ro; J.F. Hunt; R.E. Rowlands
2017-01-01
Ability to determine stresses in loaded, perforated cellulosic-manure composites from recorded temperature information was demonstrated. Being able to stress analyze such green materials addresses several societal issues. These include providing engineering members fabricated from materials that are suitable for developed and developing nations, relieving a troubling...
Identifying chemicals that provide a specific function within a product, yet have minimal impact on the human body or environment, is the goal of most formulation chemists and engineers practicing green chemistry. We present a methodology to identify potential chemical functional...