Sample records for green river shale

  1. Assessment of in-place oil shale resources of the Green River Formation, Greater Green River Basin in Wyoming, Colorado, and Utah

    USGS Publications Warehouse

    Johnson, R.C.; Mercier, T.J.; Brownfield, M.E.

    2011-01-01

    The U.S. Geological Survey (USGS) recently (2011) completed an assessment of in-place oil shale resources, regardless of grade, in the Eocene Green River Formation of the Greater Green River Basin in southwestern Wyoming, northwestern Colorado, and northeastern Utah. Green River Formation oil shale also is present in the Piceance Basin of western Colorado and in the Uinta Basin of eastern Utah and western Colorado, and the results of these assessments are published separately. No attempt was made to estimate the amount of oil that is economically recoverable because there has not yet been an economic method developed to recover the oil from Green River Formation oil shale.

  2. Review of rare earth element concentrations in oil shales of the Eocene Green River Formation

    USGS Publications Warehouse

    Birdwell, Justin E.

    2012-01-01

    Concentrations of the lanthanide series or rare earth elements and yttrium were determined for lacustrine oil shale samples from the Eocene Green River Formation in the Piceance Basin of Colorado and the Uinta Basin of Utah. Unprocessed oil shale, post-pyrolysis (spent) shale, and leached shale samples were examined to determine if oil-shale processing to generate oil or the remediation of retorted shale affects rare earth element concentrations. Results for unprocessed Green River oil shale samples were compared to data published in the literature on reference materials, such as chondritic meteorites, the North American shale composite, marine oil shale samples from two sites in northern Tibet, and mined rare earth element ores from the United States and China. The Green River oil shales had lower rare earth element concentrations (66.3 to 141.3 micrograms per gram, μg g-1) than are typical of material in the upper crust (approximately 170 μg g-1) and were also lower in rare earth elements relative to the North American shale composite (approximately 165 μg g-1). Adjusting for dilution of rare earth elements by organic matter does not account for the total difference between the oil shales and other crustal rocks. Europium anomalies for Green River oil shales from the Piceance Basin were slightly lower than those reported for the North American shale composite and upper crust. When compared to ores currently mined for rare earth elements, the concentrations in Green River oil shales are several orders of magnitude lower. Retorting Green River oil shales led to a slight enrichment of rare earth elements due to removal of organic matter. When concentrations in spent and leached samples were normalized to an original rock basis, concentrations were comparable to those of the raw shale, indicating that rare earth elements are conserved in processed oil shales.

  3. Oil shale resources in the Eocene Green River Formation, Greater Green River Basin, Wyoming, Colorado, and Utah

    USGS Publications Warehouse

    ,

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales in the Eocene Green River in the Greater Green River Basin, Wyoming, Colorado, and Utah. This CD-ROM includes reports, data, and an ArcGIS project describing the assessment. A database was compiled that includes about 47,000 Fischer assays from 186 core holes and 240 rotary drill holes. Most of the oil yield data were analyzed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, and some analyses were made by private laboratories. Location data for 971 Wyoming oil-shale drill holes are listed in a spreadsheet and included in the CD-ROM. Total in-place resources for the three assessed units in the Green River Formation are: (1) Tipton Shale Member, 362,816 million barrels of oil (MMBO), (2) Wilkins Peak Member, 704,991 MMBO, and (3) LaClede Bed of the Laney Member, 377,184 MMBO, for a total of 1.44 trillion barrels of oil in place. This compares with estimated in-place resources for the Piceance Basin of Colorado of 1.53 trillion barrels and estimated in-place resources for the Uinta Basin of Utah and Colorado of 1.32 trillion barrels.

  4. High-resolution mass spectrometry of nitrogenous compounds of the Colorado Green River formation oil shale.

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Schnoes, H. K.; Haug, P.; Burlingame, A. L.

    1971-01-01

    Basic nitrogenous compounds isolated from extracts of Green River Formation oil shale were analyzed. The major homologous constituents found were the compositional types - namely, quinolines, tetrahydrequinolines with minor amounts of pyridines and indoles series and traces of more aromatized nitrogen compounds. These results are correlated with nitrogen compounds isolated from Green River Formation retort oil and are a survey of the unaltered nitrogen compounds indigeneous to the shale.

  5. Assessment of In-Place Oil Shale Resources of the Green River Formation, Piceance Basin, Western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Pantea, Michael P.; Self, Jesse G.

    2009-01-01

    The U.S. Geological Survey (USGS) recently completed a reassessment of in-place oil shale resources, regardless of richness, in the Eocene Green River Formation in the Piceance Basin, western Colorado. A considerable amount of oil-yield data has been collected after previous in-place assessments were published, and these data were incorporated into this new assessment. About twice as many oil-yield data points were used, and several additional oil shale intervals were included that were not assessed previously for lack of data. Oil yields are measured using the Fischer assay method. The Fischer assay method is a standardized laboratory test for determining the oil yield from oil shale that has been almost universally used to determine oil yields for Green River Formation oil shales. Fischer assay does not necessarily measure the maximum amount of oil that an oil shale can produce, and there are retorting methods that yield more than the Fischer assay yield. However, the oil yields achieved by other technologies are typically reported as a percentage of the Fischer assay oil yield, and thus Fischer assay is still considered the standard by which other methods are compared.

  6. In-place oil shale resources underlying Federal lands in the Green River and Washakie Basins, southwestern Wyoming

    USGS Publications Warehouse

    Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.

    2011-01-01

    Using a geologic-based assessment methodology, the U.S. Geological Survey estimated an in-place oil shale resource of 906 billion barrels under Federal mineral rights, or 62 percent of the total oil shale in place, in the Green River and Washakie Basins, Wyoming. More than 67 percent of the total oil shale in-place resource, or 969 billion barrels, is under Federal surface management.

  7. Preliminary Stratigraphic Cross Sections of Oil Shale in the Eocene Green River Formation, Uinta Basin, Utah

    USGS Publications Warehouse

    Dyni, John R.

    2008-01-01

    Oil shale units in the Eocene Green River Formation are shown on two east-west stratigraphic sections across the Uinta Basin in northeastern Utah. Several units have potential value for recovery of shale oil, especially the Mahogany oil shale zone, which is a high grade oil shale that can be traced across most of the Uinta Basin and into the Piceance Basin in northwestern Colorado. Many thin medium to high grade oil shale beds above the Mahogany zone can also be traced for many miles across the basin. Several units below the Mahogany that have slow velocities on sonic logs may be low grade oil shale. These may have value as a source for shale gas.

  8. Fischer Assays of Oil-Shale Drill Cores and Rotary Cuttings from the Greater Green River Basin, Southwestern Wyoming

    USGS Publications Warehouse

    ,

    2008-01-01

    Chapter 1 of this CD-ROM is a database of digitized Fischer (shale-oil) assays of cores and cuttings from boreholes drilled in the Eocene Green River oil shale deposits in southwestern Wyoming. Assays of samples from some surface sections are also included. Most of the Fischer assay analyses were made by the former U.S. Bureau of Mines (USBM) at its laboratory in Laramie, Wyoming. Other assays, made by institutional or private laboratories, were donated to the U.S. Geological Survey (USGS) and are included in this database as well as Adobe PDF-scanned images of some of the original laboratory assay reports and lithologic logs prepared by USBM geologists. The size of this database is 75.2 megabytes and includes information on 971 core holes and rotary-drilled boreholes and numerous surface sections. Most of these data were released previously by the USBM and the USGS through the National Technical Information Service but are no longer available from that agency. Fischer assays for boreholes in northeastern Utah and northwestern Colorado have been published by the USGS. Additional data include geophysical logs, groundwater data, chemical and X-ray diffraction analyses, and other data. These materials are available for inspection in the office of the USGS Central Energy Resources Team in Lakewood, Colorado. The digitized assays were checked with the original laboratory reports, but some errors likely remain. Other information, such as locations and elevations of core holes and oil and gas tests, were not thoroughly checked. However, owing to the current interest in oil-shale development, it was considered in the public interest to make this preliminary database available at this time. Chapter 2 of this CD-ROM presents oil-yield histograms of samples of cores and cuttings from exploration drill holes in the Eocene Green River Formation in the Great Divide, Green River, and Washakie Basins of southwestern Wyoming. A database was compiled that includes about 47

  9. Assessment of In-Place Oil Shale Resources of the Green River Formation, Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Self, Jesse G.

    2010-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a total of 1.32 trillion barrels of oil in place in 18 oil shale zones in the Eocene Green River Formation in the Uinta Basin, Utah and Colorado.

  10. In-place oil shale resources in the saline-mineral and saline-leached intervals, Parachute Creek Member of the Green River Formation, Piceance Basin, Colorado

    USGS Publications Warehouse

    Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.; Dietrich, John D.

    2014-01-01

    A recent U.S. Geological Survey analysis of the Green River Formation of the Piceance Basin in western Colorado shows that about 920 and 352 billion barrels of oil are potentially recoverable from oil shale resources using oil-yield cutoffs of 15 and 25 gallons per ton (GPT), respectively. This represents most of the high-grade oil shale in the United States. Much of this rich oil shale is found in the dolomitic Parachute Creek Member of the Green River Formation and is associated with the saline minerals nahcolite and halite, or in the interval where these minerals have been leached by groundwater. The remaining high-grade resource is located primarily in the underlying illitic Garden Gulch Member of the Green River Formation. Of the 352 billion barrels of potentially recoverable oil resources in high-grade (≥25 GPT) oil shale, the relative proportions present in the illitic interval, non-saline R-2 zone, saline-mineral interval, leached interval (excluding leached Mahogany zone), and Mahogany zone were 3.1, 4.5, 36.6, 23.9, and 29.9 percent of the total, respectively. Only 2 percent of high-grade oil shale is present in marginal areas where saline minerals were never deposited.

  11. Assessment of in-place oil shale resources of the Eocene Green River Formation, a foundation for calculating recoverable resources

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracy

    2011-01-01

    The recently completed assessment of in-place resources of the Eocene Green River Formation in the Piceance Basin, Colorado; the Uinta Basin, Utah and Colorado; and the Greater Green River Basin Wyoming, Colorado, and Utah and their accompanying ArcGIS projects will form the foundation for estimating technically-recoverable resources in those areas. Different estimates will be made for each of the various above-ground and in-situ recovery methodologies currently being developed. Information required for these estimates include but are not limited to (1) estimates of the amount of oil shale that exceeds various grades, (2) overburden calculations, (3) a better understanding of oil shale saline facies, and (4) a better understanding of the distribution of various oil shale mineral facies. Estimates for the first two are on-going, and some have been published. The present extent of the saline facies in all three basins is fairly well understood, however, their original extent prior to ground water leaching has not been studied in detail. These leached intervals, which have enhanced porosity and permeability due to vugs and fractures and contain significant ground water resources, are being studied from available core descriptions. A database of all available xray mineralogy data for the oil shale interval is being constructed to better determine the extents of the various mineral facies. Once these studies are finished, the amount of oil shale with various mineralogical and physical properties will be determined.

  12. Effects of organic wastes on water quality from processing of oil shale from the Green River Formation, Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.

    1986-01-01

    A series of investigations were conducted during a 6-year research project to determine the nature and effects of organic wastes from processing of Green River Formation oil shale on water quality. Fifty percent of the organic compounds in two retort wastewaters were identified as various aromatic amines, mono- and dicarboxylic acids phenols, amides, alcohols, ketones, nitriles, and hydroxypyridines. Spent shales with carbonaceous coatings were found to have good sorbent properties for organic constituents of retort wastewaters. However, soils sampled adjacent to an in situ retort had only fair sorbent properties for organic constituents or retort wastewater, and application of retort wastewater caused disruption of soil structure characteristics and extracted soil organic matter constituents. Microbiological degradation of organic solutes in retort wastewaters was found to occur preferentially in hydrocarbons and fatty acid groups of compounds. Aromatic amines did not degrade and they inhibited bacterial growth where their concentrations were significant. Ammonia, aromatic amines, and thiocyanate persisted in groundwater contaminated by in situ oil shale retorting, but thiosulfate was quantitatively degraded one year after the burn. Thiocyanate was found to be the best conservative tracer for retort water discharged into groundwater. Natural organic solutes, isolated from groundwater in contact with Green River Formation oil shale and from the White River near Rangely, Colorado, were readily distinguished from organic constituents in retort wastewaters by molecular weight and chemical characteristic differences. (USGS)

  13. Spatial and stratigraphic distribution of water in oil shale of the Green River Formation using Fischer Assay, Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.

    2014-01-01

    The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.

  14. Spatial and stratigraphic distribution of water in oil shale of the Green River Formation using Fischer assay, Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.

    2014-01-01

    The spatial and stratigraphic distribution of water in oil shale of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado was studied in detail using some 321,000 Fischer assay analyses in the U.S. Geological Survey oil-shale database. The oil-shale section was subdivided into 17 roughly time-stratigraphic intervals, and the distribution of water in each interval was assessed separately. This study was conducted in part to determine whether water produced during retorting of oil shale could provide a significant amount of the water needed for an oil-shale industry. Recent estimates of water requirements vary from 1 to 10 barrels of water per barrel of oil produced, depending on the type of retort process used. Sources of water in Green River oil shale include (1) free water within clay minerals; (2) water from the hydrated minerals nahcolite (NaHCO3), dawsonite (NaAl(OH)2CO3), and analcime (NaAlSi2O6.H20); and (3) minor water produced from the breakdown of organic matter in oil shale during retorting. The amounts represented by each of these sources vary both stratigraphically and areally within the basin. Clay is the most important source of water in the lower part of the oil-shale interval and in many basin-margin areas. Nahcolite and dawsonite are the dominant sources of water in the oil-shale and saline-mineral depocenter, and analcime is important in the upper part of the formation. Organic matter does not appear to be a major source of water. The ratio of water to oil generated with retorting is significantly less than 1:1 for most areas of the basin and for most stratigraphic intervals; thus water within oil shale can provide only a fraction of the water needed for an oil-shale industry.

  15. Calorimetric determination of the heat of combustion of spent Green River shale at 978 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mraw, S.C.; Keweshan, C.F.

    1987-08-01

    A Calvet-type calorimeter was used to measure heats of combustion of spent Colorado oil shales. For Green River shale, the samples were members of a sink-float series spanning oil yields from 87 to 340 L . tonne/sup -1/. Shale samples (30-200 mg) are dropped into the calorimeter at high temperature, and a peak in the thermopile signal records the total enthalpy change of the sample between room temperature and the final temperature. Duplicate samples from the above sink-float series were first retorted at 773 K and then dropped separately into nitrogen and oxygen at 978 K. The resulting heats aremore » subtracted to give the heat of combustion, and the results are compared to values from classical bomb calorimetry. The agreement shows that the heats of combustion of the organic component are well understood but that question remain on the reactions of the mineral components.« less

  16. A Collection of Chemical, Mineralogical, and Stable Isotopic Compositional Data for Green River Oil Shale from Depositional Center Cores in Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Tuttle, Michele L.W.

    2009-01-01

    For over half a century, the U.S. Geological Survey and collaborators have conducted stratigraphic and geochemical studies on the Eocene Green River Formation, which is known to contain large oil shale resources. Many of the studies were undertaken in the 1970s during the last oil shale boom. One such study analyzed the chemistry, mineralogy, and stable isotopy of the Green River Formation in the three major depositional basins: Piceance basin, Colo.; Uinta basin, Utah; and the Green River basin, Wyo. One depositional-center core from each basin was sampled and analyzed for major, minor, and trace chemistry; mineral composition and sulfide-mineral morphology; sulfur, nitrogen, and carbon forms; and stable isotopic composition (delta34S, delta15N, delta13C, and delta18O). Many of these data were published and used to support interpretative papers (see references herein). Some bulk-chemical and carbonate-isotopic data were never published and may be useful to studies that are currently exploring topics such as future oil shale development and the climate, geography, and weathering in the Eocene Epoch. These unpublished data, together with most of the U.S. Geological Survey data already published on these samples, are tabulated in this report.

  17. Permeability Evolution of Propped Artificial Fractures in Green River Shale

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Feng, Zijun; Han, Gang; Elsworth, Derek; Marone, Chris; Saffer, Demian; Cheon, Dae-Sung

    2017-06-01

    This paper compares the evolution of permeability with effective stress in propped fractures in shale for native CH4 compared with that for sorbing CO2, slightly sorbing N2 and non-sorbing He. We examine the response for laboratory experiments on artificial propped fractures in Green River Shale to explore mechanisms of proppant embedment and fracture diagenesis. Split cylindrical specimens sandwich a proppant bead-pack at a constant confining stress of 20 MPa and with varied pore pressure. Permeability and sorption characteristics are measured with the pulse transient method. To explore the effect of swelling and embedment on fracture surface geometry, we measure the evolution of conductivity characteristics for different proppant geometries (single layer vs. multilayer), gas saturation and specimen variation in order to simulate both production and enhanced gas recovery. The resulting morphology of embedment is measured by white light interferometry and characterized via surface roughness parameter of mean, maximum and root-mean-square amplitudes. For both strongly (CO2, CH4) and slightly adsorptive gases (N2), the permeability first decreases with an increase in gas pressure due to swelling before effective stress effects dominate above the Langmuir pressure threshold. CO2 with its highest adsorption affinity produces the lowest permeability among these three gas permeants. Monolayer propped specimens show maximum swelling and lowered k/k 0 ratio and increased embedment recorded in the surface roughness relative to the multilayered specimens. Permeabilities measured for both injection and depletion cycles generally overlap and are repeatable with little hysteresis. This suggests the dominant role of reversible swelling over irreversible embedment. Gas permeant composition and related swelling have an important effect on the permeability evolution of shales.

  18. Generation and migration of Bitumen and oil from the oil shale interval of the Eocene Green River formation, Uinta Basin, Utah

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.

    2016-01-01

    The results from the recent U.S. Geological Survey assessment of in-place oil shale resources of the Eocene Green River Formation, based primarily on the Fischer assay method, are applied herein to define areas where the oil shale interval is depleted of some of its petroleum-generating potential along the deep structural trough of the basin and to make: (1) a general estimates of the amount of this depletion, and (2) estimate the total volume of petroleum generated. Oil yields (gallons of oil per ton of rock, GPT) and in-place oil (barrels of oil per acre, BPA) decrease toward the structural trough of the basin, which represents an offshore lacustrine area that is believed to have originally contained greater petroleum-generating potential than is currently indicated by measured Fischer assay oil yields. Although this interval is considered to be largely immature for oil generation based on vitrinite reflectance measurements, the oil shale interval is a likely source for the gilsonite deposits and much of the tar sands in the basin. Early expulsion of petroleum may have occurred due to the very high organic carbon content and oil-prone nature of the Type I kerogen present in Green River oil shale. In order to examine the possible sources and migration pathways for the tar sands and gilsonite deposits, we have created paleogeographic reconstructions of several oil shale zones in the basin as part of this study.

  19. In-place oil shale resources examined by grade in the major basins of the Green River Formation, Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.

    2013-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a total of 4.285 trillion barrels of oil in-place in the oil shale of the three principal basins of the Eocene Green River Formation. Using oil shale cutoffs of potentially viable (15 gallons per ton) and high grade (25 gallons per ton), it is estimated that between 353 billion and 1.146 trillion barrels of the in-place resource have a high potential for development.

  20. Isopach and isoresource maps for oil shale deposits in the Eocene Green River Formation for the combined Uinta and Piceance Basins, Utah and Colorado

    USGS Publications Warehouse

    Mercier, Tracey J.; Johnson, Ronald C.

    2012-01-01

    The in-place oil shale resources in the Eocene Green River Formation of the Piceance Basin of western Colorado and the Uinta Basin of western Colorado and eastern Utah are estimated at 1.53 trillion barrels and 1.32 trillion barrels, respectively. The oil shale strata were deposited in a single large saline lake, Lake Uinta, that covered both basins and the intervening Douglas Creek arch, an area of comparatively low rates of subsidence throughout the history of Lake Uinta. Although the Green River Formation is largely eroded for about a 20-mile area along the crest of the arch, the oil shale interval is similar in both basins, and 17 out of 18 of the assessed oil shale zones are common to both basins. Assessment maps for these 17 zones are combined so that the overall distribution of oil shale over the entire extent of Lake Uinta can be studied. The combined maps show that throughout most of the history of Lake Uinta, the richest oil shale was deposited in the depocenter in the north-central part of the Piceance Basin and in the northeast corner of the Uinta Basin where it is closest to the Piceance Basin, which is the only area of the Uinta Basin where all of the rich and lean oil shale zones, originally defined in the Piceance Basin, can be identified. Both the oil shale and saline mineral depocenter in the Piceance Basin and the richest oil shale area in the Uinta Basin were in areas with comparatively low rates of subsidence during Lake Uinta time, but both areas had low rates of clastic influx. Limiting clastic influx rather than maximizing subsidence appears to have been the most important factor in producing rich oil shale.

  1. 17alpha/H/ hopane identified in oil shale of the Green River formation /Eocene/ by carbon-13 NMR.

    NASA Technical Reports Server (NTRS)

    Balogh, B.; Wilson, D. M.; Christiansen, P.; Burlingame, A. L.

    1973-01-01

    During an investigation of C-13 NMR shifts and the structural correspondence of pentacyclic triterpenes a C-13 NMR study was conducted on one of the most abundant components of the hexane soluble fraction of oil shale bitumen of the Green River formation. A rigorous proof was derived exclusively from C-13 NMR data for the structure of the important triterpenoid fossil molecule. It was established that the structure of the isolated triterpane was 17alpha(H) hopane.

  2. CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lauren P. Birgenheier; Michael D. Vanden Berg,

    An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warmingmore » events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.« less

  3. Oil shale and nahcolite resources of the Piceance Basin, Colorado

    USGS Publications Warehouse

    ,

    2010-01-01

    This report presents an in-place assessment of the oil shale and nahcolite resources of the Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin is one of three large structural and sedimentary basins that contain vast amounts of oil shale resources in the Green River Formation of Eocene age. The other two basins, the Uinta Basin of eastern Utah and westernmost Colorado, and the Greater Green River Basin of southwest Wyoming, northwestern Colorado, and northeastern Utah also contain large resources of oil shale in the Green River Formation, and these two basins will be assessed separately. Estimated in-place oil is about 1.5 trillion barrels, based on Fischer a ssay results from boreholes drilled to evaluate oil shale, making it the largest oil shale deposit in the world. The estimated in-place nahcolite resource is about 43.3 billion short tons.

  4. Biological markers from Green River kerogen decomposition

    NASA Astrophysics Data System (ADS)

    Burnham, A. K.; Clarkson, J. E.; Singleton, M. F.; Wong, C. M.; Crawford, R. W.

    1982-07-01

    Isoprenoid and other carbon skeletons that are formed in living organisms and preserved essentially intact in ancient sediments are often called biological markers. The purpose of this paper is to develop improved methods of using isoprenoid hydrocarbons to relate petroleum or shale oil to its source rock. It is demonstrated that most, but not all, of the isoprenoid hydrocarbon structures are chemically bonded in kerogen (or to minerals) in Green River oil shale. The rate constant for thermally producing isoprenoid, cyclic, and aromatic hydrocarbons is substantially greater than for the bulk of shale oil. This may be related to the substantial quantity of CO 2 which is evolved coincident with the isoprenoid hydrocarbons but prior to substantial oil evolution. Although formation of isoprenoid alkenes is enhanced by rapid heating and high pyrolysis temperatures, the ratio of isoprenoid alkenes plus alkanes to normal alkenes plus alkanes is independent of heating rate. High-temperature laboratory pyrolysis experiments can thus be used to predict the distribution of aliphatic hydrocarbons in low temperature processes such as in situ shale oil production and perhaps petroleum formation. Finally, we demonstrate that significant variation in biological marker ratios occurs as a function of stratigraphy in the Green River formation. This information, combined with methods for measuring process yield from oil composition, enables one to relate time-dependent processing conditions to the corresponding time-dependent oil yield in a vertical modified- in situ retort even if there is a substantial and previously undetermined delay in drainage of shale oil from the retort.

  5. Geology of tight oil and potential tight oil reservoirs in the lower part of the Green River Formation, Uinta, Piceance, and Greater Green River Basins, Utah, Colorado, and Wyoming

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.

    2016-05-02

    The recent successful development of a tight oil play in the Eocene-age informal Uteland Butte member of the lacustrine Green River Formation in the Uinta Basin, Utah, using modern horizontal drilling and hydraulic fracturing techniques has spurred a renewed interest in the tight oil potential of lacustrine rocks. The Green River Formation was deposited by two large lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. These three basins contain the world’s largest in-place oil shale resources with recent estimates of 1.53 trillion, 1.33 trillion, and 1.44 trillion barrels of oil in place in the Piceance, Uinta, and Greater Green River Basins, respectively. The Uteland Butte member was deposited during an early freshwater stage of the lake in the Uinta Basin prior to deposition of the assessed oil shale intervals. This report only presents information on the early freshwater interval and overlying brackish-water interval in all three basins because these intervals are most likely to have tight oil potential. Burial histories of the three basins were reconstructed to study (1) variations in subsidence and lake development, and (2) post deposition burial that led to the development of a petroleum system in only the Uinta Basin. The Uteland Butte member is a successful tight oil play because it is thermally mature for hydrocarbon generation and contains organic-rich shale, brittle carbonate, and porous dolomite. Abnormally high pressure in parts of the Uteland Butte is also important to production. Variations in organic richness of the Uteland Butte were studied using Fischer assay analysis from oil shale assessments, and pressures were studied using drill-stem tests. Freshwater lacustrine intervals in the Piceance and Greater Green River Basins are immature for hydrocarbon generation and contain much less carbonate than the Uteland Butte member. The brackish-water interval in the Uinta Basin is thermally mature for

  6. Studies of the acidic components of the Colorado Green River formation oil shale-Mass spectrometric identification of the methyl esters of extractable acids.

    NASA Technical Reports Server (NTRS)

    Haug, P.; Schnoes, H. K.; Burlingame, A. L.

    1971-01-01

    Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.

  7. Major and trace elements in Mahogany zone oil shale in two cores from the Green River Formation, piceance basin, Colorado

    USGS Publications Warehouse

    Tuttle, M.L.; Dean, W.E.; Parduhn, N.L.

    1983-01-01

    The Parachute Creek Member of the lacustrine Green River Formation contains thick sequences of rich oil-shale. The richest sequence and the richest oil-shale bed occurring in the member are called the Mahogany zone and the Mahogany bed, respectively, and were deposited in ancient Lake Uinta. The name "Mahogany" is derived from the red-brown color imparted to the rock by its rich-kerogen content. Geochemical abundance and distribution of eight major and 18 trace elements were determined in the Mahogany zone sampled from two cores, U. S. Geological Survey core hole CR-2 and U. S. Bureau of Mines core hole O1-A (Figure 1). The oil shale from core hole CR-2 was deposited nearer the margin of Lake Uinta than oil shale from core hole O1-A. The major- and trace-element chemistry of the Mahogany zone from each of these two cores is compared using elemental abundances and Q-mode factor modeling. The results of chemical analyses of 44 CR-2 Mahogany samples and 76 O1-A Mahogany samples are summarized in Figure 2. The average geochemical abundances for shale (1) and black shale (2) are also plotted on Figure 2 for comparison. The elemental abundances in the samples from the two cores are similar for the majority of elements. Differences at the 95% probability level are higher concentrations of Ca, Cu, La, Ni, Sc and Zr in the samples from core hole CR-2 compared to samples from core hole O1-A and higher concentrations of As and Sr in samples from core hole O1-A compared to samples from core hole CR-2. These differences presumably reflect slight differences in depositional conditions or source material at the two sites. The Mahogany oil shale from the two cores has lower concentrations of most trace metals and higher concentrations of carbonate-related elements (Ca, Mg, Sr and Na) compared to the average shale and black shale. During deposition of the Mahogany oil shale, large quantities of carbonates were precipitated resulting in the enrichment of carbonate-related elements

  8. Application of petroleum demulsification technology to shale oil emulsions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, R.E.

    1983-01-01

    Demulsification, the process of emulsion separation, of water-in-oil shale oil emulsions produced by several methods was accomplished using commercial chemical demulsifiers which are used typically for petroleum demulsification. The shale oil emulsions were produced from Green River shale by one in situ and three different above-ground retorts, an in situ high pressure/high temperature steam process, and by washing both retort-produced and hydrotreated shale oils.

  9. Oil Shale in the Piceance Basin: An Analysis of Land Use Issues,

    DTIC Science & Technology

    1983-07-01

    basins -the Piceance, Uinta , Green River, and Washakie. The locations of these basins are shown on the map of the Green River Formation in Fig. 3...commercial interest. Deposits of low grade shale in the other basins are thin and scattered. Only the rich (30 gpt) deposits in the Uinta Basin are of...r n~p I S 806 OIL SHALE, IN lilE PICCANCE BASIN : AN ANALYSIS of LAND USE ISSUESIUI RAND CORP SANtA MONICA CA lJN IASIFID 0 RUBENSON El AL. JUL 83

  10. Origin and microfossils of the oil shale of the Green River formation of Colorado and Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, W.H.

    1931-01-01

    The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins--the Piceance Creek basin in northwestern Colorado and the Uinta basin in northeastern Utah. The ancient lakes served as a basin for the accumulation of tremendous quantities of aquatic organisms. The predominance of microscopic fresh-water algae and protozoa over the remains of land plants, pollens and spores suggests that the greater part of the organic matter was derived from microorganisms that grew in the lakes. The pollens and spores were carried into the lakes by wind.more » Fish, mollusks, crustaceans, and aquatic insect larvae were also plentiful; and turtles, crocodiles, birds, small camels, and insects may have contributed to the organic matter. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. When the residue was reduced to a gelatinous condition, it apparently resisted further bacterial decay, and other organisms accidently entombed in the gel were protected from disintegration. An accumulation of inorganic material occurred simultaneously with the disintegration of the organic ooze, and the entire mass became lithified. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. The streams in the vicinity of the lake were rejuvenated and carried great quantities of medium- to coarse-grained sand into the basin and formed a thick layer over the lakebeds.« less

  11. In-place oil shale resources of the Mahogany zone sorted by grade, overburden thickness and stripping ratio, Green River Formation, Piceance Basin, Colorado and Uinta Basin, Utah

    USGS Publications Warehouse

    Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.

    2015-01-01

    A range of geological parameters relevant to mining oil shale have been examined for the Mahogany zone of the Green River Formation in the Piceance Basin, Colorado, and Uinta Basin, Utah, using information available in the U.S. Geological Survey Oil Shale Assessment database. Basinwide discrete and cumulative distributions of resource in-place as a function of (1) oil shale grade, (2) Mahogany zone thickness, (3) overburden thickness, and (4) stripping ratio (overburden divided by zone thickness) were determined for both basins on a per-acre basis, and a resource map showing the areal distribution of these properties was generated. Estimates of how much of the Mahogany zone resource meets various combinations of these parameters were also determined. Of the 191.7 billion barrels of Mahogany zone oil in-place in the Piceance Basin, 32.3 percent (61.8 billion barrels) is associated with oil shale yielding at least 25 gallons of oil per ton (GPT) of rock processed, is covered by overburden 1,000 feet thick or less, and has a stripping ratio of less than 10. In the Uinta Basin, 14.0 percent (29.9 billion barrels) of the 214.5 billion barrels of Mahogany zone oil in-place meets the same overburden and stripping ratio criteria but only for the lower grade cutoff of 15 GPT.

  12. Organic geochemistry: Effects of organic components of shales on adsorption: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, P.C.

    1988-11-01

    The Sedimentary Rock Program at the Oak Ridge National Laboratory is investigating shale to determine its potential suitability as a host rock for the disposal of high-level radioactive wastes (HLW). The selected shales are Upper Dowelltown, Pierre, Green River Formation, and two Conasauga (Nolichucky and Pumpkin Valley) Shales, which represent mineralogical and compositional extremes of shales in the United States. According to mineralogical studies, the first three shales contain 5 to 13 wt % of organic matter, and the two Conasauga Shales only contain trace amounts (2 wt %) of organic matter. Soxhlet extraction with chloroform and a mixture ofmore » chloroform and methanol can remove 0.07 to 5.9 wt % of the total organic matter from these shales. Preliminary analysis if these organic extracts reveals the existence of organic carboxylic acids and hydrocarbons in these samples. Adsorption of elements such as Cs(I), Sr(II) and Tc(VII) on the organic-extracted Upper Dowelltown, Pierre, green River Formation and Pumpkin Valley Shales in synthetic groundwaters (simulating groundwaters in the Conasauga Shales) and in 0.03-M NaHCO/sub 3/ solution indicates interaction between each of the three elements and the organic-extractable bitumen. 28 refs., 8 figs., 10 tabs.« less

  13. Oil-shale data, cores, and samples collected by the U.S. geological survey through 1989

    USGS Publications Warehouse

    Dyni, John R.; Gay, Frances; Michalski, Thomas C.; ,

    1990-01-01

    The U.S. Geological Survey has acquired a large collection of geotechnical data, drill cores, and crushed samples of oil shale from the Eocene Green River Formation in Colorado, Wyoming, and Utah. The data include about 250,000 shale-oil analyses from about 600 core holes. Most of the data is from Colorado where the thickest and highest-grade oil shales of the Green River Formation are found in the Piceance Creek basin. Other data on file but not yet in the computer database include hundreds of lithologic core descriptions, geophysical well logs, and mineralogical and geochemical analyses. The shale-oil analyses are being prepared for release on floppy disks for use on microcomputers. About 173,000 lineal feet of drill core of oil shale and associated rocks, as well as 100,000 crushed samples of oil shale, are stored at the Core Research Center, U.S. Geological Survey, Lakewood, Colo. These materials are available to the public for research.

  14. A review of the organic geochemistry of shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, P.C.; Meyer, R.E.

    1987-06-01

    Shale formations have been suggested as a potential site for a high level nuclear waste repository. As a first step in the study of the possible interaction of nuclides with the organic components of the shales, literature on the identification of organic compounds from various shales of the continent of the United States has been reviewed. The Green River shale of the Cenozoic era is the most studied shale followed by the Pierre shale of the Mesozoic era and the Devonian black shale of the Paleozoic era. Organic compounds that have been identified from these shales are hydrocarbons, fatty acids,more » fatty alcohols, steranes, terpanes, carotenes, carbohydrates, amino acids, and porphyrins. However, these organic compounds constitute only a small fraction of the organics in shales and the majority of the organic compounds in shales are still unidentified.« less

  15. Milankovitch Cyclicity in the Eocene Green River Formation of Colorado and Wyoming

    NASA Astrophysics Data System (ADS)

    Machlus, M.; Olsen, P. E.; Christie-Blick, N.; Hemming, S. R.

    2001-12-01

    The Eocene Green River Formation is a classic example of cyclic lacustrine sediments. Following Bradley (1929, U.S.G.S. Prof. Paper 158-E), many descriptive studies suggested precession and eccentricity as the probable climatic forcing to produce the cyclic pattern. Here we report spectral analysis results that confirm this hypothesis. Furthermore, we have identified the presence of a surprisingly large amplitude obliquity cycle, the long-period eccentricity cycle (400 k.y.) and the long period modulators of obliquity. Spectral analyses of data from Colorado were undertaken on an outcrop section and core data using two different proxies for lake depth. In a section measured in the west Piceance Creek basin, three lithologies (ranks) were used as a proxy for relative water depth, from relatively shallow to deep water: laminated marlstones; microlaminated, light-colored oil-shales; and microlaminated black oil shales. A multi-tapered spectrum of the 190-m-thick record in the depth domain shows significant peaks at periods of 2.1, 3.4, 12 and 39 m. These are interpreted as the precession, obliquity and eccentricity cycles. The precession cycle confirms Bradley's independent estimate of 2.4 m per 20 k.y. cycle, based on varve counts at the same location. A high-amplitude, continuous 3.4 m (obliquity) cycle exists in the evolutive spectrum of this record. A second spectral analysis of an oil-shale-yield record was made on a 530 m core near the basin depocenter. This record includes the time-equivalent of the outcrop section, spans a longer interval of time, and has a higher sedimentation rate. Peaks are found at 5, 10, 25 and 79 m. Again, the probable obliquity peak, at 10 m, is continuous along the record. Initial tuning of this record to a 39.9 k.y. cosine wave improves the resolution of the precession, short and long eccentricity cycles. Spectral analysis of oil shale yield and sonic velocity data of cores from the Green River basin, Wyoming, gives similar results

  16. Tertiary geology and oil-shale resources of the Piceance Creek basin between the Colorado and White Rivers, northwestern Colorado

    USGS Publications Warehouse

    Donnell, John R.

    1961-01-01

    The area of the Piceance Creek basin between the Colorado and White Rivers includes approximately 1,600 square miles and is characterized by an extensive plateau that rises 1,000 to more than 4,000 feet above the surrounding lowlands. Relief is greatest in Naval Oil-Shale Reserves Nos. 1 and 3 near the south margin of the area, where the spectacular Roan Cliffs tower above the valley of the Colorado River. The oldest rocks exposed in the mapped area are sandstone, shale, and coal beds of the Mesaverde group of Late Cretaceous age, which crop out along the east margin of the area. Overlying the Mesaverde is an unnamed sequence of dark-colored sandstone and shale, Paleocene in age. The Ohio Creek conglomerate, composed of black and red chert and quartzite pebbles in a white sandstone matrix, is probably the basal unit in the Paleocene sequence. The Wasatch formation of early Eocene age overlies the Paleocene sedimentary rocks. It is composed of brightly colored shale, lenticular beds of sandstone, and a few thin beds of fresh-water limestone. The Kasatch formation interfingers with and is overlain by the Green River formation of middle Eocene age. The Green River formation has been divided into the Douglas Creek, Garden Gulch, Anvil Points, Parachute Creek, and Evacuation Creek members. The basal and uppermost members, the Douglas Creek and Evacuation Creek, respectively, are predominantly sandy units. The two middle members, the Garden Gulch and Parachute Creek, are composed principally of finer clastic rocks. The Anvil Points member is present only on the southeast, east, and northeast margins of the area. It is a nearshore facies composed principally of sandstone and is the equivalent of the Douglas Creek, Garden Gulch, and the lower part of the Parachute Creek members. All of the richer exposed oil-shale beds are found in the Parachute Creek member, which is divided into two oil-shale zones by a series of low-grade oilshale beds. The upper oil-shale zone has

  17. Role of water in hydrocarbon generation from Type-I kerogen in Mahogany oil shale of the Green River Formation

    USGS Publications Warehouse

    Lewan, M.D.; Roy, S.

    2011-01-01

    Hydrous and anhydrous closed-system pyrolysis experiments were conducted on a sample of Mahogany oil shale (Eocene Green River Formation) containing Type-I kerogen to determine whether the role of water had the same effect on petroleum generation as reported for Type-II kerogen in the Woodford Shale. The experiments were conducted at 330 and 350??C for 72h to determine the effects of water during kerogen decomposition to polar-rich bitumen and subsequent bitumen decomposition to hydrocarbon-rich oil. The results showed that the role of water was more significant in bitumen decomposition to oil at 350??C than in kerogen decomposition to bitumen at 330??C. At 350??C, the hydrous experiment generated 29% more total hydrocarbon product and 33% more C15+ hydrocarbons than the anhydrous experiment. This is attributed to water dissolved in the bitumen serving as a source of hydrogen to enhance thermal cracking and facilitate the expulsion of immiscible oil. In the absence of water, cross linking is enhanced in the confines of the rock, resulting in formation of pyrobitumen and molecular hydrogen. These differences are also reflected in the color and texture of the recovered rock. Despite confining liquid-water pressure being 7-9 times greater in the hydrous experiments than the confining vapor pressure in the anhydrous experiments, recovered rock from the former had a lighter color and expansion fractures parallel to the bedding fabric of the rock. The absence of these open tensile fractures in the recovered rock from the anhydrous experiments indicates that water promotes net-volume increase reactions like thermal cracking over net-volume decrease reactions like cross linking, which results in pyrobitumen. The results indicate the role of water in hydrocarbon and petroleum formation from Type-I kerogen is significant, as reported for Type-II kerogen. ?? 2010.

  18. Geotechnical Properties of Oil Shale Retorted by the PARAHO and TOSCO Processes.

    DTIC Science & Technology

    1979-11-01

    literature search was restricted to the Green River formation of oil shale in the tri-state area of Colorado (Piceance Basin ), Utah ( Uinta Basin ), and...it is preheated by combustion gases as it travels downward by gravity. Air and recycling gas are injected at midheight and are burned, bringing the oil ...REFERENCES..................................38 TABLES 1-5 APPENDIX A: OIL SHALE RETORTING PROCESSES................Al Tosco Process Gas Combustion

  19. Laboratory study of the effects of combustion gases on retorting of Green River oil shale with superheated steam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler, A.L.; Bullen, E.A.; Jacobs, H.R.

    The leached zone of the Parachute Creek member of the Piceance Basin in the Green River Formation has a unique natural porosity that makes it a likely source for in-situ production of oil from oil shale by injection of superheated steam. The Equity Oil Co. of Salt Lake City, in cooperation with the U. S. Department of Energy, carried out field tests using surface generated steam. Difficulties in delivering steam of sufficiently high temperature to the formation resulted in an experiment which was only marginally successful yielding less than 1 percent of the estimated 300,000 barrels of oil in place.more » In 1981, personnel at Sandia National Laboratory suggested that a downhole steam generator which could produce steam at temperatures in excess of 1000/sup 0/F (538/sup 0/C) at depth could well solve the temperature problem. In order to evaluate the effects of combustion gases which would be injected along with steam, should a downhole steam generator be used, laboratory studies have been completed using steam diluted with CO/sub 2/ and with CO/sub 2/ and N/sub 2/ as the heating medium. Results of experiments in an autoclave reactor and in a laboratory retort are reported. The temperature, residence time, and partial pressure of steam are the parameters which effect oil yield and oil quality. Oil properties are reported for several experimental conditions and include oil yield, boiling point distributions, pour points, gravity, and elemental and hydrocarbon-type analyses. Both the autoclave and laboratory retort experiments indicate that CO/sub 2/ and N/sub 2/ do not take a reactive part in the formation of oils except as they dilute the steam. However, the presence of CO/sub 2/ in the gaseous atmosphere during retorting does promote a low-temperature transformation of dolomite to calcite in the inorganic matrix of the oil shale.« less

  20. Prediction of shale prospectivity from seismically-derived reservoir and completion qualities: Application to a shale-gas field, Horn River Basin, Canada

    NASA Astrophysics Data System (ADS)

    Mo, Cheol Hoon; Lee, Gwang H.; Jeoung, Taek Ju; Ko, Kyung Nam; Kim, Ki Soo; Park, Kyung-sick; Shin, Chang Hoon

    2018-04-01

    Prospective shale plays require a combination of good reservoir and completion qualities. Total organic carbon (TOC) is an important reservoir quality and brittleness is the most critical condition for completion quality. We analyzed seismically-derived brittleness and TOC to investigate the prospectivity of the Horn River Group shale (the Muskwa, Otter Park, Evie shales) of a shale-gas field in the western Horn River Basin, British Columbia, Canada. We used the λρ-μρ brittleness template, constructed from the mineralogy-based brittleness index (MBI) and elastic logs from two wells, to convert the λρ and μρ volumes from prestack seismic inversion to the volume for the brittleness petrotypes (most brittle, intermediate, and least brittle). The probability maps of the most brittle petrotype for the three shales were generated from Bayesian classification, based on the λρ-μρ template. The relationship between TOC and P-wave and S-wave velocity ratio (VP/VS) at the wells allowed the conversion of the VP/VS volume from prestack inversion to the TOC volume, which in turn was used to construct the TOC maps for the three shales. Increased TOC is correlated with high brittleness, contrasting with the commonly-held understanding. Therefore, the prospectivity of the shales in the study area can be represented by high brittleness and increased TOC. We propose a shale prospectivity index (SPI), computed by the arithmetic average of the normalized probability of the most brittle petrotype and the normalized TOC. The higher SPI corresponds to higher production rates in the Muskwa and Evie shales. The areas of the highest SPI have not been fully tested. The future drilling should be focused on these areas to increase the economic viability of the field.

  1. Sedimentary processes and depositional environments of the Horn River Shale in British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Yoon, Seok-Hoon; Koh, Chang-Seong; Joe, Young-Jin; Woo, Ju-Hwan; Lee, Hyun-Suk

    2017-04-01

    The Horn River Basin in the northeastern British Columbia, Canada, is one of the largest unconventional gas accumulations in North America. It consists mainly of Devonian shales (Horn River Formation) and is stratigraphically divided into three members, the Muskwa, Otterpark and Evie in descending order. This study focuses on sedimentary processes and depositional environments of the Horn River shale based on sedimentary facies analysis aided by well-log mineralogy (ECS) and total organic carbon (TOC) data. The shale formation consists dominantly of siliceous minerals (quartz, feldspar and mica) and subordinate clay mineral and carbonate materials, and TOC ranging from 1.0 to 7.6%. Based on sedimentary structures and micro texture, three sedimentary facies were classified: homogeneous mudstone (HM), indistinctly laminated mudstone (ILM), and planar laminated mudstone (PLM). Integrated interpretation of the sedimentary facies, lithology and TOC suggests that depositional environment of the Horn River shale was an anoxic quiescent basin plain and base-of-slope off carbonate platform or reef. In this deeper marine setting, organic-rich facies HM and ILM, dominant in the Muskwa (the upper part of the Horn River Formation) and Evie (the lower part of the Horn River Formation) members, may have been emplaced by pelagic to hemipelagic sedimentation on the anoxic sea floor with infrequent effects of low-density gravity flows (turbidity currents or nepheloid flows). In the other hand, facies PLM typifying the Otterpark Member (the middle part of the Horn River Formation) suggests more frequent inflow of bottom-hugging turbidity currents punctuating the hemipelagic settling of the background sedimentation process. The stratigraphic change of sedimentary facies and TOC content in the Horn River Formation is most appropriately interpreted to have been caused by the relative sea-level change, that is, lower TOC and frequent signal of turbidity current during the sea

  2. Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, Thomas; Pugmire, Ronald

    2015-01-01

    Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogensmore » were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.« less

  3. Microstructural and mineralogical characterization of selected shales in support of nuclear waste repository studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.Y.; Hyder, L.K.; Alley, P.D.

    1988-01-01

    Five shales were examined as part of the Sedimentary Rock Program evaluation of this medium as a potential host for a US civilian nuclear waste repository. The units selected for characterization were the Chattanooga Shale from Fentress County, Tennessee; the Pierre Shale from Gregory County, South Dakota; the Green River Formation from Garfield County, Colorado; and the Nolichucky Shale and Pumpkin Valley Shale from Roane County, Tennessee. The micromorphology and structure of the shales were examined by petrographic, scanning electron, and high-resolution transmission electron microscopy. Chemical and mineralogical compositions were studied through the use of energy-dispersive x-ray, neutron activation, atomicmore » absorption, thermal, and x-ray diffraction analysis techniques. 18 refs., 12 figs., 2 tabs.« less

  4. Long-chain carboxylic acids in pyrolysates of Green River kerogen

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Tannenbaum, E.; Huizinga, B. J.; Kaplan, I. R.

    1986-01-01

    Long-chain fatty acids (C10-C32), as well as C14-C21 isoprenoid acids (except for C18), have been identified in anhydrous and hydrous pyrolyses products of Green River kerogen (200-400 degrees C, 2-1000 hr). These kerogen-released fatty acids are characterized by a strong even/odd predominance (CPI: 4.8-10.2) with a maximum at C16 followed by lesser amounts of C18 and C22 acids. This distribution is different from that of unbound and bound geolipids extracted from Green River shale. The unbound fatty acids show a weak even/odd predominance (CPI: 1.64) with a maximum at C14, and bound fatty acids display an even/odd predominance (CPI: 2.8) with maxima at C18 and C30. These results suggest that fatty acids were incorporated into kerogen during sedimentation and early diagenesis and were protected from microbial and chemical changes over geological periods of time. Total quantities of fatty acids produced during heating of the kerogen ranged from 0.71 to 3.2 mg/g kerogen. Highest concentrations were obtained when kerogen was heated with water for 100 hr at 300 degrees C. Generally, their amounts did not decrease under hydrous conditions with increase in temperature or heating time, suggesting that significant decarboxylation did not occur under the pyrolysis conditions used, although hydrocarbons were extensively generated.

  5. Fischer Assays of Oil Shale Drill Cores and Rotary Cuttings from the Piceance Basin, Colorado - 2009 Update

    USGS Publications Warehouse

    Mercier, Tracey J.; Brownfield, Michael E.; Johnson, Ronald C.; Self, Jesse G.

    1998-01-01

    This CD-ROM includes updated files containing Fischer assays of samples of core holes and cuttings from exploration drill holes drilled in the Eocene Green River Formation in the Piceance Basin of northwestern Colorado. A database was compiled that includes more than 321,380 Fischer assays from 782 boreholes. Most of the oil yield data were analyzed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, and some analyses were made by private laboratories. Location data for 1,042 core and rotary holes, oil and gas tests, as well as a few surface sections are listed in a spreadsheet and included in the CD-ROM. These assays are part of a larger collection of subsurface information held by the U.S. Geological Survey, including geophysical and lithologic logs, water data, and chemical and X-ray diffraction analyses having to do with the Green River oil shale deposits in Colorado, Wyoming, and Utah. Because of an increased interest in oil shale, this CD-ROM disc containing updated Fischer assay data for the Piceance Basin oil shale deposits in northwestern Colorado is being released to the public.

  6. Maps showing thermal maturity of Upper Cretaceous marine shales in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.; Pawlewicz, Mark J.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range, Owl Creek, and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, the Granite Mountains on the south, and the Wind River Range on the west. Important conventional and unconventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Mississippian through Tertiary. It has been suggested that various Upper Cretaceous marine shales are the principal hydrocarbon source rocks for many of these accumulations. Numerous source rock studies of various Upper Cretaceous marine shales throughout the Rocky Mountain region have led to the conclusion that these rocks have generated, or are capable of generating, oil and (or) gas. With recent advances and success in horizontal drilling and multistage fracture stimulation there has been an increase in exploration and completion of wells in these marine shales in other Rocky Mountain Laramide basins that were traditionally thought of only as hydrocarbon source rocks. Important parameters that control hydrocarbon production from shales include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a structural cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for Upper Cretaceous marine shales in the Wind River Basin.

  7. Notes on the geology of Green River Valley between Green River, Wyoming, and Green River, Utah

    USGS Publications Warehouse

    Reeside, J.B.

    1925-01-01

    During July, August, and part of September, 1922, I had the privilege of accompanying a party sent out jointly by the Utah Power & Light Co. and the United States Geological Survey to gather such data as were still needed to complete a study of the power resources of Green River between Green River, Wyo., and Green River, Utah. The chief deficiency to be supplied was a continuous topographic map of the valley in sufficient detail to permit calculation of the storage capacity of any reservoir site that might be used, the stream gradient, and similar features. Maps on a satisfactory scale of a number of isolated stretches of the river had already been made by public or private agencies, and it was necessary to verify them and connect them on a uniform datum. Inasmuch as it was deemed unlikely that a dam higher than 300 feet would be constructed anywhere on the part of the river to be examined, a plane 300 feet above the water surface was made the upper limit of mapping. Over such parts of the valley as had been mapped already the progress of the party was naturally very rapid, and even where no mapping had previously been done, the 300-foot limit set upon the work and the usual narrowness of the valley combined to reduce the extent of the area to be mapped, so that the speed maintained was relatively high. Under this condition of rapid movement it was seldom possible to make more than the most cursory examination of the rocks, though occasionally circumstances permitted more or less detailed observation. The notes here recorded are therefore mostly of a rather generalized character, but as they pertain in part to localities that are difficult of access and not often visited by geologists, and that are at the same time classic in the history of American geology, I venture to to record them for whatever value they may have to other geologists.

  8. Intertonguing of the Lower Part of the Uinta Formation with the Upper Part of the Green River Formation in the Piceance Creek Basin During the Late Stages of Lake Uinta

    USGS Publications Warehouse

    Donnell, John R.

    2009-01-01

    During most of middle Eocene time, a 1,500-mi2 area between the Colorado and White Rivers in northwestern Colorado was occupied by the Piceance lobe of Lake Uinta. This initially freshwater lake became increasingly saline throughout its history. Sediments accumulating in the lake produced mostly clay shale, limestone, and dolomite containing varying concentrations of organic matter. At the time of the maximum extent of the lake, the organic-rich Mahogany bed of the Green River Formation was deposited throughout the area. Shortly after its deposition, stream deposits began infilling the lake from the north through a series of contractions interspersed with minor expansions. This fluctuation of the shoreline resulted in the intertonguing of the stream sediments of the lower part of the overlying Uinta Formation with the lacustrine sediments of the upper part of the Green River over a distance of about 40 mi; construction of regional stratigraphic cross sections show the pattern of intertonguing in considerable detail. The data utilized in this study, which covered parts of Rio Blanco, Garfield, and Mesa counties, was derived from (1) geologic mapping of thirty-four 7 1/2-minute quadrangles and stratigraphic studies by geologists of the U.S. Geological Survey, and (2) shale-oil assay information from numerous cores. As a result of this previous work and the additional effort involved in the compilation here presented, more than a dozen Green River Formation tongues have been named, some formally, others informally. Middle Eocene strata above the Mahogany bed in the northern part of the study area are dominantly coarse clastics of the Uinta Formation. The sedimentary sequence becomes more calcareous and organic-rich to the south where, in a 400-mi2 area, a 250 ft-thick sequence of oil shale above the Mahogany bed contains an average of 16 gallons of oil per ton of shale and is estimated to contain 73 billion barrels of oil.

  9. Detailed description of oil shale organic and mineralogical heterogeneity via fourier transform infrared mircoscopy

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Foster, Michael; Gutierrez, Fernando

    2015-01-01

    Mineralogical and geochemical information on reservoir and source rocks is necessary to assess and produce from petroleum systems. The standard methods in the petroleum industry for obtaining these properties are bulk measurements on homogenized, generally crushed, and pulverized rock samples and can take from hours to days to perform. New methods using Fourier transform infrared (FTIR) spectroscopy have been developed to more rapidly obtain information on mineralogy and geochemistry. However, these methods are also typically performed on bulk, homogenized samples. We present a new approach to rock sample characterization incorporating multivariate analysis and FTIR microscopy to provide non-destructive, spatially resolved mineralogy and geochemistry on whole rock samples. We are able to predict bulk mineralogy and organic carbon content within the same margin of error as standard characterization techniques, including X-ray diffraction (XRD) and total organic carbon (TOC) analysis. Validation of the method was performed using two oil shale samples from the Green River Formation in the Piceance Basin with differing sedimentary structures. One sample represents laminated Green River oil shales, and the other is representative of oil shale breccia. The FTIR microscopy results on the oil shales agree with XRD and LECO TOC data from the homogenized samples but also give additional detail regarding sample heterogeneity by providing information on the distribution of mineral phases and organic content. While measurements for this study were performed on oil shales, the method could also be applied to other geological samples, such as other mudrocks, complex carbonates, and soils.

  10. Effects of experimental parameters on the sorption of cesium, strontium, and uranium from saline groundwaters onto shales: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, R.E.; Arnold, W.D.; Case, F.I.

    1988-11-01

    This report concerns an extension of the first series of experiments on the sorption properties of shales and their clay mineral components reported earlier. Studies on the sorption of cesium and strontium were carried out on samples of Chattanooga (Upper Dowelltown), Pierre, Green River Formation, Nolichucky, and Pumpkin Valley Shales that had been heated to 120/degree/C in a 0.1-mol/L NaCl solution for periods up to several months and on samples of the same shales which had been heated to 250/degree/C in air for six months, to simulate limiting scenarios in a HLW repository. To investigate the kinetics of the sorptionmore » process in shale/groundwater systems, strontium sorption experiments were done on unheated Pierre, Green River Formation, Nolichucky, and Pumpkin Valley Shales in a diluted, saline groundwater and in 0.03-mol/L NaHCO/sub 3/, for periods of 0.25 to 28 days. Cesium sorption kinetics tests were performed on the same shales in a concentrated brine for the same time periods. The effect of the water/rock (W/R) ratio on sorption for the same combinations of unheated shales, nuclides, and groundwaters used in the kinetics experiments was investigated for a range of W/R ratios of 3 to 20 mL/g. Because of the complexity of the shale/groundwater interaction, a series of tests was conducted on the effects of contact time and W/R ratio on the pH of a 0.03-mol/L NaHCO/sub 3/ simulated groundwater in contact with shales. 8 refs., 12 figs., 15 tabs.« less

  11. Simplified stratigraphic cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Dietrich, John D.; Johnson, Ronald C.

    2013-01-01

    Thirteen stratigraphic cross sections of the Eocene Green River Formation in the Piceance Basin of northwestern Colorado are presented in this report. Originally published in a much larger and more detailed form by Self and others (2010), they are shown here in simplified, page-size versions that are easily accessed and used for presentation purposes. Modifications to the original versions include the elimination of the detailed lithologic columns and oil-yield histograms from Fischer assay data and the addition of ground-surface lines to give the depth of the various oil shale units shown on the cross section.

  12. An isotopic biogeochemical study of the Green River oil shale

    NASA Technical Reports Server (NTRS)

    Collister, J. W.; Summons, R. E.; Lichtfouse, E.; Hayes, J. M.

    1992-01-01

    Thirty-five different samples from three different sulfur cycles were examined in this stratigraphically oriented study of the Shell 22x-l well (U.S.G.S. C177 core) in the Piceance Basin, Colorado. Carbon isotopic compositions of constituents of Green River bitumens indicate mixing of three main components: products of primary photoautotrophs and their immediate consumers (delta approximately -30% vs PDB), products of methanotrophic bacteria (delta approximately -85%), and products of unknown bacteria (delta approximately -40%). For individual compounds synthesized by primary producers, delta-values ranged from -28 to -32%. 13C contents of individual primary products (beta-carotane, steranes, acyclic isoprenoids, tricyclic triterpenoids) were not closely correlated, suggesting diverse origins for these materials. 13C contents of numerous hopanoids were inversely related to sulfur abundance, indicating that they derived both from methanotrophs and from other bacteria, with abundances of methanotrophs depressed when sulfur was plentiful in the paleoenvironment. gamma-Cerane coeluted with 3 beta(CH3),17 alpha(H),21 beta(H)-hopane, but delta-values could be determined after deconvolution. gamma-Cerane (delta approximately -25%) probably derives from a eukaryotic heterotroph grazing on primary materials, the latter compound (delta approximately -90%) must derive from methanotrophic organisms. 13C contents of n-alkanes in bitumen differed markedly from those of paraffins generated pyrolytically. Isotopic and quantitative relationships suggest that alkanes released by pyrolysis derived from a resistant biopolymer of eukaryotic origin and that this was a dominant constituent of total organic carbon.

  13. Detailed cross sections of the Eocene Green River Formation along the north and east margins of the Piceance Basin, western Colorado, using measured sections and drill hole information

    USGS Publications Warehouse

    Johnson, Ronald C.

    2014-01-01

    This report presents two detailed cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado, constructed from eight detailed measured sections, fourteen core holes, and two rotary holes. The Eocene Green River Formation in the Piceance Basin contains the world’s largest known oil shale deposit with more than 1.5 billion barrels of oil in place. It was deposited in Lake Uinta, a long-lived saline lake that once covered much of the Piceance Basin and the Uinta Basin to the west. The cross sections extend across the northern and eastern margins of the Piceance Basin and are intended to aid in correlating between surface sections and the subsurface in the basin.

  14. EVALUATION OF THE EFFECTS OF WEATHERING ON A 50-YEAR OLD RETORTED OIL-SHALE WASTE PILE, RULISON EXPERIMENTAL RETORT, COLORADO.

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Dean, Walter E.; Ackerman, Daniel J.; ,

    1985-01-01

    An oil-shale mine and experimental retort were operated near Rulison, Colorado by the U. S. Bureau of Mines from 1926 to 1929. Samples from seven drill cores from a retorted oil-shale waste pile were analyzed to determine 1) the chemical and mineral composition of the retorted oil shale and 2) variations in the composition that could be attributed to weathering. Unweathered, freshly-mined samples of oil shale from the Mahogany zone of the Green River Formation and slope wash collected away from the waste pile were also analyzed for comparison. The waste pile is composed of oil shale retorted under either low-temperature (400-500 degree C) or high-temperature (750 degree C) conditions. The results of the analyses show that the spent shale within the waste pile contains higher concentrations of most elements relative to unretorted oil shale.

  15. Hydrology and water quality in the Green River and surrounding agricultural areas near Green River in Emery and Grand Counties, Utah, 2004-05

    USGS Publications Warehouse

    Gerner, S.J.; Spangler, L.E.; Kimball, B.A.; Wilberg, D.E.; Naftz, D.L.

    2006-01-01

    Water from the Colorado River and its tributaries is used for municipal and industrial purposes by about 27 million people and irrigates nearly 4 million acres of land in the Western United States. Water users in the Upper Colorado River Basin consume water from the Colorado River and its tributaries, reducing the amount of water in the river. In addition, application of water to agricultural land within the basin in excess of crop needs can increase the transport of dissolved solids to the river. As a result, dissolved-solids concentrations in the Colorado River have increased, affecting downstream water users. During 2004-05, the U.S. Geological Survey, in cooperation with the Natural Resources Conservation Service, investigated the occurrence and distribution of dissolved solids in water from the agricultural areas near Green River, Utah, and in the adjacent reach of the Green River, a principle tributary of the Colorado River.The flow-weighted concentration of dissolved solids diverted from the Green River for irrigation during 2004 and 2005 was 357 milligrams per liter and the mean concentration of water collected from seeps and drains where water was returning to the river during low-flow conditions was 4,170 milligrams per liter. The dissolved-solids concentration in water from the shallow part of the ground-water system ranged from 687 to 55,900 milligrams per liter.Measurable amounts of dissolved solids discharging to the Green River are present almost exclusively along the river banks or near the mouths of dry washes that bisect the agricultural areas. The median dissolved-solids load in discharge from the 17 drains and seeps visited during the study was 0.35 ton per day. Seasonal estimates of the dissolved-solids load discharging from the study area ranged from 2,800 tons in the winter to 6,400 tons in the spring. The estimate of dissolved solids discharging from the study area annually is 15,700 tons.Water samples collected from selected sites within

  16. Chapter 5: Geologic Assessment of Undiscovered Petroleum Resources in the Waltman Shale Total Petroleum System,Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Roberts, Steve B.; Roberts, Laura N.R.; Cook, Troy

    2007-01-01

    The Waltman Shale Total Petroleum System encompasses about 3,400 square miles in the Wind River Basin Province, Wyoming, and includes accumulations of oil and associated gas that were generated and expelled from oil-prone, lacustrine shale source rocks in the Waltman Shale Member of the Paleocene Fort Union Formation. Much of the petroleum migrated and accumulated in marginal lacustrine (deltaic) and fluvial sandstone reservoirs in the Shotgun Member of the Fort Union, which overlies and intertongues with the Waltman Shale Member. Additional petroleum accumulations derived from Waltman source rocks are present in fluvial deposits in the Eocene Wind River Formation overlying the Shotgun Member, and also might be present within fan-delta deposits included in the Waltman Shale Member, and in fluvial sandstone reservoirs in the uppermost part of the lower member of the Fort Union Formation immediately underlying the Waltman. To date, cumulative production from 53 wells producing Waltman-sourced petroleum exceeds 2.8 million barrels of oil and 5.8 billion cubic feet of gas. Productive horizons range from about 1,770 feet to 5,800 feet in depth, and average about 3,400 to 3,500 feet in depth. Formations in the Waltman Shale Total Petroleum System (Fort Union and Wind River Formations) reflect synorogenic deposition closely related to Laramide structural development of the Wind River Basin. In much of the basin, the Fort Union Formation is divided into three members (ascending order): the lower unnamed member, the Waltman Shale Member, and the Shotgun Member. These members record the transition from deposition in dominantly fluvial, floodplain, and mire environments in the early Paleocene (lower member) to a depositional setting characterized by substantial lacustrine development (Waltman Shale Member) and contemporaneous fluvial, and marginal lacustrine (deltaic) deposition (Shotgun Member) during the middle and late Paleocene. Waltman Shale Member source rocks have

  17. Oil shale resources of the Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    ,

    2010-01-01

    The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales of the Eocene Green River Formation of the Uinta Basin of eastern Utah and western Colorado. The oil shale interval was subdivided into eighteen roughly time-stratigraphic intervals, and each interval was assessed for variations in gallons per ton, barrels per acre, and total barrels in each township. The Radial Basis Function extrapolation method was used to generate isopach and isoresource maps, and to calculate resources. The total inplace resource for the Uinta Basin is estimated at 1.32 trillion barrels. This is only slightly lower than the estimated 1.53 trillion barrels for the adjacent Piceance Basin, Colorado, to the east, which is thought to be the richest oil shale deposit in the world. However, the area underlain by oil shale in the Uinta Basin is much larger than that of the Piceance Basin, and the average gallons per ton and barrels per acre values for each of the assessed oil shale zones are significantly lower in the depocenter in the Uinta Basin when compared to the Piceance Basin. These relations indicate that the oil shale resources in the Uinta Basin are of lower grade and are more dispersed than the oil shale resources of the Piceance Basin.

  18. Frictional stability-permeability relationships for fractures in shales

    NASA Astrophysics Data System (ADS)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi; Ishibashi, Takuya; Fitts, Jeffrey P.

    2017-03-01

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS). We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.

  19. Water resources and potential hydrologic effects of oil-shale development in the southeastern Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    Lindskov, K.L.; Kimball, B.A.

    1984-01-01

    Proposed oil-shale mining in northeastern Utah is expected to impact the water resources of a 3,000-square-mile area. This report summarizes a comprehensive hydrologic investigation of the area which resulted in 13 published reports. Hydrologic information obtained during 1974-80 was used to evaluate the availability of water and to evaluate potential impacts of an oil-shale industry on the water resources.The study area is the southeastern part of the Uinta Basin, Utah and Colorado, where the hydrology is extremely variable. The normal annual precipitation averages 11 inches and varies with altitude. It ranges from less than 8 inches at altitudes below 5,000 feet along the White and Green Rivers to more than 20 inches where altitudes exceed 9,000 feet on the Roan Plateau.The White and Green Rivers are large streams that flow through the area. They convey an average flow of 4.3 million acre-feet per year from outside drainage areas of about 34,000 square miles, which is more than 150 times as much flow as that originating within the area. Streams originating in areas where precipitation is less than 10 inches are ephemeral. Mean annual runoff from the study area is about 28,000 acre-feet and ranges from less than 0.1 to 1.6 inches, depending on the location. At any given site, runoff varies greatly-from year to year and season to season. Potential evapotranspiration is large, exceeding precipitation in all years. Three major aquifers occur in the area. They are alluvial deposits of small areal extent along the major stream valleys; the bird's-nest aquifer of the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer of the Douglas Creek Member of the Green River Formation, which underlies most of the area. Total recoverable water in storage in the three aquifers is about 18 million acre-feet. Yields of individual wells and interference between wells limit the maximum practical

  20. A Thermoplasticity Model for Oil Shale

    DOE PAGES

    White, Joshua A.; Burnham, Alan K.; Camp, David W.

    2016-03-31

    Several regions of the world have abundant oil shale resources, but accessing this energy supply poses a number of challenges. One particular difficulty is the thermomechanical behavior of the material. When heated to sufficient temperatures, thermal conversion of kerogen to oil, gas, and other products takes place. This alteration of microstructure leads to a complex geomechanical response. In this work, we develop a thermoplasticity model for oil shale. The model is based on critical state plasticity, a framework often used for modeling clays and soft rocks. The model described here allows for both hardening due to mechanical deformation and softeningmore » due to thermal processes. In particular, the preconsolidation pressure—defining the onset of plastic volumetric compaction—is controlled by a state variable representing the kerogen content of the material. As kerogen is converted to other phases, the material weakens and plastic compaction begins. We calibrate and compare the proposed model to a suite of high-temperature uniaxial and triaxial experiments on core samples from a pilot in situ processing operation in the Green River Formation. In conclusion, we also describe avenues for future work to improve understanding and prediction of the geomechanical behavior of oil shale operations.« less

  1. 78 FR 21839 - Drawbridge Operation Regulation; Green River, Small-house, KY and Black River, Jonesboro, LA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2013-0041] RIN 1625-AA09 Drawbridge Operation Regulation; Green River, Small-house, KY and Black River, Jonesboro, LA... drawbridge operation regulation for the drawbridges across Green River, mile 79.6, Small- house, KY and Black...

  2. Validation Results for Core-Scale Oil Shale Pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staten, Josh; Tiwari, Pankaj

    2015-03-01

    This report summarizes a study of oil shale pyrolysis at various scales and the subsequent development a model for in situ production of oil from oil shale. Oil shale from the Mahogany zone of the Green River formation was used in all experiments. Pyrolysis experiments were conducted at four scales, powdered samples (100 mesh) and core samples of 0.75”, 1” and 2.5” diameters. The batch, semibatch and continuous flow pyrolysis experiments were designed to study the effect of temperature (300°C to 500°C), heating rate (1°C/min to 10°C/min), pressure (ambient and 500 psig) and size of the sample on product formation.more » Comprehensive analyses were performed on reactants and products - liquid, gas and spent shale. These experimental studies were designed to understand the relevant coupled phenomena (reaction kinetics, heat transfer, mass transfer, thermodynamics) at multiple scales. A model for oil shale pyrolysis was developed in the COMSOL multiphysics platform. A general kinetic model was integrated with important physical and chemical phenomena that occur during pyrolysis. The secondary reactions of coking and cracking in the product phase were addressed. The multiscale experimental data generated and the models developed provide an understanding of the simultaneous effects of chemical kinetics, and heat and mass transfer on oil quality and yield. The comprehensive data collected in this study will help advance the move to large-scale in situ oil production from the pyrolysis of oil shale.« less

  3. Analysis of river pollution data from low-flow period by means of multivariate techniques: a case study from the oil-shale industry region, northeastern Estonia.

    PubMed

    Truu, Jaak; Heinaru, Eeva; Talpsep, Ene; Heinaru, Ain

    2002-01-01

    The oil-shale industry has created serious pollution problems in northeastern Estonia. Untreated, phenol-rich leachate from semi-coke mounds formed as a by-product of oil-shale processing is discharged into the Baltic Sea via channels and rivers. An exploratory analysis of water chemical and microbiological data sets from the low-flow period was carried out using different multivariate analysis techniques. Principal component analysis allowed us to distinguish different locations in the river system. The riverine microbial community response to water chemical parameters was assessed by co-inertia analysis. Water pH, COD and total nitrogen were negatively related to the number of biodegradative bacteria, while oxygen concentration promoted the abundance of these bacteria. The results demonstrate the utility of multivariate statistical techniques as tools for estimating the magnitude and extent of pollution based on river water chemical and microbiological parameters. An evaluation of river chemical and microbiological data suggests that the ambient natural attenuation mechanisms only partly eliminate pollutants from river water, and that a sufficient reduction of more recalcitrant compounds could be achieved through the reduction of wastewater discharge from the oil-shale chemical industry into the rivers.

  4. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.

    PubMed

    Alstadt, Kristin N; Katti, Dinesh R; Katti, Kalpana S

    2012-04-01

    Step-scan photoacoustic infrared spectroscopy experiments were performed on Green River oil shale samples obtained from the Piceance Basin located in Colorado, USA. We have investigated the molecular nature of light and dark colored areas of the oil shale core using FTIR photoacoustic step-scan spectroscopy. This technique provided us with the means to analyze the oil shale in its original in situ form with the kerogen-mineral interactions intact. All vibrational bands characteristic of kerogen were found in the dark and light colored oil shale samples confirming that kerogen is present throughout the depth of the core. Depth profiling experiments indicated that there are changes between layers in the oil shale molecular structure at a length scale of micron. Comparisons of spectra from the light and dark colored oil shale core samples suggest that the light colored regions have high kerogen content, with spectra similar to that from isolated kerogen, whereas, the dark colored areas contain more mineral components which include clay minerals, dolomite, calcite, and pyrite. The mineral components of the oil shale are important in understanding how the kerogen is "trapped" in the oil shale. Comparing in situ kerogen spectra with spectra from isolated kerogen indicate significant band shifts suggesting important nonbonded molecular interactions between the kerogen and minerals. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. The systematic geologic mapping program and a quadrangle-by-quadrangle analysis of time-stratigraphic relations within oil shale-bearing rocks of the Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.

    2012-01-01

    During the 1960s, 1970s, and 1980s, the U.S. Geological Survey mapped the entire area underlain by oil shale of the Eocene Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin contains the largest known oil shale deposit in the world, with an estimated 1.53 trillion barrels of oil in place and as much as 400,000 barrels of oil per acre. This report places the sixty-nine 7½-minute geologic quadrangle maps and one 15-minute quadrangle map published during this period into a comprehensive time-stratigraphic framework based on the alternating rich and lean oil shale zones. The quadrangles are placed in their respective regional positions on one large stratigraphic chart so that tracking the various stratigraphic unit names that have been applied can be followed between adjacent quadrangles. Members of the Green River Formation were defined prior to the detailed mapping, and many inconsistencies and correlation problems had to be addressed as mapping progressed. As a result, some of the geologic units that were defined prior to mapping were modified or discarded. The extensive body of geologic data provided by the detailed quadrangle maps contributes to a better understanding of the distribution and characteristics of the oil shale-bearing rocks across the Piceance Basin.

  6. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  7. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  8. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  9. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  10. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  11. Frictional stability-permeability relationships for fractures in shales: Friction-Permeability Relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yi; Elsworth, Derek; Wang, Chaoyi

    There is wide concern that fluid injection in the subsurface, such as for the stimulation of shale reservoirs or for geological CO 2 sequestration (GCS), has the potential to induce seismicity that may change reservoir permeability due to fault slip. However, the impact of induced seismicity on fracture permeability evolution remains unclear due to the spectrum of modes of fault reactivation (e.g., stable versus unstable). As seismicity is controlled by the frictional response of fractures, we explore friction-stability-permeability relationships through the concurrent measurement of frictional and hydraulic properties of artificial fractures in Green River shale (GRS) and Opalinus shale (OPS).more » We observe that carbonate-rich GRS shows higher frictional strength but weak neutral frictional stability. The GRS fracture permeability declines during shearing while an increased sliding velocity reduces the rate of permeability decline. By comparison, the phyllosilicate-rich OPS has lower friction and strong stability while the fracture permeability is reduced due to the swelling behavior that dominates over the shearing induced permeability reduction. Hence, we conclude that the friction-stability-permeability relationship of a fracture is largely controlled by mineral composition and that shale mineral compositions with strong frictional stability may be particularly subject to permanent permeability reduction during fluid infiltration.« less

  12. Mineralogical characterization of selected shales in support of nuclear waste repository studies: Progress report, October 1987--September 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Hyder, L. K.; Baxter, P. M.

    1989-07-01

    One objective of the Sedimentary Rock Program at the Oak Ridge National Laboratory has been to examine end-member shales to develop a data base that will aid in evaluations if shales are ever considered as a repository host rock. Five end-member shales were selected for comprehensive characterization: the Chattanooga Shale from Fentress County, Tennessee; the Pierre Shale from Gregory County, South Dakota; the Green River Formation from Garfield County, Colorado; and the Nolichucky Shale and Pumpkin Valley Shale from Roane County, Tennessee. Detailed micromorphological and mineralogical characterizations of the shales were completed by Lee et al. (1987) in ORNL/TM-10567. Thismore » report is a supplemental characterization study that was necessary because second batches of the shale samples were needed for additional studies. Selected physical, chemical, and mineralogical properties were determined for the second batches; and their properties were compared with the results from the first batches. Physical characterization indicated that the second-batch and first-batch samples had a noticeable difference in apparent-size distributions but had similar primary-particle-size distributions. There were some differences in chemical composition between the batches, but these differences were not considered important in comparison with the differences among the end-member shales. The results of x-ray diffraction analyses showed that the second batches had mineralogical compositions very similar to the first batches. 9 refs., 9 figs., 4 tabs.« less

  13. Water quality of streams and springs, Green River Basin, Wyoming

    USGS Publications Warehouse

    DeLong, L.L.

    1986-01-01

    Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)

  14. Stratigraphic cross sections of the Niobrara interval of the Cody Shale and associated rocks in the Wind River Basin, central Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.

    2017-02-07

    The Wind River Basin in Wyoming is one of many structural and sedimentary basins that formed in the Rocky Mountain foreland during the Laramide orogeny. The basin is nearly 200 miles long, 70 miles wide, and encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range, Owl Creek uplift, and southern Bighorn Mountains on the north, the Casper arch on the east, the Granite Mountains on the south, and Wind River Range on the west.Many important conventional oil and gas fields producing from reservoirs ranging in age from Mississippian through Tertiary have been discovered in this basin. In addition, an extensive unconventional overpressured basin-centered gas accumulation has been identified in Cretaceous and Tertiary strata in the deeper parts of the basin. It has long been suggested that various Upper Cretaceous marine shales, including the Cody Shale, are the principal hydrocarbon source rocks for many of these accumulations. With recent advances and success in horizontal drilling and multistage fracture stimulation, there has been an increase in exploration and completion of wells in these marine shales in other Rocky Mountain Laramide basins that were traditionally thought of only as hydrocarbon source rocks.The two stratigraphic cross sections presented in this report were constructed as part of a project carried out by the U.S. Geological Survey to characterize and evaluate the undiscovered continuous (unconventional) oil and gas resources of the Niobrara interval of the Upper Cretaceous Cody Shale in the Wind River Basin in central Wyoming. The primary purpose of the cross sections is to show the stratigraphic relationship of the Niobrara equivalent strata and associated rocks in the lower part of the Cody Shale in the Wind River Basin. These two cross sections were constructed using borehole geophysical logs from 37 wells drilled for oil and gas exploration and production, and one surface section along East Sheep Creek

  15. Hydrogeology, groundwater levels, and generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system, 2010–14, in the northern Green River structural basin

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.; Eddy-Miller, Cheryl

    2015-07-14

    The groundwater-level measurements were used to construct a generalized potentiometric-surface map of the Green River Basin lower Tertiary aquifer system. Groundwater-level altitudes measured in nonflowing and flowing wells used to construct the potentiometric-surface map ranged from 6,451 to 7,307 feet (excluding four unmeasured flowing wells used for contour construction purposes). The potentiometric-surface map indicates that groundwater in the study area generally moves from north to south, but this pattern of flow is altered locally by groundwater divides, groundwater discharge to the Green River, and possibly to a tributary river (Big Sandy River) and two reservoirs (Fontenelle and Big Sandy Reservoirs).

  16. Multi-scale Multi-dimensional Imaging and Characterization of Oil Shale Pyrolysis

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Saif, T.; Lin, Q.; Al-Khulaifi, Y.; Blunt, M. J.; Bijeljic, B.

    2017-12-01

    The microstructural evaluation of fine grained rocks is challenging which demands the use of several complementary methods. Oil shale, a fine-grained organic-rich sedimentary rock, represents a large and mostly untapped unconventional hydrocarbon resource with global reserves estimated at 4.8 trillion barrels. The largest known deposit is the Eocene Green River Formation in Western Colorado, Eastern Utah, and Southern Wyoming. An improved insight into the mineralogy, organic matter distribution and pore network structure before, during and after oil shale pyrolysis is critical to understanding hydrocarbon flow behaviour and improving recovery. In this study, we image Mahogany zone oil shale samples in two dimensions (2-D) using scanning electron microscopy (SEM), and in three dimensions (3-D) using focused ion beam scanning electron microscopy (FIB-SEM), laboratory-based X-ray micro-tomography (µCT) and synchrotron X-ray µCT to reveal a complex and variable fine grained microstructure dominated by organic-rich parallel laminations which are tightly bound in a highly calcareous and heterogeneous mineral matrix. We report the results of a detailed µCT study of the Mahogany oil shale with increasing pyrolysis temperature. The physical transformation of the internal microstructure and evolution of pore space during the thermal conversion of kerogen in oil shale to produce hydrocarbon products was characterized. The 3-D volumes of pyrolyzed oil shale were reconstructed and image processed to visualize and quantify the volume and connectivity of the pore space. The results show a significant increase in anisotropic porosity associated with pyrolysis between 300-500°C with the formation of micron-scale connected pore channels developing principally along the kerogen-rich lamellar structures.

  17. Water quality of groundwater and stream base flow in the Marcellus Shale Gas Field of the Monongahela River Basin, West Virginia, 2011-12

    USGS Publications Warehouse

    Chambers, Douglas B.; Kozar, Mark D.; Messinger, Terence; Mulder, Michon L.; Pelak, Adam J.; White , Jeremy S.

    2015-01-01

    This study provides a baseline of water-quality conditions in the Monongahela River Basin in West Virginia during the early phases of development of the Marcellus Shale gas field. Although not all inclusive, the results of this study provide a set of reliable water-quality data against which future data sets can be compared and the effects of shale-gas development may be determined.

  18. Four dimensional X-ray imaging of deformation modes in organic-rich Green River Shale retorted under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Kobchenko, M.; Pluymakers, A.; Cordonnier, B.; Tairova, A.; Renard, F.

    2017-12-01

    Time-lapse imaging of fracture network development in organic-rich shales at elevated temperatures while kerogen is retorted allows characterizing the development of microfractures and the onset of primary migration. When the solid organic matter is transformed to hydrocarbons with lower molecular weight, the local pore-pressure increases and drives the propagation of hydro-fractures sub-parallel to the shale lamination. On the scale of samples of several mm size, these fractures can be described as mode I opening, where fracture walls dilate in the direction of minimal compression. However, so far experiments coupled to microtomography in situ imaging have been performed on samples where no load was imposed. Here, an external load was applied perpendicular to the sample laminations and we show that this stress state slows down, but does not stop, the propagation of fracture along bedding. Conversely, microfractures also propagate sub-perpendicular to the shale lamination, creating a percolating network in three dimensions. To monitor this process we have used a uniaxial compaction rig combined with in-situ heating from 50 to 500 deg C, while capturing three-dimensional X-ray microtomography scans at a voxel resolution of 2.2 μm; Data were acquired at beamline ID19 at the European Synchrotron Radiation Facility. In total ten time-resolved experiments were performed at different vertical loading conditions, with and without lateral passive confinement and different heating rates. At high external load the sample fails by symmetric bulging, while at lower external load the reaction-induced fracture network develops with the presence of microfractures both sub-parallel and sub-perpendicular to the bedding direction. In addition, the variation of experimental conditions allows the decoupling of the effects of the hydrocarbon decomposition reaction on the deformation process from the influence of thermal stress heating on the weakening and failure mode of immature

  19. Vegetation canopy cover effects on sediment erosion processes in the upper Colorado River Basin mancos shale formation, Price, Utah

    USDA-ARS?s Scientific Manuscript database

    This study provides new parameterizations for applying the Rangeland Hydrology and Erosion Model (RHEM) on the highly erosive, rangeland saline soils of the Mancos Shale formation in the Price-San Rafael River Basin in east central Utah. Calibrated hydrologic parameters (Kss and K') values are gener...

  20. Implications of contact metamorphism of Mancos Shale for critical zone processes

    NASA Astrophysics Data System (ADS)

    Navarre-Sitchler, A.

    2016-12-01

    Bedrock lithology imparts control on some critical zone processes, for example rates and extent of chemical weathering, solute release though mineral dissolution, and water flow. Bedrock can be very heterogeneous resulting in spatial variability of these processes throughout a catchment. In the East River watershed outside of Crested Butte, Colorado, bedrock is dominantly comprised of the Mancos Shale; a Cretaceous aged, organic carbon rich marine shale. However, in some areas the Mancos Shale appears contact metamorphosed by nearby igneous intrusions resulting in a potential gradient in lithologic change in part of the watershed where impacts of lithology on critical zone processes can be evaluated. Samples were collected in the East River valley along a transect from the contact between the Tertiary Gothic Mountain laccolith of the Mount Carbon igneous system and the underlying Manocs shale. Porosity of these samples was analyzed by small-angle and ultra small-angle neutron scattering. Results indicate contact metamorphism decreases porosity of the shale and changes the pore shape from slightly anisotropic pores aligned with bedding in the unmetamorphosed shale to isotropic pores with no bedding alignment in the metamorphosed shales. The porosity analysis combined with clay mineralogy, surface area, carbon content and oxidation state, and solute release rates determined from column experiments will be used to develop a full understanding of the impact of contact metamorphism on critical zone processes in the East River.

  1. Applicability of Aerial Green LiDAR to a Large River in the Western United States

    NASA Astrophysics Data System (ADS)

    Conner, J. T.; Welcker, C. W.; Cooper, C.; Faux, R.; Butler, M.; Nayegandhi, A.

    2013-12-01

    In October 2012, aerial green LiDAR data were collected in the Snake River (within Idaho and Oregon) to test this emerging technology in a large river with poor water clarity. Six study areas (total of 30 river miles spread out over 250 river miles) were chosen to represent a variety of depths, channel types, and surface conditions to test the accuracy, depth penetration, data density of aerial green LiDAR. These characteristics along with cost and speed of acquisition were compared to other bathymetric survey techniques including rod surveys (total station and RTK-GPS), single-beam sonar, and multibeam echosounder (MBES). The green LiDAR system typically measured returns from the riverbed through 1-2 meters of water, which was less than one Secchi depth. However, in areas with steep banks or aquatic macrophytes, LiDAR returns from the riverbed were less frequent or non-existent. In areas of good return density, depths measured from green LiDAR data corresponded well with previously collected data sets from traditional bathymetric survey techniques. In such areas, the green LiDAR point density was much higher than both rod and single beam sonar surveys, yet lower than MBES. The green LiDAR survey was also collected more efficiently than all other methods. In the Snake River, green LiDAR does not provide a method to map the entire riverbed as it only receives bottom returns in shallow water, typically at the channel margins. However, green LiDAR does provide survey data that is an excellent complement to MBES, which is more effective at surveying the deeper portions of the channel. In some cases, the green LiDAR was able to provide data in areas that the MBES could not, often due to issues with navigating the survey boat in shallow water. Even where both MBES and green LiDAR mapped the river bottom, green LiDAR often provides more accurate data through a better angle of incidence and less shadowing than the MBES survey. For one MBES survey in 2013, the green Li

  2. 78 FR 31454 - Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ...-AA09 Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY AGENCY: Coast Guard, DHS... that governs the highway bridge (Troy Green Island) across the Hudson River, mile 152.7, between Troy... the regulations for the 112th Street Bridge, mile 155.4, between Troy and Cohoes which has been...

  3. Long-term surveillance plan for the Green River, Utah, disposal site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-06-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and detailsmore » how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).« less

  4. 78 FR 56607 - Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ...-AA09 Drawbridge Operation Regulation; Hudson River, Troy and Green Island, NY AGENCY: Coast Guard, DHS... operation of the highway bridge across the Hudson River, mile 152.7, between Troy and Green Island, New York... Street Bridge, mile 155.4, between Troy and Cohoes which has been converted to a fixed bridge. It is...

  5. Geochemical behavior of Cs, Sr, Tc, Np, and U in saline groundwaters: Sorption experiments on shales and their clay mineral components: Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, R.E.; Arnold, W.D.; Ho, P.C.

    1987-11-01

    The Sedimentary Rock Program at the Oak Ridge National Laboratory is investigating shale to determine its potential suitability as a host rock for the disposal of high-level radioactive wastes (HLW). In support of this program, preliminary studies were carried out on sorption of cesium, strontium, technetium, neptunium, and uranium onto Chattanooga (Upper Dowelltown), Pierre, Green River Formation, Nolichucky, and Pumpkin Valley Shales under oxic conditions (air present). Three simulated groundwaters were used. One of the groundwaters was a synthetic brine made up to simulate highly saline groundwaters in the Pumpkin Valley Shale. The second was a 100/1 dilution of thismore » groundwater and the third was 0.03 M NaHCO/sub 3/. Moderate to significant sorption was observed under most conditions for all of the tested radionuclides except technetium. Moderate technetium sorption occurred on Upper Dowelltown Shale, and although technetium sorption was low on the other shales, it was higher than expected for Tc(VII), present as the anion TcO/sub 4//sup -/. Little sorption of strontium onto the shales was observed from the concentrated saline groundwater. These data can be used in a generic fashion to help assess the sorption characteristics of shales in support of a national survey. 10 refs., 4 figs., 23 tabs.« less

  6. Simulation of blue and green water resources in the Wei River basin, China

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Zuo, D.

    2014-09-01

    The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool), calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program) based on river discharge in the Wei River basin (WRB). Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit) scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain), one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

  7. Partial resolution of sources of n-alkanes in the saline portion of the Parachute Creek Member, Green River Formation (Piceance Creek Basin, Colorado)

    NASA Technical Reports Server (NTRS)

    Collister, J. W.; Lichtfouse, E.; Hieshima, G.; Hayes, J. M.

    1994-01-01

    Systematic variations in the 13C contents of individual extractable n-alkanes (C16-C29) can be modelled quantitatively and interpreted as indicating contributions from at least five distinct sources. These appear to be cyanobacterial (C16-C18, delta 13C = -37% vs PDB), phytoplanktonic (C16-C23, delta = -32%), chemoautotrophic bacterial (C20-C29, delta = -38%), phytoplanktonic or heterotrophic bacterial (C20-C29, delta = -30%), and vascular plants (C23-C29, delta = -29%). Hydrous pyrolysis of related kerogens yields large quantities of additional n-alkanes with different and much more uniform delta values. The latter materials are apparently derived from the thermolysis of aliphatic biopolymers whose presence in the Green River Oil Shale has been recognized visually.

  8. Comparing Laser Desorption Ionization and Atmospheric Pressure Photoionization Coupled to Fourier Transform Ion Cyclotron Resonance Mass Spectrometry To Characterize Shale Oils at the Molecular Level

    USGS Publications Warehouse

    Cho, Yunjo; Jin, Jang Mi; Witt, Matthias; Birdwell, Justin E.; Na, Jeong-Geol; Roh, Nam-Sun; Kim, Sunghwan

    2013-01-01

    Laser desorption ionization (LDI) coupled to Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to analyze shale oils. Previous work showed that LDI is a sensitive ionization technique for assessing aromatic nitrogen compounds, and oils generated from Green River Formation oil shales are well-documented as being rich in nitrogen. The data presented here demonstrate that LDI is effective in ionizing high-double-bond-equivalent (DBE) compounds and, therefore, is a suitable method for characterizing compounds with condensed structures. Additionally, LDI generates radical cations and protonated ions concurrently, the distribution of which depends upon the molecular structures and elemental compositions, and the basicity of compounds is closely related to the generation of protonated ions. This study demonstrates that LDI FT-ICR MS is an effective ionization technique for use in the study of shale oils at the molecular level. To the best of our knowledge, this is the first time that LDI FT-ICR MS has been applied to shale oils.

  9. Mass-movement deposits in the lacustrine Eocene Green River Formation, Piceance Basin, western Colorado

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Brownfield, Michael E.; Mercier, Tracey J.

    2015-01-01

    The Eocene Green River Formation was deposited in two large Eocene saline lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. Here we will discuss mass-movement deposits in just the Piceance Basin part of Lake Uinta.

  10. Molecular characterization and comparison of shale oils generated by different pyrolysis methods

    USGS Publications Warehouse

    Birdwell, Justin E.; Jin, Jang Mi; Kim, Sunghwan

    2012-01-01

    Shale oils generated using different laboratory pyrolysis methods have been studied using standard oil characterization methods as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI) and atmospheric photoionization (APPI) to assess differences in molecular composition. The pyrolysis oils were generated from samples of the Mahogany zone oil shale of the Eocene Green River Formation collected from outcrops in the Piceance Basin, Colorado, using three pyrolysis systems under conditions relevant to surface and in situ retorting approaches. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules and the distribution of nitrogen-containing compound classes. Comparison of FT-ICR MS results to other oil characteristics, such as specific gravity; saturate, aromatic, resin, asphaltene (SARA) distribution; and carbon number distribution determined by gas chromatography, indicated correspondence between higher average double bond equivalence (DBE) values and increasing asphaltene content. The results show that, based on the shale oil DBE distributions, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions, and under high pressure, moderate temperature conditions in the presence of water. We also report, for the first time in any petroleum-like substance, the presence of N4 class compounds based on FT-ICR MS data. Using double bond equivalence and carbon number distributions, structures for the N4 class and other nitrogen-containing compounds are proposed.

  11. Site evaluation for U.S. Bureau of Mines experimental oil-shale mine, Piceance Creek basin, Rio Blanco County, Colorado

    USGS Publications Warehouse

    Ege, John R.; Leavesley, G.H.; Steele, G.S.; Weeks, J.B.

    1978-01-01

    The U.S. Geological Survey is cooperating with the U.S. Bureau of Mines in the selection of a site for a shaft and experimental mine to be constructed in the Piceance Creek basin, Rio Blanco County, Colo. The Piceance Creek basin, an asymmetric, northwest-trending large structural downwarp, is located approximately 40 km (25 mi) west of the town of Meeker in Rio Blanco County, Colo. The oil-shale, dawsonite, nahcolite, and halite deposits of the Piceance Creek basin occur in the lacustrine Green River Formation of Eocene age. In the basin the Green River Formation comprises three members. In ascending order, they are the Douglas Creek, the Garden Gulch, and the Parachute Creek Members, Four sites are presented for consideration and evaluated on geology and hydrology with respect to shale-oil economics. Evaluated criteria include: (1) stratigraphy, (2) size of site, (3) oil-shale yield, (4) representative quantities of the saline minerals dawsonite and nahcolite, which must be present with a minimum amount of halite, (5) thickness of a 'leached' saline zone, (6) geologic structure, (7) engineering characteristics of rock, (8) representative surface and ground-water conditions, with emphasis on waste disposal and dewatering, and (9) environmental considerations. Serious construction and support problems are anticipated in sinking a deep shaft in the Piceance Creek basin. The two major concerns will be dealing with incompetent rock and large inflow of saline ground water, particularly in the leached zone. Engineering support problems will include stabilizing and hardening the rock from which a certain amount of ground water has been removed. The relative suitability of the four potential oil-shale experimental shaft sites in the Piceance Creek basin has been considered on the basis of all available geologic, hydrologic, and engineering data; site 2 is preferred to sites 1, 3, and 4, The units in this report are presented in the form: metric (English). Both units of

  12. Astronomical pacing of ecosystem function in the Green River Formation of Utah and Colorado

    NASA Astrophysics Data System (ADS)

    van Keuren, M. A.; Whiteside, J. H.; Eglinton, T. I.

    2008-12-01

    Part of one of the largest petroleum reserves in the world, the Green River Formation of the Uinta and Piceance Creek basins of Utah and Colorado, formed in a huge Eocene lake system during the warmest, most equable period in recent Earth history. Despite the unit's great potential economic importance and correspondingly large number of geochemical analyses and the preeminent role of these strata in Milankovitch theory (Bradley, 1929), there are surprisingly few systematic studies of the geochemistry of the characteristic permeating cyclicity. Here, we report multiple proxies of lacustrine ecosystem dynamics including oil shale yields, sedimentary facies, carbon and nitrogen isotopes, and molecule-level carbon isotopes from the most oil-rich parts (including the Mahogany oil shale zone) from a series of cores and outcrops in a transect across the Uinta and Piceance Creek basins spanning ~500 m stratigraphically and 3.2 m.y. temporally. Our initial results show covariation in sedimentary facies, oil shale yield, TOC, C/N ratios, and δ13Corg in the expected Milankovitch periodicities, although significant lateral and vertical changes in accumulation make the relative spectral power in the precessional range rather weak. There are, however, differences in the mode of response with oil shale yield, TOC, and sedimentary facies showing more power in the precessional range, while C/N ratios track the 100 ky cycle. C/N ratios tend to be high through multiple precessional cycles dominated by kerogen derived from microbial organic matter suggesting persistent anoxia and a large resulting pool of hypolimnetic ammonium. This pool was eliminated during low lake stands and C/N values then fluctuate through several precession controlled steps. The δ13Corg record, while showing a signal coherent with that of other proxies, has a rather complicated relationship with other proxies, the analysis of which is in its early stages. Molecule-level δ13Corg analysis of n-alkanes suggests

  13. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process.

    PubMed

    Brandt, Adam R

    2008-10-01

    Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.

  14. Beaver herbivory of willow under two flow regimes: A comparative study on the Green and Yampa rivers

    USGS Publications Warehouse

    Breck, Stewart W.; Wilson, Kenneth R.; Andersen, Douglas C.

    2003-01-01

    The effect of flow regulation on plant-herbivore ecology has received very little attention, despite the fact that flow regulation can alter both plant and animal abundance and environmental factors that mediate interactions between them. To determine how regulated flows have impacted beaver (Castor canadensis) and sandbar willow (Salix exigua) ecology, we first quantified the abundance and mapped the spatial distribution of sandbar willow on alluvial sections of the flow-regulated Green River and free-flowing Yampa River in northwestern Colorado. We then established 16 and 15 plots (1 m × 2.7 m) in patches of willow on the Green and Yampa Rivers, respectively, to determine whether rates of beaver herbivory of willow differed between rivers (Green versus Yampa River), seasons (fall-winter versus spring-summer), and years (spring 1998-spring 1999 versus spring 1999-spring 2000). Areal extent of willow was similar on each river, but Green River willow patches were smaller and more numerous. Beavers cut more stems during fall and winter than spring and summer and cut over 6 times more stems (percentage basis) on the Green River than on the Yampa River. We attribute the between-river difference in herbivory to higher availability of willow, greater beaver density, and lower availability of young Fremont cottonwood (Populus deltoides subsp. wislizenii; an alternative food source) on the Green River. Flow regulation increased willow availability to beaver by promoting the formation of island patches that are continuously adjacent to water and feature a perimeter with a relatively high proportion of willow interfacing with water.

  15. The demographic response of bank-dwelling beavers to flow regulation: A comparison on the Green and Yampa rivers

    USGS Publications Warehouse

    Breck, S.W.; Wilson, K.R.; Andersen, D.C.

    2001-01-01

    We assessed the effects of flow regulation on the demography of beavers (Castor canadensis) by comparing the density, home-range size, and body size of bank-dwelling beavers on two sixth-order alluvial river systems, the flow-regulated Green River and the free-flowing Yampa River, from 1997 to 2000. Flow regulation on the Green River has altered fluvial geomorphic processes, influencing the availability of willow and cottonwood, which, in turn, has influenced the demography of beavers. Beaver density was higher on the Green River (0.5–0.6 colonies per kilometre of river) than on the Yampa River (0.35 colonies per kilometre of river). Adult and subadult beavers on the Green River were in better condition, as indicated by larger body mass and tail size. There was no detectable difference in home-range size, though there were areas on the Yampa River that no beavers used. We attribute the improved habitat quality on the Green River to a greater availability of willow. We suggest that the sandy flats and sandbars that form during base flows and the ice cover that forms over winter on the Yampa River increase the energy expended by the beavers to obtain food and increase predation risk and thus lowers the availability of woody forage.

  16. Timing and origin for sand dunes in the Green River Lowland of Illinois, upper Mississippi River Valley, USA

    USGS Publications Warehouse

    Miao, X.; Hanson, P.R.; Wang, Hongfang; Young, A.R.

    2010-01-01

    The recent increase in dune studies in North America has been heavily focused in the Great Plains, while less attention has historically been given to the dune fields east of the Mississippi River. Here we report ages and suggest a potential sediment source for sand dunes in the Green River Lowland, Illinois, which may provide a better understanding of the dynamic interactions between eolian, glacial, lacustrine and fluvial processes that shaped the landscapes of the upper Midwest. Seven coherent optically stimulated luminescence ages (OSL, or optical ages) obtained from four sites suggest that major dune construction in the Green River Lowland occurred within a narrow time window around 17,500 ago. This implies either an enhanced aridity or an episodic increase of sediment supply at 17,500 years ago, or combination of the both. Contrary to previous assertions that dune sand was sourced from the deflation of the underlying outwash sand deposited when the Lake Michigan Lobe retreated from the area, we propose that Green River Lowland dunes sand originated from the Green Bay Lobe through the Rock River. Specifically, sediment supply increased in the Rock River valley during drainage of Glacial Lake Scuppernong, which formed between ???18,000 and 17,000 years ago, when the Green Bay Lobe retreated from its terminal moraine. The lake drained catastrophically through the Rock River valley, providing glacial sediment and water to erode the preexisting sandy sediments. Throughout the remainder of the late Pleistocene, the Laurentide Ice Sheet drained into larger more northerly glacial lakes that in turn drained through other river valleys. Therefore, the dunes in the Green River Lowland formed only during the catastrophic drainage of Glacial Lake Scuppernong, but were stabilized through the remainder of the Pleistocene. This scenario explains the abrupt dune construction around 17,500 years ago, and explains the lack of later dune activity up to the Pleistocene

  17. From Washington's Yakima River to India's Ganges: Project GREEN Is Connecting.

    ERIC Educational Resources Information Center

    Kuechle, Jeff

    1993-01-01

    Project GREEN (Global Rivers Environmental Education Network) is an international environmental education program empowering students to use science to improve and protect the quality of watersheds. As an integral part of the Yakima School District Environmental Awareness Program, Project GREEN provides educational benefits for both American…

  18. Importance of inorganic geochemical characteristics on assessment of shale gas potential in the Devonian Horn River Formation of western Canada

    NASA Astrophysics Data System (ADS)

    Hong, Sung Kyung; Shinn, Young Jae; Choi, Jiyoung; Lee, Hyun Suk

    2017-04-01

    The gas generation and storage potentials of shale has mostly been assessed by original TOC (TOCo) and original kerogen type. However, in the Horn River Formation, organic geochemical tools and analysis are barely sufficient for assessing the TOCo and original kerogen type because residual carbon contents represent up to 90% of TOC in shales. Major and trace elements are used as proxies for the bottom water oxygen level, for terrestrial sediment input and for productivity, which is related with variation of kerogen type. By using the inorganic geochemical proxies, we attempt to assess original kerogen type in shale gas formation and suggest its implication for HIo (original Hydrogen Index) estimation. The estimated HIo in this study allows us to calculate a reliable TOCo. These results provide new insights into the accurate estimation of the hydrocarbon potential of shale gas resources. The inorganic geochemical proxies indicate vertical variations of productivity (EX-SiO2 and Baauth), terrestrial sediment input (Al2O3, Zr, Hf, and Nb) and oxygen content in bottom water during deposition (Moauth, Uauth and Th/U), which represent the temporal changes in the mixing ratio between Type II and III kerogens. The Horn River Formation has different HIo values calculated from EX-SiO2 (biogenic origin) and it is ranked by HIo value in descending order: Evie and Muskwa members (500-700 mgHC/gTOC) > middle Otterpark Member (400-500 mgHC/gTOC) > upper Otterpark Member (300-400 mgHC/gTOC) > lower Otterpark Member (200 mgHC/gTOC). Based on the original kerogen type and TOCo, the gas generation and storage potentials of the Evie, middle Otterpark and Muskwa members are higher than those of other members. The source rock potential is excellent for the Evie Member with a remarkable difference between TOCo and measured TOC.

  19. Flood-inundation maps for the Green River in Colrain, Leyden, and Greenfield, Massachusetts, from U.S. Geological Survey streamgage 01170100 Green River near Colrain to the confluence with the Deerfield River

    USGS Publications Warehouse

    Flynn, Robert H.; Bent, Gardner C.; Lombard, Pamela J.

    2016-09-02

    The U.S. Geological Survey developed flood elevations in cooperation with the Federal Emergency Management Agency for a 14.3-mile reach of the Green River in Colrain, Leyden, and Greenfield, Massachusetts, to assist landowners and emergency management workers to prepare for and recover from floods. The river reach extends from the U.S. Geological Survey Green River near Colrain, MA (01170100) streamgage downstream to the confluence with the Deerfield River. A series of seven digital flood inundation maps were developed for the upper 4.4 miles of the river reach downstream from the stream. Flood discharges corresponding to the 50-, 10-, 1-, and 0.2-percent annual exceedance probabilities were computed for the reach from updated flood-frequency analyses. These peak flows and the flood flows associated with the stages of 10.2, 12.4, and 14.4 feet (ft) at the Green River streamgage were routed through a one-dimensional step-backwater hydraulic model to obtain the corresponding peak water-surface elevations and to place the Tropical Storm Irene flood of August 28, 2011 (stage 13.97 ft), into historical context. The hydraulic model was calibrated by using the current (2015) stage-discharge relation at the U.S. Geological Survey Green River near Colrain, MA (01170100) streamgage and from documented high-water marks from the Tropical Storm Irene flood, which had a flow higher than a 0.2-percent annual exceedance probability flood discharge.The hydraulic model was used to compute water-surface profiles for flood stages referenced to the streamgage and ranging from the 50-percent annual exceedance probability (bankfull flow) at 7.6 ft (439.8 ft above the North American Vertical Datum of 1988 [NAVD 88]) to 14.4 ft (446.7 ft NAVD 88), which exceeds the maximum recorded water level of 13.97 ft (Tropical Storm Irene) at the streamgage. The mapped stages of 7.6 to 14.4 ft were selected to match the stages for bankfull; the 50-, 10-, 1-, and 0.2-percent annual exceedance

  20. Evaluation of blue and green water resources in the upper Yellow River basin of China

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoxi; Zuo, Depeng; Xu, Zongxue; Cai, Siyang; Xianming, Han

    2018-06-01

    The total amount of water resources severely affects socioeconomic development of a region or watershed, which means that accurate quantification of the total amount of water resources is vital for the area, especially for the arid and semi-arid regions. Traditional evaluation of water resources only focused on the qualification of blue water, while the importance of green water was not fully considered. As the second largest river in China, the Yellow River plays an important role in socioeconomic development of the Yellow River basin. Therefore, the blue and green water resources in the upper Yellow River basin (UYRB) were evaluated by the SWAT model in this study. The results show that the average annual total amount of water resources in the UYRB was 140.5 billion m3, in which the blue water resources is 37.8 billion m3, and green water resources is 107.7 billion m3. The intra-annual variability of the blue water and green water is relatively similar during the same period. The higher temperature, the greater difference between the blue and green water. The inter-annual variability of the blue and green water shows that the trends in precipitation, blue and green water have a relatively similar characteristic. The spatial distribution of the blue and green water is characteristic with gradually decreasing from the northwest to the southeast, and the blue water around the main stream is greater than that in the other areas.

  1. [Effects of urban river width on the temperature and humidity of nearby green belts in summer].

    PubMed

    Ji, Peng; Zhu, Chun-Yang; Li, Shu-Hua

    2012-03-01

    As an important part of urban ecosystem, urban river plays a vital role in improving urban ecological environment. By the methods of small scale quantitative measurement, this paper analyzed the effects of seven urban rivers with different widths along the Third to Fifth Ring in Beijing on the air temperature and relative humidity of nearby green belts. The results showed that urban river width was the main factor affecting the temperature and humidity of nearby green belts. When the river had a width of 8 m, it had no effects in decreasing temperature but definite effects in increasing humidity; when the river width was 14-33 m, obvious effects were observed in decreasing temperature and increasing humidity; when the river had a width larger than 40 m, the effects in decreasing temperature and increasing humidity were significant and tended to be stable. There existed significant differences in the temperature and humidity between the green belts near the seven rivers and the corresponding controls. The critical width of urban river for the obvious effects in decreasing temperature and increasing humidity was 44 m. The regression equation of the temperature (x) and humidity (y) for the seven green belts nearby the urban rivers in summer was y = 173.191-3.247x, with the relative humidity increased by 1.0% when the air temperature decreased by about 0.3 degrees C.

  2. Effect of retorted-oil shale leachate on a blue-green alga (Anabaena flos-aquae)

    USGS Publications Warehouse

    McKnight, Diane M.; Pereira, Wilfred E.; Rostad, Colleen E.; Stiles, Eric A.

    1983-01-01

    In the event of the development of the large oil shale reserves of Colorado, Utah, and Wyoming, one of the main environmental concerns will be disposal of retorted-oil shale which will be generated in greater volume than the original volume oI the mined oil shale. Investigators have found that leachates of retorted-oil shale are alkaline and have large concentrations of dissolved solids, molybdenum, boron, and fluoride (STOLLENWERK & RUNNELS 1981). STOLLENWERK & RUNNELS (1981) concluded that drainage from waste shale piles could have deleterious effects on the water quality of streams in northwestern Colorado.

  3. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spinti, Jennifer; Birgenheier, Lauren; Deo, Milind

    Exchanges (March, 2012); Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development (May, 2012); Development of CFD-Based Simulation Tools for In Situ Thermal Processing of Oil Shale/Sands (February, 2012); Core-Based Integrated Sedimentologic, Stratigraphic, and Geochemical Analysis of the Oil Shale Bearing Green River Formation, Uinta Basin, Utah (April, 2011); Atomistic Modeling of Oil Shale Kerogens and Asphaltenes Along with their Interactions with the Inorganic Mineral Matrix (April, 2011); Pore Scale Analysis of Oil Shale/Sands Pyrolysis (March, 2011); Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies (January, 2011); Policy Analysis of Produced Water Issues Associated with In-Situ Thermal Technologies (January, 2011); and Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development (March, 2010)« less

  4. 75 FR 30299 - Drawbridge Operation Regulations; Fox River, Green Bay, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-0374] Drawbridge Operation Regulations; Fox River, Green Bay, WI AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... from the regulation governing the operation of the Main Street Bridge at Mile 1.21 over the Fox River...

  5. Eocene climates, depositional environments, and geography, greater Green River basin, Wyoming, Utah, and Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roehler, H.W.

    1993-12-31

    The climates, depositional environments, and geography of Eocene rocks in the greater Green River basin are investigated to determine the origin, mode of deposition, and areal distribution of the Wasatch, Green River, Bridger, and Washakie Formations. The data indicate that Eocene climates ranged from cool temperature to tropical and were affected by both terrestrial and astronomical factors. The terrestrial factors were mainly latitude, altitude, regional geography, tectonism, and volcanism. The astronomical factors are interpreted from reptitious rock sequences in the Wilkins Peak Member of the Green River Formation that record seasonal changes, 21,000 year precession of the equinox cycles, 100,000more » year eccentricity cycles, and an undetermined cycle of 727,000 years. Eight depositional environments are identified, discussed, and illustrated by diagrams, columnar sections, and photographs. They are: (1) fluvial, (2) paludal, (3) freshwater lacustrine, (4) saltwater lacustrine, (5) pond and playa lake, (6) evaporite (salt pan), (7) mudflat, and (8) volcanic and fluviovolcanic. The areal distribution of the eight depositional environments in the Wasatch, Green River, Bridger, and Washakie Formations is illustrated by photographs and 13 paleogeographic maps. 76 refs., 90 figs.« less

  6. The Importance of pH, Oxygen, and Bitumen on the Oxidation and Precipitation of Fe(III)-(oxy)hydroxides during Hydraulic Fracturing of Oil/Gas Shales

    NASA Astrophysics Data System (ADS)

    Jew, A. D.; Dustin, M. K.; Harrison, A. L.; Joe-Wong, C. M.; Thomas, D.; Maher, K.; Brown, G. E.; Bargar, J.

    2016-12-01

    Due to the rapid growth of hydraulic fracturing in the United States, understanding the cause for the rapid production drop off of new wells over the initial months of production is paramount. One possibility for the production decrease is pore occlusion caused by the oxidation of Fe(II)-bearing phases resulting in Fe(III) precipitates. To understand the release and fate of Fe in the shale systems, we reacted synthesized fracture fluid at 80oC with shale from four different geological localities (Marcellus Fm., Barnett Fm., Eagle Ford Fm., and Green River Fm.). A variety of wet chemical and synchrotron-based techniques (XRF mapping and x-ray absorption spectroscopy) were used to understand Fe release and solid phase Fe speciation. Solution pH was found to be the greatest factor for Fe release. Carbonate-poor Barnett and Marcellus shale showed rapid Fe release into solution followed by a plateau or significant drop in Fe concentrations indicating mineral precipitation. Conversely, in high carbonate shales, Eagle Ford and Green River, no Fe was detected in solution indicating fast Fe oxidation and precipitation. For all shale samples, bulk Fe EXAFS data show that a significant amount of Fe in the shales is bound directly to organic carbon. Throughout the course of the experiments inorganic Fe(II) phases (primarily pyrite) reacted while Fe(II) bound to C showed no indication of reaction. On the micron scale, XRF mapping coupled with μ-XANES spectroscopy showed that at pH < 4.0, Fe(III) bearing phases precipitated as diffuse surface precipitates of ferrihydrite, goethite, and magnetite away from Fe(II) point sources. In near circum-neutral pH systems, Fe(III)-bearing phases (goethite and hematite) form large particles 10's of μm's in diameter near Fe(II) point sources. Idealized systems containing synthesized fracturing fluid, dissolved ferrous chloride, and bitumen showed that bitumen released during reaction with fracturing fluids is capable of oxidizing Fe(II) to

  7. Movement and habitat use of green sturgeon Acipenser medirostris in the Rogue River, Oregon, USA

    USGS Publications Warehouse

    Erickson, D.L.; North, J.A.; Hightower, J.E.; Weber, J.; Lauck, L.

    2002-01-01

    Green sturgeon (Acipenser medirostris) movement patterns and habitat use within the Rogue River, Oregon were evaluated using radio telemetry. Nineteen specimens ranging from 154 to 225 cm total length were caught by gill netting and tagged with radio transmitters during May-July 2000. One tagged green sturgeon was verified as a female near spawning condition. Individual green sturgeons spent more than 6 months in fresh water and traveled as far as river kilometer (rkm) 39.5. Green sturgeon preferred specific holding sites within the Rogue River during summer and autumn months. These sites were typically deep (> 5 m) low-gradient reaches or off-channel coves. Home ranges within holding sites were restricted. All tagged individuals emigrated from the system to the sea during the autumn and winter, when water temperatures dropped below 10??C and flows increased. This species is extremely vulnerable to habitat alterations and overfishing because it spawns in only a few North American rivers and individuals reside within extremely small areas for extended periods of time.

  8. Summary of sediment data from the Yampa river and upper Green river basins, Colorado and Utah, 1993-2002

    USGS Publications Warehouse

    Elliott, John G.; Anders, Steven P.

    2004-01-01

    The water resources of the Upper Colorado River Basin have been extensively developed for water supply, irrigation, and power generation through water storage in upstream reservoirs during spring runoff and subsequent releases during the remainder of the year. The net effect of water-resource development has been to substantially modify the predevelopment annual hydrograph as well as the timing and amount of sediment delivery from the upper Green River and the Yampa River Basins tributaries to the main-stem reaches where endangered native fish populations have been observed. The U.S. Geological Survey, in cooperation with the Colorado Division of Wildlife and the U.S. Fish and Wildlife Service, began a study to identify sediment source reaches in the Green River main stem and the lower Yampa and Little Snake Rivers and to identify sediment-transport relations that would be useful in assessing the potential effects of hydrograph modification by reservoir operation on sedimentation at identified razorback spawning bars in the Green River. The need for additional data collection is evaluated at each sampling site. Sediment loads were calculated at five key areas within the watershed by using instantaneous measurements of streamflow, suspended-sediment concentration, and bedload. Sediment loads were computed at each site for two modes of transport (suspended load and bedload), as well as for the total-sediment load (suspended load plus bedload) where both modes were sampled. Sediment loads also were calculated for sediment particle-size range (silt-and-clay, and sand-and-gravel sizes) if laboratory size analysis had been performed on the sample, and by hydrograph season. Sediment-transport curves were developed for each type of sediment load by a least-squares regression of logarithmic-transformed data. Transport equations for suspended load and total load had coefficients of determination of at least 0.72 at all of the sampling sites except Little Snake River near

  9. 78 FR 39608 - Safety Zone; Summer in the City Water Ski Show; Fox River, Green Bay, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ...-AA00 Safety Zone; Summer in the City Water Ski Show; Fox River, Green Bay, WI AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary safety zone on the Fox River in Green Bay, WI. This safety zone is intended to restrict vessels from a portion of the Fox River...

  10. Patterns of nitrogen accumulation and cycling in riparian floodplain ecosystems along the Green and Yampa rivers

    USGS Publications Warehouse

    Carol E., Adair; Binkley, Dan; Andersen, Douglas C.

    2004-01-01

    Patterns of nitrogen (N) accumulation and turnover in riparian systems in semi-arid regions are poorly understood, particularly in those ecosystems that lack substantial inputs from nitrogen fixing vegetation. We investigated sources and fluxes of N in chronosequences of riparian forests along the regulated Green River and the free-flowing Yampa River in semi-arid northwestern Colorado. Both rivers lack significant inputs from N-fixing vegetation. Total soil nitrogen increased through time along both rivers, at a rate of about 7.8 g N m−2 year−1 for years 10–70, and 2.7 g N m−2year−1 from years 70–170. We found that the concentration of N in freshly deposited sediments could account for most of the soil N that accumulated in these floodplain soils. Available N (measured by ion exchange resin bags) increased with age along both rivers, more than doubling in 150 years. In contrast to the similar levels of total soil N along these rivers, N turnover rates, annual N mineralization, net nitrification rates, resin-N, and foliar N were all 2–4 times higher along the Green River than the Yampa River. N mineralization and net nitrification rates generally increased through time to steady or slightly declining rates along the Yampa River. Along the Green River, rates of mineralization and nitrification were highest in the youngest age class. The high levels of available N and N turnover in young sites are not characteristic of riparian chronosequences and could be related to changes in hydrology or plant community composition associated with the regulation of the Green River.

  11. Oldest new genus of Myrmeleontidae (Neuroptera) from the Eocene Green River Formation.

    PubMed

    Makarkin, Vladimir N

    2017-10-20

    Epignopholeon sophiae gen. et sp. nov. (Neuroptera: Myrmeleontidae) is described from the early Eocene of the Green River Formation (Colorado, U.S.A.). It represents the oldest confident record of the family. The new genus is remarkable in that tergite 7 of the female is much shorter than its long sternite 7. The preserved wing venation shows that the genus belongs to the subfamily Myrmeleontinae, and most probably to the tribe Gnopholeontini. The discovery of this species is consistent with estimations of relatively dry and warm conditions during deposition of the upper Parachute Creek Member of the Green River Formation.

  12. Episodic sediment delivery and landscape connectivity in the Mancos Shale badlands and Fremont River system, Utah, USA

    NASA Astrophysics Data System (ADS)

    Godfrey, Andrew E.; Everitt, Benjamin L.; Duque, José F. Martín

    2008-12-01

    The Fremont River drains about 1000 km 2 of Mancos Shale badlands, which provide a large percentage of the total sediment load of its middle and lower reaches. Factors controlling sediment movement include: weathering that produces thin paralithic soils, mass movement events that move the soil onto locations susceptible to fluvial transport, intense precipitation events that move the sediment along rills and across local pediments, and finally Fremont River floods that move the sediment to the main-stem Colorado River. A forty-year erosion-pin study has shown that down-slope creep moves the weathered shale crust an average of 5.9 cm/yr. Weather records and our monitoring show that wet winters add large slab failures and mudflows. Recent sediment-trap studies show that about 95% of sediment movement across pediments is accomplished by high-intensity summer convective storms. Between 1890 and 1910, a series of large autumn floods swept down the Fremont River, eroding its floodplain and transforming it from a narrow and meandering channel to a broad, braided one. Beginning about 1940, the Fremont's channel began to narrow. Sequential aerial photos and cross-sections suggest that floodplain construction since about 1966 has stored about 4000 to 8000 m 3 of sediment per kilometer per year. These data suggest that it will take two centuries to restore the floodplain to its pre-1890 condition, which is in line with geologic studies elsewhere on the Colorado Plateau. The various landscape elements of slope, pediment, and floodplain are semi-independent actors in sediment delivery, each with its own style. Accelerated mass movement on the slopes has an approximate 20-year recurrence. Sediment movement from slope across pediments to master stream is episodic and recurs more frequently. The slope-to-pediment portion of the system appears well connected. However, sediment transport through the floodplain is not well connected in the decadal time scale, but increases in the

  13. Hydrochemistry of surface water and groundwater in the shale bedrock, Cross River Basin and Niger Delta Region, Nigeria

    NASA Astrophysics Data System (ADS)

    Nganje, T. N.; Hursthouse, A. S.; Edet, Aniekan; Stirling, D.; Adamu, C. I.

    2017-05-01

    Water chemistry in the shale bedrock of the Cretaceous-Tertiary of the Cross River and Niger Delta hydrological basins has been investigated using major ions. To carry out a characterization of the water bearing units, 30 and 16 representatives surface and groundwater samples were collected. The evolution of the water is characterized by enhanced content of sodium, calcium and sulphate as a result of leaching of shale rock. The spatial changes in groundwater quality of the area shows an anomalous concentrations of ions in the central parts, while lower values characterize the eastern part of the basin covering Ogoja, Ikom and Odukpani areas. The values of total dissolved solids (TDS) and ions increases down gradient in the direction of groundwater flow. The dissolution of halite and gypsum explains part of the contained Na+, Ca2+, Cl- and SO4 2-, but other processes such as ion exchange, silicate weathering and pyrite oxidation also contribute to water composition. The assessment with contamination indicators such as TDS, hardness, chloride, nitrate and sulphate indicates that the water in area is suitable for human consumption in some locations. Modelling using MINTEQA2 program shows that the water from all the shale water bearing units are under saturated with respect to gypsum.

  14. Gas shale/oil shale

    USGS Publications Warehouse

    Fishman, N.S.; Bereskin, S.R.; Bowker, K.A.; Cardott, B.J.; Chidsey, T.C.; Dubiel, R.F.; Enomoto, C.B.; Harrison, W.B.; Jarvie, D.M.; Jenkins, C.L.; LeFever, J.A.; Li, Peng; McCracken, J.N.; Morgan, C.D.; Nordeng, S.H.; Nyahay, R.E.; Schamel, Steven; Sumner, R.L.; Wray, L.L.

    2011-01-01

    The production of natural gas from shales continues to increase in North America, and shale gas exploration is on the rise in other parts of the world since the previous report by this committee was published by American Association of Petroleum Geologists, Energy Minerals Division (2009). For the United States, the volume of proved reserves of natural gas increased 11% from 2008 to 2009, the increase driven largely by shale gas development (Energy Information Administration 2010c). Furthermore, shales have increasingly become targets of exploration for oil and condensate as well as gas, which has served to greatly expand their significance as ‘‘unconventional’’ petroleum reservoirs.This report provides information about specific shales across North America and Europe from which gas (biogenic or thermogenic), oil, or natural gas liquids are produced or is actively being explored. The intent is to reflect the recently expanded mission of the Energy Minerals Division (EMD) Gas Shales Committee to serve as a single point of access to technical information on shales regardless of the type of hydrocarbon produced from them. The contents of this report were drawn largely from contributions by numerous members of the EMD Gas Shales Advisory Committee, with much of the data being available from public websites such as state or provincial geological surveys or other public institutions. Shales from which gas or oil is being produced in the United States are listed in alphabetical order by shale name. Information for Canada is presented by province, whereas for Europe, it is presented by country.

  15. Specific Conductance and Dissolved-Solids Characteristics for the Green River and Muddy Creek, Wyoming, Water Years 1999-2008

    USGS Publications Warehouse

    Clark, Melanie L.; Davidson, Seth L.

    2009-01-01

    Southwestern Wyoming is an area of diverse scenery, wildlife, and natural resources that is actively undergoing energy development. The U.S. Department of the Interior's Wyoming Landscape Conservation Initiative is a long-term science-based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy development through local collaboration and partnerships. Water-quality monitoring has been conducted by the U.S. Geological Survey on the Green River near Green River, Wyoming, and Muddy Creek near Baggs, Wyoming. This monitoring, which is being conducted in cooperation with State and other Federal agencies and as part of the Wyoming Landscape Conservation Initiative, is in response to concerns about potentially increased dissolved solids in the Colorado River Basin as a result of energy development. Because of the need to provide real-time dissolved-solids concentrations for the Green River and Muddy Creek on the World Wide Web, the U.S. Geological Survey developed regression equations to estimate dissolved-solids concentrations on the basis of continuous specific conductance using relations between measured specific conductance and dissolved-solids concentrations. Specific conductance and dissolved-solids concentrations were less varied and generally lower for the Green River than for Muddy Creek. The median dissolved-solids concentration for the site on the Green River was 318 milligrams per liter, and the median concentration for the site on Muddy Creek was 943 milligrams per liter. Dissolved-solids concentrations ranged from 187 to 594 milligrams per liter in samples collected from the Green River during water years 1999-2008. Dissolved-solids concentrations ranged from 293 to 2,485 milligrams per liter in samples collected from Muddy Creek during water years 2006-08. The differences in dissolved-solids concentrations in samples collected from the Green River compared to samples collected from Muddy

  16. Detections of Acoustic-Tagged Green Sturgeon in Baker Bay on the Lower Columbia River during September - November 2008

    USGS Publications Warehouse

    Parsley, Michael J.

    2009-01-01

    Acoustic transmitters implanted in green sturgeon (Acipenser medirostris) captured in rivers in California were detected by acoustic receivers deployed within and around Baker Bay. The receivers were deployed at eight locations in the Bay and adjacent navigation channels of the Lower Columbia River during a period of anticipated channel dredging. Three of the transmitters detected were confirmed to have been implanted into green sturgeon in previous years; two were from the Sacramento River and one was from the Klamath River. The transmitters (fish) were within detection range of the receivers for only a short period, which is consistent with findings of earlier studies that green sturgeon make rapid and extensive intra-estuary movements.

  17. 78 FR 33049 - Intent to Prepare an Environmental Impact Statement for the Green River/Tusher Diversion Dam...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-03

    ..., Salt Lake City, Utah 84138-1100, or via email at bronson.smart@ut.usda.gov . Information may also be... publicly available at any time during the EIS process. FOR FURTHER INFORMATION CONTACT: Mr. Bronson Smart... held on November 15, 2012 at Green River City Hall in Green River, Utah. Through additional...

  18. Development of a mass balance model for estimating PCB export from the lower Fox River to Green Bay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velleux, M.; Endicott, D.

    A mass balance approach was used to model contaminant cycling in the lower Fox River from the DePere Dam to Green Bay. The objectives of this research were (1) to estimate present contaminant export from the Fox River to Green Bay, and (2) to quantify contaminant transport and fate pathways in the lower river for the study period. Specifically, a model describing the transport, fate, and export of chlorides, total suspended solids, total PCBs, and six PCB congeners for the lower Fox River was developed. Field data collected as part of the U.S. Environmental Protection Agency's Green Bay Mass Balancemore » Study were used to calibrate the model. Model results suggest that the transport of inplace pollutants significantly contributed to the cumulative export of total PCBs over this period. Estimated total PCB transport in the Fox River during 1989 increased 60% between the dam and river mouth due to the resuspension of lower river sediments. Total suspended solids and PCB predictions are most sensitive to particle transport parameters, particularly the settling and resuspension velocities. The significant components of the total PCB mass balance are import (loading over the DePere Dam), settling, resuspension, and export to Green Bay. Volatilization, porewater transport, and point source input were not significant to the mass balance. Present point source discharges to the river are not significant total PCB sources, collectively contributing less than 6 kg of PCB to the river during the mass balance period.« less

  19. Mammoth Cave National Park : Green River ferry service life analysis

    DOT National Transportation Integrated Search

    2015-11-09

    The purpose of this study is to assess whether Mammoth Cave National Park should rehabilitate the existing Green River ferry to extend its service life or replace it with a new vessel. The ferry is used to transport cars and light duty equipment acro...

  20. Lithologic Controls on Critical Zone Processes in a Variably Metamorphosed Shale-Hosted Watershed

    NASA Astrophysics Data System (ADS)

    Eldam Pommer, R.; Navarre-Sitchler, A.

    2017-12-01

    Local and regional shifts in thermal maturity within sedimentary shale systems impart significant variation in chemical and physical rock properties, such as pore-network morphology, mineralogy, organic carbon content, and solute release potential. Even slight variations in these properties on a watershed scale can strongly impact surface and shallow subsurface processes that drive soil formation, landscape evolution, and bioavailability of nutrients. Our ability to map and quantify the effects of this heterogeneity on critical zone processes is hindered by the complex coupling of the multi-scale nature of rock properties, geochemical signatures, and hydrological processes. This study addresses each of these complexities by synthesizing chemical and physical characteristics of variably metamorphosed shales in order to link rock heterogeneity with modern earth surface and shallow subsurface processes. More than 80 samples of variably metamorphosed Mancos Shale were collected in the East River Valley, Colorado, a headwater catchment of the Upper Colorado River Basin. Chemical and physical analyses of the samples show that metamorphism decreases overall rock porosity, pore anisotropy, and surface area, and introduces unique chemical signatures. All of these changes result in lower overall solute release from the Mancos Shale in laboratory dissolution experiments and a change in rock-derived solute chemistry with decreasing organic carbon and cation exchange capacity (Ca, Na, Mg, and K). The increase in rock competency and decrease in reactivity of the more thermally mature shales appear to subsequently control river morphology, with lower channel sinuosity associated with areas of the catchment underlain by metamorphosed Mancos Shale. This work illustrates the formative role of the geologic template on critical zone processes and landscape development within and across watersheds.

  1. A new laboratory approach to shale analysis using NMR relaxometry

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    Low-field nuclear magnetic resonance (LF-NMR) relaxometry is a non-invasive technique commonly used to assess hydrogen-bearing fluids in petroleum reservoir rocks. Measurements made using LF-NMR provide information on rock porosity, pore-size distributions, and in some cases, fluid types and saturations (Timur, 1967; Kenyon et al., 1986; Straley et al., 1994; Brown, 2001; Jackson, 2001; Kleinberg, 2001; Hurlimann et al., 2002). Recent improvements in LF-NMR instrument electronics have made it possible to apply methods used to measure pore fluids to assess highly viscous and even solid organic phases within reservoir rocks. T1 and T2 relaxation responses behave very differently in solids and liquids; therefore the relationship between these two modes of relaxation can be used to differentiate organic phases in rock samples or to characterize extracted organic materials. Using T1-T2 correlation data, organic components present in shales, such as kerogen and bitumen, can be examined in laboratory relaxometry measurements. In addition, implementation of a solid-echo pulse sequence to refocus T2 relaxation caused by homonuclear dipolar coupling during correlation measurements allows for improved resolution of solid-phase protons. LF-NMR measurements of T1 and T2 relaxation time distributions were carried out on raw oil shale samples from the Eocene Green River Formation and pyrolyzed samples of these shales processed by hydrous pyrolysis and techniques meant to mimic surface and in-situ retorting. Samples processed using the In Situ Simulator approach ranged from bitumen and early oil generation through to depletion of petroleum generating potential. The standard T1-T2 correlation plots revealed distinct peaks representative of solid- and liquid-like organic phases; results on the pyrolyzed shales reflect changes that occurred during thermal processing. The solid-echo T1 and T2 measurements were used to improve assessment of the solid organic phases, specifically

  2. Factors controlling the establishment of Fremont cottonwood seedlings on the Upper Green River, USA

    USGS Publications Warehouse

    Cooper, David J.; Merritt, David M.; Andersen, Douglas C.; Chimner, Rodney A.

    1999-01-01

    Declines in cottonwood (Populus spp.) recruitment along alluvial reaches of large rivers in arid regions of the western United States have been attributed to modified flow regimes, lack of suitable substrate, insufficient seed rain, and increased interspecific competition. We evaluated whether and how these factors were operating during 1993–1996 to influence demographics of Fremont cottonwood (P. deltoides Marshall subsp. wislizenii (Watson) Eckenwalder) along reaches of the Green and Yampa Rivers near their confluence in northwestern Colorado. We examined seedling establishment, defined as survival through three growing seasons, at three alluvial reaches that differed primarily in the level of flow regulation: a site on the unregulated Yampa, an upper Green River site regulated by Flaming Gorge Dam, and a lower Green River site below the Green–Yampa confluence. Seed rain was abundant in all sites, and led to large numbers of germinants (first-year seedlings) appearing each year at all sites. The regulated flow in the upper Green River reach restricted germination to islands and cut banks that were later inundated or eroded; no seedlings survived there. Mortality at the lower Green River site was due largely to desiccation or substrate erosion; 23% of 1993 germinants survived their first growing season, but at most 2% survived through their second. At the Yampa River site, germinants appeared on vegetated and unvegetated surfaces up to 2.5 m above base flow stage, but survived to autumn only on bare surfaces at least 1.25 m above base flow stage, and where at least 10 of the upper 40 cm of the alluvium was fine-textured. Our studies of rooting depths and the stable isotopic composition of xylem water showed that seedlings in the most favorable locations for establishment at the Yampa site do not become phreatophytic until their third or fourth growing season. Further, the results of experimental field studies examining effects of shade and competition

  3. Geology of the Devonian black shales of the Appalachian Basin

    USGS Publications Warehouse

    Roen, J.B.

    1984-01-01

    Black shales of Devonian age in the Appalachian Basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies by Federal and State agencies and academic institutions produced a regional stratigraphic network that correlates the 15 ft black shale sequence in Tennessee with 3000 ft of interbedded black and gray shales in central New York. These studies correlate the classic Devonian black shale sequence in New York with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long-range correlations within the Appalachian Basin. Basinwide correlations, including the subsurface rocks, provided a basis for determining the areal distribution and thickness of the important black shale units. The organic carbon content of the dark shales generally increases from east to west across the basin and is sufficient to qualify as a hydrocarbon source rock. Significant structural features that involve the black shale and their hydrocarbon potential are the Rome trough, Kentucky River and Irvine-Paint Creek fault zone, and regional decollements and ramp zones. ?? 1984.

  4. Water quality of the Fox River and four tributaries in Green Lake County, Wisconsin, 2001-2002

    USGS Publications Warehouse

    Graczyk, David J.; Garn, Herbert S.

    2003-01-01

    The purpose of this report is to summarize the water-quality data collected on the Fox River and its tributaries in Green Lake County, Wisconsin, from November 2001 through August 2002. The goals of the project were to (1) determine the current water quality of the Fox River and selected main tributaries in Green Lake County, (2) assess the spacial variation of the water-quality conditions of the main Fox River reach, and (3) build on the quantitative data base so that future monitoring can help detect and evaluate improving or declining water-quality conditions objectively.

  5. 2012 Reassessment of Floodplain Wetland Connections in the Middle Green River, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaGory, Kirk E.; Walston, Leroy J.; Weber, Cory C.

    This report presents the results of floodplain wetland connection surveys conducted in 2012 at eight priority floodplain wetlands along the middle Green River between Jensen and Ouray, Utah. Surveys were conducted at levee breaches and within channels leading from the breaches to the wetlands (referred to here as connection channels) to characterize the flows needed to connect the river's main channel with the floodplain wetlands.

  6. Duvernay shale lithofacies distribution analysis in the West Canadian Sedimentary Basin

    NASA Astrophysics Data System (ADS)

    Zhu, Houqin; Kong, Xiangwen; Long, Huashan; Huai, Yinchao

    2018-02-01

    In the West Canadian Sedimentary Basin (WCSB), Duvernay shale is considered to contribute most of the Canadian shale gas reserve and production. According to global shale gas exploration and development practice, reservoir property and well completion quality are the two key factors determining the shale gas economics. The two key factors are strongly depending on shale lithofacies. On the basis of inorganic mineralogy theory, all available thin section, X-ray diffraction, scanning electron microscope (SEM), energy dispersive spectrometer (EDS) data were used to assist lithofacies analysis. Gamma ray (GR), acoustic (AC), bulk density (RHOB), neutron porosity (NPHI) and photoelectric absorption cross-section index (PE) were selected for log response analysis of various minerals. Reservoir representative equation was created constrained by quantitative core analysis results, and matrix mineral percentage of quartz, carbonate, feldspar and pyrite were calculated to classify shale lithofacies. Considering the horizontal continuity of seismic data, rock physics model was built, and acoustic impedance integrated with core data and log data was used to predict the horizontal distribution of different lithofacies. The results indicate that: (1) nine lithofacies can be categorized in Duvernay shale, (2) the horizontal distribution of different lithofacies is quite diversified, siliceous shale mainly occurs in Simonette area, calcareous shale is prone to develop in the vicinity of reef, while calcareous-siliceous shale dominates in Willesdon Green area.

  7. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems

    USGS Publications Warehouse

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Yang, Rongsheng

    2012-01-01

    A series of methane (CH4) adsorption experiments on bulk organic rich shales and their isolated kerogens were conducted at 35 °C, 50 °C and 65 °C and CH4 pressure of up to 15 MPa under dry conditions. Samples from the Eocene Green River Formation, Devonian–Mississippian Woodford Shale and Upper Cretaceous Cameo coal were studied to examine how differences in organic matter type affect natural gas adsorption. Vitrinite reflectance values of these samples ranged from 0.56–0.58 %Ro. In addition, thermal maturity effects were determined on three Mississippian Barnett Shale samples with measured vitrinite reflectance values of 0.58, 0.81 and 2.01 %Ro. For all bulk and isolated kerogen samples, the total amount of methane adsorbed was directly proportional to the total organic carbon (TOC) content of the sample and the average maximum amount of gas sorption was 1.36 mmol of methane per gram of TOC. These results indicate that sorption on organic matter plays a critical role in shale-gas storage. Under the experimental conditions, differences in thermal maturity showed no significant effect on the total amount of gas sorbed. Experimental sorption isotherms could be fitted with good accuracy by the Langmuir function by adjusting the Langmuir pressure (PL) and maximum sorption capacity (Γmax). The lowest maturity sample (%Ro = 0.56) displayed a Langmuir pressure (PL) of 5.15 MPa, significantly larger than the 2.33 MPa observed for the highest maturity (%Ro > 2.01) sample at 50 °C. The value of the Langmuir pressure (PL) changes with kerogen type in the following sequence: type I > type II > type III. The thermodynamic parameters of CH4 adsorption on organic rich shales were determined based on the experimental CH4 isotherms. For the adsorption of CH4 on organic rich shales and their isolated kerogen, the heat of adsorption (q) and the standard entropy (Δs0) range from 7.3–28.0 kJ/mol and from −36.2 to −92.2 J/mol/K, respectively.

  8. Developments in Oil Shale

    DTIC Science & Technology

    2008-11-17

    shale oil.7 The Mahogany zone can reach 200 feet in thickness in the Uinta Basin of Utah, and thus could represent a technical potential of producing...undiscovered technically recoverable conventional oil and natural gas liquids are estimated to underlie the Uinta -Piceance Basin of Utah-Colorado and...River formation over maps of access categories prepared for the EPCA inventory (Figure 6). The Uinta basin in Utah is shown as being subject to

  9. Passages: Rafting the Green River as an Analogy to the Mid-Life Transition.

    ERIC Educational Resources Information Center

    Isenhart, Myra W.

    To help adults develop an awareness of midlife issues, to encourage personal acceptance of the transition, and to introduce appropriate coping skills, a speech communication course was designed that relied on river trip activities to develop insights about this passage. The vehicle for the seminar was a four-day raft trip down the Green River,…

  10. The effect of maturation on the configuration of pristane in sediments and petroleum

    NASA Technical Reports Server (NTRS)

    Patience, R. L.; Rowland, S. J.; Maxwell, J. R.

    1978-01-01

    The absolute stereochemistry of pristane in a sample of contemporary marine zooplankton, Messel shale (Germany) and Djatibarang (Java) crude has been determined by gas chromatographic methods. The relative stereochemistry in Irati shale (Brazil), Green River (U.S.) crude, Halibut (Australia) crude has also been determined, and confirmed for a sample of the Green River shale. The stereoisomer distributions indicate a loss of stereospecificity of the phytol-derived 6(R), 10(S) pristane with increasing geological maturation. For example, the least mature geological sample, the Eocene Messel shale, contains solely the 6(R), 10(S) isomer, whereas a mature sample, Djatibarange crude, contains 50% of the 6(R), 10(S) isomer and 25% of each of the 6(R), 10(R) and 6(S), 10(S) isomers.

  11. Snowmelt runoff in the Green River basin derived from MODIS snow extent

    NASA Astrophysics Data System (ADS)

    Barton, J. S.; Hall, D. K.

    2011-12-01

    The Green River represents a vital water supply for southwestern Wyoming, northern Colorado, eastern Utah, and the Lower Colorado River Compact states (Arizona, Nevada, and California). Rapid development in the southwestern United States combined with the recent drought has greatly stressed the water supply of the Colorado River system, and concurrently increased the interest in long-term variations in stream flow. Modeling of snowmelt runoff represents a means to predict flows and reservoir storage, which is useful for water resource planning. An investigation is made into the accuracy of the Snowmelt Runoff Model of Martinec and Rango, driven by Moderate Resolution Imaging Spectroradiometer (MODIS) snow maps for predicting stream flow within the Green River basin. While the moderate resolution of the MODIS snow maps limits the spatial detail that can be captured, the daily coverage is an important advantage of the MODIS imagery. The daily MODIS snow extent is measured using the most recent clear observation for each 500-meter pixel. Auxiliary data used include temperature and precipitation time series from the Snow Telemetry (SNOTEL) and Remote Automated Weather Station (RAWS) networks as well as from National Weather Service records. Also from the SNOTEL network, snow-water equivalence data are obtained to calibrate the conversion between snow extent and runoff potential.

  12. The Green River and its utilization

    USGS Publications Warehouse

    Woolley, Ralf Rumel

    1930-01-01

    The purpose of this report is to present the facts regarding the available water supply of the Green River Basin and other data that will be helpful in planning to put this water to beneficial use. For some parts of the basin a mass of information is available; for other parts the data are less complete. An attempt is made in this report to present an analysis of all this information, supplemented by personal field studies, in such a way as to indicate the economic factors involved in utilizing the waters of the basin, and also to give facts from which the relative value of the irrigation and power projects may be readily deduced.

  13. GIS-based Geospatial Infrastructure of Water Resource Assessment for Supporting Oil Shale Development in Piceance Basin of Northwestern Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Wei; Minnick, Matthew D; Mattson, Earl D

    Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oilmore » shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This

  14. Hydrologic-information needs for oil-shale development, northwestern Colorado

    USGS Publications Warehouse

    Taylor, O.J.

    1982-01-01

    Hydrologic information is not adequate for proper development of the large oil-shale reserves of Piceance basin in northwestern Colorado. Exploratory drilling and aquifer testing are needed to define the hydrologic system, to provide wells for aquifer testing, to design mine-drainage techniques, and to explore for additional water supplies. Sampling networks are needed to supply hydrologic data on the quantity and quality of surface water, ground water, and springs. A detailed sampling network is proposed for the White River basin because of expected impacts related to water supplies and waste disposal. Emissions from oil-shale retorts to the atmosphere need additional study because of possible resulting corrosion problems and the destruction of fisheries. Studies of the leachate materials and the stability of disposed retorted shale piles are needed to insure that these materials will not cause problems. Hazards related to in-situ retorts, and the wastes related to oil-shale development in general also need further investigation. (USGS)

  15. Geology of deep-water sandstones in the Mississippi Stanley Shale at Cossatot Falls, Arkansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, J.L. Jr.

    1993-09-01

    The Mississippian Stanley Shale crops out along the Cossatot River in the Ouachita Mountains of western Arkansas. Here, exposures of deep-water sandstones and shales, on recently established public lands, present a rare, three-dimensional look at sandstones of the usually obscured Stanley. Cossatot Falls, within the Cossatot River State Park Natural Area, is a series of class IV and V rapids developed on massive- to medium-bedded quartz sandstones on the northern flank of an asymmetric, thrust-faulted anticline. In western Arkansas, the Stanley Shale is a 10,000-ft (3200-m) succession of deep-water sandstone and shale. At Cossatot Falls, approximately 50 ft (155 m)more » of submarine-fan-channel sedimentary rocks are exposed during low-river stages. This section is composed primarily of sets of thinning-upward sandstone beds. With rare exceptions, the sandstones are turbidites, grading from massive, homogeneous, basal beds upward through festoon-cross-bedded thick beds, into rippled medium and thin beds. Sandstone sets are capped by thin shales and siltstones. Regional, north-northwestward paleocurrent indicators are substantiated by abundant, generally east-west ripple crests asymmetric to the north-northwest. Flute casts at the top of the sandstone sequence indicate an additional east-ward flow component. Based on regional, lithologic characteristics, the sandstones at Cossatot Falls appear to be within the Moyers Formation. The Moyers is the upper sandstone unit of the Stanley and is an oil and gas reservoir in the eastern Oklahoma Ouachita Mountains.« less

  16. Mobilization of selenium from the Mancos Shale and associated soils in the lower Uncompahgre River Basin, Colorado

    USGS Publications Warehouse

    Mast, M. Alisa; Mills, Taylor J.; Paschke, Suzanne S.; Keith, Gabrielle; Linard, Joshua I.

    2014-01-01

    This study investigates processes controlling mobilization of selenium in the lower part of the Uncompahgre River Basin in western Colorado. Selenium occurs naturally in the underlying Mancos Shale and is leached to groundwater and surface water by limited natural runoff, agricultural and domestic irrigation, and leakage from irrigation canals. Soil and sediment samples from the study area were tested using sequential extractions to identify the forms of selenium present in solid phases. Selenium speciation was characterized for nonirrigated and irrigated soils from an agricultural site and sediments from a wetland formed by a leaking canal. In nonirrigated areas, selenium was present in highly soluble sodium salts and gypsum. In irrigated soils, soluble forms of selenium were depleted and most selenium was associated with organic matter that was stable under near-surface weathering conditions. Laboratory leaching experiments and geochemical modeling confirm that selenium primarily is released to groundwater and surface water by dissolution of highly soluble selenium-bearing salts and gypsum present in soils and bedrock. Rates of selenium dissolution determined from column leachate experiments indicate that selenium is released most rapidly when water is applied to previously nonirrigated soils and sediment. High concentrations of extractable nitrate also were found in nonirrigated soils and bedrock that appear to be partially derived from weathered organic matter from the shale rather than from agricultural sources. Once selenium is mobilized, dissolved nitrate derived from natural sources appears to inhibit the reduction of dissolved selenium leading to elevated concentrations of selenium in groundwater. A conceptual model of selenium weathering is presented and used to explain seasonal variations in the surface-water chemistry of Loutzenhizer Arroyo, a major tributary contributor of selenium to the lower Uncompahgre River.

  17. Contaminants from Cretaceous Black Shale Part 1: Natural weathering processes controlling contaminant cycling in Mancos Shale, southwestern United States, with emphasis on salinity and selenium

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Fahy, Juli W.; Elliott, John G.; Grauch, Richard I.; Stillings, Lisa L.

    2013-01-01

    Soils derived from black shale can accumulate high concentrations of elements of environmental concern, especially in regions with semiarid to arid climates. One such region is the Colorado River basin in the southwestern United States where contaminants pose a threat to agriculture, municipal water supplies, endangered aquatic species, and water-quality commitments to Mexico. Exposures of Cretaceous Mancos Shale (MS) in the upper basin are a major contributor of salinity and selenium in the Colorado River. Here, we examine the roles of geology, climate, and alluviation on contaminant cycling (emphasis on salinity and Se) during weathering of MS in a Colorado River tributary watershed. Stage I (incipient weathering) began perhaps as long ago as 20 ka when lowering of groundwater resulted in oxidation of pyrite and organic matter. This process formed gypsum and soluble organic matter that persist in the unsaturated, weathered shale today. Enrichment of Se observed in laterally persistent ferric oxide layers likely is due to selenite adsorption onto the oxides that formed during fluctuating redox conditions at the water table. Stage II weathering (pedogenesis) is marked by a significant decrease in bulk density and increase in porosity as shale disaggregates to soil. Rainfall dissolves calcite and thenardite (Na2SO4) at the surface, infiltrates to about 1 m, and precipitates gypsum during evaporation. Gypsum formation (estimated 390 kg m−2) enriches soil moisture in Na and residual SO4. Transpiration of this moisture to the surface or exposure of subsurface soil (slumping) produces more thenardite. Most Se remains in the soil as selenite adsorbed to ferric oxides, however, some oxidizes to selenate and, during wetter conditions is transported with soil moisture to depths below 3 m. Coupled with little rainfall, relatively insoluble gypsum, and the translocation of soluble Se downward, MS landscapes will be a significant nonpoint source of salinity and Se to the

  18. Histograms showing variations in oil yield, water yield, and specific gravity of oil from Fischer assay analyses of oil-shale drill cores and cuttings from the Piceance Basin, northwestern Colorado

    USGS Publications Warehouse

    Dietrich, John D.; Brownfield, Michael E.; Johnson, Ronald C.; Mercier, Tracey J.

    2014-01-01

    Recent studies indicate that the Piceance Basin in northwestern Colorado contains over 1.5 trillion barrels of oil in place, making the basin the largest known oil-shale deposit in the world. Previously published histograms display oil-yield variations with depth and widely correlate rich and lean oil-shale beds and zones throughout the basin. Histograms in this report display oil-yield data plotted alongside either water-yield or oil specific-gravity data. Fischer assay analyses of core and cutting samples collected from exploration drill holes penetrating the Eocene Green River Formation in the Piceance Basin can aid in determining the origins of those deposits, as well as estimating the amount of organic matter, halite, nahcolite, and water-bearing minerals. This report focuses only on the oil yield plotted against water yield and oil specific gravity.

  19. Skiing in the Eocene Uinta Mountains? Isotopic evidence in the Green River Formation for snow melt and large mountains

    NASA Astrophysics Data System (ADS)

    Norris, Richard D.; Jones, Lawrence S.; Corfield, Richard M.; Cartlidge, Julie E.

    1996-05-01

    Isotopic analysis of lacustrine carbonates from the Eocene Green River Formation suggests that lake waters were derived partly from snow melt. This evidence for cool climates is in marked contrast to paleontological and model evidence for mild temperatures in the continental interior. Oxygen isotope ratios of carbonates frequently reach -12‰ to nearly -16‰ (Peedee belemnite), which suggests that lake waters probably had δ18O of <-13‰ (standard mean ocean water). Consideration of the evaporative 18O enrichment that typically occurs in modern large saline lakes suggests that the source waters to the Green River basin had a δ18O of <-18‰. These ratios are consistent with snow melt and are too negative to be easily accounted for by distillation in the atmosphere during heavy rainfall. The Green River lakes formed in a closed basin encircled by large mountains; this suggests that the snow melt was locally produced. The mountains surrounding the lake must have been high enough to occasionally supply significant melt water to the much lower lake. Lapse rate calculations suggest minimum altitudes of >3000 m for the mountains encircling the Green River basin.

  20. Downstream effects of Flaming Forge Reservoir on the Green River, Colorado and Utah.

    USGS Publications Warehouse

    Andrews, E.D.

    1986-01-01

    In response to the reduced peak discharges, the bankfull channel width of the Green River has decreased by c10%. Adjustment of the channel to decreased peak flows and altered sediment loads is nowhere complete.-from Author

  1. Consumption of freshwater bivalves by muskrats in the Green River, Kentucky

    USGS Publications Warehouse

    Hersey, Kimberly Asmus; Clark, Joseph D.; Layzer, James B.

    2013-01-01

    Muskrats (Ondatra zibethicus) are known to prey on freshwater bivalves (mussels and clams) and can negatively impact imperiled mussel species. However, factors that influence muskrat predation on bivalves are poorly understood. We evaluated the feeding ecology of muskrats in the Green River, Kentucky, by using stable isotope analysis of muskrat hair samples and by monitoring bivalve shell deposition at muskrat middens. Bayesian mixing-model analysis of stable isotope δ15N and δ13C ratios revealed that the median muskrat biomass derived from bivalves was 51.4% (5th and 95th percentiles were 39.1 to 63.4%, respectively), a much higher dietary proportion than previously reported. Shell depositions by muskrats at middens decreased with the availability of seasonal emergent vegetation, suggesting that the consumption of animal matter is in response to a scarcity of plant foods, perhaps exacerbated by the altered flow regimes on the Green River. Our results add to the growing body of evidence that muskrats have the potential to impact mussel population growth and recovery in some environments.

  2. Potential effects of anticipated coal mining on salinity of the Price, San Rafael, and Green Rivers, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linkskov, K.L.

    1986-01-01

    The impact of anticipated coal mining in Utah on the salinity of the Price, San Rafael, and Green Rivers is to be addressed in the repermitting of existing mines and permitting of new mines. To determine the potential impacts, mathematical models were developed for the Price and San Rafael River basins. Little impact on the quantity and quality of streamflow is expected for the Price and San Rafael Rivers. The increase in mean monthly flow of the Price River downstream from Scofield Reservoir is projected as 3.5 cu ft/sec, ranging from 1.7% in June to 140% in February. At themore » mouth of the Price River, the potential increase in mean monthly flow is projected as 12.6 cu ft/sec, ranging from 3.7% in May to 37.7% in January. The potential changes in dissolved solids concentration would range from a 20.7% decrease in January to a 1.3% increase in June. At the mouth of the San Rafael River, the potential increase in mean monthly flow ranges from 2.9 cu ft/sec in February to 6.7 cu ft/sec in May, with the increase ranging from 0.8% in June to 12.6% in November. The potential changes in dissolved solids concentration would range from a 5.3% decrease in March to a 0.6% increase in May. The anticipated mining in the Price and San Rafael River basins is not expected to cause a detectable change in the quantity and quality of streamflow in the Green River. The projected peak increase in flow resulting from discharge from the mines is less than 0.3% of the average flow in the Green River. 18 refs., 6 figs., 17 tabs.« less

  3. MASS BALANCE MODELLING OF PCBS IN THE FOX RIVER/GREEN BAY COMPLEX

    EPA Science Inventory

    The USEPA Office of Research and Development developed and applies a multimedia, mass balance modeling approach to the Fox River/Green Bay complex to aid managers with remedial decision-making. The suite of models were applied to PCBs due to the long history of contamination and ...

  4. The Devonian Marcellus Shale and Millboro Shale

    USGS Publications Warehouse

    Soeder, Daniel J.; Enomoto, Catherine B.; Chermak, John A.

    2014-01-01

    The recent development of unconventional oil and natural gas resources in the United States builds upon many decades of research, which included resource assessment and the development of well completion and extraction technology. The Eastern Gas Shales Project, funded by the U.S. Department of Energy in the 1980s, investigated the gas potential of organic-rich, Devonian black shales in the Appalachian, Michigan, and Illinois basins. One of these eastern shales is the Middle Devonian Marcellus Shale, which has been extensively developed for natural gas and natural gas liquids since 2007. The Marcellus is one of the basal units in a thick Devonian shale sedimentary sequence in the Appalachian basin. The Marcellus rests on the Onondaga Limestone throughout most of the basin, or on the time-equivalent Needmore Shale in the southeastern parts of the basin. Another basal unit, the Huntersville Chert, underlies the Marcellus in the southern part of the basin. The Devonian section is compressed to the south, and the Marcellus Shale, along with several overlying units, grades into the age-equivalent Millboro Shale in Virginia. The Marcellus-Millboro interval is far from a uniform slab of black rock. This field trip will examine a number of natural and engineered exposures in the vicinity of the West Virginia–Virginia state line, where participants will have the opportunity to view a variety of sedimentary facies within the shale itself, sedimentary structures, tectonic structures, fossils, overlying and underlying formations, volcaniclastic ash beds, and to view a basaltic intrusion.

  5. Compaction bands in shale revealed through digital volume correlation of time-resolved X-ray tomography scans

    NASA Astrophysics Data System (ADS)

    McBeck, J.; Kobchenko, M.; Hall, S.; Tudisco, E.; Cordonnier, B.; Renard, F.

    2017-12-01

    Previous studies have identified compaction bands primarily within sandstones, and in fewer instances, within other porous rocks and sediments. Using Digital Volume Correlation (DVC) of X-ray microtomography scans, we find evidence of localized zones of high axial contraction that form tabular structures sub-perpendicular to maximum compression, σ1, in Green River shale. To capture in situ strain localization throughout loading, two shale cores were deformed in the HADES triaxial deformation apparatus installed on the X-ray microtomography beamline ID19 at the European Synchrotron Radiation Facility. In these experiments, we increase σ1 in increments of two MPa, with constant confining pressure (20 MPa), until the sample fails in macroscopic shear. After each stress step, a 3D image of the sample inside the rig is acquired at a voxel resolution of 6.5 μm. The evolution of lower density regions within 3D reconstructions of linear attenuation coefficients reveal the development of fractures that fail with some opening. If a fracture produces negligible dilation, it may remain undetected in image segmentation of the reconstructions. We use the DVC software TomoWarp2 to identify undetected fractures and capture the 3D incremental displacement field between each successive pair of microtomography scans acquired in each experiment. The corresponding strain fields reveal localized bands of high axial contraction that host minimal shear strain, and thus match the kinematic definition of compaction bands. The bands develop sub-perpendicular to σ1 in the two samples in which pre-existing bedding laminations were oriented parallel and perpendicular to σ1. As the shales deform plastically toward macroscopic shear failure, the number of bands and axial contraction within the bands increase, while the spacing between the bands decreases. Compaction band development accelerates the rate of overall axial contraction, increasing the mean axial contraction throughout the sample

  6. Integrated assessment of contaminated sediments in the lower Fox River and Green Bay, Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ankley, G.T.; Lodge, K.; Call, D.J.

    Samples of sediment and biota were collected from sites in the lower Fox River and southern Green Bay to determine existing or potential impacts of sediment-associated contaminants on different ecosystem components of this Great Lakes area of concern. Evaluation of benthos revealed a relatively depauperate community, particularly at the lower Fox River sites. Sediment pore water and bulk sediments from several lower Fox River sites were toxic to a number of test species including Pimephales promelas, Ceriodaphnia dubia, Hexagenia limbata, Selenastrum capricornutum, and Photobacterium phosphorum. An important component of the observed toxicity appeared to be due to ammonia. Evaluation ofmore » three bullhead (Ictalurus) species from the lower Fox River revealed an absence of preneoplastic or neoplastic liver lesions, and the Salmonella typhimurium bioassay indicated relatively little mutagenicity in sediment extracts. Apparent adverse reproductive effects were noted in two species of birds nesting along the lower Fox River and on a confined disposal facility for sediments near the mouth of the river, and there were measurable concentrations of potentially toxic 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs), and planar polychlorinated biphenyls (PCBs) both in the birds and in sediments from several of the study sites. Based on toxic equivalency factors and the results of an in vitro bioassay with H4IIE rat hepatoma cells, it appeared that the majority of potential toxicity of the PCB/PCDF/PCDD mixture in biota from the lower Fox River/Green Bay system was due to the planar PCBs. The results of these studies are discussed in terms of an integrated assessment focused on providing data for remedial action planning.« less

  7. Assessment of potential shale-oil and shale-gas resources in Silurian shales of Jordan, 2014

    USGS Publications Warehouse

    Schenk, Christopher J.; Pitman, Janet K.; Charpentier, Ronald R.; Klett, Timothy R.; Tennyson, Marilyn E.; Mercier, Tracey J.; Nelson, Philip H.; Brownfield, Michael E.; Pawlewicz, Mark J.; Wandrey, Craig J.

    2014-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated means of 11 million barrels of potential shale-oil and 320 billion cubic feet of shale-gas resources in Silurian shales of Jordan.

  8. Ground-water data, Green River basin, Wyoming

    USGS Publications Warehouse

    Zimmerman, Everett Alfred; Collier, K.R.

    1985-01-01

    Hydrologic and geologic data collected by the U.S. Geological Survey as part of energy-related projects in the Green River basin of Wyoming are compiled from the files of the Geological Survey and the Wyoming State Engineer as of 1977. The data include well and spring location, well depth, casing diameter, type of lifts, type of power, use of water, rock type of producing zone, owner, and discharge for more than 1,600 sites. Analyses for common chemical constituents, trace elements, and radioactive chemicals are tabulated as well as water temperature and specific conductance measurement data. Lithologic logs of more than 300 wells, test holes, and measured sections constitute much of this report. County maps at a scale of 1:500 ,000 show the locations. (USGS)

  9. Leachate migration from an in-situ oil-shale retort near Rock Springs, Wyoming

    USGS Publications Warehouse

    Glover, Kent C.

    1988-01-01

    Hydrogeologic factors influencing leachate movement from an in-situ oil-shale retort near Rock Springs, Wyoming, were investigated through models of ground-water flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed ? mile downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-foot sandstone at the top of the aquifer. Ground-water flow in the study area is complexly three dimensional and is characterized by large vertical variations in hydraulic head. The solute-transport model was used to predict the concentration of thiocyanate at a point where ground water discharges to the land surface. Leachate with peak concentrations of thiocyanate--45 milligrams per liter or approximately one-half the initial concentration of retort water--was estimated to reach the discharge area during January 1985. This report describes many of th3 advantages, as well as the problems, of site-specific studies. Data such as the distribution of thin, permeable beds or fractures might introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily into site-specific models. Solute migration in the study area occurs primarily in thin, permeable beds rather than in oil-shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site-specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site-specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and ground-water velocity will be poorly estimated.

  10. Leachate migration from an in situ oil-shale retort near Rock Springs, Wyoming

    USGS Publications Warehouse

    Glover, K.C.

    1986-01-01

    Geohydrologic factors influencing leachate movement from an in situ oil shale retort near Rock Springs, Wyoming, were investigated by developing models of groundwater flow and solute transport. Leachate, indicated by the conservative ion thiocyanate, has been observed 1/2 mi downgradient from the retort. The contaminated aquifer is part of the Green River Formation and consists of thin, permeable layers of tuff and sandstone interbedded with oil shale. Most solute migration has occurred in an 8-ft sandstone at the top of the aquifer. Groundwater flow in the study area is complexly 3-D and is characterized by large vertical variations in hydraulic head. The solute transport model was used to predict the concentration of thiocyanate at a point where groundwater discharges to the land surface. Leachates with peak concentrations of thiocyanate--45 mg/L or approximately one-half the initial concentration of retort water--were estimated to reach the discharge area during January 1985. Advantages as well as the problems of site specific studies are described. Data such as the distribution of thin permeable beds or fractures may introduce an unmanageable degree of complexity to basin-wide studies but can be incorporated readily in site specific models. Solute migration in the study area primarily occurs in thin permeable beds rather than in oil shale strata. Because of this behavior, leachate traveled far greater distances than might otherwise have been expected. The detail possible in site specific models permits more accurate prediction of solute transport than is possible with basin-wide models. A major problem in site specific studies is identifying model boundaries that permit the accurate estimation of aquifer properties. If the quantity of water flowing through a study area cannot be determined prior to modeling, the hydraulic conductivity and groundwater velocity will be estimated poorly. (Author 's abstract)

  11. Investigating Rare Earth Element Systematics in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Yang, J.; Torres, M. E.; Kim, J. H.; Verba, C.

    2014-12-01

    The lanthanide series of elements (the 14 rare earth elements, REEs) have similar chemical properties and respond to different chemical and physical processes in the natural environment by developing unique patterns in their concentration distribution when normalized to an average shale REE content. The interpretation of the REE content in a gas-bearing black shale deposited in a marine environment must therefore take into account the paleoredox conditions of deposition as well as any diagenetic remobilization and authigenic mineral formation. We analyzed 15 samples from a core of the Marcellus Shale (Whipkey ST1, Greene Co., PA) for REEs, TOC, gas-producing potential, trace metal content, and carbon isotopes of organic matter in order to determine the REE systematics of a black shale currently undergoing shale gas development. We also conducted a series of sequential leaching experiments targeting the phosphatic fractions in order to evaluate the dominant host phase of REEs in a black shale. Knowledge of the REE system in the Marcellus black shale will allow us to evaluate potential REE release and behavior during hydraulic fracturing operations. Total REE content of the Whipkey ST1 core ranged from 65-185 μg/g and we observed three distinct REE shale-normalized patterns: middle-REE enrichment (MREE/MREE* ~2) with heavy-REE enrichment (HREE/LREE ~1.8-2), flat patterns, and a linear enrichment towards the heavy-REE (HREE/LREE ~1.5-2.5). The MREE enrichment occurred in the high carbonate samples of the Stafford Member overlying the Marcellus Formation. The HREE enrichment occurred in the Union Springs Member of the Marcellus Formation, corresponding to a high TOC peak (TOC ~4.6-6.2 wt%) and moderate carbonate levels (CaCO3 ~4-53 wt%). Results from the sequential leaching experiments suggest that the dominant host of the REEs is the organic fraction of the black shale and that the detrital and authigenic fractions have characteristic MREE enrichments. We present our

  12. Introduction to special section: China shale gas and shale oil plays

    USGS Publications Warehouse

    Jiang, Shu; Zeng, Hongliu; Zhang, Jinchuan; Fishman, Neil; Bai, Baojun; Xiao, Xianming; Zhang, Tongwei; Ellis, Geoffrey S.; Li, Xinjing; Richards-McClung, Bryony; Cai, Dongsheng; Ma, Yongsheng

    2015-01-01

    Even though China shale gas and shale oil exploration is still in an early stage, limited data are already available. We are pleased to have selected eight high-quality papers from fifteen submitted manuscripts for this timely section on the topic of China shale gas and shale oil plays. These selected papers discuss various subject areas including regional geology, resource potentials, integrated and multidisciplinary characterization of China shale reservoirs (geology, geophysics, geochemistry, and petrophysics) China shale property measurement using new techniques, case studies for marine, lacustrine, and transitional shale deposits in China, and hydraulic fracturing. One paper summarizes the regional geology and different tectonic and depositional settings of the major prospective shale oil and gas plays in China. Four papers concentrate on the geology, geochemistry, reservoir characterization, lithologic heterogeneity, and sweet spot identification in the Silurian Longmaxi marine shale in the Sichuan Basin in southwest China, which is currently the primary focus of shale gas exploration in China. One paper discusses the Ordovician Salgan Shale in the Tarim Basin in northwest China, and two papers focus on the reservoir characterization and hydraulic fracturing of Triassic lacustrine shale in the Ordos Basin in northern China. Each paper discusses a specific area.

  13. Enhanced formation of disinfection byproducts in shale gas wastewater-impacted drinking water supplies.

    PubMed

    Parker, Kimberly M; Zeng, Teng; Harkness, Jennifer; Vengosh, Avner; Mitch, William A

    2014-10-07

    The disposal and leaks of hydraulic fracturing wastewater (HFW) to the environment pose human health risks. Since HFW is typically characterized by elevated salinity, concerns have been raised whether the high bromide and iodide in HFW may promote the formation of disinfection byproducts (DBPs) and alter their speciation to more toxic brominated and iodinated analogues. This study evaluated the minimum volume percentage of two Marcellus Shale and one Fayetteville Shale HFWs diluted by fresh water collected from the Ohio and Allegheny Rivers that would generate and/or alter the formation and speciation of DBPs following chlorination, chloramination, and ozonation treatments of the blended solutions. During chlorination, dilutions as low as 0.01% HFW altered the speciation toward formation of brominated and iodinated trihalomethanes (THMs) and brominated haloacetonitriles (HANs), and dilutions as low as 0.03% increased the overall formation of both compound classes. The increase in bromide concentration associated with 0.01-0.03% contribution of Marcellus HFW (a range of 70-200 μg/L for HFW with bromide = 600 mg/L) mimics the increased bromide levels observed in western Pennsylvanian surface waters following the Marcellus Shale gas production boom. Chloramination reduced HAN and regulated THM formation; however, iodinated trihalomethane formation was observed at lower pH. For municipal wastewater-impacted river water, the presence of 0.1% HFW increased the formation of N-nitrosodimethylamine (NDMA) during chloramination, particularly for the high iodide (54 ppm) Fayetteville Shale HFW. Finally, ozonation of 0.01-0.03% HFW-impacted river water resulted in significant increases in bromate formation. The results suggest that total elimination of HFW discharge and/or installation of halide-specific removal techniques in centralized brine treatment facilities may be a better strategy to mitigate impacts on downstream drinking water treatment plants than altering

  14. Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar

    USGS Publications Warehouse

    Biewick, Laura R.H.; Wilson, Anna B.

    2014-01-01

    The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.

  15. Liquid-Rich Shale Potential of Utah’s Uinta and Paradox Basins: Reservoir Characterization and Development Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanden Berg, Michael; Morgan, Craig; Chidsey, Thomas

    The enclosed report is the culmination of a multi-year and multi-faceted research project investigating Utah’s unconventional tight oil potential. From the beginning, the project team focused efforts on two different plays: (1) the basal Green River Formation’s (GRF) Uteland Butte unconventional play in the Uinta Basin and (2) the more established but understudied Cane Creek shale play in the Paradox Basin. The 2009-2014 high price of crude oil, coupled with lower natural gas prices, generated renewed interest in exploration and development of liquid hydrocarbon reserves. Following the success of the mid-2000s shale gas boom and employing many of the samemore » well completion techniques, petroleum companies started exploring for liquid petroleum in shale formations. In fact, many shales targeted for natural gas include areas in which the shale is more prone to liquid production. In Utah, organic-rich shales in the Uinta and Paradox Basins have been the source of significant hydrocarbon generation, with companies traditionally targeting the interbedded sands or carbonates for their conventional resource recovery. Because of the advances in horizontal drilling and hydraulic fracturing techniques, operators in these basins started to explore the petroleum production potential of the shale units themselves. The GRF in the Uinta Basin has been studied for over 50 years, since the first hydrocarbon discoveries. However, those studies focused on the many conventional sandstone reservoirs currently producing oil and gas. In contrast, less information was available about the more unconventional crude oil production potential of thinner carbonate/shale units, most notably the basal Uteland Butte member. The Cane Creek shale of the Paradox Basin has been a target for exploration periodically since the 1960s and produces oil from several small fields. The play generated much interest in the early 1990s with the successful use of horizontal drilling. Recently, the USGS

  16. Integration of Water Resource Models with Fayetteville Shale Decision Support and Information System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cothren, Jackson; Thoma, Greg; DiLuzio, Mauro

    2013-06-30

    Significant issues can arise with the timing, location, and volume of surface water withdrawals associated with hydraulic fracturing of gas shale reservoirs as impacted watersheds may be sensitive, especially in drought years, during low flow periods, or during periods of the year when activities such as irrigation place additional demands on the surface supply of water. Significant energy production and associated water withdrawals may have a cumulative impact to watersheds over the short-term. Hence, hydraulic fracturing based on water withdrawal could potentially create shifts in the timing and magnitude of low or high flow events or change the magnitude ofmore » river flow at daily, monthly, seasonal, or yearly time scales. These changes in flow regimes can result in dramatically altered river systems. Currently little is known about the impact of fracturing on stream flow behavior. Within this context the objective of this study is to assess the impact of the hydraulic fracturing on the water balance of the Fayetteville Shale play area and examine the potential impacts of hydraulic fracturing on river flow regime at subbasin scale. This project addressed that need with four unique but integrated research and development efforts: 1) Evaluate the predictive reliability of the Soil and Water Assessment Tool (SWAT) model based at a variety of scales (Task/Section 3.5). The Soil and Water Assessment Tool (SWAT) model was used to simulate the across-scale water balance and the respective impact of hydraulic fracturing. A second hypothetical scenario was designed to assess the current and future impacts of water withdrawals for hydraulic fracturing on the flow regime and on the environmental flow components (EFCs) of the river. The shifting of these components, which present critical elements to water supply and water quality, could influence the ecological dynamics of river systems. For this purpose, we combined the use of SWAT model and Richter et al.’s (1996

  17. Hazard assessment of selenium and other trace elements in wild larval razorback sucker from the Green River, Utah

    USGS Publications Warehouse

    Hamilton, S.J.; Muth, R.T.; Waddell, B.; May, T.W.

    2000-01-01

    Contaminant investigations of the Green River in northeastern Utah have documented selenium contamination at sites receiving irrigation drainage. The Green River provides critical habitat for four endangered fishes including the largest extant riverine population of endangered razorback sucker. Although 2175 larval razorback suckers were collected from the river between 1992 and 1996, very few juveniles have been captured within recent decades. Selenium concentrations were measured in larval razorback suckers collected from five sites in the Green River (Cliff Creek, Stewart Lake Drain, Sportsman's Drain, Greasewood Corral, and Old Charlie Wash) to assess the potential for adverse effects on recruitment of larvae to the juvenile stage and the adult population. Larvae from all sites contained mean selenium concentrations ranging from 4.3 to 5.8 ??g/g. These values were at or above the proposed toxic threshold of 4 ??g/g for adverse biological effects in fish, which was derived from several laboratory and field studies with a wide range of fish species. At two sites, Cliff Creek and Stewart Lake Drain, selenium concentrations in larvae increased over time as fish grew, whereas selenium concentrations decreased as fish grew at Sportsman's Drain. Evaluation of a 279-larvae composite analyzed for 61 elements demonstrated that selenium and, to a lesser extent, vanadium were elevated to concentrations reported to be toxic to a wide range of fish species. Elevated selenium concentrations in larval razorback suckers from the five sites suggest that selenium contamination may be widespread in the Green River, and that survival and recruitment of larvae to the juvenile stage may be limited due to adverse biological effects. Selenium contamination may be adversely affecting the reproductive success and recruitment of endangered razorback sucker.

  18. Green-blue water in the city: quantification of impact of source control versus end-of-pipe solutions on sewer and river floods.

    PubMed

    De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P

    2014-01-01

    Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.

  19. Acoustic tag detections of green sturgeon in the Columbia River and Coos Bay estuaries, Washington and Oregon, 2010–11

    USGS Publications Warehouse

    Hansel, Hal C.; Romine, Jason G.; Perry, Russell W.

    2017-11-08

    The Columbia River, in Washington and Oregon, and Coos Bay, in Oregon, are economically important shipping channels that are inhabited by several fishes protected under the Endangered Species Act (ESA). Maintenance of shipping channels involves dredge operations to maintain sufficient in-channel depths to allow large ships to navigate the waterways safely. Fishes entrained by dredge equipment often die or experience delayed mortality. Other potential negative effects of dredging include increased turbidity, reductions in prey resources, and the release of harmful contaminants from the dredged sediments. One species of concern is the ESA-listed green sturgeon (Acipenser medirostris; Southern Distinct Population Segment). In this study, we used acoustic telemetry to identify habitat use, arrival and departure timing, and the extent of upstream migration of green sturgeon in the Columbia River and Coos Bay to help inform dredge operations to minimize potential take of green sturgeon. Autonomous acoustic receivers were deployed in Coos Bay from the mouth to river kilometer (rkm) 21.6 from October 2009 through October 2010. In the Columbia River Estuary, receivers were deployed between the mouth and rkm 37.8 from April to November in 2010 and 2011. A total of 29 subadult and adult green sturgeon were tagged with temperature and pressure sensor tags and released during the study, primarily in Willapa Bay and Grays Harbor, Washington, and the Klamath River, Oregon. Green sturgeon detected during the study but released by other researchers also were included in the study.The number of tagged green sturgeon detected in the two estuaries differed markedly. In Coos Bay, only one green sturgeon was detected for about 2 hours near the estuary mouth. In the Columbia River Estuary, 9 green sturgeon were detected in 2010 and 10 fish were detected in 2011. Green sturgeon entered the Columbia River from May through October during both years, with the greatest numbers of fish being

  20. Evaluation of shale gas potential based on organic matter characteristics and gas concentration in the Devonian Horn River Formation, Canada

    NASA Astrophysics Data System (ADS)

    Choi, Jiyoung; Hong, Sung Kyung; Lee, Hyun Suk

    2017-04-01

    In this study, we investigate organic matter characteristics from the analysis of Rock-Eval6 and biomarker, and estimate methane concentration from headspace method in the Devonian Horn River Formation, which is one of the largest shale reservoir in western Canada. The Horn River Formation consists of the Evie, Otterpark and Muskwa members in ascending stratigraphic order. Total Organic Carbon (TOC) ranges from 0.34 to 7.57 wt%, with an average of 2.78 wt%. The Evie, middle Otterpark and Muskwa members have an average TOC of more than 3%, whereas those of the lower and upper Otterpark Member are less than 2%. Based on Pristane/n-C17 (0.2 0.6) and Phytane/n-C18 (0.3 0.9) ratios, the organic matter in the Evie, middle Otterpark and Muskwa members mainly consists of type II kerogen which are formed in reducing marine environment. Thermal maturity were examined through the use of the distributions of Phenanthrene (P) and Methylphenantrenes (MP) based on m/z 178 and 192 mass chromatograms, respectively (Radke et al., 1982). The methylphenanthrene index (MPI-1) are calculated as follows : MPI-1 = 1.5 × (2MP+3MP)/(P+1MP+9MP), and Ro are calculated as follows : Ro = -0.6 × MPI-1 + 2.3. Estimated Ro ranges between 1.88 and 1.93%, which indicates the last stage of wet gas generation. The methane concentrations in headspace range from 15 to 914 ppmv, with an average of 73.5 ppmv. The methane concentrations in the Evie, middle Otterpark and Muskwa members (up to 914 ppmv) are higher than those of the lower and upper Otterpark Member (up to 75 ppmv). Considering the organic geochemical characteristics and gas concentrations, the shale gas potentials of the Evie, middle Otterpark and Muskwa members are higher than those of other members.

  1. Structure contour map of the greater Green River basin, Wyoming, Colorado, and Utah

    USGS Publications Warehouse

    Lickus, M.R.; Law, B.E.

    1988-01-01

    The Greater Green River basin of Wyoming, Colorado, and Utah contains five basins and associated major uplifts (fig. 1). Published structure maps of the region have commonly used the top of the Lower Cretaceous Dakota Sandstone as a structural datum (Petroleum Ownership Map Company (POMCO), 1984; Rocky Mountain Association of Geologists, 1972). However, because relatively few wells in this area penetrate the Dakota, the Dakota structural datum has to be constructed by projecting down from shallower wells. Extrapolating in this manner may produce errors in the map. The primary purpose of this report is to present a more reliable structure contour map of the Greater Green River basin based on datums that are penetrated by many wells. The final map shows the large- to small-scale structures present in the Greater Green River basin. The availability of subsurface control and the map scale determined whether or not a structural feature was included on the map. In general, large structures such as the Moxa arch, Pinedale anticline, and other large folds were placed on the map based solely on the structure contours. In comparison, smaller folds and some faults were placed on the map based on structure contours and other reports (Bader 1987; Bradley 1961; Love and Christiansen, 1985; McDonald, 1975; Roehler, 1979; Wyoming Geological Association Oil and Gas Symposium Committee, 1979). State geologic maps and other reports were used to position basin margin faults (Bryant, 1985; Gries, 1983a, b; Hansen 1986; Hintze, 1980; Love and Christiansen, 1985; Tweto, 1979, 1983). In addition, an interpreted east-west-trending regional seismic line by Garing and Tainter (1985), which shows the basin configuration in cross-section, was helpful in locating buried faults, such as the high-angle reverse or thrust fault along the west flank of the Rock Springs uplift.

  2. Microbial Communities in Produced Water of the Green River Basin in Southeast Wyoming.

    NASA Astrophysics Data System (ADS)

    Wawrousek, K.; Drogos, D. L.; Urynowicz, M. A.; Nye, C.; Quillinan, S.

    2017-12-01

    Despite the prevalence of hydraulic fracturing for natural gas production, little is understood about the downhole microbial ecosystems encountered. Illumina MiSeq 16S rRNA sequencing has been performed on waters collected from the water-gas separator of five hydraulically fractured wells in the Green River Basin in southeast Wyoming, and identification of bacteria and archaea reveal the presence of several microbes. Well depths ranged from approximately 9,500ft to 11,500ft. Correlations between inorganic chemistry, such as pH, salinity, and metals naturally present in the groundwater, as well as biocides used during fracturing and production were made when analyzing different microbial communities. Preliminary results identify several microbial families including: Clostridiales, Thermoanaerobacterales, Synergistales, Alteromonadales, and Thermotogales. Of the 5 sampled oil wells in the Greater Green River Basin, 16 microbes were identified in all samples. These included microbes such as Anaerobaculum, Thermovirga, and an unclassified Clostridiaceae. Ongoing work includes matching unclassified 16S sequences present in multiple samples and correlating microbial populations across wells to understand better the microbial communities present in these exotic environmental conditions.

  3. 2014 Reassessment of Floodplain Wetland Connections in the Middle Green River, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaGory, K. E.; Walston, L. J.; Weber, C. C.

    This report presents the results of floodplain wetland connection surveys conducted in 2014 at six priority floodplain wetland sites along the middle Green River between Jensen and Ouray, Utah. Surveys were conducted at levee breaches and within channels leading from the breaches to the wetlands (referred to here as connection channels) to characterize the flows needed to connect the river’s main channel with the floodplain wetlands.

  4. Shore phases of the Green River formation in northern Sweetwater County, Wyoming

    USGS Publications Warehouse

    Bradley, Wilmont H.

    1926-01-01

    and the climatic conditions under which the deposits accumulated. From the same evidence the writer has also endeavored to determine the kinds and relative abundance of both plant and animal life that existed in the Green River lake and on the adjacent land. Such evidence is fragmentary, as was to be expected, but it serves well as a basis for fur her study and interpretation.

  5. Near-Infrared Imaging for Spatial Mapping of Organic Content in Petroleum Source Rocks

    NASA Astrophysics Data System (ADS)

    Mehmani, Y.; Burnham, A. K.; Vanden Berg, M. D.; Tchelepi, H.

    2017-12-01

    Natural gas from unconventional petroleum source rocks (shales) plays a key role in our transition towards sustainable low-carbon energy production. The potential for carbon storage (in adsorbed state) in these formations further aligns with efforts to mitigate climate change. Optimizing production and development from these resources requires knowledge of the hydro-thermo-mechanical properties of the rock, which are often strong functions of organic content. This work demonstrates the potential of near-infrared (NIR) spectral imaging in mapping the spatial distribution of organic content with O(100µm) resolution on cores that can span several hundred feet in depth (Mehmani et al., 2017). We validate our approach for the immature oil shale of the Green River Formation (GRF), USA, and show its applicability potential in other formations. The method is a generalization of a previously developed optical approach specialized to the GRF (Mehmani et al., 2016a). The implications of this work for spatial mapping of hydro-thermo-mechanical properties of excavated cores, in particular thermal conductivity, are discussed (Mehmani et al., 2016b). References:Mehmani, Y., A.K. Burnham, M.D. Vanden Berg, H. Tchelepi, "Quantification of organic content in shales via near-infrared imaging: Green River Formation." Fuel, (2017). Mehmani, Y., A.K. Burnham, M.D. Vanden Berg, F. Gelin, and H. Tchelepi. "Quantification of kerogen content in organic-rich shales from optical photographs." Fuel, (2016a). Mehmani, Y., A.K. Burnham, H. Tchelepi, "From optics to upscaled thermal conductivity: Green River oil shale." Fuel, (2016b).

  6. Potential effects of anticipated coal mining on salinity of the Price, San Rafael, and Green Rivers, Utah

    USGS Publications Warehouse

    Lindskov, K.L.

    1986-01-01

    The impact of anticipated coal mining in Utah on the salinity of the Price, San Rafael, and Green Rivers is to be addressed in the repermitting of existing mines and permitting of new mines. To determine the potential impacts, mathematical models were developed for the Price and San Rafael River basins. Little impact on the quantity and quality of streamflow is expected for the Price and San Rafael Rivers. The increase in mean monthly flow of the Price River downstream from Scofield Reservoir is projected as 3.5 cu ft/sec, ranging from 1.7% in June to 140% in February. The potential increase in dissolved solids concentration downstream from Scofield Reservoir would range from 10.4% in June and July (from 202 to 223 mg/L) to 97.0% in February (from 202 to 398 mg/L). However, the concentration of the mixture of mine water with the existing flow released from Scofield Reservoir would contain less than 500 mg/L of dissolved solids. At the mouth of the Price River, the potential increase in mean monthly flow is projected as 12.6 cu ft/sec, ranging from 3.7% in May to 37.7% in January. The potential changes in dissolved solids concentration would range from a 20.7% decrease in January (from 3,677 to 2,917 mg/L) to a 1.3% increase in June (from 1,911 to 1,935 mg/L). At the mouth of the San Rafael River , the potential increase in mean monthly flow ranges from 2.9 cu ft/sec in February to 6.7 cu ft/sec in May, with the increase ranging from 0.8% in June to 12.6% in November. The potential changes in dissolved solids concentration would range from a 5.3 % decrease in March (from 2,318 to 2,195 mg/L) to a 0.6% increase in May (from 1,649 to 1,659 mg/L). The anticipated mining in the Price and San Rafael River basins is not expected to cause a detectable change in the quantity and quality of streamflow in the Green River. The projected peak increase in flow resulting from discharge from the mines is less than 0.3% of the average flow in the Green River. (Author 's abstract)

  7. Environmental baselines: preparing for shale gas in the UK

    NASA Astrophysics Data System (ADS)

    Bloomfield, John; Manamsa, Katya; Bell, Rachel; Darling, George; Dochartaigh, Brighid O.; Stuart, Marianne; Ward, Rob

    2014-05-01

    Groundwater is a vital source of freshwater in the UK. It provides almost 30% of public water supply on average, but locally, for example in south-east England, it is constitutes nearly 90% of public supply. In addition to public supply, groundwater has a number of other uses including agriculture, industry, and food and drink production. It is also vital for maintaining river flows especially during dry periods and so is essential for maintaining ecosystem health. Recently, there have been concerns expressed about the potential impacts of shale gas development on groundwater. The UK has abundant shales and clays which are currently the focus of considerable interest and there is active research into their characterisation, resource evaluation and exploitation risks. The British Geological Survey (BGS) is undertaking research to provide information to address some of the environmental concerns related to the potential impacts of shale gas development on groundwater resources and quality. The aim of much of this initial work is to establish environmental baselines, such as a baseline survey of methane occurrence in groundwater (National methane baseline study) and the spatial relationships between potential sources and groundwater receptors (iHydrogeology project), prior to any shale gas exploration and development. The poster describes these two baseline studies and presents preliminary findings. BGS are currently undertaking a national survey of baseline methane concentrations in groundwater across the UK. This work will enable any potential future changes in methane in groundwater associated with shale gas development to be assessed. Measurements of methane in potable water from the Cretaceous, Jurassic and Triassic carbonate and sandstone aquifers are variable and reveal methane concentrations of up to 500 micrograms per litre, but the mean value is relatively low at < 10 micrograms per litre. These values compare with much higher levels of methane in aquicludes

  8. Evaluating Neogene Uplift and Denudational History of the Colorado Rockies Using River Profiles and Incision Records

    NASA Astrophysics Data System (ADS)

    Darling, A.; Karlstrom, K.; Kirby, E.; Ouimet, W.; Coblentz, D.; Aslan, A.

    2008-12-01

    The goal of the Colorado Rockies Experiment and Seismic Transects (CREST) is to image the velocity structure beneath the Rocky Mountains (2008-2009) and evaluate mantle to surface interconnections that may illuminate causes and timing of uplift of the Rockies. Existing mantle tomography shows a zone of low- density mantle, the Aspen Anomaly, that underlies the highest topography in Colorado. The tectonic geomorphic component of the project involves understanding incision patterns in time and space throughout the bedrock fluvial systems of western Rocky Mountains and eastern Colorado Plateau. The Colorado River and its tributaries drain the western slope of highest topography of the Colorado Rockies; The Green River drains the Wyoming Rockies and northern Colorado Plateau. Both cross highly variable substrates (Precambrian basement to Cretaceous Mancos shale) and active faults. Preliminary analysis of longitudinal profiles of the trunk rivers indicates that for a given drainage area, the Colorado generally has a higher steepness index (a measure of gradient normalized for upstream drainage area) than the Green. Localized reaches of high steepness index along the Green are interpreted to reflect resistant substrate. We suggest that these rivers, of similar stream power, are responding to different sustained forcings, wherein the Colorado River is responding to uplift above the Aspen Anomaly. We have compiled all known incision rates for the region for the last 10 Ma. The bedrock incision rate at a given reach is determined by dates on elevated straths where gravels are overlain by or inter-layered with basalt flows (Ar-Ar dates), ash layers (tephrochronology), or can be dated by cosmogenic burial ages. A suite of new samples have also been taken for undated reaches of the Colorado River, with plans for sampling the Green for comparison of incision rates. Available data show differential incision along both the Green and Colorado rivers. When combined with profile

  9. Fine-scale habitat preference of green sturgeon (Acipenser medirostris) within three spawning locations in the Sacramento River, California

    USGS Publications Warehouse

    Wyman, Megan T.; Thomas, Michael J.; McDonald, Richard R.; Hearn, Alexander R.; Battleson, Ryan D.; Chapman, Eric D.; Kinzel, Paul J.; Minear, J. Tobey; Mora, Ethan A.; Nelson, Jonathan M.; Pagel, Matthew D.; Klimley, A. Peter

    2018-01-01

    Vast sections of the Sacramento River have been listed as critical habitat by the National Marine Fisheries Service for green sturgeon spawning (Acipenser medirostris), yet spawning is known to occur at only a few specific locations. This study reveals the range of physical habitat variables selected by adult green sturgeon during their spawning period. We integrated fine-scale fish positions, physical habitat characteristics, discharge, bathymetry, and simulated velocity and depth using a 2-dimensional hydraulic model (FaSTMECH). The objective was to create habitat suitability curves for depth, velocity, and substrate type within three known spawning locations over two years. An overall cumulative habitat suitability score was calculated that averaged the depth, velocity, and substrate scores over all fish, sites, and years. A weighted usable area (WUA) index was calculated throughout the sampling periods for each of the three sites. Cumulative results indicate that the microhabitat characteristics most preferred by green sturgeon in these three spawning locations were velocities between 1.0-1.1 m/s, depths of 8-9 m, and gravel and sand substrate. This study provides guidance for those who may in the future want to increase spawning habitat for green sturgeon within the Sacramento River.

  10. Chemical concentrations and instantaneous loads, Green River to the Lower Duwamish Waterway near Seattle, Washington, 2013–15

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.; Vanderpool-Kimura, Ann M.; Foreman, James R.; Peterson, Norman T.; Senter, Craig A.; Sissel, Stephen K.

    2015-12-23

    Median chemical concentrations in suspended-sediment samples were greater than median chemical concentrations in fine bed sediment (less than 62.5 µm) samples, which were greater than median chemical concentrations in paired bulk bed sediment (less than 2 mm) samples. Suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters were measured concurrent with the chemistry sampling. From this discrete data, combined with the continuous streamflow record, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated. For most compounds, loads were higher during storms than during baseline conditions because of high streamflow and high chemical concentrations. The highest loads occurred during dam releases (periods when stored runoff from a prior storm is released from the Howard Hanson Dam into the upper Green River) because of the high river streamflow and high suspended-sediment concentration, even when chemical concentrations were lower than concentrations measured during storm events. 

  11. Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays

    EIA Publications

    2011-01-01

    To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.

  12. Strain partitioning in shales during elastic and creep deformation observed by synchrotron X-ray micro-tomography.

    NASA Astrophysics Data System (ADS)

    Sone, H.; Cheung, C.; Rivers, M. L.; Wang, Y.; Yu, T.

    2016-12-01

    Knowledge about the ductile time-dependent constitutive behavior of geological materials is essential when evaluating the long-term integrity of subsurface structures and predicting the long-term geomechanical response of the surrounding formations. To this end, it is not only important to measure the bulk time-dependent behavior but also essential to understand the microscale mechanism by which rocks exhibit time-dependence, because laboratory data needs to be extrapolated to time-scales much beyond laboratory experiments. We conducted long-term creep experiments using Green River shale samples and obtained synchrotron X-ray images during the tests in an attempt to capture the microscale strain-partitioning that occurs within the sample. Shale samples of few millimeter dimensions were stressed up to several tens of MPa by a spring-loaded device within an X-ray transparent load frame, and the load was held constant for up to several months to allow creep deformation. Tomographic images of about 5 micron resolution were reconstructed from images collected at different timings of the experiment, which allows us to investigate where and how much strain localized during elastic and creep deformation. Tracking the position of some outstanding features in the rock texture (e.g. pyrite grains, organic material patches) indicate that strain magnitudes expected from the sample elastic and relaxation modulus can be successfully recovered from the tomographic images. We also attempt to use digital volume correlation to track sub-voxel displacements and to characterize the spatial heterogeneity of the deformation.

  13. Anthropogenic and natural methane emissions from a shale gas exploration area of Quebec, Canada.

    PubMed

    Pinti, Daniele L; Gelinas, Yves; Moritz, Anja M; Larocque, Marie; Sano, Yuji

    2016-10-01

    The increasing number of studies on the determination of natural methane in groundwater of shale gas prospection areas offers a unique opportunity for refining the quantification of natural methane emissions. Here methane emissions, computed from four potential sources, are reported for an area of ca. 16,500km(2) of the St. Lawrence Lowlands, Quebec (Canada), where Utica shales are targeted by the petroleum industry. Methane emissions can be caused by 1) groundwater degassing as a result of groundwater abstraction for domestic and municipal uses; 2) groundwater discharge along rivers; 3) migration to the surface by (macro- and micro-) diffuse seepage; 4) degassing of hydraulic fracturing fluids during first phases of drilling. Methane emissions related to groundwater discharge to rivers (2.47×10(-4) to 9.35×10(-3)Tgyr(-1)) surpass those of diffuse seepage (4.13×10(-6) to 7.14×10(-5)Tgyr(-1)) and groundwater abstraction (6.35×10(-6) to 2.49×10(-4)Tgyr(-1)). The methane emission from the degassing of flowback waters during drilling of the Utica shale over a 10- to 20-year horizon is estimated from 2.55×10(-3) to 1.62×10(-2)Tgyr(-1). These emissions are from one third to sixty-six times the methane emissions from groundwater discharge to rivers. This study shows that different methane emission sources need to be considered in environmental assessments of methane exploitation projects to better understand their impacts. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. [Treatment of polluted urban river water using filamentous green algae].

    PubMed

    Liang, Xia; Li, Xiao-Ping

    2008-01-01

    Filamentous green algae dominated treatment system was set up to remove contaminants from polluted urban river water under lab conditions. Experiments show that TP is decreased up to 50%, associated with 72% removal of TSS. The removal efficiencies of soluble species, PO4(3-) and NH4(+)-N, are up to 90% and 85% respectively. Under heavily polluted conditions (TP > 3.0 mg x L(-1), TN > 22.0 mg x L(-1)), the average removal efficiencies of TP and TN are 89% and 45% respectively, while under light polluted conditions (TP < 0.50 mg x L(-1), TN < 10 mg x L(-1)), the average effluent concentration of PO4(3-) and NH4(+)-N are well below 0.1 mg x L(-1) and 2.0 mg x L(-1) respectively. During the experiments, the biomass of filamentous green algae is increased significantly (38.78%), and at the same time a large number of unicellular Chlorophytes and Cyanophytes species are occurred on the interior wall surface of experimental fertility. The maximum biomass occurs at the highest concentration of DO.

  15. Wildlife and Wildlife Habitat Loss Assessment at Green Peter-Foster Project; Middle Fork Santiam River, Oregon, 1985 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noyes, J.H.

    1986-02-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Green Peter-Foster Dam and Reservoir Project on the Middle Fork Santiam River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types at the project site were mapped based on aerial photographs from 1955, 1972, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Eleven wildlife target species were selected to represent a cross-section of species groupsmore » affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Green Peter-Foster Project extensively altered or affected 7873 acres of land and river in the Santiam River drainage. Impacts to wildlife centered around the loss of 1429 acres of grass-forb vegetation, 768 acres of shrubland, and 717 acres of open conifer forest cover types. Impacts resulting from the Green Peter-Foster Project included the loss of critical winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, upland game birds, river otter, beaver, pileated woodpecker, and many other wildlife species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Green Peter-Foster Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.« less

  16. Surface-Water Quality of the Skokomish, Nooksack, and Green-Duwamish Rivers and Thornton Creek, Puget Sound Basin, Washington, 1995-98

    USGS Publications Warehouse

    Embrey, S.S.; Frans, L.M.

    2003-01-01

    Streamflow and surface-water-quality data were collected from November 1995 through April 1998 (water years 1996-98) from a surface-water network in the Puget Sound Basin study unit of the U.S. Geological Survey National Water-Quality Assessment program. Water samples collected monthly and during storm runoff events were analyzed for nutrients, major ions, organic carbon, and suspended sediment, and at selected sites, samples were analyzed for pesticides and volatile organic compounds. Eleven sites were established in three major watersheds--two in the Skokomish River Basin, three in the Nooksack River Basin, five in the Green-Duwamish River Basin, and one site in Thornton Creek Basin, a small tributary to Lake Washington. The Skokomish River near Potlatch, Nooksack River at Brennan, and Duwamish River at Tukwila are integrators of mixed land uses with the sampling sites locally influenced by forestry practices, agriculture, and urbanization, respectively. The remaining eight sites are indicators of relatively homogeneous land use/land cover in their basins. The site on the North Fork Skokomish River is an indicator site chosen to measure reference or background conditions in the study unit. In the Nooksack River Basin, the site on Fishtrap Creek is an indicator of agriculture, and the Nooksack River at North Cedarville is an indicator site of forestry practices in the upper watershed. In the Green-Duwamish River Basin, Springbrook Creek is an urban indicator, Big Soos Creek is an indicator of a rapidly developing suburban basin; Newaukum Creek is an indicator of agriculture; and the Green River above Twin Camp Creek is an indicator of forestry practices. Thornton Creek is an indicator of high-density urban residential and commercial development. Conditions during the first 18 months of sampling were dominated by above-normal precipitation. For the Seattle-Tacoma area, water year 1997 was the wettest of the 3 years during the sample-collection period. Nearly 52

  17. Hazard assessment of inorganics to three endangered fish in the Green River, Utah

    USGS Publications Warehouse

    Hamilton, S.J.

    1995-01-01

    Acute toxicity tests were conducted with three life stages of Colorado squawfish (Ptychocheilus lucius), razorback sucker (Xyrauchen texanus), and bonytail (Gila elegans) in a reconstituted water quality simulating the middle part of the Green River of Utah. Tests were conducted with boron, lithium, selenate, selenite, uranium, vanadium, and zinc. The overall rank order of toxicity to all species and life stages combined from most to least toxic was vanadium = zinc > selenite > lithium = uranium > selenate > boron. There was no difference between the three species in their sensitivity to the seven inorganics based on a rank-order evaluation at the species level. Colorado squawfish were 2-5 times more sensitive to selenate and selenite at the swimup life stage than older stages, whereas razorback suckers displayed equal sensitivity among life stages. Bonytail exhibited equal sensitivity to selenite, but were five times more sensitive to selenate at the swimup life stage than the older stages. Comparison of 96-hr LC50 values with a limited number of environmental water concentrations in Ashley Creek, Utah, which receives irrigation drainwater, revealed moderate hazard ratios for boron, selenate, selenite, and zinc, low hazard ratios for uranium and vanadium, but unknown ratios for lithium. These inorganic contaminants in drainwaters may adversely affect endangered fish in the Green River.

  18. Sedimentary record of seismic events in the Eocene Green River Formation and its implications for regional tectonics on lake evolution (Bridger Basin, Wyoming)

    NASA Astrophysics Data System (ADS)

    Törő, Balázs; Pratt, Brian R.

    2016-10-01

    Outcrops and cores from the top of the lacustrine Tipton Member and the base of the Wilkins Peak Member ( 51.5 Ma) of the Eocene Green River Formation, Bridger Basin in southwestern Wyoming yield a wide variety of sedimentary deformation features many of which are laterally extensive for more than 50 km. They include various types of folds, load structures, pinch-and-swell structures, microfaults, breccias and sedimentary dikes. In most cases deformation is represented by hybrid brittle-ductile structures exhibiting lateral variation in deformation style. These occur in low-energy, profundal organic-rich carbonate mudstones (oil shales), trona beds, tuffs, and profundal to sublittoral silty carbonate deposited in paleolake Gosiute. The deformation is not specific to the depositional environment because sedimentary units stratigraphically higher with similar facies show no deformation. The studied interval lacks any evidence for possible trigger mechanisms intrinsic to the depositional environment, such as strong wave action, rapid sediment loading, evaporite dissolution and collapse, or desiccation, so 'endogenic' causes are ruled out. Thus, the deformation features are interpreted as seismites, and change in deformation style and inferred increase in intensity towards the south suggest that the earthquakes were sourced from the nearby Uinta Fault System. The 22 levels exhibiting seismites recognized in cores indicate earthquakes with minimum magnitudes between 6 and 7, minimum epicentral intensity (MCS) of 9, and varying recurrence intervals in the seismic history of the Uinta Fault System, with a mean apparent recurrence period of 8.1 k.y. using average sedimentation rates and dated tuffs; in detail, however, there are two noticeably active periods followed by relative quiescence. The stratigraphic position of these deformed intervals also marks the transition between two distinct stages in lake evolution, from the balanced-filled Tipton Member to the overlying

  19. Process for oil shale retorting

    DOEpatents

    Jones, John B.; Kunchal, S. Kumar

    1981-10-27

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  20. Petrophysical approach for S-wave velocity prediction based on brittleness index and total organic carbon of shale gas reservoir: A case study from Horn River Basin, Canada

    NASA Astrophysics Data System (ADS)

    Kim, Taeyoun; Hwang, Seho; Jang, Seonghyung

    2017-01-01

    When finding the "sweet spot" of a shale gas reservoir, it is essential to estimate the brittleness index (BI) and total organic carbon (TOC) of the formation. Particularly, the BI is one of the key factors in determining the crack propagation and crushing efficiency for hydraulic fracturing. There are several methods for estimating the BI of a formation, but most of them are empirical equations that are specific to particular rock types. We estimated the mineralogical BI based on elemental capture spectroscopy (ECS) log and elastic BI based on well log data, and we propose a new method for predicting S-wave velocity (VS) using mineralogical BI and elastic BI. The TOC is related to the gas content of shale gas reservoirs. Since it is difficult to perform core analysis for all intervals of shale gas reservoirs, we make empirical equations for the Horn River Basin, Canada, as well as TOC log using a linear relation between core-tested TOC and well log data. In addition, two empirical equations have been suggested for VS prediction based on density and gamma ray log used for TOC analysis. By applying the empirical equations proposed from the perspective of BI and TOC to another well log data and then comparing predicted VS log with real VS log, the validity of empirical equations suggested in this paper has been tested.

  1. Analysis of ground-water-quality data of the Upper Colorado River basin, water years 1972-92

    USGS Publications Warehouse

    Apodaca, L.E.

    1998-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment program, an analysis of the existing ground-water-quality data in the Upper Colorado River Basin study unit is necessary to provide information on the historic water-quality conditions. Analysis of the historical data provides information on the availability or lack of data and water-quality issues. The information gathered from the historical data will be used in the design of ground-water-quality studies in the basin. This report includes an analysis of the ground-water data (well and spring data) available for the Upper Colorado River Basin study unit from water years 1972 to 1992 for major cations and anions, metals and selected trace elements, and nutrients. The data used in the analysis of the ground-water quality in the Upper Colorado River Basin study unit were predominantly from the U.S. Geological Survey National Water Information System and the Colorado Department of Public Health and Environment data bases. A total of 212 sites representing alluvial aquifers and 187 sites representing bedrock aquifers were used in the analysis. The available data were not ideal for conducting a comprehensive basinwide water-quality assessment because of lack of sufficient geographical coverage.Evaluation of the ground-water data in the Upper Colorado River Basin study unit was based on the regional environmental setting, which describes the natural and human factors that can affect the water quality. In this report, the ground-water-quality information is evaluated on the basis of aquifers or potential aquifers (alluvial, Green River Formation, Mesaverde Group, Mancos Shale, Dakota Sandstone, Morrison Formation, Entrada Sandstone, Leadville Limestone, and Precambrian) and land-use classifications for alluvial aquifers.Most of the ground-water-quality data in the study unit were for major cations and anions and dissolved-solids concentrations. The aquifer with the highest median concentrations of

  2. Western Greece unconventional hydrocarbon potential from oil shale and shale gas reservoirs

    NASA Astrophysics Data System (ADS)

    Karakitsios, Vasileios; Agiadi, Konstantina

    2013-04-01

    It is clear that we are gradually running out of new sedimentary basins to explore for conventional oil and gas and that the reserves of conventional oil, which can be produced cheaply, are limited. This is the reason why several major oil companies invest in what are often called unconventional hydrocarbons: mainly oil shales, heavy oil, tar sand and shale gas. In western Greece exist important oil and gas shale reservoirs which must be added to its hydrocarbon potential1,2. Regarding oil shales, Western Greece presents significant underground immature, or close to the early maturation stage, source rocks with black shale composition. These source rock oils may be produced by applying an in-situ conversion process (ICP). A modern technology, yet unproven at a commercial scale, is the thermally conductive in-situ conversion technology, developed by Shell3. Since most of western Greece source rocks are black shales with high organic content, those, which are immature or close to the maturity limit have sufficient thickness and are located below 1500 meters depth, may be converted artificially by in situ pyrolysis. In western Greece, there are several extensive areas with these characteristics, which may be subject of exploitation in the future2. Shale gas reservoirs in Western Greece are quite possibly present in all areas where shales occur below the ground-water level, with significant extent and organic matter content greater than 1%, and during their geological history, were found under conditions corresponding to the gas window (generally at depths over 5,000 to 6,000m). Western Greece contains argillaceous source rocks, found within the gas window, from which shale gas may be produced and consequently these rocks represent exploitable shale gas reservoirs. Considering the inevitable increase in crude oil prices, it is expected that at some point soon Western Greece shales will most probably be targeted. Exploration for conventional petroleum reservoirs

  3. Shale characterization on Barito field, Southeast Kalimantan for shale hydrocarbon exploration

    NASA Astrophysics Data System (ADS)

    Sumotarto, T. A.; Haris, A.; Riyanto, A.; Usman, A.

    2017-07-01

    Exploration and exploitation in Indonesia now are still focused on conventional hydrocarbon energy than unconventional hydrocarbon energy such as shale gas. Tanjung Formation is a source rock of Barito Basin located in South Kalimantan that potentially as shale hydrocarbon. In this research, integrated methods using geochemical analysis, mineralogy, petrophysical analysis and seismic interpretation has been applied to explore the shale hydrocarbon potential in Barito Field for Tanjung formation. The first step is conducting geochemical and mineralogy analysis to the shale rock sample. Our analysis shows that the organic richness is ranging from 1.26-5.98 wt.% (good to excellent) with the depth of early mature window of 2170 m. The brittleness index is in an average of 0.44-0.56 (less Brittle) and Kerogen type is classified into II/III type that potentially produces oil and gas. The second step is continued by performing petrophysical analysis, which includes Total Organic Carbon (TOC) calculation and brittleness index continuously. The result has been validated with a laboratory measurement that obtained a good correlation. In addition, seismic interpretation based on inverted acoustic impedance is applied to map the distributions of shale hydrocarbon potential. Our interpretation shows that shale hydrocarbon potential is localized in the eastern and southeastern part of the study area.

  4. Oil-shale program

    NASA Astrophysics Data System (ADS)

    Bader, B. E.

    1981-10-01

    The principal activities of the Sandia National Laboratories in the Department of Energy Oil shale program during the period April 1 to June 30, 1981 are discussed. Currently, Sandia's activities are focused upon: the development and use of analytical and experimental modeling techniques to describe and predict the retort properties and retorting process parameters that are important to the preparation, operation, and stability of in situ retorts, and the development, deployment, and field use of instrumentation, data acquisition, and process monitoring systems to characterize and evaluate in site up shale oil recovery operations. In-house activities and field activities (at the Geokinetics Oil Shale Project and the Occidental Oil Shale Project) are described under the headings: bed preparation, bed characterization, retorting process, and structural stability.

  5. World Shale Resource Assessments

    EIA Publications

    2015-01-01

    Four countries: Chad, Kazakhstan, Oman and the United Arab Emirates (UAE) have been added to report “Technically Recoverable Shale Oil and Shale Gas Resources.” The report provides an estimate of shale resources in selected basins around the world. The new chapters cover shale basins from the Sub-Saharan Africa region, represented by Chad; the Caspian region, represented by Kazakhstan; and the Middle East region, represented by Oman and the United Arab Emirates (UAE) and are available as supplemental chapters to the 2013 report.

  6. Impact of Oxidative Dissolution on Black Shale Fracturing: Implication for Shale Fracturing Treatment Design

    NASA Astrophysics Data System (ADS)

    You, L.; Chen, Q.; Kang, Y.; Cheng, Q.; Sheng, J.

    2017-12-01

    Black shales contain a large amount of environment-sensitive compositions, e.g., clay minerals, carbonate, siderite, pyrite, and organic matter. There have been numerous studies on the black shales compositional and pore structure changes caused by oxic environments. However, most of the studies did not focus on their ability to facilitate shale fracturing. To test the redox-sensitive aspects of shale fracturing and its potentially favorable effects on hydraulic fracturing in shale gas reservoirs, the induced microfractures of Longmaxi black shales exposed to deionized water, hydrochloric acid, and hydrogen peroxide at room-temperature for 240 hours were imaged by scanning electron microscopy (SEM) and CT-scanning in this paper. Mineral composition, acoustic emission, swelling, and zeta potential of the untreated and oxidative treatment shale samples were also recorded to decipher the coupled physical and chemical effects of oxidizing environments on shale fracturing processes. Results show that pervasive microfractures (Fig.1) with apertures ranging from tens of nanometers to tens of microns formed in response to oxidative dissolution by hydrogen peroxide, whereas no new microfracture was observed after the exposure to deionized water and hydrochloric acid. The trajectory of these oxidation-induced microfractures was controlled by the distribution of phyllosilicate framework and flaky or stringy organic matter in shale. The experiments reported in this paper indicate that black shales present the least resistance to crack initiation and subcritical slow propagation in hydrogen peroxide, a process we refer to as oxidation-sensitive fracturing, which are closely related to the expansive stress of clay minerals, dissolution of redox-sensitive compositions, destruction of phyllosilicate framework, and the much lower zeta potential of hydrogen peroxide solution-shale system. It could mean that the injection of fracturing water with strong oxidizing aqueous solution may

  7. Comparison of organic geochemistry and metal enrichment in two black shales: Cambrian Alum Shale of Sweden and Devonian Chattanooga Shale of United States

    USGS Publications Warehouse

    Leventhal, J.S.

    1991-01-01

    In most black shales, such as the Chattanooga Shale and related shales of the eastern interior United States, increased metal and metalloid contents are generally related to increased organic carbon content, decreased sedimentation rate, organic matter type, or position in the basin. In areas where the stratigraphic equivalents of the Chattanooga Shale are deeply buried and and the organic material is thermally mature, metal contents are essentially the same as in unheated areas and correlate with organic C or S contents. This paradigm does not hold for the Cambrian Alum Shale Formation of Sweden where increased metal content does not necessarily correlate with organic matter content nor is metal enrichment necessarily related to land derived humic material because this organic matter is all of marine source. In southcentral Sweden the elements U, Mo, V, Ni, Zn, Cd and Pb are all enriched relative to average black shales but only U and Mo correlate to organic matter content. Tectonically disturbed and metamorphosed allochthonous samples of Alum Shale on the Caledonian front in western Sweden have even higher amounts for some metals (V, Ni, Zn and Ba) relative to the autochthonous shales in this area and those in southern Sweden. ?? 1991 Springer-Verlag.

  8. Chemical composition of shale oil. 1; Dependence on oil shale origin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesavan, S.; Lee, S.; Polasky, M.E.

    1991-01-01

    This paper reports on shale oils obtained by nitrogen retorting of North Carolina, Cleveland, Ohio, Colorado, Rundle, Stuart, and Condor oil shales that have been chemically characterized by g.c.-m.s. techniques. After species identification, chemical compositions of the shale oils have been related to the geological origins of the parent shales. Based on the characteristics observed in the chromatograms, eight semi-quantitative parameters have been used to describe the chromatograms. Six of these parameters describe the chromatograms. Six of these parameters describe the relative abundance and distribution of straight chain alkanes and alkenes in the chromatograms. The other two parameters represent themore » abundance, relative to the total amount of volatiles in the oil, of alkylbenzenes and alkylphenols.« less

  9. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA

    USGS Publications Warehouse

    Mills, Taylor J.; Mast, M. Alisa; Thomas, Judith C.; Keith, Gabrielle L.

    2016-01-01

    Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (< 0.5 μg L− 1) to 4070 μg L− 1, and primarily are controlled by high groundwater nitrate concentrations that maintain oxidizing conditions in the aquifer despite low dissolved oxygen concentrations. High nitrate concentrations in non-irrigated soils and nitrate isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO3 inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO3 application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential source of Se in

  10. Controls on selenium distribution and mobilization in an irrigated shallow groundwater system underlain by Mancos Shale, Uncompahgre River Basin, Colorado, USA.

    PubMed

    Mills, Taylor J; Mast, M Alisa; Thomas, Judith; Keith, Gabrielle

    2016-10-01

    Elevated selenium (Se) concentrations in surface water and groundwater have become a concern in areas of the Western United States due to the deleterious effects of Se on aquatic ecosystems. Elevated Se concentrations are most prevalent in irrigated alluvial valleys underlain by Se-bearing marine shales where Se can be leached from geologic materials into the shallow groundwater and surface water systems. This study presents groundwater chemistry and solid-phase geochemical data from the Uncompahgre River Basin in Western Colorado, an irrigated alluvial landscape underlain by Se-rich Cretaceous marine shale. We analyzed Se species, major and trace elements, and stable nitrogen and oxygen isotopes of nitrate in groundwater and aquifer sediments to examine processes governing selenium release and transport in the shallow groundwater system. Groundwater Se concentrations ranged from below detection limit (<0.5μgL(-1)) to 4070μgL(-1), and primarily are controlled by high groundwater nitrate concentrations that maintain oxidizing conditions in the aquifer despite low dissolved oxygen concentrations. High nitrate concentrations in non-irrigated soils and nitrate isotopes indicate nitrate is largely derived from natural sources in the Mancos Shale and alluvial material. Thus, in contrast to areas that receive substantial NO3 inputs through inorganic fertilizer application, Se mitigation efforts that involve limiting NO3 application might have little impact on groundwater Se concentrations in the study area. Soluble salts are the primary source of Se to the groundwater system in the study area at-present, but they constitute a small percentage of the total Se content of core material. Sequential extraction results indicate insoluble Se is likely composed of reduced Se in recalcitrant organic matter or discrete selenide phases. Oxidation of reduced Se species that constitute the majority of the Se pool in the study area could be a potential source of Se in the future as

  11. Solar retorting of oil shale

    DOEpatents

    Gregg, David W.

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  12. Detection and quality of previously undetermined Floridan aquifer system discharge to the St. Johns River, Jacksonville, to Green Cove Springs, northeastern Florida

    USGS Publications Warehouse

    Spechler, R.M.

    1996-01-01

    Potentiometric surface maps of the Upper Floridan aquifer show two depressions around the St. Johns River frm the city of Jacksonville south toward Green Cove Springs. These depressions, depending on their locations, are the result of withdrawals from agricultural, industrial, domestic and public-supply wells, diffuse upward leakage, and discharge from springs. Submerged springs that discharge into the St. Johns River between Jacksonville and Green Cove Springs have been thought to exist, but locating and evaluating these springs had not been attempted before this investigation. Thermal infrared imagery, seismic reflection, and numerous interviews with local residents were used to locate springs. An airborne thermal infrared survey was conducted along a section of the St. Johns River in northeastern Florida during February 1992 to detect possible sources of ground-water discharge to the river. An infrared image displayed one thermal anomaly in the St. Johns River which is associated with a previously unknown spring discharge from the Floridan aquifer system. Thermal anomalies also were observed at six locations where municipal facilities discharge treated wastewater to the river. Results of seismic reflection surveys indicate the presence of collapse and other karst features underlying the St. Johns River. These features indicate that the surficial deposits and the Hawthorn Formation that underlie the river probably do not consist of continuous beds. The collapse or deformation of the Hawthorn Formation or the presence of permeable sediment of localized extent could create zones of relatively high vertical leakance. This could provide a more direct hydraulic connection between the Upper Floridan aquifer and the river. Water samples collected from the only submerged spring in the St. Johns River within the Jacksonville-Green Cove Springs reach indicate that the source of the water is the Floridan aquifer system. Chloride and sulfate concentrations were 12 and 340

  13. Combustion heater for oil shale

    DOEpatents

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  14. Combustion heater for oil shale

    DOEpatents

    Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  15. Combuston method of oil shale retorting

    DOEpatents

    Jones, Jr., John B.; Reeves, Adam A.

    1977-08-16

    A gravity flow, vertical bed of crushed oil shale having a two level injection of air and a three level injection of non-oxygenous gas and an internal combustion of at least residual carbon on the retorted shale. The injection of air and gas is carefully controlled in relation to the mass flow rate of the shale to control the temperature of pyrolysis zone, producing a maximum conversion of the organic content of the shale to a liquid shale oil. The parameters of the operation provides an economical and highly efficient shale oil production.

  16. Regional hydrology of the Green River-Moab area, northwestern Paradox Basin, Utah

    USGS Publications Warehouse

    Rush, F.E.; Whitfield, M.S.; Hart, I.M.

    1984-01-01

    The Green River-Moab area encompasses about 7,800 square kilometers or about 25 percent of the Paradox basin. The entire Paradox basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite (salt) beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Confining beds consist of evaporite beds of mostly salt, and over- lying and underlying thick sequences of rocks with minimal permeability; above and below these confining beds are aquifers. The upper Mesozoic sand- stone aquifer, probably is the most permeable hydrogeologic unit of the area and is the subject of this investigation. The principal component of ground- water outflow from this aquifer probably is subsurface flow to regional streams (the Green and Colorado Rivers) and is about 100 million cubic meters per year. All other components of outflow are relatively small. The average annual recharge to the aquifer is about 130 million cubic meters, of which about 20 million cubic meters is from local precipitation. For the lower aquifer, all recharge and discharge probably is by subsurface flow and was not estimated.The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. Brines are present in the confining beds, but solution of beds o£ salt probably is very slow in most parts of the area. No brine discharges' have been identified.

  17. Resolving tectonic, climatic, and geomorphologic signatures in the Eocene Green River Formation, Western U.S

    NASA Astrophysics Data System (ADS)

    Smith, M. E.; Carroll, A. R.

    2011-12-01

    Tectonic lake basins are windows into the co-evolution of terrestrial climate and topography, but the stratigraphic responses to these drivers are complex and incompletely understood. Coring Quaternary lake basins has provided excellent temporal resolution, but is limited to one-dimensional archives of relatively short duration. Conversely, outcrop-based studies of older deposits can elucidate complex lateral facies relationships and longer time periods, but temporal resolution is often poor due to the lack of marine fossils. However, recent advances in radioisotopic dating have produced highly-resolved records of older lacustrine strata, provided volcanic ash beds are present. The Eocene Green River Formation in Wyoming, Colorado, and Utah is such a record, containing numerous 40Ar/39Ar-dated ash horizons with c.a. ±200 ky 2σ uncertainties. At the scale of individual Members of the Green River Formation (100-400 m), lithofacies and faunas differentiate five distinct lake-type intervals: Luman-Scheggs (fluviolacustrine), Rife (saline), Wilkins Peak (hypersaline-alluvial), Lower LaClede (saline), and Upper LaClede (fluviolacustrine). Although published explanations implicate tectonic and/or climatic control of these changes, both lack significant correlation to bulk lithofacies. While stratal geometries imply that the Uinta Mountains were the principle Eocene driver of flexural subsidence for the Greater Green River Basin (GGRB), conglomerate compositions reveal progressive Paleocene through Eocene unroofing rather than a discreet Early Eocene pulse of Laramide tectonism. Similarly, paleofloral evidence for climatic changes is equivocal. Instead, regional provenance and paleoflow patterns suggest that lake-type changes resulted from progressive hydrologic isolation of the GGRB from orogenic highlands to the west, hydrologic closure, then subsequent integration. From ~53 to ~51.5 Ma, Lake Gosiute expanded from a restricted freshwater to expansive saline lake

  18. Assessment of undiscovered shale gas and shale oil resources in the Mississippian Barnett Shale, Bend Arch–Fort Worth Basin Province, North-Central Texas

    USGS Publications Warehouse

    Marra, Kristen R.; Charpentier, Ronald R.; Schenk, Christopher J.; Lewan, Michael D.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Gaswirth, Stephanie B.; Le, Phuong A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.

    2015-12-17

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean volumes of 53 trillion cubic feet of shale gas, 172 million barrels of shale oil, and 176 million barrels of natural gas liquids in the Barnett Shale of the Bend Arch–Fort Worth Basin Province of Texas.

  19. Seismically induced shale diapirism: the Mine d'Or section, Vilaine estuary, Southern Brittany

    NASA Astrophysics Data System (ADS)

    van Vliet-Lanoe, B.; Hibsch, C.; Csontos, L.; Jegouzo, S.; Hallégouët, B.; Laurent, M.; Maygari, A.; Mercier, D.; Voinchet, P.

    2009-07-01

    The Pénestin section (southern Brittany) presents large regular undulations, commonly interpreted as evidence of periglacial pingos. It is an upper Neogene palaeoestuary of the Vilaine River reactivated during the middle Quaternary (middle terrace). It is incised into a thick kaolinitic saprolite and deformed by saprolite diapirs. This paper presents the arguments leading to a mechanistic interpretation of the deformations at Pénestin. Neither recent transpressive tectonics nor diagnostic evidence of periglacial pingo have been found despite evidence for a late paleo-permafrost. The major deformational process is shale diapirism, initially triggered by co-seismic water supply, with further loading and lateral spreading on an already deformed and deeply weathered basement, which allowed the shale diapirism to develop. Deformations are favoured by the liquefaction of the saprolite and a seaward mass movement and recorded, rather distant, effects of an earthquake (c. 280 ka B.P.) resulting from the progressive subsidence of the southern Armorican margin. These deformations triggered by an earthquake are similar to those induced by classical shale diapirism. They are probably common in tectonically active continental environments with shallow water table.

  20. LEAK AND GAS PERMEABILITY TESTING DURING SOIL-GAS SAMPLING AT HAL'S CHEVRON LUST SITE IN GREEN RIVER, UTAH

    EPA Science Inventory

    The results of gas permeability and leak testing during active soil-gas sampling at Hal’s Chevron LUST Site in Green River, Utah are presented. This study was conducted to support development of a passive soil-gas sampling method. Gas mixtures containing helium and methane were...

  1. Evolution of Effluent Chemistry at Crystal Geyser, Green River, Utah

    NASA Astrophysics Data System (ADS)

    Han, W. S.; Park, E.; Choung, S.; Kim, C. Y.; Piao, J.; Han, G.

    2016-12-01

    Several cold-water geysers and springs are located adjacent to the Green River in Utah where two major east-west faults, the Little Grand Wash and the Salt Wash Graben faults, trend roughly parallel to each other. Among these springs and geysers is Crystal Geyser, located immediately north of the Little Grand Wash fault and approximately 6 km south of the town of Green River. In this study, the fluid mechanics of the regularly erupting Crystal Geyser was investigated by instrumenting its conduit with pressure, temperature, pH, EC, and dissolved oxygen sensors, measuring every 1 minute during and between eruptions. The single eruption cycle at Crystal geyser lasted over four days and was composed of four parts: Minor Eruption (mEP), Major Eruption (MEP), Aftershock Eruption (Ae) and Recharge (R). Current eruption patterns exhibit a bimodal distribution although previous measurements and anecdotal evidence suggests that this pattern was different prior to recent seismic activity. Based on chemical characteristics, the primary sourcing aquifers characterized to be both Entrada and Navajo Sandstones with minor contribution from Paradox Formation brine. Contemporaneously, dissolved ionic species vary 0-44% while transition from mEP, MEP and R even if the degree of changes was different from individual ion. Generally, Na+, K+, Cl- and SO42- regularly decrease at the onset and throughout the MEP. These species then increase in concentration during the mEP. Conversely, Ca2+, Mg2+, Fe2+ and Sr2+ decrease and increase in concentration during the MEP and mEP, respectively. Inverse geochemical modeling was conducted to characterize the contribution of Crystal geyser effluents from endmembers of Entrada Sandstone, Navajo Sandstone and Paradox Formations. Results of inverse modeling show that, during the mEP, the Navajo, Entrada and brine supply 62-65%, 33-36% and 1%, respectively. During the MEP, the contribution shifts to 53-56%, 42-45% and 1% for the Navajo, Entrada and Brine

  2. Lithology, reservoir properties, and burial history of portion of Gammon Shale ( Cretaceous), southwestern North Dakota.

    USGS Publications Warehouse

    Gautier, D.L.

    1981-01-01

    In the northern Great Plains, large quantities of biogenic methane are contained at shallow depths in Cretaceous marine mudstones. The Gammon Shale and equivalents of the Milk River Formation in Canada are typical. At Little Missouri field, Gammon reservoirs consist of discontinuous lenses and laminae of siltstone, enclosed by silty clay shale. Large amounts of allogenic clay, including highly expansible mixed-layer illite-smectite cause great water sensitivity and high water-saturation values. Studies show that the Gammon has not undergone thermal conditions sufficient for oil or thermal gas generation. The scarcity of authigenic silicates suggests that diagenesis has been inhibited by the presence of free methane. Shale layers are practically impermeable whereas siltstone microlenses are porous (30-40%) and have permeabilities on the order of 3-30 md. Organic matter in the low-permeability reservoirs served as the source of biogenic methane, and capillary forces acted as the trapping mechanism for gas accumulation. Much of the Gammon interval is potentially economic. -from Author

  3. Porosity evolution during weathering of Marcellus shale

    NASA Astrophysics Data System (ADS)

    Gu, X.; Brantley, S.

    2017-12-01

    Weathering is an important process that continuously converts rock to regolith. Shale weathering is of particular interest because 1) shale covers about 25% of continental land mass; 2) recent development of unconventional shale gas generates large volumes of rock cuttings. When cuttings are exposed at earth's surface, they can release toxic trace elements during weathering. In this study, we investigated the evolution of pore structures and mineral transformation in an outcrop of Marcellus shale - one of the biggest gas shale play in North America - at Frankstown, Pennsylvania. A combination of neutron scattering and imaging was used to characterize the pore structures from nm to mm. The weathering profile of Marcellus shale was also compared to the well-studied Rose Hill shale from the Susquehanna Shale Hills critical zone observatory nearby. This latter shale has a similar mineral composition as Marcellus shale but much lower concentrations of pyrite and OC. The Marcellus shale formation in outcrop overlies a layer of carbonate at 10 m below land surface with low porosity (<3%). All the shale samples above the carbonate layer are almost completely depleted in carbonate, plagioclase, chlorite and pyrite. The porosities in the weathered Marcellus shale are twice as high as in protolith. The pore size distribution exhibits a broad peak for pores of size in the range of 10s of microns, likely due to the loss of OC and/or dissolution of carbonate during weathering. In the nearby Rose Hill shale, the pyrite and carbonate are sharply depleted close to the water table ( 15-20 m at ridgetop); while chlorite and plagioclase are gradually depleted toward the land surface. The greater weathering extent of silicates in the Marcellus shale despite the similarity in climate and erosion rate in these two neighboring locations is attributed to 1) the formation of micron-size pores increases the infiltration rate into weathered Marcellus shale and therefore promotes mineral

  4. Hydrologic data for the Obed River watershed, Tennessee

    USGS Publications Warehouse

    Knight, Rodney R.; Wolfe, William J.; Law, George S.

    2014-01-01

    The Obed River watershed drains a 520-square-mile area of the Cumberland Plateau physiographic region in the Tennessee River basin. The watershed is underlain by conglomerate, sandstone, and shale of Pennsylvanian age, which overlie Mississippian-age limestone. The larger creeks and rivers of the Obed River system have eroded gorges through the conglomerate and sandstone into the deeper shale. The largest gorges are up to 400 feet deep and are protected by the Wild and Scenic Rivers Act as part of the Obed Wild and Scenic River, which is managed by the National Park Service. The growing communities of Crossville and Crab Orchard, Tennessee, are located upstream of the gorge areas of the Obed River watershed. The cities used about 5.8 million gallons of water per day for drinking water in 2010 from Lake Holiday and Stone Lake in the Obed River watershed and Meadow Park Lake in the Caney Fork River watershed. The city of Crossville operates a wastewater treatment plant that releases an annual average of about 2.2 million gallons per day of treated effluent to the Obed River, representing as much as 10 to 40 percent of the monthly average streamflow of the Obed River near Lancing about 35 miles downstream, during summer and fall. During the past 50 years (1960–2010), several dozen tributary impoundments and more than 2,000 small farm ponds have been constructed in the Obed River watershed. Synoptic streamflow measurements indicate a tendency towards dampened high flows and slightly increased low flows as the percentage of basin area controlled by impoundments increases.

  5. The Influence of the Green River Lake System on the Local Climate During the Early Eocene Period

    NASA Astrophysics Data System (ADS)

    Elguindi, N.; Thrasher, B.; Sloan, L. C.

    2006-12-01

    Several modeling efforts have attempted to reproduce the climate of the early Eocene North America. However when compared to proxy data, General Circulation Models (GCMs) tend to produce a large-scale cold-bias. Although higher resolution Regional Climate Models (RCMs) that are able to resolve many of the sub-GCM scale forcings improve this cold bias, RCMs are still unable to reproduce the warm climate of the Eocene. From geologic data, we know that the greater Green River and the Uinta basins were intermontane basins with a large lake system during portions of the Eocene. We speculate that the lack of presence of these lakes in previous modeling studies may explain part of the persistent cold-bias of GCMs and RCMs. In this study, we utilize a regional climate model coupled with a 1D-lake model in an attempt to reduce the uncertainties and biases associated with climate simulations over Eocene western North American. Specifically, we include the Green River Lake system in our RCM simulation and compare climates with and without lakes to proxy data.

  6. Organoporosity Evaluation of Shale: A Case Study of the Lower Silurian Longmaxi Shale in Southeast Chongqing, China

    PubMed Central

    Chen, Fangwen; Lu, Shuangfang; Ding, Xue

    2014-01-01

    The organopores play an important role in determining total volume of hydrocarbons in shale gas reservoir. The Lower Silurian Longmaxi Shale in southeast Chongqing was selected as a case to confirm the contribution of organopores (microscale and nanoscale pores within organic matters in shale) formed by hydrocarbon generation to total volume of hydrocarbons in shale gas reservoir. Using the material balance principle combined with chemical kinetics methods, an evaluation model of organoporosity for shale gas reservoirs was established. The results indicate that there are four important model parameters to consider when evaluating organoporosity in shale: the original organic carbon (w(TOC0)), the original hydrogen index (I H0), the transformation ratio of generated hydrocarbon (F(R o)), and the organopore correction coefficient (C). The organoporosity of the Lower Silurian Longmaxi Shale in the Py1 well is from 0.20 to 2.76%, and the average value is 1.25%. The organoporosity variation trends and the residual organic carbon of Longmaxi Shale are consistent in section. The residual organic carbon is indicative of the relative levels of organoporosity, while the samples are in the same shale reservoirs with similar buried depths. PMID:25184155

  7. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global common clay and shale industry, particularly in the U.S. It claims that common clay and shale is mainly used in the manufacture of heavy clay products like brick, flue tile and sewer pipe. The main producing states in the U.S. include North Carolina, New York and Oklahoma. Among the firms that manufacture clay and shale-based products are Mid America Brick & Structural Clay Products LLC and Boral USA.

  8. Apparatus for oil shale retorting

    DOEpatents

    Lewis, Arthur E.; Braun, Robert L.; Mallon, Richard G.; Walton, Otis R.

    1986-01-01

    A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

  9. Method of operating an oil shale kiln

    DOEpatents

    Reeves, Adam A.

    1978-05-23

    Continuously determining the bulk density of raw and retorted oil shale, the specific gravity of the raw oil shale and the richness of the raw oil shale provides accurate means to control process variables of the retorting of oil shale, predicting oil production, determining mining strategy, and aids in controlling shale placement in the kiln for the retorting.

  10. Oil Shale

    USGS Publications Warehouse

    Birdwell, Justin E.

    2017-01-01

    Oil shales are fine-grained sedimentary rocks formed in many different depositional environments (terrestrial, lacustrine, marine) containing large quantities of thermally immature organic matter in the forms of kerogen and bitumen. If defined from an economic standpoint, a rock containing a sufficient concentration of oil-prone kerogen to generate economic quantities of synthetic crude oil upon heating to high temperatures (350–600 °C) in the absence of oxygen (pyrolysis) can be considered an oil shale.

  11. Numerical Modeling of Gas and Water Flow in Shale Gas Formations with a Focus on the Fate of Hydraulic Fracturing Fluid.

    PubMed

    Edwards, Ryan W J; Doster, Florian; Celia, Michael A; Bandilla, Karl W

    2017-12-05

    Hydraulic fracturing in shale gas formations involves the injection of large volumes of aqueous fluid deep underground. Only a small proportion of the injected water volume is typically recovered, raising concerns that the remaining water may migrate upward and potentially contaminate groundwater aquifers. We implement a numerical model of two-phase water and gas flow in a shale gas formation to test the hypothesis that the remaining water is imbibed into the shale rock by capillary forces and retained there indefinitely. The model includes the essential physics of the system and uses the simplest justifiable geometrical structure. We apply the model to simulate wells from a specific well pad in the Horn River Basin, British Columbia, where there is sufficient available data to build and test the model. Our simulations match the water and gas production data from the wells remarkably closely and show that all the injected water can be accounted for within the shale system, with most imbibed into the shale rock matrix and retained there for the long term.

  12. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The clay and shale market in 1999 is reviewed. In the U.S., sales or use of clay and shale increased from 26.4 million st in 1998 to 27.3 million st in 1999, with an estimated 1999 value of production of $143 million. These materials were used to produce structural clay products, lightweight aggregates, cement, and ceramics and refractories. Production statistics for clays and shales and for their uses in 1999 are presented.

  13. Eastern Devonian shales: Organic geochemical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, I.A.; Hatchner, P.G.; Miknis, F.P.

    The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Illinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of themore » fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic geochemical aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic geochemical studies on Eastern Devonian shales are reviewed. Recent solid state /sup 13/C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a ''coaly'' nature and hence more prone to producing natural gas.« less

  14. Summary of fluvial sediment collected at selected sites on the Gunnison River in Colorado and the Green and Duchesne Rivers in Utah, Water Years 2005-2008

    USGS Publications Warehouse

    Williams, Cory A.; Gerner, Steven J.; Elliott, John G.

    2009-01-01

    The Colorado River Basin provides habitat for 14 native fish, including four endangered species protected under the Federal Endangered Species Act of 1973 - Colorado pikeminnow (Ptychocheilus lucius), razorback sucker (Xyrauchen texanus), bonytail (Gila elegans), and humpback chub (Gila cypha). These endangered fish species once thrived in the Colorado River system, but water-resource development, including the building of numerous diversion dams and several large reservoirs, and the introduction of nonnative fish, resulted in large reductions in the numbers and range of the four species. Knowledge of sediment dynamics in river reaches important to specifc life-stages of the endangered fishes is critical to understanding the effects of flow regimes on endangered fish habitats. The U.S. Geological Survey, in cooperation with the Upper Colorado River Endangered Fish Recovery Program, Bureau of Reclamation, U.S. Fish and Wildlife Service, and Wyoming State Engineer's Office, implemented daily sediment sampling at three locations in critical habitat reaches in the Upper Colorado River Basin. This report presents a summary of data collected at these sites, including water and suspended-sediment discharge, streambed compositions, and channel and flood-plain topography. The locations are at U.S. Geological Survey streamflow-gaging stations 09152500, Gunnison River near Grand Junction, Colorado; 09261000, Green River near Jensen, Utah; and 09302000, Duchesne River near Randlett, Utah.

  15. CONTROL OF SULFUR EMISSIONS FROM OIL SHALE RETORTING USING SPEND SHALE ABSORPTION

    EPA Science Inventory

    The paper gives results of a detailed engineering evaluation of the potential for using an absorption on spent shale process (ASSP) for controlling sulfur emissions from oil shale plants. The evaluation analyzes the potential effectiveness and cost of absorbing SO2 on combusted s...

  16. Carbon sequestration in depleted oil shale deposits

    DOEpatents

    Burnham, Alan K; Carroll, Susan A

    2014-12-02

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  17. Hydrology of the cavernous limestones of the Mammoth Cave area, Kentucky

    USGS Publications Warehouse

    Brown, Richmond F.

    1966-01-01

    The Mammoth Cave National Park in central Kentucky offers a unique opportunity to study the occurrence of ground water in limestone under natural conditions. Ground water occurs as perched and semiperched bodies in alternate sandstone, shale, and limestone formations and under water-table conditions at the approximate level of the Green River in thick soluble limestone. Three continuous recorders that operated for 5 years indicate that precipitation on the Mammoth Cave plateau recharges the underlying sandstone rapidly. Ground water from the sandstone discharges horizontally to the edges of the plateau and vertically to underlying formations. Some of the precipitation recharges underlying formations almost immediately through overland flow to sinkholes and free fall through open shafts to pools at the water table. Much of the precipitation on the Pennyroyal plain flows overland into sinkholes and then through solution openings to the Green River. Water from the Green River flows into limestone solution channels under Mammoth Cave plateau at some stages, and this water discharges again to the Green River downstream. The presence of salt water, high in chloride in the Green River, makes it possible to trace the movement of the river water through the underground streams. Graphs show relationships of chloride concentration, stage of the Green River, time, precipitation, ground-water levels, and stratigraphy.

  18. Laboratory characterization of shale pores

    NASA Astrophysics Data System (ADS)

    Nur Listiyowati, Lina

    2018-02-01

    To estimate the potential of shale gas reservoir, one needs to understand the characteristics of pore structures. Characterization of shale gas reservoir microstructure is still a challenge due to ultra-fine grained micro-fabric and micro level heterogeneity of these sedimentary rocks. The sample used in the analysis is a small portion of any reservoir. Thus, each measurement technique has a different result. It raises the question which methods are suitable for characterizing pore shale. The goal of this paper is to summarize some of the microstructure analysis tools of shale rock to get near-real results. The two analyzing pore structure methods are indirect measurement (MIP, He, NMR, LTNA) and direct observation (SEM, TEM, Xray CT). Shale rocks have a high heterogeneity; thus, it needs multiscale quantification techniques to understand their pore structures. To describe the complex pore system of shale, several measurement techniques are needed to characterize the surface area and pore size distribution (LTNA, MIP), shapes, size and distribution of pore (FIB-SEM, TEM, Xray CT), and total porosity (He pycnometer, NMR). The choice of techniques and methods should take into account the purpose of the analysis and also the time and budget.

  19. Investigating the Potential Impacts of Energy Production in the Marcellus Shale Region Using the Shale Network Database

    NASA Astrophysics Data System (ADS)

    Brantley, S.; Pollak, J.

    2016-12-01

    The Shale Network's extensive database of water quality observations in the Marcellus Shale region enables educational experiences about the potential impacts of resource extraction and energy production with real data. Through tools that are open source and free to use, interested parties can access and analyze the very same data that the Shale Network team has used in peer-reviewed publications about the potential impacts of hydraulic fracturing on water. The development of the Shale Network database has been made possible through efforts led by an academic team and involving numerous individuals from government agencies, citizen science organizations, and private industry. With these tools and data, the Shale Network team has engaged high school students, university undergraduate and graduate students, as well as citizens so that all can discover how energy production impacts the Marcellus Shale region, which includes Pennsylvania and other nearby states. This presentation will describe these data tools, how the Shale Network has used them in educational settings, and the resources available to learn more.

  20. Vitrinite reflectance data for the Greater Green River basin, southwestern Wyoming, northwestern Colorado, and northeastern Utah

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2002-01-01

    The Greater Green River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 25,000 square miles in southwestern Wyoming, northwestern Colorado, and northeastern Utah (fig. 1). Important conventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Cambrian through Tertiary (Law, 1996). In addition, an extensive overpressured basin - centered gas accumulation has also been identified in Cretaceous and Tertiary reservoirs by numerous researchers including Law (1984a, 1996), Law and others (1980, 1989), McPeek (1981), and Spencer (1987). The purpose of this report is to present new vitrinite reflectance data to be used in support of the U.S Geological Survey assessment of undiscovered oil and gas resources of the Greater Green River Basin. One hundred eighty-six samples were collected from Cretaceous and Tertiary coalbearing strata (figs. 1 and 2) in an effort to better understand and characterize the thermal maturation and burial history of potential source rocks. Two samples were from core, one from outcrop, and the remainder from well cuttings. These data were collected to supplement previously published data by Law (1984b), Pawlewicz and others (1986), Merewether and others (1987), and Garcia-Gonzalez and Surdam (1995) and are presented in table 1.

  1. Solar heated oil shale pyrolysis process

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1985-01-01

    An improved system for recovery of a liquid hydrocarbon fuel from oil shale is presented. The oil shale pyrolysis system is composed of a retort reactor for receiving a bed of oil shale particules which are heated to pyrolyis temperature by means of a recycled solar heated gas stream. The gas stream is separated from the recovered shale oil and a portion of the gas stream is rapidly heated to pyrolysis temperature by passing it through an efficient solar heater. Steam, oxygen, air or other oxidizing gases can be injected into the recycle gas before or after the recycle gas is heated to pyrolysis temperature and thus raise the temperature before it enters the retort reactor. The use of solar thermal heat to preheat the recycle gas and optionally the steam before introducing it into the bed of shale, increases the yield of shale oil.

  2. Methanogenic archaea in marcellus shale: a possible mechanism for enhanced gas recovery in unconventional shale resources.

    PubMed

    Tucker, Yael Tarlovsky; Kotcon, James; Mroz, Thomas

    2015-06-02

    Marcellus Shale occurs at depths of 1.5-2.5 km (5000 to 8000 feet) where most geologists generally assume that thermogenic processes are the only source of natural gas. However, methanogens in produced fluids and isotopic signatures of biogenic methane in this deep shale have recently been discovered. This study explores whether those methanogens are indigenous to the shale or are introduced during drilling and hydraulic fracturing. DNA was extracted from Marcellus Shale core samples, preinjected fluids, and produced fluids and was analyzed using Miseq sequencing of 16s rRNA genes. Methanogens present in shale cores were similar to methanogens in produced fluids. No methanogens were detected in injected fluids, suggesting that this is an unlikely source and that they may be native to the shale itself. Bench-top methane production tests of shale core and produced fluids suggest that these organisms are alive and active under simulated reservoir conditions. Growth conditions designed to simulate the hydrofracture processes indicated somewhat increased methane production; however, fluids alone produced relatively little methane. Together, these results suggest that some biogenic methane may be produced in these wells and that hydrofracture fluids currently used to stimulate gas recovery could stimulate methanogens and their rate of producing methane.

  3. Rare earth elements in river waters

    NASA Technical Reports Server (NTRS)

    Goldstein, Steven J.; Jacobsen, Stein B.

    1988-01-01

    To characterize the input to the oceans of rare earth elements (REE) in the dissolved and the suspended loads of rivers, the REE concentrations were measured in samples of Amazon, Indus, Mississippi, Murray-Darling, and Ohio rivers and in samples of smaller rivers that had more distinct drainage basin lithology and water chemistry. It was found that, in the suspended loads of small rivers, the REE pattern was dependent on drainage basin geology, whereas the suspended loads in major rivers had relatively uniform REE patterns and were heavy-REE depleted relative to the North American Shale composite (NASC). The dissolved loads in the five major rivers had marked relative heavy-REE enrichments, relative to the NASC and the suspended material, with the (La/Yb)N ratio of about 0.4 (as compared with the ratio of about 1.9 in suspended loads).

  4. Hydrologic alteration affects aquatic plant assemblages in an arid-land river

    USGS Publications Warehouse

    Vinson, Mark; Hestmark, Bennett; Barkworth, Mary E.

    2014-01-01

    We evaluated the effects of long-term flow alteration on primary-producer assemblages. In 1962, Flaming Gorge Dam was constructed on the Green River. The Yampa River has remained an unregulated hydrologically variable river that joins the Green River 100 km downstream from Flaming Gorge Dam. In the 1960s before dam construction only sparse occurrences of two macroalgae, Cladophora and Chara, and no submerged vascular plants were recorded in the Green and Yampa rivers. In 2009–2010, aquatic plants were abundant and widespread in the Green River from the dam downstream to the confluence with the Yampa River. The assemblage consisted of six vascular species, Elodea canadensis, Myriophyllum sibiricum, Nasturtium officinale,Potamogeton crispus, Potamogeton pectinatus, and Ranunculus aquatilis, the macroalgae Chara and Cladophora, and the bryophyte, Amblystegium riparium. In the Green River downstream from the Yampa River, and in the Yampa River, only sparse patches of Chara and Cladophora growing in the splash zone on boulders were collected. We attribute the observed changes in the Green River to an increase in water transparency and a reduction in suspended and bed-load sediment and high flow disturbances. The lack of hydrophyte colonization downstream from the confluence with the Yampa River has implications for understanding tributary amelioration of dam effects and for designing more natural flow-regime schedules downstream from large dams.

  5. Geology, geochemistry, and genesis of the Greens Creek massive sulfide deposit, Admiralty Island, southeastern Alaska

    USGS Publications Warehouse

    Taylor, Cliff D.; Johnson, Craig A.

    2010-01-01

    precious-metal-rich silica-barite-carbonate white ores began at low temperature in a shallow, subaqueous setting, probably a thin carbonate shelf on the flanks of the Alexander landmass. Epigenetic carbonate replacement textures in the footwall dolostones are overlain by stratiform silica-carbonate-barite-rich ores and indicate that early mineralization formed at and just beneath the paleo sea floor by mixing of a reduced, precious-metal-rich, base-metal-poor hydrothermal fluid with oxygenated seawater. As rifting intensified, the shelf was downfaulted and isolated as a graben. Isolation of the basin and onset of starved-basin shale sedimentation was concurrent with emplacement of mafic-ultramafic intrusives at shallow levels in the rift, resulting in an increasingly higher temperature and progressively more anoxic ore-forming environment. The formation of the main stage of massive sulfide ores began as the supply of bacterially reduced sulfur increased in the accumulating shales. As the main-stage mineralization intensified, shale sedimentation inundated the hydrothermal system, eventually forming a cap. Biogenic sulfate reduction supplied reduced sulfur to the base of the shales where mixing occurred with hot, base-metal-rich hydrothermal fluids. Ore deposition continued by destruction and epigenetic replacement of the early white ores in proximal areas and by inflation and diagenetic replacement of unlithified shale at the interface between the white ores and the base of the shale cap. Ore deposition waned as the shales became lithified and as the supply of bacterially reduced sulfur to the site of ore deposition ceased. The final stages of rifting resulted in the emplacement of mafic-ultramafic intrusive rocks into the Greens Creek system and extrusion of voluminous basaltic flows at the top of the Triassic section. Greenschist facies metamorphism during the Jurassic-Cretaceous accretion of the Alexander terrane to the continental margin resulted in recrystalli

  6. Integrated analysis and interpretation of microseismic monitoring of hydraulic fracturing in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Zorn, Erich Victor

    In 2012 and 2013, hydraulic fracturing was performed at two Marcellus Shale well pads, under the supervision of the Energy Corporation of America. Six lateral wells were hydraulically fractured in Greene County in southwestern Pennsylvania and one lateral well was fractured in Clearfield County in north-central Pennsylvania. During hydraulic fracturing operations, microseismic monitoring by strings of downhole geophones detected a combination of >16,000 microseismic events at the two sites. High quality traditional and geomechanical well logs were acquired at Clearfield County, as well as tomographic velocity profiles before and after stimulation. In partnership with the US Department of Energy's National Energy Technology Laboratory, I completed detailed analysis of these geophysical datasets to maximize the understanding of the engineering and geological conditions in the reservoir, the connection between hydraulic input and microseismic expression, and the geomechanical factors that control microseismic properties. Additionally, one broad-band surface seismometer was deployed at Greene County and left to passively monitor site acoustics for the duration of hydraulic fracturing. Data from this instrument shows the presence of slow-slip or long period/long duration (LPLD) seismicity. In years prior to our investigation, lab-scale fracturing studies and broadband seismic monitoring of hydraulic fracturing had been completed by other researchers in unconventional shale and tight sand in Texas and Canada. This is the first study of LPLD seismicity in the Marcellus Shale and reveals aseismic deformation during hydraulic fracturing that could account for a large portion of "lost" hydraulic energy input. Key accomplishments of the studies contained in this dissertation include interpreting microseismic data in terms of hydraulic pumping data and vice versa, verifying the presence of LPLD seismicity during fracturing, establishing important geomechanical controls on the

  7. Mongolian Oil Shale, hosted in Mesozoic Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Bat-Orshikh, E.; Lee, I.; Norov, B.; Batsaikhan, M.

    2016-12-01

    Mongolia contains several Mesozoic sedimentary basins, which filled >2000 m thick non-marine successions. Late Triassic-Middle Jurassic foreland basins were formed under compression tectonic conditions, whereas Late Jurassic-Early Cretaceous rift valleys were formed through extension tectonics. Also, large areas of China were affected by these tectonic events. The sedimentary basins in China host prolific petroleum and oil shale resources. Similarly, Mongolian basins contain hundreds meter thick oil shale as well as oil fields. However, petroleum system and oil shale geology of Mongolia remain not well known due to lack of survey. Mongolian oil shale deposits and occurrences, hosted in Middle Jurassic and Lower Cretaceous units, are classified into thirteen oil shale-bearing basins, of which oil shale resources were estimated to be 787 Bt. Jurassic oil shale has been identified in central Mongolia, while Lower Cretaceous oil shale is distributed in eastern Mongolia. Lithologically, Jurassic and Cretaceous oil shale-bearing units (up to 700 m thick) are similar, composed mainly of alternating beds of oil shale, dolomotic marl, siltstone and sandstone, representing lacustrine facies. Both Jurassic and Cretaceous oil shales are characterized by Type I kerogen with high TOC contents, up to 35.6% and low sulfur contents ranging from 0.1% to 1.5%. Moreover, S2 values of oil shales are up to 146 kg/t. The numbers indicate that the oil shales are high quality, oil prone source rocks. The Tmax values of samples range from 410 to 447, suggesting immature to early oil window maturity levels. PI values are consistent with this interpretation, ranging from 0.01 to 0.03. According to bulk geochemistry data, Jurassic and Cretaceous oil shales are identical, high quality petroleum source rocks. However, previous studies indicate that known oil fields in Eastern Mongolia were originated from Lower Cretaceous oil shales. Thus, further detailed studies on Jurassic oil shale and its

  8. Electronic tagging of green sturgeon reveals population structure and movement among estuaries

    USGS Publications Warehouse

    Lindley, S.T.; Erickson, D.L.; Moser, M.L.; Williams, G.; Langness, O.P.; McCovey, B.W.; Belchik, M.; Vogel, D.; Pinnix, W.; Kelly, J.T.; Heublein, J.C.; Klimley, A.P.

    2011-01-01

    Green sturgeon Acipenser medirostris spend much of their lives outside of their natal rivers, but the details of their migrations and habitat use are poorly known, which limits our understanding of how this species might be affected by human activities and habitat degradation.We tagged 355 green sturgeon with acoustic transmitters on their spawning grounds and in known nonspawning aggregation sites and examined their movement among these sites and other potentially important locations using automated data-logging hydrophones. We found that green sturgeon inhabit a number of estuarine and coastal sites over the summer, including the Columbia River estuary, Willapa Bay, Grays Harbor, and the estuaries of certain smaller rivers in Oregon, especially the Umpqua River estuary. Green sturgeon from different natal rivers exhibited different patterns of habitat use; most notably, San Francisco Bay was used only by Sacramento River fish, while the Umpqua River estuary was used mostly by fish from the Klamath and Rogue rivers. Earlier work, based on analysis of microsatellite markers, suggested that the Columbia River mixed stock was mainly composed of fish from the Sacramento River, but our results indicate that fish from the Rogue and Klamath River populations frequently use the Columbia River as well. We also found evidence for the existence of migratory contingentswithin spawning populations.Our findings have significant implications for the management of the threatened Sacramento River population of green sturgeon, which migrates to inland waters outside of California where anthropogenic impacts, including fisheries bycatch and water pollution, may be a concern. Our results also illustrate the utility of acoustic tracking to elucidate the migratory behavior of animals that are otherwise difficult to observe. ?? American Fisheries Society 2011.

  9. Black shale - Its deposition and diagenesis.

    USGS Publications Warehouse

    Tourtelot, H.A.

    1979-01-01

    Black shale is a dark-colored mudrock containing organic matter that may have generated hydrocarbons in the subsurface or that may yield hydrocarbons by pyrolysis. Many black shale units are enriched in metals severalfold above expected amounts in ordinary shale. Some black shale units have served as host rocks for syngenetic metal deposits.Black shales have formed throughout the Earth's history and in all parts of the world. This suggests that geologic processes and not geologic settings are the controlling factors in the accumulation of black shale. Geologic processes are those of deposition by which the raw materials of black shale are accumulated and those of diagenesis in response to increasing depth of burial.Depositional processes involve a range of relationships among such factors as organic productivity, clastic sedimentation rate, and the intensity of oxidation by which organic matter is destroyed. If enough organic material is present to exhaust the oxygen in the environment, black shale results.Diagenetic processes involve chemical reactions controlled by the nature of the components and by the pressure and temperature regimens that continuing burial imposes. For a thickness of a few meters beneath the surface, sulfate is reduced and sulfide minerals may be deposited. Fermentation reactions in the next several hundred meters result in biogenic methane, followed successively at greater depths by decarboxylation reactions and thermal maturation that form additional hydrocarbons. Suites of newly formed minerals are characteristic for each of the zones of diagenesis.

  10. Detailed north-south cross section showing environments of deposition, organic richness, and thermal maturities of lower Tertiary rocks in the Uinta Basin, Utah

    USGS Publications Warehouse

    Johnson, Ronald C.

    2014-01-01

    The Uinta Basin of northeast Utah has produced large amounts of hydrocarbons from lower Tertiary strata since the 1960s. Recent advances in drilling technologies, in particular the development of efficient methods to drill and hydraulically fracture horizontal wells, has spurred renewed interest in producing hydrocarbons from unconventional low-permeability dolomite and shale reservoirs in the lacustrine, Eocene Green River Formation. The Eocene Green River Formation was deposited in Lake Uinta, a long-lived saline lake that occupied the Uinta Basin, the Piceance Basin to the east, and the intervening Douglas Creek arch. The focus of recent drilling activity has been the informal Uteland Butte member of the Green River Formation and to a much lesser extent the overlying R-0 oil shale zone of the Green River Formation. Initial production rates ranging from 500 to 1,500 barrels of oil equivalent per day have been reported from the Uteland Butte member from horizontal well logs that are as long as 4,000 feet (ft);. The cross section presented here extends northward from outcrop on the southern margin of the basin into the basin’s deep trough, located just south of the Uinta Mountains, and transects the area where this unconventional oil play is developing. The Monument Butte field, which is one of the fields located along this line of section, has produced hydrocarbons from conventional sandstone reservoirs in the lower part of the Green River Formation and underlying Wasatch Formation since 1981. A major fluvial-deltaic system entered Lake Uinta from the south, and this new line of section is ideal for studying the effect of the sediments delivered by this drainage on hydrocarbon reservoirs in the Green River Formation. The cross section also transects the Greater Altamont-Bluebell field in the deepest part of the basin, where hydrocarbons have been produced from fractured, highly overpressured marginal lacustrine and fluvial reservoirs in the Green River, Wasatch

  11. Baseline groundwater chemistry characterization in an area of future Marcellus shale gas development

    NASA Astrophysics Data System (ADS)

    Eisenhauer, P.; Zegre, N.; Edwards, P. J.; Strager, M.

    2012-12-01

    The recent increase in development of the Marcellus shale formation for natural gas in the mid-Atlantic can be attributed to advances in unconventional extraction methods, namely hydraulic fracturing, a process that uses water to pressurize and fracture relatively impermeable shale layers to release natural gas. In West Virginia, the Department of Energy estimates 95 to 105 trillion cubic feet (TCF) of expected ultimately recovery (EUR) of natural gas for this formation. With increased development of the Marcellus shale formation comes concerns for the potential of contamination to groundwater resources that serve as primary potable water sources for many rural communities. However, the impacts of this practice on water resources are poorly understood because of the lack of controlled pre versus post-drilling experiments attributed to the rapid development of this resource. To address the knowledge gaps of the potential impacts of Marcellus shale development on groundwater resources, a pre versus post-drilling study has been initiated by the USFS Fernow Experimental Forest in the Monongahela National Forest. Drilling is expected to start at three locations within the next year. Pre-drilling water samples were collected and analyzed from two groundwater wells, a shallow spring, a nearby lake, and river to characterize background water chemistry and identify potential end-members. Geochemical analysis includes major ions, methane, δ13C-CH4, δ2H-CH4, 226Radium, and δ13C-DIC. In addition, a GIS-based conceptual ground water flow model was developed to identify possible interactions between shallow groundwater and natural gas wells given gas well construction failure. This model is used to guide management decisions regarding groundwater resources in an area of increasing shale gas development.

  12. Controls on porphyrin concentrations of Pennsylvanian organic-rich shales, Western U.S.A.

    USGS Publications Warehouse

    Clayton, J.L.; Michael, G.E.

    1990-01-01

    Organic-rich black shales of Middle Pennsylvanian (Desmoinesian) age occur over much of the central U.S. and as far west as the northern Denver and southeastern Powder River basins. Total organic carbon contents (Corg) are commonly greater than 10 wt %. Porphyrin concentrations (vanadyl + nickel) are as high as 40000 ppm relative to extractable bitumen. In bulk, the organic matter contained in the shales is mostly type II and III (Rock-Eval hydrogen indexes 200-400 mg of hydrocarbons/g of Corg). The finding of high porphyrin concentrations in type III organic matter is unusual but can be explained by a depositional model wherein high preservation of primary organic production (water column photosynthesis) is combined with substantial input of allochthonous organic matter. The allochthonous organic matter (low porphyrin concentration) may come from erosion during advance of the sea across the area or from fluvial transport from shore.

  13. Biomarkers of effects of hypoxia and oil-shale contaminated sediments in laboratory-exposed gibel carp (Carassius auratus gibelio).

    PubMed

    Kreitsberg, Randel; Baršienė, Janina; Freiberg, Rene; Andreikėnaitė, Laura; Tammaru, Toomas; Rumvolt, Kateriina; Tuvikene, Arvo

    2013-12-01

    In North-East Estonia, considerable amounts of toxicants (e.g. polycyclic aromatic hydrocarbons (PAHs), phenols, heavy metals) leach into water bodies through discharges from the oil-shale industry. In addition, natural and anthropogenic hypoxic events in water bodies affect the health of aquatic organisms. Here we report a study on the combined effects of contaminated sediment and hypoxia on the physiology of gibel carp (Carssius auratus gibelio). We conducted a laboratory exposure study that involved exposure to polluted sediments from oil-shale industries (River Purtse) and sediments from a relatively clean environment (River Selja), together with sediments spiked with PAHs. The oxygen content (saturation vs. hypoxia (< 2 mg/L)) was changed to reflect hypoxia. A multi-biomarker approach was chosen to enable the combined effects to be assessed comprehensively and integratively. We used HPLC to measure the PAH concentration in sediment and fish muscle, fixed wavelength fluorescence (FF) analyses to indicate the presence of PAH metabolites in fish bile, and nuclear abnormalities in erythrocytes as markers of geno- and cyto-toxicity; and we monitored the change in body condition and measured EROD activity to indicate CYP1A induction. High levels of PAH conjugates in fish bile were found in the group exposed to the Purtse River sediment under hypoxia. The results suggested that induction of the CYP1A gene was modulated by hypoxia as well as by heavy metals. We found a correlation between several erythrocyte abnormalities (8-shaped nuclei and blebbed nuclei) and PAH metabolite content in fish. In conclusion, a measurable effect of pollution from the oil-shale industry on fish health parameters was clear under different oxygen levels. © 2013 Elsevier Inc. All rights reserved.

  14. River and fish pollution in Malaysia: A green ergonomics perspective.

    PubMed

    Poon, Wai Ching; Herath, Gamini; Sarker, Ashutosh; Masuda, Tadayoshi; Kada, Ryohei

    2016-11-01

    Human activities, such as industrial, agricultural, and domestic pursuits, discharge effluents into riverine ecological systems that contains aquatic resources, such as fish, which are also used by humans. We conducted case studies in Malaysia to investigate the impacts of these human activities on water and fish resources, as well as on human well-being from an ergonomics perspective. This research shows that a green ergonomics approach can provide us with useful insights into sustainable relationships between humans and ecology in facilitating human well-being in consideration of the overall performance of the social-ecological system. Heavy metal concentrations contained in the effluents pollute river water and contaminate fish, eventually creating significant health risks and economic costs for residents, including the polluters. The study suggests a number of policy interventions to change human behavior and achieve greater collaboration between various levels of government, academia, civil society, and businesses to help establish sustainable relationships between humans and ecology in Malaysia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Data Validation Package - June 2016 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linard, Joshua; Price, Jeffrey

    This event included annual sampling of groundwater and surface water locations at the Green River, Utah, Disposal Site. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lrnldownloads/sampling-and- analysis-plan-us-department-energy-office-legacy-management-sites). Samples were collected from 15 monitoring wells and two surface locations at the disposal site as specified in the draft 2011 Ground Water Compliance Action Plan for the Green River, Utah, Disposal Site. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. A duplicate sample was collected from location 0179. Onemore » equipment blank was collected during this sampling event. Water levels were measured at all monitoring wells that were sampled. See Attachment 2, Trip Reports for additional details. The analytical data and associated qualifiers can be viewed in environmental database reports and are also available for viewing with dynamic mapping via the GEMS (Geospatial Environmental Mapping System) website at http://gems.lm.doe.gov/#. No issues were identified during the data validation process that requires additional action or follow-up.« less

  16. An interesting new genus of Berothinae (Neuroptera: Berothidae) from the early Eocene Green River Formation, Colorado.

    PubMed

    Makarkin, Vladimir N

    2017-01-30

    Xenoberotha angustialata gen. et sp. nov. (Neuroptera: Berothidae) is described from the early Eocene of the Parachute Creek Member of the Green River Formation (U.S.A., Colorado). It is assigned to Berothinae as an oldest known member of the subfamily based on the presence of scale-like setae on the foreleg coxae. Distal crossveins of the fourth (outer) gradate series which are located very close to the wing margin in Xenoberotha gen. nov. is a character state previously unknown in Berothinae.

  17. Utica Shale Energy and Environment Laboratory (USEEL)

    NASA Astrophysics Data System (ADS)

    Cole, D. R.

    2017-12-01

    Despite the rapid growth of the UOG industry in the Appalachian Basin of Pennsylvania and neighboring states, there are still fundamental concerns regarding the environmentally sound and cost efficient extraction of this unique asset. To address these concerns, Ohio State University has established the Department of Energy-funded Utica Shale Energy and Environment Laboratory, a dedicated research program where scientists from the university will work with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), academia, industry, and regulatory partners, to measure and monitor reservoir response to UOG development and any associated environmental concerns. The USEEL site will be located in Greene County, Pennsylvania, in the heart of the deep Utica-Pt. Pleasant Shale play of the Appalachian Basin. The USEEL project team will characterize and quantify the gas-producing attributes of one of the deepest portions of the Utica-Pt. Pleasant formations in the Appalachian Basin via a multi-disciplinary collaboration that leverages state-of-the-art capabilities in geochemistry, core assessment, well design and logging, 3-D and micro-seismic, DTS and DAS fiber optics, and reservoir modelling. Fracture and rock strength analyses will be complemented by a comprehensive suite of geophysical and geochemical logs, water and chip samples, and cores (pressure sidewall and whole core) to evaluate fluids, mineral alteration, microbes, pore structure, and hydrocarbon formation and alteration in the shale pore space. Located on an existing Marcellus drill pads in southwestern Pennsylvania, USEEL will provide an unprecedented opportunity to evaluate the economic and environmental effects of Marcellus pad expansion on the integrity of near-by existing production wells, ground disruption and slope stability, and ultimate efforts to conduct site reclamation. Combined with the overall goal of an improved understanding of the Utica-Pt. Pleasant system, USEEL

  18. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...

  19. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...

  20. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider...

  1. USAF shale oil program status

    NASA Technical Reports Server (NTRS)

    Delaney, C. L.

    1984-01-01

    The test and evaluation program on shale derived fuel being conducted by the Air Force is intended to accomplish the minimum amount of testing necessary to assure both the safe use of shale oil derived turbine fuels in operational USAF aircraft and its compatibility with USAF handling systems. This program, which was designed to take advantage of existing R&D testing programs, began in 1981. However, due to a problem in acquiring the necessary fuel, the testing program was suspended until July 1983 when an additional sample of shale derived fuel was received. Tentatively, the Air Force is planning to make three relatively minor revisions to the procurement specifications requirements for the production shale derived fuel. These are: (1) Aromatic Contest (min) - 9% (by volume); (2) Nitrogen (max - 20 ppm by weight); and (3) Antioxidants - 9.1 g/100 gal (U.S.)

  2. Population status of North American green sturgeon, Acipenser medirostris

    USGS Publications Warehouse

    Adams, P.B.; Grimes, C.; Hightower, J.E.; Lindley, S.T.; Moser, M.L.; Parsley, M.J.

    2007-01-01

    North American green sturgeon, Acipenser medirostris, was petitioned for listing under the Endangered Species Act (ESA). The two questions that need to be answered when considering an ESA listing are; (1) Is the entity a species under the ESA and if so (2) is the "species" in danger of extinction or likely to become an endangered species in the foreseeable future throughout all or a significant portion of its range? Green sturgeon genetic analyses showed strong differentiation between northern and southern populations, and therefore, the species was divided into Northern and Southern Distinct Population Segments (DPSs). The Northern DPS includes populations in the Rogue, Klamath-Trinity, and Eel rivers, while the Southern DPS only includes a single population in the Sacramento River. The principal risk factors for green sturgeon include loss of spawning habitat, harvest, and entrainment. The Northern DPS is not considered to be in danger of extinction or likely to become an endangered species in the foreseeable future. The loss of spawning habitat is not large enough to threaten this DPS, although the Eel River has been severely impacted by sedimentation due to poor land use practices and floods. The two main spawning populations in the Rogue and Klamath-Trinity rivers occupy separate basins reducing the potential for loss of the DPS through catastrophic events. Harvest has been substantially reduced and green sturgeon in this DPS do not face substantial entrainment loss. However there are significant concerns due to lack of information, flow and temperature issues, and habitat degradation. The Southern DPS is considered likely to become an endangered species in the foreseeable future. Green sturgeon in this DPS are concentrated into one spawning area outside of their natural habitat in the Sacramento River, making them vulnerable to catastrophic extinction. Green sturgeon spawning areas have been lost from the area above Shasta Dam on the Sacramento River and

  3. Paleozoic shale gas resources in the Sichuan Basin, China

    USGS Publications Warehouse

    Potter, Christopher J.

    2018-01-01

    The Sichuan Basin, China, is commonly considered to contain the world’s most abundant shale gas resources. Although its Paleozoic marine shales share many basic characteristics with successful United States gas shales, numerous geologic uncertainties exist, and Sichuan Basin shale gas production is nascent. Gas retention was likely compromised by the age of the shale reservoirs, multiple uplifts and orogenies, and migration pathways along unconformities. High thermal maturities raise questions about gas storage potential in lower Paleozoic shales. Given these uncertainties, a new look at Sichuan Basin shale gas resources is advantageous. As part of a systematic effort to quantitatively assess continuous oil and gas resources in priority basins worldwide, the US Geological Survey (USGS) completed an assessment of Paleozoic shale gas in the Sichuan Basin in 2015. Three organic-rich marine Paleozoic shale intervals meet the USGS geologic criteria for quantitative assessment of shale gas resources: the lower Cambrian Qiongzhusi Formation, the uppermost Ordovician Wufeng through lowermost Silurian Longmaxi Formations (currently producing shale gas), and the upper Permian Longtan and Dalong Formations. This study defined geologically based assessment units and calculated probabilistic distributions of technically recoverable shale gas resources using the USGS well productivity–based method. For six assessment units evaluated in 2015, the USGS estimated a mean value of 23.9 tcf (677 billion cubic meters) of undiscovered, technically recoverable shale gas. This result is considerably lower than volumes calculated in previous shale gas assessments of the Sichuan Basin, highlighting a need for caution in this geologically challenging setting.

  4. Accelerated weathering of tough shales : final report.

    DOT National Transportation Integrated Search

    1977-01-01

    The purpose of this study was to find or develop a test that would identify a very tough but relatively rapid weathering type of shale that has caused problems when used in embankments as rock. Eight shales, including the problem shale, were collecte...

  5. Establishing effective sentinels - Setting the baseline for shale gas

    NASA Astrophysics Data System (ADS)

    Ward, C.; Worrall, F.

    2017-12-01

    The UK has a nascent shale gas industry and, unlike the US we have the opportunity to establish structures both physical and regulatory to reassure the public that any impact of a developing shale gas will be .properly licensed, regulated, monitored and, if necessary, mitigated. To assess and indeed demonstrate an impact of any activity, let alone those of shale gas exploitation, it is necessary to show, within a reasonable level of certainty, that the industry has changed a environmental state over and above that which was true without the activity present. The need for demonstrating impact not only means that a baseline needs to be established but that the baseline needs to be robustly established within a statistical and probabilistic framework so that certainty of impact can be demonstrated. A number of technologies have been proposed for monitoring the water quality impacts of shale gas developments, however, to be an effective and robust sentinel of change the parameter should have several properties: it should be a lead indicator and not a lag indicator of change; it should have a high contrast with the normal or background activity; it should show a high specificity for the activity of concern and not be associated with other activities; and it should readily deployed in time and space. By far the greatest difference between the waters arising from a shale gas well pad and surface waters is nothing more than salinity or its associated determinds. The salinity of flowback water and deep formation water can be many times greater than seawater let alone greater than the salinity of most UK surface waters. Therefore, we have built a probabilistic model of the salinity of English surface waters. We have developed a generalised linear model of the existing salinity data available for English surface waters. Generalised linear modelling means that we can use all the existing data, the approach is entirely data driven; it does not require parameterisation; and can

  6. 43 CFR 3905.10 - Oil shale lease exchanges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Oil shale lease exchanges. 3905.10 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) OIL SHALE MANAGEMENT-GENERAL Lease Exchanges § 3905.10 Oil shale lease exchanges. To facilitate the recovery of oil shale, the BLM may consider land...

  7. Shale gas characteristics of the Lower Toarcian Posidonia Shale in Germany: from basin to nanometre scale

    NASA Astrophysics Data System (ADS)

    Schulz, Hans-Martin; Bernard, Sylvain; Horsfield, Brian; Krüger, Martin; Littke, Ralf; di primio, Rolando

    2013-04-01

    The Early Toarcian Posidonia Shale is a proven hydrocarbon source rock which was deposited in a shallow epicontinental basin. In southern Germany, Tethyan warm-water influences from the south led to carbonate sedimentation, whereas cold-water influxes from the north controlled siliciclastic sedimentation in the northwestern parts of Germany and the Netherlands. Restricted sea-floor circulation and organic matter preservation are considered to be the consequence of an oceanic anoxic event. In contrast, non-marine conditions led to sedimentation of coarser grained sediments under progressively terrestrial conditions in northeastern Germany The present-day distribution of Posidonia Shale in northern Germany is restricted to the centres of rift basins that formed in the Late Jurassic (e.g., Lower Saxony Basin and Dogger Troughs like the West and East Holstein Troughs) as a result of erosion on the basin margins and bounding highs. The source rock characteristics are in part dependent on grain size as the Posidonia Shale in eastern Germany is referred to as a mixed to non-source rock facies. In the study area, the TOC content and the organic matter quality vary vertically and laterally, likely as a consequence of a rising sea level during the Toarcian. Here we present and compare data of whole Posidonia Shale sections, investigating these variations and highlighting the variability of Posidonia Shale depositional system. During all phases of burial, gas was generated in the Posidonia Shale. Low sedimentation rates led to diffusion of early diagenetically formed biogenic methane. Isochronously formed diagenetic carbonates tightened the matrix and increased brittleness. Thermogenic gas generation occurred in wide areas of Lower Saxony as well as in Schleswig Holstein. Biogenic methane gas can still be formed today in Posidonia Shale at shallow depth in areas which were covered by Pleistocene glaciers. Submicrometric interparticle pores predominate in immature samples. At

  8. Traveltime and dispersion of a soluble dye in the South Branch Potomac River, Petersburg to Green Spring, West Virginia

    USGS Publications Warehouse

    Jack, A.R.

    1986-01-01

    Traveltime studies, using rhodamine dyes, were made in 1970 and 1982 on the South Branch Potomac River from Petersburg, West Virginia, to the confluence with the North Branch Potomac River at Green Spring, West Virginia. Flow duration at the time of the studies was approximately 32% in November 1970 and 95% in September 1982. Two studies, at discharges of 110 and 1,230 cu ft/sec, were used to define traveltime-distance relationships. A contaminant takes 386 hours to travel 69 miles from Petersburg, West Virginia, to the mouth of the river when streamflow is 110 cu ft/sec. The contaminant would, however, take only 89 hours when streamflow is 1,230 cu ft/sec. The traveltime data were interpolated and extrapolated for selected discharges from 70 to 1,500 cu ft/sec at the index gage near Springfield, West Virginia. (USGS)

  9. Chemical concentrations in water and suspended sediment, Green River to Lower Duwamish Waterway near Seattle, Washington, 2016–17

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.; Peterson, Norman T.; Senter, Craig A.; Chapman, Elena A.

    2018-01-05

    From August 2016 to March 2017, the U.S. Geological Survey (USGS) collected representative samples of filtered and unfiltered water and suspended sediment (including the colloidal fraction) at USGS streamgage 12113390 (Duwamish River at Golf Course, at Tukwila, Washington) during 13 periods of differing flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including metals, dioxins/furans, semivolatile compounds including polycyclic aromatic hydrocarbons, butyltins, the 209 polychlorinated biphenyl (PCB) congeners, and total and dissolved organic carbon. Concurrent with the chemistry sampling, water-quality field parameters were measured, and representative water samples were collected and analyzed for river suspended-sediment concentration and particle-size distribution. The results provide new data that can be used to estimate sediment and chemical loads transported by the Green River to the Lower Duwamish Waterway.

  10. Shale-brine-CO2 interactions and the long-term stability of carbonate-rich shale caprock

    NASA Astrophysics Data System (ADS)

    Ilgen, A.; Aman, M.; Espinoza, D. N.; Rodriguez, M. A.; Griego, J.; Dewers, T. A.; Feldman, J.; Stewart, T.; Choens, R. C., II

    2017-12-01

    Geological carbon storage (GCS) requires an impermeable caprock (e.g., shale) that prevents the upward migration and escape of carbon dioxide (CO2) from the subsurface. Geochemical alteration can occur at the caprock-reservoir rock interface, which could lead to the altering of the rock's mechanical properties, compromising the seal. We performed laboratory experiments on Mancos shale to quantify the coupled chemical-mechanical response of carbonate-rich shale in CO2-brine mixtures at conditions typical to GCS. We constructed geochemical models, calibrated them using laboratory results, and extended to time scales required for GCS. We observed the dissolution of calcite and kaolinite and the precipitation of gypsum and amorphous aluminum (hydr)oxide following the introduction of CO2. To address whether this mineral alteration causes changes in micro-mechanical properties, we examined altered Mancos shale using micro-mechanical (scratch) testing, measuring the scratch toughness of mm-scale shale lithofacies. The quartz-rich regions of the Mancos shale did not show significant changes in scratch toughness following 1-week alteration in a CO2-brine mixture. However, the scratch toughness of the calcite-rich, originally softer regions decreased by about 50%. These observations illustrate a coupled and localized chemical-mechanical response of carbonate-rich shale to the injection of CO2. This suggests a localized weakening of the caprock may occur, potentially leading to the development of preferential flow paths. The identification of vulnerable lithofacies within caprock and a characterization of mineralogical heterogeneity is imperative at prospective GCS sites. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  11. Assessment of potential unconventional lacustrine shale-oil and shale-gas resources, Phitsanulok Basin, Thailand, 2014

    USGS Publications Warehouse

    Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Mercier, Tracey J.; Tennyson, Marilyn E.; Pitman, Janet K.; Brownfield, Michael E.

    2014-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey assessed potential technically recoverable mean resources of 53 million barrels of shale oil and 320 billion cubic feet of shale gas in the Phitsanulok Basin, onshore Thailand.

  12. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment

    USGS Publications Warehouse

    Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M.

    2007-01-01

    Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field, located in the Fort Worth Basin, Texas, is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system, a self-contained source-reservoir system, has generated large amounts of gas in the key productive areas because of various characteristics and processes, including (1) excellent original organic richness and generation potential; (2) primary and secondary cracking of kerogen and retained oil, respectively; (3) retention of oil for cracking to gas by adsorption; (4) porosity resulting from organic matter decomposition; and (5) brittle mineralogical composition. The calculated total gas in place (GIP) based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section (5.78 ?? 109 m3/1.73 ?? 104 m3). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft (84.0 m3/m3). Assuming a thickness of 350 ft (107 m) and only sufficient hydrogen for partial cracking of retained oil to gas, a total generation potential of 820 bcf/section is estimated. Of this potential, approximately 60% was expelled, and the balance was retained for secondary cracking of oil to gas, if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure, volume, and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  13. MODIS-informed greenness responsesto daytime land surface temperaturefluctuations and wildfire disturbancesin the Alaskan Yukon River Basin

    USGS Publications Warehouse

    Tan, Zhengxi; Liu, Shu-Guang; Jenkerson, Calli B.; Oeding, Jennifer; Wylie, Bruce K.; Rover, Jennifer R.; Young, Claudia J.

    2012-01-01

    Pronounced climate warming and increased wildfire disturbances are known to modify forest composition and control the evolution of the boreal ecosystem over the Yukon River Basin (YRB) in interior Alaska. In this study, we evaluate the post-fire green-up rate using the normalized difference vegetation index (NDVI) derived from 250 m 7 day eMODIS (an alternative and application-ready type of Moderate Resolution Imaging Spectroradiometer (MODIS) data) acquired between 2000 and 2009. Our analyses indicate measureable effects on NDVI values from vegetation type, burn severity, post-fire time, and climatic variables. The NDVI observations from both fire scars and unburned areas across the Alaskan YRB showed a tendency of an earlier start to the growing season (GS); the annual variations in NDVI were significantly correlated to daytime land surface temperature (LST) fluctuations; and the rate of post-fire green-up depended mainly on burn severity and the time of post-fire succession. The higher average NDVI values for the study period in the fire scars than in the unburned areas between 1950 and 2000 suggest that wildfires enhance post-fire greenness due to an increase in post-fire evergreen and deciduous species components

  14. Spatial and temporal use of a spawning site in the middle green river by wild and hatchery-reared razorback suckers

    USGS Publications Warehouse

    Modde, T.; Bowen, Z.H.; Kitcheyan, D.C.

    2005-01-01

    The population of endangered razorback suckers Xyrauchen texanus in the middle Green River (upper Colorado River basin) has declined during the last 40 years. The apparent cause for this decline is a lack of successful recruitment. This study used radiotelemetry to evaluate the ability of hatchery-reared razorback suckers to locate spawning areas where wild fish congregate during the ascending hydrographic limb of the snowmelt runoff. Hatchery-reared razorback suckers appeared to show similar reproductive behavior to wild fish. Both wild and hatchery-reared fish were found near the middle Green River spawning area between 1 and 25 May 2000. Hatchery fish occupied the same areas on the spawning site as wild fish, and remained on the spawning site during both nocturnal and diurnal hours. Males were more abundant on the spawning area than females, but the few females captured tended to stage away from the primary spawning area. The results from this study suggest hatchery-reared fish are capable of responding to natural cues that prompt spawning aggregations and are successful in locating existing spawning aggregations of wild fish. Given attention to stocking criteria, including genetic diversity and the size and time of stocking, the challenges of recovering razorback suckers will center on those factors that led to the population declines, particularly the survival of early life stages in off-channel habitats. ?? American Fisheries Society 2005.

  15. Red River of the North Reconnaissance Report: Pembina River.

    DTIC Science & Technology

    1980-12-01

    the mallard, blue -winged teal, pintail, gadwall, northern shoveler, green -winged teal, American wigeon, and redhead. [ Rush Lake receives heavy use...r.D-Ri4. 787 RED RIVER OF THE NORTH RECONNAISSANCE REPORT: PEMBINA 1/2 RIVER(IJ) GULF SOUTH RESEAPRCH INST BATON ROUGE LA DEC 9 DACU77-8@-C-e8i7B...ii% ---. :w: U ;r u --- ’w AD-A140 787 RED RIVER OF THE NORTH RECONNAISSANCE , %h,%! iREPORT , _ PEMBINA ; RIVER CD j- - D FINAL RMPORT ’ December

  16. Water management practices used by Fayetteville shale gas producers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veil, J. A.

    2011-06-03

    Water issues continue to play an important role in producing natural gas from shale formations. This report examines water issues relating to shale gas production in the Fayetteville Shale. In particular, the report focuses on how gas producers obtain water supplies used for drilling and hydraulically fracturing wells, how that water is transported to the well sites and stored, and how the wastewater from the wells (flowback and produced water) is managed. Last year, Argonne National Laboratory made a similar evaluation of water issues in the Marcellus Shale (Veil 2010). Gas production in the Marcellus Shale involves at least threemore » states, many oil and gas operators, and multiple wastewater management options. Consequently, Veil (2010) provided extensive information on water. This current study is less complicated for several reasons: (1) gas production in the Fayetteville Shale is somewhat more mature and stable than production in the Marcellus Shale; (2) the Fayetteville Shale underlies a single state (Arkansas); (3) there are only a few gas producers that operate the large majority of the wells in the Fayetteville Shale; (4) much of the water management information relating to the Marcellus Shale also applies to the Fayetteville Shale, therefore, it can be referenced from Veil (2010) rather than being recreated here; and (5) the author has previously published a report on the Fayetteville Shale (Veil 2007) and has helped to develop an informational website on the Fayetteville Shale (Argonne and University of Arkansas 2008), both of these sources, which are relevant to the subject of this report, are cited as references.« less

  17. Engineering the Kentucky River: The Commonwealth’s Waterway

    DTIC Science & Technology

    1999-01-01

    durable dugout canoes hollowed from the trunks of trees.6 After felling a tree, usually a poplar, sycamore, or pine , and stripping it of branches and...Skiles and Warren County interests to improve Green and Barren river navigation up to Bowling Green. Metcalfe be- came the first state official to...engi- neers employed to plan slackwater navigation on the Green and Barren rivers which would provide year-round navigation to Bowling Green. This was

  18. Investigating the Potential Impacts of Energy Production in the Marcellus Shale Region Using the Shale Network Database

    NASA Astrophysics Data System (ADS)

    Brantley, S.; Brazil, L.

    2017-12-01

    The Shale Network's extensive database of water quality observations enables educational experiences about the potential impacts of resource extraction with real data. Through tools that are open source and free to use, researchers, educators, and citizens can access and analyze the very same data that the Shale Network team has used in peer-reviewed publications about the potential impacts of hydraulic fracturing on water. The development of the Shale Network database has been made possible through efforts led by an academic team and involving numerous individuals from government agencies, citizen science organizations, and private industry. Thus far, these tools and data have been used to engage high school students, university undergraduate and graduate students, as well as citizens so that all can discover how energy production impacts the Marcellus Shale region, which includes Pennsylvania and other nearby states. This presentation will describe these data tools, how the Shale Network has used them in developing lesson plans, and the resources available to learn more.

  19. Fracture-permeability behavior of shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, J. William; Lei, Zhou; Rougier, Esteban

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  20. Fracture-permeability behavior of shale

    DOE PAGES

    Carey, J. William; Lei, Zhou; Rougier, Esteban; ...

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  1. Oil shale extraction using super-critical extraction

    NASA Technical Reports Server (NTRS)

    Compton, L. E. (Inventor)

    1983-01-01

    Significant improvement in oil shale extraction under supercritical conditions is provided by extracting the shale at a temperature below 400 C, such as from about 250 C to about 350 C, with a solvent having a Hildebrand solubility parameter within 1 to 2 Hb of the solubility parameter for oil shale bitumen.

  2. Assessment of potential shale gas and shale oil resources of the Norte Basin, Uruguay, 2011

    USGS Publications Warehouse

    Schenk, Christopher J.; Kirschbaum, Mark A.; Charpentier, Ronald R.; Cook, Troy; Klett, Timothy R.; Gautier, Donald L.; Pollastro, Richard M.; Weaver, Jean N.; Brownfield, Michael

    2011-01-01

    Using a performance-based geological assessment methodology, the U.S. Geological Survey estimated mean volumes of 13.4 trillion cubic feet of potential technically recoverable shale gas and 0.5 billion barrels of technically recoverable shale oil resources in the Norte Basin of Uruguay.

  3. Thermally-driven Coupled THM Processes in Shales

    NASA Astrophysics Data System (ADS)

    Rutqvist, J.

    2017-12-01

    Temperature changes can trigger strongly coupled thermal-hydrological-mechanical (THM) processes in shales that are important to a number of subsurface energy applications, including geologic nuclear waste disposal and hydrocarbon extraction. These coupled processes include (1) direct pore-volume couplings, by thermal expansion of trapped pore-fluid that triggers instantaneous two-way couplings between pore fluid pressure and mechanical deformation, and (2) indirect couplings in terms of property changes, such as changes in mechanical stiffness, strength, and permeability. Direct pore-volume couplings have been studied in situ during borehole heating experiments in shale (or clay stone) formations at Mont Terri and Bure underground research laboratories in Switzerland and France. Typically, the temperature changes are accompanied with a rapid increase in pore pressure followed by a slower decrease towards initial (pre-heating) pore pressure. Coupled THM modeling of these heater tests shows that the pore pressure increases because the thermal expansion coefficient of the fluid is much higher than that of the porous clay stone. Such thermal pressurization induces fluid flow away from the pressurized area towards areas of lower pressure. The rate of pressure increase and magnitude of peak pressure depends on the rate of heating, pore-compressibility, and permeability of the shale. Modeling as well as laboratory experiments have shown that if the pore pressure increase is sufficiently large it could lead to fracturing of the shale or shear slip along pre-existing bedding planes. Another set of data and observations have been collected associated with studies related to concentrated heating and cooling of oil-shales and shale-gas formations. Heating may be used to enhance production from tight oil-shale, whereas thermal stimulation has been attempted for enhanced shale-gas extraction. Laboratory experiments on shale have shown that strength and elastic deformation

  4. Research continues on Julia Creek shale oil project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-09-01

    CSR Limited and the CSIRO Division of Mineral Engineering in Australia are working jointly on the development of a new retorting process for Julia Creek oil shale. This paper describes the retorting process which integrates a fluid bed combustor with a retort in which heat is transferred from hot shale ash to cold raw shale. The upgrading of shale oil into transport fuels is also described.

  5. Assessment of undiscovered oil and gas resources in the Uteland Butte Member of the Eocene Green River Formation, Uinta Basin, Utah

    USGS Publications Warehouse

    Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.; Charpentier, Ronald R.; Klett, Timothy R.; Leathers, Heidi M.; Schenk, Christopher J.; Tennyson, Marilyn E.

    2015-09-03

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered resources of 214 million barrels of oil, 329 billion cubic feet of associated/dissolved natural gas, and 14 million barrels of natural gas liquids in the informal Uteland Butte member of the Green River Formation, Uinta Basin, Utah.

  6. Shale Gas Well, Hydraulic Fracturing, and Formation Data to Support Modeling of Gas and Water Flow in Shale Formations

    NASA Astrophysics Data System (ADS)

    Edwards, Ryan W. J.; Celia, Michael A.

    2018-04-01

    The potential for shale gas development and hydraulic fracturing to cause subsurface water contamination has prompted a number of modeling studies to assess the risk. A significant impediment for conducting robust modeling is the lack of comprehensive publicly available information and data about the properties of shale formations, shale wells, the process of hydraulic fracturing, and properties of the hydraulic fractures. We have collated a substantial amount of these data that are relevant for modeling multiphase flow of water and gas in shale gas formations. We summarize these data and their sources in tabulated form.

  7. What is shale gas and why is it important?

    EIA Publications

    2012-01-01

    Shale gas refers to natural gas that is trapped within shale formations. Shales are fine-grained sedimentary rocks that can be rich sources of petroleum and natural gas. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. The production of natural gas from shale formations has rejuvenated the natural gas industry in the United States.

  8. In-situ laser retorting of oil shale

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S. (Inventor)

    1977-01-01

    Oil shale formations are retorted in situ and gaseous hydrocarbon products are recovered by drilling two or more wells into an oil shale formation underneath the surface of the ground. A high energy laser beam is directed into the well and fractures the region of the shale formation. A compressed gas is forced into the well that supports combustion in the flame front ignited by the laser beam, thereby retorting the oil shale. Gaseous hydrocarbon products which permeate through the fractured region are recovered from one of the wells that were not exposed to the laser system.

  9. Method for rubblizing an oil shale deposit for in situ retorting

    DOEpatents

    Lewis, Arthur E.

    1977-01-01

    A method for rubblizing an oil shale deposit that has been formed in alternate horizontal layers of rich and lean shale, including the steps of driving a horizontal tunnel along the lower edge of a rich shale layer of the deposit, sublevel caving by fan drilling and blasting of both rich and lean overlying shale layers at the distal end of the tunnel to rubblize the layers, removing a substantial amount of the accessible rubblized rich shale to permit the overlying rubblized lean shale to drop to tunnel floor level to form a column of lean shale, performing additional sublevel caving of rich and lean shale towards the proximate end of the tunnel, removal of a substantial amount of the additionally rubblized rich shale to allow the overlying rubblized lean shale to drop to tunnel floor level to form another column of rubblized lean shale, similarly performing additional steps of sublevel caving and removal of rich rubble to form additional columns of lean shale rubble in the rich shale rubble in the tunnel, and driving additional horizontal tunnels in the deposit and similarly rubblizing the overlying layers of rich and lean shale and forming columns of rubblized lean shale in the rich, thereby forming an in situ oil shale retort having zones of lean shale that remain permeable to hot retorting fluids in the presence of high rubble pile pressures and high retorting temperatures.

  10. Comparative acute toxicity of shale and petroleum derived distillates.

    PubMed

    Clark, C R; Ferguson, P W; Katchen, M A; Dennis, M W; Craig, D K

    1989-12-01

    In anticipation of the commercialization of its shale oil retorting and upgrading process, Unocal Corp. conducted a testing program aimed at better defining potential health impacts of a shale industry. Acute toxicity studies using rats and rabbits compared the effects of naphtha, Jet-A, JP-4, diesel and "residual" distillate fractions of both petroleum derived crude oils and hydrotreated shale oil. No differences in the acute oral (greater than 5 g/kg LD50) and dermal (greater than 2 g/kg LD50) toxicities were noted between the shale and petroleum derived distillates and none of the samples were more than mildly irritating to the eyes. Shale and petroleum products caused similar degrees of mild to moderate skin irritation. None of the materials produced sensitization reactions. The LC50 after acute inhalation exposure to Jet-A, shale naphtha, (greater than 5 mg/L) and JP-4 distillate fractions of petroleum and shale oils was greater than 5 mg/L. The LC50 of petroleum naphtha (greater than 4.8 mg/L) and raw shale oil (greater than 3.95 mg/L) also indicated low toxicity. Results demonstrate that shale oil products are of low acute toxicity, mild to moderately irritating and similar to their petroleum counterparts. The results further demonstrate that hydrotreatment reduces the irritancy of raw shale oil.

  11. Undiscovered petroleum resources for the Woodford Shale and Thirteen Finger Limestone-Atoka Shale assessment units, Anadarko Basin

    USGS Publications Warehouse

    Higley, Debra K.

    2011-01-01

    In 2010 the U.S. Geological Survey assessed undiscovered oil and gas resources for the Anadarko Basin Province of Colorado, Kansas, Oklahoma, and Texas. The assessment included three continuous (unconventional) assessment units (AU). Mean undiscovered resources for the (1) Devonian Woodford Shale Gas AU are about 16 trillion cubic feet of gas (TCFG) and 192 million barrels of natural gas liquids (MMBNGL), (2) Woodford Shale Oil AU are 393 million barrels of oil (MMBO), 2 TCFG, and 59 MMBNGL, and (3) Pennsylvanian Thirteen Finger Limestone-Atoka Shale Gas AU are 6.8 TCFG and 82 MMBNGL. The continuous gas AUs are mature for gas generation within the deep basin of Oklahoma and Texas. Gas generation from the Woodford Shale source rock started about 335 Ma, and from the Thirteen Finger Limestone-Atoka Shale AU about 300 Ma. Maturation results are based on vitrinite reflectance data, and on 1D and 4D petroleum system models that calculated vitrinite reflectance (Ro), and Rock-Eval and hydrous pyrolysis transformation (HP) ratios through time for petroleum source rocks. The Woodford Shale Gas AU boundary and sweet spot were defined mainly on (1) isopach thickness from well-log analysis and published sources; (2) estimated ultimate recoverable production from existing, mainly horizontal, wells; and (3) levels of thermal maturation. Measured and modeled Ro ranges from about 1.2% to 5% in the AU, which represents marginally mature to overmature for gas generation. The sweet spot included most of the Woodford that was deposited within eroded channels in the unconformably underlying Hunton Group. The Thirteen Finger Limestone-Atoka Shale Gas AU has no known production in the deep basin. This AU boundary is based primarily on the gas generation window, and on thickness and distribution of organic-rich facies from these mainly thin shale and limestone beds. Estimates of organic richness were based on well-log signatures and published data.

  12. Thick sequences of silicate and carbonate rocks of sedimentary origin in North America an interim report

    USGS Publications Warehouse

    Love, John David

    1956-01-01

    Thick sequences of silicate and carbonate rocks of sedimentary origin have been investigated in 64 areas in North America. The areas containing the thickest and most homogeneous stratigraphic sections more than 1,000 feet thick, buried at depths greater than 10,000 feet are: 1. Uinta Basin, Utah, where the Mancos shale is 1,300 to 5,000 feet thick, the Weber sandstone is 1,000 to 1,600 feet thick, and Mississippian limestones are 1,000 to 1,500 feet thick. 2. Washakie Basin, Wyoming, and Sand Wash Ba.sin, Colorado, where the Lewis shale is 1,000 to 2,000 feet thick and the Cody-Mancos shale is 4,500 to 5,500 feet thick. 3. Green River Basin, Wyoming, where the Cody-Hilliard-Baxter-Mancos shale sequence averages more than 3,000 feet, the siltstone and shale of the Chugwater formation totals 1,000 feet, and the Madison limestone ranges from 1,000 to 1,400 feet thick. 4. Red Desert (Great Divide) Basin, Wyoming, where the Cody shale is 4,000 feet thick. 5. Hanna Basin, Wyoming, where the Steele shale is 4,500 feet thick. 6. Wind River Basin, Wyoming, where the Cody shale is 3,600 to 5,000 feet thick. Geochemical characteristics of these rocks in these areas are poorly known but are being investigated. A summary of the most pertinent recent ana1yses is presented.

  13. Colorado oil shale: the current status, October 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-01-01

    A general background to oil shale and the potential impacts of its development is given. A map containing the names and locations of current oil shale holdings is included. The history, geography, archaeology, ecology, water resources, air quality, energy resources, land use, sociology, transportation, and electric power for the state of Colorado are discussed. The Colorado Joint Review Process Stages I, II, and III-oil shale are explained. Projected shale oil production capacity to 1990 is presented. (DC)

  14. Assessment of Land Degradation and Greening in Ken River Basin of Central India

    NASA Astrophysics Data System (ADS)

    Pandey, Ashish; Palmate, Santosh S.

    2017-04-01

    Natural systems have significant impact of land degradation on biodiversity loss, food and water insecurity. To achieve the sustainable development goals, advances in remote sensing and geographical information systems (GIS) are progressively utilized to combat climate change, land degradation and poverty issues of developing country. The Ken River Basin (KRB) has dominating land cover pattern of agriculture and forest area. Nowadays, this pattern is affected due to climate change and anthropogenic activity like deforestation. In this study, land degradation and greening status of KRB of Central India during the years 2001 to 2013 have been assessed using MODIS land cover (MCD12Q1) data sets. International Geosphere Biosphere Programme (IGBP) land cover data has been extracted from the MCD12Q1 data product. Multiple rasters of MODIS landcover were analyzed and compared for assigning unique combination of land cover dynamics employing ArcGIS software. Result reveals that 14.38% natural vegetation was degraded, and crop land and woody savannas were greened by 9.68% to 6.94% respectively. Natural vegetation degradation have been observed in the upper KRB area, and resulted to increase in crop land (3418.87 km2) and woody savannas (1242.23 km2) area. Due to transition of 1043.6 km2 area of deciduous broadleaf forest to woody savannas greening was also observed. Moreover, both crop land and woody savannas showed inter-transitions of 669.31 km2 into crop land to woody savannas, and 874.09 km2 into woody savannas to crop land. The present analysis reveals that natural vegetation has more land conversions into woody savannas and crop land in the KRB area. Further, Spatial change analysis shows that land degradation and greening has occurred mostly in the upper part of the KRB. The study reveals that the land transition information can be useful for proper planning and management of natural resources.

  15. Geology of the Devonian black shales of the Appalachian basin

    USGS Publications Warehouse

    Roen, J.B.

    1983-01-01

    Black shales of Devonian age in the Appalachian basin are a unique rock sequence. The high content of organic matter, which imparts the characteristic lithology, has for years attracted considerable interest in the shales as a possible source of energy. Concurrent with periodic and varied economic exploitations of the black shales are geologic studies. The recent energy shortage prompted the U.S. Department of Energy through the Eastern Gas Shales Project of the Morgantown Energy Technology Center to underwrite a research program to determine the geologic, geochemical, and structural characteristics of the Devonian black shales in order to enhance the recovery of gas from the shales. Geologic studies produced a regional stratigraphic network that correlates the 15-foot sequence in Tennessee with 3,000 feet of interbedded black and gray shales in central New York. The classic Devonian black-shale sequence in New York has been correlated with the Ohio Shale of Ohio and Kentucky and the Chattanooga Shale of Tennessee and southwestern Virginia. Biostratigraphic and lithostratigraphic markers in conjunction with gamma-ray logs facilitated long range correlations within the Appalachian basin and provided a basis for correlations with the black shales of the Illinois and Michigan basins. Areal distribution of selected shale units along with paleocurrent studies, clay mineralogy, and geochemistry suggests variations in the sediment source and transport directions. Current structures, faunal evidence, lithologic variations, and geochemical studies provide evidence to support interpretation of depositional environments. In addition, organic geochemical data combined with stratigraphic and structural characteristics of the shale within the basin allow an evaluation of the resource potential of natural gas in the Devonian shale sequence.

  16. Microporoelastic Modeling of Organic-Rich Shales

    NASA Astrophysics Data System (ADS)

    Khosh Sokhan Monfared, S.; Abedi, S.; Ulm, F. J.

    2014-12-01

    Organic-rich shale is an extremely complex, naturally occurring geo-composite. The heterogeneous nature of organic-rich shale and its anisotropic behavior pose grand challenges for characterization, modeling and engineering design The intricacy of organic-rich shale, in the context of its mechanical and poromechanical properties, originates in the presence of organic/inorganic constituents and their interfaces as well as the occurrence of porosity and elastic anisotropy, at multiple length scales. To capture the contributing mechanisms, of 1st order, responsible for organic-rich shale complex behavior, we introduce an original approach for micromechanical modeling of organic-rich shales which accounts for the effect of maturity of organics on the overall elasticity through morphology considerations. This morphology contribution is captured by means of an effective media theory that bridges the gap between immature and mature systems through the choice of system's microtexture; namely a matrix-inclusion morphology (Mori-Tanaka) for immature systems and a polycrystal/granular morphology for mature systems. Also, we show that interfaces play a role on the effective elasticity of mature, organic-rich shales. The models are calibrated by means of ultrasonic pulse velocity measurements of elastic properties and validated by means of nanoindentation results. Sensitivity analyses using Spearman's Partial Rank Correlation Coefficient shows the importance of porosity and Total Organic Carbon (TOC) as key input parameters for accurate model predictions. These modeling developments pave the way to reach a "unique" set of clay properties and highlight the importance of depositional environment, burial and diagenetic processes on overall mechanical and poromechanical behavior of organic-rich shale. These developments also emphasize the importance of understanding and modeling clay elasticity and organic maturity on the overall rock behavior which is of critical importance for a

  17. Shale Gas in Europe: pragmatic perspectives and actions

    NASA Astrophysics Data System (ADS)

    Hübner, A.; Horsfield, B.; Kapp, I.

    2012-10-01

    Natural gas will continue to play a key role in the EU's energy mix in the coming years, with unconventional gas' role increasing in importance as new resources are exploited worldwide. As far as Europe's own shale gas resources are concerned, it is especially the public's perception and level of acceptance that will make or break shale gas in the near-term. Both the pros and cons need to be discussed based on factual argument rather than speculation. Research organizations such as ours (GFZ German Research Centre for Geosciences) have an active and defining role to play in remedying this deficiency. As far as science and technology developments are concerned, the project "Gas Shales in Europe" (GASH) and the shale gas activities of "GeoEnergie" (GeoEn) are the first major initiatives in Europe focused on shale gas. Basic and applied geoscientific research is conducted to understand the fundamental nature and interdependencies of the processes leading to shale gas formation. When it comes to knowledge transfer, the perceived and real risks associated with shale gas exploitation need immediate evaluation in Europe using scientific analysis. To proactively target these issues, the GFZ and partners are launching the European sustainable Operating Practices (E-SOP) Initiative for Unconventional Resources. The web-based Shale Gas Information Platform (SHIP) brings these issues into the public domain.

  18. Mechanism for Burgess Shale-type preservation

    PubMed Central

    Gaines, Robert R.; Hammarlund, Emma U.; Hou, Xianguang; Qi, Changshi; Gabbott, Sarah E.; Zhao, Yuanlong; Peng, Jin; Canfield, Donald E.

    2012-01-01

    Exceptionally preserved fossil biotas of the Burgess Shale and a handful of other similar Cambrian deposits provide rare but critical insights into the early diversification of animals. The extraordinary preservation of labile tissues in these geographically widespread but temporally restricted soft-bodied fossil assemblages has remained enigmatic since Walcott’s initial discovery in 1909. Here, we demonstrate the mechanism of Burgess Shale-type preservation using sedimentologic and geochemical data from the Chengjiang, Burgess Shale, and five other principal Burgess Shale-type deposits. Sulfur isotope evidence from sedimentary pyrites reveals that the exquisite fossilization of organic remains as carbonaceous compressions resulted from early inhibition of microbial activity in the sediments by means of oxidant deprivation. Low sulfate concentrations in the global ocean and low-oxygen bottom water conditions at the sites of deposition resulted in reduced oxidant availability. Subsequently, rapid entombment of fossils in fine-grained sediments and early sealing of sediments by pervasive carbonate cements at bed tops restricted oxidant flux into the sediments. A permeability barrier, provided by bed-capping cements that were emplaced at the seafloor, is a feature that is shared among Burgess Shale-type deposits, and resulted from the unusually high alkalinity of Cambrian oceans. Thus, Burgess Shale-type preservation of soft-bodied fossil assemblages worldwide was promoted by unique aspects of early Paleozoic seawater chemistry that strongly impacted sediment diagenesis, providing a fundamentally unique record of the immediate aftermath of the “Cambrian explosion.” PMID:22392974

  19. Lower Cody Shale (Niobrara equivalent) in the Bighorn Basin, Wyoming and Montana: thickness, distribution, and source rock potential

    USGS Publications Warehouse

    Finn, Thomas M.

    2014-01-01

    The lower shaly member of the Cody Shale in the Bighorn Basin, Wyoming and Montana is Coniacian to Santonian in age and is equivalent to the upper part of the Carlile Shale and basal part of the Niobrara Formation in the Powder River Basin to the east. The lower Cody ranges in thickness from 700 to 1,200 feet and underlies much of the central part of the basin. It is composed of gray to black shale, calcareous shale, bentonite, and minor amounts of siltstone and sandstone. Sixty-six samples, collected from well cuttings, from the lower Cody Shale were analyzed using Rock-Eval and total organic carbon analysis to determine the source rock potential. Total organic carbon content averages 2.28 weight percent for the Carlile equivalent interval and reaches a maximum of nearly 5 weight percent. The Niobrara equivalent interval averages about 1.5 weight percent and reaches a maximum of over 3 weight percent, indicating that both intervals are good to excellent source rocks. S2 values from pyrolysis analysis also indicate that both intervals have a good to excellent source rock potential. Plots of hydrogen index versus oxygen index, hydrogen index versus Tmax, and S2/S3 ratios indicate that organic matter contains both Type II and Type III kerogen capable of generating oil and gas. Maps showing the distribution of kerogen types and organic richness for the lower shaly member of the Cody Shale show that it is more organic-rich and more oil-prone in the eastern and southeastern parts of the basin. Thermal maturity based on vitrinite reflectance (Ro) ranges from 0.60–0.80 percent Ro around the margins of the basin, increasing to greater than 2.0 percent Ro in the deepest part of the basin, indicates that the lower Cody is mature to overmature with respect to hydrocarbon generation.

  20. Coal-shale interface detector

    NASA Technical Reports Server (NTRS)

    Reid, H., Jr. (Inventor)

    1980-01-01

    A coal-shale interface detector for use with coal cutting equipment is described. The detector consists of a reciprocating hammer with an accelerometer to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  1. Eastern Devonian shales: Organic geochemical studies, past and present

    USGS Publications Warehouse

    Breger, I.A.; Hatcher, P.G.; Romankiw, L.A.; Miknis, F.P.

    1983-01-01

    The Eastern Devonian shales are represented by a sequence of sediments extending from New York state, south to the northern regions of Georgia and Alabama, and west into Ohio and to the Michigan and Ilinois Basins. Correlatives are known in Texas. The shale is regionally known by a number of names: Chattanooga, Dunkirk, Rhinestreet, Huron, Antrim, Ohio, Woodford, etc. These shales, other than those in Texas, have elicited much interest because they have been a source of unassociated natural gas. It is of particular interest, however, that most of these shales have no associated crude oil, in spite of the fact that they have some of the characteristics normally attributed to source beds. This paper addresses some of the organic geochemical aspects of the kerogen in these shales, in relation to their oil generating potential. Past organic geochemical studies on Eastern Devonian shales will be reviewed. Recent solid state 13C NMR studies on the nature of the organic matter in Eastern Devonian shales show that Eastern Devonian shales contain a larger fraction of aromatic carbon in their chemical composition. Thus, despite their high organic matter contents, their potential as a petroleum source rock is low, because the kerogen in these shales is of a "coaly" nature and hence more prone to producing natural gas.

  2. Fractal Characteristics of Continental Shale Pores and its Significance to the Occurrence of Shale Oil in China: a Case Study of Biyang Depression

    NASA Astrophysics Data System (ADS)

    Li, Jijun; Liu, Zhao; Li, Junqian; Lu, Shuangfang; Zhang, Tongqian; Zhang, Xinwen; Yu, Zhiyuan; Huang, Kaizhan; Shen, Bojian; Ma, Yan; Liu, Jiewen

    Samples from seven major exploration wells in Biyang Depression of Henan Oilfield were compared using low-temperature nitrogen adsorption and shale oil adsorption experiments. Comprehensive analysis of pore development, oiliness and shale oil flowability was conducted by combining fractal dimension. The results show that the fractal dimension of shale in Biyang Depression of Henan Oilfield was negatively correlated with the average pore size and positively correlated with the specific surface area. Compared with the large pore, the small pore has great fractal dimension, indicating the pore structure is more complicated. Using S1 and chloroform bitumen A to evaluate the relationship between shale oiliness and pore structure, it was found that the more heterogeneous the shale pore structure, the higher the complexity and the poorer the oiliness. Clay minerals are the main carriers involved in crude oil adsorption, affecting the mobility of shale oil. When the pore complexity of shale was high, the content of micro- and mesopores was high, and the high specific surface area could enhance the adsorption and reduce the mobility of shale oil.

  3. How lithology and climate affect REE mobility and fractionation along a shale weathering transect of the Susquehanna Shale Hills Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Ma, L.; Jin, L.; Dere, A. L.; White, T.; Mathur, R.; Brantley, S. L.

    2012-12-01

    Shale weathering is an important process in global elemental cycles. Accompanied by the transformation of bedrock into regolith, many elements including rare earth elements (REE) are mobilized primarily by chemical weathering in the Critical Zone. Then, REE are subsequently transported from the vadose zone to streams, with eventual deposition in the oceans. REE have been identified as crucial and strategic natural resources; and discovery of new REE deposits will be facilitated by understanding global REE cycles. At present, the mechanisms and environmental factors controlling release, transport, and deposition of REE - the sources and sinks - at Earth's surface remain unclear. Here, we present a systematic study of soils, stream sediments, stream waters, soil water and bedrock in six small watersheds that are developed on shale bedrock in the eastern USA to constrain the mobility and fractionation of REE during early stages of chemical weathering. The selected watersheds are part of the shale transect established by the Susquehanna Shale Hills Observatory (SSHO) and are well suited to investigate weathering on shales of different compositions or within different climate regimes but on the same shale unit. Our REE study from SSHO, a small gray shale watershed in central Pennsylvania, shows that up to 65% of the REE (relative to parent bedrock) is depleted in the acidic and organic-rich soils due to chemical leaching. Both weathering soil profiles and natural waters show a preferential removal of middle REE (MREE: Sm to Dy) relative to light REE (La to Nd) and heavy REE (Ho to Lu) during shale weathering, due to preferential release of MREE from a phosphate phase (rhabdophane). Strong positive Ce anomalies observed in the regolith and stream sediments point to the fractionation and preferential precipitation of Ce as compared to other REE, in the generally oxidizing conditions of the surface environments. One watershed developed on the Marcellus black shale in

  4. New vitrinite reflectance data for the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range and Owl Creek and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, and the Granite Mountains on the south, and Wind River Range on the west. The purpose of this report is to present new vitrinite reflectance data collected mainly from Cretaceous marine shales in the Wind River Basin to better characterize their thermal maturity and hydrocarbon potential.

  5. Maquoketa Shale Caprock Integrity Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leetaru, Hannes

    2014-09-30

    The Knox Project objective is to evaluate the potential of formations within the Cambrian-Ordovician strata above the Mt. Simon Sandstone (St. Peter Sandstone and Potosi Dolomite) as potential targets for carbon dioxide (CO2) sequestration in the Illinois and Michigan Basins. The suitability of the St. Peter Sandstone and Potosi Dolomite to serve as reservoirs for CO2 sequestration is discussed in separate reports. In this report the data gathered from the Knox project, the Illinois Basin – Decatur Project (IBDP) and Illinois Industrial Carbon Capture and Sequestration project (IL-ICCS) are used to make some conclusions about the suitability of the Maquoketamore » shale as a confining layer for CO2 sequestration. These conclusions are then upscaled to basin-wide inferences based on regional knowledge. Data and interpretations (stratigraphic, petrophysical, fractures, geochemical, risk, seismic) applicable to the Maquoketa Shale from the above mentioned projects was inventoried and summarized. Based on the analysis of these data and interpretations, the Maquoketa Shale is considered to be an effective caprock for a CO2 injection project in either the Potosi Dolomite or St. Peter Sandstone because it has a suitable thickness (~200ft. ~61m), advantageous petrophysical properties (low effective porosity and low permeability), favorable geomechanical properties, an absence of observable fractures and is regionally extensive. Because it is unlikely that CO2 would migrate upward through the Maquoketa Shale, CO2, impact to above lying fresh water aquifers is unlikely. Furthermore, the observations indicate that CO2 injected into the St. Peter Sandstone or Potosi Dolomite may never even migrate up into the Maquoketa Shale at a high enough concentrations or pressure to threaten the integrity of the caprock. Site specific conclusions were reached by unifying the data and conclusions from the IBDP, ICCS and the Knox projects. In the Illinois Basin, as one looks further

  6. Beaver herbivory and its effect on cottonwood trees: Influence of flooding along matched regulated and unregulated rivers

    USGS Publications Warehouse

    Breck, S.W.; Wilson, K.R.; Andersen, D.C.

    2003-01-01

    We compared beaver (Castor canadensis) foraging patterns on Fremont cottonwood (Populus deltoides subsp. wislizenii) saplings and the probability of saplings being cut on a 10 km reach of the flow-regulated Green River and a 8.6 km reach of the free-flowing Yampa River in northwestern Colorado. We measured the abundance and density of cottonwood on each reach and followed the fates of individually marked saplings in three patches of cottonwood on the Yampa River and two patches on the Green River. Two natural floods on the Yampa River and one controlled flood on the Green River between May 1998 and November 1999 allowed us to assess the effect of flooding on beaver herbivory. Independent of beaver herbivory, flow regulation on the Green River has caused a decrease in number of cottonwood patches per kilometre of river, area of patches per kilometre, and average stem density within cottonwood patches. The number of saplings cut per beaver colony was three times lower on the Green River than on the Yampa River but the probability of a sapling being cut by a beaver was still higher on the Green River because of lower sapling density there. Controlled flooding appeared to increase the rate of foraging on the Green River by inundating patches of cottonwood, which enhanced access by beaver. Our results suggest regulation can magnify the impact of beaver on cottonwood through interrelated effects on plant spatial distribution and cottonwood density, with the result that beaver herbivory will need to be considered in plans to enhance cottonwood populations along regulated rivers.

  7. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2006-01-01

    At present, 150 companies produce common clay and shale in 41 US states. According to the United States Geological Survey (USGS), domestic production in 2005 reached 24.8 Mt valued at $176 million. In decreasing order by tonnage, the leading producer states include North Carolina, Texas, Alabama, Georgia and Ohio. For the whole year, residential and commercial building construction remained the major market for common clay and shale products such as brick, drain tile, lightweight aggregate, quarry tile and structural tile.

  8. Coal-shale interface detection

    NASA Technical Reports Server (NTRS)

    Broussard, P. H.; Burch, J. L.; Drost, E. J.; Stein, R. J. (Inventor)

    1979-01-01

    A penetrometer for coal-shale interface detection is presented. It is used with coal cutting equipment consisting of a reciprocating hammer, having an accelerometer mounted thereon to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. Additionally, a pair of reflectometers simultaneously view the same surface, and the outputs from the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  9. Suspended-sediment transport from the Green-Duwamish River to the Lower Duwamish Waterway, Seattle, Washington, 2013–17

    USGS Publications Warehouse

    Senter, Craig A.; Conn, Kathleen E.; Black, Robert W.; Peterson, Norman; Vanderpool-Kimura, Ann M.; Foreman, James R.

    2018-02-28

    The Green-Duwamish River transports watershed-derived sediment to the Lower Duwamish Waterway Superfund site near Seattle, Washington. Understanding the amount of sediment transported by the river is essential to the bed sediment cleanup process. Turbidity, discharge, suspended-sediment concentration (SSC), and particle-size data were collected by the U.S. Geological Survey (USGS) from February 2013 to January 2017 at the Duwamish River, Washington, within the tidal influence at river kilometer 16.7 (USGS streamgage 12113390; Duwamish River at Golf Course at Tukwila, WA). This report quantifies the timing and magnitude of suspended-sediment transported in the Duwamish River. Regression models were developed between SSC and turbidity and SSC and discharge to estimate 15- minute SSC. Suspended-sediment loads were calculated from the computed SSC and time-series discharge data for every 15-minute interval during the study period. The 2014–16 average annual suspended-sediment load computed was 117,246 tons (106,364 metric tons), of which 73.5 percent or (86,191 tons; 78,191 metric tons) was fine particle (less than 0.0625 millimeter in diameter) suspended sediment. The seasonality of this site is apparent when you divide the year into "wet" (October 16– April 15) and "dry" (April 16–October 15) seasons. Most (97 percent) of the annual suspended sediment was transported during the wet season, when brief periods of intense precipitation from storms, large releases from the Howard Hanson Dam, or a combination of both were much more frequent.

  10. Oil shale retort apparatus

    DOEpatents

    Reeves, Adam A.; Mast, Earl L.; Greaves, Melvin J.

    1990-01-01

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  11. Dry Volume Fracturing Simulation of Shale Gas Reservoir

    NASA Astrophysics Data System (ADS)

    Xu, Guixi; Wang, Shuzhong; Luo, Xiangrong; Jing, Zefeng

    2017-11-01

    Application of CO2 dry fracturing technology to shale gas reservoir development in China has advantages of no water consumption, little reservoir damage and promoting CH4 desorption. This paper uses Meyer simulation to study complex fracture network extension and the distribution characteristics of shale gas reservoirs in the CO2 dry volume fracturing process. The simulation results prove the validity of the modified CO2 dry fracturing fluid used in shale volume fracturing and provides a theoretical basis for the following study on interval optimization of the shale reservoir dry volume fracturing.

  12. Map of assessed shale gas in the United States, 2012

    USGS Publications Warehouse

    ,; Biewick, Laura R. H.

    2013-01-01

    The U.S. Geological Survey has compiled a map of shale-gas assessments in the United States that were completed by 2012 as part of the National Assessment of Oil and Gas Project. Using a geology-based assessment methodology, the U.S. Geological Survey quantitatively estimated potential volumes of undiscovered gas within shale-gas assessment units. These shale-gas assessment units are mapped, and square-mile cells are shown to represent proprietary shale-gas wells. The square-mile cells include gas-producing wells from shale intervals. In some cases, shale-gas formations contain gas in deeper parts of a basin and oil at shallower depths (for example, the Woodford Shale and the Eagle Ford Shale). Because a discussion of shale oil is beyond the scope of this report, only shale-gas assessment units and cells are shown. The map can be printed as a hardcopy map or downloaded for interactive analysis in a Geographic Information System data package using the ArcGIS map document (file extension MXD) and published map file (file extension PMF). Also available is a publications access table with hyperlinks to current U.S. Geological Survey shale gas assessment publications and web pages. Assessment results and geologic reports are available as completed at the U.S. Geological Survey Energy Resources Program Web Site, http://energy.usgs.gov/OilGas/AssessmentsData/NationalOilGasAssessment.aspx. A historical perspective of shale gas activity in the United States is documented and presented in a video clip included as a PowerPoint slideshow.

  13. Refining of Military Jet Fuels from Shale Oil. Part II. Volume II. (In Situ Shale Oil Process Data).

    DTIC Science & Technology

    1982-03-01

    SPEC Meeting Specifications OXY Test Series on In Situ Shale Oil z P Pressure (P + N) Paraffins and Naphthenes PRO Test Series on Above Ground Shale Oil...LV 6/ 12.0 Naphthenes , LV% (Aromatics, LV %/ 11.8 Gross Heating Value, Btu/lb 19,720 19,068 -73- TABLE 111-29. CRUDE SHALE: OIL HYDROTREATING SERIES M...Wt % - Ramabottomn Carbon -1.34 IParaffins (P-IN), LV % (71.1) -IOlef ins, LV % 9.4 i ~ Naphthenes , LV% - Aromatics, LV % 19.5 - Gross Heating Value

  14. Environmental risks and problems of the optimal management of an oil shale semi-coke and ash landfill in Kohtla-Järve, Estonia.

    PubMed

    Vallner, Leo; Gavrilova, Olga; Vilu, Raivo

    2015-08-15

    The main wastes of the Estonian shale oil industry - oil shale semi-coke and ashes - are deposited in landfills. The Kohtla-Järve oil shale semi-coke and ash landfill, which is likely the largest of its kind in the World, was started in 1938. The environmental risks connected with the landfill were assessed and prioritized. The most significant hazard to human health is emission of harmful landfill gases and the water contamination in the local river network is harmful for aqueous organisms. The spatial expansion of subsurface contamination predicted by the groundwater transport model completed is practically insignificant from the viewpoint of health services. The landfill's leachates must be captured and purified, and the closed part of the landfill should be covered by greenery. The partial landfill capping recently executed is useless. The EU Landfill Directive requirements imposed on the hydraulic resistance of geological barriers cannot prevent the leakage of contaminants from a landfill. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Indirect heating pyrolysis of oil shale

    DOEpatents

    Jones, Jr., John B.; Reeves, Adam A.

    1978-09-26

    Hot, non-oxygenous gas at carefully controlled quantities and at predetermined depths in a bed of lump oil shale provides pyrolysis of the contained kerogen of the oil shale, and cool non-oxygenous gas is passed up through the bed to conserve the heat

  16. To Green or Not to Green? Evaluation of Green Stormwater Infrastructure in Kansas City Middle Blue River Project

    EPA Science Inventory

    The City of Kansas City, Mo., Water Services Department is implementing a pilot project to measure and evaluate the performance of green infrastructure. Information obtained through this pilot project will be used to guide the design of green solutions throughout Kansas City und...

  17. Mechanical Properties of Gas Shale During Drilling Operations

    NASA Astrophysics Data System (ADS)

    Yan, Chuanliang; Deng, Jingen; Cheng, Yuanfang; Li, Menglai; Feng, Yongcun; Li, Xiaorong

    2017-07-01

    The mechanical properties of gas shale significantly affect the designs of drilling, completion, and hydraulic fracturing treatments. In this paper, the microstructure characteristics of gas shale from southern China containing up to 45.1% clay were analyzed using a scanning electron microscope. The gas shale samples feature strongly anisotropic characteristics and well-developed bedding planes. Their strength is controlled by the strength of both the matrix and the bedding planes. Conventional triaxial tests and direct shear tests are further used to study the chemical effects of drilling fluids on the strength of shale matrix and bedding planes, respectively. The results show that the drilling fluid has a much larger impact on the strength of the bedding plane than that of the shale matrix. The impact of water-based mud (WBM) is much larger compared with oil-based mud. Furthermore, the borehole collapse pressure of shale gas wells considering the effects of drilling fluids are analyzed. The results show that the collapse pressure increases gradually with the increase of drilling time, especially for WBM.

  18. Mathematical modelling of anisotropy of illite-rich shale

    USGS Publications Warehouse

    Chesnokov, E.M.; Tiwary, D.K.; Bayuk, I.O.; Sparkman, M.A.; Brown, R.L.

    2009-01-01

    The estimation of illite-rich shale anisotropy to account for the alignment of clays and gas- or brine-filled cracks is presented via mathematical modelling. Such estimation requires analysis to interpret the dominance of one effect over another. This knowledge can help to evaluate the permeability in the unconventional reservoir, stress orientation, and the seal capacity for the conventional reservoir. Effective media modelling is used to predict the elastic properties of the illite-rich shale and to identify the dominant contributions to the shale anisotropy. We consider two principal reasons of the shale anisotropy: orientation of clay platelets and orientation of fluid-filled cracks. In reality, both of these two factors affect the shale anisotropy. The goal of this study is, first, to separately analyse the effect of these two factors to reveal the specific features in P- and S-wave velocity behaviour typical of each of the factors, and, then, consider a combined effect of the factors when the cracks are horizontally or vertically aligned. To do this, we construct four models of shale. The behaviour of P- and S-wave velocities is analysed when gas- and water-filled cracks embedded in a host matrix are randomly oriented, or horizontally or vertically aligned. The host matrix can be either isotropic or anisotropic (of VTI symmetry). In such a modelling, we use published data on mineralogy and clay platelet alignment along with other micromechanical measurements. In the model, where the host matrix is isotropic, the presence of a singularity point (when the difference VS1 - VS2 changes its sign) in shear wave velocities is an indicator of brine-filled aligned cracks. In the model with the VTI host matrix and horizontally aligned cracks filled with gas, an increase in their volume concentration leads to that the azimuth at which the singularity is observed moves toward the symmetry axis. In this case, if the clay content is small (around 20 per cent), the

  19. Updated methodology for nuclear magnetic resonance characterization of shales

    NASA Astrophysics Data System (ADS)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  20. Method for maximizing shale oil recovery from an underground formation

    DOEpatents

    Sisemore, Clyde J.

    1980-01-01

    A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

  1. Geology of the Powder River Basin, Wyoming and Montana, with reference to subsurface disposal of radioactive wastes

    USGS Publications Warehouse

    Beikman, Helen M.

    1962-01-01

    The Powder River Basin is a structural and topographic basin occupying an area of about 20,000 square miles in northeastern Wyoming arid southeastern Montana. The Basin is about 230 miles long in a northwest-southeast direction and is about 100 miles wide. It is bounded on three sides by mountains in which rocks of Precambrian age are exposed. The Basin is asymmetrical with a steep west limb adjacent to the Bighorn Mountains and a gentle east limb adjacent to the Black Hills. Sedimentary rocks within the Basin have a maximum thickness of about 18,000 feet and rocks of every geologic period are represented. Paleozoic rocks are about 2,500 feet thick and consist of marine bonate rocks and sandstone; Mesozoic rocks are about 9,500 feet thick and consist of both marine and nonmarine siltstone and sandstone; and Cenozoic rocks are from 4,000 to 6,000 feet thick and consist of coal-bearing sandstone and shale. Radioactive waste could be stored in the pore space of permeable sandstone or in shale where space could be developed. Many such rock units that could be used for storing radioactive wastes are present within the Powder River Basin. Permeable sandstone beds that may be possible reservoirs for storage of radioactive waste are present throughout the Powder River Basin. These include sandstone beds in the Flathead Sandstone and equivalent strata in the Deadwood Formation, the Tensleep Sandstone and equivalent strata in the Minnelusa Formation and the Sundance Formation in rocks of pre-Cretaceous age. However, most of the possible sandstone reservoirs are in rocks of Cretaceous age and include sandstone beds in the Fall River, Lakota, Newcastle, Frontier, Cody, and Mesaverde Formations. Problems of containment of waste such as clogging of pore space and chemical incompatibility would have to be solved before a particular sandstone unit could be selected for waste disposal. Several thick sequences of impermeable shale such as those in the Skull Creek, Mowry, Frontier

  2. Shale gas development impacts on surface water quality in Pennsylvania.

    PubMed

    Olmstead, Sheila M; Muehlenbachs, Lucija A; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J

    2013-03-26

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl(-)) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl(-) concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl(-) concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases.

  3. Sedimentary provenance of Maastrichtian oil shales, Central Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Fathy, Douaa; Wagreich, Michael; Mohamed, Ramadan S.; Zaki, Rafat

    2017-04-01

    Maastrichtian oil shales are distributed within the Central Eastern Desert in Egypt. In this study elemental geochemical data have been applied to investigate the probable provenance of the sedimentary detrital material of the Maastrichtian oil shale beds within the Duwi and the Dakhla formations. The Maastrichtian oil shales are characterized by the enrichment in Ca, P, Mo, Ni, Zn, U, Cr and Sr versus post-Archean Australian shales (PAAS). The chondrite-normalized patterns of the Maastrichtian oil shale samples are showing LREE enrichment, HREE depletion, slightly negative Eu anomaly, no obvious Ce anomaly and typical shale-like PAAS-normalized patterns. The total REE well correlated with Si, Al, Fe, K and Ti, suggesting that the REE of the Maastrichtian oil shales are derived from terrigenous source. Chemical weathering indices such as Chemical Index of Alteration (CIA), Chemical Proxy of Alteration (CPA) and Plagioclase Index of Alteration (PIA) indicate moderate to strong chemical weathering. We suggest that the Maastrichtian oil shale is mainly derived from first cycle rocks especially intermediate rocks without any significant inputs from recycled or mature sources. The proposed data illustrated the impact of the parent material composition on evolution of oil shale chemistry. Furthermore, the paleo-tectonic setting of the detrital source rocks for the Maastrichtian oil shale is probably related to Proterozoic continental island arcs

  4. Shale gas development impacts on surface water quality in Pennsylvania

    PubMed Central

    Olmstead, Sheila M.; Muehlenbachs, Lucija A.; Shih, Jhih-Shyang; Chu, Ziyan; Krupnick, Alan J.

    2013-01-01

    Concern has been raised in the scientific literature about the environmental implications of extracting natural gas from deep shale formations, and published studies suggest that shale gas development may affect local groundwater quality. The potential for surface water quality degradation has been discussed in prior work, although no empirical analysis of this issue has been published. The potential for large-scale surface water quality degradation has affected regulatory approaches to shale gas development in some US states, despite the dearth of evidence. This paper conducts a large-scale examination of the extent to which shale gas development activities affect surface water quality. Focusing on the Marcellus Shale in Pennsylvania, we estimate the effect of shale gas wells and the release of treated shale gas waste by permitted treatment facilities on observed downstream concentrations of chloride (Cl−) and total suspended solids (TSS), controlling for other factors. Results suggest that (i) the treatment of shale gas waste by treatment plants in a watershed raises downstream Cl− concentrations but not TSS concentrations, and (ii) the presence of shale gas wells in a watershed raises downstream TSS concentrations but not Cl− concentrations. These results can inform future voluntary measures taken by shale gas operators and policy approaches taken by regulators to protect surface water quality as the scale of this economically important activity increases. PMID:23479604

  5. Process for recovering products from oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, H.R.; Udell, K.S.

    A process is claimed for recovering hydrocarbon products from a body of fragmented or rubblized oil shale. The process includes initiating a combustion zone adjacent the lower end of a body of oil shale and using the thermal energy therefrom for volatilizing the shale oil from the oil shale above the combustion front. Improved recovery of hydrocarbon products is realized by refluxing the heavier fractions in the volatilized shale oil. The heavier fractions are refluxed by condensing the heavier fractions and allowing the resulting condensate to flow downwardly toward the combustion front. Thermal energy from the combustion zone cracks themore » condensate producing additional lower molecular weight fractions and a carbonaceous residue. The carbonaceous residue is burned in the combustion front to supply the thermal energy. The temperature of the combustion front is maintained by regulating input of oxygen to the combustion zone. The process also includes sweeping the volatilized products from the rubblized oil shale with a noncombustible gas. The flow rate of sweep gas is also controlled to regulate the temperature of the combustion front. The recovered products can be enriched with hydrogen by using water vapor as part of the noncombustible sweep gas and cracking the water vapor with the hot carbon in the combustion front to produce hydrogen and an oxide of carbon.« less

  6. Continuous TDEM for monitoring shale hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Yan, Liang-Jun; Chen, Xiao-Xiong; Tang, Hao; Xie, Xing-Bing; Zhou, Lei; Hu, Wen-Bao; Wang, Zhong-Xin

    2018-03-01

    Monitoring and delineating the spatial distribution of shale fracturing is fundamentally important to shale gas production. Standard monitoring methods, such as time-lapse seismic, cross-well seismic and micro-seismic methods, are expensive, timeconsuming, and do not show the changes in the formation with time. The resistivities of hydraulic fracturing fluid and reservoir rocks were measured. The results suggest that the injection fluid and consequently the injected reservoir are characterized by very low resistivity and high chargeability. This allows using of the controlled-source electromagnetic method (CSEM) to monitor shale gas hydraulic fracturing. Based on the geoelectrical model which was proposed according to the well-log and seismic data in the test area the change rule of the reacted electrical field was studied to account for the change of shale resistivity, and then the normalized residual resistivity method for time lapse processing was given. The time-domain electromagnetic method (TDEM) was used to continuously monitor the shale gas fracturing at the Fulin shale gas field in southern China. A high-power transmitter and multi-channel transient electromagnetic receiver array were adopted. 9 h time series of Ex component of 224 sites which were laid out on the surface and over three fracturing stages of a horizontal well at 2800 m depth was recorded. After data processing and calculation of the normalized resistivity residuals, the changes in the Ex signal were determined and a dynamic 3D image of the change in resistivity was constructed. This allows modeling the spatial distribution of the fracturing fluid. The model results suggest that TDEM is promising for monitoring hydraulic fracturing of shale.

  7. Limited fluid in carbonate-shale hosted thrust faults of the Rocky Mountain Fold-and-Thrust Belt (Sun River Canyon, Montana)

    NASA Astrophysics Data System (ADS)

    OBrien, V. J.; Kirschner, D. L.

    2001-12-01

    It is widely accepted that fluids play a fundamental role in the movement of thrust faults in foreland fold-and-thrust belts. We have begun a combined structure-geochemistry study of faults in the Rocky Mountain fold-and-thrust belt in order to provide more insight into the occurrence and role(s) of fluid in the deformation of thrust faults. We focus on faults exposed in the Sun River Canyon of Montana, an area that contains some of the best exposures of the Rocky Mountain fold-and-thrust belt in the U.S. Samples were collected from two well exposed thrusts in the Canyon -- the Diversion and French thrusts. Both faults have thrust Mississippian dolostones over Cretaceous shales. Displacement exceeds several kilometers. Numerous small-displacement, subsidiary faults characterize the deformation in the hanging wall carbonates. The footwall shales accommodated more penetrative deformation, resulting in well developed foliation and small-scale folds. Stable isotope data have been obtained from host rock samples and veins from these faults. The data delimit an arcuate trend in oxygen-carbon isotope space. Approximately 50 host rock carbonate samples from the hanging walls have carbon and oxygen isotope values ranging from +3 to 0 and 28 to 19 per mil, respectively. There is no apparent correlation between isotopic values and distance from thrust fault at either locality. Fifteen samples of fibrous slickensides on small-displacement faults in the hanging walls have similar carbon and lower oxygen isotope values (down to 16 per mil). And 15 veins that either post-date thrusting or are of indeterminate origin have carbon and oxygen isotope values down to -3 and12 per mil, respectively. The isotopic data collected during the initial stages of this project are similar to some results obtained several hundred kilometers north in the Front Ranges of the Canadian Rockies (Kirschner and Kennedy, JGR 2000) and in carbonate fold-thrust belts of the Swiss Helvetic Alps and Italian

  8. Oil shale processing as a source of aquatic pollution: monitoring of the biologic effects in caged and feral freshwater fish.

    PubMed Central

    Tuvikene, A; Huuskonen, S; Koponen, K; Ritola, O; Mauer, U; Lindström-Seppä, P

    1999-01-01

    The biologic effects of the oil shale industry on caged rainbow trout (Oncorhynchus mykiss) as well as on feral perch (Perca fluviatilis) and roach (Rutilus rutilus) were studied in the River Narva in northeast Estonia. The River Narva passes the oil shale mining and processing area and thus receives elevated amounts of polycyclic aromatic hydrocarbons (PAHs), heavy metals, and sulfates. The effects of the chemical load were monitored by measuring cytochrome P4501A (CYP1A)-dependent monooxygenase (MO) activities [7-ethoxyresorufin O-deethylase and aryl hydrocarbon hydroxylase (AHH)] as well as conjugation enzyme activities [glutathione S-transferase (GST) and UDP-glucuronosyltransferase] in the liver of fish. CYP1A induction was further studied by detecting the amount and occurrence of the CYP1A protein. Histopathology of tissues (liver, kidney, spleen, and intestine) and the percentage of micronuclei in fish erythrocytes were also determined. Selected PAHs and heavy metals (Cd, Cu, Hg, and Pb) were measured from fish muscle and liver. In spite of the significant accumulation of PAHs, there was no induction of MO activities in any studied fish species. When compared to reference samples, AHH activities were even decreased in feral fish at some of the exposed sites. Detection of CYP1A protein content and the distribution of the CYP1A enzyme by immunohistochemistry also did not show extensive CYP1A induction. Instead, GST activities were significantly increased at exposed sites. Detection of histopathology did not reveal major changes in the morphology of tissues. The micronucleus test also did not show any evidence of genotoxicity. Thus, from the parameters studied, GST activity was most affected. The lack of catalytic CYP1A induction in spite of the heavy loading of PAHs was not studied but has been attributed to the elevated content of other compounds such as heavy metals, some of which can act as inhibitors for MOs. Another possible explanation of this lack of

  9. Shale gas characterization based on geochemical and geophysical analysis: Case study of Brown shale, Pematang formation, Central Sumatra Basin

    NASA Astrophysics Data System (ADS)

    Haris, A.; Nastria, N.; Soebandrio, D.; Riyanto, A.

    2017-07-01

    Geochemical and geophysical analyses of shale gas have been carried out in Brown Shale, Middle Pematang Formation, Central Sumatra Basin. The paper is aimed at delineating the sweet spot distribution of potential shale gas reservoir, which is based on Total Organic Carbon (TOC), Maturity level data, and combined with TOC modeling that refers to Passey and Regression Multi Linear method. We used 4 well data, side wall core and 3D pre-stack seismic data. Our analysis of geochemical properties is based on well log and core data and its distribution are constrained by a framework of 3D seismic data, which is transformed into acoustic impedance. Further, the sweet spot of organic-rich shale is delineated by mapping TOC, which is extracted from inverted acoustic impedance. Our experiment analysis shows that organic materials contained in the formation of Middle Pematang Brown Shale members have TOC range from 0.15 to 2.71 wt.%, which is classified in the quality of poor to very good. In addition, the maturity level of organic material is ranging from 373°C to 432°C, which is indicated by vitrinite reflectance (Ro) of 0.58. In term of kerogen type, this Brown shale formation is categorized as kerogen type of II I III, which has the potential to generate a mixture of gasIoil on the environment.

  10. Process concept of retorting of Julia Creek oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitnai, O.

    1984-06-01

    A process is proposed for the above ground retorting of the Julia Creek oil shale in Queensland. The oil shale characteristics, process description, chemical reactions of the oil shale components, and the effects of variable and operating conditions on process performance are discussed. The process contains a fluidized bed combustor which performs both as a combustor of the spent shales and as a heat carrier generator for the pyrolysis step. 12 references, 5 figures, 5 tables.

  11. Analysis of the effectiveness of steam retorting of oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, H.R.; Pensel, R.W.; Udell, K.S.

    A numerical model is developed to describe the retorting of oil shale using superheated steam. The model describes not only the temperature history of the shale but predicts the evolution of shale oil from kerogen decomposition and the breakdown of the carbonates existing in the shale matrix. The heat transfer coefficients between the water and the shale are determined from experiments utilizing the model to reduce the data. Similarly the model is used with thermogravimetric analysis experiments to develop an improved kinetics expression for kerogen decomposition in a steam environment. Numerical results are presented which indicate the effect of oilmore » shale particle size and steam temperature on oil production.« less

  12. System for utilizing oil shale fines

    DOEpatents

    Harak, Arnold E.

    1982-01-01

    A system is provided for utilizing fines of carbonaceous materials such as particles or pieces of oil shale of about one-half inch or less diameter which are rejected for use in some conventional or prior surface retorting process, which obtains maximum utilization of the energy content of the fines and which produces a waste which is relatively inert and of a size to facilitate disposal. The system includes a cyclone retort (20) which pyrolyzes the fines in the presence of heated gaseous combustion products, the cyclone retort having a first outlet (30) through which vapors can exit that can be cooled to provide oil, and having a second outlet (32) through which spent shale fines are removed. A burner (36) connected to the spent shale outlet of the cyclone retort, burns the spent shale with air, to provide hot combustion products (24) that are carried back to the cyclone retort to supply gaseous combustion products utilized therein. The burner heats the spent shale to a temperature which forms a molten slag, and the molten slag is removed from the burner into a quencher (48) that suddenly cools the molten slag to form granules that are relatively inert and of a size that is convenient to handle for disposal in the ground or in industrial processes.

  13. Data compilation for assessing sediment and toxic chemical loads from the Green River to the lower Duwamish Waterway, Washington

    USGS Publications Warehouse

    Conn, Kathleen E.; Black, Robert W.

    2014-01-01

    Between February and June 2013, the U.S. Geological Survey collected representative samples of whole water, suspended sediment, and (or) bed sediment from a single strategically located site on the Duwamish River, Washington, during seven periods of different flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including polycyclic aromatic hydrocarbons and other semivolatile compounds, polychlorinated biphenyl Aroclors and the 209 congeners, metals, dioxins/furans, volatile organic compounds, pesticides, butyltins, hexavalent chromium, and total organic carbon. Chemical concentrations associated with bulk bed sediment (<2 mm) and fine bed sediment (<62.5 μm) fractions were compared to chemical concentrations associated with suspended sediment. Bulk bed sediment concentrations generally were lower than fine bed sediment and suspended-sediment concentrations. Concurrent with the chemistry sampling, additional parameters were measured, including instantaneous river discharge, suspended-sediment concentration, sediment particle-size distribution, and general water-quality parameters. From these data, estimates of instantaneous sediment and chemical loads from the Green River to the Lower Duwamish Waterway were calculated.

  14. Updated methodology for nuclear magnetic resonance characterization of shales

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-01-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world’s energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1–T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  15. On wettability of shale rocks.

    PubMed

    Roshan, H; Al-Yaseri, A Z; Sarmadivaleh, M; Iglauer, S

    2016-08-01

    The low recovery of hydraulic fracturing fluid in unconventional shale reservoirs has been in the centre of attention from both technical and environmental perspectives in the last decade. One explanation for the loss of hydraulic fracturing fluid is fluid uptake by the shale matrix; where capillarity is the dominant process controlling this uptake. Detailed understanding of the rock wettability is thus an essential step in analysis of loss of the hydraulic fracturing fluid in shale reservoirs, especially at reservoir conditions. We therefore performed a suit of contact angle measurements on a shale sample with oil and aqueous ionic solutions, and tested the influence of different ion types (NaCl, KCl, MgCl2, CaCl2), concentrations (0.1, 0.5 and 1M), pressures (0.1, 10 and 20MPa) and temperatures (35 and 70°C). Furthermore, a physical model was developed based on the diffuse double layer theory to provide a framework for the observed experimental data. Our results show that the water contact angle for bivalent ions is larger than for monovalent ions; and that the contact angle (of both oil and different aqueous ionic solutions) increases with increase in pressure and/or temperature; these increases are more pronounced at higher ionic concentrations. Finally, the developed model correctly predicted the influence of each tested variable on contact angle. Knowing contact angle and therefore wettability, the contribution of the capillary process in terms of water uptake into shale rocks and the possible impairment of hydrocarbon production due to such uptake can be quantified. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. An exploratory study of air emissions associated with shale gas development and production in the Barnett Shale.

    PubMed

    Rich, Alisa; Grover, James P; Sattler, Melanie L

    2014-01-01

    Information regarding air emissions from shale gas extraction and production is critically important given production is occurring in highly urbanized areas across the United States. Objectives of this exploratory study were to collect ambient air samples in residential areas within 61 m (200 feet) of shale gas extraction/production and determine whether a "fingerprint" of chemicals can be associated with shale gas activity. Statistical analyses correlating fingerprint chemicals with methane, equipment, and processes of extraction/production were performed. Ambient air sampling in residential areas of shale gas extraction and production was conducted at six counties in the Dallas/Fort Worth (DFW) Metroplex from 2008 to 2010. The 39 locations tested were identified by clients that requested monitoring. Seven sites were sampled on 2 days (typically months later in another season), and two sites were sampled on 3 days, resulting in 50 sets of monitoring data. Twenty-four-hour passive samples were collected using summa canisters. Gas chromatography/mass spectrometer analysis was used to identify organic compounds present. Methane was present in concentrations above laboratory detection limits in 49 out of 50 sampling data sets. Most of the areas investigated had atmospheric methane concentrations considerably higher than reported urban background concentrations (1.8-2.0 ppm(v)). Other chemical constituents were found to be correlated with presence of methane. A principal components analysis (PCA) identified multivariate patterns of concentrations that potentially constitute signatures of emissions from different phases of operation at natural gas sites. The first factor identified through the PCA proved most informative. Extreme negative values were strongly and statistically associated with the presence of compressors at sample sites. The seven chemicals strongly associated with this factor (o-xylene, ethylbenzene, 1,2,4-trimethylbenzene, m- and p-xylene, 1

  17. Properties of Silurian shales from the Barrandian Basin, Czech Republic

    NASA Astrophysics Data System (ADS)

    Weishauptová, Zuzana; Přibyl, Oldřich; Sýkorová, Ivana

    2017-04-01

    Although shale gas-bearing deposits have a markedly lower gas content than coal deposits, great attention has recently been paid to shale gas as a new potential source of fossil energy. Shale gas extraction is considered to be quite economical, despite the lower sorption capacity of shales, which is only about 10% of coal sorption capacities The selection of a suitable locality for extracting shale gas requires the sorption capacity of the shale to be determined. The sorption capacity is determined in the laboratory by measuring the amount of methane absorbed in a shale specimen at a pressure and a temperature corresponding to in situ conditions, using high pressure sorption. According to the principles of reversibility of adsorption/desorption, this amount should be roughly related to the amount of gas released by forced degassing. High pressure methane sorption isotherms were measured on seven representative samples of Silurian shales from the Barrandian Basin, Czech Republic. Excess sorption measurements were performed at a temperature of 45oC and at pressures up to 15 MPa on dry samples, using a manometric method. Experimental methane high-pressure isotherms were fitted to a modified Langmuir equation. The maximum measured excess sorption parameter and the Langmuir sorption capacity parameter were used to study the effect of TOC content, organic maturity, inorganic components and porosity on the methane sorption capacity. The studied shale samples with random reflectance of graptolite 0.56 to 1.76% had a very low TOC content and dominant mineral fractions. Illite was the prevailing clay mineral. The sample porosity ranged from 4.6 to 18.8%. In most samples, the micropore volumes were markedly lower than the meso- and macropore volumes. In the Silurian black shales, the occurrence of fractures parallel with the original sedimentary bending was highly significant. A greater proportion of fragments of carbonaceous particles of graptolites and bitumens in the

  18. Employment Creation of Shale Gas Investment in China

    NASA Astrophysics Data System (ADS)

    Wang, Xuecheng; Zhang, Baosheng; Wu, Meiling; Li, Xiang; Lin, Yuying

    2018-01-01

    An ambitious shale gas extraction plan has been proposed. The huge investment of shale gas may put an effect on the whole China’s economy, especially for employment. However, there is few study to date has quantified these effects. The aim of this paper is to quantify these effects especially employment creation and figures out whether shale gas investment in China is a good choice or not. Input-output analysis has been utilized in this study to estimate the employment creation in four different Chinese regions. Our findings show that shale gas investment will result in creating 660000, 370000, 140000 and 58000 equivalent jobs in Sichuan, Chongqing, Inner Mongolia and Guizhou, respectively. Considering the potential risks of environmental issues, we suggest that it may be a better strategy for the government, at least in the current situation, to slow down shale gas development investment.

  19. Specific mineral associations of hydrothermal shale (South Kamchatka)

    NASA Astrophysics Data System (ADS)

    Rychagov, S. N.; Sergeeva, A. V.; Chernov, M. S.

    2017-11-01

    The sequence of hydrothermal shale from the East Pauzhet thermal field within the Pauzhet hydrothermal system (South Kamchatka) was studied in detail. It was established that the formation of shale resulted from argillization of an andesitic lava flow under the influence of an acidic sulfate vapor condensate. The horizons with radically different compositions and physical properties compared to those of the overlying homogeneous plastic shale were distinguished at the base of the sequence. These horizons are characterized by high (up to two orders of magnitude in comparison with average values in hydrothermal shale) concentrations of F, P, Na, Mg, K, Ca, Sc, Ti, V, Cr, Cu, and Zn. We suggested a geological-geochemical model, according to which a deep metal-bearing chloride-hydrocarbonate solution infiltrated into the permeable zone formed at the root of the andesitic lava flow beneath plastic shale at a certain stage of evolution of the hydrothermal system.

  20. Effective viscoelastic properties of shales.

    NASA Astrophysics Data System (ADS)

    Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel

    2017-04-01

    Shales are often characterized as being elasto-plastic: they deform elastically for stresses below a certain yield and plastically at the limit. This approach dismisses any time dependent behavior that occurs in nature. Our goal is to better understand this time dependency by considering the visco-elastic behavior of shales before plasticity is reached. Shales are also typically heterogeneous and the question arises as to how to derive their effective properties in order to model them as a homogeneous medium. We model shales using inclusion based models due to their versatility and their ability to represent the microstructure. The inclusions represent competent quartz or calcite grains which are set in a viscous matrix made of clay minerals. Our approach relies on both numerical and analytical results in two dimension and we use them to cross check each other. The numerical results are obtained using MILAMIN, a fast-finite element solver for large problems, while the analytical solutions are based on the correspondence principle of linear viscoelasticity. This principle allows us to use the results on effective properties already derived for elastic bodies and to adapt them to viscoelastic bodies. We start by revisiting the problem of a single inclusion in an infinite medium and then move on to consider many inclusions.

  1. CO2 Sequestration within Spent Oil Shale

    NASA Astrophysics Data System (ADS)

    Foster, H.; Worrall, F.; Gluyas, J.; Morgan, C.; Fraser, J.

    2013-12-01

    Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and of high quality, and could represent 100 billion barrels of oil, leading to much interest and activity in the development of these deposits. The exploitation of oil shales has raised a number of environmental concerns including: land use, waste disposal, water consumption, and greenhouse gas emissions. The dry retorting of oil shales can overcome a number of the environmental impacts, but this leaves concerns over management of spent oil shale and CO2 production. In this study we propose that the spent oil shale can be used to sequester CO2 from the retorting process. Here we show that by conducting experiments using high pressure reaction facilities, we can achieve successful carbonation of spent oil shale. High pressure reactor facilities in the Department of Earth Sciences, Durham University, are capable of reacting solids with a range of fluids up to 15 MPa and 350°C, being specially designed for research with supercritical fluids. Jordanian spent oil shale was reacted with high pressure CO2 in order to assess whether there is potential for sequestration. Fresh and reacted materials were then examined by: Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Thermogravimetric Analysis (TGA), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) methods. Jordanian spent oil shale was found to sequester up to 5.8 wt % CO2, on reacting under supercritical conditions, which is 90% of the theoretical carbonation. Jordanian spent oil shale is composed of a large proportion of CaCO3, which on retorting decomposes, forming CaSO4 and Ca-oxides which are the focus of carbonation reactions. A factorially designed experiment was used to test different factors on the extent of carbonation, including: pressure; temperature; duration; and the water content. Analysis of Variance (ANOVA) techniques were then used to determine the significance of

  2. Coal-shale interface detection system

    NASA Technical Reports Server (NTRS)

    Campbell, R. A.; Hudgins, J. L.; Morris, P. W.; Reid, H., Jr.; Zimmerman, J. E. (Inventor)

    1979-01-01

    A coal-shale interface detection system for use with coal cutting equipment consists of a reciprocating hammer on which an accelerometer is mounted to measure the impact of the hammer as it penetrates the ceiling or floor surface of a mine. A pair of reflectometers simultaneously view the same surface. The outputs of the accelerometer and reflectometers are detected and jointly registered to determine when an interface between coal and shale is being cut through.

  3. Wet separation processes as method to separate limestone and oil shale

    NASA Astrophysics Data System (ADS)

    Nurme, Martin; Karu, Veiko

    2015-04-01

    Biggest oil shale industry is located in Estonia. Oil shale usage is mainly for electricity generation, shale oil generation and cement production. All these processes need certain quality oil shale. Oil shale seam have interlayer limestone layers. To use oil shale in production, it is needed to separate oil shale and limestone. A key challenge is find separation process when we can get the best quality for all product types. In oil shale separation typically has been used heavy media separation process. There are tested also different types of separation processes before: wet separation, pneumatic separation. Now oil shale industry moves more to oil production and this needs innovation methods for separation to ensure fuel quality and the changes in quality. The pilot unit test with Allmineral ALLJIG have pointed out that the suitable new innovation way for oil shale separation can be wet separation with gravity, where material by pulsating water forming layers of grains according to their density and subsequently separates the heavy material (limestone) from the stratified material (oil shale)bed. Main aim of this research is to find the suitable separation process for oil shale, that the products have highest quality. The expected results can be used also for developing separation processes for phosphorite rock or all others, where traditional separation processes doesn't work property. This research is part of the study Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/

  4. Synergizing green and gray infrastructures to increase water supply resilience in the Brazos River basin in Texas

    NASA Astrophysics Data System (ADS)

    Gao, H.; Yamazaki, D.; Finley, T.; Bohn, T. J.; Low, G.; Sabo, J. L.

    2017-12-01

    Water infrastructure lies at the heart of the challenges and opportunities of Integrated Water Resource Management (IWRM). Green infrastructure (e.g., wetlands restoration) presents an alternative to its hard-path counterpart - gray infrastructure, which often has external, economic and unmeasured ecological costs. But the science framework to prioritize green infrastructure buildout is nascent. In this study, we addressed this gap in Brazos River basin in Texas, in the context of corporate decisions to secure water supplies for various water stewardship objectives. We developed a physically-based tool to quantify the potential for wetland restoration to restore desired flows (hydrology), and a financial framework for comparing its cost-benefit with heightening an existing dam (conservation finance). Our framework has three components. First, we harnessed a topographic index (HAND) to identify the potential wetlands sites. Second, we coupled a land surface model (VIC) with a hydrodynamic model (CaMa-Flood) to investigate the effects of wetland size, location, and vegetation on hydrology. Finally, we estimated the net present value, indirect rate of return and payback period for green (wetlands) vs. gray (reservoir expansion) infrastructure. We found wetlands have more substantial impact on peak flow than baseflow. Interestingly, wetlands can improve baseflow reliability but not directly except with the largest (>400 km2) projects. Peak flow reduction volumes of wetlands if used as credits towards reservoir flood-control storage provide adequate conservation storage to deliver guaranteed reliability of baseflow. Hence, the synergy of existing dams with newly created wetlands offers a promising natural solution to increase water supply resilience, while green projects also generate revenue compared to their gray counterparts. This study demonstrates the possibility of using innovative engineering design to synergize green and gray infrastructures to convert water

  5. Geochemistry of Israeli oil shales - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirav, M.; Ginzbury, D.

    1983-02-01

    The oil shales in Israel are widely distributed throughout the country. Outcrops are rare and the information is based on boreholes data. The oil shale sequence is of UpperCampanian - Maastrichtian age and belongs to the Chareb Formation. In places, part of the phosphorite layer below the oil shales is also rich in kerogen. The host rocks are biomicritic limestones and marls, in which the organic matter is generally homogeneously and finely dispersed. The occurrence of authigenic feldspar and the preservation of the organic matter (up to 26% of the total rock) indicate euxinic hypersaline conditions which prevailed in themore » relative closed basins of deposition during the Maastrichtian. Current reserves of oil shales in Israel are about 3,500 million tons, located in the following deposits: Zin, Oron, Ef'e, Hartuv and Nabi-Musa. The 'En Bokek deposit, although thoroughly investigated, is of limited reserves and is not considered for future exploitation. Other potential areas, in the Northern Negev and along the Coastal Plain are under investigation. Future successful utilization of the Israeli oil shales, either by fluidizid-bed combustion or by retorting will contribute to the state's energy balance.« less

  6. Rapid gas development in the Fayetteville shale basin, Arkansas

    EPA Science Inventory

    Advances in drilling and extraction of natural gas have resulted in rapid expansion of wells in shale basins. The rate of gas well installation in the Fayetteville shale is 774 wells a year since 2005 with thousands more planned. The Fayetteville shale covers 23,000 km2 although ...

  7. Explosively produced fracture of oil shale

    NASA Astrophysics Data System (ADS)

    Morris, W. A.

    1982-05-01

    Rock fragmentation research in oil shale to develop the blasting technologies and designs required to prepare a rubble bed for a modified in situ retort is reported. Experimental work is outlined, proposed studies in explosive characterization are detailed and progress in numerical calculation techniques to predict fracture of the shale is described. A detailed geologic characterization of two Anvil Points experiment sites is related to previous work at Colony Mine. The second section focuses on computer modeling and theory. The latest generation of the stress wave code SHALE, its three dimensional potential, and the slide line package for it are described. A general stress rate equation that takes energy dependence into account is discussed.

  8. Shale Gas characteristics of Permian black shales (Ecca group, Eastern Cape, South Africa)

    NASA Astrophysics Data System (ADS)

    Geel, Claire; Booth, Peter; Schulz, Hans-Martin; Horsfield, Brian; de Wit, Maarten

    2013-04-01

    This study involves a comprehensive and detailed lithological, sedimentalogical, structural and geochemical description of the lower Ecca Group in the Eastern Cape, South Africa. The Ecca group hosts a ~ 245 million year old organic-rich black shale, which has recently been the focus of interest of petroleum companies worldwide. The shale was deposited under anoxic conditions in a setting which formed as a consequence of retro-arc foreland basin development related to the Cape Fold Belt. This sedimentary/tectonic environment provided the conditions for deeply buried black shales to reach maturity levels for development in the gas window. The investigation site is called the Greystone Area and is situated north of Wolwefontein en route to Jansenville. The area has outcrops of the Dwyka, the Ecca and the lower Beaufort Groups. The outcrops were mapped extensively and the data was used in conjunction with GIS software to produce a detailed geological map. North-south cross sections were drawn to give indication of bed thicknesses and formation depths. Using the field work, data two boreholes were accurately sited on the northern limb of a shallow easterly plunging syncline. The first borehole reached 100m and the second was drilled to 292m depth (100m percussion and 192m core). The second borehole was drilled 200m south of the first, to penetrate the formations at a greater depth and to avoid surface weathering. Fresh core from the upper Dwyka Group, the Prince Albert Formation, the Whitehill Formation, Collingham Formation and part of the Ripon Formation were successfully extracted and a detailed stratigraphic log has been drawn up. The core was sampled during extraction and the samples were immediately sent to the GFZ in Potsdam, Germany, for geochemical analyses. As suspected the black shales of the the Whitehill Formation are high in organic carbon and have an average TOC value of 4.5%, whereas the Prince Albert and Collingham Formation are below 1%. Tmax values

  9. Oil shale as an energy source in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fainberg, V.; Hetsroni, G.

    1996-01-01

    Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis ofmore » the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.« less

  10. The Multi-Porosity Multi-Permeability and Electrokinetic Natures of Shales and Their Effects in Hydraulic Fracturing of Unconventional Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Liu, C.; Hoang, S. K.; Tran, M. H.; Abousleiman, Y. N.

    2013-12-01

    Imaging studies of unconventional shale reservoir rocks have recently revealed the multi-porosity multi-permeability nature of these intricate formations. In particular, the porosity spectrum of shale reservoir rocks often comprises of the nano-porosity in the organic matters, the inter-particle micro-porosity, and the macroscopic porosity of the natural fracture network. Shale is also well-known for its chemically active behaviors, especially shrinking and swelling when exposed to aqueous solutions, as the results of pore fluid exchange with external environment due to the difference in electro-chemical potentials. In this work, the effects of natural fractures and electrokinetic nature of shale on the formation responses during hydraulic fracturing are examined using the dual-poro-chemo-electro-elasticity approach which is a generalization of the classical Biot's poroelastic formulation. The analyses show that the presence of natural fractures can substantially increase the leak-off rate of fracturing fluid into the formation and create a larger region of high pore pressure near the fracture face as shown in Fig.1a. Due to the additional fluid invasion, the naturally fractured shale swells up more and the fracture aperture closes faster compared to an intrinsically low permeability non-fractured shale formation as shown in Fig.1b. Since naturally fractured zones are commonly targeted as pay zones, it is important to account for the faster fracture closing rate in fractured shales in hydraulic fracturing design. Our results also show that the presence of negative fixed charges on the surface of clay minerals creates an osmotic pressure at the interface of the shale and the external fluid as shown in Fig.1c. This additional Donnan-induced pore pressure can result in significant tensile effective stresses and tensile damage in the shale as shown in Fig.1d. The induced tensile damage can exacerbate the problem of proppant embedment resulting in more fracture closure

  11. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China

    PubMed Central

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable. PMID:26285123

  12. Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China.

    PubMed

    Wang, Min; Yang, Jinxiu; Wang, Zhiwei; Lu, Shuangfang

    2015-01-01

    In shale, liquid hydrocarbons are accumulated mainly in nanometer-scale pores or fractures, so the pore types and PSDs (pore size distributions) play a major role in the shale oil occurrence (free or absorbed state), amount of oil, and flow features. The pore types and PSDs of marine shale have been well studied; however, research on lacustrine shale is rare, especially for shale in the oil generation window, although lacustrine shale is deposited widely around the world. To investigate the relationship between nanometer-scale pores and oil occurrence in the lacustrine shale, 10 lacustrine shale core samples from Songliao Basin, NE China were analyzed. Analyses of these samples included geochemical measurements, SEM (scanning electron microscope) observations, low pressure CO2 and N2 adsorption, and high-pressure mercury injection experiments. Analysis results indicate that: (1) Pore types in the lacustrine shale include inter-matrix pores, intergranular pores, organic matter pores, and dissolution pores, and these pores are dominated by mesopores and micropores; (2) There is no apparent correlation between pore volumes and clay content, however, a weak negative correlation is present between total pore volume and carbonate content; (3) Pores in lacustrine shale are well developed when the organic matter maturity (Ro) is >1.0% and the pore volume is positively correlated with the TOC (total organic carbon) content. The statistical results suggest that oil in lacustrine shale mainly occurs in pores with diameters larger than 40 nm. However, more research is needed to determine whether this minimum pore diameter for oil occurrence in lacustrine shale is widely applicable.

  13. Inventory and evaluation of potential oil shale development in Kansas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angino, E.; Berg, J.; Dellwig, L.

    The University of Kansas Center for Research, Inc. was commissioned by the Kansas Energy Office and the US Department of Energy to conduct a review of certain oil shales in Kansas. The purpose of the study focused on making an inventory and assessing those oil shales in close stratigraphic proximity to coal beds close to the surface and containing significant reserves. The idea was to assess the feasibility of using coal as an economic window to aid in making oil shales economically recoverable. Based on this as a criterion and the work of Runnels, et al., (Runnels, R.T., Kulstead, R.O.,more » McDuffee, C. and Schleicher, J.A., 1952, Oil Shale in Kansas, Kansas Geological Survey Bulletin, No. 96, Part 3.) five eastern Kansas black shale units were selected for study and their areal distribution mapped. The volume of recoverable oil shale in each unit was calculated and translated to reserves. The report concludes that in all probability, extraction of oil shale for shale oil is not feasible at this time due to the cost of extraction, transportation and processing. The report recommends that additional studies be undertaken to provide a more comprehensive and detailed assessment of Kansas oil shales as a potential fuel resource. 49 references, 4 tables.« less

  14. Water use for Shale-gas production in Texas, U.S.

    PubMed

    Nicot, Jean-Philippe; Scanlon, Bridget R

    2012-03-20

    Shale-gas production using hydraulic fracturing of mostly horizontal wells has led to considerable controversy over water-resource and environmental impacts. The study objective was to quantify net water use for shale-gas production using data from Texas, which is the dominant producer of shale gas in the U.S. with a focus on three major plays: the Barnett Shale (~15,000 wells, mid-2011), Texas-Haynesville Shale (390 wells), and Eagle Ford Shale (1040 wells). Past water use was estimated from well-completion data, and future water use was extrapolated from past water use constrained by shale-gas resources. Cumulative water use in the Barnett totaled 145 Mm(3) (2000-mid-2011). Annual water use represents ~9% of water use in Dallas (population 1.3 million). Water use in younger (2008-mid-2011) plays, although less (6.5 Mm(3) Texas-Haynesville, 18 Mm(3) Eagle Ford), is increasing rapidly. Water use for shale gas is <1% of statewide water withdrawals; however, local impacts vary with water availability and competing demands. Projections of cumulative net water use during the next 50 years in all shale plays total ~4350 Mm(3), peaking at 145 Mm(3) in the mid-2020s and decreasing to 23 Mm(3) in 2060. Current freshwater use may shift to brackish water to reduce competition with other users.

  15. Comparison of Pore Fractal Characteristics Between Marine and Continental Shales

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Yao, Yanbin; Liu, Dameng; Cai, Yidong; Cai, Jianchao

    Fractal characterization offers a quantitative evaluation on the heterogeneity of pore structure which greatly affects gas adsorption and transportation in shales. To compare the fractal characteristics between marine and continental shales, nine samples from the Lower Silurian Longmaxi formation in the Sichuan basin and nine from the Middle Jurassic Dameigou formation in the Qaidam basin were collected. Reservoir properties and fractal dimensions were characterized for all the collected samples. In this study, fractal dimensions were originated from the Frenkel-Halsey-Hill (FHH) model with N2 adsorption data. Compared to continental shale, marine shale has greater values of quartz content, porosity, specific surface area and total pore volume but lower level of clay minerals content, permeability, average pore diameter and methane adsorption capacity. The quartz in marine shale is mostly associated with biogenic origin, while that in continental shale is mainly due to terrigenous debris. The N2 adsorption-desorption isotherms exhibit that marine shale has fewer inkbottle-shaped pores but more plate-like and slit-shaped pores than continental shale. Two fractal dimensions (D1 and D2) were obtained at P/Po of 0-0.5 and 0.5-1. The dimension D2 is commonly greater than D1, suggesting that larger pores (diameter >˜ 4nm) have more complex structures than small pores (diameter <˜ 4nm). The fractal dimensions (both D1 and D2) positively correlate to clay minerals content, specific surface area and methane adsorption capacity, but have negative relationships with porosity, permeability and average pore diameter. The fractal dimensions increase proportionally with the increasing quartz content in marine shale but have no obvious correlation with that in continental shale. The dimension D1 is correlative to the TOC content and permeability of marine shale at a similar degree with dimension D2, while the dimension D1 is more sensitive to those of continental shale than

  16. Field and Lab-Based Microbiological Investigations of the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Wishart, J. R.; Neumann, K.; Edenborn, H. M.; Hakala, A.; Yang, J.; Torres, M. E.; Colwell, F. S.

    2013-12-01

    The recent exploration of shales for natural gas resources has provided the opportunity to study their subsurface geochemistry and microbiology. Evidence indicates that shale environments are marked by extreme conditions such as high temperature and pressure, low porosity, permeability and connectivity, and the presence of heavy metals and radionuclides. It has been postulated that many of these shales are naturally sterile due to the high pressure and temperature conditions under which they were formed. However, it has been shown in the Antrim and New Albany shales that microbial communities do exist in these environments. Here we review geochemical and microbiological evidence for the possible habitation of the Marcellus shale by microorganisms and compare these conditions to other shales in the U.S. Furthermore, we describe the development of sampling and analysis techniques used to evaluate microbial communities present in the Marcellus shale and associated hydraulic fracturing fluid. Sampling techniques thus far have consisted of collecting flowback fluids from wells and water impoundments and collecting core material from previous drilling expeditions. Furthermore, DNA extraction was performed on Marcellus shale sub-core with a MoBio PowerSoil kit to determine its efficiency. Assessment of the Marcellus shale indicates that it has low porosity and permeability that are not conducive to dense microbial populations; however, moderate temperatures and a natural fracture network may support a microbial community especially in zones where the Marcellus intersects more porous geologic formations. Also, hydraulic fracturing extends this fracture network providing more environments where microbial communities can exist. Previous research which collected flowback fluids has revealed a diverse microbial community that may be derived from hydrofrac fluid production or from the subsurface. DNA extraction from 10 g samples of Marcellus shale sub-core were unsuccessful

  17. River-Lake Mixing, Eutrophication, and Hypoxia in Green Bay, Lake Michigan

    NASA Astrophysics Data System (ADS)

    Klump, J. V.; LaBuhn, S.

    2014-12-01

    Despite being a freshwater system, Green Bay in Lake Michigan, has many estuarine-like characteristics, including water mass exchange and the mixing between riverine inflow and the open lake. The bay has experienced excessive nutrient loading for decades resulting in hyper-eutrophic conditions and extensive algal blooms. Combined with a restricted, estuarine like circulation, this has resulted in the reoccurrence of late summer "dead zones" and wide spread bottom water oxygen concentrations below water quality standards. The onset of hypoxia is clearly related to thermal stratification which, in Green Bay, arises both from direct atmospheric forcing, i.e. low winds, high air temperatures, and increased solar radiation, and from indirect atmospheric forcing that drives circulation patterns resulting in the southerly incursion of cooler Lake Michigan bottom waters onto highly reducing organic rich sediment deposits. This circulation pattern can re-stratify a well-mixed water column within hours, and can set up stable stratified water column conditions that persist for days to weeks during which time sediment oxygen demand rates are sufficient to completely deplete hypolimnetic oxygen. Modeling hypoxia, therefore, is somewhat more complex than in a system which is driven largely or solely by seasonal thermal fluctuations. Understanding both the general circulation and the onset and duration of stratification in the bay are essential to determining the potential for hypoxic conditions to improve or worsen, particularly in the face of climate change projections of warmer conditions, less ice cover, and an earlier summer. Using D and O-18 isotopes in water, Rn-222, and dissolved methane as tracers we examine the relationship between river/lake mixing, transport rates and oxygen depletion in an attempt to verify the spatial and temporal scales of hypoxia in the bay, and estimate the potential impact of future climate change projections.

  18. Evaluating the Influence of Chemical Reactions on Wellbore Cement Integrity and Geochemical Tracer Behavior in Hydraulically-Fractured Shale Formations

    NASA Astrophysics Data System (ADS)

    Verba, C.; Lieuallen, A.; Yang, J.; Torres, M. E.; Hakala, A.

    2014-12-01

    Ensuring wellbore integrity for hydraulically-fractured shale reservoirs is important for maintaining zonal isolation of gases and fluids within the reservoir. Chemical reactions between wellbore cements, the shale formation, formation fluids, and fracturing fluids could affect the ability for cement to form an adequate seal. This study focuses on experimental investigations to evaluate how cement, rock, brines, and fracturing fluids react under conditions similar to the perforated zone associated with the Marcellus shale (Greene County, Pennsylvania). Two pressure/temperature regimes were investigated- moderate (25 MPa, 50oC) and high (27.5 MPa, 90oC). Shale collected from the Lower Marcellus section was encased in Class A cement, cured for 24 hours, and then exposed to simulated conditions in experimental autoclave reactors. The simulated formation fluid was a synthetic brine, modeled after a flowback fluid contained 187,000 mg/l total dissolved solids and had a pH of 7.6. The effect of pH was probed to evaluate the potential for cement reactivity under different pH conditions, and the potential for contaminant or geochemical tracer release from the shale (e.g. arsenic and rare earth elements). In addition to dissolution reactions, sorption and precipitation reactions between solutes and the cement are being evaluated, as the cement could bond with solute-phase species during continued hydration. The cements are expected to show different reactivity under the two temperature conditions because the primary cement hydration product, calcium silicate hydrate (C-S-H) is heavily influenced by temperature. Results from these experimental studies will be used both to inform the potential changes in cement chemistry that may occur along a wellbore in the hydraulically-fractured portion of a reservoir, and the types of geochemical tracers that may be useful in tracking these reactions.

  19. An Integrated Environmental Assessment Model for Oil Shale Development

    NASA Astrophysics Data System (ADS)

    Pasqualini, D.; Witkowski, M. S.; Keating, G. N.; Ziock, H.; Wolfsberg, A. V.

    2008-12-01

    Due to the rising prices of conventional fuel, unconventional fossil fuels such as oil shale, tar sands, and coal to liquid have gained attention as an energy resource. The largest reserve of oil shale in the world is located in the western interior of North America, and includes parts of Colorado, Utah, and Wyoming. Development of oil shale in this area could reduce or eliminate the U.S. dependence on foreign fuel sources. However, oil shale production carries a number of potential environmental impacts. Fuel production associated with oil shale will create increasing competition for limited resources such as water, while potentially negatively impacting air quality, water quality, habitat, and wildlife. Water use, wastewater management, greenhouse gas emissions, air pollution, and land use are the main environmental issues that oil shale production involves. A proper analysis of the interrelationships between these factors and those of the new energy needs required for production is necessary to avoid serious negative impacts to the environment and the economies. We have developed a system dynamics integrated assessment model to evaluate potential fuel production capacity from oil shale within the limits of environmental quality, land use, and economics. Recognizing that the impacts of oil shale development are the outcomes of a complex process that involve water, energy, climate, social pressures, economics, regulations, technical advances, etc., and especially their couplings and feedbacks, we developed our model using the system dynamics (SD) modeling approach. Our SD model integrates all of these components and allows us to analyze the interdependencies among them. Our initial focus has been to address industry, regulator, and stakeholder concerns regarding the quantification and management of carbon and water resources impacts. The model focuses on oil shale production in the Piceance Basin in Colorado, but is inherently designed to be extendable to larger

  20. Local CO2-induced swelling of shales

    NASA Astrophysics Data System (ADS)

    Pluymakers, Anne; Dysthe, Dag Kristian

    2017-04-01

    In heterogeneous shale rocks, CO2 adsorbs more strongly to organic matter than to the other components. CO2-induced swelling of organic matter has been shown in coal, which is pure carbon. The heterogeneity of the shale matrix makes an interesting case study. Can local swelling through adsorption of CO2 to organic matter induce strain in the surrounding shale matrix? Can fractures close due to CO2-induced swelling of clays and organic matter? We have developed a new generation of microfluidic high pressure cells (up to 100 bar), which can be used to study flow and adsorption phenomena at the microscale in natural geo-materials. The devices contain one transparent side and a shale sample on the other side. The shale used is the Pomeranian shale, extracted from 4 km depth in Poland. This formation is a potential target of a combined CO2-storage and gas extraction project. To answer the first question, we place the pressure cell under a Veeco NT1100 Interferometer, operated in Vertical Scanning Interferometry mode and equipped with a Through Transmissive Media objective. This allows for observation of local swelling or organic matter with nanometer vertical resolution and micrometer lateral resolution. We expose the sample to CO2 atmospheres at different pressures. Comparison of the interferometry data and using SEM-EDS maps plus optical microscopy delivers local swelling maps where we can distinguish swelling of different mineralogies. Preliminary results indicate minor local swelling of organic matter, where the total amount is both time- and pressure-dependent.

  1. Fugitive Emissions from the Bakken Shale Illustrate Role of Shale Production in Global Ethane Shift

    NASA Technical Reports Server (NTRS)

    Kort, E. A.; Smith, M. L.; Murray, L. T.; Gvakharia, A.; Brandt, A. R.; Peischl, J.; Ryerson, T. B.; Sweeney, C.; Travis, K.

    2016-01-01

    Ethane is the second most abundant atmospheric hydrocarbon, exerts a strong influence on tropospheric ozone, and reduces the atmosphere's oxidative capacity. Global observations showed declining ethane abundances from 1984 to 2010, while a regional measurement indicated increasing levels since 2009, with the reason for this subject to speculation. The Bakken shale is an oil and gas-producing formation centered in North Dakota that experienced a rapid increase in production beginning in 2010. We use airborne data collected over the North Dakota portion of the Bakken shale in 2014 to calculate ethane emissions of 0.23 +/- 0.07 (2 sigma) Tg/yr, equivalent to 1-3% of total global sources. Emissions of this magnitude impact air quality via concurrent increases in tropospheric ozone. This recently developed large ethane source from one location illustrates the key role of shale oil and gas production in rising global ethane levels.

  2. Comparative dermal carcinogenesis of shale and petroleum-derived distillates.

    PubMed

    Clark, C R; Walter, M K; Ferguson, P W; Katchen, M

    1988-03-01

    Ten test materials derived from petroleum or hydrotreated shale oils were applied 3 times/week for up to 105 weeks to the shaved skin of 25 male and 25 female C3H/HeN mice per group. Mineral oil and benzo(a) pyrene (0.15%) were control materials. Clinical observations were recorded during the study. At death, histopathologic examination was conducted on skin, internal organs and any gross lesions. Exposures to some materials were ended midway in the study due to severe irritation. Chronic toxicity of all materials was limited to inflammatory and degenerative skin changes. Significant increases over control incidence of skin tumors (squamous cell carcinoma and fibrosarcoma) occurred with both petroleum and shale-derived naphtha (21%, 50%), Jet A (26%, 28%), JP-4 (26%, 50%), and crude oils (84%, 54%). Severely hydrotreated shale oil and petroleum and shale-derived diesel distillates were not considered tumorigenic. Results indicate that toxicity of comparable petroleum and shale-derived fractions was qualitatively similar and confirm earlier findings that hydrotreating reduces or eliminates carcinogenicity of raw shale oil.

  3. Life-cycle analysis of shale gas and natural gas.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C.E.; Han, J.; Burnham, A.

    2012-01-27

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results showmore » that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.« less

  4. Will water scarcity in semiarid regions limit hydraulic fracturing of shale plays?

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Reedy, Robert C.; Nicot, Jean Philippe

    2014-12-01

    There is increasing concern about water constraints limiting oil and gas production using hydraulic fracturing (HF) in shale plays, particularly in semiarid regions and during droughts. Here we evaluate HF vulnerability by comparing HF water demand with supply in the semiarid Texas Eagle Ford play, the largest shale oil producer globally. Current HF water demand (18 billion gallons, bgal; 68 billion liters, bL in 2013) equates to ˜16% of total water consumption in the play area. Projected HF water demand of ˜330 bgal with ˜62 000 additional wells over the next 20 years equates to ˜10% of historic groundwater depletion from regional irrigation. Estimated potential freshwater supplies include ˜1000 bgal over 20 yr from recharge and ˜10 000 bgal from aquifer storage, with land-owner lease agreements often stipulating purchase of freshwater. However, pumpage has resulted in excessive drawdown locally with estimated declines of ˜100-200 ft in ˜6% of the western play area since HF began in 2009-2013. Non-freshwater sources include initial flowback water, which is ≤5% of HF water demand, limiting reuse/recycling. Operators report shifting to brackish groundwater with estimated groundwater storage of 80 000 bgal. Comparison with other semiarid plays indicates increasing brackish groundwater and produced water use in the Permian Basin and large surface water inputs from the Missouri River in the Bakken play. The variety of water sources in semiarid regions, with projected HF water demand representing ˜3% of fresh and ˜1% of brackish water storage in the Eagle Ford footprint indicates that, with appropriate management, water availability should not physically limit future shale energy production.

  5. Geochemistry of Israeli oil shales: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirav, M.; Ginzburg, D.

    1983-01-01

    The oil shales of Israel are widely distributed throughout the country and have current reserves of about 3500 million tons located in the following deposits: Zin, Oron, Ef'e, Hartuv, and Nabi-Musa. The geochemistry and chemical analysis of these shales are discussed, along with the calorific value, oil yield, and trace elements. The main components influencing the quality of the oil shales are organic matter, carbonate, clay minerals, and apatite. Compositional variations within the organic matter are responsible for changes in the relative calorific value and retorted oil yield while fluidized bed combustion is affected by the inorganic components. (JMT)

  6. Morbidity survey of US oil shale workers employed during 1948-1969

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rom, W.N.; Krueger, G.; Zone, J.

    The health status of 325 oil shale workers employed at the Anvil Points, Colorado, demonstration facility from 1948 to 1969 was evaluated. As a comparison population, 323 Utah coal miners frequency matched for age were studied. The prevalence of respiratory symptoms among oil shale workers who smoked were similar to the coal miners who smoked, although nonsmoking oil shale workers had fewer symptoms compared to nonsmoking coal workers. Four cases of skin cancers were found on the oil shale workers and eight cases in the controls. Similar numbers of nevi, telangiectasiae, possible pitch warts, pigment changes (solar/senile lentigo), and papillomatamore » (seborrheic keratoses and skin tags) were seen in both groups, while actinic keratoses were more frequent in the oil shale workers. The prevalence of actinic keratoses was significantly associated with oil shale work after allowing for age, sun exposure, and other exposures. The prevalence of pulmonary cytology metaplasia was associated with years of production work in oil shale among both smokers and ex-smokers. More of the oil shale workers had atypical cells in the urine, but the excess mostly found among ex-smokers. Although these workers had short-term and limited oil shale exposure work exposure, the authors recommend that medical surveillance of oil shale workers consider the skin, respiratory, and urinary systems for special observation.« less

  7. Organic matter variations in transgressive and regressive shales

    USGS Publications Warehouse

    Pasley, M.A.; Gregory, W.A.; Hart, G.F.

    1991-01-01

    Organic matter in the Upper Cretaceous Mancos Shale adjacent to the Tocito Sandstone in the San Juan Basin of New Mexico was characterized using organic petrology and organic geochemistry. Differences in the organic matter found in these regressive and transgressive offshore marine sediments have been documented and assessed within a sequence stratigraphic framework. The regressive Lower Mancos Shale below the Tocito Sandstone contains abundant well preserved phytoclasts and correspondingly low hydrogen indices. Total organic carbon values for the regressive shale are low. Sediments from the transgressive systems tract (Tocito Sandstone and overlying Upper Mancos Shale) contain less terrestrially derived organic matter, more amorphous non-structured protistoclasts, higher hydrogen indices and more total organic carbon. Advanced stages of degradation are characteristic of the phytoclasts found in the transgressive shale. Amorphous material in the transgressive shale fluoresces strongly while that found in the regressive shale is typically non-fluorescent. Data from pyrolysis-gas chromatography confirm these observations. These differences are apparently related to the contrasting depositional styles that were active on the shelf during regression and subsequent transgression. It is suggested that data from organic petrology and organic geochemistry provide greater resolution in sedimentologic and stratigraphic interpretations, particularly when working with basinward, fine-grained sediments. Petroleum source potential for the regressive Lower Mancos Shale below the Tocito Sandstone is poor. Based on abundant fluorescent amorphous material, high hydrogen indices, and high total organic carbon, the transgressive Upper Mancos Shale above the Tocito Sandstone possesses excellent source potential. This suggests that appreciable source potential can be found in offshore, fine-grained sediments of the transgressive systems tract below the condensed section and associated

  8. Minimal watering regime impacts on desert adapted green roof plant performance

    NASA Astrophysics Data System (ADS)

    Kovachich, S.; Pavao-Zuckerman, M.; Templer, S.; Livingston, M.; Stoltz, R.; Smith, S.

    2011-12-01

    Roof tops can cover one-fifth of urban areas and can greatly alter the movement of matter and energy in cities. With traditional roofing methods and materials, roof tops readily absorb heat and as a result, buildings and the surrounding urban area heat to unnaturally high temperatures. It is hypothesized that extensive green roofs would have wide-ranging benefits for arid environments. However, little is known about the cost of water use associated with green roof installations and how to balance energy reduction needs with water costs in this water limited environment. We are conducting a pilot study to test whether a) green roofs with native plants and environmentally-responsible watering regimes will prove successful in arid environments and if b) green roofs provide ecosystem services with responsible water application. Three species of Sonoran Desert natives, Dyssodia pentachaeta (groundcover), Calliandra eriophylla (shrub), and Hesperaloe parviflora (succulent) have been planted in experimental plots [1 m2 model houses and roofs, replicated in triplicate] with two sandy, rocky desert soil mixtures (light mix: 60% expanded shale and heavy mix: organic and sandy mix with 50% shale) at the Biosphere 2 campus near Oracle, Az. The green roofs are watered by two different techniques. The first technique provides "smart watering", the minimal amount of water needed by green roof plants based on precipitation and historical data. The second watering technique is considered heavy and does not take into account environmental conditions. Preliminary data from the experimental plots shows a 30% decrease in daytime roof top temperatures on green roofs and a 10% decrease in interior temperatures in buildings with green roofs. This trend occurs with both watering regimes (heavy and light). This finding suggests that additional irrigation yields no extra heat reduction and energy savings. In order to explain this phenomenon more clearly, we use co-located temperature and

  9. Methods for minimizing plastic flow of oil shale during in situ retorting

    DOEpatents

    Lewis, Arthur E.; Mallon, Richard G.

    1978-01-01

    In an in situ oil shale retorting process, plastic flow of hot rubblized oil shale is minimized by injecting carbon dioxide and water into spent shale above the retorting zone. These gases react chemically with the mineral constituents of the spent shale to form a cement-like material which binds the individual shale particles together and bonds the consolidated mass to the wall of the retort. This relieves the weight burden borne by the hot shale below the retorting zone and thereby minimizes plastic flow in the hot shale. At least a portion of the required carbon dioxide and water can be supplied by recycled product gases.

  10. Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: risk assessment and environmental implications.

    PubMed

    Patel, Priyanka; Raju, N Janardhana; Reddy, B C Sundara Raja; Suresh, U; Sankar, D B; Reddy, T V K

    2018-04-01

    The concentration of heavy metals was analyzed each of 20 river water, suspended sediments and bed sediments along the stretch of Swarnamukhi River Basin. River water is not contaminated with heavy metals except Fe and Mn. Contamination factor in sediments shows considerable to very high degree contamination with Cr, Cu, Pb and Zn. The sources of these metals could be residential wastes, sewer outfall, fertilizers, pesticides (M-45 + carbondine) and traffic activities apart from natural weathering of granitic rocks present in the basin area. Principal component analyses indicate the interaction between metals in different media. The comparison of metals (Cu, Pb and Zn) in bed sediments of Swarnamukhi River with the Indian and world averages indicates that the values obtained in the basin are above the Indian averages and far below to the world averages. Average shale values and sediment quality guidelines point toward the enrichment and contamination of Cu, Cr, Pb and Zn to several fold leading to eco-toxicological risks in basin.

  11. Understanding Shale Gas: Recent Progress and Remaining Challenges

    DOE PAGES

    Striolo, Alberto; Cole, David R.

    2017-08-27

    Because of a number of technological advancements, unconventional hydrocarbons, and in particular shale gas, have transformed the US economy. Much is being learned, as demonstrated by the reduced cost of extracting shale gas in the US over the past five years. However, a number of challenges still need to be addressed. Many of these challenges represent grand scientific and technological tasks, overcoming which will have a number of positive impacts, ranging from the reduction of the environmental footprint of shale gas production to improvements and leaps forward in diverse sectors, including chemical manufacturing and catalytic transformations. This review addresses recentmore » advancements in computational and experimental approaches, which led to improved understanding of, in particular, structure and transport of fluids, including hydrocarbons, electrolytes, water, and CO 2 in heterogeneous subsurface rocks such as those typically found in shale formations. Finally, the narrative is concluded with a suggestion of a few research directions that, by synergistically combining computational and experimental advances, could allow us to overcome some of the hurdles that currently hinder the production of hydrocarbons from shale formations.« less

  12. Experimental Determination of the Fracture Toughness and Brittleness of the Mancos Shale, Utah.

    NASA Astrophysics Data System (ADS)

    Chandler, Mike; Meredith, Phil; Crawford, Brian

    2013-04-01

    non-linearity. This produces hysteresis during cyclic loading, allowing for the calculation of a brittleness coefficient using the residual displacement after successive loading cycles. This can then be used to define a brittleness corrected Fracture Toughness, KIcc. We report anisotropic KIcc values and a variety of supporting measurements made on the Mancos Shale in the three principle Mode-I crack orientations (Arrester, Divider and Short-Transverse) using a modified Short-Rod sample geometry. The Mancos is an Upper Cretaceous shale from western Colorado and eastern Utah with a relatively high siliclastic content for a gas target formation. The Short-Rod methodology involves the propagation of a crack through a triangular ligament in a chevron-notched cylindrical sample [3]. A very substantial anisotropy is observed in the loading curves and KIcc values for the three crack orientations, with the Divider orientation having KIcc values 25% higher than the other orientations. The measured brittleness for these Mancos shales is in the range 1.5-2.1; higher than for any other rocks we have found in the literature. This implies that the material is extremely non-linear. Increases in KIcc with increasing confining pressure are also investigated, as Shale Gas reservoirs occur at depths where confining pressure may be as high as 35MPa and temperature as high as 100oC. References [1] C.A. Green, P. Styles & B.J. Baptie, "Preese Hall Shale Gas Fracturing", Review & Recommendations for Induced Seismic Mitigation, 2012. [2] N.R. Warpinski & M.B. Smith, "Rock Mechanics and Fracture Geometry", Recent advances in Hydraulic Fracturing, SPE Monograms, Vol. 12, pp. 57-80, 1990. [3] F. Ouchterlony, "International Society for Rock Mechanics Commision on Testing Methods: Suggested Methods for Determining the Fracture Toughness of Rock", International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Vol. 25, 1988.

  13. Helium release during shale deformation: Experimental validation

    DOE PAGES

    Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.

    2016-07-01

    This paper describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measuredmore » using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.« less

  14. Measurements of Methane Emissions and Volatile Organic Compounds from Shale Gas Operations in the Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Omara, M.; Subramanian, R.; Sullivan, M.; Robinson, A. L.; Presto, A. A.

    2014-12-01

    The Marcellus Shale is the most expansive shale gas reserve in play in the United States, representing an estimated 17 to 29 % of the total domestic shale gas reserves. The rapid and extensive development of this shale gas reserve in the past decade has stimulated significant interest and debate over the climate and environmental impacts associated with fugitive releases of methane and other pollutants, including volatile organic compounds. However, the nature and magnitude of these pollutant emissions remain poorly characterized. This study utilizes the tracer release technique to characterize total fugitive methane release rates from natural gas facilities in southwestern Pennsylvania and West Virginia that are at different stages of development, including well completion flowbacks and active production. Real-time downwind concentrations of methane and two tracer gases (acetylene and nitrous oxide) released onsite at known flow rates were measured using a quantum cascade tunable infrared laser differential absorption spectrometer (QC-TILDAS, Aerodyne, Billerica, MA) and a cavity ring down spectrometer (Model G2203, Picarro, Santa Clara, CA). Evacuated Silonite canisters were used to sample ambient air during downwind transects of methane and tracer plumes to assess volatile organic compounds (VOCs). A gas chromatograph with a flame ionization detector was used to quantify VOCs following the EPA Method TO-14A. A preliminary assessment of fugitive emissions from actively producing sites indicated that methane leak rates ranged from approximately 1.8 to 6.2 SCFM, possibly reflecting differences in facility age and installed emissions control technology. A detailed comparison of methane leak rates and VOCs emissions with recent published literature for other US shale gas plays will also be discussed.

  15. Discussion on upper limit of maturity for marine shale gas accumulation

    NASA Astrophysics Data System (ADS)

    Huang, Jinliang; Dong, Dazhong; Zhang, Chenchen; Wang, Yuman; Li, Xinjing; Wang, Shufang

    2017-04-01

    The sedimentary formations of marine shale in China are widely distributed and are characterized by old age, early hydrocarbon-generation and high thermal evolution degree, strong tectonic deformation and reformation and poor preservation conditions. Therefore whether commercial shale gas reservoirs can be formed is a critical issue to be studied. The previous studies showed that the upper threshold of maturity (Ro%) for the gas generation of marine source rocks is 3.0%. Based on comparative studies of marine shale gas exploration practices at home and abroad and reservoir experimental analysis results, we proposed in this paper that the upper threshold of maturity (Ro%) for marine shale gas accumulation is 3.5%. And the main proofs are as follows: (1) There is still certain commercial production in the area with the higher than 3.0% in Marcellus and Woodford marine shale gas plays in North America; (2) The Ro of the Silurian Longmaxi shale in the Sichuan Basin in China is between 2.5% and 3.3%. However, the significant breakthrough has been made in shale gas exploration and the production exceeds 7 billion m3 in 2016; (3) The TOC of the Cambrian Qiongzhusi organic-rich shale in Changning Region in the Sichuan Basin ranges 2% to 7.1% and the Ro is greater than 3.5%. And the resistivity logging of organic-rich shale appears low-ultra low resistivity and inversion of Rt curve. It's suggested that the organic matters in Qiongzhusi organic-rich shale occurs partial carbonization which leads to stronger conductivity; (4) Thermal simulation experiments showed that the specific surface of shale increases with Ro. And the specific surface and adsorptive capacity both reach maximum when the Ro is 3.5%; (5) The analysis of physical properties and SEM images of shale reservoirs indicated that when Ro is higher than 3.5%, the dominant pores of Qiongzhusi shale are micro-pores while the organic pores are relatively poor-developed, and the average porosity is less than 2%.

  16. JAMES RIVER FACE WILDERNESS, VIRGINIA.

    USGS Publications Warehouse

    Brown, C. Ervin; Gazdik, Gertrude C.

    1984-01-01

    A mineral survey concluded that the James River Face Wilderness, Virginia, had little promise for the occurrence of metallic mineral resources. Two major rock units in the area do contain large nonmetallic mineral resources of quartzite and shale that have been mined for silica products and for brick and expanded aggregate, respectively. Because large deposits of the same material are more easily available in nearby areas, demand for the deposits within the wilderness is highly unlikely. No energy resources were identified in the course of this study.

  17. Hydrogeology of the West Branch Delaware River basin, Delaware County, New York

    USGS Publications Warehouse

    Reynolds, Richard J.

    2013-01-01

    In 2009, the U.S. Geological Survey, in cooperation with the New York State Department of Environmental Conservation, began a study of the hydrogeology of the West Branch Delaware River (Cannonsville Reservoir) watershed. There has been recent interest by energy companies in developing the natural gas reserves that are trapped within the Marcellus Shale, which is part of the Hamilton Group of Devonian age that underlies all the West Branch Delaware River Basin. Knowing the extent and thickness of stratified-drift (sand and gravel) aquifers within this basin can help State and Federal regulatory agencies evaluate any effects on these aquifers that gas-well drilling might produce. This report describes the hydrogeology of the 455-square-mile basin in the southwestern Catskill Mountain region of southeastern New York and includes a detailed surficial geologic map of the basin. Analysis of surficial geologic data indicates that the most widespread surficial geologic unit within the basin is till, which is present as deposits of ablation till in major stream valleys and as thick deposits of lodgment till that fill upland basins. Till and colluvium (remobilized till) cover about 89 percent of the West Branch Delaware River Basin, whereas stratified drift (outwash and ice-contact deposits) and alluvium account for 8.9 percent. The Cannonsville Reservoir occupies about 1.9 percent of the basin area. Large areas of outwash and ice-contact deposits occupy the West Branch Delaware River valley along its entire length. These deposits form a stratified-drift aquifer that ranges in thickness from 40 to 50 feet (ft) in the upper West Branch Delaware River valley, from 70 to 140 ft in the middle West Branch Delaware River valley, and from 60 to 70 ft in the lower West Branch Delaware River valley. The gas-bearing Marcellus Shale underlies the entire West Branch Delaware River Basin and ranges in thickness from 600 to 650 ft along the northern divide of the basin to 750 ft thick

  18. The flux of radionuclides in flowback fluid from shale gas exploitation.

    PubMed

    Almond, S; Clancy, S A; Davies, R J; Worrall, F

    2014-11-01

    This study considers the flux of radioactivity in flowback fluid from shale gas development in three areas: the Carboniferous, Bowland Shale, UK; the Silurian Shale, Poland; and the Carboniferous Barnett Shale, USA. The radioactive flux from these basins was estimated, given estimates of the number of wells developed or to be developed, the flowback volume per well and the concentration of K (potassium) and Ra (radium) in the flowback water. For comparative purposes, the range of concentration was itself considered within four scenarios for the concentration range of radioactive measured in each shale gas basin, the groundwater of the each shale gas basin, global groundwater and local surface water. The study found that (i) for the Barnett Shale and the Silurian Shale, Poland, the 1 % exceedance flux in flowback water was between seven and eight times that would be expected from local groundwater. However, for the Bowland Shale, UK, the 1 % exceedance flux (the flux that would only be expected to be exceeded 1 % of the time, i.e. a reasonable worst case scenario) in flowback water was 500 times that expected from local groundwater. (ii) In no scenario was the 1 % exceedance exposure greater than 1 mSv-the allowable annual exposure allowed for in the UK. (iii) The radioactive flux of per energy produced was lower for shale gas than for conventional oil and gas production, nuclear power production and electricity generated through burning coal.

  19. Application of binomial-edited CPMG to shale characterization

    USGS Publications Warehouse

    Washburn, Kathryn E.; Birdwell, Justin E.

    2014-01-01

    Unconventional shale resources may contain a significant amount of hydrogen in organic solids such as kerogen, but it is not possible to directly detect these solids with many NMR systems. Binomial-edited pulse sequences capitalize on magnetization transfer between solids, semi-solids, and liquids to provide an indirect method of detecting solid organic materials in shales. When the organic solids can be directly measured, binomial-editing helps distinguish between different phases. We applied a binomial-edited CPMG pulse sequence to a range of natural and experimentally-altered shale samples. The most substantial signal loss is seen in shales rich in organic solids while fluids associated with inorganic pores seem essentially unaffected. This suggests that binomial-editing is a potential method for determining fluid locations, solid organic content, and kerogen–bitumen discrimination.

  20. Water Resources and Natural Gas Production from the Marcellus Shale

    USGS Publications Warehouse

    Soeder, Daniel J.; Kappel, William M.

    2009-01-01

    The Marcellus Shale is a sedimentary rock formation deposited over 350 million years ago in a shallow inland sea located in the eastern United States where the present-day Appalachian Mountains now stand (de Witt and others, 1993). This shale contains significant quantities of natural gas. New developments in drilling technology, along with higher wellhead prices, have made the Marcellus Shale an important natural gas resource. The Marcellus Shale extends from southern New York across Pennsylvania, and into western Maryland, West Virginia, and eastern Ohio (fig. 1). The production of commercial quantities of gas from this shale requires large volumes of water to drill and hydraulically fracture the rock. This water must be recovered from the well and disposed of before the gas can flow. Concerns about the availability of water supplies needed for gas production, and questions about wastewater disposal have been raised by water-resource agencies and citizens throughout the Marcellus Shale gas development region. This Fact Sheet explains the basics of Marcellus Shale gas production, with the intent of helping the reader better understand the framework of the water-resource questions and concerns.

  1. Kerogen extraction from subterranean oil shale resources

    DOEpatents

    Looney, Mark Dean; Lestz, Robert Steven; Hollis, Kirk; Taylor, Craig; Kinkead, Scott; Wigand, Marcus

    2010-09-07

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  2. Kerogen extraction from subterranean oil shale resources

    DOEpatents

    Looney, Mark Dean [Houston, TX; Lestz, Robert Steven [Missouri City, TX; Hollis, Kirk [Los Alamos, NM; Taylor, Craig [Los Alamos, NM; Kinkead, Scott [Los Alamos, NM; Wigand, Marcus [Los Alamos, NM

    2009-03-10

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  3. Indirect and direct tensile behavior of Devonian oil shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chong, K.P.; Chen, J.L.; Dana, G.F.

    1984-03-01

    Ultimate indirect tensile strengths of Devonian oil shales across the bedding planes is a mechanical property parameter important to predicting how oil shale will break. This is particularly important to in-situ fragmentation. The Split Cylinder Test was used to determine the indirect tensile strengths between the bedding planes. Test specimens, cored perpendicular to the bedding planes, representing oil shales of different oil yields taken from Silver Point Quad in DeKalb County, Tennessee and Friendship in Scioto County, Ohio, were subjected to the Split Cylinder Test. Linear regression equations relating ultimate tensile strength across the bedding planes to volume percent ofmore » organic matter in the rock were developed from the test data. In addition, direct tensile strengths were obtained between the bedding planes for the Tennessee oil shales. This property is important for the design of horizontal fractures in oil shales. Typical results were presented.« less

  4. Mechanical Characterization of Mancos Shale

    NASA Astrophysics Data System (ADS)

    Broome, S.; Ingraham, M. D.; Dewers, T. A.

    2015-12-01

    A series of tests on Mancos shale have been undertaken to determine the failure surface and to characterize anisotropy. This work supports additional studies which are being performed on the same block of shale; fracture toughness, permeability, and chemical analysis. Mechanical tests are being conducted after specimens were conditioned for at least two weeks at 70% constant relative humidity conditions. Specimens are tested under drained conditions, with the constant relative humidity condition maintained on the downstream side of the specimen. The upstream is sealed. Anisotropy is determined through testing specimens that have been cored parallel and perpendicular to the bedding plane. Preliminary results show that when loaded parallel to bedding the shale is roughly 50% weaker. Test are run under constant mean stress conditions when possible (excepting indirect tension, unconfined compression, and hydrostatic). Tests are run in hydrostatic compaction to the desired mean stress, then differential stress is applied axially in displacement control to failure. The constant mean stress condition is maintained by decreasing the confining pressure by half of the increase in the axial stress. Results will be compared to typical failure criteria to investigate the effectiveness of capturing the behavior of the shale with traditional failure theory. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6107 A.

  5. Preservation of primary lake signatures in alkaline earth carbonates of the Eocene Green River Wilkins Peak-Laney Member transition zone

    NASA Astrophysics Data System (ADS)

    Murphy, John T.; Lowenstein, Tim K.; Pietras, Jeffrey T.

    2014-12-01

    Significant changes in carbonate mineralogy, texture, and stable isotope composition occur at the transition from the Wilkins Peak Member to the Laney Member in the Eocene Green River Formation, Bridger Basin, Wyoming, which reflect evolution of inflow waters, lake waters, and paleoenvironments. The top of the Wilkins Peak Member contains heterogeneous laminae of calcite and dolomite. Evaporites associated with these layers suggest deposition in hypersaline lakes. Diagenetic carbonate mineral textures include euhedral cement overgrowths and interlocking mosaics of calcite and dolomite crystals, 20-70 μm in size. Electron microprobe analyses indicate diagenetic overgrowth of Fe-rich dolomite on cloudy Fe-poor cores. δ18O values of carbonate laminae in the upper Wilkins Peak Member vary by ~ 6‰ with no depth dependent or mineralogic trends, which also suggests diagenetic overprinting. Alternating organic-rich and primary aragonite, calcite, and dolomite laminae were identified from the lower Laney Member. Primary lacustrine aragonite consists of well sorted, prismatic crystals 5-10 μm in length, with micro-lamination defined by crystal size variation. Primary precipitated calcite and dolomite laminae are monominerallic, with well sorted polyhedral crystals, ~ 10 μm in size. Primary mineralogy of the lower Laney Member changes from calcite to aragonite and dolomite stratigraphically upward. Along the same 15 m thick stratigraphic interval, δ18O values decrease upward by ~ 3‰, all of which suggests (1) lake waters underwent evaporative concentration, which together with calcite precipitation increased the lake water Mg/Ca ratios and led to formation of aragonite and dolomite, (2) source waters became lower in δ18O, possibly as inflow changed to higher altitude foreland rivers. The results from this study show that understanding the primary lacustrine versus diagenetic origin of Green River carbonate minerals is essential for paleoenvironmental and

  6. Shale Gas Exploration and Development Progress in China and the Way Forward

    NASA Astrophysics Data System (ADS)

    Chen, Jianghua

    2018-02-01

    Shale gas exploration in China started late but is progressing very quickly with the strong support from Central Government. China has 21.8 tcm technically recoverable shale gas resources and 764.3 bcm proved shale gas reserve, mainly in marine facies in Sichuan basin. In 2016, overall shale gas production in China is around 7.9 bcm, while it is set to reach 10 bcm in 2017 and 30 bcm in 2020. BP is the only remaining IOC actor in shale gas exploration in China partnering with CNPC in 2 blocks in Sichuan basin. China is encouraging shale gas business both at Central level and at Provincial level through establishing development plan, continuation of subsidies and research funding. Engineering services for shale gas development and infrastructures are developing, while the overall cost and gas marketing conditions will be key factors for the success in shale gas industry.

  7. Development of Porosity Measurement Method in Shale Gas Reservoir Rock

    NASA Astrophysics Data System (ADS)

    Siswandani, Alita; Nurhandoko, BagusEndar B.

    2016-08-01

    The pore scales have impacts on transport mechanisms in shale gas reservoirs. In this research, digital helium porosity meter is used for porosity measurement by considering real condition. Accordingly it is necessary to obtain a good approximation for gas filled porosity. Shale has the typical effective porosity that is changing as a function of time. Effective porosity values for three different shale rocks are analyzed by this proposed measurement. We develop the new measurement method for characterizing porosity phenomena in shale gas as a time function by measuring porosity in a range of minutes using digital helium porosity meter. The porosity of shale rock measured in this experiment are free gas and adsorbed gas porosoty. The pressure change in time shows that porosity of shale contains at least two type porosities: macro scale porosity (fracture porosity) and fine scale porosity (nano scale porosity). We present the estimation of effective porosity values by considering Boyle-Gay Lussaac approximation and Van der Waals approximation.

  8. Comparative study on direct burning of oil shale and coal

    NASA Astrophysics Data System (ADS)

    Hammad, Ahmad; Al Asfar, Jamil

    2017-07-01

    A comparative study of the direct burning processes of oil shale and coal in a circulating fluidized bed (CFB) was done in this study using ANSYS Fluent software to solve numerically the governing equations of continuity, momentum, energy and mass diffusion using finite volume method. The model was built based on an existing experimental combustion burner unit. The model was validated by comparing the theoretical results of oil shale with proved experimental results from the combustion unit. It was found that the temperature contours of the combustion process showed that the adiabatic flame temperature was 1080 K for oil shale compared with 2260 K for coal, while the obtained experimental results of temperatures at various locations of burner during the direct burning of oil shale showed that the maximum temperature reached 962 K for oil shale. These results were used in economic and environmental analysis which show that oil shale may be used as alternative fuel for coal in cement industry in Jordan.

  9. Talaromyces sayulitensis, Acidiella bohemica and Penicillium citrinum in Brazilian oil shale by-products.

    PubMed

    de Goes, Kelly C G P; da Silva, Josué J; Lovato, Gisele M; Iamanaka, Beatriz T; Massi, Fernanda P; Andrade, Diva S

    2017-12-01

    Fine shale particles and retorted shale are waste products generated during the oil shale retorting process. These by-products are small fragments of mined shale rock, are high in silicon and also contain organic matter, micronutrients, hydrocarbons and other elements. The aims of this study were to isolate and to evaluate fungal diversity present in fine shale particles and retorted shale samples collected at the Schist Industrialization Business Unit (Six)-Petrobras in São Mateus do Sul, State of Paraná, Brazil. Combining morphology and internal transcribed spacer (ITS) sequence, a total of seven fungal genera were identified, including Acidiella, Aspergillus, Cladosporium, Ochroconis, Penicillium, Talaromyces and Trichoderma. Acidiella was the most predominant genus found in the samples of fine shale particles, which are a highly acidic substrate (pH 2.4-3.6), while Talaromyces was the main genus in retorted shale (pH 5.20-6.20). Talaromyces sayulitensis was the species most frequently found in retorted shale, and Acidiella bohemica in fine shale particles. The presence of T. sayulitensis, T. diversus and T. stolli in oil shale is described herein for the first time. In conclusion, we have described for the first time a snapshot of the diversity of filamentous fungi colonizing solid oil shale by-products from the Irati Formation in Brazil.

  10. Factors controlling Li concentration and isotopic composition in formation waters and host rocks of Marcellus Shale, Appalachian Basin

    USGS Publications Warehouse

    Phan, Thai T.; Capo, Rosemary C; Stewart, Brian W.; Macpherson, Gwen; Rowan, Elisabeth L.; Hammack, Richard W.

    2015-01-01

    In Greene Co., southwest Pennsylvania, the Upper Devonian sandstone formation waters have δ7Li values of + 14.6 ± 1.2 (2SD, n = 25), and are distinct from Marcellus Shale formation waters which have δ7Li of + 10.0 ± 0.8 (2SD, n = 12). These two formation waters also maintain distinctive 87Sr/86Sr ratios suggesting hydrologic separation between these units. Applying temperature-dependent illitilization model to Marcellus Shale, we found that Li concentration in clay minerals increased with Li concentration in pore fluid during diagenetic illite-smectite transition. Samples from north central PA show a much smaller range in both δ7Li and 87Sr/86Sr than in southwest Pennsylvania. Spatial variations in Li and δ7Li values show that Marcellus formation waters are not homogeneous across the Appalachian Basin. Marcellus formation waters in the northeastern Pennsylvania portion of the basin show a much smaller range in both δ7Li and 87Sr/86Sr, suggesting long term, cross-formational fluid migration in this region. Assessing the impact of potential mixing of fresh water with deep formation water requires establishment of a geochemical and isotopic baseline in the shallow, fresh water aquifers, and site specific characterization of formation water, followed by long-term monitoring, particularly in regions of future shale gas development.

  11. Precipitation Reconstructions and Periods of Drought in the Upper Green River Basin, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Follum, M.; Barnett, A.; Bellamy, J.; Gray, S.; Tootle, G.

    2008-12-01

    Due to recent drought and stress on water supplies in the Colorado River Compact States, more emphasis has been placed on the study of water resources in the Upper Green River Basin (UGRB) of Wyoming, Utah, and Colorado. The research described here focuses on the creation of long-duration precipitation records for the UGRB using tree-ring chronologies. When combined with existing proxy streamflow reconstructions and drought frequency analysis, these records offer a detailed look at hydrologic variability in the UGRB. Approximately thirty-three existing tree ring chronologies were analyzed for the UGRB area. Several new tree ring chronologies were also developed to enhance the accuracy and the geographical diversity of the resulting tree-ring reconstructions. In total, three new Douglas-fir (Pseudotsuga menziesii) and four new limber pine (Pinus flexilis) sites were added to the available tree-ring chronologies in this area. Tree-ring based reconstructions of annual (previous July through current June) precipitation were then created for each of the seventeen sub-watersheds in the UGRB. Reconstructed precipitation records extend back to at least 1654 AD, with reconstructions for some sub-basins beginning pre-1500. Variance explained (i.e. adjusted R2) ranged from 0.41 to 0.74, and the reconstructions performed well in a variety of verification tests. Additional analyses focused on stochastic estimation of drought frequency and return period, and detailed comparisons between reconstructed records and instrumental observations. Overall, this work points to the prevalence of severe, widespread drought in the UGRB. These analyses also highlight the relative wetness and lack of sustained dry periods during the instrumental period (1895-Present). Such long- term assessments are, in turn, vital tools as the Compact States contemplate the "Law of the River" in the face of climate change and ever-growing water demands.

  12. Formation resistivity as an indicator of oil generation in black shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hester, T.C.; Schmoker, J.W.

    1987-08-01

    Black, organic-rich shales of Late Devonian-Early Mississippi age are present in many basins of the North American craton and, where mature, have significant economic importance as hydrocarbon source rocks. Examples drawn from the upper and lower shale members of the Bakken Formation, Williston basin, North Dakota, and the Woodford Shale, Anadarko basin, Oklahoma, demonstrate the utility of formation resistivity as a direct in-situ indicator of oil generation in black shales. With the onset of oil generation, nonconductive hydrocarbons begin to replace conductive pore water, and the resistivity of a given black-shale interval increases from low levels associated with thermal immaturitymore » to values approaching infinity. Crossplots of a thermal-maturity index (R/sub 0/ or TTI) versus formation resistivity define two populations representing immature shales and shales that have generated oil. A resistivity of 35 ohm-m marks the boundary between immature and mature source rocks for each of the three shales studied. Thermal maturity-resistivity crossplots make possible a straightforward determination of thermal maturity at the onset of oil generation, and are sufficiently precise to detect subtle differences in source-rock properties. For example, the threshold of oil generation in the upper Bakken shale occurs at R/sub 0/ = 0.43-0.45% (TTI = 10-12). The threshold increases to R/sub 0/ = 0.48-0.51% (TTI = 20-26) in the lower Bakken shale, and to R/sub 0/ = 0.56-0.57% (TTI = 33-48) in the most resistive Woodford interval.« less

  13. Shale Gas and Oil in Germany - Resources and Environmental Impacts

    NASA Astrophysics Data System (ADS)

    Ladage, Stefan; Blumenberg, Martin; Houben, Georg; Pfunt, Helena; Gestermann, Nicolai; Franke, Dieter; Erbacher, Jochen

    2017-04-01

    In light of the controversial debate on "unconventional" oil and gas resources and the environmental impacts of "fracking", the Federal Institute for Geosciences and Natural Resources (BGR) conducted a comprehensive resource assessment of shale gas and light tight oil in Germany and studied the potential environmental impacts of shale gas development and hydraulic fracturing from a geoscientific perspective. Here, we present our final results (BGR 2016), incorporating the majority of potential shale source rock formations in Germany. Besides shale gas, light tight oil has been assessed. According to our set of criteria - i.e. thermal maturity 0.6-1.2 %vitrinite reflectance (VR; oil) and >1.2 % VR (gas) respectively, organic carbon content > 2%, depth between 500/1000 m and 5000 m as well as a net thickness >20 m - seven potentially generative shale formations were indentified, the most important of them being the Lower Jurassic (Toarcian) Posidonia shale with both shale gas and tight oil potential. The North German basin is by far the most prolific basin. The resource assessment was carried out using a volumetric in-place approach. Variability inherent in the input parameters was accounted for using Monte-Carlo simulations. Technically recoverable resources (TRR) were estimated using recent, production-based recovery factors of North American shale plays and also employing Monte-Carlo simulations. In total, shale gas TRR range between 320 and 2030 bcm and tight oil TRR between 13 and 164 Mio. t in Germany. Tight oil potential is therefore considered minor, whereas the shale gas potential exceeds that of conventional resources by far. Furthermore an overview of numerical transport modelling approaches concerning environmental impacts of the hydraulic fracturing is given. These simulations are based on a representative lithostratigraphy model of the North-German basin, where major shale plays can be expected. Numerical hydrogeological modelling of frac fluid

  14. A multi-scale micromechanics framework for shale using the nano-tools

    NASA Astrophysics Data System (ADS)

    Ortega, J.; Ulm, F.; Abousleiman, Y.

    2009-12-01

    The successful prediction of poroelastic properties of fine-grained rocks such as shale continues to be a formidable challenge for the geophysics community. The highly heterogeneous nature of shale in terms of its compositional and microstructural features translates into a complex anisotropic behavior observed at macroscopic length scales. The recent application of instrumented indentation for the mechanical characterization of shale has revealed the granular response and intrinsic anisotropy of its porous clay phase at nanometer length scales [1-2]. This discovered mechanical behavior at the grain scale has been incorporated into the development of a multi-scale, micromechanics model for shale poroelasticity [3]. The only inputs to the model are two volumetric parameters synthesizing the mineralogy and porosity information of a shale sample. The model is meticulously calibrated and validated, as displayed in Fig. 1, with independent data sets of anisotropic elasticity obtained from nanoindentation experiments and standard laboratory acoustic measurements for shale specimens with and without organic content. The treatment of the elastic anisotropy corresponding to the porous clay fabric, as sensed by nanoindentation, delineates the contribution of the intrinsic anisotropy in shale to its overall anisotropy observed at macroscales. Furthermore, the proposed poroelastic formulation provides access to intrinsic rock parameters such as Biot pore pressure coefficients that are of importance for problems of flow in porous media. In addition, the model becomes a useful tool in geophysics applications for the prediction of shale acoustic properties from material-specific information such as porosity, mineralogy, and density measurements. References: [1] Ulm, F.-J., Abousleiman, Y. (2006) ‘The nanogranular nature of shale.’ Acta Geot. 1(2), 77-88. [2] Bobko, C., Ulm, F.-J. (2008) ‘The nano-mechanical morphology of shale.’ Mech. Mat. 40(4-5), 318-337. [3] Ortega, J

  15. 18 CFR 270.303 - Natural gas produced from Devonian shale.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Natural gas produced from Devonian shale. 270.303 Section 270.303 Conservation of Power and Water Resources FEDERAL ENERGY...

  16. 18 CFR 270.303 - Natural gas produced from Devonian shale.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Natural gas produced from Devonian shale. 270.303 Section 270.303 Conservation of Power and Water Resources FEDERAL ENERGY...

  17. 18 CFR 270.303 - Natural gas produced from Devonian shale.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from Devonian shale. A person seeking a determination that natural gas is produced from Devonian shale... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Natural gas produced from Devonian shale. 270.303 Section 270.303 Conservation of Power and Water Resources FEDERAL ENERGY...

  18. Multivariate analysis relating oil shale geochemical properties to NMR relaxometry

    USGS Publications Warehouse

    Birdwell, Justin E.; Washburn, Kathryn E.

    2015-01-01

    Low-field nuclear magnetic resonance (NMR) relaxometry has been used to provide insight into shale composition by separating relaxation responses from the various hydrogen-bearing phases present in shales in a noninvasive way. Previous low-field NMR work using solid-echo methods provided qualitative information on organic constituents associated with raw and pyrolyzed oil shale samples, but uncertainty in the interpretation of longitudinal-transverse (T1–T2) relaxometry correlation results indicated further study was required. Qualitative confirmation of peaks attributed to kerogen in oil shale was achieved by comparing T1–T2 correlation measurements made on oil shale samples to measurements made on kerogen isolated from those shales. Quantitative relationships between T1–T2 correlation data and organic geochemical properties of raw and pyrolyzed oil shales were determined using partial least-squares regression (PLSR). Relaxometry results were also compared to infrared spectra, and the results not only provided further confidence in the organic matter peak interpretations but also confirmed attribution of T1–T2 peaks to clay hydroxyls. In addition, PLSR analysis was applied to correlate relaxometry data to trace element concentrations with good success. The results of this work show that NMR relaxometry measurements using the solid-echo approach produce T1–T2 peak distributions that correlate well with geochemical properties of raw and pyrolyzed oil shales.

  19. The shale gas revolution: Barriers, sustainability, and emerging opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, Richard S.; Gupta, Rajan; Hyman, Jeffrey D.

    Shale gas and hydraulic refracturing has revolutionized the US energy sector in terms of prices, consumption, and CO 2 emissions. However, key questions remain including environmental concerns and extraction efficiencies that are leveling off. For the first time, we identify key discoveries, lessons learned, and recommendations from this shale gas revolution through extensive data mining and analysis of 23 years of production from 20,000 wells. Discoveries include identification of a learning-by-doing process where disruptive technology innovation led to a doubling in shale gas extraction, how refracturing with emerging technologies can transform existing wells, and how overall shale gas production ismore » actually dominated by long-term tail production rather than the high-profile initial exponentially-declining production in the first 12 months. We hypothesize that tail production can be manipulated, through better fracturing techniques and alternative working fluids such as CO 2, to increase shale gas recovery and minimize environmental impacts such as through carbon sequestration.« less

  20. The shale gas revolution: Barriers, sustainability, and emerging opportunities

    DOE PAGES

    Middleton, Richard S.; Gupta, Rajan; Hyman, Jeffrey D.; ...

    2017-08-01

    Shale gas and hydraulic refracturing has revolutionized the US energy sector in terms of prices, consumption, and CO 2 emissions. However, key questions remain including environmental concerns and extraction efficiencies that are leveling off. For the first time, we identify key discoveries, lessons learned, and recommendations from this shale gas revolution through extensive data mining and analysis of 23 years of production from 20,000 wells. Discoveries include identification of a learning-by-doing process where disruptive technology innovation led to a doubling in shale gas extraction, how refracturing with emerging technologies can transform existing wells, and how overall shale gas production ismore » actually dominated by long-term tail production rather than the high-profile initial exponentially-declining production in the first 12 months. We hypothesize that tail production can be manipulated, through better fracturing techniques and alternative working fluids such as CO 2, to increase shale gas recovery and minimize environmental impacts such as through carbon sequestration.« less

  1. Organic petrology of selected oil shale samples from lower Carboniferous Albert Formation, New Brunswick, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalkreuth, W.; Macauley, G.

    1984-04-01

    Incident light microscopy was used to describe maturation and composition of organic material in oil shale samples from the Lower Carboniferous Albert Formation of New Brunswick. The maturation level was determined in normal (white) light by measuring vitrinite reflectance and in fluorescent light by measuring fluorescence spectral of alginite B. Results indicate low to intermediate maturation for all of the samples. Composition was determined by maceral analysis. Alginite B is the major organic component in all samples having significant oil potential. Oil yields obtained from the Fischer Assay process, and oil and gas potentials from Rock-Eval analyses correlate to themore » amounts of alginite B and bituminite determined in the samples. In some of the samples characterized by similar high concentrations of alginite B, decrease in Fischer Assay yields and oil and gas potentials is related to an increase in maturation, as expected by increase in the fluorescence parameter lambda/sub max/ and red/green quotient of alginite B. Incident light microscopy, particularly with fluorescent light, offers a valuable tool for the identification of the organic matter in oil shales and for the evaluation of their oil and gas potentials.« less

  2. Habitat use of non-native burbot in a western river

    USGS Publications Warehouse

    Klein, Zachary B.; Quist, Michael C.; Rhea, Darren T.; Senecal, Anna C.

    2015-01-01

    Burbot, Lota lota (Linnaeus), were illegally introduced into the Green River drainage, Wyoming in the 1990s. Burbot could potentially alter the food web in the Green River, thereby negatively influencing socially, economically, and ecologically important fish species. Therefore, managers of the Green River are interested in implementing a suppression program for burbot. Because of the cost associated with the removal of undesirable species, it is critical that suppression programs are as effective as possible. Unfortunately, relatively little is known about the habitat use of non-native burbot in lotic systems, severely limiting the effectiveness of any removal effort. We used hurdle models to identify habitat features influencing the presence and relative abundance of burbot. A total of 260 burbot was collected during 207 sampling events in the summer and autumn of 2013. Regardless of the season, large substrate (e.g., cobble, boulder) best predicted the presence and relative abundance of burbot. In addition, our models indicated that the occurrence of burbot was inversely related to mean current velocity. The efficient and effective removal of burbot from the Green River largely relies on an improved understanding of the influence of habitat on their distribution and relative abundance.

  3. Viscous Creep in Dry Unconsolidated Gulf of Mexico Shale

    NASA Astrophysics Data System (ADS)

    Chang, C.; Zoback, M. D.

    2002-12-01

    We conducted laboratory experiments to investigate creep characteristics of dry unconsolidated shale recovered from the pathfinder well, Gulf of Mexico (GOM). We subjected jacketed cylindrical specimens (25.4 mm diameter) to hydrostatic pressure that increased from 10 to 50 MPa in steps of 5 MPa. We kept the pressure constant in each step for at least 6 hours and measured axial and lateral strains (provided by LVDTs) and ultrasonic velocities (provided by seismic-wave transducers). The dry shale exhibited pronounced creep strain at all pressure levels, indicating that the dry frame of the shale possesses an intrinsic viscous property. Interestingly, the creep behavior of the shale is different above and below 30 MPa confining pressure. Above 30 MPa, the amount of creep strain in 6 hours is nearly constant with equal pressurization steps, indicating a linear viscous rheology. Below 30 MPa, the amount of creep increases linearly as pressure is raised in constant incremental steps, suggesting that the creep deformation accelerates as pressure increases within this pressure range. Thus, the general creep behavior of the GOM shale is characterized by a bilinear dependence on pressure magnitude. This creep characteristic is quite different from that observed in unconsolidated reservoir sands (Hagin and Zoback, 2002), which exhibited nearly constant amount of creep regardless of the pressure magnitude for equal increasing steps of pressure. The shale exhibits a lack of creep (and nearly negligible strain recovery) when unloaded, suggesting that the creep strain is irrecoverable and can be considered viscoplastic deformation. SEM observations show that the major mechanism of compaction of the dry shale appears to be packing of clay and a progressive collapse of pore (void) spaces. Creep compaction is considerably more significant than compaction that occurs instantaneously, indicating that the process of shale compaction is largely time-dependent.

  4. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale

    NASA Astrophysics Data System (ADS)

    Semnani, S. J.; White, J. A.; Borja, R. I.

    2014-12-01

    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers

  5. Preparation of grout for stabilization of abandoned in-situ oil shale retorts

    DOEpatents

    Mallon, Richard G.

    1982-01-01

    A process for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700.degree. C. to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700.degree. C. for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.

  6. Ice Jams the Ob River

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Russia's Ob River flows from south to north, and each summer, it thaws in the same direction. The result is that an ice jam sits downstream from thawed portions of the river, which is laden with heavy runoff from melted snow. On June 29, 2007, the Moderate Resolution Imaging Spectroradiometer (MODIS) flying on NASA's Terra satellite captured this image of the almost completely thawed Ob River. The scene is typical for early summer. South of the ice jam, the Gulf of Ob is swollen with pent-up run-off, and upstream from that, the river is widened as well. Unable to carve through frozen land, the river has little choice but to overflow its banks. For a comparison of early summer and autumn conditions, see Flooding on the Ob River in the Earth Observatory's Natural Hazards section. Besides the annual overflow, this image captures other circumstances of early summer. Sea ice is retreating from the Kara Sea. A lingering line of snow cover snakes its way along the Ob River, to the west. And while the land is lush and green in the south, it appears barren and brown in the north. Near the mouth of the river and the Kara Sea, the land is cold-adapted tundra, with diminutive plants and a short growing season. Just as the ice plugging the river had yet to thaw in the Far North's short summer, the tundra had not yet to greened up either. In this image it still appears lifeless beige. NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team, Goddard Space Flight Center

  7. Seismic stratigraphic characteristics of upper Louisiana continental slope: an area east of Green Canyon

    USGS Publications Warehouse

    Bouma, Arnold H.; Feeley, Mary H.; Kindinger, Jack G.; Stelting, Charles E.; Hilde, Thomas W.C.

    1981-01-01

    A high-resolution seismic reflection survey was conducted in a small area of the upper Louisiana Continental Slope known as Green Canyon Area. This area includes tracts 427, 428, 471, 472, 515, and 516, that will be offered for sale in March 1982 as part of Lease Sale 67.The sea floor of this region is, slightly hummocky and is underlain by salt diapirs that are mantled by early Tertiary shale. Most of the shale is overlain by younger Tertiary and Quaternary deposits, although locally some of the shale protrudes the sea floor. Because of proximity to older Mississippi River sources, the sediments are thick. The sediment cover shows an abundance of geologic phenomena such as horsts, grabens, growth faults, normal faults, and consolidation faults, zones with distinct and indistinct parallel reflections, semi-transparent zones, distorted zones, and angular unconformities.The major feature of this region is a N-S linear zone of uplifted and intruded sedimentary deposits formed due to diapiric intrusion.Small scale graben development over the crest of the structure can be attributed to extension and collapse. Large scale undulations of reflections well off the flanks of the uplifted structure suggest sediment creep and slumping. Dipping of parallel reflections show block faulting and tilting.Air gun (5 and 40 cubic inch) records reveal at least five major sequences that show masked onlap and slumping in their lower parts grading into more distinct parallel reflections in their upper parts. Such sequences can be related to local uplift and sea level changes. Minisparker records of this area show similar sequences but on a smaller scale. The distinct parallel reflections often onlap the diapir flanks. The highly reflective parts of these sequences may represent turbidite-type deposition, possibly at times of lower sea level. The acoustically more transparent parts of each sequence may represent deposits containing primarily hemipelagic and pelagic sediment.A complex ridge

  8. Re–Os geochronology of the lacustrine Green River Formation: Insights into direct depositional dating of lacustrine successions, Re–Os systematics and paleocontinental weathering

    USGS Publications Warehouse

    Cumming, Vivien M.; Selby, David; Lillis, Paul G.

    2012-01-01

    Lacustrine sedimentary successions provide exceptionally high-resolution records of continental geological processes, responding to tectonic, climatic and magmatic influences. These successions are therefore essential for correlating geological and climatic phenomena across continents and furthermore the globe. Producing accurate geochronological frameworks within lacustrine strata is challenging because the stratigraphy is often bereft of biostratigraphy and directly dateable tuff horizons. The rhenium–osmium (Re–Os) geochronometer is a well-established tool for determining precise and accurate depositional ages of marine organic-rich rocks. Lake systems with stratified water columns are predisposed to the preservation of organic-rich rocks and thus should permit direct Re–Os geochronology of lacustrine strata. We present Re–Os systematics from one of the world's best documented lacustrine systems, the Eocene Green River Formation, providing accurate Re–Os depositional dates that are supported by Ar–Ar and U–Pb ages of intercalated tuff horizons. Precision of the Green River Formation Re–Os dates is controlled by the variation in initial 187Os/188Os and the range of 187Re/188Os ratios, as also documented in marine systems. Controls on uptake and fractionation of Re and Os are considered to relate mainly to depositional setting and the type of organic matter deposited, with the need to further understand the chelating precursors of Re and Os in organic matter highlighted. In addition to geochronology, the Re–Os data records the 187Os/188Os composition of lake water (1.41–1.54) at the time of deposition, giving an insight into continental runoff derived from weathering of the geological hinterland of the Green River Formation. Such insights enable us to evaluate fluctuations in continental climatic, tectonic and magmatic processes and provide the ability for chemostratigraphic correlation combined with direct depositional dates. Furthermore

  9. Dual pore-connectivity and flow-paths affect shale hydrocarbon production

    NASA Astrophysics Data System (ADS)

    Hayman, N. W.; Daigle, H.; Kelly, E. D.; Milliken, K. L.; Jiang, H.

    2016-12-01

    Aided with integrated characterization approaches of droplet contact angle measurement, mercury intrusion capillary pressure, low-pressure gas physisorption, scanning electron microscopy, and small angle neutron scattering, we have systematically studied how pore connectivity and wettability are associated with mineral and organic matter phases of shales (Barnett, Bakken, Eagle Ford), as well as their influence on macroscopic fluid flow and hydrocarbon movement, from the following complementary tests: vacuum saturation with vacuum-pulling on dry shale followed with tracer introduction and high-pressure intrusion, tracer diffusion into fluid-saturated shale, fluid and tracer imbibition into partially-saturated shale, and Wood's metal intrusion followed with imaging and elemental mapping. The first three tests use tracer-bearing fluids (hydrophilic API brine and hydrophobic n-decane) fluids with a suite of wettability tracers of different sizes and reactivities developed in our laboratory. These innovative and integrated approaches indicate a Dalmatian wettability behavior at a scale of microns, limited connectivity (<500 microns from shale sample edge) shale pores, and disparity of well-connected hydrophobic pore network ( 10 nm) and sparsely connected hydrophilic pore systems (>50-100 nm), which is linked to the steep initial decline and low overall recovery because of the limited connection of hydrocarbon molecules in the shale matrix to the stimulated fracture network.

  10. Dual pore-connectivity and flow-paths affect shale hydrocarbon production

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Barber, T.; Zhang, Y.; Md Golam, K.

    2017-12-01

    Aided with integrated characterization approaches of droplet contact angle measurement, mercury intrusion capillary pressure, low-pressure gas physisorption, scanning electron microscopy, and small angle neutron scattering, we have systematically studied how pore connectivity and wettability are associated with mineral and organic matter phases of shales (Barnett, Bakken, Eagle Ford), as well as their influence on macroscopic fluid flow and hydrocarbon movement, from the following complementary tests: vacuum saturation with vacuum-pulling on dry shale followed with tracer introduction and high-pressure intrusion, tracer diffusion into fluid-saturated shale, fluid and tracer imbibition into partially-saturated shale, and Wood's metal intrusion followed with imaging and elemental mapping. The first three tests use tracer-bearing fluids (hydrophilic API brine and hydrophobic n-decane) fluids with a suite of wettability tracers of different sizes and reactivities developed in our laboratory. These innovative and integrated approaches indicate a Dalmatian wettability behavior at a scale of microns, limited connectivity (<500 microns from shale sample edge) shale pores, and disparity of well-connected hydrophobic pore network ( 10 nm) and sparsely connected hydrophilic pore systems (>50-100 nm), which is linked to the steep initial decline and low overall recovery because of the limited connection of hydrocarbon molecules in the shale matrix to the stimulated fracture network.

  11. delta 15N and non-carbonate delta 13C values for two petroleum source rock reference materials and a marine sediment reference material

    USGS Publications Warehouse

    Dennen, Kristin O.; Johnson, Craig A.; Otter, Marshall L.; Silva, Steven R.; Wandless, Gregory A.

    2006-01-01

    Samples of United States Geological Survey (USGS) Certified Reference Materials USGS Devonian Ohio Shale (SDO-1), and USGS Eocene Green River Shale (SGR-1), and National Research Council Canada (NRCC) Certified Marine Sediment Reference Material (PACS-2), were sent for analysis to four separate analytical laboratories as blind controls for organic rich sedimentary rock samples being analyzed from the Red Dog mine area in Alaska. The samples were analyzed for stable isotopes of carbon (delta13Cncc) and nitrogen (delta15N), percent non-carbonate carbon (Wt % Cncc) and percent nitrogen (Wt % N). SDO-1, collected from the Huron Member of the Ohio Shale, near Morehead, Kentucky, and SGR-1, collected from the Mahogany zone of the Green River Formation are petroleum source rocks used as reference materials for chemical analyses of sedimentary rocks. PACS-2 is modern marine sediment collected from the Esquimalt, British Columbia harbor. The results presented in this study are, with the exceptions noted below, the first published for these reference materials. There are published information values for the elemental concentrations of 'organic' carbon (Wt % Corg measured range is 8.98 - 10.4) and nitrogen (Wt % Ntot 0.347 with SD 0.043) only for SDO-1. The suggested values presented here should be considered 'information values' as defined by the NRCC Institute for National Measurement Reference Materials and should be useful for the analysis of 13C, 15N, C and N in organic material in sedimentary rocks.

  12. Attenuation of Chemical Reactivity of Shale Matrixes following Scale Precipitation

    NASA Astrophysics Data System (ADS)

    Li, Q.; Jew, A. D.; Kohli, A. H.; Alalli, G.; Kiss, A. M.; Kovscek, A. R.; Zoback, M. D.; Brown, G. E.; Maher, K.; Bargar, J.

    2017-12-01

    Introduction of fracture fluids into shales initiates a myriad of fluid-rock reactions that can strongly influence migration of fluid and hydrocarbon through shale/fracture interfaces. Due to the extremely low permeability of shale matrixes, studies on chemical reactivity of shales have mostly focused on shale surfaces. Shale-fluid interactions inside within shale matrixes have not been examined, yet the matrix is the primary conduit through which hydrocarbons and potential contaminants are transmitted. To characterize changes in matrix mineralogy, porosity, diffusivity, and permeability during hydraulic stimulation, we reacted Marcellus (high clay and low carbonate) and Eagle Ford (low clay and high carbonate) shale cores with fracture fluids for 3 weeks at elevated pressure and temperature (80 oC, and 77 bars). In the carbonate-poor Marcellus system, fluid pH increased from 2 to 4, and secondary Fe(OH)3 precipitates were observed in the fluid. Sulfur X-ray fluorescence maps show that fluids had saturated and reacted with the entire 1-cm-diameter core. In the carbonate-rich Eagle Ford system, pH increased from 2 to 6 due to calcite dissolution. When additional Ba2+ and SO42- were present (log10(Q/K)=1.3), extensive barite precipitation was observed in the matrix of the Eagle Ford core (and on the surface). Barite precipitation was also observed on the surface of the Marcellus core, although to a lesser extent. In the Marcellus system, the presence of barite scale attenuated diffusivity in the matrix, as demonstrated by sharply reduced Fe leaching and much less sulfide oxidation. Systematic studies in homogeneous solution show that barite scale precipitation rates are highly sensitive to pH, salinity, and the presence of organic compounds. These findings imply that chemical reactions are not confined to shale/fluid interfaces but can penetrate into shale matrices, and that barite scale formation can clog diffusion pathways for both fluid and hydrocarbon.

  13. A Fractal Permeability Model for Shale Oil Reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Dong, Mingzhe; Li, Yajun

    2018-01-01

    In this work, a fractal analytical model is proposed to predict the permeability of shale reservoir. The proposed model explicitly relates the permeability to the micro-structural parameters (tortuosity, pore area fractal dimensions, porosity and slip velocity coefficient) of shale.

  14. Altered tuffaceous rocks of the Green River Formation in the Piceance Creek Basin, Colorado

    USGS Publications Warehouse

    Griggs, Roy Lee

    1968-01-01

    More than 50 ash-fall tuff beds which have altered to analcitized or feldspathized rocks have been found in the upper 500-600 feet of the Parachute Creek Member of the Green River Formation in the Piceance Creek Basin of northwestern Colorado. Similarly altered water-washed tuff occurs as tongues in the uppermost part of this member, and forms most of the lower 400-600 feet of the overlying Evacuation Creek Member of the Green River Formation. 'The altered ash-fall beds of the Parachute Creek Member are all thin and show a characteristic pattern of alteration. Most beds range in thickness from a fraction of an inch to a few inches. One bed reaches a maximum thickness of 5 feet, and, unlike the other beds, is composed of several successive ash falls. The pattern of alteration changes from the outer part to the center of the basin. Most beds in the outer part of the basin contain about 50 to 65 percent analcite,with the interstices between the crystals filled mainly by microlites of feldspar, opal, and quartz, and small amounts of carbonate. At the center of the basin .essentially all the beds -are composed of microlites of feldspar, opal, and quartz, and small amounts of carbonate. The tongues of water-washed tuff in the uppermost part of the Parachute Creek Member and the similar rocks composing the lower 400-600 feet of the Evacuation Creek Mewber are feldspathized rocks composed mainly of microlites of feldspar, opal, and quartz, varying amounts of carbonate, and in some specimens tiny subrounded crystals of analcite. The general trend in alteration of the tuffaceous rocks from analcitization near the margin to feidspathization near the center of the Piceance Creek Basin is believed to have taken place at shallow depth during diagenesis , as indicated by field observations and laboratory work. It is believed that during sedimentation and diagenesis the waters of the central part of the basin were more alkaline and following the breakdown of the original

  15. Investigating the Potential Impacts of Energy Production in the Marcellus Shale Region Using the Shale Network Database and CUAHSI-Supported Data Tools

    NASA Astrophysics Data System (ADS)

    Brazil, L.

    2017-12-01

    The Shale Network's extensive database of water quality observations enables educational experiences about the potential impacts of resource extraction with real data. Through open source tools that are developed and maintained by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), researchers, educators, and citizens can access and analyze the very same data that the Shale Network team has used in peer-reviewed publications about the potential impacts of hydraulic fracturing on water. The development of the Shale Network database has been made possible through collection efforts led by an academic team and involving numerous individuals from government agencies, citizen science organizations, and private industry. Thus far, CUAHSI-supported data tools have been used to engage high school students, university undergraduate and graduate students, as well as citizens so that all can discover how energy production impacts the Marcellus Shale region, which includes Pennsylvania and other nearby states. This presentation will describe these data tools, how the Shale Network has used them in developing educational material, and the resources available to learn more.

  16. Contaminants from cretaceous black shale Part 2: Effect of geology, weathering, climate, and land use on salinity and selenium cycling, Mancos Shale landscapes, southwestern United States

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Fahy, Juli W.; Elliott, John G.; Grauch, Richard I.; Stillings, Lisa L.

    2013-01-01

    The Cretaceous Mancos Shale (MS) is a known nonpoint source for a significant portion of the salinity and selenium (Se) loads in the Colorado River in the southwestern United States and northwestern corner of Mexico. These two contaminants pose a serious threat to rivers in these arid regions where water supplies are especially critical. Tuttle et al. (companion paper) investigates the cycling of contaminants in a Colorado River tributary watershed (Uncompahgre River, southwestern Colorado) where the MS weathers under natural conditions. This paper builds on those results and uses regional soil data in the same watershed to investigate the impact of MS geology, weathering intensity, land use, and climate on salt and Se storage in and flux from soils on the natural landscape, irrigated agriculture fields, areas undergoing urban development, and wetlands. The size of salinity and Se reservoirs in the MS soils is quantified. Flux calculations show that during modern weathering, natural landscapes cycle salt and Se; however, little of it is released for transport to the Uncompahgre River (10% of the annual salinity and 6% of the annual Se river loads). When irrigated, salinity and Se loads from the MS soil increase (26% and 57% of the river load, respectively), causing the river to be out of compliance with Federal and State Se standards. During 100 years of irrigation, seven times more Se has been removed from agricultural soil than what was lost from natural landscapes during the entire period of pedogenesis. Under more arid conditions, even less salt and Se are expected to be transported from the natural landscape. However, if wetter climates prevail, transport could increase dramatically due to storage of soluble phases in the non-irrigated soil. These results are critical input for water-resource and land-use managers who must decide whether or not the salinity and Se in a watershed can be managed, what sustainable mitigation strategies are possible, and what

  17. Experimental investigations of the wettability of clays and shales

    NASA Astrophysics Data System (ADS)

    Borysenko, Artem; Clennell, Ben; Sedev, Rossen; Burgar, Iko; Ralston, John; Raven, Mark; Dewhurst, David; Liu, Keyu

    2009-07-01

    Wettability in argillaceous materials is poorly understood, yet it is critical to hydrocarbon recovery in clay-rich reservoirs and capillary seal capacity in both caprocks and fault gouges. The hydrophobic or hydrophilic nature of clay-bearing soils and sediments also controls to a large degree the movement of spilled nonaqueous phase liquids in the subsurface and the options available for remediation of these pollutants. In this paper the wettability of hydrocarbons contacting shales in their natural state and the tendencies for wettability alteration were examined. Water-wet, oil-wet, and mixed-wet shales from wells in Australia were investigated and were compared with simplified model shales (single and mixed minerals) artificially treated in crude oil. The intact natural shale samples (preserved with their original water content) were characterized petrophysically by dielectric spectroscopy and nuclear magnetic resonance, plus scanning electron, optical and fluorescence microscopy. Wettability alteration was studied using spontaneous imbibition, pigment extraction, and the sessile drop method for contact angle measurement. The mineralogy and chemical compositions of the shales were determined by standard methods. By studying pure minerals and natural shales in parallel, a correlation between the petrophysical properties, and wetting behavior was observed. These correlations may potentially be used to assess wettability in downhole measurements.

  18. Imbibition of hydraulic fracturing fluids into partially saturated shale

    NASA Astrophysics Data System (ADS)

    Birdsell, Daniel T.; Rajaram, Harihar; Lackey, Greg

    2015-08-01

    Recent studies suggest that imbibition of hydraulic fracturing fluids into partially saturated shale is an important mechanism that restricts their migration, thus reducing the risk of groundwater contamination. We present computations of imbibition based on an exact semianalytical solution for spontaneous imbibition. These computations lead to quantitative estimates of an imbibition rate parameter (A) with units of LT-1/2 for shale, which is related to porous medium and fluid properties, and the initial water saturation. Our calculations suggest that significant fractions of injected fluid volumes (15-95%) can be imbibed in shale gas systems, whereas imbibition volumes in shale oil systems is much lower (3-27%). We present a nondimensionalization of A, which provides insights into the critical factors controlling imbibition, and facilitates the estimation of A based on readily measured porous medium and fluid properties. For a given set of medium and fluid properties, A varies by less than factors of ˜1.8 (gas nonwetting phase) and ˜3.4 (oil nonwetting phase) over the range of initial water saturations reported for the Marcellus shale (0.05-0.6). However, for higher initial water saturations, A decreases significantly. The intrinsic permeability of the shale and the viscosity of the fluids are the most important properties controlling the imbibition rate.

  19. Revegetation studies on Tosco II and USBM retorted oil shales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilkelly, M.K.; Harbert, H.P.; Berg, W.A.

    1981-01-01

    In 1973 studies on the revegetation of processed oil shales were initiated. The objectives of these studies were to investigate the vegetative stabilization of processed oil shales and to follow moisture and soluble salt movement in the retorted shale profile. Studies involving TOSCO II and USBM retorted shales were established at both a low-elevation (Anvil Points) and a high-elevation (Piceance Basin). Treatments included leaching and various depths of soil cover. After seven growing seasons a good vegetative cover remains with differences between treatments insignificant, with the exception of the TOSCO retorted shale south-aspect, which consistently supported less perennial vegetative covermore » than other treatments. With time, a shift from perennial grasses to dominance by shrubs was observed, especially on south-aspect slopes. 6 refs.« less

  20. The provenance of low-calcic black shales

    NASA Astrophysics Data System (ADS)

    Quinby-Hunt, M. S.; Wilde, P.

    1991-04-01

    The elemental concentration of sedimentary rocks depends on the varying reactivity of each element as it goes from the source through weathering, deposition, diagenesis, lithification, and even low rank metamorphism. However, non-reactive components of detrital particles ideally are characteristic of the original igneous source and thus are useful in provenance studies. To determine the source of detrital granitic and volcanic components of low-calcic (<1% CaCO3) marine black shales, the concentrations of apparently non-reactive (i.e. unaffected by diagenetic, redox and/or low-rank metamorphic processes) trace elements were examined using standard trace element discrimination diagrams developed for igneous rocks. The chemical data was obtained by neutron activation analyses of about 200 stratigraphically well-documented black shale samples from the Cambrian through the Jurassic. A La-Th-Sc ternary diagram distinguishes among contributions from the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). All the low-calcic black shales cluster within the region of the upper crust. Th-Hf-Co ternary diagrams also are commonly used to distinguish among the upper and bulk continental crust and the oceanic crust (Taylor and McLennan 1985). As Co is redox sensitive in black shale environments, it was necessary to substitute an immobile element (i.e. example Rb) in the diagram. With this substitution of black shales all cluster in the region of the upper continental crust. To determine the provenance of the granitic component (Pearce et al. 1984), plots of Ta vs Yb and Rb vs Yb + Ta shows a cluster at the junction of the boundaries separating the volcanic arc granite (VAG), syn-collision granite (syn-COLG), and within-plate granite (WPG) fields. The majority fall within the VAG field. There are no occurrences of ocean ridge granite (ORG). The minimal contribution of basalts to marine black shales is confirmed by the ternary Wood diagram Th-Hf/3-Ta

  1. Horizontal drilling potential of the Cane Creek Shale, Paradox Formation, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, C.D.; Chidsey, T.C.

    1991-06-01

    The Cane Creek shale of the Pennsylvanian Paradox Formation is a well-defined target for horizontal drilling. This unit is naturally fractures and consists of organic-rich marine shale with interbedded dolomitic siltstone and anhydrite. Six fields have produced oil from the Cane Creek shale in the Paradox basin fold-and-fault belt. The regional structural trend is north-northwest with productive fractures occurring along the crest and flanks of both the larger and more subtle smaller anticlines. The Long Canyon, Cane Creek, Bartlett Flat, and Shafer Canyon fields are located on large anticlines, while Lion Mesa and Wilson Canyon fields produce from subtle structuralmore » noses. The Cane Creek shale is similar to the highly productive Bakken Shale in the Williston basin. Both are (1) proven producers of high-gravity oil, (2) highly fractured organic-rich source rocks, (3) overpressured, (4) regionally extensive, and (5) solution-gas driven with little or no associated water. Even though all production from the Cane Creek shale has been from conventional vertical wells, the Long Canyon 1 well has produced nearly 1 million bbl of high-gravity, low-sulfur oil. Horizontal drilling may result in the development of new fields, enhance recovery in producing fields, and revive production in abandoned fields. In addition, several other regionally extensive organic-rich shale beds occur in the Paradox Formation. The Gothic and Chimney Rock shales for example, offer additional potential lying above the Cane Creek shale.« less

  2. Borehole petrophysical chemostratigraphy of Pennsylvanian black shales in the Kansas subsurface

    USGS Publications Warehouse

    Doveton, J.H.; Merriam, D.F.

    2004-01-01

    Pennsylvanian black shales in Kansas have been studied on outcrop for decades as the core unit of the classic Midcontinent cyclothem. These shales appear to be highstand condensed sections in the sequence stratigraphic paradigm. Nuclear log suites provide several petrophysical measurements of rock chemistry that are a useful data source for chemostratigraphic studies of Pennsylvanian black shales in the subsurface. Spectral gamma-ray logs partition natural radioactivity between contributions by U, Th, and K sources. Elevated U contents in black shales can be related to reducing depositional environments, whereas the K and Th contents are indicators of clay-mineral abundance and composition. The photoelectric factor log measurement is a direct function of aggregate atomic number and so is affected by clay-mineral volume, clay-mineral iron content, and other black shale compositional elements. Neutron porosity curves are primarily a response to hydrogen content. Although good quality logs are available for many black shales, borehole washout features invalidate readings from the nuclear contact devices, whereas black shales thinner than tool resolution will be averaged with adjacent beds. Statistical analysis of nuclear log data between black shales in successive cyclothems allows systematic patterns of their chemical and petrophysical properties to be discriminated in both space and time. ?? 2004 Elsevier B.V. All rights reserved.

  3. Shale Gas Geomechanics for Development and Performance of Unconventional Reservoirs

    NASA Astrophysics Data System (ADS)

    Domonik, Andrzej; Łukaszewski, Paweł; Wilczyński, Przemysław; Dziedzic, Artur; Łukasiak, Dominik; Bobrowska, Alicja

    2017-04-01

    Mechanical properties of individual shale formations are predominantly determined by their lithology, which reflects sedimentary facies distribution, and subsequent diagenetic and tectonic alterations. Shale rocks may exhibit complex elasto-viscoplastic deformation mechanisms depending on the rate of deformation and the amount of clay minerals, also bearing implications for subcritical crack growth and heterogeneous fracture network development. Thus, geomechanics for unconventional resources differs from conventional reservoirs due to inelastic matrix behavior, stress sensitivity, rock anisotropy and low matrix permeability. Effective horizontal drilling and hydraulic fracturing technologies are required to obtain and maintain high performance. Success of these techniques strongly depends on the geomechanical investigations of shales. An inelastic behavior of shales draws increasing attention of investigators [1], due to its role in stress relaxation between fracturing phases. A strong mechanical anisotropy in the vertical plane and a lower and more variable one in the horizontal plane are characteristic for shale rocks. The horizontal anisotropy plays an important role in determining the direction and effectiveness of propagation of technological hydraulic fractures. Non-standard rock mechanics laboratory experiments are being applied in order to obtain the mechanical properties of shales that have not been previously studied in Poland. Novel laboratory investigations were carried out to assess the creep parameters and to determine time-dependent viscoplastic deformation of shale samples, which can provide a limiting factor to tectonic stresses and control stress change caused by hydraulic fracturing. The study was supported by grant no.: 13-03-00-501-90-472946 "An integrated geomechanical investigation to enhance gas extraction from the Pomeranian shale formations", funded by the National Centre for Research and Development (NCBiR). References: Ch. Chang M. D

  4. Heterogeneity of shale documented by micro-FTIR and image analysis.

    PubMed

    Chen, Yanyan; Mastalerz, Maria; Schimmelmann, Arndt

    2014-12-01

    In this study, four New Albany Shale Devonian and Mississippian samples, with vitrinite reflectance [Ro ] values ranging from 0.55% to 1.41%, were analyzed by micro-FTIR mapping of chemical and mineralogical properties. One additional postmature shale sample from the Haynesville Shale (Kimmeridgian, Ro = 3.0%) was included to test the limitation of the method for more mature substrates. Relative abundances of organic matter and mineral groups (carbonates, quartz and clays) were mapped across selected microscale regions based on characteristic infrared peaks and demonstrated to be consistent with corresponding bulk compositional percentages. Mapped distributions of organic matter provide information on the organic matter abundance and the connectivity of organic matter within the overall shale matrix. The pervasive distribution of organic matter mapped in the New Albany Shale sample MM4 is in agreement with this shale's high total organic carbon abundance relative to other samples. Mapped interconnectivity of organic matter domains in New Albany Shale samples is excellent in two early mature shale samples having Ro values from 0.55% to 0.65%, then dramatically decreases in a late mature sample having an intermediate Ro of 1.15% and finally increases again in the postmature sample, which has a Ro of 1.41%. Swanson permeabilities, derived from independent mercury intrusion capillary pressure porosimetry measurements, follow the same trend among the four New Albany Shale samples, suggesting that micro-FTIR, in combination with complementary porosimetric techniques, strengthens our understanding of porosity networks. In addition, image processing and analysis software (e.g. ImageJ) have the capability to quantify organic matter and total organic carbon - valuable parameters for highly mature rocks, because they cannot be analyzed by micro-FTIR owing to the weakness of the aliphatic carbon-hydrogen signal. © 2014 The Authors Journal of Microscopy © 2014 Royal

  5. Life Cycle Water Consumption for Shale Gas and Conventional Natural Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Corrie E.; Horner, Robert M.; Harto, Christopher B.

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13–37 L/GJ) than conventional natural gas consumes (9.3–9.6 L/GJ). However, when used as a transportation fuel, shale gasmore » consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.« less

  6. Life cycle water consumption for shale gas and conventional natural gas.

    PubMed

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.

  7. Assessing Radium Activity in Shale Gas Produced Brine

    NASA Astrophysics Data System (ADS)

    Fan, W.; Hayes, K. F.; Ellis, B. R.

    2015-12-01

    The high volumes and salinity associated with shale gas produced water can make finding suitable storage or disposal options a challenge, especially when deep well brine disposal or recycling for additional well completions is not an option. In such cases, recovery of commodity salts from the high total dissolved solids (TDS) of the brine wastewater may be desirable, yet the elevated concentrations of the naturally occurring radionuclides such as Ra-226 and Ra-228 in produced waters (sometimes substantially greater than the EPA limit of 5 pCi/L) may concentrate during these steps and limit salt recovery options. Therefore, assessing the potential presence of these Ra radionuclides in produced water from shale gas reservoir properties is desirable. In this study, we seek to link U and Th content within a given shale reservoir to the expected Ra content of produced brine by accounting for secular equilibrium within the rock and subsequent release to Ra to native brines. Produced brine from a series of Antrim shale wells and flowback from a single Utica-Collingwood shale well in Michigan were sampled and analyzed via ICP-MS to measure Ra content. Gamma spectroscopy was used to verify the robustness of this new Ra analytical method. Ra concentrations were observed to be up to an order of magnitude higher in the Antrim flowback water samples compared to those collected from the Utica-Collingwood well. The higher Ra content in Antrim produced brines correlates well with higher U content in the Antrim (19 ppm) relative to the Utica-Collingwood (3.5 ppm). We also observed an increase in Ra activity with increasing TDS in the Antrim samples. This Ra-TDS relationship demonstrates the influence of competing divalent cations in controlling Ra mobility in these clay-rich reservoirs. In addition, we will present a survey of geochemical data from other shale gas plays in the U.S. correlating shale U, Th content with produced brine Ra content. A goal of this study is to develop a

  8. Using SEM Analysis on Ion-Milled Shale Surface to Determine Shale-Fracturing Fluid Interaction

    NASA Astrophysics Data System (ADS)

    Lu, J.; Mickler, P. J.; Nicot, J. P.

    2014-12-01

    It is important to document and assess shale-fluid interaction during hydraulic fracturing (HF) in order to understand its impact on flowback water chemistry and rock property. A series of autoclave experiments were conducted to react shale samples from major oil and gas shales with synthetic HF containing various additives. To better determine mineral dissolution and precipitation at the rock-fluid interface, ion-milling technique was applied to create extremely flat rock surfaces that were examined before and after the autoclave experiments using a scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS) detectors. This method is able to reveal a level of detail not observable on broken surface or mechanically polished surface. It allows direct comparison of the same mineral and organic matter particles before and after the reaction experiments. Minerals undergone dissolution and newly precipitated materials are readily determined by comparing to the exact locations before reaction. The dissolution porosity and the thickness of precipitates can be quantified by tracing and measuring the geometry of the pores and precipitates. Changes in porosity and permeability were confirmed by mercury intrusion capillary tests.

  9. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.

    2017-01-01

    Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix. PMID:28772465

  10. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N

    2017-01-25

    Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix.

  11. Fracturing and brittleness index analyses of shales

    NASA Astrophysics Data System (ADS)

    Barnhoorn, Auke; Primarini, Mutia; Houben, Maartje

    2016-04-01

    The formation of a fracture network in rocks has a crucial control on the flow behaviour of fluids. In addition, an existing network of fractures , influences the propagation of new fractures during e.g. hydraulic fracturing or during a seismic event. Understanding of the type and characteristics of the fracture network that will be formed during e.g. hydraulic fracturing is thus crucial to better predict the outcome of a hydraulic fracturing job. For this, knowledge of the rock properties is crucial. The brittleness index is often used as a rock property that can be used to predict the fracturing behaviour of a rock for e.g. hydraulic fracturing of shales. Various terminologies of the brittleness index (BI1, BI2 and BI3) exist based on mineralogy, elastic constants and stress-strain behaviour (Jin et al., 2014, Jarvie et al., 2007 and Holt et al., 2011). A maximum brittleness index of 1 predicts very good and efficient fracturing behaviour while a minimum brittleness index of 0 predicts a much more ductile shale behaviour. Here, we have performed systematic petrophysical, acoustic and geomechanical analyses on a set of shale samples from Whitby (UK) and we have determined the three different brittleness indices on each sample by performing all the analyses on each of the samples. We show that each of the three brittleness indices are very different for the same sample and as such it can be concluded that the brittleness index is not a good predictor of the fracturing behaviour of shales. The brittleness index based on the acoustic data (BI1) all lie around values of 0.5, while the brittleness index based on the stress strain data (BI2) give an average brittleness index around 0.75, whereas the mineralogy brittleness index (BI3) predict values below 0.2. This shows that by using different estimates of the brittleness index different decisions can be made for hydraulic fracturing. If we would rely on the mineralogy (BI3), the Whitby mudstone is not a suitable

  12. Petrophysical Properties of Cody, Mowry, Shell Creek, and Thermopolis Shales, Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Nelson, P. H.

    2013-12-01

    The petrophysical properties of four shale formations are documented from well-log responses in 23 wells in the Bighorn Basin in Wyoming. Depths of the examined shales range from 4,771 to 20,594 ft. The four formations are the Thermopolis Shale (T), the Shell Creek Shale (SC), the Mowry Shale (M), and the lower part of the Cody Shale (C), all of Cretaceous age. These four shales lie within a 4,000-ft, moderately overpressured, gas-rich vertical interval in which the sonic velocity of most rocks is less than that of an interpolated trendline representing a normal increase of velocity with depth. Sonic velocity, resistivity, neutron, caliper, and gamma-ray values were determined from well logs at discrete intervals in each of the four shales in 23 wells. Sonic velocity in all four shales increases with depth to a present-day depth of about 10,000 ft; below this depth, sonic velocity remains relatively unchanged. Velocity (V), resistivity (R), neutron porosity (N), and hole diameter (D) in the four shales vary such that: VM > VC > VSC > VT, RM > RC > RSC > RT, NT > NSC ≈ NC > NM, and DT > DC ≈ DSC > DM. These orderings can be partially understood on the basis of rock compositions. The Mowry Shale is highly siliceous and by inference comparatively low in clay content, resulting in high sonic velocity, high resistivity, low neutron porosity, and minimal borehole enlargement. The Thermopolis Shale, by contrast, is a black fissile shale with very little silt--its high clay content causes low velocity, low resistivity, high neutron response, and results in the greatest borehole enlargement. The properties of the Shell Creek and lower Cody Shales are intermediate to the Mowry and Thermopolis Shales. The sonic velocities of all four shales are less than that of an interpolated trendline that is tied to velocities in shales above and below the interval of moderate overpressure. The reduction in velocity varies among the four shales, such that the amount of offset (O) from

  13. Upper Paleozoic Marine Shale Characteristics and Exploration Prospects in the Northwestern Guizhong Depression, South China

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenhong; Yao, Genshun; Lou, Zhanghua; Jin, Aimin; Zhu, Rong; Jin, Chong; Chen, Chao

    2018-05-01

    Multiple sets of organic-rich shales developed in the Upper Paleozoic of the northwestern Guizhong Depression in South China. However, the exploration of these shales is presently at a relatively immature stage. The Upper Paleozoic shales in the northwestern Guizhong Depression, including the Middle Devonian Luofu shale, the Nabiao shale, and the Lower Carboniferous Yanguan shale, were investigated in this study. Mineral composition analysis, organic matter analysis (including total organic carbon (TOC) content, maceral of kerogen and the vitrinite reflection (Ro)), pore characteristic analysis (including porosity and permeability, pore type identification by SEM, and pore size distribution by nitrogen sorption), methane isothermal sorption test were conducted, and the distribution and thickness of the shales were determined, Then the characteristics of the two target shales were illustrated and compared. The results show that the Upper Paleozoic shales have favorable organic matter conditions (mainly moderate to high TOC content, type I and II1 kerogen and high to over maturity), good fracability potential (brittleness index (BI) > 40%), multiple pore types, stable distribution and effective thickness, and good methane sorption capacity. Therefore, the Upper Paleozoic shales in the northern Guizhong Depression have good shale gas potential and exploration prospects. Moreover, the average TOC content, average BI, thickness of the organic-rich shale (TOC > 2.0 wt%) and the shale gas resources of the Middle Devonian shales are better than those of the Lower Carboniferous shale. The Middle Devonian shales have better shale gas potential and exploration prospects than the Lower Carboniferous shales.

  14. Heterogeneity of shales in different scales and its implications to laboratory analyses - examples from sedimentology and organic geochemistry study of the Lower Paleozoic shales from shale gas exploration well located in the Baltic Basin, Poland.

    NASA Astrophysics Data System (ADS)

    Roszkowska-Remin, Joanna; Janas, Marcin

    2017-04-01

    We present the litho-sedimentological, organic geochemical results and organic porosity estimation of the Ordovician and Silurian shales in the SeqWell (shale gas exploration well located in the Pomerania region, Poland). The most perspective black and bituminous shales of the Upper Ordovician and the Lower Silurian may seem to be homogeneous. However, our results reveal that these shales show heterogeneity at different scales (m to mm). For example, in most cases the decrease of TOC content in the m scale is related to pyroclastic rock intercalations and "dark bioturbations" with no color difference when compared with surrounding sediments. While in cm scale heterogeneity is related to bioturbations, density of organic-rich laminas, or abundance of carbonates and pyrite. Without a detailed sedimentological study of polished core surfaces and Rock-Eval analyses those observations are rather invisible. The correct interpretation of results requires the understanding of rock's heterogeneity in different scales. It has a critical importance for laboratory tests applied on few cm long samples, especially if the results are to be extrapolated to wider intervals. Therefore in ShaleSeq project, a detailed sedimentological core logging and analysis of geochemical parameters of perspective formations in m to mm scale was performed for the first time. The results show good correlation between bioturbation index (BI) and organic geochemical indicators like organic carbon content (TOC) or oxic deposition conditions indicator (oxygen index - OI) leading to the assumption that environmental conditions may have played a crucial role in organic carbon preservation. The geochemical analyses of 12 samples showed that even within the few cm long sections shale can be really diversified. Eight out of twelve analyzed samples were considered geochemically mostly homogeneous, whilst four of them showed evident heterogeneity. Concluding, the sampling should be preceded by detailed

  15. Creep of Posidonia and Bowland shale at elevated pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Herrmann, Johannes; Rybacki, Erik; Sone, Hiroki; Dresen, Georg

    2017-04-01

    The fracture-healing rate of artificial cracks generated by hydraulic fracturing is of major interest in the E&P industry since it is important for the long-time productivity of a well. To estimate the stress-induced healing rate of unconventional reservoir rocks, we performed deformation tests on Bowland shale rocks (UK) and on Posidonia shales (Germany). Samples of 1cm diameter and 2cm length were drilled perpendicular to the bedding and deformed in a high pressure, high temperature deformation apparatus. Constant strain rate tests at 5*10-4*s-1, 50 MPa confining pressure and 100˚ C temperature reveal a mainly brittle behaviour with predominantly elastic deformation before failure and high strength of low porosity (˜2%), quartz-rich (˜42 vol%) Bowland shale. In contrast, the low porosity (˜3%), carbonate- (˜43 vol%) and clay-rich (˜33 vol%) Posidonia shale deforms semi-brittle with pronounced inelastic deformation and low peak strength. These results suggest a good fracability of the Bowland formation compared to the Posidonia shale. Constant load (creep) experiments performed on Bowland shale at 100˚ C temperature and 75 MPa pressure show mainly transient (primary) deformation with increasing strain rate at increasing axial stress. The strain rate increases also with increasing temperature, measured in the range of 75 - 150˚ C at fixed stress and confinement. In contrast, increasing confining pressure (from 30 to 115 MPa) at given temperature and stress results in decreasing strain rate. In contrast, Posidonia shale rocks are much more sensitive to changes in stress, temperature and pressure than Bowland shale. Empirical relations between strain and stress that account for the influence of pressure and temperature on creep properties of Posidonia and Bowland shale rocks can be used to estimate the fracture healing rate of these shales under reservoir conditions.

  16. Cracking mechanism of shale cracks during fracturing

    NASA Astrophysics Data System (ADS)

    Zhao, X. J.; Zhan, Q.; Fan, H.; Zhao, H. B.; An, F. J.

    2018-06-01

    In this paper, we set up a model for calculating the shale fracture pressure on the basis of Huang’s model by the theory of elastic-plastic mechanics, rock mechanics and the application of the maximum tensile stress criterion, which takes into account such factors as the crustal stress field, chemical field, temperature field, tectonic stress field, the porosity of shale and seepage of drilling fluid and so on. Combined with the experimental data of field fracturing and the experimental results of three axis compression of shale core with different water contents, the results show that the error between the present study and the measured value is 3.85%, so the present study can provide technical support for drilling engineering.

  17. Economic Impacts Analysis of Shale Gas Investment in China

    NASA Astrophysics Data System (ADS)

    Han, Shangfeng; Zhang, Baosheng; Wang, Xuecheng

    2018-01-01

    Chinese government has announced an ambitious shale gas extraction plan, which requires significant investment. This has the potential to draw investment from other areas and may affect the whole China’s economy. There is few study to date has quantified these shale gas investment’s effects on Chinese economy. The aim of this paper is to quantify the economic effect and figures out whether shale gas investment in China is a good choice or not. Input-output analysis has been utilized in this study to estimate the economic impacts in four different Chinese regions. Our findings show that shale gas investment will result in approximately 868, 427, 115 and 42 Billion RMB economic impacts in Sichuan, Chongqing, Inner Mongolia and Guizhou, respectively. The total economic impact is only around 1453 Billion RMB, which is not significant compared to the economic impact of coalbed methane investment. Considering the potential risks of environmental issues, we suggest that it may be a better strategy for the government, at least in the current situation, to slow down shale gas development investment.

  18. Assessment of dissolved-solids loading to the Colorado River in the Paradox Basin between the Dolores River and Gypsum Canyon, Utah

    USGS Publications Warehouse

    Shope, Christopher L.; Gerner, Steven J.

    2014-01-01

    Salinity loads throughout the Colorado River Basin have been a concern over recent decades due to adverse impacts on population, natural resources, and regional economics. With substantial financial resources and various reclamation projects, the salt loading to Lake Powell and associated total dissolved-solids concentrations in the Lower Colorado River Basin have been substantially reduced. The Colorado River between its confluence with the Dolores River and Lake Powell traverses a physiographic area where saline sedimentary formations and evaporite deposits are prevalent. However, the dissolved-solids loading in this area is poorly understood due to the paucity of water-quality data. From 2003 to 2011, the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation conducted four synoptic sampling events to quantify the salinity loading throughout the study reach and evaluate the occurrence and impacts of both natural and anthropogenic sources. The results from this study indicate that under late-summer base-flow conditions, dissolved-solids loading in the reach is negligible with the exception of the Green River, and that variations in calculated loads between synoptic sampling events are within measurement and analytical uncertainties. The Green River contributed approximately 22 percent of the Colorado River dissolved-solids load, based on samples collected at the lower end of the study reach. These conclusions are supported by water-quality analyses for chloride and bromide, and the results of analyses for the stable isotopes of oxygen and deuterium. Overall, no significant sources of dissolved-solids loading from tributaries or directly by groundwater discharge, with the exception of the Green River, were identified in the study area.

  19. Space Radar Image of Colorado River

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This space radar image illustrates the recent rapid urban development occurring along the lower Colorado River at the Nevada/Arizona state line. Lake Mojave is the dark feature that occupies the river valley in the upper half of the image. The lake is actually a reservoir created behind Davis Dam, the bright white line spanning the river near the center of the image. The dam, completed in 1953, is used both for generating electric power and regulating the river's flow downstream. Straddling the river south of Davis Dam, shown in white and bright green, are the cities of Laughlin, Nevada (west of the river) and Bullhead City, Arizona (east of the river). The runway of the Laughlin, Bullhead City Airport is visible as a dark strip just east of Bullhead City. The area has experienced rapid growth associated with the gambling industry in Laughlin and on the Fort Mojave Indian Reservation to the south. The community of Riviera is the bright green area in a large bend of the river in the lower left part of the image. Complex drainage patterns and canyons are the dark lines seen throughout the image. Radar is a useful tool for studying these patterns because of the instrument's sensitivity to roughness, vegetation and subtle topographic differences. This image is 50 kilometers by 35 kilometers (31 miles by 22 miles) and is centered at 35.25 degrees north latitude, 114.67 degrees west longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 13, 1994, onboard the space shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Office of

  20. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2004-01-01

    Part of the 2003 industrial minerals review. The legislation, production, and consumption of common clay and shale are discussed. The average prices of the material and outlook for the market are provided.

  1. Parameters Affecting the Characteristics of Oil Shale-Derived Fuels.

    DTIC Science & Technology

    1981-03-01

    rock with essentially no organic matter. The oil shale of the Uinta Basin in Utah and extreme western Colorado is richer than the Wyoming shales, but...could be used in several areas of the Uinta Basin . Once the oil shale is mined, it must be heated to about 900’F to hreak down the kerogen. A variety... Uinta Basin of eastern Utah. The sections presented above d.l not exhaust the supply of retorting tech- niques that are in various stages of

  2. Shale: an overlooked option for US nuclear waste disposal

    USGS Publications Warehouse

    Neuzil, Christopher E.

    2014-01-01

    Toss a dart at a map of the United States and, more often than not, it will land where shale can be found underground. A drab, relatively featureless sedimentary rock that historically attracted little interest, shale (as used here, the term includes clay and a range of clay-rich rocks) is entering Americans’ consciousness as a new source of gas and oil. But shale may also offer something entirely different—the ability to safely and permanently house high-level nuclear waste.

  3. Using Neutrons to Study Fluid-Rock Interactions in Shales

    NASA Astrophysics Data System (ADS)

    DiStefano, V. H.; McFarlane, J.; Anovitz, L. M.; Gordon, A.; Hale, R. E.; Hunt, R. D.; Lewis, S. A., Sr.; Littrell, K. C.; Stack, A. G.; Chipera, S.; Perfect, E.; Bilheux, H.; Kolbus, L. M.; Bingham, P. R.

    2015-12-01

    Recovery of hydrocarbons by hydraulic fracturing depends on complex fluid-rock interactions that we are beginning to understand using neutron imaging and scattering techniques. Organic matter is often thought to comprise the majority of porosity in a shale. In this study, correlations between the type of organic matter embedded in a shale and porosity were investigated experimentally. Selected shale cores from the Eagle Ford and Marcellus formations were subjected to pyrolysis-gas chromatography, Differential Thermal Analysis/Thermogravimetric analysis, and organic solvent extraction with the resulting affluent analyzed by gas chromatography-mass spectrometry. The pore size distribution of the microporosity (~1 nm to 2 µm) in the Eagle Ford shales was measured before and after solvent extraction using small angle neutron scattering. Organics representing mass fractions of between 0.1 to 1 wt.% were removed from the shales and porosity generally increased across the examined microporosity range, particularly at larger pore sizes, approximately 50 nm to 2 μm. This range reflects extraction of accessible organic material, including remaining gas molecules, bitumen, and kerogen derivatives, indicating where the larger amount of organic matter in shale is stored. An increase in porosity at smaller pore sizes, ~1-3 nm, was also present and could be indicative of extraction of organic material stored in the inter-particle spaces of clays. Additionally, a decrease in porosity after extraction for a sample was attributed to swelling of pores with solvent uptake. This occurred in a shale with high clay content and low thermal maturity. The extracted hydrocarbons were primarily paraffinic, although some breakdown of larger aromatic compounds was observed in toluene extractions. The amount of hydrocarbon extracted and an overall increase in porosity appeared to be primarily correlated with the clay percentage in the shale. This study complements fluid transport neutron

  4. Characterization of nanoporous shales with gas sorption

    NASA Astrophysics Data System (ADS)

    Joewondo, N.; Prasad, M.

    2017-12-01

    The understanding of the fluid flow in porous media requires the knowledge of the pore system involved. Fluid flow in fine grained shales falls under different regime than transport regime in conventional reservoir due to the different average pore sizes in the two materials; the average pore diameter of conventional sandstones is on the micrometer scale, while of shales can be as small as several nanometers. Mercury intrusion porosimetry is normally used to characterize the pores of conventional reservoir, however with increasingly small pores, the injection pressure required to imbibe the pores becomes infinitely large due to surface tension. Characterization of pores can be expressed by a pore size distribution (PSD) plot, which reflects distribution of pore volume or surface area with respect to pore size. For the case of nanoporous materials, the surface area, which serves as the interface between the rock matrix and fluid, becomes increasingly large and important. Physisorption of gas has been extensively studied as a method of nanoporous solid characterization (particularly for the application of catalysis, metal organic frameworks, etc). The PSD is obtained by matching the experimental result to the calculated theoretical result (using Density Functional Theory (DFT), a quantum mechanics based modelling method for molecular scale interactions). We present the challenges and experimental result of Nitrogen and CO2 gas sorption on shales with various mineralogy and the interpreted PSD obtained by DFT method. Our result shows significant surface area contributed by the nanopores of shales, hence the importance of surface area measurements for the characterization of shales.

  5. Shale Gas: Development Opportunities and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoback, Mark D.; Arent, Douglas J.

    2014-03-01

    The use of horizontal drilling and multistage hydraulic fracturing technologies has enabled the production of immense quantities of natural gas, to date principally in North America but increasingly in other countries around the world. The global availability of this resource creates both opportunities and challenges that need to be addressed in a timely and effective manner. There seems little question that rapid shale gas development, coupled with fuel switching from coal to natural gas for power generation, can have beneficial effects on air pollution, greenhouse gas emissions, and energy security in many countries. In this context, shale gas resources representmore » a critically important transition fuel on the path to a decarbonized energy future. For these benefits to be realized, however, it is imperative that shale gas resources be developed with effective environmental safeguards to reduce their impact on land use, water resources, air quality, and nearby communities.« less

  6. Oil shale retorting and combustion system

    DOEpatents

    Pitrolo, Augustine A.; Mei, Joseph S.; Shang, Jerry Y.

    1983-01-01

    The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

  7. Comparison of formation mechanism of fresh-water and salt-water lacustrine organic-rich shale

    NASA Astrophysics Data System (ADS)

    Lin, Senhu

    2017-04-01

    Based on the core and thin section observation, major, trace and rare earth elements test, carbon and oxygen isotopes content analysis and other geochemical methods, a detailed study was performed on formation mechanism of lacustrine organic-rich shale by taking the middle Permian salt-water shale in Zhungaer Basin and upper Triassic fresh-water shale in Ordos Basin as the research target. The results show that, the middle Permian salt-water shale was overall deposited in hot and dry climate. Long-term reductive environment and high biological abundance due to elevated temperature provides favorable conditions for formation and preservation of organic-rich shale. Within certain limits, the hotter climate, the organic-richer shale formed. These organic-rich shale was typically distributed in the area where palaeosalinity is relatively high. However, during the upper Triassic at Ordos Basin, organic-rich shale was formed in warm and moist environment. What's more, if the temperature, salinity or water depth rises, the TOC in shale decreases. In other words, relatively low temperature and salinity, stable lake level and strong reducing conditions benefits organic-rich shale deposits in fresh water. In this sense, looking for high-TOC shale in lacustrine basin needs to follow different rules depends on the palaeoclimate and palaeoenvironment during sedimentary period. There is reason to believe that the some other factors can also have significant impact on formation mechanism of organic-rich shale, which increases the complexity of shale oil and gas prediction.

  8. Sulfide-driven arsenic mobilization from arsenopyrite and black shale pyrite

    USGS Publications Warehouse

    Zhu, W.; Young, L.Y.; Yee, N.; Serfes, M.; Rhine, E.D.; Reinfelder, J.R.

    2008-01-01

    We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As-1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O2), hypoxic (2% O2, 98% N2), and anoxic (5% H2, 95% N2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (-1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black

  9. Impact of Shale Gas Development on Water Resource in Fuling, China

    NASA Astrophysics Data System (ADS)

    Yang, Hong; Huang, Xianjin; Yang, Qinyuan; Tu, Jianjun

    2015-04-01

    As a low-carbon energy, shale gas rapidly developed in U.S. in last years due to the innovation of the technique of hydraulic fracture, or fracking. Shale gas boom produces more gas with low price and reduced the reliance on fuel import. To follow the American shale gas success, China made an ambitious plan of shale gas extraction, 6.5 billion m3 by 2015. To extract shale gas, huge amount water is needed to inject into each gas well. This will intensify the competition of water use between industry, agricultural and domestic sectors. It may finally exacerbate the water scarcity in China. After the extraction, some water was returned to the ground. Without adequate treatment, the flowback water can introduce heavy metal, acids, pesticides, and other toxic material into water and land. This may inevitably worsen the water and land contamination. This study analysed the potential water consumption and wastewater generation in shale gas development in Fuling, Southwest China. The survey found the average water consumption is 30,000 cubic meter for one well, higher than shale well in U.S. Some 2%-20% water flowed back to the ground. The water quality monitoring showed the Total Suspended Solid (TSS) and Chemical Oxygen Demand (COD) were the main factors above those specified by China's water regulation. Shale gas is a lower-carbon energy, but it is important to recognize the water consuming and environmental pollution during the fracking. Strict monitoring and good coordination during the shale gas exploitation is urgently needed for the balance of economic development, energy demand and environmental protection.

  10. Liquid oil production from shale gas condensate reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng, James J.

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  11. Projecting the Water Footprint Associated with Shale Resource Production: Eagle Ford Shale Case Study.

    PubMed

    Ikonnikova, Svetlana A; Male, Frank; Scanlon, Bridget R; Reedy, Robert C; McDaid, Guinevere

    2017-12-19

    Production of oil from shale and tight reservoirs accounted for almost 50% of 2016 total U.S. production and is projected to continue growing. The objective of our analysis was to quantify the water outlook for future shale oil development using the Eagle Ford Shale as a case study. We developed a water outlook model that projects water use for hydraulic fracturing (HF) and flowback and produced water (FP) volumes based on expected energy prices; historical oil, natural gas, and water-production decline data per well; projected well spacing; and well economics. The number of wells projected to be drilled in the Eagle Ford through 2045 is almost linearly related to oil price, ranging from 20 000 wells at $30/barrel (bbl) oil to 97 000 wells at $100/bbl oil. Projected FP water volumes range from 20% to 40% of HF across the play. Our base reference oil price of $50/bbl would result in 40 000 additional wells and related HF of 265 × 10 9 gal and FP of 85 × 10 9 gal. The presented water outlooks for HF and FP water volumes can be used to assess future water sourcing and wastewater disposal or reuse, and to inform policy discussions.

  12. A study on the Jordanian oil shale resources and utilization

    NASA Astrophysics Data System (ADS)

    Sakhrieh, Ahmad; Hamdan, Mohammed

    2012-11-01

    Jordan has significant oil shale deposits occurring in 26 known localities. Geological surveys indicate that the existing deposits underlie more than 60% of Jordan's territory. The resource consists of 40 to 70 billion tones of oil shale, which may be equivalent to more than 5 million tones of shale oil. Since the 1960s, Jordan has been investigating economical and environmental methods for utilizing oil shale. Due to its high organic content, is considered a suitable source of energy. This paper introduces a circulating fluidized bed combustor that simulates the behavior of full scale municipal oil shale combustors. The inside diameter of the combustor is 500 mm, the height is 3000 mm. The design of the CFB is presented. The main parameters which affect the combustion process are elucidated in the paper. The size of the laboratory scale fluidized bed reactor is 3 kW, which corresponds to a fuel-feeding rate of approximately 1.5 kg/h.

  13. Stress dependence of permeability of intact and fractured shale cores.

    NASA Astrophysics Data System (ADS)

    van Noort, Reinier; Yarushina, Viktoriya

    2016-04-01

    Whether a shale acts as a caprock, source rock, or reservoir, understanding fluid flow through shale is of major importance for understanding fluid flow in geological systems. Because of the low permeability of shale, flow is thought to be largely confined to fractures and similar features. In fracking operations, fractures are induced specifically to allow for hydrocarbon exploration. We have constructed an experimental setup to measure core permeabilities, using constant flow or a transient pulse. In this setup, we have measured the permeability of intact and fractured shale core samples, using either water or supercritical CO2 as the transporting fluid. Our measurements show decreasing permeability with increasing confining pressure, mainly due to time-dependent creep. Furthermore, our measurements show that for a simple splitting fracture, time-dependent creep will also eliminate any significant effect of this fracture on permeability. This effect of confinement on fracture permeability can have important implications regarding the effects of fracturing on shale permeability, and hence for operations depending on that.

  14. Hydrocarbon potential of Upper Devonian black shale, eastern Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, I.M.; Frankie, W.T.; Moody, J.R.

    The gas-producing Upper Devonian black shales of eastern Kentucky represent cycles of organic units alternating with less-organic units that were dominated by an influx of clastics from a northeastern source. This pattern of sedimentation is typical throughout the southern Appalachian basin in areas basinal to, yet still influenced by, the Catskill delta to the northwest. These black shales, which thin westward onto the Cincinnati arch, dip eastward into the Appalachian basin. To evaluate the future gas potential of Devonian shale, a data base has been compiled, consisting of specific geologic and engineering information from 5920 Devonian shale wells in Letcher,more » Knott, Floyd, Martin, and Pike Counties, Kentucky. The first successful gas completion in eastern Kentucky was drilled in Martin County in 1901. Comparison of initial open-flow potential (IP) and long-term production data for these wells demonstrates that higher IP values generally indicate wells of higher production potential. Areas of higher IP are aligned linearly, and these lineaments are interpreted to be related to fracture systems within the Devonian shale. These fractures may be basement influenced. Temperature log analyses indicate that the greatest number of natural gas shows occur in the lower Huron Member of the Ohio Shale. Using both the temperature log to indicate gas shows and the gamma-ray log to determine the producing unit is a workable method for selecting the interval for treatment.« less

  15. Observations of the release of non-methane hydrocarbons from fractured shale.

    PubMed

    Sommariva, Roberto; Blake, Robert S; Cuss, Robert J; Cordell, Rebecca L; Harrington, Jon F; White, Iain R; Monks, Paul S

    2014-01-01

    The organic content of shale has become of commercial interest as a source of hydrocarbons, owing to the development of hydraulic fracturing ("fracking"). While the main focus is on the extraction of methane, shale also contains significant amounts of non-methane hydrocarbons (NMHCs). We describe the first real-time observations of the release of NMHCs from a fractured shale. Samples from the Bowland-Hodder formation (England) were analyzed under different conditions using mass spectrometry, with the objective of understanding the dynamic process of gas release upon fracturing of the shale. A wide range of NMHCs (alkanes, cycloalkanes, aromatics, and bicyclic hydrocarbons) are released at parts per million or parts per billion level with temperature- and humidity-dependent release rates, which can be rationalized in terms of the physicochemical characteristics of different hydrocarbon classes. Our results indicate that higher energy inputs (i.e., temperatures) significantly increase the amount of NMHCs released from shale, while humidity tends to suppress it; additionally, a large fraction of the gas is released within the first hour after the shale has been fractured. These findings suggest that other hydrocarbons of commercial interest may be extracted from shale and open the possibility to optimize the "fracking" process, improving gas yields and reducing environmental impacts.

  16. Quaternary Geologic Framework of the St. Clair River between Michigan and Ontario, Canada

    USGS Publications Warehouse

    Foster, David S.; Denny, Jane F.

    2009-01-01

    Concern about the effect of geomorphic changes in the St. Clair River on water levels in the Upper Great Lakes resulted in the need for information on the geologic framework of the river. A geophysical survey of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada, was conducted to determine the Quaternary geologic framework of the region. Previously available and new sediment samples and photographic and video data support the interpretation of the seismic stratigraphy and surficial geology. Three seismic stratigraphic units and two unconformities were identified. Glacial drift, consisting of interbedded till and glaciolacustrine deposits, overlies shale. Glaciofluvial and modern fluvial processes have eroded the glacial drift. Glaciofluvial, glaciolacustrine, fluvial, and lacustrine deposits overlie this unconformity. Seismic facies were interpreted to identify areas where these geologic facies exist; however, in the absence of distinct boundaries between facies, these deposits were mapped as one undifferentiated unit. This unit is thickest in the northernmost 3 kilometers of the river, where it consists of relatively coarse-grained fluvial, reworked glaciofluvial, and possibly glaciofluvial deposits. To the south, this coarse-grained unit thins or is absent. The undifferentiated unit comprises most of the surficial deposits in the northernmost river area. Some areas of glacial drift, predominantly till, are exposed at the lake and riverbed. The shale is not exposed anywhere in the region. Geophysical surveys at sites downriver, together with the results of previous studies, indicate that the geologic framework is similar to that in the northernmost river area except for the absence or reduced thickness of the coarse-grained fluvial deposits. Instead, glacial drift is exposed at the riverbed or is covered by a veneer of sediment. This information on the substrate is important for ongoing sediment transport studies.

  17. Modeling of gas generation from the Barnett Shale, Fort Worth Basin, Texas

    USGS Publications Warehouse

    Hill, R.J.; Zhang, E.; Katz, B.J.; Tang, Y.

    2007-01-01

    The generative gas potential of the Mississippian Barnett Shale in the Fort Worth Basin, Texas, was quantitatively evaluated by sealed gold-tube pyrolysis. Kinetic parameters for gas generation and vitrinite reflectance (Ro) changes were calculated from pyrolysis data and the results used to estimate the amount of gas generated from the Barnett Shale at geologic heating rates. Using derived kinetics for Ro evolution and gas generation, quantities of hydrocarbon gas generated at Ro ??? 1.1% are about 230 L/t (7.4 scf/t) and increase to more that 5800 L/t (186 scf/t) at Ro ??? 2.0% for a sample with an initial total organic carbon content of 5.5% and Ro = 0.44%. The volume of shale gas generated will depend on the organic richness, thickness, and thermal maturity of the shale and also the amount of petroleum that is retained in the shale during migration. Gas that is reservoired in shales appears to be generated from the cracking of kerogen and petroleum that is retained in shales, and that cracking of the retained petroleum starts by Ro ??? 1.1%. This result suggests that the cracking of petroleum retained in source rocks occurs at rates that are faster than what is predicted for conventional siliciclastic and carbonate reservoirs, and that contact of retained petroleum with kerogen and shale mineralogy may be a critical factor in shale-gas generation. Shale-gas systems, together with overburden, can be considered complete petroleum systems, although the processes of petroleum migration, accumulation, and trap formation are different from what is defined for conventional petroleum systems. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  18. Quality of water of the Colorado River in 1928-1930

    USGS Publications Warehouse

    Howard, C.S.

    1932-01-01

    This report gives the results obtained in the continuation of a study of the Colorado River begun in 1925.1 The analyses represent composites of daily samples collected by the observers at the gaging stations on the Colorado River at Cisco, Utah, and Lees Ferry and Grand Canyon, Ariz.; on the Green River at Green River, Utah; and on the San Juan River near Bluff, Utah. Analyses are given for samples collected about once a month from the Williams River at Planet, Ariz. The Arizona stations are operated under the direction of W. E. Dickinson, district engineer of the Geological Survey at Tucson, Ariz., and the Utah stations under the direction of A. B. Purton, district engineer of the Geological Survey at Salt Lake City, Utah. The average discharges given in Table 3 were calculated from data furnished by these district engineers. Complete discharge . data for this period will be published in the regular series of water-supply papers.

  19. Hypocenter relocation of microseismic events using a 3-D velocity model of the shale-gas production site in the Horn River Basin

    NASA Astrophysics Data System (ADS)

    Woo, J. U.; Kim, J. H.; Rhie, J.; Kang, T. S.

    2016-12-01

    Microseismic monitoring is a crucial process to evaluate the efficiency of hydro-fracking and to understand the development of fracture networks. Consequently, it can provide valuable information for designing the post hydro-fracking stages and estimating the stimulated rock volumes. The fundamental information is a set of source parameters of microseismic events. The most important parameter is the hypocenter of event, and thus the accurate hypocenter determination is a key for the successful microseismic monitoring. The accuracy of hypocenters for a given dataset of seismic phase arrival times is dependent on that of the velocity model used in the seismic analysis. In this study, we evaluated how a 3-D model can affect the accuracy of hypocenters. We used auto-picked P- and S-wave travel-time data of about 8,000 events at the commercial shale gas production site in the Horn River Basin, Canada. The initial hypocenters of the events were determined using a single-difference linear inversion algorithm with a 1-D velocity model obtained from the well-logging data. Then we iteratively inverted travel times of events for the 3-D velocity perturbations and relocated their hypocenters using double-difference algorithm. Significant reduction of the errors in the final hypocenter was obtained. This result indicates that the 3-D model is useful for improving the performance of microseismic monitoring.

  20. The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation

    PubMed Central

    Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun

    2016-01-01

    Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size (x¯), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir. PMID:26992168

  1. The Description of Shale Reservoir Pore Structure Based on Method of Moments Estimation.

    PubMed

    Li, Wenjie; Wang, Changcheng; Shi, Zejin; Wei, Yi; Zhou, Huailai; Deng, Kun

    2016-01-01

    Shale has been considered as good gas reservoir due to its abundant interior nanoscale pores. Thus, the study of the pore structure of shale is of great significance for the evaluation and development of shale oil and gas. To date, the most widely used approaches for studying the shale pore structure include image analysis, radiation and fluid invasion methods. The detailed pore structures can be studied intuitively by image analysis and radiation methods, but the results obtained are quite sensitive to sample preparation, equipment performance and experimental operation. In contrast, the fluid invasion method can be used to obtain information on pore size distribution and pore structure, but the relative simple parameters derived cannot be used to evaluate the pore structure of shale comprehensively and quantitatively. To characterize the nanoscale pore structure of shale reservoir more effectively and expand the current research techniques, we proposed a new method based on gas adsorption experimental data and the method of moments to describe the pore structure parameters of shale reservoir. Combined with the geological mixture empirical distribution and the method of moments estimation principle, the new method calculates the characteristic parameters of shale, including the mean pore size (mean), standard deviation (σ), skewness (Sk) and variation coefficient (c). These values are found by reconstructing the grouping intervals of observation values and optimizing algorithms for eigenvalues. This approach assures a more effective description of the characteristics of nanoscale pore structures. Finally, the new method has been applied to analyze the Yanchang shale in the Ordos Basin (China) and Longmaxi shale from the Sichuan Basin (China). The results obtained well reveal the pore characteristics of shale, indicating the feasibility of this new method in the study of the pore structure of shale reservoir.

  2. Water Availability for Shale Gas Development in Sichuan Basin, China.

    PubMed

    Yu, Mengjun; Weinthal, Erika; Patiño-Echeverri, Dalia; Deshusses, Marc A; Zou, Caineng; Ni, Yunyan; Vengosh, Avner

    2016-03-15

    Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin.

  3. Mass and heat transfer in crushed oil shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carley, J.F.; Ott, L.L.; Swecker, J.L.

    1995-03-01

    Studies of heat and mass transfer in packed beds, which disagree substantially in their findings, have nearly all been done with beds of regular particles of uniform size, whereas oil-shale retorting involves particles of diverse irregular shapes and sizes. The authors, in 349 runs, measured mass-transfer rates front naphthalene particles buried in packed beds by passing through air at room temperature. An exact catalog between convection of heat and mass makes it possible to infer heat-transfer coefficients from measured mass-transfer coefficients and fluid properties. Some beds consisted of spheres, naphthalene and inert, of the same, contrasting or distributed sizes. Inmore » some runs, naphthalene spheres were buried in beds of crushed shale, some in narrow screen ranges and others with a wide size range. In others, naphthalene lozenges of different shapes were buried in beds of crushed shale in various bed axis orientations. This technique permits calculation of the mass-transfer coefficient for each active particle in the bed rather than, as in most past studies, for the bed as a whole. The data are analyzed by the traditional correlation of Colburn j{sub D} vs. Reynolds number and by multiple regression of the mass-transfer coefficient on air rate, sizes of active and inert particles, void fraction, and temperature. Principal findings are: local Reynolds number should be based on the active-particle size, not the average for the whole bed; differences between shallow and deep beds are not appreciable; mass transfer is 26% faster for spheres and lozenges buried in shale than in all-sphere beds; orientation of lozenges in shale beds has little or no effect on mass-transfer rate; and for mass or heat transfer in shale beds, log(j{center_dot}{epsilon}) = {minus}0.0747 - 0.6344 log N{sub Re} + 0. 0592 log {sup 2} N{sub Re}.« less

  4. Determination of Porosity in Shale by Double Headspace Extraction GC Analysis.

    PubMed

    Zhang, Chun-Yun; Li, Teng-Fei; Chai, Xin-Sheng; Xiao, Xian-Ming; Barnes, Donald

    2015-11-03

    This paper reports on a novel method for the rapid determination of the shale porosity by double headspace extraction gas chromatography (DHE-GC). Ground core samples of shale were placed into headspace vials and DHE-GC measurements of released methane gas were performed at a given time interval. A linear correlation between shale porosity and the ratio of consecutive GC signals was established both theoretically and experimentally by comparing with the results from the standard helium pycnometry method. The results showed that (a) the porosity of ground core samples of shale can be measured within 30 min; (b) the new method is not significantly affected by particle size of the sample; (c) the uncertainties of measured porosities of nine shale samples by the present method range from 0.31 to 0.46 p.u.; and (d) the results obtained by the DHE-GC method are in a good agreement with those from the standard helium pycnometry method. In short, the new DHE-GC method is simple, rapid, and accurate, making it a valuable tool for shale gas-related research and applications.

  5. Trace Metal Geochemistry and Mobility in the Marcellus Shale

    EPA Pesticide Factsheets

    Drilling and “fracing” of the Marcellus shale causes fluid‐rock interactions that has the potential to mobilize metals naturally enriched in the shale. While these metal concentrations are low, their mobilization from the solid, is cause for further study

  6. [Chemical hazards arising from shale gas extraction].

    PubMed

    Pakulska, Daria

    2015-01-01

    The development of the shale industry is gaining momentum and hence the analysis of chemical hazards to the environment and health of the local population is extreiely timely and important. Chemical hazards are created during the exploitation of all minerals, but in the case of shale gas production, there is much more uncertainty as regards to the effects of new technologies application. American experience suggests the increasing risk of environmental contamination, mainly groundwater. The greatest, concern is the incomplete knowledge of the composition of fluids used for fracturing shale rock and unpredictability of long-term effects of hydraulic fracturing for the environment and health of residents. High population density in the old continent causes the problem of chemical hazards which is much larger than in the USA. Despite the growing public discontent data on this subject are limited. First of all, there is no epidemiological studies to assess the relationship between risk factors, such as air and water pollution, and health effects in populations living in close proximity to gas wells. The aim of this article is to identify and discuss existing concepts on the sources of environmental contamination, an indication of the environment elements under pressure and potential health risks arising from shale gas extraction.

  7. The Complex Physical-Chemical Interaction of Fracking Fluids with Gas Shale

    NASA Astrophysics Data System (ADS)

    Cathles, L. M.; Engelder, T.; Bryndzia, T.

    2014-12-01

    The chemical aspects of hydrofracturing might seem straight forward: Inject a fluid with sand and some chemicals, recover the injected water now contaminated with chemicals from the shale, and produce gas. But there are some complications that turn out to be very interesting. First of all, it is possible to recover only about 20% of the injected water. Secondly, the fresh injected water (1-5 kppm) has been turned into a very saline bine (~200 kppm). It's easy to say the water has just been imbibed into the gas-filled dry shale, like water into a dry sponge, except the organic parts of the shale which host nearly all the porosity are hydrophobic. The shale is strongly oil wet; nevertheless it imbibes water. It's easy to say the water just mixed with water in the shale and became salty, but there is almost no water in the shale, and no salt either. How the water becomes salty begs easy explanation. The talk will quantitatively discuss these issues in light of experiments we have carried out, concluding that powerful capillary and osmotic forces draw fracking water into the shale while making the return waters salty. How this is achieved will certainly tell us something about the fracture network and its connections. The practical implication is that hydrofracture fluids will be locked into the same "permeability jail" that sequestered overpressured gas for over 200 million years. If one wants to dispose of fracking waters, one could probably not choose a safer way to do so that to inject them into a gas shale.

  8. Shale oil recovery process

    DOEpatents

    Zerga, Daniel P.

    1980-01-01

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  9. Reconstruction of the Paleoenvironment of the Early Cambrian Yurtus Black Shale in the Tarim Basin, Northwestern China, and Its Control on Organic Matter Accumulation

    NASA Astrophysics Data System (ADS)

    Li, J.; Ding, W.; Dong, L.

    2017-12-01

    The black shale in the early Cambrian Yurtus Formation (>521 Ma) in the Tarim basin, northwestern China, is characterized by its high TOC value (up to 16%) andgreat lateral continuity. It has been proven to be high-quality hydrocarbon source rocks. Abundant phytoplanktons and small shelly fossils have been reported from the lower Yurtus chert. However, recent biomarker discovery of aryl isoprenoid hydrocarbons suggests the existence of green sulfur bacteria, which indicates that the water column was stratified and the photic zone was prevailingly euxinic. These seemingly contradictory observations hamper our further understanding of the paleoenvironment in which the Yurtus shale was deposited and its control on the accumulation of organic matter. In this study, we systematically collected samples from the Yurtus Formation at the Kungaikuotan Section, and measured the organic carbon and nitrogen isotopic compositions and the content of trace element Barium (Ba). The strong negative excursions of nitrogen isotope ( -13‰) in the lower and upper parts of the Yurtus Formation are likely attributed to the biological activity of green and purple sulfur bacteria, which is consistent with our organic carbon isotope data as well as previous biomarker discovery. As green sulfur bacteria can only live in euxinic photic zone, it may indicate that the water column above this euxinic zone contains prolific organic matters which consume all the dissolved oxidants in surface ocean. It is well accepted that Ba flux can be used as an indicator for surface ocean primary productivity. Significant increase of barium content (from <100 to 2000 ppm) is observed at the same horizon as where the negative excursion of δ15Norg occurs, suggesting the substantive organic matter in the early Cambrian surface ocean mainly result from extremely high primary productivity. The abundant phytoplankton fossil record from this time period also supports this interpretation. In summary, high TOC in the

  10. A Reactive Transport Model for Marcellus Shale Weathering

    NASA Astrophysics Data System (ADS)

    Li, L.; Heidari, P.; Jin, L.; Williams, J.; Brantley, S.

    2017-12-01

    Shale formations account for 25% of the land surface globally. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil chemistry and water data. The simulation was carried out for 10,000 years, assuming bedrock weathering and soil genesis began right after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1,000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small with the presence of soil CO2. The field observations were only simulated successfully when the specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals, reflecting the lack of accessibility of fluids to mineral surfaces and potential surface coating. An increase in the water infiltration rate enhanced weathering by removing dissolution products and maintaining far-from-equilibrium conditions. We conclude that availability of reactive surface area and transport of H2O and gases are the most important

  11. Multiscale study for stochastic characterization of shale samples

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman; Javadpour, Farzam; Sahimi, Muhammad; Piri, Mohammad

    2016-03-01

    Characterization of shale reservoirs, which are typically of low permeability, is very difficult because of the presence of multiscale structures. While three-dimensional (3D) imaging can be an ultimate solution for revealing important complexities of such reservoirs, acquiring such images is costly and time consuming. On the other hand, high-quality 2D images, which are widely available, also reveal useful information about shales' pore connectivity and size. Most of the current modeling methods that are based on 2D images use limited and insufficient extracted information. One remedy to the shortcoming is direct use of qualitative images, a concept that we introduce in this paper. We demonstrate that higher-order statistics (as opposed to the traditional two-point statistics, such as variograms) are necessary for developing an accurate model of shales, and describe an efficient method for using 2D images that is capable of utilizing qualitative and physical information within an image and generating stochastic realizations of shales. We then further refine the model by describing and utilizing several techniques, including an iterative framework, for removing some possible artifacts and better pattern reproduction. Next, we introduce a new histogram-matching algorithm that accounts for concealed nanostructures in shale samples. We also present two new multiresolution and multiscale approaches for dealing with distinct pore structures that are common in shale reservoirs. In the multiresolution method, the original high-quality image is upscaled in a pyramid-like manner in order to achieve more accurate global and long-range structures. The multiscale approach integrates two images, each containing diverse pore networks - the nano- and microscale pores - using a high-resolution image representing small-scale pores and, at the same time, reconstructing large pores using a low-quality image. Eventually, the results are integrated to generate a 3D model. The methods

  12. Interfingering of the Frontier Formation and Aspen Shale, Cumberland Gap, Wyoming.

    USGS Publications Warehouse

    M'gonigle, J.

    1982-01-01

    The basal part, or the Chalk Creek Member, of the non-marine lower Frontier Formation (Upper Cretaceous) includes a thin coal bed that grades S into a carbonaceous shale. The latter plus associated sandstones and shales pinch out S of Cumberland Gap and lie stratigraphically below the top of the Aspen Shale. The beds in the upper part of the Aspen, in turn, pinch out within the Frontier Formation. The coal bed and equivalent carbonaceous shale represent in-place accumulation of peat. The interfingering suggests that in SW Wyoming the Lower/Upper Cretaceous boundary is within the Chalk Creek Member. -from Author

  13. River on Trial

    ERIC Educational Resources Information Center

    Carney, Thomas R.

    1972-01-01

    Presents controversy over damming of Wyoming's Upper Green River to supply water to the arid basins of eastern Wyoming. Possibilities of wildlife destruction, flooding of valley lands, and opposition to the construction of the Kendall Dam itself are enumerated together with legislative action to date. (BL)

  14. Characteristics of deltaic deposits in the Cretaceous Pierre Shale, Trinidad Sandstone, and Vermejo Formation, Raton Basin, Colorado.

    USGS Publications Warehouse

    Flores, R.M.; Tur, S.M.

    1982-01-01

    Detailed facies analyses of closely spaced measured surface sections in the Trinidad and adjacent areas of Colorado reflect deposition in the river-influenced delta. That this deltaic system was accompanied by abandonment of subdeltas is indicated by a destructional-deltaic facies of heavily bioturbated, carbonaceous sandstones, siltstones, and shales best recorded in the delta front deposits of the Trinidad Sandstone. Coal accumulation of the Vermejo deposits nevertheless remained primarily controlled by persistent organic sedimentation in interdistributary backswamps. These backswamps, which accumulated thick, lenticular coals, were formed during the normal constructional phase of the delta plain. -from Authors

  15. Results of chemical analyses of soil, shale, and soil/shale extract from the Mancos Shale formation in the Gunnison Gorge National Conservation Area, southwestern Colorado, and at Hanksville, Utah

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Fahy, Juli; Grauch, Richard I.; Ball, Bridget A.; Chong, Geneva W.; Elliott, John G.; Kosovich, John J.; Livo, Keith E.; Stillings, Lisa L.

    2007-01-01

    Results of chemical and some isotopic analyses of soil, shale, and water extracts collected from the surface, trenches, and pits in the Mancos Shale are presented in this report. Most data are for sites on the Gunnison Gorge National Conservation Area (GGNCA) in southwestern Colorado. For comparison, data from a few sites from the Mancos landscape near Hanksville, Utah, are included. Twelve trenches were dug on the GGNCA from which 258 samples for whole-rock (total) analyses and 187 samples for saturation paste extracts were collected. Sixteen of the extract samples were duplicated and subjected to a 1:5 water extraction for comparison. A regional soil survey across the Mancos landscape on the GGNCA generated 253 samples for whole-rock analyses and saturation paste extractions. Seventeen gypsum samples were collected on the GGNCA for sulfur and oxygen isotopic analysis. Sixteen samples were collected from shallow pits in the Mancos Shale near Hanksville, Utah.

  16. Effects of retorting factors on combustion properties of shale char. 3. Distribution of residual organic matters.

    PubMed

    Han, Xiangxin; Jiang, Xiumin; Cui, Zhigang; Liu, Jianguo; Yan, Junwei

    2010-03-15

    Shale char, formed in retort furnaces of oil shale, is classified as a dangerous waste containing several toxic compounds. In order to retort oil shale to produce shale oil as well as treat shale char efficiently and in an environmentally friendly way, a novel kind of comprehensive utilization system was developed to use oil shale for shale oil production, electricity generation (shale char fired) and the extensive application of oil shale ash. For exploring the combustion properties of shale char further, in this paper organic matters within shale chars obtained under different retorting conditions were extracted and identified using a gas chromatography-mass spectrometry (GC-MS) method. Subsequently, the effects of retorting factors, including retorting temperature, residence time, particle size and heating rate, were analyzed in detail. As a result, a retorting condition with a retorting temperature of 460-490 degrees C, residence time of <40 min and a middle particle size was recommended for both keeping nitrogenous organic matters and aromatic hydrocarbons in shale char and improving the yield and quality of shale oil. In addition, shale char obtained under such retorting condition can also be treated efficiently using a circulating fluidized bed technology with fractional combustion. (c) 2009 Elsevier B.V. All rights reserved.

  17. North-South Gradients in Carbon Isotopic Compositions of Atlantic Ocean Black Shales: Evidence for Paleohydrologic Influences on Mid-Cretaceous Black Shale Deposition

    NASA Astrophysics Data System (ADS)

    Meyers, P. A.

    2013-12-01

    Organic del13C values of organic-carbon-rich Albian-Cenomanian-Turonian black shales from a north-south transect of the Atlantic Ocean have been compiled to explore for possible existence of latitudinal patterns. Black shales at equatorial sites have mean del13C values of -28 per mil, whereas black shales at mid-latitude sites have mean del13C values around -25 per mil. The mid-Cretaceous del13C values are routinely lower than those of modern marine sediments. The more negative Cretaceous del13C values generally reflect concentrations of atmospheric CO2 that were four to six times higher than today, but the geographic differences imply a regional overprint on this global feature. Latitudinal differences in oceanic temperature might be a factor, but a low thermal gradient from the poles to the equator during the mid-Cretaceous makes this factor not likely to be significant. Instead, a correspondence between the geographic differences in the organic del13C values of black shales with the modern latitudinal precipitation pattern suggests that differences in precipitation are a more likely factor. Establishment of a strongly salinity-stratified near-surface ocean and magnified delivery of land-derived phosphorus by continental runoff during this time of a magnified hydrologic cycle were evidently significant to deposition of marine black shales. A likely scenario is that the stratification resulted in blooms of nitrogen-fixing bacteria that become the dominant photoautotrophs and thereby stimulated primary production of organic matter. Regional differences in precipitation resulted in different amounts of runoff, consequent stratification, enhancement of primary production, and therefore the different carbon isotopic compositions of the black shales.

  18. Common clay and shale

    USGS Publications Warehouse

    Virta, R.L.

    2003-01-01

    Part of the 2002 industrial minerals review. The production, consumption, and price of shale and common clay in the U.S. during 2002 are discussed. The impact of EPA regulations on brick and structural clay product manufacturers is also outlined.

  19. Experimental study on the influence of slickwater on shale permeability

    NASA Astrophysics Data System (ADS)

    Liu, Zhonghua; Bai, Baojun; Zhang, Zheyu; Tang, Jing; Zeng, Shunpeng; Li, Xiaogang

    2018-02-01

    There are two diametrically opposite views of the influence of slickwater on shale permeability among scholars at home and abroad. We used the shale outcrops rock samples from the Lower Silurian Longmaxi Formation in Sichuan Basin. The permeability of these dry samples before and after immersion in different solution systems were tested by pulse attenuation method. The experimental results show that the impregnation of different slickwater components and standard salt solution can promote the increase of the permeability of shale samples. The stress sensitivity of shale samples after liquid immersion is medium weak to weak. The sample stress sensitivity is weak after soaked by the synergist solution and Drag reducing agent solution, and the sensitivity of the sample stress is medium weak after immersed by the standard saline solution, defoamer solution and antiswelling solution; The Ki/K0 of the shale sample after liquid immersion on σi/σ0 is consistent with the exponential stress sensitive evaluation model. With the increase of soaking time, the increase of sample permeability increases first and then decreases.

  20. Release of Particulate Iron Sulfide during Shale-Fluid Interaction.

    PubMed

    Kreisserman, Yevgeny; Emmanuel, Simon

    2018-01-16

    During hydraulic fracturing, a technique often used to extract hydrocarbons from shales, large volumes of water are injected into the subsurface. Although the injected fluid typically contains various reagents, it can become further contaminated by interaction with minerals present in the rocks. Pyrite, which is common in organic-rich shales, is a potential source of toxic elements, including arsenic and lead, and it is generally thought that for these elements to become mobilized, pyrite must first dissolve. Here, we use atomic force microscopy and environmental scanning electron microscopy to show that during fluid-rock interaction, the dissolution of carbonate minerals in Eagle Ford shale leads to the physical detachment, and mobilization, of embedded pyrite grains. In experiments carried out over a range of pH, salinity, and temperature we found that in all cases pyrite particles became detached from the shale surfaces. On average, the amount of pyrite detached was equivalent to 6.5 × 10 -11 mol m -2 s -1 , which is over an order of magnitude greater than the rate of pyrite oxidation expected under similar conditions. This result suggests that mechanical detachment of pyrite grains could be an important pathway for the mobilization of arsenic in hydraulic fracturing operations and in groundwater systems containing shales.

  1. Shale gas development: a smart regulation framework.

    PubMed

    Konschnik, Katherine E; Boling, Mark K

    2014-01-01

    Advances in directional drilling and hydraulic fracturing have sparked a natural gas boom from shale formations in the United States. Regulators face a rapidly changing industry comprised of hundreds of players, operating tens of thousands of wells across 30 states. They are often challenged to respond by budget cuts, a brain drain to industry, regulations designed for conventional gas developments, insufficient information, and deeply polarized debates about hydraulic fracturing and its regulation. As a result, shale gas governance remains a halting patchwork of rules, undermining opportunities to effectively characterize and mitigate development risk. The situation is dynamic, with research and incremental regulatory advances underway. Into this mix, we offer the CO/RE framework--characterization of risk, optimization of mitigation strategies, regulation, and enforcement--to design tailored governance strategies. We then apply CO/RE to three types of shale gas risks, to illustrate its potential utility to regulators.

  2. The Shale Gas potential of Lower Carboniferous Sediments in Germany

    NASA Astrophysics Data System (ADS)

    Kerschke, D.; Mihailovic, A.; Schulz, H., -M.; Horsfield, B.

    2012-04-01

    Organic-rich Carboniferous sediments are proven source rocks for conventional gas systems in NW Europe and are likely gas shale candidates. Within the framework of GeoEnergie, an initiative to strengthen scientific excellence, funded by the German Ministry of Education and Research (BMBF), the influence of palaeogeography and basin dynamics on sedimentology and diagenesis is being investigated. Our aim is to unravel the evolution of shale gas-relevant properties which control gas prospectivity and production parameters like porosity, brittleness, etc. for the Lower Carboniferous in Germany. Northern Germany is underlain by thick, mudstone-bearing Carboniferous successions with a wide range of thermal maturities. Some of these mudstone horizons are rich in organic carbon which is either of marine and/or terrigenous origin. During the Carboniferous deposition of fine-grained, TOC-rich basinal sediments changed into shallow marine to paralic siliciclastic sediments (carbonates during the Lower Carboniferous) in the north, and grade into coarse-grained sediments close to the uprising Variscan mountains in the south. As a result different architectural elements including TOC-rich fine-grained sediments like basinal shales, fine-grained parts of turbidites, and shallow marine mudstones occur in both the Lower and the Upper Carboniferous section. A high shale gas potential occurs in basinal shales of Namurian age with marine organic material and TOC contents of up to 8 % (Rhenish Alum Shales). Such sediments with thermal maturities between 1.3 to 3.0 % vitrinite reflectance and sufficient quartz contents occur in wide areas of present-day Central European Basins System (CEBS), and are at favourable depth for shale gas exploration predominantly along the southern CEBS margin.

  3. Preparation of grout for stabilization of abandoned in-situ oil shale retorts. [Patent application

    DOEpatents

    Mallon, R.G.

    1979-12-07

    A process is described for the preparation of grout from burned shale by treating the burned shale in steam at approximately 700/sup 0/C to maximize the production of the materials alite and larnite. Oil shale removed to the surface during the preparation of an in-situ retort is first retorted on the surface and then the carbon is burned off, leaving burned shale. The burned shale is treated in steam at approximately 700/sup 0/C for about 70 minutes. The treated shale is then ground and mixed with water to produce a grout which is pumped into an abandoned, processed in-situ retort, flowing into the void spaces and then bonding up to form a rigid, solidified mass which prevents surface subsidence and leaching of the spent shale by ground water.

  4. Experimental Study on Longmaxi Shale Breaking Mechanism with Micro-PDC Bit

    NASA Astrophysics Data System (ADS)

    Wang, Teng; Xiao, Xiaohua; Zhu, Haiyan; Zhao, Jingying; Li, Yuheng; Lu, Ming

    2017-10-01

    China has abundant shale gas resource, but its geological conditions are complicated. This work sought to find the shale breaking mechanism with the polycrystalline diamond compact (PDC) bit when drilling the shale that is rich in stratification. Therefore, a laboratory-scale drilling device based on a drilling machine is developed. The influences of Longmaxi shale stratification on drilling parameters in the drilling process with micro-PDC bit are investigated. Six groups of drilling experiments with six inclination angles ( β = 0°, 15°, 30°, 45°, 60° and 90°), total thirty-six groups, are carried out. The weight on bit reaches the maximum value at β = 30° and reaches the minimum value at β = 0°. The biggest torque value is at β = 30°, and the smaller torque values are at β = 15°, β = 45° and β = 60°. When the inclination angle is between 30° and 60°, the shale fragmentation volume is larger. The inclination angle β = 0° is beneficial, and β = 15° and β = 60° are detrimental to controlling the drilling direction in the Longmaxi shale gas formation.

  5. Numerical simulation and fracture identification of dual laterolog in organic shale

    NASA Astrophysics Data System (ADS)

    Maojin, Tan; Peng, Wang; Qiong, Liu

    2012-09-01

    Fracture is one of important spaces in shale oil and shale gas reservoirs, and fractures identification and evaluation are an important part in organic shale interpretation. According to the fractured shale gas reservoir, a physical model is set up to study the dual laterolog logging responses. First, based on the principle of dual laterolog, three-dimensional finite element method (FEM) is used to simulate the dual laterolog responses in various formation models with different fractures widths, different fracture numbers, different fractures inclination angle. All the results are extremely important for the fracture identification and evaluation in shale reservoirs. Appointing to different base rock resistivity models, the fracture models are constructed respectively through a number of numerical simulation, and the fracture porosity can be calculated by solving the corresponding formulas. A case study about organic shale formation is analyst and discussed, and the fracture porosity is calculated from dual laterolog. The fracture evaluation results are also be validated right by Full borehole Micro-resistivity Imaging (FMI). So, in case of the absence of borehole resistivity imaging log, the dual laterolog resistivity can be used to estimate the fracture development.

  6. Trace metal records of regional paleoenvironmental variability in Pennsylvanian (Upper Carboniferous) black shales

    USGS Publications Warehouse

    Cruse, A.M.; Lyons, T.W.

    2004-01-01

    Regional geochemical differences within a laterally continuous, cyclic Pennsylvanian (Upper Carboniferous) shale in midcontinent North America are interpreted in light of models of glacioeustatic forcing and new views on water-column paleoredox stability and trace-metal behavior in black shale environments. Specifically, we characterize differences in transition metal (Fe, Mn, Mo, V, Ni, Zn, Pb and U) concentrations in black shales of the Hushpuckney Shale Member of the Swope Limestone in Iowa and equivalent black shale beds of the Coffeyville Formation in Oklahoma. Although C-S-Fe systematics and uniform 34S-depleted isotope ratios of pyrite indicate pervasive euxinic deposition (anoxic and sulfidic bottom waters) for these shales, regional variations can be inferred for the efficiency of Mo scavenging and for the rates of siliciclastic sedimentation as expressed in spatially varying Fe/Al ratios. Black shales in Iowa show Mo enrichment roughly five times greater than that observed in coeval euxinic shales in Oklahoma. By contrast, Fe/Al ratios in Oklahoma shales are as much as five times greater than the continental ratio of 0.5 observed in the over- and underlying oxic facies and in the coeval black shales in Iowa. Recent work in modern marine settings has shown that enrichments in Fe commonly result from scavenging in a euxinic water column during syngenetic pyrite formation. In contrast to Fe, the concentrations of other transition metals (Mo, V, Ni, Pb, Zn, U) are typically more enriched in the black shales in Iowa relative to Oklahoma. The transition metal trends in these Paleozoic shales are reasonably interpreted in terms of early fixation in organic-rich sediments due to euxinic water-column conditions. However, regional variations in (1) rates of siliciclastic input, (2) organic reservoirs, including relative inputs of terrestrial versus marine organic matter, and (3) additional inputs of metals to bottom waters from contemporaneous hydrothermal vents

  7. Morbidity and mortality study of shale oil workers in the United States.

    PubMed

    Costello, J

    1979-06-01

    The study of the carcinogenic potential of domestic U. S. shale oil has increased significantly in importance because of the present energy problem and resulting research into alternative sources of fuel. With the increased scope of planned oil shale activity on the Colorado Plateau, it is important that an attempt be made to determine the health effects, if any, of occupational exposure to shale oil. This paper briefly reviews some past work of Soviet and British investigators concerning potential health hazards of shale oil. It reviews the results and conclusions of the 1952-1955 dermatological study of oil shale workers by the U. S. Public Health Service, and it discusses in detail the plans of a NIOSH morbidity and mortality study currently under way.

  8. Transport and geotechnical properties of porous media with applications to retorted oil shale. Volume 4. Appendix D. Temperature and toe erosion effects on spent oil shale embankment stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, N.Y.; Wu, T.H.

    1986-01-01

    To evaluate the engineering property of spent shale at elevated temperatures, high temperature triaxial cells were designed and manufactured. The cells were then used in the test program designed to provide the physical and engineering properties of spent shale (TOSCO-II) at elevated temperatures. A series of consolidated drained triaxial tests were conducted at high temperatures. Duncan-Chang hyperbolic model was adopted to simulate the laboratory stress versus strain behavior of spent shale at various temperatures. This model provides very good fit to the laboratory stress-strain-volumetric strain characteristics of spent shale at various temperatures. The parameters of this model were then formulatedmore » as functions of temperatures and the Duncan-Chang model was implemented in a finite element analysis computer code for predicting the stress-deformation behavior of large spent shale embankments. Modified Bishop method was also used in analyzing the stability of spent shale embankments. The stability of three different spent shale embankments at three different temperatures were investigated in the study. Additionally the stability of embankments with different degrees of toe erosion was also studied. Results of this study indicated that (1) the stress-strain-strength properties of soils are affected by temperature variation; (2) the stress-strain-strength behavior of spent shale can be simulated by Duncan-Chang hyperbolic model, (3) the factor of safety of embankment slope decreases with rising temperatures; (4) the embankment deformation increases with rising temperatures; and (5) the toe erosion induced by floods causes the embankment slope to become less stable. It is strongly recommended, to extend this study to investigate the effect of internal seepage on the stability of large spent shale embankment. 68 refs., 53 figs., 16 tabs.« less

  9. Coupled Fracture and Flow in Shale in Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Mori, H.; Viswanathan, H.

    2014-12-01

    Production of hydrocarbon from shale requires creation and maintenance of fracture permeability in an otherwise impermeable shale matrix. In this study, we use a combination of triaxial coreflood experiments and x-ray tomography characterization to investigate the fracture-permeability behavior of Utica shale at in situ reservoir conditions (25-50 oC and 35-120 bars). Initially impermeable shale core was placed between flat anvils (compression) or between split anvils (pure shear) and loaded until failure in the triaxial device. Permeability was monitored continuously during this process. Significant deformation (>1%) was required to generate a transmissive fracture system. Permeability generally peaked at the point of a distinct failure event and then dropped by a factor of 2-6 when the system returned to hydrostatic failure. Permeability was very small in compression experiments (< 1 mD), possibly because of limited fracture connectivity through the anvils. In pure share experiments, shale with bedding planes perpendicular to shear loading developed complex fracture networks with narrow apertures and peak permeability of 30 mD. Shale with bedding planes parallel to shear loading developed simple fractures with large apertures and a peak permeability as high as 1 D. Fracture systems held at static conditions for periods of several hours showed little change in effective permeability at hydrostatic conditions as high as 140 bars. However, permeability of fractured systems was a function of hydrostatic pressure, declining in a pseudo-linear, exponential fashion as pressure increased. We also observed that permeability decreased with increasing fluid flow rate indicating that flow did not follow Darcy's Law, possibly due to non-laminar flow conditions, and conformed to Forscheimer's law. The coupled deformation and flow behavior of Utica shale, particularly the large deformation required to initiate flow, indicates the probable importance of activation of existing

  10. Vegetation greenness modelling in response to interannual precipitation and temperature changes between 2001 and 2012 in Liao River Basin in Jilin Province, China.

    PubMed

    Lin, Xiao-Sheng; Tang, Jie; Li, Zhao-Yang; Li, Hai-Yi

    2016-01-01

    Liao River basin in Jilin Province is the place of origin of the Dongliao River. This study gives a comprehensive analysis of the vegetation coverage in the region and provides a potential theoretical basis for ecological restoration. The seasonal variation of vegetation greenness and dynamics based on the Normalized Difference Vegetation Index (NDVI) in major land cover types in the region was studied. Analyzing the relationship NDVI, temperature and rainfall, we derived a set of predictor variables from 2001 to 2012 using the MODIS Terra level 1 Product (MOD02QKM). The results showed a general increasing trend in NDVI value in the region, while 34.63 % of the region showed degradation. NDVI values begin to rise from April when plants are regreening and they drop in September when temperature are decreasing and the leaves are falling in the study area and temperature was found decreasing during the period of 2001-2012 while rainfall showed an increasing trend. This model could be used to observe the change in vegetation greenness and the dynamic effects of temperature and rainfall. This study provided important data for the environmental protection of the basin area. And we hope to provide scientific analysis for controlling water and soil erosion, maintaining the sustainable productivity of land resources, enhancing the treatment of water pollution and stimulating the virtuous cycle of the ecological system.

  11. Reser­voir anisotropy and facies stratigraphic framework in the Pale­ocene Fort Union Formation, western Wind River basin

    USGS Publications Warehouse

    Flores, R.M.; Keighin, C.W.

    1993-01-01

    Investigation of reservoir anisotropy and lithofacies stratigraphic framework in the Fort Union Formation in western Wind River Basin, Wyoming focused on excellent surface exposures in the Shotgun Butte, Eagle Point, and Shotgun Bench synclines, and in the Merriam anticline area of the Wind River Reservation (Fig. 1). A complementary study was made of the formation in the Muddy Ridge and Pavillion gas fields, 8-10 mi to the southeast (Fig. 2). The Fort Union Formation is as much as 4000 ft thick in these areas, but thins to approximately 1800 ft toward the northern flank of the Little Dome anticline 3 mi south of Merriam anticline (Keefer and Troyer, 1964). The Fort Union Formation includes interbedded conglomerates, sandstones, siltstones, mudstones, coals, and carbonaceous shales (Fig. 3). The lower member of the Fort Union Formation is dominated by conglomerates and sandstones. The overlying Shotgun Member of the Fort Union Formation mainly consists of siltstones, mudstones, and carbonaceous shales, and coals, and subordinate sandstones. Contact between the lower member and Shotgun Member is gradational and marked by a topographic change from the resistant conglomerates and sandstones of the lower member to less resistant fine-grained strata of the Shotgun Member. In addition, the Shotgun Member commonly contains coal and carbonaceous shale beds, both in the surface and subsurface (Fig. 4). About 15-20 mi east of the study area the Waltman Shale Member of the Fort Union Formation pinches out at the contact between the lower member and Shotgun Member (Keefer and Johnson, this volume). The Waltman Shale Member, which consists of brown to gray silty and shaly claystones interbedded with sandstones, increases in thickness to as much as 3000 ft eastward into the basin center (Keefer, 1961; 1965). Thus, eastward, the Paleocene Fort Union Formation in ascending order, contains the lower member, Waltman Shale Member, and Shotgun Member. The Shotgun Member generally

  12. Synchrotron quantification of fracturing during maturation of shales

    NASA Astrophysics Data System (ADS)

    Figueroa Pilz, Fernando; Fauchille, Anne-Laure; Dowey, Patrick; Courtois, Loic; Bay, Brian; Ma, Lin; Taylor, Kevin; Mecklenburgh, Julian; Lee, Peter

    2017-04-01

    To understand both the hydrocarbon migration within and from shale rocks, and during hydraulic fracturing, is needed to evaluate and predict its environmental footprint. As a consequence, the time characterization of fracture networks in shale is particularly important. Time resolved synchrotron X-ray tomography was used to quantify the initiation and propagation of fractures during the simulated maturation of an organic-rich Kimmeridge Clay shale from the µm to mm scales. Scanning electron microscopy (SEM) observations were performed before and after maturation in order to compare the microstructure evolution and better understand the fracture location. Fracture and strain development during heating was quantified in 3D by Digital Volume Correlation (DVC) (Bay et al., 1999). The combination of DVC, X-Ray tomography and SEM obtained direct 4D strain measurements of the anisotropic mechanical behaviour of Kimmeridge shale with the temperature during an accelerated thermal maturation (Figueroa Pilz et al.). Such a combination has rarely been investigated in 4D at these scales in the past. In the study conditions, the results demonstrated the anisotropy in thermal expansion and the aperture fracture pathways through organic matter and clay matrix.

  13. Experience and prospects of oil shale utilization for power production in Russia

    NASA Astrophysics Data System (ADS)

    Potapov, O. P.

    2016-09-01

    Due to termination of work at the Leningrad Shale Deposit, the Russian shale industry has been liquidated, including not only shale mining and processing but also research and engineering (including design) activities, because this deposit was the only commercially operated complex in Russia. UTT-3000 plants with solid heat carrier, created mainly by the Russian specialists under scientific guidance of members of Krzhizhanovsky Power Engineering Institute, passed under the control of Estonian engineers, who, alongside with their operation in Narva, construct similar plants in Kohtla-Jarve, having renamed the Galoter Process into the Enifit or Petroter. The main idea of this article is to substantiate the expediency of revival of the oil shale industry in Russia. Data on the UTT-3000 plants' advantages, shale oils, and gas properties is provided. Information on investments in an UTT-3000 plant and estimated cost of Leningrad oil shale mining at the Mezhdurechensk Strip Mine is given. For more detailed technical and economic assessment of construction of a complex for oil shale extraction and processing, it is necessary to develop a feasibility study, which should be the first stage of this work. Creation of such a complex will make it possible to produce liquid and gaseous power fuel from oil shale of Leningrad Deposit and provide the opportunity to direct for export the released volumes of oil and gas for the purposes of Russian budget currency replenishment.

  14. The Supercritical CO2 Huff-n-puff Experiment of Shale Oil Utilizing Isopropanol

    NASA Astrophysics Data System (ADS)

    Shang, Shengxiang; Dong, Mingzhe; Gong, Houjian

    2018-01-01

    In this study, the supercritical CO2 huff-n-puff experiment of shale oil has been investigated. Experimental data shows that the addition of isopropanol can greatly improve the recovery of shale oil. And this provides a new way to improve the recovery of shale oil. In this paper, it is also tried to analyze the influencing factor of isopropanol on the recovery of shale oil by analyzing the MMP.

  15. Shale Oil Value Enhancement Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is nowmore » ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.« less

  16. Fungal diversity in major oil-shale mines in China.

    PubMed

    Jiang, Shaoyan; Wang, Wenxing; Xue, Xiangxin; Cao, Chengyou; Zhang, Ying

    2016-03-01

    As an insufficiently utilized energy resource, oil shale is conducive to the formation of characteristic microbial communities due to its special geological origins. However, little is known about fungal diversity in oil shale. Polymerase chain reaction cloning was used to construct the fungal ribosomal deoxyribonucleic acid internal transcribed spacer (rDNA ITS) clone libraries of Huadian Mine in Jilin Province, Maoming Mine in Guangdong Province, and Fushun Mine in Liaoning Province. Pure culture and molecular identification were applied for the isolation of cultivable fungi in fresh oil shale of each mine. Results of clone libraries indicated that each mine had over 50% Ascomycota (58.4%-98.9%) and 1.1%-13.5% unidentified fungi. Fushun Mine and Huadian Mine had 5.9% and 28.1% Basidiomycota, respectively. Huadian Mine showed the highest fungal diversity, followed by Fushun Mine and Maoming Mine. Jaccard indexes showed that the similarities between any two of three fungal communities at the genus level were very low, indicating that fungi in each mine developed independently during the long geological adaptation and formed a community composition fitting the environment. In the fresh oil-shale samples of the three mines, cultivable fungal phyla were consistent with the results of clone libraries. Fifteen genera and several unidentified fungi were identified as Ascomycota and Basidiomycota using pure culture. Penicillium was the only genus found in all three mines. These findings contributed to gaining a clear understanding of current fungal resources in major oil-shale mines in China and provided useful information for relevant studies on isolation of indigenous fungi carrying functional genes from oil shale. Copyright © 2015. Published by Elsevier B.V.

  17. Investigation of Controlling Factors Impacting Water Quality in Shale Gas Produced Brine

    NASA Astrophysics Data System (ADS)

    Fan, W.; Hayes, K. F.; Ellis, B. R.

    2014-12-01

    The recent boom in production of natural gas from unconventional reservoirs has generated a substantial increase in the volume of produced brine that must be properly managed to prevent contamination of fresh water resources. Produced brine, which includes both flowback and formation water, is often highly saline and may contain elevated concentrations of naturally occurring radioactive material and other toxic elements. These characteristics present many challenges with regard to designing effective treatment and disposal strategies for shale gas produced brine. We will present results from a series of batch experiments where crushed samples from two shale formations in the Michigan Basin, the Antrim and Utica-Collingwood shales, were brought into contact with synthetic hydraulic fracturing fluids under in situ temperature and pressure conditions. The Antrim has been an active shale gas play for over three decades, while the Utica-Collingwood formation (a grouped reservoir consisting of the Utica shale and Collingwood limestone) is an emerging shale gas play. The goal of this study is to investigate the influence of water-rock interactions in controlling produced water quality. We evaluate toxic element leaching from shale samples in contact with model hydraulic fracturing fluids under system conditions corresponding to reservoir depths up to 1.5 km. Experimental results have begun to elucidate the relative importance of shale mineralogy, system conditions, and chemical additives in driving changes in produced water quality. Initial results indicate that hydraulic fracturing chemical additives have a strong influence on the extent of leaching of toxic elements from the shale. In particular, pH was a key factor in the release of uranium (U) and divalent metals, highlighting the importance of the mineral buffering capacity of the shale. Low pH values persisted in the Antrim and Utica shale experiments and resulted in higher U extraction efficiencies than that

  18. Evaluation of impact of shale gas operations in the Barnett Shale region on volatile organic compounds in air and potential human health risks.

    PubMed

    Bunch, A G; Perry, C S; Abraham, L; Wikoff, D S; Tachovsky, J A; Hixon, J G; Urban, J D; Harris, M A; Haws, L C

    2014-01-15

    Shale gas exploration and production (E&P) has experienced substantial growth across the U.S. over the last decade. The Barnett Shale, in north-central Texas, contains one of the largest, most active onshore gas fields in North America, stretching across 5000 square miles and having an estimated 15,870 producing wells as of 2011. Given that these operations may occur in relatively close proximity to populated/urban areas, concerns have been expressed about potential impacts on human health. In response to these concerns, the Texas Commission on Environmental Quality established an extensive air monitoring network in the region. This network provides a unique data set for evaluating the potential impact of shale gas E&P activities on human health. As such, the objective of this study was to evaluate community-wide exposures to volatile organic compounds (VOCs) in the Barnett Shale region. In this current study, more than 4.6 million data points (representing data from seven monitors at six locations, up to 105 VOCs/monitor, and periods of record dating back to 2000) were evaluated. Measured air concentrations were compared to federal and state health-based air comparison values (HBACVs) to assess potential acute and chronic health effects. None of the measured VOC concentrations exceeded applicable acute HBACVs. Only one chemical (1,2-dibromoethane) exceeded its applicable chronic HBACV, but it is not known to be associated with shale gas production activities. Annual average concentrations were also evaluated in deterministic and probabilistic risk assessments and all risks/hazards were below levels of concern. The analyses demonstrate that, for the extensive number of VOCs measured, shale gas production activities have not resulted in community-wide exposures to those VOCs at levels that would pose a health concern. With the high density of active wells in this region, these findings may be useful for understanding potential health risks in other shale play

  19. Inter-layered clay stacks in Jurassic shales

    NASA Technical Reports Server (NTRS)

    Pye, K.; Krinsley, D. H.

    1983-01-01

    Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.

  20. Graphite Black shale of Vendas de Ceira, Coimbra, Portugal

    NASA Astrophysics Data System (ADS)

    Quinta-Ferreira, Mário; Silva, Daniela; Coelho, Nuno; Gomes, Ruben; Santos, Ana; Piedade, Aldina

    2017-04-01

    The graphite black shale of Vendas de Ceira located in south of Coimbra (Portugal), caused serious instability problems in recent road excavation slopes. The problems increased with the rain, transforming shales into a dark mud that acquires a metallic hue when dried. The black shales are attributed to the Devonian or eventually, to the Silurian. At the base of the slope is observed graphite black shale and on the topbrown schist. Samples were collected during the slope excavation works. Undisturbed and less altered materials were selected. Further, sampling was made difficult as the graphite shale was covered by a thick layer of reinforced concrete, which was used to stabilize the excavated surfaces. The mineralogy is mainly constituted by quartz, muscovite, ilite, ilmenite and feldspar without the presence of expansive minerals. The organic matter content is 0.3 to 0.4%. The durability evaluated by the Slake Durability Test varies from very low (Id2 of 6% for sample A) to high (98% for sample C). The grain size distribution of the shale particles, was determined after disaggregation with water, which allowed verifying that sample A has 37% of fines (5% of clay and 32% of silt) and 63% of sand, while sample C has only 14% of fines (2% clay and 12% silt) and 86% sand, showing that the decrease in particle size contributes to reduce durability. The unconfined linear expansion confirms the higher expandability (13.4%) for sample A, reducing to 12.1% for sample B and 10.5% for sample C. Due the shale material degradated with water, mercury porosimetry was used. While the dry weight of the three samples does not change significantly, around 26 kN/m3, the porosity is much higher in sample A with 7.9% of pores, reducing to 1.4% in sample C. The pores size vary between 0.06 to 0.26 microns, does not seem to have any significant influence in the shale behaviour. In order to have a comparison term, a porosity test was carried out on the low weatherable brown shale, which is

  1. Modified Lipid Extraction Methods for Deep Subsurface Shale

    PubMed Central

    Akondi, Rawlings N.; Trexler, Ryan V.; Pfiffner, Susan M.; Mouser, Paula J.; Sharma, Shikha

    2017-01-01

    Growing interest in the utilization of black shales for hydrocarbon development and environmental applications has spurred investigations of microbial functional diversity in the deep subsurface shale ecosystem. Lipid biomarker analyses including phospholipid fatty acids (PLFAs) and diglyceride fatty acids (DGFAs) represent sensitive tools for estimating biomass and characterizing the diversity of microbial communities. However, complex shale matrix properties create immense challenges for microbial lipid extraction procedures. Here, we test three different lipid extraction methods: modified Bligh and Dyer (mBD), Folch (FOL), and microwave assisted extraction (MAE), to examine their ability in the recovery and reproducibility of lipid biomarkers in deeply buried shales. The lipid biomarkers were analyzed as fatty acid methyl esters (FAMEs) with the GC-MS, and the average PL-FAME yield ranged from 67 to 400 pmol/g, while the average DG-FAME yield ranged from 600 to 3,000 pmol/g. The biomarker yields in the intact phospholipid Bligh and Dyer treatment (mBD + Phos + POPC), the Folch, the Bligh and Dyer citrate buffer (mBD-Cit), and the MAE treatments were all relatively higher and statistically similar compared to the other extraction treatments for both PLFAs and DGFAs. The biomarker yields were however highly variable within replicates for most extraction treatments, although the mBD + Phos + POPC treatment had relatively better reproducibility in the consistent fatty acid profiles. This variability across treatments which is associated with the highly complex nature of deeply buried shale matrix, further necessitates customized methodological developments for the improvement of lipid biomarker recovery. PMID:28790998

  2. Assessment and longitudinal analysis of health impacts and stressors perceived to result from unconventional shale gas development in the Marcellus Shale region.

    PubMed

    Ferrar, Kyle J; Kriesky, Jill; Christen, Charles L; Marshall, Lynne P; Malone, Samantha L; Sharma, Ravi K; Michanowicz, Drew R; Goldstein, Bernard D

    2013-01-01

    Concerns for health and social impacts have arisen as a result of Marcellus Shale unconventional natural gas development. Our goal was to document the self-reported health impacts and mental and physical health stressors perceived to result from Marcellus Shale development. Two sets of interviews were conducted with a convenience sample of community members living proximal to Marcellus Shale development, session 1 March-September 2010 (n = 33) and session 2 January-April 2012 (n = 20). Symptoms of health impacts and sources of psychological stress were coded. Symptom and stressor counts were quantified for each interview. The counts for each participant were compared longitudinally. Participants attributed 59 unique health impacts and 13 stressors to Marcellus Shale development. Stress was the most frequently-reported symptom. Over time, perceived health impacts increased (P = 0·042), while stressors remained constant (P = 0·855). Exposure-based epidemiological studies are needed to address identified health impacts and those that may develop as unconventional natural gas extraction continues. Many of the stressors can be addressed immediately.

  3. Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis

    USGS Publications Warehouse

    Lahann, R.W.; Swarbrick, R.E.

    2011-01-01

    Basin model studies which have addressed the importance of smectite conversion to illite as a source of overpressure in the Gulf of Mexico have principally relied on a single-shale compaction model and treated the smectite reaction as only a fluid-source term. Recent fluid pressure interpretation and shale petrology studies indicate that conversion of bound water to mobile water, dissolution of load-bearing grains, and increased preferred orientation change the compaction properties of the shale. This results in substantial changes in effective stress and fluid pressure. The resulting fluid pressure can be 1500-3000psi higher than pressures interpreted from models based on shallow compaction trends. Shale diagenesis changes the mineralogy, volume, and orientation of the load-bearing grains in the shale as well as the volume of bound water. This process creates a weaker (more compactable) grain framework. When these changes occur without fluid export from the shale, some of the stress is transferred from the grains onto the fluid. Observed relationships between shale density and calculated effective stress in Gulf of Mexico shelf wells confirm these changes in shale properties with depth. Further, the density-effective stress changes cannot be explained by fluid-expansion or fluid-source processes or by prediagenesis compaction, but are consistent with a dynamic diagenetic modification of the shale mineralogy, texture, and compaction properties during burial. These findings support the incorporation of diagenetic modification of compaction properties as part of the fluid pressure interpretation process. ?? 2011 Blackwell Publishing Ltd.

  4. Method for closing a drift between adjacent in situ oil shale retorts

    DOEpatents

    Hines, Alex E.

    1984-01-01

    A row of horizontally spaced-apart in situ oil shale retorts is formed in a subterranean formation containing oil shale. Each row of retorts is formed by excavating development drifts at different elevations through opposite side boundaries of a plurality of retorts in the row of retorts. Each retort is formed by explosively expanding formation toward one or more voids within the boundaries of the retort site to form a fragmented permeable mass of formation particles containing oil shale in each retort. Following formation of each retort, the retort development drifts on the advancing side of the retort are closed off by covering formation particles within the development drift with a layer of crushed oil shale particles having a particle size smaller than the average particle size of oil shale particles in the adjacent retort. In one embodiment, the crushed oil shale particles are pneumatically loaded into the development drift to pack the particles tightly all the way to the top of the drift and throughout the entire cross section of the drift. The closure between adjacent retorts provided by the finely divided oil shale provides sufficient resistance to gas flow through the development drift to effectively inhibit gas flow through the drift during subsequent retorting operations.

  5. The role of fluid mobility in the development of shale weathering profiles: Direct observations from a vadose zone monitoring system

    NASA Astrophysics Data System (ADS)

    Druhan, J. L.; Wang, J.; Cargill, S.; Murphy, C.; Tune, A. K.; Dietrich, W. E.; Rempe, D.

    2017-12-01

    Extensive effort has focused on resolving the contribution of weathering reactions to the transfer of mass over scales ranging from individual hillslope weathering profiles, across local watersheds, to continental drainage networks. A persistent limitation in quantifying these fluxes is the variability in fluid flowpaths through the subsurface, which may alter the extent of chemical weathering relative to that expected from idealized homogenous conditions. In the past decade, the consequence of fluid travel time on solute flux has been recognized as a key complexity in the interpretation of solute concentrations, particularly in upland watersheds characterized by fracture flowpaths, as is typical of shale-dominated landscapes. Though recent studies have suggested a variety of models for solute generation in such dual (matrix and fracture flow) domain systems, a central impediment to advancing prediction is the lack of direct observations. Here, we report solute chemistry as a function of depth across an 18 m thick vadose zone of weathered argillite (shale) in the Eel River Critical Zone Observatory (ERCZO) using novel sub-horizontal distributed samplers (Vadose Zone Monitoring System). We contrast a year of major and trace ion chemistry obtained from water samples collected approximately biweekly using two complementary sampling systems, one applying active pressure to extract matrix-bound pore fluid, and the other using a passive collection method to extract freely draining water. Precipitation falling during the winter rainy season passes through this vadose zone, causing increased rock moisture that is subsequently depleted by transpiring trees. Solute concentrations reflect these seasonal changes, and, surprisingly, normalized ion ratios span the full range of values reported for the world's largest rivers. Notably, for some major cations, freely draining water is consistently less concentrated than matrix-bound water, and the composition of vadose zone water

  6. Removing heavy metals from wastewaters with use of shales accompanying the coal beds.

    PubMed

    Jabłońska, Beata; Siedlecka, Ewa

    2015-05-15

    A possibility of using clay waste rocks (shales) from coal mines in the removal of heavy metals from industrial wastewaters is considered in this paper. Raw and calcined (600 °C) shales accompanying the coal beds in two Polish coal mines were examined with respect to their adsorptive capabilities for Pb, Ni and Cu ions. The mineralogical composition of the shales was determined and the TG/DTG analysis was carried out. The granulometric compositions of raw and calcined shales were compared. Tests of adsorption for various Pb(II), Ni(II) and Cu(II) concentrations were conducted and the pH before and after adsorption was analyzed. The results indicate that the shales from both coal mines differ in adsorptive capabilities for particular metal ions. The calcination improved the adsorptive capabilities for lead, but worsened them for nickel. The examined shales have good adsorptive capabilities, and could be used as inexpensive adsorbents of heavy metal ions, especially in the regions where resources of shale are easy accessible in the form of spoil tips. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Pore Characterization of Shale Rock and Shale Interaction with Fluids at Reservoir Pressure-Temperature Conditions Using Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Watkins, E.; Xu, H.; Pawar, R.

    2015-12-01

    Oil/gas produced from unconventional reservoirs has become strategically important for the US domestic energy independence. In unconventional realm, hydrocarbons are generated and stored in nanopores media ranging from a few to hundreds of nanometers. Fundamental knowledge of coupled thermo-hydro-mechanical-chemical (THMC) processes that control fluid flow and propagation within nano-pore confinement is critical for maximizing unconventional oil/gas production. The size and confinement of the nanometer pores creates many complex rock-fluid interface interactions. It is imperative to promote innovative experimental studies to decipher physical and chemical processes at the nanopore scale that govern hydrocarbon generation and mass transport of hydrocarbon mixtures in tight shale and other low permeability formations at reservoir pressure-temperature conditions. We have carried out laboratory investigations exploring quantitative relationship between pore characteristics of the Wolfcamp shale from Western Texas and the shale interaction with fluids at reservoir P-T conditions using small-angle neutron scattering (SANS). We have performed SANS measurements of the shale rock in single fluid (e.g., H2O and D2O) and multifluid (CH4/(30% H2O+70% D2O)) systems at various pressures up to 20000 psi and temperature up to 150 oF. Figure 1 shows our SANS data at different pressures with H2O as the pressure medium. Our data analysis using IRENA software suggests that the principal changes of pore volume in the shale occurred on smaller than 50 nm pores and pressure at 5000 psi (Figure 2). Our results also suggest that with increasing P, more water flows into pores; with decreasing P, water is retained in the pores.

  8. 18 CFR 270.306 - Devonian shale wells in Michigan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...

  9. 18 CFR 270.306 - Devonian shale wells in Michigan.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...

  10. 18 CFR 270.306 - Devonian shale wells in Michigan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...

  11. 18 CFR 270.306 - Devonian shale wells in Michigan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Devonian shale wells in... PROCEDURES Requirements for Filings With Jurisdictional Agencies § 270.306 Devonian shale wells in Michigan. A person seeking a determination that natural gas is being produced from the Devonian Age Antrim...

  12. North Fork Snoqualmie River Basin Wildlife Study.

    DTIC Science & Technology

    1981-03-01

    purposes other than travel. In Olympic National Park , marked mountain goats have been ob- served to descend several thousand feet to a valley floor for...Howard Hanson Reservoir near the mouth of the Green River. The reservoir’s pool was full. These gillnets were the "experimental type " and included...river below the proposed damsite. A secondary purpose was to allow comparisons of the amount and type of habitat in different river sections. We used the

  13. A reactive transport model for Marcellus shale weathering

    NASA Astrophysics Data System (ADS)

    Heidari, Peyman; Li, Li; Jin, Lixin; Williams, Jennifer Z.; Brantley, Susan L.

    2017-11-01

    Shale formations account for 25% of the land surface globally and contribute a large proportion of the natural gas used in the United States. One of the most productive shale-gas formations is the Marcellus, a black shale that is rich in organic matter and pyrite. As a first step toward understanding how Marcellus shale interacts with water in the surface or deep subsurface, we developed a reactive transport model to simulate shale weathering under ambient temperature and pressure conditions, constrained by soil and water chemistry data. The simulation was carried out for 10,000 years since deglaciation, assuming bedrock weathering and soil genesis began after the last glacial maximum. Results indicate weathering was initiated by pyrite dissolution for the first 1000 years, leading to low pH and enhanced dissolution of chlorite and precipitation of iron hydroxides. After pyrite depletion, chlorite dissolved slowly, primarily facilitated by the presence of CO2 and organic acids, forming vermiculite as a secondary mineral. A sensitivity analysis indicated that the most important controls on weathering include the presence of reactive gases (CO2 and O2), specific surface area, and flow velocity of infiltrating meteoric water. The soil chemistry and mineralogy data could not be reproduced without including the reactive gases. For example, pyrite remained in the soil even after 10,000 years if O2 was not continuously present in the soil column; likewise, chlorite remained abundant and porosity remained small if CO2 was not present in the soil gas. The field observations were only simulated successfully when the modeled specific surface areas of the reactive minerals were 1-3 orders of magnitude smaller than surface area values measured for powdered minerals. Small surface areas could be consistent with the lack of accessibility of some fluids to mineral surfaces due to surface coatings. In addition, some mineral surface is likely interacting only with equilibrated pore

  14. Environmental Public Health Dimensions of Shale and Tight Gas Development

    PubMed Central

    Hays, Jake; Finkel, Madelon L.

    2014-01-01

    Background: The United States has experienced a boom in natural gas production due to recent technological innovations that have enabled this resource to be produced from shale formations. Objectives: We reviewed the body of evidence related to exposure pathways in order to evaluate the potential environmental public health impacts of shale gas development. We highlight what is currently known and identify data gaps and research limitations by addressing matters of toxicity, exposure pathways, air quality, and water quality. Discussion: There is evidence of potential environmental public health risks associated with shale gas development. Several studies suggest that shale gas development contributes to ambient air concentrations of pollutants known to be associated with increased risk of morbidity and mortality. Similarly, an increasing body of studies suggest that water contamination risks exist through a variety of environmental pathways, most notably during wastewater transport and disposal, and via poor zonal isolation of gases and fluids due to structural integrity impairment of cement in gas wells. Conclusion: Despite a growing body of evidence, data gaps persist. Most important, there is a need for more epidemiological studies to assess associations between risk factors, such as air and water pollution, and health outcomes among populations living in close proximity to shale gas operations. Citation: Shonkoff SB, Hays J, Finkel ML. 2014. Environmental public health dimensions of shale and tight gas development. Environ Health Perspect 122:787–795; http://dx.doi.org/10.1289/ehp.1307866 PMID:24736097

  15. Microstructures and rheology of a calcite-shale thrust fault

    NASA Astrophysics Data System (ADS)

    Wells, Rachel K.; Newman, Julie; Wojtal, Steven

    2014-08-01

    A thin (˜2 cm) layer of extensively sheared fault rock decorates the ˜15 km displacement Copper Creek thrust at an exposure near Knoxville, TN (USA). In these ultrafine-grained (<0.3 μm) fault rocks, interpenetrating calcite grains form an interconnected network around shale clasts. One cm below the fault rock layer, sedimentary laminations in non-penetratively deformed footwall shale are cut by calcite veins, small faults, and stylolites. A 350 μm thick calcite vein separates the fault rocks and footwall shale. The vein is composed of layers of (1) coarse calcite grains (>5 μm) that exhibit a lattice preferred orientation (LPO) with pores at twin-twin and twin-grain boundary intersections, and (2) ultrafine-grained (0.3 μm) calcite that exhibits interpenetrating grain boundaries, four-grain junctions and lacks a LPO. Coarse calcite layers crosscut ultrafine-grained layers indicating intermittent vein formation during shearing. Calcite in the fault rock layer is derived from vein calcite and grain-size reduction of calcite took place by plasticity-induced fracture. The ultrafine-grained calcite deformed primarily by diffusion-accommodated grain boundary sliding and formed an interconnected network around shale clasts within the shear zone. The interconnected network of ultrafine-grained calcite indicates that calcite, not shale, was the weak phase in this fault zone.

  16. Effects of processed oil shale on the element content of Atriplex cancescens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, B.M.

    1982-01-01

    Samples of four-wing saltbush were collected from the Colorado State University Intensive Oil Shale Revegetation Study Site test plots in the Piceance basin, Colorado. The test plots were constructed to evaluate the effects of processed oil shale geochemistry on plant growth using various thicknesses of soil cover over the processed shale and/or over a gravel barrier between the shale and soil. Generally, the thicker the soil cover, the less the influence of the shale geochemistry on the element concentrations in the plants. Concentrations of 20 elements were larger in the ash of four-wing saltbush growing on the plot with themore » gravel barrier (between the soil and processed shale) when compared to the sample from the control plot. A greater water content in the soil in this plot has been reported, and the interaction between the increased, percolating water and shale may have increased the availability of these elements for plant uptake. Concentrations of boron, copper, fluorine, lithium, molybdenum, selenium, silicon, and zinc were larger in the samples grown over processed shale, compared to those from the control plot, and concentrations for barium, calcium, lanthanum, niobium, phosphorus, and strontium were smaller. Concentrations for arsenic, boron, fluorine, molybdenum, and selenium - considered to be potential toxic contaminants - were similar to results reported in the literature for vegetation from the test plots. The copper-to-molybdenum ratios in three of the four samples of four-wing saltbush growing over the processed shale were below the ratio of 2:1, which is judged detrimental to ruminants, particularly cattle. Boron concentrations averaged 140 ppM, well above the phytotoxicity level for most plant species. Arsenic, fluorine, and selenium concentrations were below toxic levels, and thus should not present any problem for revegetation or forage use at this time.« less

  17. Effects of processed oil shale on the element content of Atriplex cancescens

    USGS Publications Warehouse

    Anderson, B.M.

    1982-01-01

    Samples of four-wing saltbush were collected from the Colorado State University Intensive Oil Shale Revegetation Study Site test plots in the Piceance basin, Colorado. The test plots were constructed to evaluate the effects of processed oil shale geochemistry on plant growth using various thicknesses of soil cover over the processed shale and/or over a gravel barrier between the shale and soil. Generally, the thicker the soil cover, the less the influence of the shale geochemistry on the element concentrations in the plants. Concentrations of 20 elements were larger in the ash of four-wing saltbush growing on the plot with the gravel barrier (between the soil and processed shale) when compared to the sample from the control plot. A greater water content in the soil in this plot has been reported, and the interaction between the increased, percolating water and shale may have increased the availability of these elements for plant uptake. Concentrations of boron, copper, fluorine, lithium, molybdenum, selenium, silicon, and zinc were larger in the samples grown over processed shale, compared to those from the control plot, and concentrations for barium, calcium, lanthanum, niobium, phosphorus, and strontium were smaller. Concentrations for arsenic, boron, fluorine, molybdenum, and selenium-- considered to be potential toxic contaminants--were similar to results reported in the literature for vegetation from the test plots. The copper-to-molybdenum ratios in three of the four samples of four-wing saltbush growing over the processed shale were below the ratio of 2:1, which is judged detrimental to ruminants, particularly cattle. Boron concentrations averaged 140 ppm, well above the phytotoxicity level for most plant species. Arsenic, fluorine, and selenium concentrations were below toxic levels, and thus should not present any problem for revegetation or forage use at this time.

  18. Effect of shales on tidal response of water level to large earthquakes

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wang, C. Y.; Fu, L. Y.

    2017-12-01

    Tidal response of water level in wells has been widely used to study properties of aquifers and, in particular, the response of groundwater to earthquakes. The affect of lithology on such response has not received deserved attention. Using data from selected wells in the intermediate and far fields of the 2008 Mw 7.9 Wenchuan and the 2011 Mw 9.1 Tohoku earthquakes, we examine how the presence of shales affects the tidal response of water level. Three categories of responses are recognized: horizontal flow, vertical flow and combined horizontal and vertical flow, with most wells with shales in the last category. We found that wells with shales are significantly influenced by fractures, leading semi-confined condition and vertical drainage, poorer well bore storage and decreased or unchanged co-seismic phase shifts. We also found a strong correlation between the shale content in the aquifer and the amplitude of tidal response, with higher shale content correlated with lower amplitude response, which we attribute to the compact structure (low porosity/low permeability) of shales.

  19. Germanium and uranium in coalified wood bom upper Devonian black shale

    USGS Publications Warehouse

    Breger, I.A.; Schopf, J.M.

    1955-01-01

    Microscopic study of black, vitreous, carbonaceous material occurring in the Chattanooga shale in Tennessee and in the Cleveland member of the Ohio shale in Ohio has revealed coalified woody plant tissue. Some samples have shown sufficient detail to be identified with the genus Cauixylon. Similar material has been reported in the literature as "bituminous" or "asphaltic" stringers. Spectrographic analyses of the ash from the coalified wood have shown unusually high percentages of germanium, uranium, vanadium, and nickel. The inverse relationship between uranium and germanium in the ash and the ash content of various samples shows an association of these elements with the organic constituents of the coal. On the basis of geochemical considerations, it seems most probable that the wood or coalified wood was germanium-bearing at the time logs or woody fragmenta were floated into the basins of deposition of the Chattanooga shale and the Cleveland member of the Ohio shale. Once within the marine environment, the material probably absorbed uranium with the formation of organo-uranium compounds such as exist in coals. It is suggested that a more systematic search for germaniferous coals in the vicinity of the Chattanooga shale and the Cleveland member of the Ohio shale might be rewarding. ?? 1955.

  20. Germanium and uranium in coalified wood from Upper Devonian black shale

    USGS Publications Warehouse

    Breger, Irving A.; Schopf, James M.

    1954-01-01

    Microscopic study of black, vitreous, carbonaceous material occurring in the Chattanooga shale in Tennessee and in the Cleveland member of the Ohio shale in Ohio has revealed coalified woody plant tissue. Some samples have shown sufficient detail to be identified with the genus Callixylon. Similar material has been reported in the literature as "bituminous" or "asphaltic" stringers. Spectrographic analyses of the ash from the coalified wood have shown unusually high percentages of germanium, uranium, vanadium, and nickel. The inverse relationship between uranium and germanium in the ash and the ash content of various samples shows an association of these elements with the organic constituents of the coal. On the basis of geochemical considerations, it seems most probable that the wood or coalified wood was germanium-bearing at the time logs or woody fragments were floated into the basins of deposition of the Chattanooga shale and the Cleveland member of the Ohio shale. Once within the marine environment, the material probably absorbed uranium with the formation of organo-uranium compounds such as have been found to exist in coals. It is suggested that a more systematic search for germaniferous coals in the vicinity of the Chattanooga shale and the Cleveland member of the Ohio shale might be rewarding.