Science.gov

Sample records for greenhouse production

  1. An Introduction to Greenhouse Production.

    ERIC Educational Resources Information Center

    McMahon, Robert W.

    This student manual provides a basic text for those preparing for greenhouse and floriculture work. At the beginning of each chapter, competencies are listed, along with related math and science concepts, and a list of "terms to know"; figures, tables, and photographs may be included. At the end of each chapter, a self-check can be made of the…

  2. An Introduction to Greenhouse Production. Second Edition.

    ERIC Educational Resources Information Center

    McMahon, Robert W.

    This student manual is presented in its first revision, providing a current, basic text for those preparing for greenhouse and floriculture work. Its fourteen chapters are: Overview of the Greenhouse Industry; Greenhouse Structures; Controlling the Greenhouse Environment; Greenhouse Equipment and Lighting; Greenhouse Irrigation Systems; Root Media…

  3. Supplemental photosynthetic lighting for greenhouse tomato production

    SciTech Connect

    Godfriaux, B.L.; Wittman, W.K. ); Janes, H.W.; McAvoy, R.J.; Putman, J.; Logendra, S. . Dept. of Horticulture and Forestry); Mears, D.R.; Giacommelli, G.; Giniger, M. . Dept. of Biological and Agricultural Engineering)

    1989-12-01

    The influence of supplemental light on the growth and productivity of greenhouse tomatoes grown to a single cluster on movable benches is examined, and the economic feasibility of such a system is evaluated. Experiments were conducted to quantify the tomato plants' response to various levels of supplemental light in terms of growth rate and yield at various stages in their development (e.g., seedling, flowering plant, etc.). The 1984--85 experiments showed that supplemental photosynthetic lighting nearly doubled tomato yields, from 0.48 to 0.86 lbs/plant. Subsequent experiments in 1985--86 identified the best tomato varieties for this treatment and further increased yields to 1.3 lbs/plant. In addition, the use of supplemental lighting was found to hasten tomato crop maturity. An economic analysis was performed on the 1985--86 empirical data using the tax rates and provisions then in force. It indicated that a 10-acre greenhouse could provide an after-tax internal rate of return of 10% to 12% using only equity financing. This return could likely be increased to 15--18% with the use of combined debt/equity financing. Using supplemental lighting on 10,000 acres of greenhouse production would require an estimated 7.5 billion kWh of additional electricity per year and, at 4.7 cents/kWh, generate an estimated $350 million in additional utility revenues. 48 refs., 34 figs., 24 tabs.

  4. Application Problem of Biomass Combustion in Greenhouses for Crop Production

    NASA Astrophysics Data System (ADS)

    Kawamura, Atsuhiro; Akisawa, Atsushi; Kashiwagi, Takao

    It is consumed much energy in fossil fuels to production crops in greenhouses in Japan. And fl ue gas as CO2 fertilization is used for growing crops in modern greenhouses. If biomass as renewable energy can use for production vegetables in greenhouses, more than 800,000 kl of energy a year (in crude oil equivalent) will be saved. In this study, at fi rst, we made the biomass combustion equipment, and performed fundamental examination for various pellet fuel. We performed the examination that considered an application to a real greenhouse next. We considered biomass as both a source of energy and CO2 gas for greenhouses, and the following fi ndings were obtained: 1) Based on the standard of CO2 gas fertilization to greenhouses, it is diffi cult to apply biomass as a CO2 fertilizer, so that biomass should be applied to energy use only, at least for the time being. 2) Practical biomass energy machinery for economy, high reliability and greenhouses satisfying the conservatism that it is easy is necessary. 3) It is necessary to develop crop varieties and cultivation systems requiring less strict environmental control. 4) Disposal of combustion ash occurring abundantly, effective practical use is necessary.

  5. Treatment of drainage solution from hydroponic greenhouse production with microalgae.

    PubMed

    Hultberg, Malin; Carlsson, Anders S; Gustafsson, Susanne

    2013-05-01

    This study investigated treatment of the drainage solution from greenhouse production with microalgae, through inoculation with Chlorella vulgaris or through growth of the indigenous microalgal community. A significant reduction in nitrogen, between 34.7 and 73.7 mg L(-1), and particularly in phosphorus concentration, between 15.4 and 15.9 mg L(-1), was observed in drainage solution collected from commercial greenhouse production. The large reduction in nutrients was achieved through growth of the indigenous microalgal community i.e., without pre-treatment of the drainage solution or inoculation with the fast growing green microalgae C. vulgaris. Analysis of the fatty acid composition of the algal biomass revealed that compared with a standard growth medium for green algae, the drainage solution was inferior for lipid production. Despite the biorefinery concept being less promising, microalgae-based treatment of drainage solution from greenhouse production is still of interest considering the urgent need for phosphorus recycling.

  6. Utilization of treated swine wastewater for greenhouse tomato production.

    PubMed

    Cheng, J; Shearin, T E; Peet, M M; Willits, D H

    2004-01-01

    An integrated system has been developed to recycle waste organics and treated wastewater from a swine farm to make value-added products and to protect the environment from potential contamination. The farm is a farrow-to-wean swine operation with approximately 4,000 sows. A high-strength wastewater (chemical oxygen demand, 18,000 mg/l; total Khejdal nitrogen, 1,600 mg/l; total phosphorus, 360 mg/l) is produced from the swine operation. An ambient-temperature anaerobic digester has been used to treat the swine wastewater and to produce biogas (from an average 475 m3/day in winter to 950 m3/day in summer). The biogas is combusted in an engine to produce electricity (around 900 kW-hr/day). The digester effluent that is rich in nutrients (N, P, and minerals) is then utilized for fertigation for greenhouse tomato production. A trickling nitrification biofilter has been developed to convert ammonium in the effluent into nitrate. The nitrified anaerobic effluent is used as both fertilizer and irrigation water for approximately 14,400 tomato plants in greenhouses. Experimental data indicate that the tomato greenhouses have used approximately 12 m3 of the effluent and 3.84 kg nitrogen per day. At the same time, the greenhouses have a daily yield of 520 kg (37 g/plant) of marketable fruit. PMID:15344776

  7. Biomass Burning and the Production of Greenhouse Gases. Chapter 9

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1994-01-01

    Biomass burning is a source of greenhouse gases, carbon dioxide, methane, and nitrous oxide. In addition, biomass burning is a source of chemically active gases, including carbon monoxide, nonmethane hydrocarbons, and nitric oxide. These gases, along with methane, lead to the chemical production of tropospheric ozone (another greenhouse gas) as well as control the concentration of the hydroxyl radical, which regulates the lifetime of almost every atmospheric gas. Following biomass burning, biogenic emissions of nitrous oxide, nitric oxide, and methane are significantly enhanced. It is hypothesized that enhanced postburn biogenic emissions of these gases are related to fire-induced changes in soil chemistry and/or microbial ecology. Biomass burning, once believed to be a tropical phenomenon, has been demonstrated by satellite imagery to also be a regular feature of the world's boreal forests. One example of biomass burning is the extensive 1987 fire that destroyed more than 12 million acres of boreal forest in the People's Republic of China and across its border in the Soviet Union. Recent estimates indicate that almost all biomass burning is human-initiated and that it is increasing with time. With the formation of greenhouse and chemically active gases as direct combustion products and a longer-term enhancement of biogenic emissions of gases, biomass burning may be a significant driver for global change.

  8. An environmental impact calculator for greenhouse production systems.

    PubMed

    Torrellas, Marta; Antón, Assumpció; Montero, Juan Ignacio

    2013-03-30

    Multiple web-based calculators have come on the market as tools to support sustainable decision making, but few are available to agriculture. Life cycle assessment (LCA) has proved to be an objective, transparent tool for calculating environmental impacts throughout the life cycle of products and services, but can often be too complex for non-specialists. The objective of this study was therefore to develop an environmental support tool to determine the environmental impacts of protected crops. An effort was made to provide an easy-to-use tool in order to reach a wide audience and help horticulture stakeholders choose efficient options to mitigate the environmental impacts of protected crops. Users can estimate the environmental performance of their crops by entering a limited amount of data and following a few easy steps. A questionnaire must be answered with data on the crop, greenhouse dimensions, substrate, waste management, and the consumption of water, energy, fertilisers and pesticides. The calculator was designed as a simplified LCA, based on two scenarios analysed in detail in previous tasks of the EUPHOROS project and used as reference systems in this study. Two spreadsheets were provided based on these reference scenarios: one for a tomato crop in a multi-tunnel greenhouse under Southern European climate conditions and the other for a tomato crop in a Venlo glass greenhouse under Central European climate conditions. The selected functional unit was one tonne of tomatoes. Default data were given for each reference system for users who did not have complete specific data and to provide results for comparison with users' own results. The results were presented for water use as an inventory indicator and for the impact categories abiotic depletion, acidification, eutrophication, global warming, photochemical oxidation and cumulative energy demand. In the multi-tunnel greenhouse, the main contributors based on the default data were the structure, fertilisers

  9. Greenhouse gas emission associated with sugar production in southern Brazil

    PubMed Central

    2010-01-01

    Background Since sugarcane areas have increased rapidly in Brazil, the contribution of the sugarcane production, and, especially, of the sugarcane harvest system to the greenhouse gas emissions of the country is an issue of national concern. Here we analyze some data characterizing various activities of two sugarcane mills during the harvest period of 2006-2007 and quantify the carbon footprint of sugar production. Results According to our calculations, 241 kg of carbon dioxide equivalent were released to the atmosphere per a ton of sugar produced (2406 kg of carbon dioxide equivalent per a hectare of the cropped area, and 26.5 kg of carbon dioxide equivalent per a ton of sugarcane processed). The major part of the total emission (44%) resulted from residues burning; about 20% resulted from the use of synthetic fertilizers, and about 18% from fossil fuel combustion. Conclusions The results of this study suggest that the most important reduction in greenhouse gas emissions from sugarcane areas could be achieved by switching to a green harvest system, that is, to harvesting without burning. PMID:20565736

  10. Household carbon dioxide production in relation to the greenhouse effect

    SciTech Connect

    Stokes, D.; Lindsay, A.; Marinopoulos, J.; Treloar, A.; Wescott, G. )

    1994-03-01

    A survey of 655 households from eastern suburbs of Melbourne was undertaken to determine householders[prime] attitudes to, and understanding of, the greenhouse effect. Carbon dioxide emissions resulting from car, electricity and gas use were computed and household actions which could reduce CO[sub 2] emissions were addressed. Preliminary analysis of the results indicates that householders in this area are aware of, and concerned about, the greenhouse effect, although their understanding of its causes is often poor. Many appreciate the contribution of cars, but are unclear about the relative importance of other household activities. Carbon dioxide emissions from the three sources examined averaged 21[center dot]2 tonnes/year per household and 7[center dot]4 tonnes/year per person. Electricity was the largest contributor (8[center dot]6 tonnes/year), cars the next largest (7[center dot]7 tonnes/year) and gas third (5[center dot] tonnes/year) per household. Emissions varied considerably from household to household. There was a strong positive correlation between availability of economic resources and household CO[sub 2] output from all sources. Carbon dioxide production, particularly from car use, was greater from households which were most distant from a railway station, and from larger households, and numbers of children in the household had little effect on emissions. There were also some economics of scale for households containing more adults. Understanding the causes of the greenhouse bore little relation to change in CO[sub 2] emissions; being concerned about it was associated with a small reduction; but actual actions to reduce car use and household heating, however motivated, produced significant reductions. 12 refs., 9 figs., 6 tabs.

  11. Production, management, and environment symposium: Environmental footprint of livestock production - Greenhouse gas emissions and climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript is the introduction to the 2015 Production, Management, and Environment symposium titled “Environmental Footprint of Livestock ProductionGreenhouse Gas Emissions and Climate Change” that was held at the Joint Annual Meeting of the ASAS and ADSA at the Rosen Shingle Creek Resort in...

  12. Production of recombinant proteins in microalgae at pilot greenhouse scale.

    PubMed

    Gimpel, Javier A; Hyun, James S; Schoepp, Nathan G; Mayfield, Stephen P

    2015-02-01

    Recombinant protein production in microalgae chloroplasts can provide correctly folded proteins in significant quantities and potentially inexpensive costs compared to other heterologous protein production platforms. The best results have been achieved by using the psbA promoter and 5' untranslated region (UTR) to drive the expression of heterologous genes in a psbA-deficient, non-photosynthetic, algal host. Unfortunately, using such a strategy makes the system unviable for large scale cultivation using natural sunlight for photosynthetic growth. In this study we characterized eight different combinations of 5' regulatory regions and psbA coding sequences for their ability to restore photosynthesis in a psbA-deficient Chlamydomonas reinhardtii, while maintaining robust accumulation of a commercially viable recombinant protein driven by the psbA promoter/5'UTR. The recombinant protein corresponded to bovine Milk Amyloid A (MAA), which is present in milk colostrum and could be used to prevent infectious diarrhea in mammals. This approach allowed us to identify photosynthetic strains that achieved constitutive production of MAA when grown photosynthetically in 100 L bags in a greenhouse. Under these conditions, the maximum MAA expression achieved was 1.86% of total protein, which corresponded to 3.28 mg/L of culture medium. Within our knowledge, this is the first report of a recombinant protein being produced this way in microalgae. PMID:25116083

  13. Virtual Grower: Software to Calculate Heating Costs of Greenhouse Production in the US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouses are used in many climates either for season extension or year-round production, and can be expensive to heat. Greenhouse users and growers are often faced with management decisions that rely on an understanding of how temperature settings, heating systems, fuel types, and construction d...

  14. Measuring and Managing Greenhouse Gas Emissions from the Production of Livestock in Brazil

    NASA Astrophysics Data System (ADS)

    Cohn, A.

    2009-12-01

    Livestock production is the cause of substantial greenhouse gas emissions both through enteric fermentation and land use change. It has been shown that programs to reduce emissions from livestock could be a large and low-cost source of greenhouse gas mitigation. Yet in order to achieve emissions reductions, further research is needed to quantify how the emissions intensity of livestock production varies across the biophysical and socio-economic geographies of production. Particularly large data gaps exist for tropical livestock production even as tropical production expands rapidly. In this poster, I present results of a review of lifecycle greenhouse gas intensity for livestock production systems in Brazil. I also discuss opportunities and challenges in using these data as part of a decision support tool for programs to reduce greenhouse gas emissions from livestock.

  15. Evaluation of gypsum rates on greenhouse crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was to determine the potential of an added value distribution channel for gypsum waste by evaluating various greenhouse crops with captious pH and calcium needs. Three studies consisting of: Zonal geranium (Pelargonium x hortorum) and petunia (Petunia x hybrida); tomato (Solanum lycoper...

  16. Designing advanced biochar products for maximizing greenhouse gas mitigation potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse gas (GHG) emissions from agricultural operations continue to increase. Carbon enriched char materials like biochar have been described as a mitigation strategy. Utilization of biochar material as a soil amendment has been demonstrated to provide potentially further soil GHG suppression du...

  17. Production of Greenhouse Gases in The Atmosphere of Early Mars

    NASA Technical Reports Server (NTRS)

    Kress, Monika E.; McKay, Christopher P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Mars was much warmer and wetter 3.5 to 4 billion years ago than it is today, suggesting that its climate was able to support life in the distant past. Carbon dioxide and methane are greenhouse gases which may have kept Mars warm during this time. We explore the possibility that these gases were produced via grain-catalyzed reactions in the warm, dusty aftermath of large comet and/or asteroid impacts which delivered Mars, volatile inventory.

  18. Localising livestock protein feed production and the impact on land use and greenhouse gas emissions.

    PubMed

    Sasu-Boakye, Y; Cederberg, C; Wirsenius, S

    2014-08-01

    Livestock farmers in Sweden usually grow feed grains for livestock but import protein feed from outside Sweden. Aside from the economic implications, some environmental issues are associated with this practice. We used life cycle assessment to evaluate the impact of local protein feed production on land use and greenhouse gas emissions, compared with the use of imported protein feed, for pig meat and dairy milk produced in Sweden. Our results showed that local production reduced greenhouse gas emissions by 4.5% and 12%, respectively, for pigs and dairy cows. Land use for feed production in Sweden increased by 11% for pigs and 25% for dairy cows, but total land use decreased for pig production and increased for dairy milk production. Increased protein feed cultivation in Sweden decreased inputs needed for animal production and improved some ecological processes (e.g. nutrient recycling) of the farm systems. However, the differences in results between scenarios are relatively small and influenced to an extent by methodological choices such as co-product allocation. Moreover, it was difficult to assess the contribution of greenhouse emissions from land use change. The available accounting methods we applied did not adequately account for the potential land use changes and in some cases provided conflicting results. We conclude that local protein feed production presents an opportunity to reduce greenhouse gas emissions but at a cost of increasing land occupation in Sweden for feed production.

  19. Localising livestock protein feed production and the impact on land use and greenhouse gas emissions.

    PubMed

    Sasu-Boakye, Y; Cederberg, C; Wirsenius, S

    2014-08-01

    Livestock farmers in Sweden usually grow feed grains for livestock but import protein feed from outside Sweden. Aside from the economic implications, some environmental issues are associated with this practice. We used life cycle assessment to evaluate the impact of local protein feed production on land use and greenhouse gas emissions, compared with the use of imported protein feed, for pig meat and dairy milk produced in Sweden. Our results showed that local production reduced greenhouse gas emissions by 4.5% and 12%, respectively, for pigs and dairy cows. Land use for feed production in Sweden increased by 11% for pigs and 25% for dairy cows, but total land use decreased for pig production and increased for dairy milk production. Increased protein feed cultivation in Sweden decreased inputs needed for animal production and improved some ecological processes (e.g. nutrient recycling) of the farm systems. However, the differences in results between scenarios are relatively small and influenced to an extent by methodological choices such as co-product allocation. Moreover, it was difficult to assess the contribution of greenhouse emissions from land use change. The available accounting methods we applied did not adequately account for the potential land use changes and in some cases provided conflicting results. We conclude that local protein feed production presents an opportunity to reduce greenhouse gas emissions but at a cost of increasing land occupation in Sweden for feed production. PMID:26263191

  20. Spatial analysis of climate factors used to determine suitability of greenhouse production in Turkey

    NASA Astrophysics Data System (ADS)

    Cemek, Bilal; Güler, Mustafa; Arslan, Hakan

    2015-12-01

    This study aimed to identify the most suitable growing periods for greenhouse production in Turkey in order to make valuable contribution to economic viability. Data collected from the meteorological databases of 81 provinces was used to determine periodic climatological requirements of greenhouses in terms of cooling, heating, natural ventilation, and lighting. Spatial distributions of mean daily outside temperatures and greenhouse heating requirements were derived using ordinary co-kriging (OCK) supported by Geographical Information System (GIS). Mean monthly temperatures throughout the country were found to decrease below 12 °C in January, February, March, and December, indicating heating requirements, whereas temperatures in 94.46 % of the country rose above 22 °C in July, indicating cooling requirements. Artificial lighting is not a requirement in Turkey except for November, December, and January. The Mediterranean, Aegean, Marmara, and Black Sea Regions are more advantageous than the Central, East, and Southeast Anatolia Regions in terms of greenhouse production because the Mediterranean and Aegean Regions are more advantageous in terms of heating, and the Black Sea Region is more advantageous in terms of cooling. Results of our study indicated that greenhouse cultivation of winter vegetables is possible in certain areas in the north of the country. Moreover, greenhouses could alternatively be used for drying fruits and vegetables during the summer period which requires uneconomical cooling systems due to high temperatures in the Mediterranean and Southeastern Anatolian Regions.

  1. Milled Paulownia tomentosa as a substrate component in greenhouse annual production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent research has indicated the potential of wood fiber products as alternative substrate components. This study was conducted to determine the effects of Paulowinia tomentosa amended substrates on production of greenhouse grown annuals. Paulownia (PT) was used alone (100% PT) and combined with di...

  2. Pathogen filtration to control plant disease outbreak in greenhouse production

    NASA Astrophysics Data System (ADS)

    Jeon, Sangho; Krasnow, Charles; Bhalsod, Gemini; Granke, Leah; Harlan, Blair; Hausbeck, Mary; Zhang, Wei

    2016-04-01

    Previous research has been extensively focused on understanding the fate and transport of human microbial pathogens in soil and water environments. However, little is known about the transport of plant pathogens, although these pathogens are often found in irrigation waters and could cause severe crop damage and economical loss. Water mold pathogens including Phytophthora spp. and Pythium spp. are infective to a wide range of vegetable and floriculture crops, and they are primarily harbored in soils and disseminated through water flow. It is challenging to control these pathogens because they often quickly develop resistance to many fungicides. Therefore, this multi-scale study aimed to investigate physical removal of plant pathogens from water by filtration, thus reducing the pathogen exposure risks to crops. In column-scale experiments, we studied controlling factors on the transport and retention of Phytophthora capsici zoospores in saturated columns packed with iron oxide coated-sand and uncoated-sand under varying solution chemistry. Biflagellate zoospores were less retained than encysted zoospores, and lower solution pH and greater iron oxide content increased the retention of encysted zoospores. These results provided insights on environmental dispersal of Phytophthora zoospores in natural soils as well as on developing cost-effective engineered filtration systems for pathogen removal. Using small-scale greenhouse filtration systems, we further investigated the performance of varying filter media (i.e., granular sand, iron oxide coated ceramic porous media, and activated carbon) in mitigating disease outbreaks of Phytophthora and Pythium for greenhouse-grown squash and poinsettia, respectively, in comparison with fungicide treatment. For squash, filtration by iron oxide coated media was more effective in reducing the Phytophthora infection, comparing to sand filtration and fungicide application. For poinsettia, sand filtration performed better in controlling

  3. Developing hygiene protocols against mechanically transmitted pathogens in greenhouse tomato production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse tomato propagation and production require intensive crop work that promotes the spread of mechanically transmitted pathogens (e.g. fungi, bacteria, viruses and viroids). Therefore, a clean seed program is very important to prevent any un-intentional introduction of seed-borne pathogens t...

  4. Software for evaluating greenhouse gas emissions and the carbon footprint of dairy production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: Dairy production, along with all other types of animal agriculture, is a recognized source of greenhouse gas (GHG) emissions, but little information exists on the net emissions from our farms. Component models for representing all important sources and sinks of CH4, N2O, and CO2 in dairy p...

  5. Evaluation of disinfectants to prevent mechanical transmission of viruses and a viroid in greenhouse tomato production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to select disinfectant(s) with capability to deactivate infectivity from a broad range of viruses and viroids that are commonly observed in greenhouse tomato production systems, a total of 16 disinfectants were evaluated against Pepino mosaic virus (PepMV), Tomato mosaic virus (ToMV), T...

  6. Viable Alternative Substrate Components for Use in Nursery and Greenhouse Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peat-based container substrates are widely used for greenhouse crop production. A variety of alternative materials have been evaluated due to uncertainty over the cost and availability of Canadian peat moss. Processed whole pine trees (WPT) have been identified as a replacement for peat due to the w...

  7. Greenhouse Crop Production; A Teacher's Manual. Teacher Education Series, Volume 10 Number 3t.

    ERIC Educational Resources Information Center

    1969

    Developed by the Department of Agricultural Education of the Pennsylvania State University and field-tested by 54 teachers, this guide is for teacher use in planning a unit in greenhouse crop production. The unit is intended for upper high school and post-high school students interested in careers in this field. Teacher suggestions, references,…

  8. Greenhouse Crop Production; A Student Handbook, Teacher Education Series, Volume 10 Number 3s.

    ERIC Educational Resources Information Center

    1969

    This study guide, developed by the Department of Agricultural Education of The Pennsylvania State University and field-tested by 54 teachers, is for student use in a unit on greenhouse crop production. Learning objectives, key questions, vocabulary terms, subject matter, and references are included for each of these problem areas: (1) Occupational…

  9. Greenhouse soil heating for improved production and energy conservation. Final report

    SciTech Connect

    Roller, W.L.; Elwell, D.L.

    1981-09-01

    A three-year study of the beneficial use of simulated power plant reject heat for soil heating in greenhouses is described. The effect of 25, 30, 35, and 40/sup 0/C warm water on the temperature of and moisture distribution in three diverse, greenhouse soils was studied, and the growth response of variety HR-5 lettuce in this environment was determined. Detailed information on soil temperature and moisture distribution, heat transfer rates, and lettuce production yield under various operating conditions was obtained.

  10. Fractal dimension analysis of landscape scale variability in greenhouse gas production potentials

    NASA Astrophysics Data System (ADS)

    da Silva Bicalho, Elton; Spokas, Kurt; La Scala, Newton, Jr.

    2015-04-01

    Soil greenhouse gas emission is influenced by tillage and management practices that modify soil attributes directly related to the dynamics of soil carbon in the agricultural environment. The aim of this study was to assess the soil CO2 and N2O production potentials and their spatial variability characterized by fractal dimension in different scales, in addition to their correlation with other soil attributes. The quantification of soil CO2 and N2O production was carried out from dry soil samples collected in a grid of 50 × 50 m containing 133 points arranged symmetrically on a sugarcane area under green residue management in southern Brazil. Laboratory incubations were used to analyze greenhouse gas dynamics by gas chromatography. Soil CO2 and N2O production were correlated significantly (P < 0.05) with microbial biomass, silt and clay content, pH, available phosphorus, sum of metal cations (bases), and cation exchange capacity. Similarly, these soil attributes also were correlated with microbial biomass, supporting their role in soil microbial activity and greenhouse gas production. Furthermore, variations in the fractal dimension over the scale indicate that the pattern of the spatial variability structure of soil CO2 production potential was correlated to that observed for microbial biomass, pH, available phosphorus, sum of bases, and cation exchange capacity. On the other hand, only the spatial structure of the clay content, pH and the sum of bases were correlated with the soil N2O production. Therefore, examining the fractal dimension enables the spatially visualization of altering processes across a landscape at different scales, which highlights properties that influence greenhouse gas production and emission in agricultural areas.

  11. Energy production, nutrient recovery and greenhouse gas emission potentials from integrated pig manure management systems.

    PubMed

    Prapaspongsa, T; Poulsen, T G; Hansen, J A; Christensen, P

    2010-05-01

    Improper management of pig manure has resulted in environmental problems such as surface water eutrophication, ground water pollution, and greenhouse gas emissions. This study develops and compares 14 alternative manure management scenarios aiming at energy and nutrient extraction. The scenarios based on combinations of thermal pretreatment, anaerobic digestion, anaerobic co-digestion, liquid/solid separation, drying, incineration, and thermal gasification were compared with respect to their energy, nutrient and greenhouse gas balances. Both sole pig manure and pig manure mixed with other types of waste materials were considered. Data for the analyses were obtained from existing waste treatment facilities, experimental plants, laboratory measurements and literature. The assessment reveals that incineration combined with liquid/solid separation and drying of the solids is a promising management option yielding a high potential energy utilization rate and greenhouse gas savings. If maximum electricity production is desired, anaerobic digestion is advantageous as the biogas can be converted to electricity at high efficiency in a gas engine while allowing production of heat for operation of the digestion process. In conclusion, this study shows that the choice of technology has a strong influence on energy, nutrient and greenhouse gas balances. Thus, to get the most reliable results, it is important to consider the most representative (and up-to-date) technology combined with data representing the area or region in question.

  12. Coupling above and below ground gas measurements to understand greenhouse gas production in the soil profile

    NASA Astrophysics Data System (ADS)

    Nickerson, Nick; Creelman, Chance

    2016-04-01

    Natural and anthropogenic changes in climate have the potential to significantly affect the Earth's natural greenhouse gas balances. To understand how these climatic changes will manifest in a complex biological, chemical and physical system, a process-based understanding of the production and consumption of greenhouse gases in soils is critical. Commonly, both chamber methods and gradient-based approaches are used to estimate greenhouse gas flux from the soil to the atmosphere. Each approach offers benefits, but not surprisingly, comes with a list of drawbacks. Chambers are easily deployed on the surface without significant disturbance to the soil, and can be easily spatially replicated. However the high costs of automated chamber systems and the inability to partition fluxes by depth are potential downfalls. The gradient method requires a good deal of disturbance for installation, however it also offers users spatiotemporally resolved flux estimates at a reasonable price point. Researchers widely recognize that the main drawback of the gradient approach is the requirement to estimate diffusivity using empirical models based on studies of specific soils or soil types. These diffusivity estimates can often be off by several orders of magnitude, yielding poor flux estimates. Employing chamber and gradient methods in unison allows for in-situ estimation of the diffusion coefficient, and therefore improves gradient-based estimates of flux. A dual-method approach yields more robust information on the temporal dynamics and depth distribution of greenhouse gas production and consumption in the soil profile. Here we present a mathematical optimization framework that allows these complimentary measurement techniques to yield more robust information than a single technique alone. We then focus on how it can be used to improve the process-based understanding of greenhouse gas production in the soil profile.

  13. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    NASA Astrophysics Data System (ADS)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations

  14. Accumulation status, sources and phytoavailability of metals in greenhouse vegetable production systems in Beijing, China.

    PubMed

    Xu, Li; Lu, Anxiang; Wang, Jihua; Ma, Zhihong; Pan, Ligang; Feng, Xiaoyuan; Luan, Yunxia

    2015-12-01

    The accumulation status, sources and phytoavailability of selected metals in greenhouse vegetable production systems in peri-urban areas of Beijing were investigated. The mean concentrations of As, Cd, Cr, Hg and Pb in greenhouse soils were 8.44, 0.25, 69.0, 0.09 and 22.0 mg kg(-1), dw, respectively. According to principal component analysis, As, Cd, Cr and Hg are mainly from anthropogenic source, but Pb is likely from natural source. Metal concentrations in all vegetable samples were decreased in the order of Cr>As>Pb>Cd>Hg. Compared with root and fruit vegetables, leaf vegetables had relatively high concentrations and transfer factors of heavy metals, except for Cd. By including soil pH, OM and greenhouse soil metals, 10 empirical models were derived using stepwise multiple linear regression analysis to predict heavy metal concentrations in the edible parts of different vegetables. Among the different vegetable groups, the highest intakes of metals occurred through consumption of leaf vegetables for the two age groups, except for Cd. The HI value of the studied metals were all below 1, indicating that consumption of vegetables grown in greenhouse soils was of low risk to consumers in our study area.

  15. Greenhouse Gases

    MedlinePlus

    ... Greenhouse Gases Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products ... Power Wave Power Ocean Thermal Energy Conversion Biomass Wood and Wood Waste Waste-to-Energy (MSW) Landfill ...

  16. Nitrogen removal from the surface runoff of a field scale greenhouse vegetable production system.

    PubMed

    Min, Ju; Lu, Kouping; Zhao, Xu; Sun, Haijun; Zhang, Hailin; Shi, Weiming

    2015-01-01

    Nutrient losses from greenhouse vegetable production systems may impair water quality in the Taihu Lake Region of China. We studied the characteristics of nitrogen (N) lost via runoff from greenhouse vegetable systems and strategies for minimizing N entering water bodies. A two-year experiment at a field scale was conducted to monitor N surface runoff. An eco-ditch (148 m(2)) and a low N input paddy field (135 kg N ha⁻¹, 550 m²) were designed to remove N from the surface runoff of a 25 × 50 m greenhouse vegetable field. The greenhouse was not covered from late June to mid-October each year, and runoff occurred multiple times during this period. Annual total N loss in runoff from the greenhouse vegetable site was 25.3 and 33.5 kg ha⁻¹ in 2010 and 2011, respectively. Nitrate-N was the major form of N lost in the runoff. The average runoff volume was 289 mm (varied from 221 to 357 mm), which contained 15.7 (varied from 3.3 to 39.2 mg L⁻¹) mg L⁻¹ total N. The eco-ditch system and the wetland paddy field (WPF) effectively reduced total N discharge; the removal rates reached 49.9% and 58.7% and the average removal capacities were 12.4 g N m⁻² and 4.1 g N m⁻² in 2010 and 2011, respectively. The combined system of the ecological ditch-WPF removed almost 79% total N in the runoff. Ecological ditch or paddy wetland can be a water management option available to growers in this region to economically reduce pollutants in agricultural runoff. PMID:26077503

  17. Nitrogen removal from the surface runoff of a field scale greenhouse vegetable production system.

    PubMed

    Min, Ju; Lu, Kouping; Zhao, Xu; Sun, Haijun; Zhang, Hailin; Shi, Weiming

    2015-01-01

    Nutrient losses from greenhouse vegetable production systems may impair water quality in the Taihu Lake Region of China. We studied the characteristics of nitrogen (N) lost via runoff from greenhouse vegetable systems and strategies for minimizing N entering water bodies. A two-year experiment at a field scale was conducted to monitor N surface runoff. An eco-ditch (148 m(2)) and a low N input paddy field (135 kg N ha⁻¹, 550 m²) were designed to remove N from the surface runoff of a 25 × 50 m greenhouse vegetable field. The greenhouse was not covered from late June to mid-October each year, and runoff occurred multiple times during this period. Annual total N loss in runoff from the greenhouse vegetable site was 25.3 and 33.5 kg ha⁻¹ in 2010 and 2011, respectively. Nitrate-N was the major form of N lost in the runoff. The average runoff volume was 289 mm (varied from 221 to 357 mm), which contained 15.7 (varied from 3.3 to 39.2 mg L⁻¹) mg L⁻¹ total N. The eco-ditch system and the wetland paddy field (WPF) effectively reduced total N discharge; the removal rates reached 49.9% and 58.7% and the average removal capacities were 12.4 g N m⁻² and 4.1 g N m⁻² in 2010 and 2011, respectively. The combined system of the ecological ditch-WPF removed almost 79% total N in the runoff. Ecological ditch or paddy wetland can be a water management option available to growers in this region to economically reduce pollutants in agricultural runoff.

  18. Reducing California's Greenhouse Gas Emissions through ProductLife-Cycle Optimization

    SciTech Connect

    Masanet, Eric; Price, Lynn; de la Rue du Can, Stephane; Worrell,Ernst

    2005-12-30

    Product life-cycle optimization addresses the reduction ofenvironmental burdens associated with the production, use, andend-of-life stages of a product s life cycle. In this paper, we offer anevaluation of the opportunities related to product life-cycleoptimization in California for two key products: personal computers (PCs)and concrete. For each product, we present the results of an explorativecase study to identify specific opportunities for greenhouse gas (GHG)emissions reductions at each stage of the product life cycle. We thenoffer a discussion of the practical policy options that may exist forrealizing the identified GHG reduction opportunities. The case studiesdemonstrate that there may be significant GHG mitigation options as wellas a number of policy options that could lead to life-cycle GHG emissionsreductions for PCs and concrete in California.

  19. Ecology of Fungus Gnats (Bradysia spp.) in Greenhouse Production Systems Associated with Disease-Interactions and Alternative Management Strategies.

    PubMed

    Cloyd, Raymond A

    2015-01-01

    Fungus gnats (Bradysia spp.) are major insect pests of greenhouse-grown horticultural crops mainly due to the direct feeding damage caused by the larvae, and the ability of larvae to transmit certain soil-borne plant pathogens. Currently, insecticides and biological control agents are being used successively to deal with fungus gnat populations in greenhouse production systems. However, these strategies may only be effective as long as greenhouse producers also implement alternative management strategies such as cultural, physical, and sanitation. This includes elimination of algae, and plant and growing medium debris; placing physical barriers onto the growing medium surface; and using materials that repel fungus gnat adults. This article describes the disease-interactions associated with fungus gnats and foliar and soil-borne diseases, and the alternative management strategies that should be considered by greenhouse producers in order to alleviate problems with fungus gnats in greenhouse production systems. PMID:26463188

  20. Ecology of Fungus Gnats (Bradysia spp.) in Greenhouse Production Systems Associated with Disease-Interactions and Alternative Management Strategies.

    PubMed

    Cloyd, Raymond A

    2015-04-09

    Fungus gnats (Bradysia spp.) are major insect pests of greenhouse-grown horticultural crops mainly due to the direct feeding damage caused by the larvae, and the ability of larvae to transmit certain soil-borne plant pathogens. Currently, insecticides and biological control agents are being used successively to deal with fungus gnat populations in greenhouse production systems. However, these strategies may only be effective as long as greenhouse producers also implement alternative management strategies such as cultural, physical, and sanitation. This includes elimination of algae, and plant and growing medium debris; placing physical barriers onto the growing medium surface; and using materials that repel fungus gnat adults. This article describes the disease-interactions associated with fungus gnats and foliar and soil-borne diseases, and the alternative management strategies that should be considered by greenhouse producers in order to alleviate problems with fungus gnats in greenhouse production systems.

  1. Ecology of Fungus Gnats (Bradysia spp.) in Greenhouse Production Systems Associated with Disease-Interactions and Alternative Management Strategies

    PubMed Central

    Cloyd, Raymond A.

    2015-01-01

    Fungus gnats (Bradysia spp.) are major insect pests of greenhouse-grown horticultural crops mainly due to the direct feeding damage caused by the larvae, and the ability of larvae to transmit certain soil-borne plant pathogens. Currently, insecticides and biological control agents are being used successively to deal with fungus gnat populations in greenhouse production systems. However, these strategies may only be effective as long as greenhouse producers also implement alternative management strategies such as cultural, physical, and sanitation. This includes elimination of algae, and plant and growing medium debris; placing physical barriers onto the growing medium surface; and using materials that repel fungus gnat adults. This article describes the disease-interactions associated with fungus gnats and foliar and soil-borne diseases, and the alternative management strategies that should be considered by greenhouse producers in order to alleviate problems with fungus gnats in greenhouse production systems. PMID:26463188

  2. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems

    PubMed Central

    Herrero, Mario; Havlík, Petr; Valin, Hugo; Notenbaert, An; Rufino, Mariana C.; Thornton, Philip K.; Blümmel, Michael; Weiss, Franz; Grace, Delia; Obersteiner, Michael

    2013-01-01

    We present a unique, biologically consistent, spatially disaggregated global livestock dataset containing information on biomass use, production, feed efficiency, excretion, and greenhouse gas emissions for 28 regions, 8 livestock production systems, 4 animal species (cattle, small ruminants, pigs, and poultry), and 3 livestock products (milk, meat, and eggs). The dataset contains over 50 new global maps containing high-resolution information for understanding the multiple roles (biophysical, economic, social) that livestock can play in different parts of the world. The dataset highlights: (i) feed efficiency as a key driver of productivity, resource use, and greenhouse gas emission intensities, with vast differences between production systems and animal products; (ii) the importance of grasslands as a global resource, supplying almost 50% of biomass for animals while continuing to be at the epicentre of land conversion processes; and (iii) the importance of mixed crop–livestock systems, producing the greater part of animal production (over 60%) in both the developed and the developing world. These data provide critical information for developing targeted, sustainable solutions for the livestock sector and its widely ranging contribution to the global food system. PMID:24344273

  3. Using flowering and heat-loss models for improving greenhouse energy-use efficiency in annual bedding plant production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In temperate climates, annual bedding plants are typically produced in heated greenhouses from late winter through early summer. Temperature, photoperiod, light intensity, and transplant date are commonly manipulated during commercial production so that plants are in flower for predetermined market ...

  4. Greenhouse gas and carbon profile of the u.s. Forest products industry value chain.

    PubMed

    Heath, Linda S; Maltby, Van; Miner, Reid; Skog, Kenneth E; Smith, James E; Unwin, Jay; Upton, Brad

    2010-05-15

    A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004-2005 by examining net atmospheric fluxes of CO(2) and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity generation) emissions from manufacturing and methane emissions from landfilled products. Forest carbon stocks in forests supplying wood to the industry were found to be stable or increasing. Increases in the annual amounts of carbon removed from the atmosphere and stored in forest products offset about half of the total value chain emissions. Overall net transfers to the atmosphere totaled 91.8 and 103.5 TgCO(2)-eq. in 1990 and 2005, respectively, although the difference between these net transfers may not be statistically significant. Net transfers were higher in 2005 primarily because additions to carbon stored in forest products were less in 2005. Over this same period, energy-related manufacturing emissions decreased by almost 9% even though forest products output increased by approximately 15%. Several types of avoided emissions were considered separately and were collectively found to be notable relative to net emissions.

  5. Greenhouse Gas and Carbon Profile of the U.S. Forest Products Industry Value Chain

    PubMed Central

    2010-01-01

    A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004−2005 by examining net atmospheric fluxes of CO2 and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity generation) emissions from manufacturing and methane emissions from landfilled products. Forest carbon stocks in forests supplying wood to the industry were found to be stable or increasing. Increases in the annual amounts of carbon removed from the atmosphere and stored in forest products offset about half of the total value chain emissions. Overall net transfers to the atmosphere totaled 91.8 and 103.5 TgCO2-eq. in 1990 and 2005, respectively, although the difference between these net transfers may not be statistically significant. Net transfers were higher in 2005 primarily because additions to carbon stored in forest products were less in 2005. Over this same period, energy-related manufacturing emissions decreased by almost 9% even though forest products output increased by approximately 15%. Several types of avoided emissions were considered separately and were collectively found to be notable relative to net emissions. PMID:20355695

  6. Effects of organic matter amendments on net primary productivity and greenhouse gas emissions in annual grasslands.

    PubMed

    Ryals, Rebecca; Silver, Whendee L

    2013-01-01

    Most of the world's grasslands are managed for livestock production. A critical component of the long-term sustainability and profitability of rangelands (e.g., grazed grassland ecosystems) is the maintenance of plant production. Amending grassland soils with organic waste has been proposed as a means to increase net primary productivity (NPP) and ecosystem carbon (C) storage, while mitigating greenhouse gas emissions from waste management. Few studies have evaluated the effects of amendments on the C balance and greenhouse gas dynamics of grasslands. We used field manipulations replicated within and across two rangelands (a valley grassland and a coastal grassland) to determine the effects of a single application of composted green waste amendments on NPP and greenhouse gas emissions over three years. Amendments elevated total soil respiration by 18% +/- 4% at both sites but had no effect on nitrous oxide or methane emissions. Carbon losses were significantly offset by greater and sustained plant production. Amendments stimulated both above- and belowground NPP by 2.1 +/- 0.8 Mg C/ha to 4.7 +/- 0.7 Mg C/ha (mean +/- SE) over the three-year study period. Net ecosystem C storage increased by 25-70% without including the direct addition of compost C. The estimated magnitude of net ecosystem C storage was sensitive to estimates of heterotrophic soil respiration but was greater than controls in five out of six fields that received amendments. The sixth plot was the only one that exhibited lower soil moisture than the control, suggesting an important role of water limitation in these seasonally dry ecosystems. Treatment effects persisted over the course of the study, which were likely derived from increased water-holding capacity in most plots, and slow-release fertilization from compost decomposition. We conclude that a single application of composted organic matter can significantly increase grassland C storage, and that effects of a single application are likely to

  7. Effects of organic matter amendments on net primary productivity and greenhouse gas emissions in annual grasslands.

    PubMed

    Ryals, Rebecca; Silver, Whendee L

    2013-01-01

    Most of the world's grasslands are managed for livestock production. A critical component of the long-term sustainability and profitability of rangelands (e.g., grazed grassland ecosystems) is the maintenance of plant production. Amending grassland soils with organic waste has been proposed as a means to increase net primary productivity (NPP) and ecosystem carbon (C) storage, while mitigating greenhouse gas emissions from waste management. Few studies have evaluated the effects of amendments on the C balance and greenhouse gas dynamics of grasslands. We used field manipulations replicated within and across two rangelands (a valley grassland and a coastal grassland) to determine the effects of a single application of composted green waste amendments on NPP and greenhouse gas emissions over three years. Amendments elevated total soil respiration by 18% +/- 4% at both sites but had no effect on nitrous oxide or methane emissions. Carbon losses were significantly offset by greater and sustained plant production. Amendments stimulated both above- and belowground NPP by 2.1 +/- 0.8 Mg C/ha to 4.7 +/- 0.7 Mg C/ha (mean +/- SE) over the three-year study period. Net ecosystem C storage increased by 25-70% without including the direct addition of compost C. The estimated magnitude of net ecosystem C storage was sensitive to estimates of heterotrophic soil respiration but was greater than controls in five out of six fields that received amendments. The sixth plot was the only one that exhibited lower soil moisture than the control, suggesting an important role of water limitation in these seasonally dry ecosystems. Treatment effects persisted over the course of the study, which were likely derived from increased water-holding capacity in most plots, and slow-release fertilization from compost decomposition. We conclude that a single application of composted organic matter can significantly increase grassland C storage, and that effects of a single application are likely to

  8. Greenhouse gas balances in low-productive drained boreal peatlands - is climate-friendly management possible?

    NASA Astrophysics Data System (ADS)

    Ojanen, Paavo; Minkkinen, Kari; Heikkinen, Tiina; Penttilä, Timo

    2016-04-01

    Five million hectares of peatland has been drained for forestry in Finland. About 20% of that, i.e. one million hectares, has been estimated to be so low-productive that the profitability of keeping them in forestry is questionable. At the same time, drainage has introduced changes in the ecosystem functions of these peatlands, including fluxes of greenhouse gases. Options to manage such peatlands include for example 1) no measures, i.e. leaving the drained peatlands as they are 2) increasing intensity by e.g. repetitive fertilisations and 3) restoration back to functional peatlands. Here we estimate the greenhouse gas impacts of these three management options. We collected GHG and organic carbon flux data from 50 low-productive peatlands under these management options over two years 2014-2015. Gas fluxes (CO2, CH4, N2O) were measured with closed chambers. Litter production rates of different plants above and below ground were estimated using litter traps (trees), biomass sampling (roots), through-grow nets (mosses), allometric biomass models (other vasculars) and published turnover rates (roots, other vasculars). Characteristics for estimating tree stand biomass increment were measured at each site from circular sample plots. In this presentation we will estimate the GHG impacts for the different management options, and aim to find the most climate-friendly options for the management of low-productive peatlands in the short and long term. This work was funded by Life+ LIFE12/ENV/FI/150.

  9. Agricultural and Management Practices and Bacterial Contamination in Greenhouse versus Open Field Lettuce Production

    PubMed Central

    Holvoet, Kevin; Sampers, Imca; Seynnaeve, Marleen; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2014-01-01

    The aim of this study was to gain insight into potential differences in risk factors for microbial contamination in greenhouse versus open field lettuce production. Information was collected on sources, testing, and monitoring and if applicable, treatment of irrigation and harvest rinsing water. These data were combined with results of analysis on the levels of Escherichia coli as a fecal indicator organism and the presence of enteric bacterial pathogens on both lettuce crops and environmental samples. Enterohemorragic Escherichia coli (EHEC) PCR signals (vt1 or vt2 positive and eae positive), Campylobacter spp., and Salmonella spp. isolates were more often obtained from irrigation water sampled from open field farms (21/45, 46.7%) versus from greenhouse production (9/75, 12.0%). The open field production was shown to be more prone to fecal contamination as the number of lettuce samples and irrigation water with elevated E. coli was significantly higher. Farmers comply with generic guidelines on good agricultural practices available at the national level, but monitoring of microbial quality, and if applicable appropriateness of water treatment, or water used for irrigation or at harvest is restricted. These results indicate the need for further elaboration of specific guidelines and control measures for leafy greens with regard to microbial hazards. PMID:25546272

  10. Agricultural and management practices and bacterial contamination in greenhouse versus open field lettuce production.

    PubMed

    Holvoet, Kevin; Sampers, Imca; Seynnaeve, Marleen; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2014-12-23

    The aim of this study was to gain insight into potential differences in risk factors for microbial contamination in greenhouse versus open field lettuce production. Information was collected on sources, testing, and monitoring and if applicable, treatment of irrigation and harvest rinsing water. These data were combined with results of analysis on the levels of Escherichia coli as a fecal indicator organism and the presence of enteric bacterial pathogens on both lettuce crops and environmental samples. Enterohemorragic Escherichia coli (EHEC) PCR signals (vt1 or vt2 positive and eae positive), Campylobacter spp., and Salmonella spp. isolates were more often obtained from irrigation water sampled from open field farms (21/45, 46.7%) versus from greenhouse production (9/75, 12.0%). The open field production was shown to be more prone to fecal contamination as the number of lettuce samples and irrigation water with elevated E. coli was significantly higher. Farmers comply with generic guidelines on good agricultural practices available at the national level, but monitoring of microbial quality, and if applicable appropriateness of water treatment, or water used for irrigation or at harvest is restricted. These results indicate the need for further elaboration of specific guidelines and control measures for leafy greens with regard to microbial hazards.

  11. Agricultural and management practices and bacterial contamination in greenhouse versus open field lettuce production.

    PubMed

    Holvoet, Kevin; Sampers, Imca; Seynnaeve, Marleen; Jacxsens, Liesbeth; Uyttendaele, Mieke

    2015-01-01

    The aim of this study was to gain insight into potential differences in risk factors for microbial contamination in greenhouse versus open field lettuce production. Information was collected on sources, testing, and monitoring and if applicable, treatment of irrigation and harvest rinsing water. These data were combined with results of analysis on the levels of Escherichia coli as a fecal indicator organism and the presence of enteric bacterial pathogens on both lettuce crops and environmental samples. Enterohemorragic Escherichia coli (EHEC) PCR signals (vt1 or vt2 positive and eae positive), Campylobacter spp., and Salmonella spp. isolates were more often obtained from irrigation water sampled from open field farms (21/45, 46.7%) versus from greenhouse production (9/75, 12.0%). The open field production was shown to be more prone to fecal contamination as the number of lettuce samples and irrigation water with elevated E. coli was significantly higher. Farmers comply with generic guidelines on good agricultural practices available at the national level, but monitoring of microbial quality, and if applicable appropriateness of water treatment, or water used for irrigation or at harvest is restricted. These results indicate the need for further elaboration of specific guidelines and control measures for leafy greens with regard to microbial hazards. PMID:25546272

  12. Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation

    NASA Astrophysics Data System (ADS)

    de Oliveira Silva, R.; Barioni, L. G.; Hall, J. A. J.; Folegatti Matsuura, M.; Zanett Albertini, T.; Fernandes, F. A.; Moran, D.

    2016-05-01

    Recent debate about agricultural greenhouse gas emissions mitigation highlights trade-offs inherent in the way we produce and consume food, with increasing scrutiny on emissions-intensive livestock products. Although most research has focused on mitigation through improved productivity, systemic interactions resulting from reduced beef production at the regional level are still unexplored. A detailed optimization model of beef production encompassing pasture degradation and recovery processes, animal and deforestation emissions, soil organic carbon (SOC) dynamics and upstream life-cycle inventory was developed and parameterized for the Brazilian Cerrado. Economic return was maximized considering two alternative scenarios: decoupled livestock-deforestation (DLD), assuming baseline deforestation rates controlled by effective policy; and coupled livestock-deforestation (CLD), where shifting beef demand alters deforestation rates. In DLD, reduced consumption actually leads to less productive beef systems, associated with higher emissions intensities and total emissions, whereas increased production leads to more efficient systems with boosted SOC stocks, reducing both per kilogram and total emissions. Under CLD, increased production leads to 60% higher emissions than in DLD. The results indicate the extent to which deforestation control contributes to sustainable intensification in Cerrado beef systems, and how alternative life-cycle analytical approaches result in significantly different emission estimates.

  13. Regional crop productivity and greenhouse gas emissions from Swiss soils under organic farming

    NASA Astrophysics Data System (ADS)

    Lee, Juhwan; Necpalova, Magdalena; Six, Johan

    2016-04-01

    There is worldwide concern about the increase in atmospheric greenhouse gases (GHG) and their impact on climate change and food security. As a sustainable alternative, organic cropping in various forms has been promoted to minimize the environmental impacts of conventional practices. However, relatively little is known about the potential to reduce GHG emissions while maintaining crop productivity through the large-scale adoption of organic practices. Therefore, we simulated and compared regional crop production, soil organic carbon status, and net soil GHG emissions under organic and conventional practices. Grid-level (2.2 km by 2.2 km) simulation was performed using previously validated DailyDayCent by considering typical crop rotations. Regional model estimates are presented and discussed specifically with the focus on Swiss organic and conventional cropping systems, which differ by type and intensity of manuring, tillage, and cover crop.

  14. Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands.

    PubMed

    Maltais-Landry, Gabriel; Maranger, Roxane; Brisson, Jacques; Chazarenc, Florent

    2009-03-01

    Greenhouse gas (GHG) emissions by constructed wetlands (CWs) could mitigate the environmental benefits of nutrient removal in these man-made ecosystems. We studied the effect of 3 different macrophyte species and artificial aeration on the rates of nitrous oxide (N(2)O), carbon dioxide (CO(2)) and methane (CH(4)) production in CW mesocosms over three seasons. CW emitted 2-10 times more GHG than natural wetlands. Overall, CH(4) was the most important GHG emitted in unplanted treatments. Oxygen availability through artificial aeration reduced CH(4) fluxes. Plant presence also decreased CH(4) fluxes but favoured CO(2) production. Nitrous oxide had a minor contribution to global warming potential (GWP<15%). The introduction of oxygen through artificial aeration combined with plant presence, particularly Typha angustifolia, had the overall best performance among the treatments tested in this study, including lowest GWP, greatest nutrient removal, and best hydraulic properties.

  15. Land use greenhouse gas emissions from conventional oil production and oil sands.

    PubMed

    Yeh, Sonia; Jordaan, Sarah M; Brandt, Adam R; Turetsky, Merritt R; Spatari, Sabrina; Keith, David W

    2010-11-15

    Debates surrounding the greenhouse gas (GHG) emissions from land use of biofuels production have created a need to quantify the relative land use GHG intensity of fossil fuels. When contrasting land use GHG intensity of fossil fuel and biofuel production, it is the energy yield that greatly distinguishes the two. Although emissions released from land disturbed by fossil fuels can be comparable or higher than biofuels, the energy yield of oil production is typically 2-3 orders of magnitude higher, (0.33-2.6, 0.61-1.2, and 2.2 5.1 PJ/ha) for conventional oil production, oil sands surface mining, and in situ production, respectively). We found that land use contributes small portions of GHGs to life cycle emissions of California crude and in situ oil sands production ( <0.4% or < 0.4 gCO₂e/MJ crude refinery feedstock) and small to modest portions for Alberta conventional oil (0.1-4% or 0.1-3.4 gCO₂e/MJ) and surface mining of oil sands (0.9-11% or 0.8-10.2 gCO₂e/MJ).Our estimates are based on assumptions aggregated over large spatial and temporal scales and assuming 100% reclamation. Values on finer spatial and temporal scales that are relevant to policy targets need to account for site-specific information, the baseline natural and anthropogenic disturbance.

  16. Mitigating greenhouse gas emissions in China's agriculture: from farm production to food consumption

    NASA Astrophysics Data System (ADS)

    Yue, Qian; Cheng, Kun; Pan, Genxing

    2016-04-01

    Greenhouse gas (GHG) emissions from agriculture could be mitigated from both supple side and demand side. Assessing carbon footprint (CF) of agricultural production and food consumption could provide insights into the contribution of agriculture to climate change and help to identify possible GHG mitigation options. In the present study, CF of China's agricultural production was firstly assessed from site scale to national scale, and from crop production to livestock production. Data for the crop and livestock production were collected from field survey and national statistical archive, and both life cycle assessment and input-output method were employed in the estimations. In general, CF of crop production was lower than that of livestock production on average. Rice production ranked the highest CF in crop production, and the highest CFs of livestock production were observed in mutton and beef production. Methane emissions from rice paddy, emissions from fertilizer application and water irrigation exerted the largest contribution of more than 50% for CF of crop production; however, emissions from forage feeding, enteric fermentation and manure treatment made the most proportion of more than 90 % for CF of livestock production. In China, carbon efficiency was shown in a decreasing trend in recent years. According to the present study, overuse of nitrogen fertilizer caused no yield effect but significant emissions in some sites and regions of China, and aggregated farms lowered the CFs of crop production and livestock production by 3% to 25% and 6% to 60% respectively compared to household farms. Given these, improving farming management efficiency and farm intensive development is the key strategy to mitigate climate change from supply side. However, changes in food consumption may reduce GHG emissions in the production chain through a switch to the consumption of food with higher GHG emissions in the production process to food with lower GHG emissions. Thus, CFs

  17. Energy analyses and greenhouse gas emissions assessment for saffron production cycle.

    PubMed

    Bakhtiari, Amir Abbas; Hematian, Amir; Sharifi, Azin

    2015-10-01

    Population growth and world climate changes are putting high pressure on agri-food production systems. Exacerbating use of energy sources and expanding the environmental damaging symptoms are the results of these difficult situations. This study was conducted to determine the energy balance for saffron production cycle and investigate the corresponding greenhouse gas (GHG) emissions in Iran. Saffron (Crocus sativus L.) is one of the main spice that historically cultivated in Iran. Data were obtained from 127 randomly selected saffron growers using a face to face questionnaire technique. The results revealed that in 5 years of saffron production cycle, the overall input and output energy use were to be 163,912.09 and 184,868.28 MJ ha(-1), respectively. The highest-level of energy consumption belongs to seeds (23.7 %) followed by chemical fertilizers (23.4 %). Energy use efficiency, specific energy, net energy, and energy productivity of saffron production were 1.1, 13.4 MJ kg(-1), 20,956.2 MJ ha(-1), and 0.1 kg MJ(-1), respectively. The result shows that the cultivation of saffron emits 2325.5 kg CO2 eq. ha(-1) greenhouse gas, in which around 46.5 % belonged to electricity followed by chemical fertilizers. In addition the Cobb-Douglas production function was applied into EViews 7 software to define the functional relationship. The results of econometric model estimation showed that the impact of human labor, electricity, and water for irrigation on stigma, human labor, electricity, and seed on corm and also human labor and farmyard manure (FYM) on flower and leaf yield were found to be statistically significant. Sensitivity analysis results of the energy inputs demonstrated that the marginal physical productivity (MPP) worth of electricity energy was the highest for saffron stigma and corm, although saffron flower and leaf had more sensitivity on chemicals energy inputs. Moreover, MPP values of renewable and indirect energies were higher than non-renewable and

  18. Energy analyses and greenhouse gas emissions assessment for saffron production cycle.

    PubMed

    Bakhtiari, Amir Abbas; Hematian, Amir; Sharifi, Azin

    2015-10-01

    Population growth and world climate changes are putting high pressure on agri-food production systems. Exacerbating use of energy sources and expanding the environmental damaging symptoms are the results of these difficult situations. This study was conducted to determine the energy balance for saffron production cycle and investigate the corresponding greenhouse gas (GHG) emissions in Iran. Saffron (Crocus sativus L.) is one of the main spice that historically cultivated in Iran. Data were obtained from 127 randomly selected saffron growers using a face to face questionnaire technique. The results revealed that in 5 years of saffron production cycle, the overall input and output energy use were to be 163,912.09 and 184,868.28 MJ ha(-1), respectively. The highest-level of energy consumption belongs to seeds (23.7 %) followed by chemical fertilizers (23.4 %). Energy use efficiency, specific energy, net energy, and energy productivity of saffron production were 1.1, 13.4 MJ kg(-1), 20,956.2 MJ ha(-1), and 0.1 kg MJ(-1), respectively. The result shows that the cultivation of saffron emits 2325.5 kg CO2 eq. ha(-1) greenhouse gas, in which around 46.5 % belonged to electricity followed by chemical fertilizers. In addition the Cobb-Douglas production function was applied into EViews 7 software to define the functional relationship. The results of econometric model estimation showed that the impact of human labor, electricity, and water for irrigation on stigma, human labor, electricity, and seed on corm and also human labor and farmyard manure (FYM) on flower and leaf yield were found to be statistically significant. Sensitivity analysis results of the energy inputs demonstrated that the marginal physical productivity (MPP) worth of electricity energy was the highest for saffron stigma and corm, although saffron flower and leaf had more sensitivity on chemicals energy inputs. Moreover, MPP values of renewable and indirect energies were higher than non-renewable and

  19. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan

    SciTech Connect

    Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash

    2014-10-15

    This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO{sub 2}e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO{sub 2}e, fertilizer application accounted for 754, 3251, and 4761 tCO{sub 2}e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO{sub 2}e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO{sub 2}e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO{sub 2}e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO{sub 2}e per million cigarettes produced in 2009, 0.675 tCO{sub 2}e per million cigarettes in 2010 and 0.59 tCO{sub 2}e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy

  20. Recycling of wood for particle board production: accounting of greenhouse gases and global warming contributions.

    PubMed

    Merrild, Hanna; Christensen, Thomas H

    2009-11-01

    The greenhouse gas (GHG) emissions related to the recycling of wood waste have been assessed with the purpose to provide useful data that can be used in accounting of greenhouse gas emissions. Here we present data related to the activities in a material recovery facility (MRF) where wood waste is shredded and foreign objects are removed in order to produce wood chips for use in the production of particleboard. The data are presented in accordance with the UOD (upstream, operational, downstream) framework presented in Gentil et al. (Waste Management & Research, 27, 2009). The GHG accounting shows that the emissions related to upstream activities (5 to 41 kg CO(2)-equivalents tonne( -1) wood waste) and to activities at the MRF (approximately 5 kg CO(2)-equivalents tonne(-1) wood waste) are negligible compared to the downstream processing (-560 to -120 kg CO(2)equivalents tonne(-1) wood waste). The magnitude of the savings in GHG emissions downstream are mainly related to savings in energy consumption for drying of fresh wood for particleboard production. However, the GHG account highly depends on the choices made in the modelling of the downstream system. The inclusion of saved electricity from avoided chipping of virgin wood does not change the results radically (-665 to -125 kg CO(2)-equivalents tonne(- 1) wood waste). However, if in addition it is assumed that the GHG emissions from combustion of wood has no global warming potential (GWP) and that the energy produced from excess wood due to recycling substitutes energy from fossil fuels, here assumed to be coal, potentially large downstream GHG emissions savings can be achieved by recycling of waste wood (-1.9 to -1.3 tonnes CO(2)-equivalents tonne(- 1) wood waste). As the data ranges are broad, it is necessary to carefully evaluate the feasibility of the data in the specific system which the GHG accounting is to be applied to.

  1. Decoupling of greenhouse gas emissions from global agricultural production: 1970-2050.

    PubMed

    Bennetzen, Eskild H; Smith, Pete; Porter, John R

    2016-02-01

    Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements allowing not only a combined analysis of the total level of all emissions jointly with emissions per unit area and emissions per unit product. It also allows us to examine how a change in emissions from a given source contributes to the change in total emissions over time. We show that agricultural production and GHGs have been steadily decoupled over recent decades. Emissions peaked in 1991 at ~12 Pg CO2 -eq. yr(-1) and have not exceeded this since. Since 1970 GHG emissions per unit product have declined by 39% and 44% for crop- and livestock-production, respectively. Except for the energy-use component of farming, emissions from all sources have increased less than agricultural production. Our projected business-as-usual range suggests that emissions may be further decoupled by 20-55% giving absolute agricultural emissions of 8.2-14.5 Pg CO2 -eq. yr(-1) by 2050, significantly lower than many previous estimates that do not allow for decoupling. Beyond this, several additional costcompetitive mitigation measures could reduce emissions further. However, agricultural GHG emissions can only be reduced to a certain level and a simultaneous focus on other parts of the food-system is necessary to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis.

  2. Decoupling of greenhouse gas emissions from global agricultural production: 1970-2050.

    PubMed

    Bennetzen, Eskild H; Smith, Pete; Porter, John R

    2016-02-01

    Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements allowing not only a combined analysis of the total level of all emissions jointly with emissions per unit area and emissions per unit product. It also allows us to examine how a change in emissions from a given source contributes to the change in total emissions over time. We show that agricultural production and GHGs have been steadily decoupled over recent decades. Emissions peaked in 1991 at ~12 Pg CO2 -eq. yr(-1) and have not exceeded this since. Since 1970 GHG emissions per unit product have declined by 39% and 44% for crop- and livestock-production, respectively. Except for the energy-use component of farming, emissions from all sources have increased less than agricultural production. Our projected business-as-usual range suggests that emissions may be further decoupled by 20-55% giving absolute agricultural emissions of 8.2-14.5 Pg CO2 -eq. yr(-1) by 2050, significantly lower than many previous estimates that do not allow for decoupling. Beyond this, several additional costcompetitive mitigation measures could reduce emissions further. However, agricultural GHG emissions can only be reduced to a certain level and a simultaneous focus on other parts of the food-system is necessary to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis. PMID:26451699

  3. Temperature effects on net greenhouse gas production and bacterial communities in arctic thaw ponds.

    PubMed

    Negandhi, Karita; Laurion, Isabelle; Lovejoy, Connie

    2016-08-01

    One consequence of High Arctic permafrost thawing is the formation of small ponds, which release greenhouse gases (GHG) from stored carbon through microbial activity. Under a climate with higher summer air temperatures and longer ice-free seasons, sediments of shallow ponds are likely to become warmer, which could influence enzyme kinetics or select for less cryophilic microbes. There is little data on the direct temperature effects on GHG production and consumption or on microbial communities' composition in Arctic ponds. We investigated GHG production over 16 days at 4°C and 9°C in sediments collected from four thaw ponds. Consistent with an enzymatic response, production rates of CO2 and CH4 were significantly greater at higher temperatures, with Q10 varying from 1.2 to 2.5. The bacterial community composition from one pond was followed through the incubation by targeting the V6-V8 variable regions of the 16S rRNA gene and 16S rRNA. Several rare taxa detected from rRNA accounted for significant community compositional changes. At the higher temperature, the relative community contribution from Bacteroidetes decreased by 15% with compensating increases in Betaproteobacteria, Alphaproteobacteria, Firmicutes, Acidobacteria, Verrucomicrobia and Actinobacteria. The increase in experimental GHG production accompanied by changes in community indicates an additional factor to consider in sediment environments when evaluating future climate scenarios. PMID:27288196

  4. Variation Trend and Driving Factors of Greenhouse Gas Emissions from Chinese Magnesium Production.

    PubMed

    Gao, Feng; Liu, Yu; Nie, Zuo-Ren; Gong, Xianzheng; Wang, Zhihong

    2015-11-01

    As the largest magnesium producer in the world, China is facing a great challenge of greenhouse gas (GHG) emissions reduction. In this paper, the variation trend and driving factors of GHG emissions from Chinese magnesium production were evaluated and the measures of technology and policy for effectively mitigating GHG emissions were provided. First, the energy-related and process-oriented GHG inventory is compiled for magnesium production in China. Then, the driving forces for the changes of the energy-related emission were analyzed by the method of Logarithmic Mean Divisia Index (LMDI) decomposition. Results demonstrated that Chinese magnesium output from 2003 to 2013 increased by 125%, whereas GHG emissions only increased by 16%. The emissions caused by the fuels consumption decline most significantly (from 28.4 to 6.6 t CO2eq/t Mg) among all the emission sources. The energy intensity and the energy structure were the main offsetting factors for the increase of GHG emissions, while the scale of production and the international market demand were the main contributors for the total increase. Considering the improvement of technology application and more stringent policy measures, the annual GHG emissions from Chinese primary magnesium production will be controlled within 22 million tons by 2020.

  5. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000.

    PubMed

    Parton, William J; Gutmann, Myron P; Merchant, Emily R; Hartman, Melannie D; Adler, Paul R; McNeal, Frederick M; Lutz, Susan M

    2015-08-25

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  6. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000.

    PubMed

    Parton, William J; Gutmann, Myron P; Merchant, Emily R; Hartman, Melannie D; Adler, Paul R; McNeal, Frederick M; Lutz, Susan M

    2015-08-25

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices.

  7. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000

    PubMed Central

    Parton, William J.; Gutmann, Myron P.; Merchant, Emily R.; Hartman, Melannie D.; Adler, Paul R.; McNeal, Frederick M.; Lutz, Susan M.

    2015-01-01

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  8. Greenhouse tomato limited cluster production systems: crop management practices affect yield

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Specca, D. R.; Janes, H. W.

    2001-01-01

    Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

  9. Increased greenhouse-gas intensity of rice production under future atmospheric conditions

    NASA Astrophysics Data System (ADS)

    van Groenigen, Kees Jan; van Kessel, Chris; Hungate, Bruce A.

    2013-03-01

    Increased atmospheric CO2 and rising temperatures are expected to affect rice yields and greenhouse-gas (GHG) emissions from rice paddies. This is important, because rice cultivation is one of the largest human-induced sources of the potent GHG methane (CH4) and rice is the world's second-most produced staple crop. The need for meeting a growing global food demand argues for assessing GHG emissions from croplands on the basis of yield rather than land area, such that efforts to reduce GHG emissions take into consideration the consequences for food production. However, it is unclear whether or how the GHG intensity (that is, yield-scaled GHG emissions) of cropping systems will be affected by future atmospheric conditions. Here we show, using meta-analysis, that increased atmospheric CO2 (ranging from 550 to 743ppmV) and warming (ranging from +0.8°C to +6°C) both increase the GHG intensity of rice cultivation. Increased atmospheric CO2 increased GHG intensity by 31.4%, because CH4 emissions are stimulated more than rice yields. Warming increased GHG intensity by 11.8% per 1°C, largely owing to a decrease in yield. This analysis suggests that rising CO2 and warming will approximately double the GHG intensity of rice production by the end of the twenty-first century, stressing the need for management practices that optimize rice production while reducing its GHG intensity as the climate continues to change.

  10. Hydrogen production and delivery analysis in US markets : cost, energy and greenhouse gas emissions.

    SciTech Connect

    Mintz, M.; Gillette, J.; Elgowainy, A.

    2009-01-01

    Hydrogen production cost conclusions are: (1) Steam Methane Reforming (SMR) is the least-cost production option at current natural gas prices and for initial hydrogen vehicle penetration rates, at high production rates, SMR may not be the least-cost option; (2) Unlike coal and nuclear technologies, the cost of natural gas feedstock is the largest contributor to SMR production cost; (3) Coal- and nuclear-based hydrogen production have significant penalties at small production rates (and benefits at large rates); (4) Nuclear production of hydrogen is likely to have large economies of scale, but because fixed O&M costs are uncertain, the magnitude of these effects may be understated; and (5) Given H2A default assumptions for fuel prices, process efficiencies and labor costs, nuclear-based hydrogen is likely to be more expensive to produce than coal-based hydrogen. Carbon taxes and caps can narrow the gap. Hydrogen delivery cost conclusions are: (1) For smaller urban markets, compressed gas delivery appears most economic, although cost inputs for high-pressure gas trucks are uncertain; (2) For larger urban markets, pipeline delivery is least costly; (3) Distance from hydrogen production plant to city gate may change relative costs (all results shown assume 100 km); (4) Pipeline costs may be reduced with system 'rationalization', primarily reductions in service pipeline mileage; and (5) Liquefier and pipeline capital costs are a hurdle, particularly at small market sizes. Some energy and greenhouse gas Observations: (1) Energy use (per kg of H2) declines slightly with increasing production or delivery rate for most components (unless energy efficiency varies appreciably with scale, e.g., liquefaction); (2) Energy use is a strong function of production technology and delivery mode; (3) GHG emissions reflect the energy efficiency and carbon content of each component in a production-delivery pathway; (4) Coal and natural gas production pathways have high energy consumption

  11. Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries.

    PubMed

    Elgowainy, Amgad; Han, Jeongwoo; Cai, Hao; Wang, Michael; Forman, Grant S; DiVita, Vincent B

    2014-07-01

    This paper describes the development of (1) a formula correlating the variation in overall refinery energy efficiency with crude quality, refinery complexity, and product slate; and (2) a methodology for calculating energy and greenhouse gas (GHG) emission intensities and processing fuel shares of major U.S. refinery products. Overall refinery energy efficiency is the ratio of the energy present in all product streams divided by the energy in all input streams. Using linear programming (LP) modeling of the various refinery processing units, we analyzed 43 refineries that process 70% of total crude input to U.S. refineries and cover the largest four Petroleum Administration for Defense District (PADD) regions (I, II, III, V). Based on the allocation of process energy among products at the process unit level, the weighted-average product-specific energy efficiencies (and ranges) are estimated to be 88.6% (86.2%-91.2%) for gasoline, 90.9% (84.8%-94.5%) for diesel, 95.3% (93.0%-97.5%) for jet fuel, 94.5% (91.6%-96.2%) for residual fuel oil (RFO), and 90.8% (88.0%-94.3%) for liquefied petroleum gas (LPG). The corresponding weighted-average, production GHG emission intensities (and ranges) (in grams of carbon dioxide-equivalent (CO2e) per megajoule (MJ)) are estimated to be 7.8 (6.2-9.8) for gasoline, 4.9 (2.7-9.9) for diesel, 2.3 (0.9-4.4) for jet fuel, 3.4 (1.5-6.9) for RFO, and 6.6 (4.3-9.2) for LPG. The findings of this study are key components of the life-cycle assessment of GHG emissions associated with various petroleum fuels; such assessment is the centerpiece of legislation developed and promulgated by government agencies in the United States and abroad to reduce GHG emissions and abate global warming.

  12. In vitro cormlet production of saffron (Crocus sativus L. Kashmirianus) and their flowering response under greenhouse.

    PubMed

    Parray, Javid A; Kamili, Azra N; Hamid, Rehana; Husaini, Amjad M

    2012-01-01

    A complete protocol for the saffron cormlet production under in vitro conditions and subsequent flowering under greenhouse conditions is described. Highest number of cormlets (70.0 ± 0.30) per corm slice (explant) could be regenerated on Murashige and Skoog (MS) half strength medium supplemented with thidiazuron (TDZ) (20 µM), Indole acetic acid (IAA) (10 µM), and sucrose (40 g/l). Maximum germination (90%) of these cormlets could be achieved on MS medium containing 6-benzyl amino purine (BAP) (20 µM) and α-naphthalene acetic acid (NAA) (15 µM). In order to increase the size of the in vitro raised cormlets, these were cultured on MS medium containing TDZ (15 µM) and IAA in the range of 1.5-30 µM. Maximum increase in cormlet size could be attained on TDZ (15 µM) + IAA (12.5 µM) + sucrose (30 g/l), and the average size of cormlets was 2.5g. In another experiment, apical vegetative buds of actively growing corms were cultured for cormlet development, and corms of size 2.5g could be developed on MS medium with NAA (15 µM), BAP (20 µM), and sucrose (30 g/l). The in vitro developed cormlets were dried under shade at 25 ± 2°C for 7 d. These were then planted in small cups containing clay loam soil and kept in green house at 20 ± 2°C. In vitro developed cormlets with mean weight 2.5 g showed maximum flowering (25%) as well as vegetative growth (55%), while only 19% cormlets of 2.0 g flowered. To our knowledge this is the first report on successful flowering from in vitro raised cormlets under greenhouse.

  13. Field Testing of the Greenhouse Production Section of a Horticulture Laboratory Record Book for Pennsylvania. Final Report.

    ERIC Educational Resources Information Center

    Rhodes, Kenneth B.

    A study was conducted to develop and field test a greenhouse production record book and unit of instruction for growing potted chrysanthemums. Twenty high schools in Pennsylvania with horticulture departments formed the population for the study. The twenty schools were randomly assigned to four treatment levels: (1) five classes received the…

  14. Mitigation of greenhouse gas emissions in livestock production: a review of technical options for non-C02 emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal production is a significant source of greenhouse gas (GHG) emissions worldwide. This analysis was done to evaluate the potential use of nutritional, manure, and animal management practices to mitigate non-CO2 GHG emissions (i.e., methane, CH4 and nitrous oxide, N2O) from enteric fermentation ...

  15. Hybrid poplar and forest soil response to municipal and industrial by-products: a greenhouse study.

    PubMed

    Cavaleri, Molly A; Gilmore, Daniel W; Mozaffari, Morteza; Rosen, Carl J; Halbach, Thomas R

    2004-01-01

    Little research has been conducted in the Lake States (Minnesota, Wisconsin, and Michigan) to evaluate the effects of municipal and industrial by-product applications on the early growth of short rotation woody crops such as hybrid poplar. Anticipated shortages of harvestable-age aspen in the next decade can be alleviated and rural development can be enhanced through the application of by-products to forest soils. This study was conducted to evaluate the effects of inorganic fertilizer, boiler ash, biosolids, and the co-application of ash and biosolids application on tree growth and soil properties by measuring hybrid poplar clone NM-6 (Populus nigra L. x P. maximowiczii A. Henry) yield, nutrient uptake, and select post-harvest soil properties after 15 wk of greenhouse growth. Treatments included a control of no amendment; agricultural lime; inorganic N, P, and K; three types of boiler ash; biosolids application rates equivalent to 70, 140, 210, and 280 kg available N ha(-1); and boiler ash co-applied with biosolids. All of the by-products treatments showed biomass production that was equal to or greater than inorganic fertilizer and lime treatments. A trend of increased biomass with increasing rates of biosolids was observed. Soil P concentration increased with increasing rates of biosolids application. None of the by-products treatments resulted in plant tissue metal concentrations greater than metal concentrations of plant tissue amended with inorganic amendments. Biosolids, boiler ash, and the co-application of biosolids and boiler ash together on forest soils were as beneficial to plant growth as inorganic fertilizers.

  16. Mycotoxin production by isolates of Fusarium lactis from greenhouse sweet pepper (Capsicum annuum).

    PubMed

    Yang, Y; Bouras, N; Yang, J; Howard, R J; Strelkov, S E

    2011-12-01

    Internal fruit rot, caused by Fusarium lactis, is an important disease of sweet pepper (Capsicum annuum) in Canadian greenhouses. Production of the mycotoxins fumonisin B₁ (FB₁), moniliformin (MON) and beauvericin (BEA) by F. lactis (17 isolates) and the related species F. proliferatum (three isolates) and F. verticillioides (one isolate), which are also associated with internal fruit rot, was evaluated on rice medium. All 21 isolates examined were found to produce BEA, at concentrations ranging from 13.28 to 1674.60 ppm, while 13 of 17 F. lactis isolates and two of three F. proliferatum isolates produced MON (0.23 to 181.85 ppm). Only one isolate of F. lactis produced detectable levels of FB₁ in culture, whereas all three F. proliferatum isolates and the F. verticilloides isolate produced this mycotoxin (0.28 to 314 ppm). Production of FB₁, MON and BEA was also evaluated in inoculated pepper fruits showing mild or severe symptoms of infection. FB₁ could be detected in both lightly and heavily diseased fruit tissue after inoculation with F. lactis, F. proliferatum or F. verticilloides, at concentrations ranging from 0.61 to 8.04 ppm. BEA was also detected in lightly and heavily diseased fruit tissue inoculated with F. lactis, as well as in heavily diseased tissue inoculated with F. proliferatum (3.00 to 19.43 ppm), but not in tissue inoculated with F. verticilloides. MON was detected in all tissues inoculated with F. proliferatum or F. verticilloides, and in heavily diseased tissue inoculated with F. lactis (0.03 to 0.27 ppm). The three mycotoxins were also found in naturally infected sweet pepper fruits exhibiting symptoms of internal fruit rot and collected from a commercial greenhouse. The production of MON, BEA and FB₁ alone or in combination by isolates of F. lactis suggests that development of internal fruit rot of sweet pepper is an important food safety concern, and that every effort should be made to cull infected fruit before it makes it to

  17. Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production

    NASA Astrophysics Data System (ADS)

    Scown, Corinne D.; Nazaroff, William W.; Mishra, Umakant; Strogen, Bret; Lobscheid, Agnes B.; Masanet, Eric; Santero, Nicholas J.; Horvath, Arpad; McKone, Thomas E.

    2012-03-01

    The Energy Independence and Security Act of 2007 set an annual US national production goal of 39.7 billion l of cellulosic ethanol by 2020. This paper explores the possibility of meeting that target by growing and processing Miscanthus × giganteus. We define and assess six production scenarios in which active cropland and/or Conservation Reserve Program land are used to grow to Miscanthus. The crop and biorefinery locations are chosen with consideration of economic, land-use, water management and greenhouse gas (GHG) emissions reduction objectives. Using lifecycle assessment, the net GHG footprint of each scenario is evaluated, providing insight into the climate costs and benefits associated with each scenario’s objectives. Assuming that indirect land-use change is successfully minimized or mitigated, the results suggest two major drivers for overall GHG impact of cellulosic ethanol from Miscanthus: (a) net soil carbon sequestration or emissions during Miscanthus cultivation and (b) GHG offset credits for electricity exported by biorefineries to the grid. Without these factors, the GHG intensity of bioethanol from Miscanthus is calculated to be 11-13 g CO2-equivalent per MJ of fuel, which is 80-90% lower than gasoline. Including soil carbon sequestration and the power-offset credit results in net GHG sequestration up to 26 g CO2-equivalent per MJ of fuel.

  18. Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste

    NASA Astrophysics Data System (ADS)

    Pourbafrani, Mohammad; McKechnie, Jon; MacLean, Heather L.; Saville, Bradley A.

    2013-03-01

    The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA

  19. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.

    PubMed

    Cederberg, C; Hedenus, F; Wirsenius, S; Sonesson, U

    2013-02-01

    To analyse trends in greenhouse gas (GHG) emissions from production and consumption of animal products in Sweden, life cycle emissions were calculated for the average production of pork, chicken meat, beef, dairy and eggs in 1990 and 2005. The calculated average emissions were used together with food consumption statistics and literature data on imported products to estimate trends in per capita emissions from animal food consumption. Total life cycle emissions from the Swedish livestock production were around 8.5 Mt carbon dioxide equivalents (CO2e) in 1990 and emissions decreased to 7.3 Mt CO2e in 2005 (14% reduction). Around two-thirds of the emission cut was explained by more efficient production (less GHG emission per product unit) and one-third was due to a reduced animal production. The average GHG emissions per product unit until the farm-gate were reduced by 20% for dairy, 15% for pork and 23% for chicken meat, unchanged for eggs and increased by 10% for beef. A larger share of the average beef was produced from suckler cows in cow-calf systems in 2005 due to the decreasing dairy cow herd, which explains the increased emissions for the average beef in 2005. The overall emission cuts from the livestock sector were a result of several measures taken in farm production, for example increased milk yield per cow, lowered use of synthetic nitrogen fertilisers in grasslands, reduced losses of ammonia from manure and a switch to biofuels for heating in chicken houses. In contrast to production, total GHG emissions from the Swedish consumption of animal products increased by around 22% between 1990 and 2005. This was explained by strong growth in meat consumption based mainly on imports, where growth in beef consumption especially was responsible for most emission increase over the 15-year period. Swedish GHG emissions caused by consumption of animal products reached around 1.1 t CO2e per capita in 2005. The emission cuts necessary for meeting a global temperature

  20. Trends in greenhouse gas emissions from consumption and production of animal food products - implications for long-term climate targets.

    PubMed

    Cederberg, C; Hedenus, F; Wirsenius, S; Sonesson, U

    2013-02-01

    To analyse trends in greenhouse gas (GHG) emissions from production and consumption of animal products in Sweden, life cycle emissions were calculated for the average production of pork, chicken meat, beef, dairy and eggs in 1990 and 2005. The calculated average emissions were used together with food consumption statistics and literature data on imported products to estimate trends in per capita emissions from animal food consumption. Total life cycle emissions from the Swedish livestock production were around 8.5 Mt carbon dioxide equivalents (CO2e) in 1990 and emissions decreased to 7.3 Mt CO2e in 2005 (14% reduction). Around two-thirds of the emission cut was explained by more efficient production (less GHG emission per product unit) and one-third was due to a reduced animal production. The average GHG emissions per product unit until the farm-gate were reduced by 20% for dairy, 15% for pork and 23% for chicken meat, unchanged for eggs and increased by 10% for beef. A larger share of the average beef was produced from suckler cows in cow-calf systems in 2005 due to the decreasing dairy cow herd, which explains the increased emissions for the average beef in 2005. The overall emission cuts from the livestock sector were a result of several measures taken in farm production, for example increased milk yield per cow, lowered use of synthetic nitrogen fertilisers in grasslands, reduced losses of ammonia from manure and a switch to biofuels for heating in chicken houses. In contrast to production, total GHG emissions from the Swedish consumption of animal products increased by around 22% between 1990 and 2005. This was explained by strong growth in meat consumption based mainly on imports, where growth in beef consumption especially was responsible for most emission increase over the 15-year period. Swedish GHG emissions caused by consumption of animal products reached around 1.1 t CO2e per capita in 2005. The emission cuts necessary for meeting a global temperature

  1. Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics.

    PubMed

    El-Houjeiri, Hassan M; Brandt, Adam R; Duffy, James E

    2013-06-01

    Existing transportation fuel cycle emissions models are either general and calculate nonspecific values of greenhouse gas (GHG) emissions from crude oil production, or are not available for public review and auditing. We have developed the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) to provide open-source, transparent, rigorous GHG assessments for use in scientific assessment, regulatory processes, and analysis of GHG mitigation options by producers. OPGEE uses petroleum engineering fundamentals to model emissions from oil and gas production operations. We introduce OPGEE and explain the methods and assumptions used in its construction. We run OPGEE on a small set of fictional oil fields and explore model sensitivity to selected input parameters. Results show that upstream emissions from petroleum production operations can vary from 3 gCO2/MJ to over 30 gCO2/MJ using realistic ranges of input parameters. Significant drivers of emissions variation are steam injection rates, water handling requirements, and rates of flaring of associated gas.

  2. Streambed sediment controls on hyporheic greenhouse gas production - a microcosm experiment

    NASA Astrophysics Data System (ADS)

    Romeijn, P.; Comer, S.; Krause, S.; Hannah, D. M.; Gooddy, D.

    2015-12-01

    Hyporheic zones, as the interfaces between groundwater and surface water, can contribute significantly to whole stream carbon respiration. The drivers and controls of rates and magnitude of hyporheic greenhouse gas (GHG) production remain poorly understood. Recent research has hypothesised that nitrous oxide emissions resulting from incomplete denitrification in nutrient rich agricultural streams may contribute substantially to GHG emissions. This paper reports on a controlled microcosm incubation experiment that has been set up to quantify the sensitivity of hyporheic zone GHG production to temperature and nutrient concentrations. Experiments were conducted with sediment from two contrasting UK lowland rivers (sandstone and chalk). Adopting a gradient approach, sediments with different organic matter and carbon content were analysed from both rivers. Our analytical approach integrated several novel methods, such as push-pull application of the Resazurin/Resorufin smart tracer system for estimation of sediment microbial metabolic activity, high-resolution gas sampling and analysis of methane, carbon dioxide and nitrous oxide by gas chromatography with mass spectrometry, coupled with and high precision in-situ dissolved oxygen measurements. Our results indicate strong temperature controls of GHG production rates, overlapping with the observed impacts of different sediment types. Experimental findings indicate that increased hyporheic temperatures during increasing baseflow and drought conditions may enhance substantially sediment respiration and thus, GHG emissions from the streambed interface. The presented results integrated with field experiments of respiration and GHG emission rates under different treatments. This research advances understanding of scale dependent drivers and controls of whole stream carbon and nitrogen budgets and the role of streambed interfaces in GHG emissions.

  3. Implications of Vegetation Shifts on Greenhouse Gas Production in a Coastal Salt Marsh

    NASA Astrophysics Data System (ADS)

    Ouni, S.; Corbett, J. E.; Peteet, D. M.

    2014-12-01

    Methane production in salt marshes is understudied, although these anaerobic environments store vast amounts of carbon and may release large quantities as climate shifts. Studies show ranges of salt marsh methane emissions that vary widely from 0.4-160 g CH4 m-2 y-1. CH4 production in salt marshes is governed by several variables. Due to high sulfate concentrations in these environments, less CH4 is expected to form and escape from the subsurface. However, vascular plants allow greater amounts of CH4 escape from subsurface porewater and produce more labile organic carbon substrates, which support higher rates of microbial decomposition. Coastal salt marshes are also dominated by various vascular plant species both native and invasive which may allow for greater amounts of CH4 formation and escape than previously thought. To better understand CH4 dynamics in coastal salt marshes, pore water samples were collected from various depths in Piermont salt marsh, NY (40 ̊00' N, 73 ̊55'W), a tidal wetland that has been invaded in the last century by Phragmites australis. Dissolved organic carbon lability was measured, previously developed isotope-mass balance equations were utilized, and root depth and density were analyzed from several vegetation zones. Areas dominated by invasive Phragmites australis vegetation contain deeper and denser root zones and are expected to produce more subsurface methane and release more methane than areas dominated by native vegetation types. This study will allow us to identify zones more likely to contribute greenhouse gases to the atmosphere and increase knowledge of CH4 production and release in coastal salt marshes.

  4. Productivity of Mizuna Cultivated in the Space Greenhouse Onboard the Russian Module of the Iss

    NASA Astrophysics Data System (ADS)

    Levinskikh, Margarita; Sychev, Vladimir; Podolsky, Igor; Bingham, Gail; Moukhamedieva, Lana

    As stipulated by the science program of research into the processes of growth, development, metabolism and reproduction of higher plants in microgravity in view of their potential use in advanced life support systems, five experiments on Mizuna plants (Brassica rapa var. nipponisica) were performed using the Lada space greenhouse onboard the ISS Russian Module (RM) during Expeditions ISS-5, 17 and 20-22. One of the goals of the experiments was to evaluate the productivity of Mizuna plants grown at different levels of ISS RM air contamination. Mizuna plants were cultivated for 31 - 36 days when exposed to continuous illumination. The root growing medium was made of Turface enriched with a controlled release fertilizer Osmocote. In the course of the flight experiments major parameters of plant cultivation, total level of ISS RM air contamination and plant microbiological status were measured. The grown plants were returned to Earth as fresh or frozen samples. After the three last vegetation cycles the plants were harvested, packed and frozen at -80 0C in the MELFI freezer on the ISS U.S. Module and later returned to Earth onboard Space Shuttle. It was found that the productivity and morphometric (e.g., plant height and mass, number of leaves) parameters of the plants grown in space did not differ from those seen in ground controls. The T coefficient, which represents the total contamination level of ISS air), was 4 (ISS-5), 22 (ISS-17), 55 (ISS-20), 22 (ISS-21) and 28 (ISS-22) versus the norm of no more than 5. In summary, a significant increase in the total contamination level of the ISS RM air did not reduce the productivity of the leaf vegetable plant used in the flight experiments.

  5. Streambed sediment controls on hyporheic greenhouse gas production - a microcosm experiment

    NASA Astrophysics Data System (ADS)

    Romejn, Paul; Comer, Sophie; Gooddy, Daren; Ullah, Sami; Hannah, David; Krause, Stefan

    2016-04-01

    Hyporheic zones, as the interfaces between groundwater and surface water, can contribute significantly to whole stream carbon respiration. The drivers and controls of rates and magnitude of hyporheic greenhouse gas (GHG) production remain poorly understood. Recent research has hypothesised that nitrous oxide emissions resulting from incomplete denitrification in nutrient rich agricultural streams may contribute substantially to GHG emissions. This paper reports on a controlled microcosm incubation experiment that has been set up to quantify the sensitivity of hyporheic zone GHG production to temperature and nutrient concentrations. Experiments were conducted with sediment from two contrasting UK lowland rivers (sandstone and chalk). Adopting a gradient approach, sediments with different organic matter and carbon content were analysed from both rivers. Our analytical approach integrated several novel methods, such as push-pull application of the Resazurin/Resorufin smart tracer system for estimation of sediment microbial metabolic activity, high-resolution gas sampling and analysis of methane, carbon dioxide and nitrous oxide by gas chromatography with mass spectrometry, coupled with and high precision in-situ dissolved oxygen measurements. Our results indicate strong temperature controls of GHG production rates, overlapping with the observed impacts of different sediment types. Experimental findings indicate that increased hyporheic temperatures during increasing baseflow and drought conditions may enhance substantially sediment respiration and thus, GHG emissions from the streambed interface. The presented results integrated with field experiments of respiration and GHG emission rates under different treatments. This research advances understanding of scale dependent drivers and controls of whole stream carbon and nitrogen budgets and the role of streambed interfaces in GHG emissions.

  6. Mitigation of greenhouse gas emissions in the production of fluid milk.

    PubMed

    Tomasula, Peggy M; Nutter, Darin W

    2011-01-01

    Global climate change, driven by the buildup of greenhouse gas (GHG) emissions in the atmosphere, is challenging the dairy industries in the United States and throughout the world to develop sustainable initiatives to reduce their environmental impact. The U.S. dairy industry has committed to lowering the GHG emissions, primarily CH(4), N(2)O, and CO(2), in each sector of the fluid milk supply chain which extends from the farm, to the processing plant, and to distribution of the packaged product, where it is refrigerated by the retailer and then the consumer. This chapter provides an overview of the life cycle analysis (LCA) technique and its use in identifying the GHG emissions in each sector of the fluid milk supply chain, from cradle to grave, and the best practices and research that is currently being conducted to reduce or mitigate GHG emissions in each sector. We also discuss the use of on-farm and off-farm process simulation as tools for evaluating on-farm mitigation techniques, off-farm alternative processing scenarios, and use of alternative energy management practices. PMID:21504821

  7. Future atmospheric conditions increase the greenhouse gas intensity of rice production

    NASA Astrophysics Data System (ADS)

    Van Groenigen, K.; Van Kessel, C.; Hungate, B. A.

    2012-12-01

    Elevated levels of atmospheric CO2 and rising temperatures are both expected to alter rice yields and greenhouse gas (GHG) emissions from rice paddies. This is important, because rice cultivation is one of the largest anthropogenic sources of the potent GHG methane (CH4) and rice is the world's second-most produced staple crop. Because global food demand is growing, it makes sense to assess GHG emissions from croplands on the basis of yield rather than land area, so that efforts to reduce GHG emissions occur with taking into consideration the effects on food production. However, it is unclear whether or how the GHG intensity (that is, yield-scaled GHG emissions) of cropping systems will be affected by future atmospheric conditions. Using meta-analysis, we show that elevated atmospheric CO2 (ranging from 550 to 743 ppmV) and warming (ranging from +0.8°C to +6°C) both increase the GHG intensity of rice cultivation. Elevated atmospheric CO2 increased GHG intensity by 31.4%, because CH4 emissions are stimulated more than rice yields. Warming increased GHG intensity by 11.8% per 1°C, largely due to a decrease in yield. Our findings underscore the need for mitigation and adaptation efforts to secure global food supply while at the same time keeping GHG emissions in check.

  8. Energy Potential and Greenhouse Gas Emissions from Bioenergy Cropping Systems on Marginally Productive Cropland

    PubMed Central

    Schmer, Marty R.; Vogel, Kenneth P.; Varvel, Gary E.; Follett, Ronald F.; Mitchell, Robert B.; Jin, Virginia L.

    2014-01-01

    Low-carbon biofuel sources are being developed and evaluated in the United States and Europe to partially offset petroleum transport fuels. Current and potential biofuel production systems were evaluated from a long-term continuous no-tillage corn (Zea mays L.) and switchgrass (Panicum virgatum L.) field trial under differing harvest strategies and nitrogen (N) fertilizer intensities to determine overall environmental sustainability. Corn and switchgrass grown for bioenergy resulted in near-term net greenhouse gas (GHG) reductions of −29 to −396 grams of CO2 equivalent emissions per megajoule of ethanol per year as a result of direct soil carbon sequestration and from the adoption of integrated biofuel conversion pathways. Management practices in switchgrass and corn resulted in large variation in petroleum offset potential. Switchgrass, using best management practices produced 3919±117 liters of ethanol per hectare and had 74±2.2 gigajoules of petroleum offsets per hectare which was similar to intensified corn systems (grain and 50% residue harvest under optimal N rates). Co-locating and integrating cellulosic biorefineries with existing dry mill corn grain ethanol facilities improved net energy yields (GJ ha−1) of corn grain ethanol by >70%. A multi-feedstock, landscape approach coupled with an integrated biorefinery would be a viable option to meet growing renewable transportation fuel demands while improving the energy efficiency of first generation biofuels. PMID:24594783

  9. Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan.

    PubMed

    Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash

    2014-10-01

    This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO2e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO2e, fertilizer application accounted for 754, 3251, and 4761 tCO2e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO2e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO2e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO2e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO2e per million cigarettes produced in 2009, 0.675 tCO2e per million cigarettes in 2010 and 0.59 tCO2e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy from crop residues, and promotion of organic

  10. Increased spring flooding of agricultural fields will exhibit altered production of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Paul, R. F.; Smith, C. M.; Smyth, E. M.; Kantola, I. B.; DeLucia, E. H.

    2013-12-01

    The U.S. Corn Belt currently is a net source of carbon dioxide and nitrous oxide to the atmosphere, but is also a sink of methane. Among the proposed effects of climate change in the North American Midwest region is an increase in the frequency and duration of spring flooding events. This would cause ponding in fields which may change the greenhouse gas balance of the region, especially by providing a suitable anoxic environment for the proliferation of methanogens, increasing methane emissions. To determine whether methanogenesis occurs in flooded agricultural soils of the Midwest and how other gas fluxes are affected, we installed collars into the ground of a research field located in central Illinois. The control group was maintained at the same conditions as the surrounding field. Two groups of collars were sustained with water flooding the headspaces via a drip irrigation system; one treatment was analyzed for gas fluxes of CH4, N2O, and CO2 evolving from the collars, and a separate treatment of flooded collars was used for soil sampling. Comparing flooded soils versus control we measured reduced N2O fluxes (-3.12 x 10-6 × 6.8 x 10-7 g N m-2 min-1), reduced CO2 fluxes (-6.13 x 10-3 × 9.3 x 10-4 g CO2 m-2 min-1), and increased methane fluxes (+2.72 x 10-6 × 5.8 x 10-7 g CH4 m-2 min-1). After only one week of treatment the flooded soils switched from being sinks to sources of methane, which continued across the duration of the experiment. These preliminary results indicate that methanogenesis occurs in flooded agricultural fields, and suggest including regional modeling into further study. Although the global warming potential of methane is 25 times greater than CO2, our measured rates of methane production were compensated by reductions in nitrous oxide and CO2 fluxes, reducing the total 100-year horizon global warming potential of the flooded soils we studied by 64.8%. This indicates that accounting for more frequent seasonal ponding would significantly

  11. Impact of office productivity cloud computing on energy consumption and greenhouse gas emissions.

    PubMed

    Williams, Daniel R; Tang, Yinshan

    2013-05-01

    Cloud computing is usually regarded as being energy efficient and thus emitting less greenhouse gases (GHG) than traditional forms of computing. When the energy consumption of Microsoft's cloud computing Office 365 (O365) and traditional Office 2010 (O2010) software suites were tested and modeled, some cloud services were found to consume more energy than the traditional form. The developed model in this research took into consideration the energy consumption at the three main stages of data transmission; data center, network, and end user device. Comparable products from each suite were selected and activities were defined for each product to represent a different computing type. Microsoft provided highly confidential data for the data center stage, while the networking and user device stages were measured directly. A new measurement and software apportionment approach was defined and utilized allowing the power consumption of cloud services to be directly measured for the user device stage. Results indicated that cloud computing is more energy efficient for Excel and Outlook which consumed less energy and emitted less GHG than the standalone counterpart. The power consumption of the cloud based Outlook (8%) and Excel (17%) was lower than their traditional counterparts. However, the power consumption of the cloud version of Word was 17% higher than its traditional equivalent. A third mixed access method was also measured for Word which emitted 5% more GHG than the traditional version. It is evident that cloud computing may not provide a unified way forward to reduce energy consumption and GHG. Direct conversion from the standalone package into the cloud provision platform can now consider energy and GHG emissions at the software development and cloud service design stage using the methods described in this research.

  12. Evaluation of residue management practices effects on corn productivity, soil quality, and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Guzman, Jose German

    The removal of crop residues left after harvest is being considered as a potential feedstock source for bioethanol production which can contribute to the reduction of fossil fuel use and net greenhouse gas (GHG). The objectives of this study were to: (i) examine how tillage, N fertilization rates, residue removal, and their interactions affect crop productivity, (ii) SOC and soil physical properties, and (iii) GHG emissions, and (iv) calculated a soil C budget to determine how much crop residue can be sustainably be removed in Central and Southwest Iowa. After three years of residue removal under different management practices, the findings of this study suggest that a portion of the corn residue that is left on the soil surface after harvest can be removed, with no negative impacts in the short term continuous corn yield in sites at Central and Southwest Iowa. However, significant decreases in SOC sequestration rates, microbial biomass-C, bulk density, soil penetration resistance, wet aggregate stability, and infiltration rates were observed, but varied with soil type and management practices. Additionally, soil surface CO2 and N2O emissions were responsive to management practices; primarily by altering soil temperature, soil water content, soil mineral N, and crop growth. Results from soil C budget show that in 2010 when corn growth was not water stressed (lack of moisture), approximately 35 and 30% of the residue could be sustainably removed in the Central and Southwest sites, respectively. In 2011, drier soil conditions resulted in approximately 2 and 49% of the residue could be sustainably removed in the Central and Southwest sites, respectively.

  13. Potato (Solanum tuberosum) greenhouse tuber production as an assay for asexual reproduction effects from herbicides.

    PubMed

    Olszyk, David; Pfleeger, Thomas; Lee, E Henry; Plocher, Milton

    2010-01-01

    The present study determined whether young potato plants can be used as an assay to indicate potential effects of pesticides on asexual reproduction. Solanum tuberosum (Russet Burbank) plants were grown from seed pieces in a mineral soil in pots under greenhouse conditions. Plants were treated with herbicides (cloransulam, dicamba, glyphosate, imazapyr, primsulfuron, sulfometuron, or tribenuron) at simulated drift levels [Production of small tubers and shoot dry weight were determined at approximately 28 DAT. Imazapyr, sulfometuron, and tribenuron caused significant reductions in tuber fresh weight, with the effective concentrations producing a 25% potato tuber fresh weight (EC25) of 0.00038, 0.0016, and 0.0021 x f.a.r. of 1,124, 52, and 9 g active ingredient hectare(-1) (g a.i. HA(-1)), respectively. Primisulfuron, dicamba, and cloransulam also significantly reduced tuber fresh weight, but with higher EC25 values of 0.011, 0.07, and 0.010 to 0.2 x f.a.r. of 40, 558, and 18 g a.i. HA(-1), respectively. Glyphosate had little effect on tuber fresh weight, with a significant reduction in only one experiment. Sulfometuron reduced tuber fresh weight at an EC25 value lower than the EC25 values for shoot dry weight or plant height. For other herbicides, the reduction in tuber fresh weight occurred within the range of EC25 values for other responses. Although additional experiments are required to develop further a phytotoxicity test, these results indicated that tuber production in young potato plants (harvested approximately 42 DAE) may be an effective assay for below-ground asexual reproductive responses to herbicides, especially acetolactate synthase inhibitors.

  14. Evaluation of cadmium in greenhouse soils and agricultural products of Jiroft (Iran) using microwave digestion prior to atomic absorption spectrometry determination.

    PubMed

    Afzali, Daryoush; Fathirad, Fariba; Afzali, Zahra; Majdzadeh-Kermani, Seyed Mohammad Javad

    2015-03-01

    This study determines total levels of potentially toxic trace element, Cd (II) in Jiroft (Kerman, Iran) greenhouse soil and agricultural products that are grown in these greenhouses (tomatoes and cucumbers), and the comparison with soil outside of greenhouse using microwave digestion prior to flame atomic absorption spectrometry determination. The results show that the cadmium concentration in greenhouse soil is 0.9-1.9 mg kg(-1) and out of greenhouse is 0.4-1.0 mg kg(-1). Also, cadmium concentration range in tomatoes and cucumbers is about 0.07-0.40 mg kg(-1). The obtained results show that the concentration of this metal in greenhouse soil is higher than outside soil samples and is below the safe limit.

  15. Production of greenhouse-grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function

    USGS Publications Warehouse

    Antoninka, Anita; Bowker, Matthew A.; Reed, Sasha C.; Doherty, Kyle

    2016-01-01

    Mosses are an often-overlooked component of dryland ecosystems, yet they are common members of biological soil crust communities (biocrusts) and provide key ecosystem services, including soil stabilization, water retention, carbon fixation, and housing of N2 fixing cyanobacteria. Mosses are able to survive long dry periods, respond rapidly to precipitation, and reproduce vegetatively. With these qualities, dryland mosses have the potential to be an excellent dryland restoration material. Unfortunately, dryland mosses are often slow growing in nature, and ex situ cultivation methods are needed to enhance their utility. Our goal was to determine how to rapidly produce, vegetatively, Syntrichia caninervis and S. ruralis, common and abundant moss species in drylands of North America and elsewhere, in a greenhouse. We manipulated the length of hydration on a weekly schedule (5, 4, 3, or 2 days continuous hydration per week), crossed with fertilization (once at the beginning, monthly, biweekly, or not at all). Moss biomass increased sixfold for both species in 4 months, an increase that would require years under dryland field conditions. Both moss species preferred short hydration and monthly fertilizer. Remarkably, we also unintentionally cultured a variety of other important biocrust organisms, including cyanobacteria and lichens. In only 6 months, we produced functionally mature biocrusts, as evidenced by high productivity and ecosystem-relevant levels of N2 fixation. Our results suggest that biocrust mosses might be the ideal candidate for biocrust cultivation for restoration purposes. With optimization, these methods are the first step in developing a moss-based biocrust rehabilitation technology.

  16. Evaluation of different techniques to control hydrogen sulfide and greenhouse gases from animal production systems

    NASA Astrophysics Data System (ADS)

    Gautam, Dhan Prasad

    The livestock manure management sector is one of the prime sources for the emission of greenhouse gases (GHGs) and other pollutant gases such as ammonia (NH3) and hydrogen sulfide (H2S), which may affect the human health, animal welfare, and the environment. So, worldwide investigations are going on to mitigate these gaseous emissions. The overall objective of this research was to investigate different approaches (dietary manipulation and nanotechnology) for mitigating the gaseous emissions from livestock manure system. A field study was conducted to investigate the effect of different levels of dietary proteins (12 and 16%) and fat levels (3 to 5.5%) fed to beef cattle on gaseous emission (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO 2 and hydrogen sulfide-H2S) from the pen surface. To evaluate the effects of different nanoparticles (zinc oxide-nZnO; and zirconium-nZrO 2) on these gaseous emissions from livestock manure stored under anaerobic conditions, laboratory studies were conducted with different treatments (control, bare NPs, NPs entrapped alginate beads applying freely and keeping in bags, and used NPs entrapped alginate beads). Field studies showed no significant differences in the GHG and H2S emissions from the manure pen surface. Between nZnO and nZrO2, nZnO outperformed the nZrO2 in terms of gases production and concentration reduction from both swine and dairy liquid manure. Application of nZnO at a rate of 3 g L-1 showed up to 82, 78, 40 and 99% reduction on total gas production, CH 4, CO2 and H2S concentrations, respectively. The effectiveness of nZnO entrapped alginate (alginate-nZnO) beads was statistically lower than the bare nZnO, but both of them were very effective in reducing gas production and concentrations. These gaseous reductions were likely due to combination of microbial inhibition of microorganisms and chemical conversion during the treatment, which was confirmed by microbial plate count, SEM-EDS, and XPS analysis. However

  17. Carbon Geography. The political economy of congressional support for legislation intended to mitigate greenhouse gas production

    SciTech Connect

    CRAGG, MICHAEL I.; ZHOU, YUYU; GURNEY, KEVIN; KAHN, MATTHEW E.

    2012-04-20

    Over the last five years, the U.S Congress has voted on several pieces of legislation intended to sharply reduce the nation’s greenhouse gas emissions. Given that climate change is a world public bad, standard economic logic would predict that the United States would -free rideII and wait for other nations to reduce their emissions. Within the Congress, there are clear patterns to who votes in favor of mitigating greenhouse gas emissions. This paper presents a political economy analysis of the determinants of pro-greenII votes on such legislation. Conservatives consistently vote against such legislation. Controlling for a Representative’s ideology, representatives from richer districts and districts with a lower per-capita carbon dioxide footprint are more likely to vote in favor of climate change mitigation legislation. Representatives from districts where industrial emissions represent a larger share of greenhouse gas emissions are more likely to vote no.

  18. Science and Technology Development to Integrate Energy Production and Greenhouse Gas Management

    SciTech Connect

    Pendergast, D.

    2004-10-03

    This paper reviews the carbon cycle from the point of view of past and present human influence. Potential future human input to the cycle through science and technology to manage atmospheric greenhouse gas are considered. The review suggests that humans will need to ingeniously exploit even more energy to integrate its use with control of atmospheric greenhouse gases. Continuing development and application of energy is essential if the development of human society is to be sustained through the coming centuries. The continuing development of nuclear energy seems an essential energy supply component.

  19. Greenhouse gas emissions from fen soils used for forage production in northern Germany

    NASA Astrophysics Data System (ADS)

    Poyda, Arne; Reinsch, Thorsten; Kluß, Christof; Loges, Ralf; Taube, Friedhelm

    2016-09-01

    A large share of peatlands in northwestern Germany is drained for agricultural purposes, thereby emitting high amounts of greenhouse gases (GHGs). In order to quantify the climatic impact of fen soils in dairy farming systems of northern Germany, GHG exchange and forage yield were determined on four experimental sites which differed in terms of management and drainage intensity: (a) rewetted and unutilized grassland (UG), (b) intensive and wet grassland (GW), (c) intensive and moist grassland (GM) and (d) arable forage cropping (AR). Net ecosystem exchange (NEE) of CO2 and fluxes of CH4 and N2O were measured using closed manual chambers. CH4 fluxes were significantly affected by groundwater level (GWL) and soil temperature, whereas N2O fluxes showed a significant relation to the amount of nitrate in top soil. Annual balances of all three gases, as well as the global warming potential (GWP), were significantly correlated to mean annual GWL. A 2-year mean GWP, combined from CO2-C eq. of NEE, CH4 and N2O emissions, as well as C input (slurry) and C output (harvest), was 3.8, 11.7, 17.7 and 17.3 Mg CO2-C eq. ha-1 a-1 for sites UG, GW, GM and AR, respectively (standard error (SE) 2.8, 1.2, 1.8, 2.6). Yield-related emissions for the three agricultural sites were 201, 248 and 269 kg CO2-C eq. (GJ net energy lactation; NEL)-1 for sites GW, GM and AR, respectively (SE 17, 9, 19). The carbon footprint of agricultural commodities grown on fen soils depended on long-term drainage intensity rather than type of management, but management and climate strongly influenced interannual on-site variability. However, arable forage production revealed a high uncertainty of yield and therefore was an unsuitable land use option. Lowest yield-related GHG emissions were achieved by a three-cut system of productive grassland swards in combination with a high GWL (long-term mean ≤ 20 cm below the surface).

  20. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands.

    PubMed

    Soussana, J F; Tallec, T; Blanfort, V

    2010-03-01

    Soil carbon sequestration (enhanced sinks) is the mechanism responsible for most of the greenhouse gas (GHG) mitigation potential in the agriculture sector. Carbon sequestration in grasslands can be determined directly by measuring changes in soil organic carbon (SOC) stocks and indirectly by measuring the net balance of C fluxes. A literature search shows that grassland C sequestration reaches on average 5 ± 30 g C/m2 per year according to inventories of SOC stocks and -231 and 77 g C/m2 per year for drained organic and mineral soils, respectively, according to C flux balance. Off-site C sequestration occurs whenever more manure C is produced by than returned to a grassland plot. The sum of on- and off-site C sequestration reaches 129, 98 and 71 g C/m2 per year for grazed, cut and mixed European grasslands on mineral soils, respectively, however with high uncertainty. A range of management practices reduce C losses and increase C sequestration: (i) avoiding soil tillage and the conversion of grasslands to arable use, (ii) moderately intensifying nutrient-poor permanent grasslands, (iii) using light grazing instead of heavy grazing, (iv) increasing the duration of grass leys; (v) converting grass leys to grass-legume mixtures or to permanent grasslands. With nine European sites, direct emissions of N2O from soil and of CH4 from enteric fermentation at grazing, expressed in CO2 equivalents, compensated 10% and 34% of the on-site grassland C sequestration, respectively. Digestion inside the barn of the harvested herbage leads to further emissions of CH4 and N2O by the production systems, which were estimated at 130 g CO2 equivalents/m2 per year. The net balance of on- and off-site C sequestration, CH4 and N2O emissions reached 38 g CO2 equivalents/m2 per year, indicating a non-significant net sink activity. This net balance was, however, negative for intensively managed cut sites indicating a source to the atmosphere. In conclusion, this review confirms that

  1. Greenhouse gas emissions from sub-tropical agricultural soils after addition of organic by-products.

    PubMed

    Nguyen, Dai H; Biala, Johannes; Grace, Peter R; Scheer, Clemens; Rowlings, David W

    2014-01-01

    As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha(-1) on average) on N2O and CO2 emissions and soil properties of clay and sandy loam soils from sugar cane production. The experiment included 6 treatments, one being an un-amended (UN) control with addition of five OAs being raw mill mud (MM), composted mill mud (CM), high N compost (HC), rice husk biochar (RB), and raw mill mud plus rice husk biochar (MB). These OAs were incubated at 60, 75 and 90% water-filled pore space (WFPS) at 25°C with urea (equivalent to 200 kg N ha(-1)) added to the soils thirty days after the incubation commenced. Results showed WFPS did not influence CO2 emissions over the 60 days but the magnitude of emissions as a proportion of C applied was RB < CM < MB < HC < MM. Nitrous oxide emissions were significantly less in the clay soil compared to the sandy loam at all WFPS, and could be ranked RB < MB < MM < CM < UN < HC. These results led to linear models being developed to predict CO2 and N2O emissions as a function of the dry matter and C/N ratio of the OAs, WFPS, and the soil CEC. Application of RB reduced N2O emissions by as much as 42-64% depending on WFPS. The reductions in both CO2 and N2O emissions after application of RB were due to a reduced bioavailability of C and not immobilisation of N. These findings show that the effect of OAs on soil GHG emissions can vary substantially depending on their chemical properties. OAs with a high availability of labile C and N can lead to elevated emissions of CO2 and N2O, while rice husk biochar showed potential in reducing overall soil GHG emissions.

  2. Greenhouse gas emissions from sub-tropical agricultural soils after addition of organic by-products.

    PubMed

    Nguyen, Dai H; Biala, Johannes; Grace, Peter R; Scheer, Clemens; Rowlings, David W

    2014-01-01

    As the cost of mineral fertilisers increases globally, organic soil amendments (OAs) from agricultural sources are increasingly being used as substitutes for nitrogen. However, the impact of OAs on the production of greenhouse gases (CO2 and N2O) is not well understood. A 60-day laboratory incubation experiment was conducted to investigate the impacts of applying OAs (equivalent to 296 kg N ha(-1) on average) on N2O and CO2 emissions and soil properties of clay and sandy loam soils from sugar cane production. The experiment included 6 treatments, one being an un-amended (UN) control with addition of five OAs being raw mill mud (MM), composted mill mud (CM), high N compost (HC), rice husk biochar (RB), and raw mill mud plus rice husk biochar (MB). These OAs were incubated at 60, 75 and 90% water-filled pore space (WFPS) at 25°C with urea (equivalent to 200 kg N ha(-1)) added to the soils thirty days after the incubation commenced. Results showed WFPS did not influence CO2 emissions over the 60 days but the magnitude of emissions as a proportion of C applied was RB < CM < MB < HC < MM. Nitrous oxide emissions were significantly less in the clay soil compared to the sandy loam at all WFPS, and could be ranked RB < MB < MM < CM < UN < HC. These results led to linear models being developed to predict CO2 and N2O emissions as a function of the dry matter and C/N ratio of the OAs, WFPS, and the soil CEC. Application of RB reduced N2O emissions by as much as 42-64% depending on WFPS. The reductions in both CO2 and N2O emissions after application of RB were due to a reduced bioavailability of C and not immobilisation of N. These findings show that the effect of OAs on soil GHG emissions can vary substantially depending on their chemical properties. OAs with a high availability of labile C and N can lead to elevated emissions of CO2 and N2O, while rice husk biochar showed potential in reducing overall soil GHG emissions. PMID

  3. Production efficiencies of U.S. electric generation plants: Effects of data aggregation and greenhouse gas and renewable energy policy

    NASA Astrophysics Data System (ADS)

    Lynes, Melissa Kate

    Over the last few decades there has been a shift in electricity production in the U.S. Renewable energy sources are becoming more widely used. In addition, electric generation plants that use coal inputs are more heavily regulated than a couple decades ago. This shift in electricity production was brought on by changes in federal policy -- a desire for electricity produced in the U.S. which led to policies being adopted that encourage the use of renewable energy. The change in production practices due to policies may have led to changes in the productivity of electric generation plants. Multiple studies have examined the most efficient electric generation plants using the data envelopment analysis (DEA) approach. This study builds on past research to answer three questions: 1) Does the level of aggregation of fuel input variables affect the plant efficiency scores and how does the efficiency of renewable energy input compare to nonrenewable energy inputs; 2) Are policies geared toward directly or indirectly reducing greenhouse gas emissions affecting the production efficiencies of greenhouse gas emitting electric generation plants; and 3) Do renewable energy policies and the use of intermittent energy sources (i.e. wind and solar) affect the productivity growth of electric generation plants. All three analysis, presented in three essays, use U.S. plant level data obtained from the Energy Information Administration to answer these questions. The first two essays use DEA to determine the pure technical, overall technical, and scale efficiencies of electric generation plants. The third essay uses DEA within the Malmquist index to assess the change in productivity over time. Results indicate that the level of aggregation does matter particularly for scale efficiency. This implies that valuable information is likely lost when fuel inputs are aggregated together. Policies directly focused on reducing greenhouse gas emissions may improve the production efficiencies of

  4. Managing the nitrogen cycle to reduce greenhouse gas emissions from crop production and biofuel expansion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States Renewable Fuel Standards (RFS2) established under the Energy Independence and Security Act of 2007 requires greenhouse gas (GHG) emissions to be lower for biofuels relative to fossil fuel combustion. However, there is an extensive debate in the literature about the potential to red...

  5. Potato (Solanum tuberosum) greenhouse tuber production as an assay for asexual reproduction effects from herbicides

    EPA Science Inventory

    The present study determined whether young potato plants can be used as an assay to indicate potential effects of pesticides on asexual reproduction. Solanum tuberosum (Russet Burbank) plants were grown from seed pieces in a mineral soil in pots under greenhouse conditions. Plant...

  6. Low-value trees as alternative substrates in greenhouse production of three annual species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peat and perlite have served as industry standards in greenhouse substrates for over 50 years. Expanded perlite has long been used as an amendment in container mediums because of its ability to add air space to container substrates without adding to bulk density or affecting substrate pH and EC. How...

  7. Developing strategies for automated remote plant production systems: Environmental control and monitoring of the Arthur Clarke Mars Greenhouse in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Bamsey, M.; Berinstain, A.; Graham, T.; Neron, P.; Giroux, R.; Braham, S.; Ferl, R.; Paul, A.-L.; Dixon, M.

    2009-12-01

    The Arthur Clarke Mars Greenhouse is a unique research facility dedicated to the study of greenhouse engineering and autonomous functionality under extreme operational conditions, in preparation for extraterrestrial biologically-based life support systems. The Arthur Clarke Mars Greenhouse is located at the Haughton Mars Project Research Station on Devon Island in the Canadian High Arctic. The greenhouse has been operational since 2002. Over recent years the greenhouse has served as a controlled environment facility for conducting scientific and operationally relevant plant growth investigations in an extreme environment. Since 2005 the greenhouse has seen the deployment of a refined nutrient control system, an improved imaging system capable of remote assessment of basic plant health parameters, more robust communication and power systems as well as the implementation of a distributed data acquisition system. Though several other Arctic greenhouses exist, the Arthur Clarke Mars Greenhouse is distinct in that the focus is on autonomous operation as opposed to strictly plant production. Remote control and autonomous operational experience has applications both terrestrially in production greenhouses and extraterrestrially where future long duration Moon/Mars missions will utilize biological life support systems to close the air, food and water loops. Minimizing crew time is an important goal for any space-based system. The experience gained through the remote operation of the Arthur Clarke Mars Greenhouse is providing the experience necessary to optimize future plant production systems and minimize crew time requirements. Internal greenhouse environmental data shows that the fall growth season (July-September) provides an average photosynthetic photon flux of 161.09 μmol m -2 s -1 (August) and 76.76 μmol m -2 s -1 (September) with approximately a 24 h photoperiod. The spring growth season provides an average of 327.51 μmol m -2 s -1 (May) and 339.32 μmol m -2 s

  8. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol.

    PubMed

    Zhang, Dengxiao; Pan, Genxing; Wu, Gang; Kibue, Grace Wanjiru; Li, Lianqing; Zhang, Xuhui; Zheng, Jinwei; Zheng, Jufeng; Cheng, Kun; Joseph, Stephen; Liu, Xiaoyu

    2016-01-01

    Maize production plays an important role in global food security, especially in arid and poor-soil regions. Its production is also increasing in China in terms of both planting area and yield. However, maize productivity in rainfed croplands is constrained by low soil fertility and moisture insufficiency. To increase the maize yield, local farmers use NPK fertilizer. However, the fertilization regime (CF) they practice is unbalanced with too much nitrogen in proportion to both phosphorus and potassium, which has led to low fertilizer use efficiency and excessive greenhouse gases emissions. A two-year field experiment was conducted to assess whether a high yielding but low greenhouse gases emission system could be developed by the combination of balanced fertilization (BF) and biochar amendment in a rainfed farmland located in the Northern region of China. Biochar was applied at rates of 0, 20, and 40 t/ha. Results show that BF and biochar increased maize yield and partial nutrient productivity and decreased nitrous oxide (N2O) emission. Under BF the maize yield was 23.7% greater than under CF. N2O emissions under BF were less than half that under CF due to a reduced N fertilizer application rate. Biochar amendment decreased N2O by more than 31% under CF, while it had no effect on N2O emissions under BF. Thus BF was effective at maintaining a high maize yield and reducing greenhouse gases emissions. If combined with biochar amendment, BF would be a good way of sustaining low carbon agriculture in rainfed areas.

  9. Biochar helps enhance maize productivity and reduce greenhouse gas emissions under balanced fertilization in a rainfed low fertility inceptisol.

    PubMed

    Zhang, Dengxiao; Pan, Genxing; Wu, Gang; Kibue, Grace Wanjiru; Li, Lianqing; Zhang, Xuhui; Zheng, Jinwei; Zheng, Jufeng; Cheng, Kun; Joseph, Stephen; Liu, Xiaoyu

    2016-01-01

    Maize production plays an important role in global food security, especially in arid and poor-soil regions. Its production is also increasing in China in terms of both planting area and yield. However, maize productivity in rainfed croplands is constrained by low soil fertility and moisture insufficiency. To increase the maize yield, local farmers use NPK fertilizer. However, the fertilization regime (CF) they practice is unbalanced with too much nitrogen in proportion to both phosphorus and potassium, which has led to low fertilizer use efficiency and excessive greenhouse gases emissions. A two-year field experiment was conducted to assess whether a high yielding but low greenhouse gases emission system could be developed by the combination of balanced fertilization (BF) and biochar amendment in a rainfed farmland located in the Northern region of China. Biochar was applied at rates of 0, 20, and 40 t/ha. Results show that BF and biochar increased maize yield and partial nutrient productivity and decreased nitrous oxide (N2O) emission. Under BF the maize yield was 23.7% greater than under CF. N2O emissions under BF were less than half that under CF due to a reduced N fertilizer application rate. Biochar amendment decreased N2O by more than 31% under CF, while it had no effect on N2O emissions under BF. Thus BF was effective at maintaining a high maize yield and reducing greenhouse gases emissions. If combined with biochar amendment, BF would be a good way of sustaining low carbon agriculture in rainfed areas. PMID:25959223

  10. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption

    PubMed Central

    Oonincx, Dennis G. A. B.; van Itterbeeck, Joost; Heetkamp, Marcel J. W.; van den Brand, Henry; van Loon, Joop J. A.; van Huis, Arnold

    2010-01-01

    Background Greenhouse gas (GHG) production, as a cause of climate change, is considered as one of the biggest problems society is currently facing. The livestock sector is one of the large contributors of anthropogenic GHG emissions. Also, large amounts of ammonia (NH3), leading to soil nitrification and acidification, are produced by livestock. Therefore other sources of animal protein, like edible insects, are currently being considered. Methodology/Principal Findings An experiment was conducted to quantify production of carbon dioxide (CO2) and average daily gain (ADG) as a measure of feed conversion efficiency, and to quantify the production of the greenhouse gases methane (CH4) and nitrous oxide (N2O) as well as NH3 by five insect species of which the first three are considered edible: Tenebrio molitor, Acheta domesticus, Locusta migratoria, Pachnoda marginata, and Blaptica dubia. Large differences were found among the species regarding their production of CO2 and GHGs. The insects in this study had a higher relative growth rate and emitted comparable or lower amounts of GHG than described in literature for pigs and much lower amounts of GHG than cattle. The same was true for CO2 production per kg of metabolic weight and per kg of mass gain. Furthermore, also the production of NH3 by insects was lower than for conventional livestock. Conclusions/Significance This study therefore indicates that insects could serve as a more environmentally friendly alternative for the production of animal protein with respect to GHG and NH3 emissions. The results of this study can be used as basic information to compare the production of insects with conventional livestock by means of a life cycle analysis. PMID:21206900

  11. Linking environment-productivity trade-offs and correlated uncertainties: Greenhouse gas emissions and crop productivity in paddy rice production systems.

    PubMed

    Hayashi, Kiyotada; Nagumo, Yoshifumi; Domoto, Akiko

    2016-11-15

    In comparative life cycle assessments of agricultural production systems, analyses of both the trade-offs between environmental impacts and crop productivity and of the uncertainties specific to agriculture such as fluctuations in greenhouse gas (GHG) emissions and crop yields are crucial. However, these two issues are usually analyzed separately. In this paper, we present a framework to link trade-off and uncertainty analyses; correlated uncertainties are integrated into environment-productivity trade-off analyses. We compared three rice production systems in Japan: a system using a pelletized, nitrogen-concentrated organic fertilizer made from poultry manure using closed-air composting techniques (high-N system), a system using a conventional organic fertilizer made from poultry manure using open-air composting techniques (low-N system), and a system using a chemical compound fertilizer (conventional system). We focused on two important sources of uncertainties in paddy rice cultivation-methane emissions from paddy fields and crop yields. We found trade-offs between the conventional and high-N systems and the low-N system and the existence of positively correlated uncertainties in the conventional and high-N systems. We concluded that our framework is effective in recommending the high-N system compared with the low-N system, although the performance of the former is almost the same as the conventional system. PMID:27470672

  12. Linking environment-productivity trade-offs and correlated uncertainties: Greenhouse gas emissions and crop productivity in paddy rice production systems.

    PubMed

    Hayashi, Kiyotada; Nagumo, Yoshifumi; Domoto, Akiko

    2016-11-15

    In comparative life cycle assessments of agricultural production systems, analyses of both the trade-offs between environmental impacts and crop productivity and of the uncertainties specific to agriculture such as fluctuations in greenhouse gas (GHG) emissions and crop yields are crucial. However, these two issues are usually analyzed separately. In this paper, we present a framework to link trade-off and uncertainty analyses; correlated uncertainties are integrated into environment-productivity trade-off analyses. We compared three rice production systems in Japan: a system using a pelletized, nitrogen-concentrated organic fertilizer made from poultry manure using closed-air composting techniques (high-N system), a system using a conventional organic fertilizer made from poultry manure using open-air composting techniques (low-N system), and a system using a chemical compound fertilizer (conventional system). We focused on two important sources of uncertainties in paddy rice cultivation-methane emissions from paddy fields and crop yields. We found trade-offs between the conventional and high-N systems and the low-N system and the existence of positively correlated uncertainties in the conventional and high-N systems. We concluded that our framework is effective in recommending the high-N system compared with the low-N system, although the performance of the former is almost the same as the conventional system.

  13. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae.

    PubMed

    Luo, Dexin; Hu, Zushou; Choi, Dong Gu; Thomas, Valerie M; Realff, Matthew J; Chance, Ronald R

    2010-11-15

    Ethanol can be produced via an intracellular photosynthetic process in cyanobacteria (blue-green algae), excreted through the cell walls, collected from closed photobioreactors as a dilute ethanol-in-water solution, and purified to fuel grade ethanol. This sequence forms the basis for a biofuel production process that is currently being examined for its commercial potential. In this paper, we calculate the life cycle energy and greenhouse gas emissions for three different system scenarios for this proposed ethanol production process, using process simulations and thermodynamic calculations. The energy required for ethanol separation increases rapidly for low initial concentrations of ethanol, and, unlike other biofuel systems, there is little waste biomass available to provide process heat and electricity to offset those energy requirements. The ethanol purification process is a major consumer of energy and a significant contributor to the carbon footprint. With a lead scenario based on a natural-gas-fueled combined heat and power system to provide process electricity and extra heat and conservative assumptions around the ethanol separation process, the net life cycle energy consumption, excluding photosynthesis, ranges from 0.55 MJ/MJ(EtOH) down to 0.20 MJ/ MJ(EtOH), and the net life cycle greenhouse gas emissions range from 29.8 g CO₂e/MJ(EtOH) down to 12.3 g CO₂e/MJ(EtOH) for initial ethanol concentrations from 0.5 wt % to 5 wt %. In comparison to gasoline, these predicted values represent 67% and 87% reductions in the carbon footprint for this ethanol fuel on a energy equivalent basis. Energy consumption and greenhouse gas emissions can be further reduced via employment of higher efficiency heat exchangers in ethanol purification and/ or with use of solar thermal for some of the process heat. PMID:20968295

  14. Life cycle energy and greenhouse gas emissions for an ethanol production process based on blue-green algae.

    PubMed

    Luo, Dexin; Hu, Zushou; Choi, Dong Gu; Thomas, Valerie M; Realff, Matthew J; Chance, Ronald R

    2010-11-15

    Ethanol can be produced via an intracellular photosynthetic process in cyanobacteria (blue-green algae), excreted through the cell walls, collected from closed photobioreactors as a dilute ethanol-in-water solution, and purified to fuel grade ethanol. This sequence forms the basis for a biofuel production process that is currently being examined for its commercial potential. In this paper, we calculate the life cycle energy and greenhouse gas emissions for three different system scenarios for this proposed ethanol production process, using process simulations and thermodynamic calculations. The energy required for ethanol separation increases rapidly for low initial concentrations of ethanol, and, unlike other biofuel systems, there is little waste biomass available to provide process heat and electricity to offset those energy requirements. The ethanol purification process is a major consumer of energy and a significant contributor to the carbon footprint. With a lead scenario based on a natural-gas-fueled combined heat and power system to provide process electricity and extra heat and conservative assumptions around the ethanol separation process, the net life cycle energy consumption, excluding photosynthesis, ranges from 0.55 MJ/MJ(EtOH) down to 0.20 MJ/ MJ(EtOH), and the net life cycle greenhouse gas emissions range from 29.8 g CO₂e/MJ(EtOH) down to 12.3 g CO₂e/MJ(EtOH) for initial ethanol concentrations from 0.5 wt % to 5 wt %. In comparison to gasoline, these predicted values represent 67% and 87% reductions in the carbon footprint for this ethanol fuel on a energy equivalent basis. Energy consumption and greenhouse gas emissions can be further reduced via employment of higher efficiency heat exchangers in ethanol purification and/ or with use of solar thermal for some of the process heat.

  15. Pesticide flow analysis to assess human exposure in greenhouse flower production in Colombia.

    PubMed

    Lesmes-Fabian, Camilo; Binder, Claudia R

    2013-04-01

    Human exposure assessment tools represent a means for understanding human exposure to pesticides in agricultural activities and managing possible health risks. This paper presents a pesticide flow analysis modeling approach developed to assess human exposure to pesticide use in greenhouse flower crops in Colombia, focusing on dermal and inhalation exposure. This approach is based on the material flow analysis methodology. The transfer coefficients were obtained using the whole body dosimetry method for dermal exposure and the button personal inhalable aerosol sampler for inhalation exposure, using the tracer uranine as a pesticide surrogate. The case study was a greenhouse rose farm in the Bogota Plateau in Colombia. The approach was applied to estimate the exposure to pesticides such as mancozeb, carbendazim, propamocarb hydrochloride, fosetyl, carboxin, thiram, dimethomorph and mandipropamide. We found dermal absorption estimations close to the AOEL reference values for the pesticides carbendazim, mancozeb, thiram and mandipropamide during the study period. In addition, high values of dermal exposure were found on the forearms, hands, chest and legs of study participants, indicating weaknesses in the overlapping areas of the personal protective equipment parts. These results show how the material flow analysis methodology can be applied in the field of human exposure for early recognition of the dispersion of pesticides and support the development of measures to improve operational safety during pesticide management. Furthermore, the model makes it possible to identify the status quo of the health risk faced by workers in the study area. PMID:23528812

  16. Pesticide flow analysis to assess human exposure in greenhouse flower production in Colombia.

    PubMed

    Lesmes-Fabian, Camilo; Binder, Claudia R

    2013-03-25

    Human exposure assessment tools represent a means for understanding human exposure to pesticides in agricultural activities and managing possible health risks. This paper presents a pesticide flow analysis modeling approach developed to assess human exposure to pesticide use in greenhouse flower crops in Colombia, focusing on dermal and inhalation exposure. This approach is based on the material flow analysis methodology. The transfer coefficients were obtained using the whole body dosimetry method for dermal exposure and the button personal inhalable aerosol sampler for inhalation exposure, using the tracer uranine as a pesticide surrogate. The case study was a greenhouse rose farm in the Bogota Plateau in Colombia. The approach was applied to estimate the exposure to pesticides such as mancozeb, carbendazim, propamocarb hydrochloride, fosetyl, carboxin, thiram, dimethomorph and mandipropamide. We found dermal absorption estimations close to the AOEL reference values for the pesticides carbendazim, mancozeb, thiram and mandipropamide during the study period. In addition, high values of dermal exposure were found on the forearms, hands, chest and legs of study participants, indicating weaknesses in the overlapping areas of the personal protective equipment parts. These results show how the material flow analysis methodology can be applied in the field of human exposure for early recognition of the dispersion of pesticides and support the development of measures to improve operational safety during pesticide management. Furthermore, the model makes it possible to identify the status quo of the health risk faced by workers in the study area.

  17. Pesticide Flow Analysis to Assess Human Exposure in Greenhouse Flower Production in Colombia

    PubMed Central

    Lesmes-Fabian, Camilo; Binder, Claudia R.

    2013-01-01

    Human exposure assessment tools represent a means for understanding human exposure to pesticides in agricultural activities and managing possible health risks. This paper presents a pesticide flow analysis modeling approach developed to assess human exposure to pesticide use in greenhouse flower crops in Colombia, focusing on dermal and inhalation exposure. This approach is based on the material flow analysis methodology. The transfer coefficients were obtained using the whole body dosimetry method for dermal exposure and the button personal inhalable aerosol sampler for inhalation exposure, using the tracer uranine as a pesticide surrogate. The case study was a greenhouse rose farm in the Bogota Plateau in Colombia. The approach was applied to estimate the exposure to pesticides such as mancozeb, carbendazim, propamocarb hydrochloride, fosetyl, carboxin, thiram, dimethomorph and mandipropamide. We found dermal absorption estimations close to the AOEL reference values for the pesticides carbendazim, mancozeb, thiram and mandipropamide during the study period. In addition, high values of dermal exposure were found on the forearms, hands, chest and legs of study participants, indicating weaknesses in the overlapping areas of the personal protective equipment parts. These results show how the material flow analysis methodology can be applied in the field of human exposure for early recognition of the dispersion of pesticides and support the development of measures to improve operational safety during pesticide management. Furthermore, the model makes it possible to identify the status quo of the health risk faced by workers in the study area. PMID:23528812

  18. Using Market Forces to Reduce Greenhouse Gas Emissions Through Product-Level Life Cycle Analysis and Eco-Labeling

    NASA Astrophysics Data System (ADS)

    Sweeney, J. F.; Davis, S. J.

    2007-12-01

    Established protocols allow entity-level accounting of greenhouse gas (GHG) emissions. The information contained within GHG inventories is used by entities to manage their carbon footprint and to anticipate future exposure to compulsory GHG markets or taxes. The efficacy of such inventories, as experienced by the consumer, can be improved upon by product-level GHG inventories applying the methods of traditional life cycle analysis (LCA). A voluntary product-level assessment of this type, coupled with an eco-label, would 1) empower consumers with information about the total embodied GHG content of a product, 2) allow companies to understand and manage GHG emissions outside the narrow scope of their entities, and 3) drive reduction of GHG emissions throughout product value chains. The Climate Conservancy (TCC) is a non-profit organization founded to help companies calculate their GHG emissions at the level of individual product units, and to inform consumers about the GHG intensity of the products they choose to purchase. With the assistance of economists, policy experts and scientists, TCC has developed a useful metric for reporting product-level GHG emissions that allows for a normalized comparison of a product's GHG intensity irrespective of industry sector or competitors, where GHG data are often unavailable or incomplete. Using this metric, we envision our Climate Conscious label becoming an important arbiter of choice for consumers seeking ways to mitigate their climate impacts without the need for governmental regulation.

  19. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China.

    PubMed

    Chen, Yong; Huang, Biao; Hu, Wenyou; Weindorf, David C; Liu, Xiaoxiao; Niedermann, Silvana

    2014-02-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice-wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant

  20. Assessing the risks of trace elements in environmental materials under selected greenhouse vegetable production systems of China.

    PubMed

    Chen, Yong; Huang, Biao; Hu, Wenyou; Weindorf, David C; Liu, Xiaoxiao; Niedermann, Silvana

    2014-02-01

    The risk assessment of trace elements of different environmental media in conventional and organic greenhouse vegetable production systems (CGVPS and OGVPS) can reveal the influence of different farming philosophy on the trace element accumulations and their effects on human health. These provide important basic data for the environmental protection and human health. This paper presents trace element accumulation characteristics of different land uses; reveals the difference of soil trace element accumulation both with and without consideration of background levels; compares the trace element uptake by main vegetables; and assesses the trace element risks of soils, vegetables, waters and agricultural inputs, using two selected greenhouse vegetable systems in Nanjing, China as examples. Results showed that greenhouse vegetable fields contained significant accumulations of Zn in CGVPS relative to rice-wheat rotation fields, open vegetable fields, and geochemical background levels, and this was the case for organic matter in OGVPS. The comparative analysis of the soil medium in two systems with consideration of geochemical background levels and evaluation of the geo-accumulation pollution index achieved a more reasonable comparison and accurate assessment relative to the direct comparison analysis and the evaluation of the Nemerow pollution index, respectively. According to the Chinese food safety standards and the value of the target hazard quotient or hazard index, trace element contents of vegetables were safe for local residents in both systems. However, the spatial distribution of the estimated hazard index for producers still presented certain specific hotspots which may cause potential risk for human health in CGVPS. The water was mainly influenced by nitrogen, especially for CGVPS, while the potential risk of Cd and Cu pollution came from sediments in OGVPS. The main inputs for trace elements were fertilizers which were relatively safe based on relevant

  1. Greenhouse gas mitigation on marginal land: a quantitative review of the relative benefits of forest recovery versus biofuel production.

    PubMed

    Evans, Samuel G; Ramage, Benjamin S; DiRocco, Tara L; Potts, Matthew D

    2015-02-17

    Decisions concerning future land-use/land cover change stand at the forefront of ongoing debates on how to best mitigate climate change. In this study, we compare the greenhouse gas (GHG) mitigation value over a 30-year time frame for a range of forest recovery and biofuel production scenarios on abandoned agricultural land. Carbon sequestration in recovering forests is estimated based on a statistical analysis of tropical and temperate studies on marginal land. GHGs offset by biofuel production are analyzed for five different production pathways. We find that forest recovery is superior to low-yielding biofuel production scenarios such as oil palm and corn. Biofuel production scenarios with high yields, such as sugarcane or high-yielding energy grasses, can be comparable or superior to natural forest succession and to reforestation in some cases. This result stands in contrast to previous research suggesting that restoring degraded ecosystems to their native state is generally superior to agricultural production in terms of GHG mitigation. Further work is needed on carbon stock changes in forests, soil carbon dynamics, and bioenergy crop production on degraded/abandoned agricultural land. This finding also emphasizes the need to consider the full range of social, economic, and ecological consequences of land-use policies.

  2. Greenhouse gas mitigation on marginal land: a quantitative review of the relative benefits of forest recovery versus biofuel production.

    PubMed

    Evans, Samuel G; Ramage, Benjamin S; DiRocco, Tara L; Potts, Matthew D

    2015-02-17

    Decisions concerning future land-use/land cover change stand at the forefront of ongoing debates on how to best mitigate climate change. In this study, we compare the greenhouse gas (GHG) mitigation value over a 30-year time frame for a range of forest recovery and biofuel production scenarios on abandoned agricultural land. Carbon sequestration in recovering forests is estimated based on a statistical analysis of tropical and temperate studies on marginal land. GHGs offset by biofuel production are analyzed for five different production pathways. We find that forest recovery is superior to low-yielding biofuel production scenarios such as oil palm and corn. Biofuel production scenarios with high yields, such as sugarcane or high-yielding energy grasses, can be comparable or superior to natural forest succession and to reforestation in some cases. This result stands in contrast to previous research suggesting that restoring degraded ecosystems to their native state is generally superior to agricultural production in terms of GHG mitigation. Further work is needed on carbon stock changes in forests, soil carbon dynamics, and bioenergy crop production on degraded/abandoned agricultural land. This finding also emphasizes the need to consider the full range of social, economic, and ecological consequences of land-use policies. PMID:25582654

  3. Solar greenhouses in Minnesota

    SciTech Connect

    Polich, M.

    1981-12-01

    After a discussion of solar greenhouse phenomena and the potential for heat collection and food production, design recommendations are provided for attached heat collecting solar sunspaces and for attached food producing solar greenhouses. Also, design of a single solar structure to maximize heat collection and food production is considered. A method of predicting the performance for attached heat collecting solar sunspaces is given in which the solar savings fraction is calculated. (LEW)

  4. Life Cycle Assessment of Greenhouse Gas Emissions from Dairy Production in a Central New York State Watershed

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.

    2009-12-01

    Cumulative greenhouse gas emissions related to dairy production in the Fall Creek watershed of central New York State were calculated using a life-cycle approach for the period 1975-2001. Expressed as CO2 equivalents (CO2e), emissions include CO2, CH4 and N2O related to fertilizer manufacture and transport, bovine metabolism, volatilization and leaching losses from applied fertilizer, nitrogen dynamics in crop residues, among a myriad of sources. During the 1975-2001 period, dairy N production in the study area increased by over 20%, although crop N production in the watershed declined by 33%. This change was driven by consolidation within the dairy industry that also led to a six-fold increase in N in feed imports into the watershed during the same period. Cumulative GHG emissions related to dairy production in Fall Creek rose by about 20% over 1975-2001 to about 14,000 tons CO2e per year for the 326 km2 watershed by 2001. In 1975, about 90% of CO2e emissions related to dairy production in the Fall Creek watershed were emitted within the watershed. However, by 2001 over 50% of emissions were generated outside of the watershed, primarily as N2O emissions related to fertilizer used in the production of feed subsequently imported into Fall Creek watershed.

  5. Water level, vegetation composition and plant productivity explain greenhouse gas fluxes in temperate cutover fens after inundation

    NASA Astrophysics Data System (ADS)

    Minke, M.; Augustin, J.; Burlo, A.; Yarmashuk, T.; Chuvashova, H.; Thiele, A.; Freibauer, A.; Tikhonov, V.; Hoffmann, M.

    2015-10-01

    Rewetting of temperate continental cutover peatlands generally implies the creation of flooded areas, which are - dependent on water depth - colonized by helophytes such as Eriophorum angustifolium, Carex spp., Typha latifolia or Phragmites australis. Reeds of Typha and Phragmites are reported to be large sources of methane, but data on net CO2 uptake are contradictory for Typha and rare for Phragmites. This paper describes the effect of vegetation, water level and nutrient conditions on greenhouse gas (GHG) emissions for representative vegetation types along water level gradients at two rewetted cutover fens (mesotrophic and eutrophic) in Belarus. Greenhouse emissions were measured with manual chambers in weekly to few - weekly intervals over a two years period and interpolated by modelling. All sites had negligible nitrous oxide exchange rates. Most sites were carbon sinks and small GHG sources. Methane emissions were generally associated with net ecosystem CO2 uptake. Small sedges were minor methane emitters and net CO2 sinks, while Phragmites australis sites released large amounts of methane and sequestered very much CO2. Variability of both fluxes increased with site productivity. Floating mats composed of Carex tussocks and Typha latifolia were a source for both methane and CO2. We conclude that shallow, stable flooding is a better measure to arrive at low GHG emissions than deep flooding, and that the risk of high GHG emissions consequent on rewetting is larger for eutrophic than for mesotrophic peatlands.

  6. Gaining ground in the modeling of land-use change greenhouse gas emissions associated with biofuel production

    NASA Astrophysics Data System (ADS)

    Dunn, J.; Mueller, S.; Kwon, H.; Wang, M.; Wander, M.

    2012-12-01

    Land-use change (LUC) resulting from biofuel feedstock production and the associated greenhouse gas (GHG) emissions are a hotly-debated aspect of biofuels. Certainly, LUC GHG emissions are one of the most uncertain elements in life cycle analyses (LCA) of biofuels. To estimate LUC GHG emissions, two sets of data are necessary. First, information on the amount and type of land that is converted to biofuel feedstock production is required. These data are typically generated through application of computable general equilibrium (CGE) models such as Purdue University's Global Trade Analysis Project (GTAP) model. Second, soil carbon content data for the affected land types is essential. Recently, Argonne National Laboratory's Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) has been updated with CGE modeling results that estimate the amount and type of LUC world-wide from production of ethanol from corn, corn stover, miscanthus, and switchgrass (Mueller et al. 2012). Moreover, we have developed state-specific carbon content data, determined through modeling with CENTURY, for the two most dominant soil types in the conterminous 48 U.S. states (Kwon et al. 2012) to enable finer-resolution results for domestic LUC GHG emissions for these ethanol production scenarios. Of the feedstocks examined, CCLUB estimates that LUC GHG emissions are highest for corn ethanol (9.1 g CO2e/MJ ethanol) and lowest for miscanthus (-12 g CO2e/MJ ethanol). We will present key observations from CCLUB results incorporated into Argonne National Laboratory's Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) model, which is a LCA tool for transportation fuels and advanced vehicle technologies. We will discuss selected issues in this modeling, including the sensitivity of domestic soil carbon emission factors to modeling parameters and assumptions about the fate of harvested wood products. Further, we will discuss efforts to update CCLUB with county

  7. Renewable Energy Production and Urban Remediation: Modeling the biogeochemical cycle at contaminated urban brownfields and the potential for renewable energy production and mitigation of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, G.

    2014-12-01

    Brownfields or urban sites that have been contaminated as a result of historic practices are present throughout the world. In the United States alone, the National Research Council has estimated that there are approximately 300,000 to 400,000 sites which have been contaminated by improper use and disposal of chemicals (NRC 1993). The land available at these sites is estimated at several million acres; however, the presence of high levels of contamination in the soil and groundwater makes it difficult to utilize these sites for traditional purposes such as agriculture. Further, the time required to remediate these contaminants to regulated levels is in the order of decades, which often results in long-term economic consequences for the areas near these sites. There has been significant interest in developing these sites as potential sources of renewable energy production in order to increase the economic viability of these sites and to provide alternative land resources for renewable energy production (EPA 2012). Solar energy, wind energy, and bioenergy from lignocellulosic biomass production have been identified as the main sources of renewable energy that can be produced at these locations. However, the environmental impacts of such a policy and the implications for greenhouse gas emissions, particularly resulting from changes in land-use impacting the biogeochemical cycle at these sites, have not been studied extensively to date. This study uses the biogeochemical process-based model DNDC to simulate carbon sequestration, nitrous oxide emissions and methane emissions from typical urban brownfield systems in the United States, when renewable energy systems are deployed. Photovoltaic solar energy and lignocellulosic biomass energy systems are evaluated here. Plants modeled include those most widely used for both bioenergy and remediation such as woody trees. Model sensitivity to soil conditions, contaminant levels and local weather data and the resulting impacts on

  8. Greenhouse gases and greenhouse effect

    NASA Astrophysics Data System (ADS)

    Chilingar, G. V.; Sorokhtin, O. G.; Khilyuk, L.; Gorfunkel, M. V.

    2009-09-01

    Conventional theory of global warming states that heating of atmosphere occurs as a result of accumulation of CO2 and CH4 in atmosphere. The writers show that rising concentration of CO2 should result in the cooling of climate. The methane accumulation has no essential effect on the Earth’s climate. Even significant releases of the anthropogenic carbon dioxide into the atmosphere do not change average parameters of the Earth’s heat regime and the atmospheric greenhouse effect. Moreover, CO2 concentration increase in the atmosphere results in rising agricultural productivity and improves the conditions for reforestation. Thus, accumulation of small additional amounts of carbon dioxide and methane in the atmosphere as a result of anthropogenic activities has practically no effect on the Earth’s climate.

  9. Greenhouse gas life cycle assessment of products arising from the rendering of mammalian animal byproducts in the UK.

    PubMed

    Ramirez, Angel D; Humphries, Andrea C; Woodgate, Stephen L; Wilkinson, Robert G

    2012-01-01

    Animal byproducts (ABP) are unavoidable byproduct of meat production that are categorized under EU legislation into category 1, 2, and 3 materials, which are normally treated by rendering. Rendering is a thermal process that produces rendered fat and protein. Heat is provided from the combustion of natural gas and self-produced rendered fat. The main objectives of the study were (i) to assess energy intensity in the UK rendering industry, and (ii) to quantify the greenhouse gas emissions associated with the production of mammalian rendered products using life cycle assessment. Thermal energy requirements were 2646 and 1357 kJ/kg, whereas electricity requirements were 260 and 375 kJ/kg for category 1 and 3 ABP respectively. Fossil CO(2) emissions were -0.77 and 0.15 kg CO(2)e/kg category 1 and 3 mammalian rendered fat respectively and 0.15 kg CO(2)e/kg processed animal protein. These were low relative to vegetable products such as palm oil and soya bean meal because (i) ABP were considered wastes that do not incur the environmental burden of their production, and (ii) the rendering process produces biofuels that can be used to generate energy that can be used to offset the use of fossil fuels in other systems.

  10. Impact of policy on greenhouse gas emissions and economics of biodiesel production.

    PubMed

    Olivetti, Elsa; Gülşen, Ece; Malça, João; Castanheira, Erica; Freire, Fausto; Dias, Luis; Kirchain, Randolph

    2014-07-01

    As an alternative transportation fuel to petrodiesel, biodiesel has been promoted within national energy portfolio targets across the world. Early estimations of low lifecycle greenhouse gas (GHG) emissions of biodiesel were a driver behind extensive government support in the form of financial incentives for the industry. However, studies consistently report a high degree of uncertainty in these emissions estimates, raising questions concerning the carbon benefits of biodiesel. Furthermore, the implications of feedstock blending on GHG emissions uncertainty have not been explicitly addressed despite broad practice by the industry to meet fuel quality standards and to control costs. This work investigated the impact of feedstock blending on the characteristics of biodiesel by using a chance-constrained (CC) blend optimization method. The objective of the optimization is minimization of feedstock costs subject to fuel standards and emissions constraints. Results indicate that blending can be used to manage GHG emissions uncertainty characteristics of biodiesel, and to achieve cost reductions through feedstock diversification. Simulations suggest that emissions control policies that restrict the use of certain feedstocks based on their GHG estimates overlook blending practices and benefits, increasing the cost of biodiesel. In contrast, emissions control policies which recognize the multifeedstock nature of biodiesel provide producers with feedstock selection flexibility, enabling them to manage their blend portfolios cost effectively, potentially without compromising fuel quality or emissions reductions.

  11. Passive-solar greenhouse

    SciTech Connect

    Not Available

    1982-01-01

    Our project objective was to design, construct, and operate a commercialized (16' x 50') passive, solar greenhouse. The structure was originally intended as a vegetable forcing facility to produce vegetable crops in the off-season. Building and size constraints and economic considerations convinced us to use the greenhouse for producing bedding plants and vegetable starts in the spring, high value vegetables (tomatoes, cucumbers) in the fall and forced bulbs in the winter. This crop sequence allows us to use the greenhouse all year without additional heat as the crops are adopted to the temperature regime of the greenhouse during each particular season. In our first season, the greenhouse performed beautifully. The lowest temperature recorded was 38/sup 0/F after 4 cold, cloudy days in February. The production of bedding plants has allowed us to diversify our products and the early transplants we produced were a great asset to our vegetable farming operation. Although construction cost (4.57 sq. ft.) is higher than that of a conventional polyethylene-covered, quonset-type greenhouse (approx. $1.92 sq. ft.), our annual operating cost is cheaper than that of a conventional greenhouse (0.49 cents sq. ft. versus 0.67 cents sq. ft.) due to a longer usable lifetime of the structure and the elimination of heating costs. Our structure has been toured by interested individuals, school and farm groups. We plan to publicize the structure and its advantages by promoting more visits to the site.

  12. Greenhouse gas production in mixtures of soil with composted and noncomposted biochars is governed by char-associated organic compounds.

    PubMed

    Borchard, Nils; Spokas, Kurt; Prost, Katharina; Siemens, Jan

    2014-05-01

    Biochar application to soil has the potential to increase soil productivity while reducing anthropogenic greenhouse gas (GHG) emissions to the atmosphere. However, techniques for conditioning this material for maximizing its effects as a soil amendment require elucidation. We examined changes of organic matter associated with two biochars after 175 d of composting and the resulting effects on GHG emissions during a 150-d incubation period. Composting decreased the amount of organic compounds that could be thermally released from the biochars and affected their molecular nature. These thermally desorbable organic compounds from initial biochars likely stimulated the oxidation of CH and inhibited the production of NO in soil-biochar mixtures. However, these reductions of GHG emissions disappeared together with thermally desorbable organic compounds after the composting of chars. Instead, addition of composted gasification coke and charcoal stimulated the formation of CH and increased NO emissions by 45 to 56%. Nitrous oxide emissions equaled 20% of the total amount of N added with composted biochars, suggesting that organic compounds and N sorbed by the chars during composting fueled GHG production. The transient nature of the suppression of CH and NO production challenges the long-term GHG mitigation potential of biochar in soil.

  13. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season.

    PubMed

    Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua

    2015-01-01

    The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season. PMID:26221726

  14. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season.

    PubMed

    Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua

    2015-01-01

    The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season.

  15. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season

    PubMed Central

    Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua

    2015-01-01

    The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season. PMID:26221726

  16. Mitigation opportunities for life cycle greenhouse gas emissions during feedstock production across heterogeneous landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feedstock production can contribute greater than or equal to 50% of the lifecycle global warming intensity (GWI) of a biofuel. Variability exists within and among high-leverage components of the biomass production phase. GWI variability within feedstocks has gone unrecognized by regulatory agencies....

  17. Processed eucalyptus trees as a substrate component for greenhouse crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast growing eucalyptus species are selected for commercial plantings worldwide and are harvested for a variety of uses. Eucalyptus plantings in south Florida are harvested for landscape mulch production, yet this material may have potential as a container substrate for horticulture crop production....

  18. Estimation of pathways of the production of greenhouse gases in the tropical swamp forest in Thailand by stable isotope investigation.

    PubMed

    Boontanon, Narin; Ueda, Shingo; Wada, Eitaro

    2008-09-01

    Dynamics of greenhouse gases (N(2)O and CH(4)) with the dry-wet cycle along with the variation of oxidation-reduction boundaries were investigated in the tropical wetland in monsoon Asia. It was clarified that the production of N(2)O and CH(4) was closely related to the development of a redox boundary in the Bang Nara River systems. An intermittent increase in N(2)O was observed at the beginning of the rainy season, when a large amount of easily decomposable organic matter was introduced into the river. After 10 days, when dissolved oxygen was consumed completely at the middle reaches, the emission of CH(4) became maximal due to the possible occurrence of denitrification. The distribution of stable isotope ratios in N(2)O clearly demonstrated that nitrification is the major process for its production. Furthermore, the production of N(2)O in this study area was found to vary in time and space with changes in the redox boundary along the water flow.

  19. Uncertainty in the Life Cycle Greenhouse Gas Emissions from U.S. Production of Three Biobased Polymer Families.

    PubMed

    Posen, I Daniel; Jaramillo, Paulina; Griffin, W Michael

    2016-03-15

    Interest in biobased products has been motivated, in part, by the claim that these products have lower life cycle greenhouse gas (GHG) emissions than their fossil counterparts. This study investigates GHG emissions from U.S. production of three important biobased polymer families: polylactic acid (PLA), polyhydroxybutyrate (PHB) and bioethylene-based plastics. The model incorporates uncertainty into the life cycle emission estimates using Monte Carlo simulation. Results present a range of scenarios for feedstock choice (corn or switchgrass), treatment of coproducts, data sources, end of life assumptions, and displaced fossil polymer. Switchgrass pathways generally have lower emissions than corn pathways, and can even generate negative cradle-to-gate emissions if unfermented residues are used to coproduce energy. PHB (from either feedstock) is unlikely to have lower emissions than fossil polymers once end of life emissions are included. PLA generally has the lowest emissions when compared to high emission fossil polymers, such as polystyrene (mean GHG savings up to 1.4 kg CO2e/kg corn PLA and 2.9 kg CO2e/kg switchgrass PLA). In contrast, bioethylene is likely to achieve the greater emission reduction for ethylene intensive polymers, like polyethylene (mean GHG savings up to 0.60 kg CO2e/kg corn polyethylene and 3.4 kg CO2e/kg switchgrass polyethylene).

  20. Sustainability and Energy Development: Influences of Greenhouse Gas Emissions Reduction Options on Water Use in Energy Production

    SciTech Connect

    D. Craig Cooper; Gerald Sehlke

    2012-01-01

    Climate change mitigation strategies cannot be evaluated solely in terms of energy cost and greenhouse gas (GHG) mitigation potential. Maintaining GHGs at a 'safe' level will require fundamental change in the way we approach energy production, and a number of environmental, economic, and societal factors will come into play. Water is an essential component of energy production, and water resource constraints (e.g., insufficient supplies and competing ecological and anthropogenic needs) will limit our options for producing energy and for reducing GHG emissions. This study evaluates these potential constraints from a global perspective by revisiting the 'climate wedges' proposal of Pacala and Sokolow [1], and evaluating the potential water impacts of the 'wedges' associated with energy production. Results indicate that there is a range of water impacts, with some options reducing water demand while others increase water demand. Mitigation options that improve energy conversion and end-use efficiency have the greatest potential for reducing water resources impacts. These options provide 'win-win-win' scenarios for reducing GHG emissions, lowering energy costs and reducing water demand. Thet may merit higher priority than alternative options that emphasize deploying new low-carbon energy facilities or modifying existing facilities with energy intensive GHG mitigation technologies to reduce GHG emissions. While the latter can reduce GHG emissions, they will typically increase energy costs and water impacts.

  1. Greenhouse gas emissions of realistic dietary choices in Denmark: the carbon footprint and nutritional value of dairy products

    PubMed Central

    Werner, Louise Bruun; Flysjö, Anna; Tholstrup, Tine

    2014-01-01

    Background Dairy products are important in a healthy diet due to their high nutritional value; they are, however, associated with relatively large greenhouse gas emissions (GHGE) per kg product. When discussing the need to reduce the GHGE caused by the food system, it is crucial to consider the nutritional value of alternative food choices. Objective The objective of this study was to elucidate the role of dairy products in overall nutrition and to clarify the effects of dietary choices on GHGE, and to combine nutritional value and GHGE data. Methods We created eight dietary scenarios with different quantity of dairy products using data from the Danish National Dietary Survey (1995–2006). Nutrient composition and GHGE data for 71 highly consumed foods were used to estimate GHGE and nutritional status for each dietary scenario. An index was used to estimate nutrient density in relation to nutritional recommendation and climate impact for solid food items; high index values were those with the highest nutrient density scores in relation to the GHGE. Results The high-dairy scenario resulted in 27% higher protein, 13% higher vitamin D; 55% higher calcium; 48% higher riboflavin; and 18% higher selenium than the non-dairy scenario. There was a significant correlation between changes in calcium and changes in vitamin D, selenium, and riboflavin content (P=0.0001) throughout all of the diets. The estimated GHGE for the dietary scenario with average-dairy consumption was 4,631 g CO2e/day. Conclusions When optimizing a diet with regard to sustainability, it is crucial to account for the nutritional value and not solely focus on impact per kg product. Excluding dairy products from the diet does not necessarily mitigate climate change but in contrast may have nutritional consequences. PMID:24959114

  2. Pasture-derived greenhouse gas emissions in cow-calf production systems.

    PubMed

    Chiavegato, M B; Powers, W J; Carmichael, D; Rowntree, J E

    2015-03-01

    There is a lack of information regarding carbon dioxide (CO), methane (CH), and nitrous oxide (NO) emissions from pasture soils and the effects of grazing. The objective of this study was to quantify greenhouse gas (GHG) fluxes from pasture soils grazed with cow-calf pairs managed with different stocking rates and densities. The central hypothesis was that irrigated low-density stocking systems (SysB) would result in greater GHG emissions from pasture soils than nonirrigated high-density stocking systems (SysA) and grazing-exclusion (GRE) pasture sites. The nonirrigated high-density stocking systems consisted of 120 cow-calf pairs rotating on a total of 120 ha (stocking rate 1 cow/ha, stocking density 112,000 kg BW/ha, rest period of 60 to 90 d). The irrigated low-density stocking systems consisted of 64 cow-calf pairs rotating on a total of 26 ha of pasture (stocking rate 2.5 cows/ha, stocking density 32,700 kg BW/ha, rest period of 18 to 30 d). Both systems consisted of mixed cool-season grass-legume pastures. Static chambers were randomly placed for collection of CO, CH, and NO samples. Soil temperature (ST), ambient temperature (temperature inside the chamber; AT), and soil water content (WC) were monitored and considered explanatory variables for GHG emissions. GHG fluxes were monitored for 3 yr (2011 to 2013) at the beginning (P1) and at the end (P2) of the grazing season, always postgrazing. Paddock was the experimental unit (3 pseudoreplicates per treatment), and chambers (30 chambers per paddock) were considered multiple measurements of each experimental unit. A completely randomized design considered the term year × period as a repeated measure and chamber nested within paddock and treatment as the random term. Generally, SysB had greater CO emissions than SysA and GRE pasture sites across years and periods ( < 0.01). Soil temperature, AT, and WC had effects on CO emissions. Methane and NO emissions were observed from pasture sites of the 3 systems, but

  3. Types of greenhouse gas emissions in the production of cast iron and steel

    NASA Astrophysics Data System (ADS)

    Lisienko, V. G.; Chesnokov, Yu N.; Lapteva, A. V.; Noskov, V. Yu

    2016-09-01

    Types of carbon dioxide emissions in iron and steel production are indicated. Production processes have been classified according to mechanisms of carbon dioxide formation. Mathematical models for calculation of carbon dioxide emissions for each type of process are found. Calculations results of carbon dioxide emissions of coke (BF + EAF) and cokeless processes (Corex, Midrex, HyL-3, Romelt) in combination with EAF are provided.

  4. WholeTree Substrate and Fertilizer Rate in Production of Greenhouse Grown Petunia (Petunia*hybrida Vilm) and marigold (Tagetes patula L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A substrate component (WholeTree) made from loblolly pine (Pinus taeda L.) was evaluated along with starter fertilizer rate in the production of greenhouse-grown petunia (Petunia 'hybrida Vilm. ‘Dreams Purple’) and marigold (Tagetes patula L. ‘Hero Spry’). Loblolly pine from a 12 year old plantation...

  5. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States

    PubMed Central

    Eshel, Gidon; Shepon, Alon; Makov, Tamar; Milo, Ron

    2014-01-01

    Livestock production impacts air and water quality, ocean health, and greenhouse gas (GHG) emissions on regional to global scales and it is the largest use of land globally. Quantifying the environmental impacts of the various livestock categories, mostly arising from feed production, is thus a grand challenge of sustainability science. Here, we quantify land, irrigation water, and reactive nitrogen (Nr) impacts due to feed production, and recast published full life cycle GHG emission estimates, for each of the major animal-based categories in the US diet. Our calculations reveal that the environmental costs per consumed calorie of dairy, poultry, pork, and eggs are mutually comparable (to within a factor of 2), but strikingly lower than the impacts of beef. Beef production requires 28, 11, 5, and 6 times more land, irrigation water, GHG, and Nr, respectively, than the average of the other livestock categories. Preliminary analysis of three staple plant foods shows two- to sixfold lower land, GHG, and Nr requirements than those of the nonbeef animal-derived calories, whereas irrigation requirements are comparable. Our analysis is based on the best data currently available, but follow-up studies are necessary to improve parameter estimates and fill remaining knowledge gaps. Data imperfections notwithstanding, the key conclusion—that beef production demands about 1 order of magnitude more resources than alternative livestock categories—is robust under existing uncertainties. The study thus elucidates the multiple environmental benefits of potential, easy-to-implement dietary changes, and highlights the uniquely high resource demands of beef. PMID:25049416

  6. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States.

    PubMed

    Eshel, Gidon; Shepon, Alon; Makov, Tamar; Milo, Ron

    2014-08-19

    Livestock production impacts air and water quality, ocean health, and greenhouse gas (GHG) emissions on regional to global scales and it is the largest use of land globally. Quantifying the environmental impacts of the various livestock categories, mostly arising from feed production, is thus a grand challenge of sustainability science. Here, we quantify land, irrigation water, and reactive nitrogen (Nr) impacts due to feed production, and recast published full life cycle GHG emission estimates, for each of the major animal-based categories in the US diet. Our calculations reveal that the environmental costs per consumed calorie of dairy, poultry, pork, and eggs are mutually comparable (to within a factor of 2), but strikingly lower than the impacts of beef. Beef production requires 28, 11, 5, and 6 times more land, irrigation water, GHG, and Nr, respectively, than the average of the other livestock categories. Preliminary analysis of three staple plant foods shows two- to sixfold lower land, GHG, and Nr requirements than those of the nonbeef animal-derived calories, whereas irrigation requirements are comparable. Our analysis is based on the best data currently available, but follow-up studies are necessary to improve parameter estimates and fill remaining knowledge gaps. Data imperfections notwithstanding, the key conclusion--that beef production demands about 1 order of magnitude more resources than alternative livestock categories--is robust under existing uncertainties. The study thus elucidates the multiple environmental benefits of potential, easy-to-implement dietary changes, and highlights the uniquely high resource demands of beef. PMID:25049416

  7. Greenhouse Gas Production From a Young Boreal Hydroelectric Reservoir (Eastern Canada): A Carbon Isotope Approach

    NASA Astrophysics Data System (ADS)

    Lalonde, A.; Helie, J.

    2007-12-01

    It is now accepted that boreal hydroelectric reservoirs and lakes produce greenhouse gases (GHG) mainly in the form of CO2. Much of the research has so far focused on old (> 20 year) reservoirs. However, the problems associated with a newly flooded reservoir are different because after flooding, salts and nutrients from the flooded soils are released into the water column (i.e. the reservoir's effect). It is anticipated that the CO2 fluxes should be higher in young reservoirs than in older ones, but little is known about their magnitude and their sources. The Eastmain-1 hydroelectric reservoir is a small reservoir of 603 km2 with a mean depth of 11.5m. Flooding began in November 2005 and ended in May 2006. The flooded area was covered with approximately 65% boreal forests, 21% rivers and lakes and 14% peatlands. Here, we make use stable carbon isotopes to constrain carbon sources and cycling in this disturbed environment. Ultimately, the study aims at estimating annual CO2 fluxes at the water-air interface of the reservoir. Sampling was performed four times (June 2006, August 2006, October 2006 and June 2007) to account for seasonality of the carbon cycle. Twelve sites were visited on the reservoir as well as a natural lake near the reservoir. Three sites were also sampled along a depth gradient. At each sampling site, in situ measurements included water and air temperatures, pH, alkalinity, wind speed, conductivity and dissolved oxygen content. Samples were collected for the analysis of dissolved organic and inorganic carbon (respectively DOC and DIC) and particulate organic carbon (POC) concentrations, for the analysis of the carbon isotopic compositions of DOC, DIC, POC and air CO2 at the water-air interface and finally for the C:N of DOM and POM. DOC concentrations are highest averaging 6.86±1.40 mg*l-1, DIC concentrations average 1.51±0.76 mg*l-1 and POC concentrations are up to 2 orders of magnitude lower averaging 0.036±0.018 mg*l-1. δ13C values of DOC

  8. The Contribution of Highly Productive but Leaky Wetlands to the Carbon and Greenhouse Gas Dynamics of sub-Saharan Africa.

    NASA Astrophysics Data System (ADS)

    Saunders, Matthew; Kansiime, Frank; Jones, Michael

    2016-04-01

    The tropical wetlands of East Africa represent hotspots of carbon and greenhouse gas (GHG) exchange the dynamics of which vary across the site, landscape and regional scale. The wetlands of the Nile headwaters including Lake Victoria, the world's largest tropical lake, are dominated by the emergent macrophyte sedge Cyperus papyrus L. (papyrus), which under favourable environmental conditions has been shown to exhibit high rates of photosynthetic carbon dioxide assimilation (≥40 μmol CO2 m-2 s-1); high rates of net primary productivity (≥50 g DM m-2 d-1); and the accumulation of significant peat deposits resulting in carbon stocks (≥640 t C ha-1) that exceed similar estimates from tropical rainforests, often considered to be the primary land based reserve of carbon. However, while these wetlands represent significant carbon pools, they are inherently "leaky" systems due to the lateral loss of particulate and dissolved carbon and this has implications for riverine carbon and GHG emissions which have been shown to increase with wetland extent and upland biomass. This paper utilises a range of empirical and published information to report on the eco-physiological controls on carbon, water and GHG exchange in papyrus dominated wetlands and considers the contribution of these highly productive wetlands to the GHG dynamics of the inland waters of East Africa, and in particular the Lake Victoria basin and the headwaters of the river Nile.

  9. The Contribution of Highly Productive but Leaky Wetlands to the Carbon and Greenhouse Gas Dynamics of sub-Saharan Africa.

    NASA Astrophysics Data System (ADS)

    Saunders, M. J.; Kansiime, F.; Jones, M. B.

    2015-12-01

    The tropical wetlands of East Africa represent hotspots of carbon and greenhouse gas (GHG) exchange the dynamics of which vary across the site, landscape and regional scale. The wetlands of the Nile headwaters including Lake Victoria, the world's largest tropical lake, are dominated by the emergent macrophyte sedge Cyperus papyrus L. (papyrus), which under favourable environmental conditions has been shown to exhibit high rates of photosynthetic carbon dioxide assimilation (≥40 µmol CO2 m-2 s-1); high rates of net primary productivity (≥50 g DM m-2 d-1); and the accumulation of significant peat deposits resulting in carbon stocks (≥640 t C ha-1) that exceed similar estimates from tropical rainforests, often considered to be the primary land based reserve of carbon. However, while these wetlands represent significant carbon pools, they are inherently "leaky" systems due to the lateral loss of particulate and dissolved carbon and this has implications for riverine carbon and GHG emissions which have been shown to increase with wetland extent and upland biomass. This paper utilises a range of empirical and published information to report on the eco-physiological controls on carbon, water and GHG exchange in papyrus dominated wetlands and considers the contribution of these highly productive wetlands to the GHG dynamics of the inland waters of East Africa, and in particular the Lake Victoria basin and the headwaters of the river Nile.

  10. A comparison of disinfectants to prevent spread of potyviruses in greenhouse tomato production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potyviruses, transmitted by a diverse array of common aphid species, infect a broad range of vegetable crops, and can be problematic in glasshouse tomato production. Once introduced, these viruses are believed to be transmitted plant-to-plant during pruning operations, and can infect large sections...

  11. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil.

    PubMed

    Spokas, K A; Koskinen, W C; Baker, J M; Reicosky, D C

    2009-10-01

    A potential abatement to increasing levels of carbon dioxide (CO(2)) in the atmosphere is the use of pyrolysis to convert vegetative biomass into a more stable form of carbon (biochar) that could then be applied to the soil. However, the impacts of pyrolysis biochar on the soil system need to be assessed before initiating large scale biochar applications to agricultural fields. We compared CO(2) respiration, nitrous oxide (N(2)O) production, methane (CH(4)) oxidation and herbicide retention and transformation through laboratory incubations at field capacity in a Minnesota soil (Waukegan silt loam) with and without added biochar. CO(2) originating from the biochar needs to be subtracted from the soil-biochar combination in order to elucidate the impact of biochar on soil respiration. After this correction, biochar amendments reduced CO(2) production for all amendment levels tested (2, 5, 10, 20, 40 and 60% w/w; corresponding to 24-720 tha(-1) field application rates). In addition, biochar additions suppressed N(2)O production at all levels. However, these reductions were only significant at biochar amendment levels >20% w/w. Biochar additions also significantly suppressed ambient CH(4) oxidation at all levels compared to unamended soil. The addition of biochar (5% w/w) to soil increased the sorption of atrazine and acetochlor compared to non-amended soils, resulting in decreased dissipation rates of these herbicides. The recalcitrance of the biochar suggests that it could be a viable carbon sequestration strategy, and might provide substantial net greenhouse gas benefits if the reductions in N(2)O production are lasting.

  12. The Impact of Region, Nitrogen Use Efficiency, and Grower Incentives on Greenhouse Gas Mitigation in Canola (Brassica napus) Production

    NASA Astrophysics Data System (ADS)

    Hammac, W. A.; Pan, W.; Koenig, R. T.; McCracken, V.

    2012-12-01

    The Environmental Protection Agency (EPA) has mandated through the second renewable fuel standard (RFS2) that biodiesel meet a minimum threshold requirement (50% reduction) for greenhouse gas (GHG) emission reduction compared to fossil diesel. This designation is determined by life cycle assessment (LCA) and carries with it potential for monetary incentives for biodiesel feedstock growers (Biomass Crop Assistance Program) and biodiesel processors (Renewable Identification Numbers). A national LCA was carried out for canola (Brassica napus) biodiesel feedstock by the EPA and it did meet the minimum threshold requirement. However, EPA's national LCA does not provide insight into regional variation in GHG mitigation. The authors propose for full GHG reduction potential of biofuels to be realized, LCA results must have regional specificity and should inform incentives for growers and processors on a regional basis. The objectives of this work were to determine (1) variation in biofuel feedstock production related GHG emissions between three agroecological zones (AEZs) in eastern Washington State (2) the impact of nitrogen use efficiency (NUE) on GHG mitigation potential for each AEZ and (3) the impact of incentives on adoption of oilseed production. Results from objective (1) revealed there is wide variability in range for GHG estimates both across and within AEZs based on variation in farming practices and environment. It is expected that results for objective (2) will show further GHG mitigation potential due to minimizing N use and therefore fertilizer transport and soil related GHG emission while potentially increasing biodiesel production per hectare. Regional based incentives may allow more timely achievement of goals for bio-based fuels production. Additionally, incentives may further increase GHG offsetting by promoting nitrogen conserving best management practices implementation. This research highlights the need for regional assessment/incentive based

  13. Green cheese: partial life cycle assessment of greenhouse gas emissions and energy intensity of integrated dairy production and bioenergy systems.

    PubMed

    Aguirre-Villegas, H A; Passos-Fonseca, T H; Reinemann, D J; Armentano, L E; Wattiaux, M A; Cabrera, V E; Norman, J M; Larson, R

    2015-03-01

    The objective of this study was to evaluate the effect of integrating dairy and bioenergy systems on land use, net energy intensity (NEI), and greenhouse gas (GHG) emissions. A reference dairy farm system representative of Wisconsin was compared with a system that produces dairy and bioenergy products. This integrated system investigates the effects at the farm level when the cow diet and manure management practices are varied. The diets evaluated were supplemented with varying amounts of dry distillers grains with solubles and soybean meal and were balanced with different types of forages. The manure-management scenarios included manure land application, which is the most common manure disposal method in Wisconsin, and manure anaerobic digestion (AD) to produce biogas. A partial life cycle assessment from cradle to farm gate was conducted, where the system boundaries were expanded to include the production of biofuels in the analysis and the environmental burdens between milk and bioenergy products were partitioned by system expansion. Milk was considered the primary product and the functional unit, with ethanol, biodiesel, and biogas considered co-products. The production of the co-products was scaled according to milk production to meet the dietary requirements of each selected dairy ration. Results indicated that land use was 1.6 m2, NEI was 3.86 MJ, and GHG emissions were 1.02 kg of CO2-equivalents per kilogram of fat- and protein-corrected milk (FPCM) for the reference system. Within the integrated dairy and bioenergy system, diet scenarios that maximize dry distillers grains with solubles and implement AD had the largest reduction of GHG emissions and NEI, but the greatest increase in land use compared with the reference system. Average land use ranged from 1.68 to 2.01 m2/kg of FPCM; NEI ranged from -5.62 to -0.73 MJ/kg of FPCM; and GHG emissions ranged from 0.63 to 0.77 kg of CO2-equivalents/kg of FPCM. The AD contributed 65% of the NEI and 77% of the GHG

  14. Solar greenhouse

    SciTech Connect

    Baldwin, R.E.

    1980-04-01

    A solar greenhouse is disclosed wherein plants are grown and utilized as collectors to absorb solar radiation and produce heat laden humidified air through the process of evapotranspiration. This humidified air is then further heated by solar energy. Energy is then extracted from the humidified air by cooling the air and condensing the water vapor within the air. The extracted heat can then be stored and utilized as required to heat the greenhouse and plants.

  15. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management.

    PubMed

    An, Ning; Fan, Mingsheng; Zhang, Fusuo; Christie, Peter; Yang, Jianchang; Huang, Jianliang; Guo, Shiwei; Shi, Xiaojun; Tang, Qiyuan; Peng, Jianwei; Zhong, Xuhua; Sun, Yixiang; Lv, Shihua; Jiang, Rongfeng; Dobermann, Achim

    2015-01-01

    Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices-BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system

  16. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management.

    PubMed

    An, Ning; Fan, Mingsheng; Zhang, Fusuo; Christie, Peter; Yang, Jianchang; Huang, Jianliang; Guo, Shiwei; Shi, Xiaojun; Tang, Qiyuan; Peng, Jianwei; Zhong, Xuhua; Sun, Yixiang; Lv, Shihua; Jiang, Rongfeng; Dobermann, Achim

    2015-01-01

    Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices-BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system

  17. Exploiting Co-Benefits of Increased Rice Production and Reduced Greenhouse Gas Emission through Optimized Crop and Soil Management

    PubMed Central

    An, Ning; Fan, Mingsheng; Zhang, Fusuo; Christie, Peter; Yang, Jianchang; Huang, Jianliang; Guo, Shiwei; Shi, Xiaojun; Tang, Qiyuan; Peng, Jianwei; Zhong, Xuhua; Sun, Yixiang; Lv, Shihua; Jiang, Rongfeng; Dobermann, Achim

    2015-01-01

    Meeting the future food security challenge without further sacrificing environmental integrity requires transformative changes in managing the key biophysical determinants of increasing agronomic productivity and reducing the environmental footprint. Here, we focus on Chinese rice production and quantitatively address this concern by conducting 403 on-farm trials across diverse rice farming systems. Inherent soil productivity, management practices and rice farming type resulted in confounded and interactive effects on yield, yield gaps and greenhouse gas (GHG) emissions (N2O, CH4 and CO2-equivalent) with both trade-offs and compensating effects. Advances in nitrogen, water and crop management (Best Management Practices—BMPs) helped closing existing yield gaps and resulted in a substantial reduction in CO2-equivalent emission of rice farming despite a tradeoff of increase N2O emission. However, inherent soil properties limited rice yields to a larger extent than previously known. Cultivating inherently better soil also led to lower GHG intensity (GHG emissions per unit yield). Neither adopting BMPs only nor improving soils with low or moderate productivity alone can adequately address the challenge of substantially increasing rice production while reducing the environmental footprint. A combination of both represents the most efficient strategy to harness the combined-benefits of enhanced production and mitigating climate change. Extrapolating from our farm data, this strategy could increase rice production in China by 18%, which would meet the demand for direct human consumption of rice by 2030. It would also reduce fertilizer nitrogen consumption by 22% and decrease CO2-equivalent emissions during the rice growing period by 7% compared with current farming practice continues. Benefits vary by rice-based cropping systems. Single rice systems have the largest food provision benefits due to its wider yield gap and total cultivated area, whereas double-rice system

  18. Greenhouse Gas Emissions from Calf- and Yearling-Fed Beef Production Systems, With and Without the Use of Growth Promotants

    PubMed Central

    Basarab, John; Baron, Vern; López-Campos, Óscar; Aalhus, Jennifer; Haugen-Kozyra, Karen; Okine, Erasmus

    2012-01-01

    Simple Summary A spring calving herd (~350 beef cows) over two production cycles was used to compare the whole-farm greenhouse gas (GHG) emissions among calf-fed vs. yearling-fed production systems, with and without growth implants. Farm GHG emissions initially included enteric CH4, manure CH4 and N2O, cropping N2O, and energy use CO2. The carbon footprint ranged from 19.9–22.5 kg CO2e per kg carcass weight. Including soil organic carbon loss from annual cropping and carbon sequestration from perennial pastures and haylands further reduced the carbon footprint by 11–16%. The carbon footprint of beef was reduced by growth promotants (4.9–5.1%) and by calf-fed beef production (6.3–7.5%). Abstract A spring calving herd consisting of about 350 beef cows, 14–16 breeding bulls, 60 replacement heifers and 112 steers were used to compare the whole-farm GHG emissions among calf-fed vs. yearling-fed production systems with and without growth implants. Carbon footprint ranged from 11.63 to 13.22 kg CO2e per kg live weight (19.87–22.52 kg CO2e per kg carcass weight). Enteric CH4 was the largest source of GHG emissions (53–54%), followed by manure N2O (20–22%), cropping N2O (11%), energy use CO2 (9–9.5%), and manure CH4 (4–6%). Beef cow accounted for 77% and 58% of the GHG emissions in the calf-fed and yearling-fed. Feeders accounted for the second highest GHG emissions (15% calf-fed; 35–36% yearling-fed). Implants reduced the carbon footprint by 4.9–5.1% compared with hormone-free. Calf-fed reduced the carbon footprint by 6.3–7.5% compared with yearling-fed. When expressed as kg CO2e per kg carcass weight per year the carbon footprint of calf-fed production was 73.9–76.1% lower than yearling-fed production, and calf-fed implanted was 85% lower than hormone-free yearling-fed. Reducing GHG emissions from beef production may be accomplished by improving the feed efficiency of the cow herd, decreasing the days on low quality feeds, and reducing the age

  19. Greenhouse gas emissions and production cost of ethanol produced from biosyngas fermentation process.

    PubMed

    Roy, Poritosh; Dutta, Animesh; Deen, Bill

    2015-09-01

    Life cycle (LC) of ethanol has been evaluated to determine the environmental and economical viability of ethanol that was derived from biosyngas fermentation process (gasification-biosynthesis). Four scenarios [S1: untreated (raw), S2: treated (torrefied); S3: untreated-chemical looping gasification (CLG), S4: treated-CLG] were considered. The simulated biosyngas composition was used in this evaluation process. The GHG emissions and production cost varied from 1.19 to 1.32 kg-CO2 e/L and 0.78 to 0.90$/L, respectively, which were found to be dependent on the scenarios. The environmental and economical viability was found be improved when untreated feedstock was used instead of treated feedstock. Although the GHG emissions slightly reduced in the case of CLG process, production cost was nominally increased because of the cost incurred by the use of CaO. This study revealed that miscanthus is a promising feedstock for the ethanol industry, even if it is grown on marginal land, which can help abate GHG emissions.

  20. Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels.

    PubMed

    Cai, Hao; Brandt, Adam R; Yeh, Sonia; Englander, Jacob G; Han, Jeongwoo; Elgowainy, Amgad; Wang, Michael Q

    2015-07-01

    Greenhouse gas (GHG) regulations affecting U.S. transportation fuels require holistic examination of the life-cycle emissions of U.S. petroleum feedstocks. With an expanded system boundary that included land disturbance-induced GHG emissions, we estimated well-to-wheels (WTW) GHG emissions of U.S. production of gasoline and diesel sourced from Canadian oil sands. Our analysis was based on detailed characterization of the energy intensities of 27 oil sands projects, representing industrial practices and technological advances since 2008. Four major oil sands production pathways were examined, including bitumen and synthetic crude oil (SCO) from both surface mining and in situ projects. Pathway-average GHG emissions from oil sands extraction, separation, and upgrading ranged from ∼6.1 to ∼27.3 g CO2 equivalents per megajoule (in lower heating value, CO2e/MJ). This range can be compared to ∼4.4 g CO2e/MJ for U.S. conventional crude oil recovery. Depending on the extraction technology and product type output of oil sands projects, the WTW GHG emissions for gasoline and diesel produced from bitumen and SCO in U.S. refineries were in the range of 100-115 and 99-117 g CO2e/MJ, respectively, representing, on average, about 18% and 21% higher emissions than those derived from U.S. conventional crudes. WTW GHG emissions of gasoline and diesel derived from diluted bitumen ranged from 97 to 103 and 96 to 104 g CO2e/MJ, respectively, showing the effect of diluent use on fuel emissions.

  1. Influence of Anthropogenic Nutrient Additions on Greenhouse Gas Production Rates at Water-soil Interfaces in an Urban Dominated Estuary

    NASA Astrophysics Data System (ADS)

    Brigham, B. A.; O'Mullan, G. D.; Bird, J. A.

    2014-12-01

    The tidal Hudson River Estuary (HRE) receives significant inputs of readily dissolvable carbon (C) and nitrogen (N) from incomplete wastewater treatment and sewer overflow during storm events associated with NYC and other urban centers. Nutrient deposition may alter C utilization in the estuarine water column, associated sediments and surrounding wetlands. In these anaerobic systems, we hypothesize that microbial activity is limited by the availability of easily-degradable C (not electron acceptors), which acts as a co-metabolite and provides energy for organic matter decomposition. Sporadic transport of highly C enriched storm derived runoff may substantially enhance greenhouse gas (GHG) production rates through the utilization of stored C pools. To test our hypothesis carbon dioxide (CO2) and methane (CH4) process rates (1) were evaluated from soil cores removed from three distinct HRE wetland sites (Saw Mill Creek, Piermont, and Iona Island Marsh(s)) across a salinity gradient and incubated under varying nutrient treatments. Further, CO2 and CH4 surface water effluxes (2) were quantified from multiple river cruises spanning two years at varying distance from nutrient sources associated with NYC. Incubation experiments from wetland soil core experiments demonstrated that readily degradable C but not inorganic N additions stimulated GHG production (200 - 350 ug C g-1 of dry soil day-1) threefold compared to negative controls. The HRE was found to be both a CO2 and CH4 source under all conditions. The greatest GHG efflux (300 - 3000 nmoles C m-2 day-1) was quantified in mid-channel, tributary, and near shore sites in close proximity to NYC which following precipitation events demonstrated 2-20X increased GHG efflux. These results demonstrate that anthropogenic C additions associated with dense urban centers have the potential to enhance anaerobic microbial degradation of organic matter and subsequent GHG production.

  2. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands

    PubMed Central

    Basiliko, Nathan; Henry, Kevin; Gupta, Varun; Moore, Tim R.; Driscoll, Brian T.; Dunfield, Peter F.

    2013-01-01

    Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide (CO2) and methane (CH4) production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between natural, mined, and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and CH4 or CO2 production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought

  3. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production.

    PubMed

    Hodgkins, Suzanne B; Tfaily, Malak M; McCalley, Carmody K; Logan, Tyler A; Crill, Patrick M; Saleska, Scott R; Rich, Virginia I; Chanton, Jeffrey P

    2014-04-22

    Carbon release due to permafrost thaw represents a potentially major positive climate change feedback. The magnitude of carbon loss and the proportion lost as methane (CH4) vs. carbon dioxide (CO2) depend on factors including temperature, mobilization of previously frozen carbon, hydrology, and changes in organic matter chemistry associated with environmental responses to thaw. While the first three of these effects are relatively well understood, the effect of organic matter chemistry remains largely unstudied. To address this gap, we examined the biogeochemistry of peat and dissolved organic matter (DOM) along a ∼40-y permafrost thaw progression from recently- to fully thawed sites in Stordalen Mire (68.35°N, 19.05°E), a thawing peat plateau in northern Sweden. Thaw-induced subsidence and the resulting inundation along this progression led to succession in vegetation types accompanied by an evolution in organic matter chemistry. Peat C/N ratios decreased whereas humification rates increased, and DOM shifted toward lower molecular weight compounds with lower aromaticity, lower organic oxygen content, and more abundant microbially produced compounds. Corresponding changes in decomposition along this gradient included increasing CH4 and CO2 production potentials, higher relative CH4/CO2 ratios, and a shift in CH4 production pathway from CO2 reduction to acetate cleavage. These results imply that subsidence and thermokarst-associated increases in organic matter lability cause shifts in biogeochemical processes toward faster decomposition with an increasing proportion of carbon released as CH4. This impact of permafrost thaw on organic matter chemistry could intensify the predicted climate feedbacks of increasing temperatures, permafrost carbon mobilization, and hydrologic changes.

  4. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production

    PubMed Central

    Hodgkins, Suzanne B.; Tfaily, Malak M.; McCalley, Carmody K.; Logan, Tyler A.; Crill, Patrick M.; Saleska, Scott R.; Rich, Virginia I.; Chanton, Jeffrey P.

    2014-01-01

    Carbon release due to permafrost thaw represents a potentially major positive climate change feedback. The magnitude of carbon loss and the proportion lost as methane (CH4) vs. carbon dioxide (CO2) depend on factors including temperature, mobilization of previously frozen carbon, hydrology, and changes in organic matter chemistry associated with environmental responses to thaw. While the first three of these effects are relatively well understood, the effect of organic matter chemistry remains largely unstudied. To address this gap, we examined the biogeochemistry of peat and dissolved organic matter (DOM) along a ∼40-y permafrost thaw progression from recently- to fully thawed sites in Stordalen Mire (68.35°N, 19.05°E), a thawing peat plateau in northern Sweden. Thaw-induced subsidence and the resulting inundation along this progression led to succession in vegetation types accompanied by an evolution in organic matter chemistry. Peat C/N ratios decreased whereas humification rates increased, and DOM shifted toward lower molecular weight compounds with lower aromaticity, lower organic oxygen content, and more abundant microbially produced compounds. Corresponding changes in decomposition along this gradient included increasing CH4 and CO2 production potentials, higher relative CH4/CO2 ratios, and a shift in CH4 production pathway from CO2 reduction to acetate cleavage. These results imply that subsidence and thermokarst-associated increases in organic matter lability cause shifts in biogeochemical processes toward faster decomposition with an increasing proportion of carbon released as CH4. This impact of permafrost thaw on organic matter chemistry could intensify the predicted climate feedbacks of increasing temperatures, permafrost carbon mobilization, and hydrologic changes. PMID:24711402

  5. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production.

    PubMed

    Hodgkins, Suzanne B; Tfaily, Malak M; McCalley, Carmody K; Logan, Tyler A; Crill, Patrick M; Saleska, Scott R; Rich, Virginia I; Chanton, Jeffrey P

    2014-04-22

    Carbon release due to permafrost thaw represents a potentially major positive climate change feedback. The magnitude of carbon loss and the proportion lost as methane (CH4) vs. carbon dioxide (CO2) depend on factors including temperature, mobilization of previously frozen carbon, hydrology, and changes in organic matter chemistry associated with environmental responses to thaw. While the first three of these effects are relatively well understood, the effect of organic matter chemistry remains largely unstudied. To address this gap, we examined the biogeochemistry of peat and dissolved organic matter (DOM) along a ∼40-y permafrost thaw progression from recently- to fully thawed sites in Stordalen Mire (68.35°N, 19.05°E), a thawing peat plateau in northern Sweden. Thaw-induced subsidence and the resulting inundation along this progression led to succession in vegetation types accompanied by an evolution in organic matter chemistry. Peat C/N ratios decreased whereas humification rates increased, and DOM shifted toward lower molecular weight compounds with lower aromaticity, lower organic oxygen content, and more abundant microbially produced compounds. Corresponding changes in decomposition along this gradient included increasing CH4 and CO2 production potentials, higher relative CH4/CO2 ratios, and a shift in CH4 production pathway from CO2 reduction to acetate cleavage. These results imply that subsidence and thermokarst-associated increases in organic matter lability cause shifts in biogeochemical processes toward faster decomposition with an increasing proportion of carbon released as CH4. This impact of permafrost thaw on organic matter chemistry could intensify the predicted climate feedbacks of increasing temperatures, permafrost carbon mobilization, and hydrologic changes. PMID:24711402

  6. Variability and uncertainty in life cycle assessment models for greenhouse gas emissions from Canadian oil sands production.

    PubMed

    Brandt, Adam R

    2012-01-17

    Because of interest in greenhouse gas (GHG) emissions from transportation fuels production, a number of recent life cycle assessment (LCA) studies have calculated GHG emissions from oil sands extraction, upgrading, and refining pathways. The results from these studies vary considerably. This paper reviews factors affecting energy consumption and GHG emissions from oil sands extraction. It then uses publicly available data to analyze the assumptions made in the LCA models to better understand the causes of variability in emissions estimates. It is found that the variation in oil sands GHG estimates is due to a variety of causes. In approximate order of importance, these are scope of modeling and choice of projects analyzed (e.g., specific projects vs industry averages); differences in assumed energy intensities of extraction and upgrading; differences in the fuel mix assumptions; treatment of secondary noncombustion emissions sources, such as venting, flaring, and fugitive emissions; and treatment of ecological emissions sources, such as land-use change-associated emissions. The GHGenius model is recommended as the LCA model that is most congruent with reported industry average data. GHGenius also has the most comprehensive system boundaries. Last, remaining uncertainties and future research needs are discussed.

  7. Establishing a Regional Nitrogen Management Approach to Mitigate Greenhouse Gas Emission Intensity from Intensive Smallholder Maize Production

    PubMed Central

    Wu, Liang; Chen, Xinping; Cui, Zhenling; Zhang, Weifeng; Zhang, Fusuo

    2014-01-01

    The overuse of Nitrogen (N) fertilizers on smallholder farms in rapidly developing countries has increased greenhouse gas (GHG) emissions and accelerated global N consumption over the past 20 years. In this study, a regional N management approach was developed based on the cost of the agricultural response to N application rates from 1,726 on-farm experiments to optimize N management across 12 agroecological subregions in the intensive Chinese smallholder maize belt. The grain yield and GHG emission intensity of this regional N management approach was investigated and compared to field-specific N management and farmers' practices. The regional N rate ranged from 150 to 219 kg N ha−1 for the 12 agroecological subregions. Grain yields and GHG emission intensities were consistent with this regional N management approach compared to field-specific N management, which indicated that this regional N rate was close to the economically optimal N application. This regional N management approach, if widely adopted in China, could reduce N fertilizer use by more than 1.4 MT per year, increase maize production by 31.9 MT annually, and reduce annual GHG emissions by 18.6 MT. This regional N management approach can minimize net N losses and reduce GHG emission intensity from over- and underapplications, and therefore can also be used as a reference point for regional agricultural extension employees where soil and/or plant N monitoring is lacking. PMID:24875747

  8. Developing and demonstrating low-energy climate control and production techniques for greenhouse-grown citrus and ornamental crops

    SciTech Connect

    Bodnaruk, W.H. Jr.

    1983-04-01

    The aim of this study was to develop and demonstrate low energy climate control and production techniques for greenhouse grown citrus and ornamental crops. Emphasis was placed on design, fuel efficiency and plant response to warm water soil heating systems using solar energy and LP gas. An energy requirement of 28Btus output per hour per square foot of bed space will provide soil temperature of 70/sup 0/F minimum when air temperatures are maintained at 60/sup 0/F. Soil heating to 70/sup 0/ increased rooting and growth of 8 foliage plant varieties by 25 to 45% compared to plants grown under 60/sup 0/F air temperature conditions. Providing soil heating, however, increased fuel consumption in the central Florida test facilities by 30% in the winters of 1980-81 and 1981-82. Solar tie-in to soil heating systems has the potential of reducing fuel usage. Solar heated water provided 4 hours of soil heating following a good collection day. Decreased in-bed pipe spacing and increased storage capacity should increase the solar percentage to 6 hours.

  9. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer

    NASA Astrophysics Data System (ADS)

    Xia, Longlong; Xia, Yongqiu; Ma, Shutan; Wang, Jinyang; Wang, Shuwei; Zhou, Wei; Yan, Xiaoyuan

    2016-08-01

    Impacts of simultaneous inputs of crop straw and nitrogen (N) fertilizer on greenhouse gas (GHG) emissions and N losses from rice production are not well understood. A 2-year field experiment was established in a rice-wheat cropping system in the Taihu Lake region (TLR) of China to evaluate the GHG intensity (GHGI) as well as reactive N intensity (NrI) of rice production with inputs of wheat straw and N fertilizer. The field experiment included five treatments of different N fertilization rates for rice production: 0 (RN0), 120 (RN120), 180 (RN180), 240 (RN240), and 300 kg N ha-1 (RN300, traditional N application rate in the TLR). Wheat straws were fully incorporated into soil before rice transplantation. The meta-analytic technique was employed to evaluate various Nr losses. Results showed that the response of rice yield to N rate successfully fitted a quadratic model, while N fertilization promoted Nr discharges exponentially (nitrous oxide emission, N leaching, and runoff) or linearly (ammonia volatilization). The GHGI of rice production ranged from 1.20 (RN240) to 1.61 kg CO2 equivalent (CO2 eq) kg-1 (RN0), while NrI varied from 2.14 (RN0) to 10.92 g N kg-1 (RN300). Methane (CH4) emission dominated the GHGI with a proportion of 70.2-88.6 % due to direct straw incorporation, while ammonia (NH3) volatilization dominated the NrI with proportion of 53.5-57.4 %. Damage costs to environment incurred by GHG and Nr releases from current rice production (RN300) accounted for 8.8 and 4.9 % of farmers' incomes, respectively. Cutting N application rate from 300 (traditional N rate) to 240 kg N ha-1 could improve rice yield and nitrogen use efficiency by 2.14 and 10.30 %, respectively, while simultaneously reducing GHGI by 13 %, NrI by 23 %, and total environmental costs by 16 %. Moreover, the reduction of 60 kg N ha-1 improved farmers' income by CNY 639 ha-1, which would provide them with an incentive to change the current N application rate. Our study suggests that GHG

  10. Deep Production Well for Geothermal Direct-Use Heating of A Large Commercial Greenhouse, Radium Springs, Rio Grande Rift, New Mexico

    SciTech Connect

    James C. Witcher

    2002-01-02

    Expansion of a large commercial geothermally-heated greenhouse is underway and requires additional geothermal fluid production. This report discusses the results of a cost-shared U.S. Department of Energy (DOE) and A.R. Masson, Inc. drilling project designed to construct a highly productive geothermal production well for expansion of the large commercial greenhouse at Radium Springs. The well should eliminate the potential for future thermal breakthrough from existing injection wells and the inducement of inflow from shallow cold water aquifers by geothermal production drawdown in the shallow reservoir. An 800 feet deep production well, Masson 36, was drilled on a US Bureau of Land Management (BLM) Geothermal Lease NM-3479 at Radium Springs adjacent to the A. R. Masson Radium Springs Farm commercial greenhouse 15 miles north of Las Cruces in Dona Ana County, New Mexico just west of Interstate 25 near the east bank of the Rio Grande. The area is in the Rio Grande rift, a tectonically-active region with high heat flow, and is one of the major geothermal provinces in the western United State.

  11. Testing the limits in a greenhouse ocean: Did low nitrogen availability limit marine productivity during the end-Triassic mass extinction?

    NASA Astrophysics Data System (ADS)

    Schoepfer, Shane D.; Algeo, Thomas J.; Ward, Peter D.; Williford, Kenneth H.; Haggart, James W.

    2016-10-01

    The end-Triassic mass extinction has been characterized as a 'greenhouse extinction', related to rapid atmospheric warming and associated changes in ocean circulation and oxygenation. The response of the marine nitrogen cycle to these oceanographic changes, and the extent to which mass extinction intervals represent a deviation in nitrogen cycling from other ice-free 'greenhouse' periods of Earth history, remain poorly understood. The well-studied Kennecott Point section in Haida Gwaii, British Columbia, Canada, was deposited in the open Panthalassic Ocean, and is used here as a test case to better understand changes in the nitrogen cycle and marine productivity from the pre-crisis greenhouse of the Rhaetian to the latest-Rhaetian crisis interval. We estimated marine productivity from the late Norian to the early Hettangian using TOC- and P-based paleoproductivity transform equations, and then compared these estimates to records of sedimentary nitrogen isotopes, redox-sensitive trace elements, and biomarker data. Major negative excursions in δ15N (to ≤ 0 ‰) correspond to periods of depressed marine productivity. During these episodes, the development of a stable pycnocline below the base of the photic zone suppressed vertical mixing and limited N availability in surface waters, leading to low productivity and increased nitrogen fixation, as well as ecological stresses in the photic zone. The subsequent shoaling of euxinic waters into the ocean surface layer was fatal for most Triassic marine fauna, although the introduction of regenerated NH4+ into the photic zone may have allowed phytoplankton productivity to recover. These results indicate that the open-ocean nitrogen cycle was influenced by climatic changes during the latest Triassic, despite having existed in a greenhouse state for over 50 million years previously, and that low N availability limited marine productivity for hundreds of thousands of years during the end-Triassic crisis.

  12. Space and time variability of heating requirements for greenhouse tomato production in the Euro-Mediterranean area.

    PubMed

    Mariani, Luigi; Cola, Gabriele; Bulgari, Roberta; Ferrante, Antonio; Martinetti, Livia

    2016-08-15

    The Euro-Mediterranean area is the seat of a relevant greenhouse activity, meeting the needs of important markets. A quantitative assessment of greenhouse energy consumption and of its variability in space and time is an important decision support tool for both greenhouse-sector policies and farmers. A mathematical model of greenhouse energy balance was developed and parameterized for a state-of-the-art greenhouse to evaluate the heating requirements for vegetables growing. Tomato was adopted as reference crop, due to its high energy requirement for fruit setting and ripening and its economic relevance. In order to gain a proper description of the Euro-Mediterranean area, 56 greenhouse areas located within the ranges 28°N-72°N and 11°W-55°E were analyzed over the period 1973-2014. Moreover, the two 1973-1987 and 1988-2014 sub-periods were separately studied to describe climate change effects on energy consumption. Results account for the spatial variability of energy needs for tomato growing, highlighting the strong influence of latitude on the magnitude of heat requirements. The comparison between the two selected sub-periods shows a decrease of energy demand in the current warm phase, more relevant for high latitudes. Finally, suggestions to reduce energy consumptions are provided.

  13. Space and time variability of heating requirements for greenhouse tomato production in the Euro-Mediterranean area.

    PubMed

    Mariani, Luigi; Cola, Gabriele; Bulgari, Roberta; Ferrante, Antonio; Martinetti, Livia

    2016-08-15

    The Euro-Mediterranean area is the seat of a relevant greenhouse activity, meeting the needs of important markets. A quantitative assessment of greenhouse energy consumption and of its variability in space and time is an important decision support tool for both greenhouse-sector policies and farmers. A mathematical model of greenhouse energy balance was developed and parameterized for a state-of-the-art greenhouse to evaluate the heating requirements for vegetables growing. Tomato was adopted as reference crop, due to its high energy requirement for fruit setting and ripening and its economic relevance. In order to gain a proper description of the Euro-Mediterranean area, 56 greenhouse areas located within the ranges 28°N-72°N and 11°W-55°E were analyzed over the period 1973-2014. Moreover, the two 1973-1987 and 1988-2014 sub-periods were separately studied to describe climate change effects on energy consumption. Results account for the spatial variability of energy needs for tomato growing, highlighting the strong influence of latitude on the magnitude of heat requirements. The comparison between the two selected sub-periods shows a decrease of energy demand in the current warm phase, more relevant for high latitudes. Finally, suggestions to reduce energy consumptions are provided. PMID:27110994

  14. Material and energy balances of an integrated biological hydrogen production and purification system and their implications for its potential to reduce greenhouse gas emissions.

    PubMed

    Fukushima, Yasuhiro; Huang, Yu-Jung; Chen, Jhen-Wei; Lin, Hung-Chun; Whang, Liang-Ming; Chu, Hsin; Lo, Young-Chong; Chang, Jo-Shu

    2011-09-01

    The materials and energy in an integrated biological hydrogen production and purification system involving hydrolysis, dark fermentation, photo fermentation, CO2 fixation and anaerobic digestion are balanced by integrating the results from multiple experiments, simulations and the literature. The findings are two fold. First, using 1000 kg rice straw as a substrate, 19.8 kg H2 and 138.0 kg CH4 are obtained. The net energy balance (NEB) and net energy ratio (NER) are -738.4 kWh and 77.8%, respectively, both of which imply an unfavorable energy production system. Opportunities to improve the performance particularly lie in the photo fermentation process. Second, greenhouse gas emissions are evaluated for various options. The results were comparable with the emission inventory of electricity generated from fossil fuels. NEB and NER under a zero-carbon-emission constraint were discussed in detail to clarify completely the implications of the energy and material balances on greenhouse gas emissions.

  15. Effects of N and P fertilisation on greenhouse gas (GHG) production in floodplain fen peat: A microcosm fertilisation experiment.

    NASA Astrophysics Data System (ADS)

    Stanley, Kieran; Heppell, Catherine; Belyea, Lisa; Baird, Andrew

    2016-04-01

    Biogeochemical and hydrological cycles are being significantly perturbed by anthropic activities altering atmospheric mole fractions of greenhouse gases (GHG) and increasing global temperatures. With the intensification of the hydrological cycle, lowland areas, such as floodplain fens, may be inundated more frequently. Rivers in agricultural catchments have the potential to pollute floodplain fens with significant amounts of nitrogen (N) and phosphorus (P); however, the effects of short-term (< 15 days) N and P fertilisation via fluvial inundation on GHG emissions from floodplain fens are poorly understood. The aim of this research was to determine how N (51 mg L-1 NO3-N) and P (1.4 mg L-1 PO43--P) additions may alter GHG (CO2, CH4, and N2O) production in floodplain fens of contrasting nutrient status under anaerobic conditions. A five-level (control, glucose (G), N+G, P+G, and N+P+G), fully-factorial microcosm experiment was designed and undertaken in Spring 2013 with peat from two floodplain fens under conservation management with similar vegetation (from Norfolk, United Kingdom). One site receives a higher nutrient load than the other and has a historical legacy of higher N and P contents within the peat. Results from the experiment showed no significant difference in CO2 production between the control and fertilised treatments from 0 to 96 hours, but a significant difference between treatments (ANCOVA, between factors: treatment and site; covariate: time; F4,419 = 11.844, p < 0.001) and site (F1,149 = 5.721, p = 0.017) from 96 hours to in the end of the experiment due to fermentation. N2O production only occurred in samples fertilised with N (N+G and N+P+G) due to denitrification. Rates of N2O production were significantly greater in samples from the lower-nutrient site in comparison to the nutrient-rich site (t12= 6.539, p < 0.001 and t12= 7.273, p < 0.001 for N+G and N+P+G fertilised samples, respectively). Fertilisation with N and P had different effects on

  16. Life-cycle energy use and greenhouse gas emissions of production of bioethanol from sorghum in the United States

    PubMed Central

    2013-01-01

    Background The availability of feedstock options is a key to meeting the volumetric requirement of 136.3 billion liters of renewable fuels per year beginning in 2022, as required in the US 2007 Energy Independence and Security Act. Life-cycle greenhouse gas (GHG) emissions of sorghum-based ethanol need to be assessed for sorghum to play a role in meeting that requirement. Results Multiple sorghum-based ethanol production pathways show diverse well-to-wheels (WTW) energy use and GHG emissions due to differences in energy use and fertilizer use intensity associated with sorghum growth and differences in the ethanol conversion processes. All sorghum-based ethanol pathways can achieve significant fossil energy savings. Relative to GHG emissions from conventional gasoline, grain sorghum-based ethanol can reduce WTW GHG emissions by 35% or 23%, respectively, when wet or dried distillers grains with solubles (DGS) is the co-product and fossil natural gas (FNG) is consumed as the process fuel. The reduction increased to 56% or 55%, respectively, for wet or dried DGS co-production when renewable natural gas (RNG) from anaerobic digestion of animal waste is used as the process fuel. These results do not include land-use change (LUC) GHG emissions, which we take as negligible. If LUC GHG emissions for grain sorghum ethanol as estimated by the US Environmental Protection Agency (EPA) are included (26 g CO2e/MJ), these reductions when wet DGS is co-produced decrease to 7% or 29% when FNG or RNG is used as the process fuel. Sweet sorghum-based ethanol can reduce GHG emissions by 71% or 72% without or with use of co-produced vinasse as farm fertilizer, respectively, in ethanol plants using only sugar juice to produce ethanol. If both sugar and cellulosic bagasse were used in the future for ethanol production, an ethanol plant with a combined heat and power (CHP) system that supplies all process energy can achieve a GHG emission reduction of 70% or 72%, respectively, without or

  17. Paludiculture as a chance for peatland and climate: the greenhouse gas balance of biomass production on two rewetted peatlands does not differ from the natural state

    NASA Astrophysics Data System (ADS)

    Günther, Anke; Huth, Vytas; Jurasinski, Gerald; Albrecht, Kerstin; Glatzel, Stephan

    2015-04-01

    In Europe, rising prices for farm land make it increasingly difficult for government administrations to compete with external investors during the acquisition of land for wetland conservation. Thus, adding economic value to these, otherwise "lost", areas by combining extensive land use with nature conservation efforts could increase the amount of ground available for wetland restoration. Against this background, the concept of paludiculture aims to provide biomass for multiple purposes from peatlands with water tables high enough to conserve the peat body. However, as plants have been shown to contribute to greenhouse gas exchange in peatlands, manipulating the vegetation (by harvesting, sowing etc.) might alter the effect of the restored peatlands on climate. Here, we present greenhouse gas data from two experimental paludiculture systems on formerly drained intensive grasslands in northern Germany. In a fen that has been rewetted more than 15 years ago three species of reed plants were harvested to simulate biomass production for bioenergy and as construction material. And in a peat bog that has been converted from drained grassland to a field with a controlled water table around ground surface Sphagnum mosses were cultivated to provide an alternative growing substrate for horticulture. In both systems, we determined carbon dioxide, methane, and nitrous oxide exchange using closed chambers over two years. Additionally, water and peat chemistry and environmental parameters as recorded by a weather station were analyzed. Both restored peatlands show greenhouse gas balances comparable to those of natural ecosystems. Nitrous oxide was not emitted in either system. Fluctuations of the emissions reflect changes in weather conditions across the study years. In the fen, relative emission patterns between plant species were not constant over time. We did not find a negative short-term effect of biomass harvest or Sphagnum cultivation on net greenhouse gas balances

  18. Life cycle energy and greenhouse gas profile of a process for the production of ammonium sulfate from nitrogen-fixing photosynthetic cyanobacteria.

    PubMed

    Razon, Luis F

    2012-03-01

    In this paper, an alternative means for nitrogen fixation that may consume less energy and release less greenhouse gases than the Haber-Bosch process is explored. A life-cycle assessment was conducted on a process to: culture the cyanobacterium, Anabaena sp. ATCC 33047, in open ponds; harvest the biomass and exopolysaccharides and convert these to biogas; strip and convert the ammonia from the biogas residue to ammonium sulfate; dry the ammonium sulfate solution to ammonium sulfate crystals and transport the finished product. The results suggest that substantial reductions in non-renewable energy use and greenhouse gas emissions may be realized. The study opens the possibility that Haber-Bosch ammonia may be replaced with ammonia from a biomass process which simultaneously generates renewable energy. The process is intrinsically safer than the Haber-Bosch process. However, there are trade-offs in terms of land use and possibly, water.

  19. Soil greenhouse gas emissions and carbon dynamics of a no-till, corn-based cellulosic ethanol production system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues like corn stover perform important functions that promote soil health and provide ecosystem services that influence agricultural sustainability and global biogeochemical cycles. We evaluated the effect of corn residue removal from a no-till, corn-soybean rotation on greenhouse gas (GHG...

  20. Grassland systems of red meat production: integration between biodiversity, plant nutrient utilisation, greenhouse gas emissions and meat nutritional quality.

    PubMed

    Dawson, L E R; O'Kiely, P; Moloney, A P; Vipond, J E; Wylie, A R G; Carson, A F; Hyslop, J

    2011-08-01

    Government policies relating to red meat production take account of the carbon footprint, environmental impact, and contributions to human health and nutrition, biodiversity and food security. This paper reviews the impact of grazing on these parameters and their interactions, identifying those practices that best meet governments' strategic goals. The recent focus of research on livestock grazing and biodiversity has been on reducing grazing intensity on hill and upland areas. Although this produces rapid increases in sward height and herbage mass, changes in structural diversity and plant species are slower, with no appreciable short-term increases in biodiversity so that environmental policies that simply involve reductions in numbers of livestock may not result in increased biodiversity. Furthermore, upland areas rely heavily on nutrient inputs to pastures so that withdrawal of these inputs can threaten food security. Differences in grazing patterns among breeds increase our ability to manage biodiversity if they are matched appropriately to different conservation grazing goals. Lowland grassland systems differ from upland pastures in that additional nutrients in the form of organic and inorganic fertilisers are more frequently applied to lowland pastures. Appropriate management of these nutrient applications is required, to reduce the associated environmental impact. New slurry-spreading techniques and technologies (e.g. the trailing shoe) help reduce nutrient losses but high nitrogen losses from urine deposition remain a key issue for lowland grassland systems. Nitrification inhibitors have the greatest potential to successfully tackle this problem. Greenhouse gas (GHG) emissions are lower from indoor-based systems that use concentrates to shorten finishing periods. The challenge is to achieve the same level of performance from grass-based systems. Research has shown potential solutions through the use of forages containing condensed tannins or establishing

  1. A life cycle assessment of non-renewable energy use and greenhouse gas emissions associated with blueberry and raspberry production in northern Italy.

    PubMed

    Girgenti, Vincenzo; Peano, Cristiana; Bounous, Michele; Baudino, Claudio

    2013-08-01

    This study examined the emissions produced during the pre-farm, farm and post-farm phases of the production cycle of raspberries and giant American whortleberries (blueberries) cultivated in one of the best-adapted areas in northern Italy. The pre-farm phase included the greenhouse gas emissions from the production of plants in the nursery and the transportation of the plants to the production farms. The farm phase involved the emissions of greenhouse gases from chemical products, the water used for irrigation, the generation of waste, and the consumption of electricity and other energy. The post-farm phase comprised the transportation of the products to the distribution centre (DC) and their storage in the DC. The use phase is not included in the system, nor is transportation from the supermarket to the home of the final consumer, but the disposal of the packaging is nevertheless taken into account. Indeed, the use of traditional plastic materials during both the field phase (nursery and cultivation) and the post-harvesting phase (packaging) produced the greatest estimated impact. PMID:23685366

  2. A life cycle assessment of non-renewable energy use and greenhouse gas emissions associated with blueberry and raspberry production in northern Italy.

    PubMed

    Girgenti, Vincenzo; Peano, Cristiana; Bounous, Michele; Baudino, Claudio

    2013-08-01

    This study examined the emissions produced during the pre-farm, farm and post-farm phases of the production cycle of raspberries and giant American whortleberries (blueberries) cultivated in one of the best-adapted areas in northern Italy. The pre-farm phase included the greenhouse gas emissions from the production of plants in the nursery and the transportation of the plants to the production farms. The farm phase involved the emissions of greenhouse gases from chemical products, the water used for irrigation, the generation of waste, and the consumption of electricity and other energy. The post-farm phase comprised the transportation of the products to the distribution centre (DC) and their storage in the DC. The use phase is not included in the system, nor is transportation from the supermarket to the home of the final consumer, but the disposal of the packaging is nevertheless taken into account. Indeed, the use of traditional plastic materials during both the field phase (nursery and cultivation) and the post-harvesting phase (packaging) produced the greatest estimated impact.

  3. Investigation of water productivity for maize with focus on the difference in global radiation between a greenhouse and a field site

    NASA Astrophysics Data System (ADS)

    Kloss, Sebastian; Schütze, Niels

    2015-04-01

    Simulation models for crop growth become increasingly important to investigate yield development and water consumption, which help reducing the experimental expenditures and performing scenario analyses, particularly in the light of finding adaption strategies to cope with limited water supply. Often, small pot greenhouse experiments are conducted to evaluate the suitability of a crop or a certain irrigation strategy. Results from such experiments serve then as a recommended management practice for application in the field. Previous investigations on water productivity for maize from greenhouse experiments have shown, that crop growth modeling was only successful when observed global radiation was increased by more than 50%. This suggests a higher exposure to global radiation of the crop in greenhouses and makes the transfer of results to the field difficult. In this contribution, a study is presented that investigates WP of maize with focus on the difference in global radiation between a greenhouse and field site. An intensively monitored irrigation experiment with containers in a greenhouse was conducted. Two deficit and one full irrigation treatments for two different soils were investigated. Irrigation was controlled by a soil-water potential sensor capable of measuring tensions between pF0 and pF7 with the goal to achieve a high WP. Other sensors included tensiometers, TDR, VH400 soil water sensors, and Hydra probes. Two containers were placed on scales which served as minilysimeters to determine the soil-water balance throughout the growing period of the crop. All containers were placed so that no shading would occur between them. The greenhouse was compared to an outdoor site with an equal setup of maize grown in containers and a field site with maize growing under field conditions. Measurements of the global radiation between those three sites were taken in weekly intervals with a sensor measuring the global radiation from six spatial directions at the same

  4. Environmental assessment of three egg production systems--Part II. Ammonia, greenhouse gas, and particulate matter emissions.

    PubMed

    Shepherd, T A; Zhao, Y; Li, H; Stinn, J P; Hayes, M D; Xin, H

    2015-03-01

    As an integral part of the Coalition for Sustainable Egg Supply (CSES) Project, this study simultaneously monitored air emissions of 3 commercially operated egg production systems at the house level and associated manure storage over 2 single-cycle flocks (18 to 78 wk of age). The 3 housing systems were 1) a conventional cage house (CC) with a 200,000-hen capacity (6 hens in a cage at a stocking density of 516 cm2/hen), 2) an enriched colony house (EC) with a 50,000-hen capacity (60 hens per colony at a stocking density of 752 cm2/hen), and 3) an aviary house (AV) with a 50,000-hen capacity (at a stocking density of 1253 to 1257 cm2/hen). The 3 hen houses were located on the same farm and were populated with Lohmann white hens of the same age. Indoor environment and house-level gaseous (ammonia [NH3] and greenhouse gasses [GHG], including carbon dioxide [CO2], methane [CH4], and nitrous oxide [N2O]) and particulate matter (PM10, PM2.5) emissions were monitored continually. Gaseous emissions from the respective manure storage of each housing system were also monitored. Emission rates (ERs) are expressed as emission quantities per hen, per animal unit (AU, 500 kg live BW), and per kilogram of egg output. House-level NH3 ER (g/hen/d) of EC (0.054) was significantly lower than that of CC (0.082) or AV (0.112) (P<0.05). The house-level CO2 ER (g/hen/d) was lower for CC (68.3) than for EC and AV (74.4 and 74.0, respectively), and the CH4 ER (g/hen/d) was similar for all 3 houses (0.07 to 0.08). The house-level PM ER (mg/hen/d), essentially representing the farm-level PM ER, was significantly higher for AV (PM10 100.3 and PM2.5 8.8) than for CC (PM10 15.7 and PM2.5 0.9) or EC (PM10 15.6 and PM2.5 1.7) (P<0.05). The farm-level (house plus manure storage) NH3 ER (g/hen/d) was significantly lower for EC (0.16) than for CC (0.29) or AV (0.30) (P<0.05). As expected, the magnitudes of GHG emissions were rather small for all 3 production systems. Data from this study enable

  5. Environmental assessment of three egg production systems — Part II. Ammonia, greenhouse gas, and particulate matter emissions

    PubMed Central

    Shepherd, T. A.; Zhao, Y.; Li, H.; Stinn, J. P.; Hayes, M. D.; Xin, H.

    2015-01-01

    As an integral part of the Coalition for Sustainable Egg Supply (CSES) Project, this study simultaneously monitored air emissions of 3 commercially operated egg production systems at the house level and associated manure storage over 2 single-cycle flocks (18 to 78 wk of age). The 3 housing systems were 1) a conventional cage house (CC) with a 200,000-hen capacity (6 hens in a cage at a stocking density of 516 cm2/hen), 2) an enriched colony house (EC) with a 50,000-hen capacity (60 hens per colony at a stocking density of 752 cm2/hen), and 3) an aviary house (AV) with a 50,000-hen capacity (at a stocking density of 1253 to 1257 cm2/hen). The 3 hen houses were located on the same farm and were populated with Lohmann white hens of the same age. Indoor environment and house-level gaseous (ammonia [NH3] and greenhouse gasses [GHG], including carbon dioxide [CO2], methane [CH4], and nitrous oxide [N2O]) and particulate matter (PM10, PM2.5) emissions were monitored continually. Gaseous emissions from the respective manure storage of each housing system were also monitored. Emission rates (ERs) are expressed as emission quantities per hen, per animal unit (AU, 500 kg live BW), and per kilogram of egg output. House-level NH3 ER (g/hen/d) of EC (0.054) was significantly lower than that of CC (0.082) or AV (0.112) (P < 0.05). The house-level CO2 ER (g/hen/d) was lower for CC (68.3) than for EC and AV (74.4 and 74.0, respectively), and the CH4 ER (g/hen/d) was similar for all 3 houses (0.07 to 0.08). The house-level PM ER (mg/hen/d), essentially representing the farm-level PM ER, was significantly higher for AV (PM10 100.3 and PM2.5 8.8) than for CC (PM10 15.7 and PM2.5 0.9) or EC (PM10 15.6 and PM2.5 1.7) (P < 0.05). The farm-level (house plus manure storage) NH3 ER (g/hen/d) was significantly lower for EC (0.16) than for CC (0.29) or AV (0.30) (P < 0.05). As expected, the magnitudes of GHG emissions were rather small for all 3 production systems. Data from this study

  6. Environmental assessment of three egg production systems--Part II. Ammonia, greenhouse gas, and particulate matter emissions.

    PubMed

    Shepherd, T A; Zhao, Y; Li, H; Stinn, J P; Hayes, M D; Xin, H

    2015-03-01

    As an integral part of the Coalition for Sustainable Egg Supply (CSES) Project, this study simultaneously monitored air emissions of 3 commercially operated egg production systems at the house level and associated manure storage over 2 single-cycle flocks (18 to 78 wk of age). The 3 housing systems were 1) a conventional cage house (CC) with a 200,000-hen capacity (6 hens in a cage at a stocking density of 516 cm2/hen), 2) an enriched colony house (EC) with a 50,000-hen capacity (60 hens per colony at a stocking density of 752 cm2/hen), and 3) an aviary house (AV) with a 50,000-hen capacity (at a stocking density of 1253 to 1257 cm2/hen). The 3 hen houses were located on the same farm and were populated with Lohmann white hens of the same age. Indoor environment and house-level gaseous (ammonia [NH3] and greenhouse gasses [GHG], including carbon dioxide [CO2], methane [CH4], and nitrous oxide [N2O]) and particulate matter (PM10, PM2.5) emissions were monitored continually. Gaseous emissions from the respective manure storage of each housing system were also monitored. Emission rates (ERs) are expressed as emission quantities per hen, per animal unit (AU, 500 kg live BW), and per kilogram of egg output. House-level NH3 ER (g/hen/d) of EC (0.054) was significantly lower than that of CC (0.082) or AV (0.112) (P<0.05). The house-level CO2 ER (g/hen/d) was lower for CC (68.3) than for EC and AV (74.4 and 74.0, respectively), and the CH4 ER (g/hen/d) was similar for all 3 houses (0.07 to 0.08). The house-level PM ER (mg/hen/d), essentially representing the farm-level PM ER, was significantly higher for AV (PM10 100.3 and PM2.5 8.8) than for CC (PM10 15.7 and PM2.5 0.9) or EC (PM10 15.6 and PM2.5 1.7) (P<0.05). The farm-level (house plus manure storage) NH3 ER (g/hen/d) was significantly lower for EC (0.16) than for CC (0.29) or AV (0.30) (P<0.05). As expected, the magnitudes of GHG emissions were rather small for all 3 production systems. Data from this study enable

  7. Greenhouse Gas Emission Intensities Based on Economic Input-Output Tables and Case Studies of Product LCA

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshinori; Oguchi, Masahiro; Amemiya, Kumiko; Kagami, Hideyo; Haruki, Kazuhito

    In this paper, emission intensity tables of greenhouse gas (especially HFC, PFC and SF6) are presented and LCA (Life Cycle Assessment) case studies using those tables are discussed. The emission intensity tables of greenhouse gas are derived from Economic Input-Output Tables (I/O tables) and several statistical data. The emission intensities derived from the total amount transferred between sections in I/O tables become larger than the intensities derived from the actual amount of gases transferred between sections. In order to calculate the intensities of these gases, certain sections of the I/O tables should be decomposed. The I/O tables are modified, adding these sections, which correspond to ″HFC″, ″PFC″, ″HCFC″ and ″SF6″ manufacturing industries. The emission intensities become large in not only ″HFC″, ″PFC″, ″HCFC″, ″SF6″ subsections, but also ″Semiconductor devices and integrated circuits″, ″Liquid crystal devices″ and ″Relay switches and switchboards″ sections. LCA case studies are conducted on a laptop PC and an air conditioner. The greenhouse gas emission at each stage of the life cycle is increased by about 20% for a laptop PC and by about 1% for an air conditioner with the CO2 equivalent compared with the result calculated by the emission intensity tables of CO2 and N2O.

  8. The Influence of Climate, Soil and Pasture Type on Productivity and Greenhouse Gas Emissions Intensity of Modeled Beef Cow-Calf Grazing Systems in Southern Australia

    PubMed Central

    Bell, Matthew J.; Cullen, Brendan R.; Eckard, Richard J.

    2012-01-01

    Simple Summary Livestock production systems and the agricultural industries in general face challenges to meet the global demand for food, whilst also minimizing their environmental impact through the production of greenhouse gas (GHG) emissions. Livestock grazing systems in southern Australia are low input and reliant on pasture as a low-cost source of feed. The balance between productivity and GHG emission intensity of beef cow-calf grazing systems was studied at sites chosen to represent a range of climatic zones, soil and pasture types. While the climatic and edaphic characteristics of a location may impact on the emissions from a grazing system, management to efficiently use pasture can reduce emissions per unit product. Abstract A biophysical whole farm system model was used to simulate the interaction between the historical climate, soil and pasture type at sites in southern Australia and assess the balance between productivity and greenhouse gas emissions (expressed in carbon dioxide equivalents, CO2-eq.) intensity of beef cow-calf grazing systems. Four sites were chosen to represent a range of climatic zones, soil and pasture types. Poorer feed quality and supply limited the annual carrying capacity of the kikuyu pasture compared to phalaris pastures, with an average long-term carrying capacity across sites estimated to be 0.6 to 0.9 cows/ha. A relative reduction in level of feed intake to productivity of calf live weight/ha at weaning by feeding supplementary feed reduced the average CO2-eq. emissions/kg calf live weight at weaning of cows on the kikuyu pasture (18.4 and 18.9 kg/kg with and without supplementation, respectively), whereas at the other sites studied an increase in intake level to productivity and emission intensity was seen (between 10.4 to 12.5 kg/kg without and with supplementary feed, respectively). Enteric fermentationand nitrous oxide emissions from denitrification were the main sources of annual variability in emissions intensity

  9. Gardening with Greenhouses

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2010-01-01

    Greenhouses come in all shapes, sizes, and price ranges: from simple hand-built plastic-covered frames to dazzling geodesic domes. Some child care centers install greenhouses as a part of their outdoor garden space. Other centers have incorporated a greenhouse into the building itself. Greenhouses provide a great opportunity for children to grow…

  10. Water level, vegetation composition, and plant productivity explain greenhouse gas fluxes in temperate cutover fens after inundation

    NASA Astrophysics Data System (ADS)

    Minke, Merten; Augustin, Jürgen; Burlo, Andrei; Yarmashuk, Tatsiana; Chuvashova, Hanna; Thiele, Annett; Freibauer, Annette; Tikhonov, Vitalij; Hoffmann, Mathias

    2016-07-01

    Peat extraction leaves a land surface with a strong relief of deep cutover areas and higher ridges. Rewetting inundates the deep parts, while less deeply extracted zones remain at or above the water level. In temperate fens the flooded areas are colonized by helophytes such as Eriophorum angustifolium, Carex spp., Typha latifolia or Phragmites australis dependent on water depth. Reeds of Typha and Phragmites are reported as large sources of methane, but data on net CO2 uptake are contradictory for Typha and rare for Phragmites. Here, we analyze the effect of vegetation, water level and nutrient conditions on greenhouse gas (GHG) emissions for representative vegetation types along water level gradients at two rewetted cutover fens (mesotrophic and eutrophic) in Belarus. Greenhouse gas emissions were measured campaign-wise with manual chambers every 2 to 4 weeks for 2 years and interpolated by modelling. All sites had negligible nitrous oxide exchange rates. Most sites were carbon sinks and small GHG sources. Methane emissions generally increased with net ecosystem CO2 uptake. Mesotrophic small sedge reeds with water table around the land surface were small GHG sources in the range of 2.3 to 4.2 t CO2 eq. ha-1 yr-1. Eutrophic tall sedge - Typha latifolia reeds on newly formed floating mats were substantial net GHG emitters in the range of 25.1 to 39.1 t CO2 eq. ha-1 yr. They represent transient vegetation stages. Phragmites reeds ranged between -1.7 to 4.2 t CO2 eq. ha-1 yr-1 with an overall mean GHG emission of 1.3 t CO2 eq. ha-1 yr-1. The annual CO2 balance was best explained by vegetation biomass, which includes the role of vegetation composition and species. Methane emissions were obviously driven by biological activity of vegetation and soil organisms. Shallow flooding of cutover temperate fens is a suitable measure to arrive at low GHG emissions. Phragmites australis establishment should be promoted in deeper flooded areas and will lead to moderate, but

  11. Greenhouse production of Impatiens wallerana using a controlled-release fertiliser produces quality finished plants with enhanced garden performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management during production can greatly influence post-production quality of plants. The objective of this research was to evaluate the effect of controlled release fertilizer (CRF) applied at the time of plug planting on the garden performance (post-production) of impatiens (Impatiens wal...

  12. Greenhouse Earth: A Traveling Exhibition

    SciTech Connect

    Booth, W.H.; Caesar, S.

    1992-09-01

    The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to ten US cities, reaching two million visitors. Greenhouse Earth aims to deepen public understanding of the scientific issues of global warming and the conservation measures that can be taken to slow its effects. The exhibit features hands-on exhibitry, interactive computer programs and videos, a theater production, a demonstration cart,'' guided tours, and lectures. supplemental educational programs at the Institute included a teachers preview, a symposium on climate change, and a satellite field trip.'' The development of Greenhouse Earth included front-end and formative evaluation procedures. Evaluation includes interviews with visitors, prototypes, and summative surveys for participating museums. During its stay in Philadelphia, Greenhouse Earth was covered by the local and national press, with reviews in print and broadcast media. Greenhouse Earth is the first large-scale museum exhibit to address global climate change.

  13. Spatially-explicit estimates of greenhouse-gas payback times for perennial cellulosic biomass production on open lands in the Lake States

    NASA Astrophysics Data System (ADS)

    Sahajpal, R.

    2015-12-01

    The development of renewable energy sources is an integral step towards mitigating the carbon dioxide induced component of climate change. One important renewable source is plant biomass, comprising both food crops such as corn (Zea mays) and cellulosic biomass from short-rotation woody crops (SRWC) such as hybrid-poplar (Populus spp.) and Willow (Salix spp.). Due to their market acceptability and excellent energy balance, cellulosic feedstocks represent an abundant and if managed properly, a carbon-neutral and environmentally beneficial resource. We evaluate how site variability impacts the greenhouse-gas (GHG) benefits of SRWC plantations on lands potentially suited for bioenergy feedstock production in the Lake States (Minnesota, Wisconsin, Michigan). We combine high-resolution, spatially-explicit estimates of biomass, soil organic carbon and nitrous oxide emissions for SRWC plantations from the Environmental Policy Integrated Climate (EPIC) model along with life cycle analysis results from the GREET model to determine the greenhouse-gas payback time (GPBT) or the time needed before the GHG savings due to displacement of fossil fuels exceeds the initial losses from plantation establishment. We calibrate our models using unique yield and N2O emission data from sites across the Lake states that have been converted from pasture and hayfields to SRWC plantations. Our results show a reduction of 800,000 ha in non-agricultural open land availability for biomass production, a loss of nearly 37% (see attached figure). Overall, GPBTs range between 1 and 38 years, with the longest GPBTs occurring in the northern Lake states. Initial soil nitrate levels and site drainage potential explain more than half of the variation in GPBTs. Our results indicate a rapidly closing window of opportunity to establish a sustainable cellulosic feedstock economy in the Lake States.

  14. Closing the yield gap could reduce projected greenhouse gas emissions: a case study of maize production in China.

    PubMed

    Cui, Zhenling; Yue, Shanchao; Wang, Guiliang; Meng, Qingfeng; Wu, Liang; Yang, Zhiping; Zhang, Qiang; Li, Shiqing; Zhang, Fusuo; Chen, Xinping

    2013-08-01

    Although the goal of doubling food demand while simultaneously reducing agricultural environmental damage has become widely accepted, the dominant agricultural paradigm still considers high yields and reduced greenhouse gas (GHG) intensity to be in conflict with one another. Here, we achieved an increase in maize yield of 70% in on-farm experiments by closing the yield gap and evaluated the trade-off between grain yield, nitrogen (N) fertilizer use, and GHG emissions. Based on two groups of N application experiments in six locations for 16 on-farm site-years, an integrated soil-crop system (HY) approach achieved 93% of the yield potential and averaged 14.8 Mg ha(-1) maize grain yield at 15.5% moisture. This is 70% higher than current crop (CC) management. More importantly, the optimal N rate for the HY system was 250 kg N ha(-1) , which is only 38% more N fertilizer input than that applied in the CC system. Both the N2 O emission intensity and GHG intensity increased exponentially as the N application rate increased, and the response curve for the CC system was always higher than that for the HY system. Although the N application rate increased by 38%, N2 O emission intensity and the GHG intensity of the HY system were reduced by 12% and 19%, respectively. These on-farm observations indicate that closing the yield gap alongside efficient N management should therefore be prominent among a portfolio of strategies to meet food demand while reducing GHG intensity at the same time. PMID:23553871

  15. Mars inflatable greenhouse analog.

    PubMed

    Sadler, Philip D; Giacomelli, Gene A

    2002-01-01

    Light intensities on the Martian surface can possibly support a bioregenerative life support system (BLSS) utilizing natural sunlight for hydroponic crop production, if a suitable controlled environment can be provided. Inflatable clear membrane structures offer low mass, are more easily transported than a rigid structure, and are good candidates for providing a suitable controlled environment for crop production. Cable culture is one hydroponic growing system that can take advantage of the beneficial attributes of the inflatable structure. An analog of a Mars inflatable greenhouse can provide researchers data on issues such as crew time requirements for operation, productivity for BLSS, human factors, and much more at a reasonable cost. This is a description of one such design.

  16. Mars inflatable greenhouse analog.

    PubMed

    Sadler, Philip D; Giacomelli, Gene A

    2002-01-01

    Light intensities on the Martian surface can possibly support a bioregenerative life support system (BLSS) utilizing natural sunlight for hydroponic crop production, if a suitable controlled environment can be provided. Inflatable clear membrane structures offer low mass, are more easily transported than a rigid structure, and are good candidates for providing a suitable controlled environment for crop production. Cable culture is one hydroponic growing system that can take advantage of the beneficial attributes of the inflatable structure. An analog of a Mars inflatable greenhouse can provide researchers data on issues such as crew time requirements for operation, productivity for BLSS, human factors, and much more at a reasonable cost. This is a description of one such design. PMID:11987303

  17. Effects of winter cover crop, soil amendment, and variety on organic rice production and greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen supply and disease are two main challenges in organic rice production. Cover crop and soil amendment can be options to increase soil N while keeps rice health. The objective of this study was to test the effects of cover crop and soil amendment on the production of organic rice. Three popul...

  18. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-11-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emissions) over a complete year, and the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), and solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40 and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.09 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effects from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4

  19. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    NASA Astrophysics Data System (ADS)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-06-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for the rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emission) over a complete year, as well as the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40% and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.087 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effect from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions

  20. Multi-Model CIMP5 projected impacts of increased greenhouse gases on the Niger basin and implications for hydropower production

    NASA Astrophysics Data System (ADS)

    Oyerinde, Ganiyu; Wisser, Dominik

    2014-05-01

    Climate change could potentially have large impacts on water availability in West Africa and the predictions are accrued with high uncertainties in this region. Countries in the Niger River basin (West Africa) plan the investment of 200 million in the installation of an additional 400MW of hydropower in the nearest future, adding to the existing 685MW. With the impacts of climate change in the basin already occurring, there is a need for comprehending the influence of future hydro-climatic changes on water resources and hydro-power generation in the basin. This study uses a hydrological model to simulate river flow under present and future conditions and evaluates the impacts of potential changes on electricity production of the largest hydroelectric dam (Kainji) in the Niger Basin. The Kainji reservoir produces 25 per cent of the current energy needs of Nigeria and was subject to large fluctuations in energy production as a result of variable inflow and operational reasons. Inflow into the reservoir was simulated using hydroclimatic data from a set of 7 regional climate models (RCM) with two emission scenarios from the CORDEX-Africa regional downscaling experiment, driven with CMIP5 data. Based on observations of inflow, water level in the reservoir, and energy production we developed a simple hydroelectricity production model to simulate future energy production for the reservoir. Results suggest increases in river flow for the majority of RCM data as a result of increases in precipitation in the headwaters of the basin around 2050 and slightly decreasing trends for low emission scenarios by the end of the century. Despite this consistent increase, shifts in timing of river flow can challenge the reliable production of energy. This analysis could help assess the planning of hydropower schemes in the basin for a sustainable production of hydroelectricity in the future.

  1. The greenhouse gambit

    SciTech Connect

    Dogan, D. . Environmental Information Service)

    1992-01-01

    While forecasts of the economic costs and benefits of ameliorating global warming remain speculative, so, too, are the climate change projections that gird the debate. The consensus among most of the scientific community is that a doubling of atmospheric carbon dioxide is likely to raise the mean global temperature of the Earth 3 to 8 degrees Fahrenheit by 2050. To put this forecast in some perspective, the planet was about 10 degrees cooler during the last Great Ice Age and about 10 degrees warmer dozing the Age of the Dinsosaurs. Accordingly, the warming could bring about dramatic changes in climate. But a prudent investor must be careful not to invest too much in pat assumptions about the greenhouse effect. The climate may have many surprises in store. Indeed, it has surprised climate forecasters already by not warming nearly as fast as their general circulation models have suggested it would. This book examines four industries with the most at stake in the greenhouse debate: agriculture, forest products, automobiles and electric power. All of these industries essentially face two choices: Act now to blunt the possible momentum of climate change, or wait and see if the basic forecast is correct, accommodating any change as it occurs. These choices involve a trade-off between further information-gathering to ensure a proper course of action and implementing a strategy, quickly to its intended effect. Such a trade-off is the essence of risk, the stuff of investing. For the purposes of this book, it defines the greenhouse gambit.''

  2. Farm Simulation: a tool for evaluating the mitigation of greenhouse gas emissions and the adaptation of dairy production to climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farms both produce greenhouse gas emissions that drive human-induced climate change and are impacted by that climate change. Whole farm and global climate models provide useful tools for studying the benefits and costs of greenhouse gas mitigation and the adaptation of farms to changing climate. The...

  3. Optimizing water management practices for enhancing rice production and mitigating greenhouse gas emissions in Asia: The food-water-climate nexus approach

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Tian, H.; Lu, C.; Yang, J.; Ren, W.

    2015-12-01

    Rice fields, supporting over half of the global population, consumed around 30% of the freshwater used for global crop growth and identified as one of the major methane (CH4) sources. Asia, in where 90% of rice is consumed, took over 90% of the total CH4 emission from the global rice field. With the increasing water scarcity and rapidly growth population, it is urgent to address how to simultaneously maintain or even increase food production, reduce water consumption, and benefit climate. In this study, we used a process-based model (Dynamic Land Ecosystem Model), which has the capability to simultaneously simulate the carbon, water, and nitrogen fluxes and storages within the terrestrial ecosystem, and also the exchanges of greenhouse gases between terrestrial ecosystems and the atmosphere, to quantify the magnitude, spatial and temporal variation of rice production and CH4 emissions under different water management practices. Simulated results have been evaluated against field observations, inventory-based and atmospheric inversion estimates. By implementing a set of experimental simulations, the results could provide insights for reasonable implementation of optimum water management practices, which is also crucial for policy maker to make trade-off decisions to increase yield and reduce GHG emissions through effective mitigation strategies.

  4. A Greenhouse Gas and Soil Carbon Model for Estimating the Carbon Footprint of Livestock Production in Canada

    PubMed Central

    Vergé, Xavier P.C.; Dyer, James A.; Worth, Devon E.; Smith, Ward N.; Desjardins, Raymond L.; McConkey, Brian G.

    2012-01-01

    Simple Summary We developed a model to estimate the carbon footprint of Canadian livestock production. To include long term soil carbon storage and loss potential we introduced a payback period concept. The model was tested by reallocating 10% only of the protein production from a ruminant to a non ruminant source to minimize the risk of including rangeland or marginal lands. This displacement generated residual land which was found to play a major role in the potential mitigation of GHG emissions. The model will allow land use policies aimed at reducing the agricultural GHG emissions to be assessed. Abstract To assess tradeoffs between environmental sustainability and changes in food production on agricultural land in Canada the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES) was developed. It incorporates four livestock specific GHG assessments in a single model. To demonstrate the application of ULICEES, 10% of beef cattle protein production was assumed to be displaced with an equivalent amount of pork protein. Without accounting for the loss of soil carbon, this 10% shift reduced GHG emissions by 2.5 TgCO2e y−1. The payback period was defined as the number of years required for a GHG reduction to equal soil carbon lost from the associated land use shift. A payback period that is shorter than 40 years represents a net long term decrease in GHG emissions. Displacing beef cattle with hogs resulted in a surplus area of forage. When this residual land was left in ungrazed perennial forage, the payback periods were less than 4 years and when it was reseeded to annual crops, they were equal to or less than 40 years. They were generally greater than 40 years when this land was used to raise cattle. Agricultural GHG mitigation policies will inevitably involve a trade-off between production, land use and GHG emission reduction. ULICEES is a model that can objectively assess these trade-offs for Canadian agriculture. PMID:26487032

  5. The Dynamic Greenhouse Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    Greenhouses are marvelous devices, allowing one to enjoy the flower spectacle of summer all year round. At night, greenhouses use supplemental heat to keep the fragile plants warm. Over the last 30 years, greenhouse technology has undergone many changes, with the structures being automated and monitored and low-cost plastic structures emerging as…

  6. Build a Solar Greenhouse.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Attached solar greenhouses are relatively inexpensive and easy to build; they can provide additional heat to homes all winter as well as fresh vegetables and flowers. This bulletin: (1) describes the characteristics of a solar greenhouse; (2) provides a checklist of five items to consider before building a solar greenhouse; (3) describes the four…

  7. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity

    NASA Astrophysics Data System (ADS)

    Leip, Adrian; Billen, Gilles; Garnier, Josette; Grizzetti, Bruna; Lassaletta, Luis; Reis, Stefan; Simpson, David; Sutton, Mark A.; de Vries, Wim; Weiss, Franz; Westhoek, Henk

    2015-11-01

    Livestock production systems currently occupy around 28% of the land surface of the European Union (equivalent to 65% of the agricultural land). In conjunction with other human activities, livestock production systems affect water, air and soil quality, global climate and biodiversity, altering the biogeochemical cycles of nitrogen, phosphorus and carbon. Here, we quantify the contribution of European livestock production to these major impacts. For each environmental effect, the contribution of livestock is expressed as shares of the emitted compounds and land used, as compared to the whole agricultural sector. The results show that the livestock sector contributes significantly to agricultural environmental impacts. This contribution is 78% for terrestrial biodiversity loss, 80% for soil acidification and air pollution (ammonia and nitrogen oxides emissions), 81% for global warming, and 73% for water pollution (both N and P). The agriculture sector itself is one of the major contributors to these environmental impacts, ranging between 12% for global warming and 59% for N water quality impact. Significant progress in mitigating these environmental impacts in Europe will only be possible through a combination of technological measures reducing livestock emissions, improved food choices and reduced food waste of European citizens.

  8. A Greenhouse Gas and Soil Carbon Model for Estimating the Carbon Footprint of Livestock Production in Canada.

    PubMed

    Vergé, Xavier P C; Dyer, James A; Worth, Devon E; Smith, Ward N; Desjardins, Raymond L; McConkey, Brian G

    2012-09-04

    To assess tradeoffs between environmental sustainability and changes in food production on agricultural land in Canada the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES) was developed. It incorporates four livestock specific GHG assessments in a single model. To demonstrate the application of ULICEES, 10% of beef cattle protein production was assumed to be displaced with an equivalent amount of pork protein. Without accounting for the loss of soil carbon, this 10% shift reduced GHG emissions by 2.5 TgCO₂e y(-1). The payback period was defined as the number of years required for a GHG reduction to equal soil carbon lost from the associated land use shift. A payback period that is shorter than 40 years represents a net long term decrease in GHG emissions. Displacing beef cattle with hogs resulted in a surplus area of forage. When this residual land was left in ungrazed perennial forage, the payback periods were less than 4 years and when it was reseeded to annual crops, they were equal to or less than 40 years. They were generally greater than 40 years when this land was used to raise cattle. Agricultural GHG mitigation policies will inevitably involve a trade-off between production, land use and GHG emission reduction. ULICEES is a model that can objectively assess these trade-offs for Canadian agriculture.

  9. The microbial communities and potential greenhouse gas production in boreal acid sulphate, non-acid sulphate, and reedy sulphidic soils.

    PubMed

    Šimek, Miloslav; Virtanen, Seija; Simojoki, Asko; Chroňáková, Alica; Elhottová, Dana; Krištůfek, Václav; Yli-Halla, Markku

    2014-01-01

    Acid sulphate (AS) soils along the Baltic coasts contain significant amounts of organic carbon and nitrogen in their subsoils. The abundance, composition, and activity of microbial communities throughout the AS soil profile were analysed. The data from a drained AS soil were compared with those from a drained non-AS soil and a pristine wetland soil from the same region. Moreover, the potential production of methane, carbon dioxide, and nitrous oxide from the soils was determined under laboratory conditions. Direct microscopic counting, glucose-induced respiration (GIR), whole cell hybridisation, and extended phospholipid fatty acid (PLFA) analysis confirmed the presence of abundant microbial communities in the topsoil and also in the deepest Cg2 horizon of the AS soil. The patterns of microbial counts, biomass and activity in the profile of the AS soil and partly also in the non-AS soil therefore differed from the general tendency of gradual decreases in soil profiles. High respiration in the deepest Cg2 horizon of the AS soil (5.66 μg Cg(-1)h(-1), as compared to 2.71 μg Cg(-1)h(-1) in a top Ap horizon) is unusual but reasonable given the large amount of organic carbon in this horizon. Nitrous oxide production peaked in the BCgc horizon of the AS and in the BC horizon of the non-AS soil, but the peak value was ten-fold higher in the AS soil than in the non-AS soil (82.3 vs. 8.6 ng Ng(-1)d(-1)). The data suggest that boreal AS soils on the Baltic coast contain high microbial abundance and activity. This, together with the abundant carbon and total and mineral nitrogen in the deep layers of AS soils, may result in substantial gas production. Consequently, high GHG emissions could occur, for example, when the generally high water table is lowered because of arable farming.

  10. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential.

    PubMed

    Xia, Longlong; Ti, Chaopu; Li, Bolun; Xia, Yongqiu; Yan, Xiaoyuan

    2016-06-15

    Life-cycle analysis of staple food (rice, flour and corn-based fodder) production and assessments of the associated greenhouse gas (GHG) and reactive nitrogen (Nr) releases, from environmental and economic perspectives, help to develop effective mitigation options. However, such evaluations have rarely been executed in China. We evaluated the GHG and Nr releases per kilogram of staple food production (carbon and Nr footprints) and per unit of net economic benefit (CO2-NEB and Nr-NEB), and explored their mitigation potential. Carbon footprints of food production in China were obviously higher than those in some developed countries. There was a high spatial variation in the footprints, primarily attributable to differences in synthetic N use (or CH4 emissions) per unit of food production. Provincial carbon footprints had a significant linear relationship with Nr footprints, attributed to large contribution of N fertilizer use to both GHG and Nr releases. Synthetic N fertilizer applications and CH4 emissions dominated the carbon footprints, while NH3 volatilization and N leaching were the main contributors to the Nr footprints. About 564 (95% uncertainty range: 404-701) TgCO2eqGHG and 10 (7.4-12.4) Tg Nr-N were released every year during 2001-2010 from staple food production. This caused the total damage costs of 325 (70-555) billion ¥, equivalent to nearly 1.44% of the Gross Domestic Product of China. Moreover, the combined damage costs and economic input costs, accounted for 66%-80% of the gross economic benefit generated from food production. A reduction of 92.7TgCO2eqyr(-1) and 2.2TgNr-Nyr(-1) could be achieved by reducing synthetic N inputs by 20%, increasing grain yields by 5% and implementing off-season application of straw and mid-season drainage practices for rice cultivation. In order to realize these scenarios, an ecological compensation scheme should be established to incentivize farmers to gradually adopt knowledge-based managements. PMID:26971213

  11. Urban Options Solar Greenhouse Demonstration Project. Final report

    SciTech Connect

    Cipparone, L.

    1980-10-15

    The following are included: the design process, construction, thermal performance, horticulture, educational activities, and future plans. Included in appendices are: greenhouse blueprints, insulating curtain details, workshop schedules, sample data forms, summary of performance calculations on the Urban Options Solar Greenhouse, data on vegetable production, publications, news articles on th Solar Greenhouse Project, and the financial statement. (MHR)

  12. Eco-efficient agriculture for producing higher yields with lower greenhouse gas emissions: a case study of intensive irrigation wheat production in China

    NASA Astrophysics Data System (ADS)

    Cui, Z. L.; Ye, Y. L.; Ma, W. Q.; Chen, X. P.; Zhang, F. S.

    2013-10-01

    Although the concept of producing higher yields with reduced greenhouse gas (GHG) emissions is a goal that attracts increasing public and scientific attention, the tradeoff between crop productivity and GHG emissions in intensive agricultural production is not well understood. In this study, we investigated 33 sites of on-farm experiments to evaluate the tradeoff between grain yield and GHG emissions using two systems (conventional practice, CP; high-yielding systems, HY) of intensive irrigation wheat (Triticum aestivum L.) in China. Furthermore, we discussed the potential to produce higher yields with lower GHG emissions based on a survey of 2938 farmers. However, in both the HY and CP systems, wheat grain yield response to GHG emissions fit a linear-plateau model, whereas the curve for grain yield from the HY system was always higher than that from the CP system. Compared to the CP system, grain yield was 44% (2.6 Mg ha-1) higher in the HY system, while GHG emissions increased by only 2.5%, and GHG emission intensity was reduced by 29%. The current intensive irrigation wheat system with farmers' practice had a median yield and maximum GHG emission rate of 6.05 Mg ha-1 and 4783 kg CO2 eq ha-1, respectively; however, this system can be transformed to maintain yields while reducing GHG emissions by 40% (5.96 Mg ha-1, and 2890 kg CO2 eq ha-1). Further, the HY system was found to increase grain yield by 41% with a simultaneous reduction in GHG emissions by 38% (8.55 Mg ha-1, and 2961 kg CO2 eq ha-1, respectively). In the future, we suggest moving the tradeoff relationships and calculations from grain yield and GHG emissions, to new measures of productivity and environmental protection using innovative management technologies. This shift in focus is critical to achieve food and environmental security.

  13. Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: Concentrations, sources, and risk assessment.

    PubMed

    Li, Cheng; Chen, Jiayi; Wang, Jihua; Han, Ping; Luan, Yunxia; Ma, Xupu; Lu, Anxiang

    2016-10-15

    The increased use of plastic film in greenhouse vegetable production (GVP) could result in phthalate ester (PAE) contamination in vegetables. However, limited information is currently available on their occurrence and associated potential risks in GVP systems. The present study documents the occurrence and composition of 15 PAEs in soil, plastic film, and vegetable samples from eight large-scale GVP bases in Beijing, China. Results showed that PAEs are ubiquitous contaminants in these GVP bases. Total PAE concentrations ranged from 0.14 to 2.13mg/kg (mean 0.99mg/kg) in soils and from 0.15 to 6.94mg/kg (mean 1.49mg/kg) in vegetables. Di (2-ethylhexyl) phthalate, di-n-butyl phthalate, and diisobutyl phthalate were the most abundant components, which accounted for >90% of the total PAEs. This investigation also indicated that the widespread application of plastic film in GVP systems may be the primary source of these PAEs. The non-cancer and carcinogenic risks of target PAEs were estimated based on the exposures of vegetable intake. The hazard quotients of PAE in all vegetable samples were lower than 1 and the carcinogenic risks were also at acceptable levels for consumers. The data in this study can provide valuable information to understand the status of potential pollutants, specifically PAEs, in GVP systems.

  14. Toward a more comprehensive greenhouse gas emissions assessment of biofuels: the case of forest-based fischer-tropsch diesel production in Finland.

    PubMed

    Soimakallio, Sampo

    2014-01-01

    Increasing the use of biofuels influences atmospheric greenhouse gas concentrations. Although widely recognized, uncertainties related to the particular impacts are typically ignored or only partly considered. In this paper, various sources of uncertainty related to the GHG emission savings of biofuels are considered comprehensively and transparently through scenario analysis and stochastic simulation. Technology and feedstock production chain-specific factors, market-mediated factors and climate policy time frame issues are reflected using as a case study Fischer-Tropsch diesel derived from boreal forest biomass in Finland. This case study shows that the GHG emission savings may be positive or negative in many of the cases studied, and are subject to significant uncertainties, which are mainly determined by market-mediated factors related to fossil diesel substitution. Regardless of the considerable uncertainties, some robust conclusions could be drawn; it was likely of achieving some sort of but unlikely of achieving significant savings in the GHG emissions within the 100 year time frame in many cases. Logging residues (branches) performed better than stumps and living stem wood in terms of the GHG emission savings, which could be increased mainly by blocking carbon leakage. Forest carbon stock changes also significantly contributed to the GHG emission savings. PMID:24528291

  15. Toward a more comprehensive greenhouse gas emissions assessment of biofuels: the case of forest-based fischer-tropsch diesel production in Finland.

    PubMed

    Soimakallio, Sampo

    2014-01-01

    Increasing the use of biofuels influences atmospheric greenhouse gas concentrations. Although widely recognized, uncertainties related to the particular impacts are typically ignored or only partly considered. In this paper, various sources of uncertainty related to the GHG emission savings of biofuels are considered comprehensively and transparently through scenario analysis and stochastic simulation. Technology and feedstock production chain-specific factors, market-mediated factors and climate policy time frame issues are reflected using as a case study Fischer-Tropsch diesel derived from boreal forest biomass in Finland. This case study shows that the GHG emission savings may be positive or negative in many of the cases studied, and are subject to significant uncertainties, which are mainly determined by market-mediated factors related to fossil diesel substitution. Regardless of the considerable uncertainties, some robust conclusions could be drawn; it was likely of achieving some sort of but unlikely of achieving significant savings in the GHG emissions within the 100 year time frame in many cases. Logging residues (branches) performed better than stumps and living stem wood in terms of the GHG emission savings, which could be increased mainly by blocking carbon leakage. Forest carbon stock changes also significantly contributed to the GHG emission savings.

  16. Greenhouse gas emissions, soil quality, and crop productivity from a mono-rice cultivation system as influenced by fallow season straw management.

    PubMed

    Liu, Wei; Hussain, Saddam; Wu, Lishu; Qin, Ziguo; Li, Xiaokun; Lu, Jianwei; Khan, Fahad; Cao, Weidong; Geng, Mingjian

    2016-01-01

    Straw management during fallow season may influence crop productivity, soil quality, and greenhouse gas (GHG) emissions from rice field. A 3-year field experiment was carried out in central China to examine the influence of different fallow season straw management practices on rice yield, soil properties, and emissions of methane (CH4) and nitrous oxide (N2O) from a mono-rice cultivation system. The treatments comprised an unfertilized control (CK), inorganic fertilization (NPK), rice straw burning in situ (NPK + RSB), rice straw mulching (NPK + RSM), and rice straw strip mulching with green manuring (NPK + RSM + GM). The maximum rice yield, soil organic carbon, soil total nitrogen, and available potassium were observed in NPK + RSM + GM treatment. Compared with NPK, the NPK + RSM + GM recorded 9% higher grain yield averaged across 3 years. However, NPK + RSM and NPK + RSB were statistically similar with NPK regarding grain yield. The NPK + RSM and NPK + RSM + GM recorded significantly higher CH4 emission during rice growing season as well as winter fallow; however, the response of N2O emissions was variable. The NPK + RSM and NPK + RSM + GM were statistically similar for annual cumulative CH4 and N2O emissions. The NPK + RSM + GM recorded 103 and 72% higher straw-induced net economic benefits and soil organic carbon sequestration rate, and reduced net global warming potential by 27% as compared with NPK + RSM. Considering the benefits of soil fertility, higher crop productivity, and environmental safety, the NPK + RSM + GM could be the most feasible and sustainable option for mono-rice cultivation system in central China.

  17. A half-century of production-phase greenhouse gas emissions from food loss & waste in the global food supply chain.

    PubMed

    Porter, Stephen D; Reay, David S; Higgins, Peter; Bomberg, Elizabeth

    2016-11-15

    Research on loss & waste of food meant for human consumption (FLW) and its environmental impact typically focuses on a single or small number of commodities in a specific location and point in time. However, it is unclear how trends in global FLW and potential for climate impact have evolved. Here, by utilising the Food and Agriculture Organization's food balance sheet data, we expand upon existing literature. Firstly, we provide a differentiated (by commodity, country and supply chain stage) bottom-up approach; secondly, we conduct a 50-year longitudinal analysis of global FLW and its production-phase greenhouse gas (GHG) emissions; and thirdly, we trace food wastage and its associated emissions through the entire food supply chain. Between 1961 and 2011 the annual amount of FLW by mass grew a factor of three - from 540Mt to 1.6Gt; associated production-phase (GHG) emissions more than tripled (from 680Mt to 2.2Gt CO2e). A 44% increase in global average per capita FLW emissions was also identified - from 225kg CO2e in 1961 to 323kg CO2e in 2011. The regional weighting within this global average changing markedly over time; in 1961 developed countries accounted for 48% of FLW and less than a quarter (24%) in 2011. The largest increases in FLW-associated GHG emissions were from developing economies, specifically China and Latin America - primarily from increasing losses in fruit and vegetables. Over the period examined, cumulatively such emissions added almost 68Gt CO2e to the atmospheric GHG stock; an amount the rough equivalent of two years of emissions from all anthropogenic sources at present rates. Building up from the most granular data available, this study highlights the growth in the climate burden of FLW emissions, and thus the need to improve efficiency in food supply chains to mitigate future emissions. PMID:27432722

  18. A half-century of production-phase greenhouse gas emissions from food loss & waste in the global food supply chain.

    PubMed

    Porter, Stephen D; Reay, David S; Higgins, Peter; Bomberg, Elizabeth

    2016-11-15

    Research on loss & waste of food meant for human consumption (FLW) and its environmental impact typically focuses on a single or small number of commodities in a specific location and point in time. However, it is unclear how trends in global FLW and potential for climate impact have evolved. Here, by utilising the Food and Agriculture Organization's food balance sheet data, we expand upon existing literature. Firstly, we provide a differentiated (by commodity, country and supply chain stage) bottom-up approach; secondly, we conduct a 50-year longitudinal analysis of global FLW and its production-phase greenhouse gas (GHG) emissions; and thirdly, we trace food wastage and its associated emissions through the entire food supply chain. Between 1961 and 2011 the annual amount of FLW by mass grew a factor of three - from 540Mt to 1.6Gt; associated production-phase (GHG) emissions more than tripled (from 680Mt to 2.2Gt CO2e). A 44% increase in global average per capita FLW emissions was also identified - from 225kg CO2e in 1961 to 323kg CO2e in 2011. The regional weighting within this global average changing markedly over time; in 1961 developed countries accounted for 48% of FLW and less than a quarter (24%) in 2011. The largest increases in FLW-associated GHG emissions were from developing economies, specifically China and Latin America - primarily from increasing losses in fruit and vegetables. Over the period examined, cumulatively such emissions added almost 68Gt CO2e to the atmospheric GHG stock; an amount the rough equivalent of two years of emissions from all anthropogenic sources at present rates. Building up from the most granular data available, this study highlights the growth in the climate burden of FLW emissions, and thus the need to improve efficiency in food supply chains to mitigate future emissions.

  19. Greenhouse gas emissions, soil quality, and crop productivity from a mono-rice cultivation system as influenced by fallow season straw management.

    PubMed

    Liu, Wei; Hussain, Saddam; Wu, Lishu; Qin, Ziguo; Li, Xiaokun; Lu, Jianwei; Khan, Fahad; Cao, Weidong; Geng, Mingjian

    2016-01-01

    Straw management during fallow season may influence crop productivity, soil quality, and greenhouse gas (GHG) emissions from rice field. A 3-year field experiment was carried out in central China to examine the influence of different fallow season straw management practices on rice yield, soil properties, and emissions of methane (CH4) and nitrous oxide (N2O) from a mono-rice cultivation system. The treatments comprised an unfertilized control (CK), inorganic fertilization (NPK), rice straw burning in situ (NPK + RSB), rice straw mulching (NPK + RSM), and rice straw strip mulching with green manuring (NPK + RSM + GM). The maximum rice yield, soil organic carbon, soil total nitrogen, and available potassium were observed in NPK + RSM + GM treatment. Compared with NPK, the NPK + RSM + GM recorded 9% higher grain yield averaged across 3 years. However, NPK + RSM and NPK + RSB were statistically similar with NPK regarding grain yield. The NPK + RSM and NPK + RSM + GM recorded significantly higher CH4 emission during rice growing season as well as winter fallow; however, the response of N2O emissions was variable. The NPK + RSM and NPK + RSM + GM were statistically similar for annual cumulative CH4 and N2O emissions. The NPK + RSM + GM recorded 103 and 72% higher straw-induced net economic benefits and soil organic carbon sequestration rate, and reduced net global warming potential by 27% as compared with NPK + RSM. Considering the benefits of soil fertility, higher crop productivity, and environmental safety, the NPK + RSM + GM could be the most feasible and sustainable option for mono-rice cultivation system in central China. PMID:26304808

  20. Is working in greenhouses healthy? Evidence concerning the toxic risks that might affect greenhouse workers.

    PubMed

    Illing, H P

    1997-07-01

    Greenhouses are essentially microcosms aimed at providing physical environments suitable for the survival and growth of plants. Crops grown intensively in greenhouses in Great Britain include cut flowers, pot plants and edible crops such as tomato, lettuce cucumber and celery. The enclosed conditions mean that greenhouse workers are more likely to be exposed to higher levels of plant material, plant pests and plant protection products than general horticulture workers. The potential for ill-health in greenhouse workers is examined with particular reference to Great Britain. The principal potential effects expected include irritancy, asthma, allergic aleveolitis and dermatitis. Although biological control agents are widely used, there were no reports of their having caused ill-health in greenhouse workers. About two people per year are found to have suffered ill-health as a consequence of greenhouse exposure to chemical pesticides in reported pesticides incidents in Great Britain.

  1. Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions

    SciTech Connect

    Dooley, James J.; Dahowski, Robert T.

    2008-11-18

    This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However

  2. Mars Greenhouses: Concepts and Challenges. Proceedings from a 1999 Workshop

    NASA Technical Reports Server (NTRS)

    Wheeler, Ray M. (Editor); Martin-Brennan, Cindy (Editor)

    2000-01-01

    Topic covered include :Plants on Mars: On the Next Mission and in the Long Term Future; Bubbles in the Rocks: Natural and Artificial Caves and Cavities as Like Support Structures; Challenges for Bioregenerative Life Support on Mars; Cost Effectiveness Issues; Low Pressure Systems for Plant Growth; Plant Responses to Rarified Atmospheres; Can CO2 be Used as a Pressurizing Gas for Mars Greenhouses?; Inflatable Habitats Technology Development; Development of an Inflatable Greenhouse for a Modular Crop Production System; Mars Inflatable Greenhouse Workshop; Design Needs for Mars Deployable Greenhouse; Preliminary Estimates of the Possibilities for Developing a Deployable Greenhouse for a Planetary Surface Mars; Low Pressure Greenhouse Concepts for Mars; Mars Greenhouse Study: Natural vs. Artificial Lighting; and Wire Culture for an Inflatable Mars Greenhouse and Other Future Inflatable Space Growth Chambers.

  3. Incorporating Agricultural Management Practices into the Assessment of Soil Carbon Change and Life-Cycle Greenhouse Gas Emissions of Corn Stover Ethanol Production

    SciTech Connect

    Qin, Zhangcai; Canter, Christina E.; Dunn, Jennifer B.; Mueller, Steffen; Kwon, Ho-young; Han, Jeongwoo; Wander, Michelle M.; Wang, Michael

    2015-09-01

    Land management practices such as cover crop adoption or manure application that can increase soil organic carbon (SOC) may provide a way to counter SOC loss upon removal of stover from corn fields for use as a biofuel feedstock. This report documents the data, methodology, and assumptions behind the incorporation of land management practices into corn-soybean systems that dominate U.S. grain production using varying levels of stover removal in the GREETTM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model and its CCLUB (Carbon Calculator for Land Use change from Biofuels production) module. Tillage (i.e., conventional, reduced and no tillage), corn stover removal (i.e., at 0, 30% and 60% removal rate), and organic matter input techniques (i.e., cover crop and manure application) are included in the analysis as major land management practices. Soil carbon changes associated with land management changes were modeled with a surrogate CENTURY model. The resulting SOC changes were incorporated into CCLUB while GREET was expanded to include energy and material consumption associated with cover crop adoption and manure application. Life-cycle greenhouse gas (GHG) emissions of stover ethanol were estimated using a marginal approach (all burdens and benefits assigned to corn stover ethanol) and an energy allocation approach (burdens and benefits divided between grain and stover ethanol). In the latter case, we considered corn grain and corn stover ethanol to be produced at an integrated facility. Life-cycle GHG emissions of corn stover ethanol are dependent upon the analysis approach selected (marginal versus allocation) and the land management techniques applied. The expansion of CCLUB and GREET to accommodate land management techniques can produce a wide range of results because users can select from multiple scenario options such as choosing tillage levels, stover removal rates, and whether crop yields increase annually or remain constant

  4. 4. Perspective view, greenhouse, from the southwest. The greenhouse is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Perspective view, greenhouse, from the southwest. The greenhouse is the portion of the seed house to the right (south) of the double doors. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  5. Thoughts from the Greenhouse

    ERIC Educational Resources Information Center

    Sonstrom, Wendy Jean

    2006-01-01

    In this article, the author compares the functions of a graduate adult education program and a greenhouse. A graduate adult education program is a place where, like in a greenhouse, exciting new hybrids can be developed--working with people outside the school of education, in different disciplines and beyond the university's walls, sharing what…

  6. Noxious gases in greenhouses.

    PubMed

    Likas, C; Exarchou, V; Gourgoulianis, K; Giaglaras, P; Gemptos, T; Kittas, K; Molyvdas, P A

    2001-01-01

    The concentration of NO(2) and SO(2) was measured in a commercial greenhouse from 23/9/1999 25/01/2000. The measurements showed that the level of the two gases is very high in the greenhouse atmosphere. Lung function tests in 42 workers showed that temporary work did not influence significantly the respiratory health status. PMID:11426932

  7. Greenhouse Operation and Management. Instructor Guide and Student Reference. Missouri Agricultural Education. Volume 21, Number 3.

    ERIC Educational Resources Information Center

    Wells, Judith A.; And Others

    These student and instructor materials for a one-semester course intended for high school juniors and seniors teach the following 24 lessons: (1) the scope and development of greenhouse production; (2) the economic importance of greenhouse crops; (3) careers in greenhouse operation and management; (4) greenhouse parts, structures, and coverings;…

  8. Farm simulation: a tool for evaluating the mitigation of greenhouse gas emissions and the adaptation of dairy production to climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Process-level modeling at the farm scale provides a tool for evaluating strategies for both mitigating greenhouse gas emissions and adapting to climate change. The Integrated Farm System Model (IFSM) simulates representative crop, beef or dairy farms over many years of weather to predict performance...

  9. Evaluation of corn plant as potential banker plant for supporting predatory gall Midge, Feltiella acarisuga (Diptera: Cecidomyiidae) against Tetranychus urticae (Acari: Tetranychidae) in greenhouse vegetable production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The twospotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), is one of the most important and highly polyphagous pests of vegetables and other crops worldwide. In this study, several experiments were conducted under laboratory and greenhouse conditions to evaluate whether corn plant ...

  10. Greenhouse gas flux and crop productivity after 10 years of reduced and no tillage in a wheat-maize cropping system.

    PubMed

    Tian, Shenzhong; Wang, Yu; Ning, Tangyuan; Zhao, Hongxiang; Wang, Bingwen; Li, Na; Li, Zengjia; Chi, Shuyun

    2013-01-01

    Appropriate tillage plays an important role in mitigating the emissions of greenhouse gases (GHG) in regions with higher crop yields, but the emission situations of some reduced tillage systems such as subsoiling, harrow tillage and rotary tillage are not comprehensively studied. The objective of this study was to evaluate the emission characteristics of GHG (CH4 and N2O) under four reduced tillage systems from October 2007 to August 2009 based on a 10-yr tillage experiment in the North China Plain, which included no-tillage (NT) and three reduced tillage systems of subsoil tillage (ST), harrow tillage (HT) and rotary tillage (RT), with the conventional tillage (CT) as the control. The soil under the five tillage systems was an absorption sink for CH4 and an emission source for N2O. The soil temperature positive impacted on the CH4 absorption by the soils of different tillage systems, while a significant negative correlation was observed between the absorption and soil moisture. The main driving factor for increased N2O emission was not the soil temperature but the soil moisture and the content of nitrate. In the two rotation cycle of wheat-maize system (10/2007-10/2008 and 10/2008-10/2009), averaged cumulative uptake fluxes of CH4 under CT, ST, HT, RT and NT systems were approximately 1.67, 1.72, 1.63, 1.77 and 1.17 t ha(-1) year(-1), respectively, and meanwhile, approximately 4.43, 4.38, 4.47, 4.30 and 4.61 t ha(-1) year(-1) of N2O were emitted from soil of these systems, respectively. Moreover, they also gained 33.73, 34.63, 32.62, 34.56 and 27.54 t ha(-1) yields during two crop-rotation periods, respectively. Based on these comparisons, the rotary tillage and subsoiling mitigated the emissions of CH4 and N2O as well as improving crop productivity of a wheat-maize cropping system.

  11. Greenhouse gas flux and crop productivity after 10 years of reduced and no tillage in a wheat-maize cropping system.

    PubMed

    Tian, Shenzhong; Wang, Yu; Ning, Tangyuan; Zhao, Hongxiang; Wang, Bingwen; Li, Na; Li, Zengjia; Chi, Shuyun

    2013-01-01

    Appropriate tillage plays an important role in mitigating the emissions of greenhouse gases (GHG) in regions with higher crop yields, but the emission situations of some reduced tillage systems such as subsoiling, harrow tillage and rotary tillage are not comprehensively studied. The objective of this study was to evaluate the emission characteristics of GHG (CH4 and N2O) under four reduced tillage systems from October 2007 to August 2009 based on a 10-yr tillage experiment in the North China Plain, which included no-tillage (NT) and three reduced tillage systems of subsoil tillage (ST), harrow tillage (HT) and rotary tillage (RT), with the conventional tillage (CT) as the control. The soil under the five tillage systems was an absorption sink for CH4 and an emission source for N2O. The soil temperature positive impacted on the CH4 absorption by the soils of different tillage systems, while a significant negative correlation was observed between the absorption and soil moisture. The main driving factor for increased N2O emission was not the soil temperature but the soil moisture and the content of nitrate. In the two rotation cycle of wheat-maize system (10/2007-10/2008 and 10/2008-10/2009), averaged cumulative uptake fluxes of CH4 under CT, ST, HT, RT and NT systems were approximately 1.67, 1.72, 1.63, 1.77 and 1.17 t ha(-1) year(-1), respectively, and meanwhile, approximately 4.43, 4.38, 4.47, 4.30 and 4.61 t ha(-1) year(-1) of N2O were emitted from soil of these systems, respectively. Moreover, they also gained 33.73, 34.63, 32.62, 34.56 and 27.54 t ha(-1) yields during two crop-rotation periods, respectively. Based on these comparisons, the rotary tillage and subsoiling mitigated the emissions of CH4 and N2O as well as improving crop productivity of a wheat-maize cropping system. PMID:24019923

  12. [Greenhouse gas emission from reservoir and its influence factors].

    PubMed

    Zhao, Xiao-jie; Zhao, Tong-qian; Zheng, Hua; Duan, Xiao-nan; Chen, Fa-lin; Ouyang, Zhi-yun; Wang, Xiao-ke

    2008-08-01

    Reservoirs are significant sources of emissions of the greenhouse gases. Discussing greenhouse gas emission from the reservoirs and its influence factors are propitious to evaluate emission of the greenhouse gas accurately, reduce gas emission under hydraulic engineering and hydropower development. This paper expatiates the mechanism of the greenhouse gas production, sums three approaches of the greenhouse gas emission, which are emissions from nature emission of the reservoirs, turbines and spillways and downstream of the dam, respectively. Effects of greenhouse gas emission were discussed from character of the reservoirs, climate, pH of the water, vegetation growing in the reservoirs and so on. Finally, it has analyzed the heterogeneity of the greenhouse gas emission as well as the root of the uncertainty and carried on the forecast with emphasis to the next research.

  13. Effect of farming practices for greenhouse gas mitigation and subsequent alternative land use on environmental impacts of beef cattle production systems.

    PubMed

    Nguyen, T T H; Doreau, M; Eugène, M; Corson, M S; Garcia-Launay, F; Chesneau, G; van der Werf, H M G

    2013-05-01

    This study evaluated effects of farming practice scenarios aiming to reduce greenhouse gas (GHG) emissions and subsequent alternative land use on environmental impacts of a beef cattle production system using the life cycle assessment approach. The baseline scenario includes a standard cow-calf herd with finishing heifers based on grazing, and a standard bull-fattening herd using a diet mainly based on maize silage, corresponding to current farm characteristics and management by beef farmers in France. Alternative scenarios were developed with changes in farming practices. Some scenarios modified grassland management (S1: decreasing mineral N fertiliser on permanent grassland; S2: decreasing grass losses during grazing) or herd management (S3: underfeeding of heifers in winter; S4: fattening female calves instead of being reared at a moderate growth rate; S5: increasing longevity of cows from 7 to 9 years; S6: advancing first calving age from 3 to 2 years). Other scenarios replaced protein sources (S7: partially replacing a protein supplement by lucerne hay for the cow-calf herd; S8: replacing soya bean meal with rapeseed meal for the fattening herd) or increased n-3 fatty acid content using extruded linseed (S9). The combination of compatible scenarios S1, S2, S5, S6 and S8 was also studied (S10). The impacts, such as climate change (CC, not including CO2 emissions/sequestration of land use and land-use change, LULUC), CC/LULUC (including CO2 emissions of LULUC), cumulative energy demand, eutrophication (EP), acidification and land occupation (LO) were expressed per kg of carcass mass and per ha of land occupied. Compared with the baseline, the most promising practice to reduce impacts per kg carcass mass was S10 (all reduced by 13% to 28%), followed by S6 (by 8% to 10%). For other scenarios, impact reduction did not exceed 5%, except for EP (up to 11%) and LO (up to 10%). Effects of changes in farming practices (the scenarios) on environmental impacts varied

  14. Effect of farming practices for greenhouse gas mitigation and subsequent alternative land use on environmental impacts of beef cattle production systems.

    PubMed

    Nguyen, T T H; Doreau, M; Eugène, M; Corson, M S; Garcia-Launay, F; Chesneau, G; van der Werf, H M G

    2013-05-01

    This study evaluated effects of farming practice scenarios aiming to reduce greenhouse gas (GHG) emissions and subsequent alternative land use on environmental impacts of a beef cattle production system using the life cycle assessment approach. The baseline scenario includes a standard cow-calf herd with finishing heifers based on grazing, and a standard bull-fattening herd using a diet mainly based on maize silage, corresponding to current farm characteristics and management by beef farmers in France. Alternative scenarios were developed with changes in farming practices. Some scenarios modified grassland management (S1: decreasing mineral N fertiliser on permanent grassland; S2: decreasing grass losses during grazing) or herd management (S3: underfeeding of heifers in winter; S4: fattening female calves instead of being reared at a moderate growth rate; S5: increasing longevity of cows from 7 to 9 years; S6: advancing first calving age from 3 to 2 years). Other scenarios replaced protein sources (S7: partially replacing a protein supplement by lucerne hay for the cow-calf herd; S8: replacing soya bean meal with rapeseed meal for the fattening herd) or increased n-3 fatty acid content using extruded linseed (S9). The combination of compatible scenarios S1, S2, S5, S6 and S8 was also studied (S10). The impacts, such as climate change (CC, not including CO2 emissions/sequestration of land use and land-use change, LULUC), CC/LULUC (including CO2 emissions of LULUC), cumulative energy demand, eutrophication (EP), acidification and land occupation (LO) were expressed per kg of carcass mass and per ha of land occupied. Compared with the baseline, the most promising practice to reduce impacts per kg carcass mass was S10 (all reduced by 13% to 28%), followed by S6 (by 8% to 10%). For other scenarios, impact reduction did not exceed 5%, except for EP (up to 11%) and LO (up to 10%). Effects of changes in farming practices (the scenarios) on environmental impacts varied

  15. Operating and Maintaining the Greenhouse.

    ERIC Educational Resources Information Center

    Gresser, Priscilla A.

    This learning guide is designed to assist vocational agriculture students in mastering 20 tasks involved in the operation and maintenance of a greenhouse. Addressed in the individual sections of the guide are the following topics: identification of greenhouse designs, greenhouse construction, basic greenhouse maintenance to conserve energy,…

  16. Solar heating of integrated greenhouse-animal shelter systems

    SciTech Connect

    Ben-Abdallah, N.

    1983-01-01

    An analytical procedure to determine the effectiveness of greenhouses as solar collectors was presented. This procedure was used to predict the effect of several construction parameters on solar radiation input to greenhouses. The orientation of the greenhouse was found to be the most effective construction parameter controlling solar radiation input to greenhouses. The effective albedo of the plant canopy was also found to be a significant factor. A new solar greenhouse design, suitable for high latitude regions was developed. The results showed that an internal solar collector could be incorporated as an integral part of the greenhouse design. The concept developed could be used as a free-standing greenhouse or in a combination with livestock building. The efficiency of the solar input was investigated for the conventional and the shed greenhouses, both as a free-standing unit and a greenhouse-animal shelter system, using computer simulation analyses. The results indicated that the efficiency of solar input is highly dependent on location; the effect of location on the shed type design is more profound. A typical case of a greenhouse-hog barn production system was investigated using computer simulation analyses. The results showed that such a food production system achieves a significant reduction in conventional fuel consumption due to both animal waste heat recovery and solar energy utilization.

  17. 75 FR 74773 - Mandatory Reporting of Greenhouse Gases: Additional Sources of Fluorinated GHGs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... Manufacturing......... General Stationary Fuel Combustion. Fluorinated Gas Production........ General Stationary Fuel Combustion Suppliers of Industrial Greenhouse Gases. Electrical Equipment Use General Stationary Fuel Combustion. Imports and Exports of Fluorinated Suppliers of Industrial Greenhouse GHGs Inside...

  18. Analysis on Reduction of Greenhouse Gas Emissions by the Introduction of a Bio-methane Production Plant Using Dairy Cow Slurry as the Main Ingredient, and Management Balance of the Plant

    NASA Astrophysics Data System (ADS)

    Ohkubo, Takashi; Hideshima, Yoshiaki; Shudo, Yukoh; Ohmiya, Kazuhiko

    A study was conducted on a system to refine biogas generated from a biogas plant, which uses cow slurry as its main ingredient, and use the bio-methane as a regional energy supply source. Based on the data obtained by the demonstrative operation of the biogas plant and bio-methane production experiments, a bio-methane production plant that can process waste from 1,000 dairy cows was assumed, and optimization of plant operation was attempted using the linear programming method with maximum environmental friendliness (reduction of greenhouse gas emissions) and economic efficiency (management balance of the plant) as the target functions. The results revealed that plant operation methods varied according to the target of optimization. Environmental friendliness and economic efficiency were in a trade-off relationship with each other, but in the case where the greatest importance was placed on economic efficiency, greenhouse gas emissions were equivalent to that in the case where the greatest importance was placed on environmental friendliness itself. However, the values of economic efficiency were negative in both cases, indicating that it is difficult to make the plant management economically feasible under the current circumstances. To make the plant management balance positive, it is necessary to take measures, such as reduction of plant construction costs and exemption from interest costs. In addition, as a future direction for such regional bio-methane use, a micro grid system with a dispersed power source using bio-methane as raw fuel was presented.

  19. Solar energy utilization in a greenhouse/animal shelter combination

    SciTech Connect

    Spillman, C.K.; Greig, J.K.; Johnson, G.A.; Hartford, J.R.; Koch, B.A.; Hines, R.H.

    1981-01-01

    Two greenhouses are being used at Kansas State Univesity to evaluate use of exhaust air from an animal shelter and its effect on greenhouse production. The control greenhouse is attached to the headquarters building and operated conventionally. The experimental house is attached to a swine finishing building and has air handling equipment to introduce hoghouse air to the greenhouse at 680 m/sup 3//h (400 cfm) or 1200 m/sup 3//h (700 cfm) and has a rock storage system with about 1 m/sup 3/ of rock for each 2 m/sup 2/ of greenhouse floor space. Cucumber, tomato, and broccoli plants in the experimental greenhouse have darker green foliage than plants in the control house regardless of nitrogen levels. The fall cucumber study indicated a 31 percent increase in number of marketable fruits from the experimental house. Marketable fruits from the experimental house weighed 40 percent more than those from the control house.

  20. 15. Interior view, greenhouse, from the northwest. The greenhouse interior ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Interior view, greenhouse, from the northwest. The greenhouse interior was quite modest, the space between the floor of the lower level and the joists carrying the loft floor is only five-and-one-half feet. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  1. Measuring and managing reservoir greenhouse gas emissions

    EPA Science Inventory

    Methane (CH4) is the second most important anthropogenic greenhouse gas with a heat trapping capacity 34 times greater than that of carbon dioxide on a 100 year time scale. Known anthropogenic CH4 sources include livestock production, rice agriculture, landfills, and natural gas...

  2. Robotic System For Greenhouse Or Nursery

    NASA Technical Reports Server (NTRS)

    Gill, Paul; Montgomery, Jim; Silver, John; Heffelfinger, Neil; Simonton, Ward; Pease, Jim

    1993-01-01

    Report presents additional information about robotic system described in "Robotic Gripper With Force Control And Optical Sensors" (MFS-28537). "Flexible Agricultural Robotics Manipulator System" (FARMS) serves as prototype of robotic systems intended to enhance productivities of agricultural assembly-line-type facilities in large commercial greenhouses and nurseries.

  3. Development of inexpensive continuous emission monitors for feedback control of combustion devices that minimize greenhouse gases, toxic emissions, and ozone damaging products

    SciTech Connect

    Funk, D.J.; Moore, D.S.; Mongia, R.K.; Tomita, E.; Hsu, F.K.; Talbot, L.; Dibble, R.W.; Lovett, J.; Yamazaki, Akira

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory. Combustion is the major cause of poor urban air quality, of depletion of the ozone layer, and a major source of the greenhouse gas, carbon dioxide. Careful control of combustor conditions is important for minimizing the effects of combustion on the environment. The authors have developed sensitive, inexpensive continuous emission monitors that will assist in direct feedback of turbine power systems and provide assurance to the public and the operators of the facilities that their facility emissions lie within the accepted bounds. These include a robust solid-state Fourier transform spectrometer for rapid gas analysis, based on the use of ferroelectric liquid crystal technology, and an infrared helium-neon probe for real time measurement of combustor air-to-fuel ratios.

  4. Operation GREENHOUSE-1951. Final report

    SciTech Connect

    Berkhouse, L.; Davis, S.E.; Gladeck, F.R.; Hallowell, J.H.; Jones, C.B.

    1983-06-15

    GREENHOUSE was a four-detonation atmospheric nuclear weapon's test series conducted in the Marshall Islands at Enewetak Atoll in April and May 1951. This is a report of DOD personnel in GREENHOUSE with an emphasis on operational radiological safety.

  5. Greenhouse of the future. Final report

    SciTech Connect

    Cavin, B. III

    1998-07-03

    This greenhouse of the future is located at the Center for Regenerative Studies (CRS) at Cal Poly Pomona. The building design was driven by desired environmental conditions. The primary objective was to keep the interior space warm during winter for the breeding of fish and other greenhouse activities, especially in the winter. To do this, a highly insulating envelope was needed. Straw bales provide excellent insulation with an R-value of approximately 50 and also help solve the environmental problems associated with this agricultural waste product. A summary of the construction progress, construction costs and operating costs are included.

  6. The Greenhouse Gas Climate Change Initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON

    NASA Astrophysics Data System (ADS)

    Dils, B.; Buchwitz, M.; Reuter, M.; Schneising, O.; Boesch, H.; Parker, R.; Guerlet, S.; Aben, I.; Blumenstock, T.; Burrows, J. P.; Butz, A.; Deutscher, N. M.; Frankenberg, C.; Hase, F.; Hasekamp, O. P.; Heymann, J.; De Mazière, M.; Notholt, J.; Sussmann, R.; Warneke, T.; Griffith, D.; Sherlock, V.; Wunch, D.

    2014-06-01

    Column-averaged dry-air mole fractions of carbon dioxide and methane have been retrieved from spectra acquired by the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observations-Fourier Transform Spectrometer) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Cartography) instruments on board GOSAT (Greenhouse gases Observing SATellite) and ENVISAT (ENVIronmental SATellite), respectively, using a range of European retrieval algorithms. These retrievals have been compared with data from ground-based high-resolution Fourier transform spectrometers (FTSs) from the Total Carbon Column Observing Network (TCCON). The participating algorithms are the weighting function modified differential optical absorption spectroscopy (DOAS) algorithm (WFMD, University of Bremen), the Bremen optimal estimation DOAS algorithm (BESD, University of Bremen), the iterative maximum a posteriori DOAS (IMAP, Jet Propulsion Laboratory (JPL) and Netherlands Institute for Space Research algorithm (SRON)), the proxy and full-physics versions of SRON's RemoTeC algorithm (SRPR and SRFP, respectively) and the proxy and full-physics versions of the University of Leicester's adaptation of the OCO (Orbiting Carbon Observatory) algorithm (OCPR and OCFP, respectively). The goal of this algorithm inter-comparison was to identify strengths and weaknesses of the various so-called round- robin data sets generated with the various algorithms so as to determine which of the competing algorithms would proceed to the next round of the European Space Agency's (ESA) Greenhouse Gas Climate Change Initiative (GHG-CCI) project, which is the generation of the so-called Climate Research Data Package (CRDP), which is the first version of the Essential Climate Variable (ECV) "greenhouse gases" (GHGs). For XCO2, all algorithms reach the precision requirements for inverse modelling (< 8 ppm), with only WFMD having a lower precision (4.7 ppm) than the other algorithm products (2.4-2.5 ppm

  7. A comparative analysis of well-to-wheel primary energy demand and greenhouse gas emissions for the operation of alternative and conventional vehicles in Switzerland, considering various energy carrier production pathways

    NASA Astrophysics Data System (ADS)

    Yazdanie, Mashael; Noembrini, Fabrizio; Dossetto, Lionel; Boulouchos, Konstantinos

    2014-03-01

    This study provides a comprehensive analysis of well-to-wheel (WTW) primary energy demand and greenhouse gas (GHG) emissions for the operation of conventional and alternative passenger vehicle drivetrains. Results are determined based on a reference vehicle, drivetrain/production process efficiencies, and lifecycle inventory data specific to Switzerland. WTW performance is compared to a gasoline internal combustion engine vehicle (ICEV). Both industrialized and novel hydrogen and electricity production pathways are evaluated. A strong case is presented for pluggable electric vehicles (PEVs) due to their high drivetrain efficiency. However, WTW performance strongly depends on the electricity source. A critical electricity mix can be identified which divides optimal drivetrain performance between the EV, ICEV, and plug-in hybrid vehicle. Alternative drivetrain and energy carrier production pathways are also compared by natural resource. Fuel cell vehicle (FCV) performance proves to be on par with PEVs for energy carrier (EC) production via biomass and natural gas resources. However, PEVs outperform FCVs via solar energy EC production pathways. ICE drivetrains using alternative fuels, particularly biogas and CNG, yield remarkable WTW energy and emission reductions as well, indicating that alternative fuels, and not only alternative drivetrains, play an important role in the transition towards low-emission vehicles in Switzerland.

  8. The greenhouse trap

    SciTech Connect

    Lyman, F.; Mintzer, I.; Courrier, K.; MacKenzie, J.

    1990-01-01

    This book describes evidence of global warming and the contributions of man's activities to the process. The impacts of greenhouse gases on climate and health are discussed and recommendations are made for mitigation of these effects. Changes in fuel use, expansion of carbon sinks through planting of trees, and personal commitments to energy conservation are among these recommendations. Individual chapters were indexed separately for the data base.

  9. Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years.

    PubMed

    Li, Changsheng; Salas, William; DeAngelo, Benjamin; Rose, Steven

    2006-01-01

    Assessments of the efficacy of mitigation of greenhouse gas (GHG) emissions from paddy rice systems have typically been analyzed based on field studies. Extrapolation of the mitigation potential of alternative management practices from field studies to a national scale may be enhanced by spatially explicit process models, like the DeNitrification and DeComposition (DNDC) model. Our objective was to analyze the impacts of mitigation alternatives, management of water, fertilizer, and rice straw, on net GHG emissions (carbon dioxide, methane, and nitrous oxide fluxes), yields, and water use. After constructing a GIS database of soil, climate, rice cropping area and systems, and management practices, we ran DNDC with 21-yr alternative management schemes for each of the approximately 2500 counties in China. Results indicate that, despite large-scale adoption of midseason drainage, there is still large potential for additional methane reductions from Chinese rice paddies of 20 to 60% over 2000-2020. However, changes in management for reducing CH4 emissions simultaneously affect soil carbon dynamics as well as N2O emissions and can thereby reorder the ranking of technical mitigation effectiveness. The order of net GHG emissions reduction effectiveness found here is upland rice > shallow flooding > ammonium sulfate > midseason drainage > off-season straw > slow-release fertilizer > continuous flooding. Most of the management alternatives produced yields comparable to the baseline; however, continuous flooding and upland rice significantly reduced yields. Water management strategies appear to be the most technically promising GHG mitigation alternatives, with shallow flooding providing additional benefits of both water conservation and increased yields.

  10. Pondering greenhouse policy

    SciTech Connect

    Schneider, S.H. Stanford Univ., CA )

    1993-03-05

    In his article An optimal transition path for controlling greenhouse gases', William D Nordhaus takes a giant methodological step forward. His dynamic integrated climate-economy (DCIE) model couples my and Starley Thompson's globally averaged climate model with economic dynamics in order to evaluate the economic efficiency of different carbon tax scenarios. Nordhaus is one of the few economists who appropriately tries to balance the potential costs of CO[sub 2] emission controls with the external costs of unmitigated climate change - those that would occur in the absence of such controls.

  11. Technologies for a greenhouse-constrained society

    SciTech Connect

    Kuliasha, M.A.; Zucker, A.; Ballew, K.J.

    1992-05-01

    This conference explored how three technologies might help society adjust to life in a greenhouse-constrained environment. Technology experts and policy makers from around the world met June 11--13, 1991, in Oak Ridge, Tennessee, to address questions about how energy efficiency, biomass, and nuclear technologies can mitigate the greenhouse effect and to explore energy production and use in countries in various stages of development. The conference was organized by Oak Ridge National Laboratory and sponsored by the US Department of Energy. Energy efficiency biomass, and nuclear energy are potential substitutes for fossil fuels that might help slow or even reverse the global warming changes that may result from mankind`s thirst for energy. Many other conferences have questioned whether the greenhouse effect is real and what reductions in greenhouse gas emissions might be necessary to avoid serious ecological consequences; this conference studied how these reductions might actually be achieved. For these conference proceedings, individuals papers are processed separately for the Energy Data Base.

  12. Greenhouse Management Curriculum Guide for Vocational Agriculture/Agribusiness. Curriculum Development. Bulletin No. 1824.

    ERIC Educational Resources Information Center

    University of Southwestern Louisiana, Lafayette.

    This document contains teacher's materials for an 8-unit course in greenhouse management for 11th and 12th graders. The units are as follows: Producing Annual Bedding Plants; Foliage Plants; General Greenhouse Management; Poinsettia Production; Vegetable Bedding Plant Production: Tomatoes, Peppers, and Eggplants; Production of Potted…

  13. Estimation of greenhouse impacts of continuous regional emissions

    SciTech Connect

    Sinisalo, J.

    1998-03-27

    In this thesis, a method to calculate the greenhouse impact of continuous, time-dependent, non-global greenhouse gas emissions is used to estimate the impact of estimated anthropogenic pre-1990 and future (post 1990) emissions of CO{sub 2}, CH{sub 4} and N{sub 2}O of Finland and Nordic countries. Estimates for the impact of Finnish CFCs and their substitutes and the significance of Finnnish forests as carbon sink are also calculated. The method is also used to compare several different wood and peat energy production schemes with fossil fuel use, in terms of caused greenhouse impact. The uncertainty of the results is examined.

  14. The greenhouse of Titan.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1973-01-01

    Analysis of non-gray radiative equilibrium and gray convective equilibrium on Titan suggests that a massive molecular-hydrogen greenhouse effect may be responsible for the disagreement between the observed IR temperatures and the equilibrium temperature of an atmosphereless Titan. Calculations of convection indicate a probable minimum optical depth of 14 which corresponds to a molecular hydrogen shell of substantial thickness with total pressures of about 0.1 bar. It is suggested that there is an equilibrium between outgassing and blow-off on the one hand and accretion from the protons trapped in a hypothetical Saturnian magnetic field on the other, in the present atmosphere of Titan. It is believed that an outgassing equivalent to the volatilization of a few kilometers of subsurface ice is required to maintain the present blow-off rate without compensation for all geological time. The presence of an extensive hydrogen corona around Titan is postulated, with surface temperatures up to 200 K.

  15. Has your greenhouse gone virtual?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virtual Grower is a free decision-support software program available from USDA-ARS that allows growers to build a virtual greenhouse. It was initially designed to help greenhouse growers estimate heating costs and conduct simple simulations to figure out where heat savings could be achieved. Featu...

  16. (Solar greenhouse and barn collector)

    SciTech Connect

    Woodward, M.V.

    1981-08-04

    Use of a solar greenhouse and solar collectors to provide heat on a farm is briefly discussed. The greenhouse was used to heat the home, and the solar collectors provided hot water and heat for the barn. About $1500 was saved in oil bills from the previous year. (BCS)

  17. Uptake of di-(2-ethylhexyl) phthalate of vegetables from plastic film greenhouses.

    PubMed

    Fu, Xiaowei; Du, Qizhen

    2011-11-01

    Uptake of di-(2-ethylhexyl) phthalate (DEHP) of nine vegetables including potherb mustard, bok choy, celery, spinach, cabbage, leaf of tube, lettuce, garlic, and edible amaranth in plastic film greenhouses with different plastic films, film thickness, greenhouse age, and greenhouse height was studied. The results showed that the higher the DEHP content of film, the thicker the film, the lower the height of the greenhouse, and the younger the age of the greenhouse were, the higher the DEHP concentration of vegetables was. The results afford significant information for production of safe vegetables with low level DEHP contamination.

  18. Uptake of di-(2-ethylhexyl) phthalate of vegetables from plastic film greenhouses.

    PubMed

    Fu, Xiaowei; Du, Qizhen

    2011-11-01

    Uptake of di-(2-ethylhexyl) phthalate (DEHP) of nine vegetables including potherb mustard, bok choy, celery, spinach, cabbage, leaf of tube, lettuce, garlic, and edible amaranth in plastic film greenhouses with different plastic films, film thickness, greenhouse age, and greenhouse height was studied. The results showed that the higher the DEHP content of film, the thicker the film, the lower the height of the greenhouse, and the younger the age of the greenhouse were, the higher the DEHP concentration of vegetables was. The results afford significant information for production of safe vegetables with low level DEHP contamination. PMID:21958198

  19. Greenhouse effect of chlorofluorocarbons and other trace gases

    NASA Astrophysics Data System (ADS)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-11-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  20. Greenhouse effect of chlorofluorocarbons and other trace gases

    NASA Technical Reports Server (NTRS)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  1. Interactions of Climate Change and Nitrogen Management for Optimizing Crop Productivity and Food Security while Minimizing Nitrogen Pollution and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.; Suddick, E. C.

    2012-12-01

    Producing food, transportation, and energy for seven billion people has led to huge increases in use of synthetic nitrogen (N) fertilizers and fossil fuels, resulting in large releases of N as air and water pollution. In its numerous chemical forms, N plays a critical role in all aspects of climate change, including mitigation, adaptation, and impacts. Here we report on a multi-authored, interdisciplinary technical report on climate-nitrogen interactions submitted to the US National Climate Assessment as part of a Research Coordination Network activity. Management of the N cycle not only affects emissions of nitrous oxide (N2O) and nitrogen oxides (NOX), but also impacts carbon dioxide (CO2) and methane (CH4), through effects on carbon cycling processes in forests and soils and the effects on atmospheric reactions of ozone (O3) and CH4. While some of these direct and indirect N effects have a short-term cooling effect, the warming effects of N2O dominate at long time scales. The challenges of mitigating N2O emissions are substantially different from those for CO2 and CH4, because N is essential for food production, and over 80% of anthropogenic N2O emissions are from the agricultural sector. On one hand, improved agricultural nutrient management can confer some adaptive capacity of crops to climatic variability, but, on the other hand, increased climatic variability will render the task more difficult to manage nutrients for the optimization of crop productivity while minimizing N losses to the environment. Higher air temperatures will result in a "climate penalty" for air quality mitigation efforts, because larger NOX emissions reductions will be needed to achieve the same reductions of O3 pollution under higher temperatures, thus imposing further challenges to avoid harmful impacts on human health and crop productivity. Changes in river discharge, due to summer drought and to extreme precipitation events, will affect the transport of N from agricultural fields to

  2. Advancing agricultural greenhouse gas quantification*

    NASA Astrophysics Data System (ADS)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to

  3. Advancing agricultural greenhouse gas quantification*

    NASA Astrophysics Data System (ADS)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to

  4. Greenhouse gas trading starts up

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    While nations decide on whether to sign on to the Kyoto Protocol on climate change, some countries and private companies are moving forward with greenhouse gas emissions trading.A 19 March report, "The Emerging International Greenhouse Gas Market," by the Pew Center on Global Climate Change, reports that about 65 greenhouse gas emissions trades for quantities above 1,000 metric tons of carbon dioxideequivalent already have occurred worldwide since 1996. Many of these trades have taken place under a voluntary, ad hoc framework, though the United Kingdom and Denmark have established their own domestic emissions trading programs.

  5. (Limiting the greenhouse effect)

    SciTech Connect

    Rayner, S.

    1991-01-07

    Traveler attended the Dahlem Research Conference organized by the Freien Universitat, Berlin. The subject of the conference was Limiting the Greenhouse Effect: Options for Controlling Atmospheric CO{sub 2} Accumulation. Like all Dahlem workshops, this was a meeting of scientific experts, although the disciplines represented were broader than usual, ranging across anthropology, economics, international relations, forestry, engineering, and atmospheric chemistry. Participation by scientists from developing countries was limited. The conference was divided into four multidisciplinary working groups. Traveler acted as moderator for Group 3 which examined the question What knowledge is required to tackle the principal social and institutional barriers to reducing CO{sub 2} emissions'' The working rapporteur was Jesse Ausubel of Rockefeller University. Other working groups examined the economic costs, benefits, and technical feasibility of options to reduce emissions per unit of energy service; the options for reducing energy use per unit of GNP; and the significant of linkage between strategies to reduce CO{sub 2} emissions and other goals. Draft reports of the working groups are appended. Overall, the conference identified a number of important research needs in all four areas. It may prove particularly important in bringing the social and institutional research needs relevant to climate change closer to the forefront of the scientific and policy communities than hitherto.

  6. Solar effect: sunspaces and greenhouses, behavior and health

    SciTech Connect

    Moskal, S.; Brandt, B.

    1981-01-01

    Sunspaces and solar greenhouses can be low-cost additions to existing buildings which by their very nature add to the living space of the dwelling unit into which they are incorporated, thereby influencing the residents' lifestyle. The implications of these solar spaces for their users and the larger community are our focus. Solar greenhouses and sunspaces influence the physical and mental health of the resident, particularly persons who can use the space during the day and those on fixed incomes. Increased sunlight and warmth, and in greenhouses, humidity and food production, directly influence health, while changes in interaction patterns, social status, independence and self-esteem are indirect results. These factors have a beneficial effect on the individual, the family, and the community. With increasing availability and use of solar sunspaces and greenhouses, these wide-ranging benefits could result in changes in demand for human services and have definite implications for public policy.

  7. Passive solar renovation of an existing commercial greenhouse

    SciTech Connect

    McGinnis, J.W.; Whitehead, N.

    1980-01-01

    The renovation of an existing 1800 square foot commercial greenhouse to incorporate passive solar reliant and energy conserving features is detailed. The Aquatic-Agriculture Institute for Research, a non-profit group, sponsored the project to develop efficient production methods to raise vegetables and fish at the community level. The performance of the remodeled greenhouse will be compared to the performance of the same greenhouse as it was originally designed. The restored greenhouse began operation in September 1979. Accurate fuel and temperature records maintained through-out the past winter, show the cost of back-up heating under operating conditions to be approximately $150.00. Old fuel receipts dating back into the 1940's show an average use of 2000 gallons of heating fuel each winter prior to remodeling. This would indicate a yearly fuel savings of better than 90% through the use of passive solar techniques.

  8. Characterization and detection of Tomato necrotic stunt virus, a novel potyvirus infecting greenhouse tomatoes in Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse tomato production has increased significantly in recent years in North America. Nearly 40% of fresh tomato supplies in the U.S. are produced in greenhouses. The highly intensive and hydroponic production system has created some unique ecological conditions for disease epidemic, especial...

  9. Overview of global greenhouse effects

    SciTech Connect

    Reck, R.A.

    1993-09-01

    This report reviews the factors that influence the evolution of climate and climate change. Recent studies have confirmed that CO{sub 2}, O{sub 3}, N{sub 2}O, CH{sub 4}, and chlorofluorocarbos are increasing in abundance in the atmosphere and can alter the radiation balance by means of the so-called greenhouse effect. The greenhouse effect is as well-accepted phenomenon, but the prediction of its consequences is much less certain. Attempts to detect a human-caused temperature change are still inconclusive. This report presents a discussion of the scientific basis for the greenhouse effect, its relationship to the abundances of greenhouse gases, and the evidence confirming the increases in the abundances. The basis for climate modeling is presented together with an example of the model outputs from one of the most sophisticated modeling efforts. Uncertainties in the present understanding of climate are outlined.

  10. Geothermal greenhouses in Kyushu, Japan

    SciTech Connect

    Lienau, P.J.

    1996-05-01

    The New Energy Foundation (NEF) invited two members of the Geo-Heat Center staff of Tokyo to present two workshops on the direct uses of geothermal energy in the United States. Prior to the meetings, a field trip was arranged by NEF to visit geothermal power plants and direct use sites on Kyushu. Seven areas were toured on February 27 and 28th, including the Sensui Rose Garden greenhouse, a demonstration greenhouse at the Hatchobaru power station and the Kokonoe Bio Center.

  11. Greenhouses and their humanizing synergies

    NASA Astrophysics Data System (ADS)

    Haeuplik-Meusburger, Sandra; Paterson, Carrie; Schubert, Daniel; Zabel, Paul

    2014-03-01

    Greenhouses in space will require advanced technical systems of automatic watering, soil-less cultivation, artificial lighting, and computerized observation of plants. Functions discussed for plants in space habitats include physical/health requirements and human psychology, social cohesion, as well as the complex sensorial benefits of plants for humans. The authors consider the role of plants in long-term space missions historically since 1971 (Salyut 1) and propose a set of priorities to be considered within the design requirements for greenhouses and constructed environments given a range of benefits associated with plant-human relationships. They cite recent research into the use of greenhouses in extreme environments to reveal the relative importance of greenhouses for people living in isolated locations. Additionally, they put forward hypotheses about where greenhouses might factor into several strata of human health. In a recent design-in-use study of astronauts' experiences in space habitats discussed in Architecture for Astronauts (Springer Press 2011) it was found that besides the basic advantages for life support there are clearly additional "side benefits" for habitability and physical wellbeing, and thus long-term mission success. The authors have composed several key theses regarding the need to promote plant-human relationships in space, including areas where synergy and symbiosis occur. They cite new comprehensive research into the early US Space Program to reveal where programmatic requirements could be added to space architecture to increase the less quantifiable benefits to astronauts of art, recreation, and poetic engagement with their existential condition of estrangement from the planet. Specifically in terms of the technological requirements, the authors propose the integration of a new greenhouse subsystem component into space greenhouses—the Mobile Plant Cultivation Subsystem—a portable, personal greenhouse that can be integrated

  12. Browns Ferry waste heat greenhouse. Progress report. Circular Z-117

    SciTech Connect

    Burns, E.R.; Carter, J.; Pile, R.S.; Roetheli, J.C.

    1980-08-01

    A 25,000-ft/sup 2/ experimental greenhouse at Browns Ferry Nuclear Plant was divided into three sections to compare two heat exchange systems using waste heat in condenser cooling water (CCW) with a conventionally heated zone. A 125-hp pump at each of the three power plant units provides a 3000 gal/min pumping capacity for the CCW which is pumped about 2000 ft through a 12-in. pipe to the greenhouse. Construction was completed in November 1978; initial engineering tests were not conducted on system performance until January 1979; and the first tomato crop was planted January 10, 1979. Harvest was completed in July 1979; and cucumbers, chrysanthemums, poinsettias, and gloxinias were grown during the following summer and fall. Low winter greenhouse temperatures reduced the yield and quality of tomatoes in the two waste heat sections which averaged 13.0 lbs/plant. The conventionally heated zone produced 15.4 lbs/plant. In January and February, temperatures of the CCW were sometimes as low as 52/sup 0/F, or 18/sup 0/F below the predicted 70/sup 0/F which was the minimum simulated CCW temperature used to develop the pilot greenhouse heating system at Muscle Shoals. The two heat exchange systems using CCW performed near design expectations - keeping the greenhouse air temperature within 10/sup 0/ to 12/sup 0/F of the incoming water temperature. Summer and fall production of cucumbers and ornamental crops was successful in all three sections, which were conventionally cooled. Production budgets indicated a greater potential for ornamental production than vegetable production in waste heat greenhouses. Economic studies showed that heat exchange systems using waste heat from CCW will require higher capital investment and greater electrical consumption than a conventionally heated greenhouse. However, depending upon the costs charged for CCW, the waste heat systems may show potential economic advantages as a result of reduced heating costs.

  13. A novel approach to reduce greenhouse energy costs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irradiance, temperature, and carbon dioxide (CO2) are three environmental parameters growers can control during greenhouse production to alter crop growth, quality, and timing. Significant costs are incurred every year, especially during winter and early-spring production, to heat and light the gre...

  14. Greenhouse gas emissions in Canada and Japan: sector-specific estimates and managerial and economic implications.

    PubMed

    Hayami, Hitoshi; Nakamura, Masao

    2007-10-01

    Many firms generate large amounts of carbon dioxide and other greenhouse gases when they burn fossil fuels in their production processes. In addition, production of raw materials and other inputs the firms procure for their operations also generates greenhouse gases indirectly. These direct and indirect greenhouse gas emissions occur in many sectors of our economies. In this paper, we first present sector-specific estimates for such greenhouse gas emissions. We then show that estimates for such sector-specific greenhouse gas emissions are often required for various types of corporate as well as public policy analyses in both domestic and international contexts. Measuring greenhouse gas emissions resulting from firms' multi-stage production processes in a multi-sector context is relevant for policies related to the Kyoto protocol, an international agreement to limit global greenhouse gas emissions. For example, since the protocol allows firms to engage in trading and offsetting of their greenhouse gas emissions across national borders, provided that emissions are correctly measured, the firms can take advantage of such trading schemes by placing their energy-intensive production facilities globally and strategically. We present several case studies which illustrate the importance of this and other aspects of greenhouse gas emissions in firms' environmental management. We also argue that our modeling and estimation methods based on input-output analyses are suitable for the types of research goals we have in this paper. Our methods are applied to data for Canada and Japan in a variety of environmental management circumstances.

  15. Greenhouse Evaluation of Air-Assist Delivery Parameters for Mature Poinsettias

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the performance characteristics of application equipment is important for helping make the most efficacious applications. While handguns making high volume applications are common in greenhouse production, it is difficult to achieve uniform distribution of product in a timely manner. ...

  16. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 5, A laboratory greenhouse study conducted in fulfillment of Phase 2, Objective 2 titled. Use of FGD by-product gypsum enriched with magnesium hydroxide as a soil amendment

    SciTech Connect

    Yibirin, H.; Stehouwer, R. C.; Bigham, J. M.; Soto, U. I.

    1997-01-31

    The Clean Air Act, as revised in 1992, has spurred the development of flue gas desulfurization (FGD) technologies that have resulted in large volumes of wet scrubber sludges. In general, these sludges must be dewatered, chemically treated, and disposed of in landfills. Disposal is an expensive and environmentally questionable process for which suitable alternatives must be found. Wet scrubbing with magnesium (Mg)-enhanced lime has emerged as an efficient, cost effective technology for SO2 removal. When combined with an appropriate oxidation system, the wet scrubber sludge can be used to produce gypsum (CaSO4-2H2O) and magnesium hydroxide [Mg(OH)2] of sufficient purity for beneficial re-use. Product value generally increases with purity of the by-product(s). The pilot plant at the CINERGY Zimmer Station near Cincinnati produces gypsum by products that can be formulated to contain varying amounts of Mg(OH)2. Such materials may have agricultural value as soil conditioners, liming agents and sources of plant nutrients (Ca, Mg, S). This report describes a greenhouse study designed to evaluate by-product gypsum and Mg gypsum from the Zimmer Station pilot plant as amendments for improving the quality of agricultural soils and mine spoils that are currently unproductive because of phytotoxic conditions related to acidity and high levels of toxic dissolved aluminum (Al). In particular, the technical literature contains evidence to suggest that gypsum may be more effective than agricultural limestone in modifying soil chemical conditions below the immediate zone of application. Representative samples of by-product gypsum and Mg(OH)2 from the Zimmer Station were initially characterized. The gypsum was of high chemical purity and consisted of well crystalline, lath-shaped particles of low specific surface area. By contrast, the by-product Mg(OH)2 was a high surface area material (50 m2 g

  17. The Greenhouse and Anti-Greenhouse Effects on Titan

    NASA Technical Reports Server (NTRS)

    McKay, C. P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Titan is the largest moon of Saturn and is the only moon in the solar system with a substantial atmosphere. Its atmosphere is mostly made of nitrogen, with a few percent CH4, 0.1% H2 and an uncertain level of Ar (less than 10%). The surface pressure is 1.5 atms and the surface temperature is 95 K, decreasing to 71 at the tropopause before rising to stratospheric temperatures of 180 K. In pressure and composition Titan's atmosphere is the closest twin to Earth's. The surface of Titan remains unknown, hidden by the thick smog layer, but it may be an ocean of liquid methane and ethane. Titan's atmosphere has a greenhouse effect which is much stronger than the Earth's - 92% of the surface warming is due to greenhouse radiation. However an organic smog layer in the upper atmosphere produces an anti-greenhouse effect that cuts the greenhouse warming in half - removing 35% of the incoming solar radiation. Models suggest that during its formation Titan's atmosphere was heated to high temperatures due to accretional energy. This was followed by a cold Triton-like period which gradually warmed to the present conditions. The coupled greenhouse and haze anti-greenhouse may be relevant to recent suggestions for haze shielding of a CH4 - NH3 early atmosphere on Earth or Mars. When the NASA/ESA mission to the Saturn System, Cassini, launches in a few years it will carry a probe that will be sent to the surface of Titan and show us this world that is strange and yet in many ways similar to our own.

  18. [Prototype of space vitamin greenhouse "Phytoconveyor"].

    PubMed

    Berkovich, Iu A; Erokhin, A N; Krivobok, N M; Smolianina, S O; Baranov, A V; Shanturin, N A; Droniaev, V P; Radostin, A V; Trofimov, Iu V; Sivenkov, V K

    2007-01-01

    Installation of a greens production system on the International space station will mean a leap toward biological regeneration of food in long-duration space mission. Today, priority is given to green cultures as supplements of space rations and a psychological support to crews in exploration missions to Mars, and also as least resource-intensive. Cylindrical salad greenhouse "Phytoconveyor" designed at the Institute for Biomedical Problems is highly productive, energy-efficient, and requires minimum of crew time for. Dimensions of the greenhouse are 540 x 590 x 400 mm, power demand is 0.25 kW, and the Plant chamber volume is about 0.09 m3. 'Phytoconveyor" has a planting unit with six cylindrical root modules. The total illuminated crop area is about 0.4 m2. The lighting unit consists of red (660 nm) and blue (470 nm) light-emitting diodes on the inner surface of a spiral cylinder coaxial with the roots module unit that generate the photon flux density 350 micromol x M(-2) x s(-1) at a distance of 4 cm. Each root module has a porous tube wrapped up in a fiber substrate with ion-exchange resins and is covered with a lightproof plastic with seed slits. The "Phytoconveyor" design includes a programmable reverse watering system. Given the 24-hr light period, the laboratory model of "Phytoconveyor" can produce up to 300 gram of fresh greens every 4-5 days. The greenhouse was designed with due account of resource limitations on the ISS Russian orbital segment.

  19. [Prototype of space vitamin greenhouse "Phytoconveyor"].

    PubMed

    Berkovich, Iu A; Erokhin, A N; Krivobok, N M; Smolianina, S O; Baranov, A V; Shanturin, N A; Droniaev, V P; Radostin, A V; Trofimov, Iu V; Sivenkov, V K

    2007-01-01

    Installation of a greens production system on the International space station will mean a leap toward biological regeneration of food in long-duration space mission. Today, priority is given to green cultures as supplements of space rations and a psychological support to crews in exploration missions to Mars, and also as least resource-intensive. Cylindrical salad greenhouse "Phytoconveyor" designed at the Institute for Biomedical Problems is highly productive, energy-efficient, and requires minimum of crew time for. Dimensions of the greenhouse are 540 x 590 x 400 mm, power demand is 0.25 kW, and the Plant chamber volume is about 0.09 m3. 'Phytoconveyor" has a planting unit with six cylindrical root modules. The total illuminated crop area is about 0.4 m2. The lighting unit consists of red (660 nm) and blue (470 nm) light-emitting diodes on the inner surface of a spiral cylinder coaxial with the roots module unit that generate the photon flux density 350 micromol x M(-2) x s(-1) at a distance of 4 cm. Each root module has a porous tube wrapped up in a fiber substrate with ion-exchange resins and is covered with a lightproof plastic with seed slits. The "Phytoconveyor" design includes a programmable reverse watering system. Given the 24-hr light period, the laboratory model of "Phytoconveyor" can produce up to 300 gram of fresh greens every 4-5 days. The greenhouse was designed with due account of resource limitations on the ISS Russian orbital segment. PMID:18672522

  20. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    SciTech Connect

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions

  1. Physics in the Global Greenhouse.

    ERIC Educational Resources Information Center

    Ross, Shelagh

    1991-01-01

    Several ways of exploring the subject of global warming within the context of a conventional physics syllabus are suggested. The physics underlying greenhouse phenomena, the process of modelling (especially computers), possible future climatic scenarios, and the differing nature of the uncertainties associated with the many fields of study that…

  2. Greenhouse Gas Emissions from Pasture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide, nitrous oxide, and methane are the primary greenhouse gases associated with global climate change. Livestock production’s contribution to carbon dioxide emissions is minimal, but it is a substantial contributor to both nitrous oxide and methane emissions. In both grazing and confin...

  3. Greater accordance with the Dietary Approaches to Stop Hypertension dietary pattern is associated with lower diet-related greenhouse gas production but higher dietary costs in the United Kingdom12

    PubMed Central

    Monsivais, Pablo; Scarborough, Peter; Lloyd, Tina; Mizdrak, Anja; Luben, Robert; Mulligan, Angela A; Wareham, Nicholas J; Woodcock, James

    2015-01-01

    Background: The Dietary Approaches to Stop Hypertension (DASH) diet is a proven way to prevent and control hypertension and other chronic disease. Because the DASH diet emphasizes plant-based foods, including vegetables and grains, adhering to this diet might also bring about environmental benefits, including lower associated production of greenhouse gases (GHGs). Objective: The objective was to examine the interrelation between dietary accordance with the DASH diet and associated GHGs. A secondary aim was to examine the retail cost of diets by level of DASH accordance. Design: In this cross-sectional study of adults aged 39–79 y from the European Prospective Investigation into Cancer and Nutrition–Norfolk, United Kingdom cohort (n = 24,293), dietary intakes estimated from food-frequency questionnaires were analyzed for their accordance with the 8 DASH food and nutrient-based targets. Associations between DASH accordance, GHGs, and dietary costs were evaluated in regression analyses. Dietary GHGs were estimated with United Kingdom-specific data on carbon dioxide equivalents associated with commodities and foods. Dietary costs were estimated by using national food prices from a United Kingdom–based supermarket comparison website. Results: Greater accordance with the DASH dietary targets was associated with lower GHGs. Diets in the highest quintile of accordance had a GHG impact of 5.60 compared with 6.71 kg carbon dioxide equivalents/d for least-accordant diets (P < 0.0001). Among the DASH food groups, GHGs were most strongly and positively associated with meat consumption and negatively with whole-grain consumption. In addition, higher accordance with the DASH diet was associated with higher dietary costs, with the mean cost of diets in the top quintile of DASH scores 18% higher than that of diets in the lowest quintile (P < 0.0001). Conclusions: Promoting wider uptake of the DASH diet in the United Kingdom may improve population health and reduce diet

  4. Life cycle greenhouse gas impacts of grassland management practice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass from conservation and dedicated grasslands could be an important feedstock for biofuels. Estimating the carbon (C) intensity of biofuel production pathways is important in order to meet greenhouse gas (GHG) targets set by government policy. Management decisions made during feedstock producti...

  5. Nutritional and management strategies to mitigate animal greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal production is a significant source of greenhouse gas (GHG) emissions worldwide. The current analysis was conducted to evaluate the potential of nutritional, manure and animal management practices for mitigating methane and nitrous oxide, i.e. non-carbon dioxide GHG emissions from enteric ferm...

  6. Mitigating greenhouse gas emissions from beef cattle housing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef cattle are potential sources of greenhouse gases (GHG). These emissions include methane produced by fermentation within the gut (enteric), and methane and nitrous oxide emissions from manure. Life Cycle Analysis of North American (NA) beef cattle production systems consistently indicate that...

  7. Extratropical Influence of Upper Tropospheric Water Vapor on Greenhouse Warming

    NASA Technical Reports Server (NTRS)

    Hu, H.; Liu, W.

    1998-01-01

    The purpose of this paper is to re-examine the impact of upper tropospheric water vapor on greenhouse warming in midlatitudes by analyzing the recent observations of the upper tropospheric water vapor from the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS), in conjuction with other space-based measurement and model simulation products.

  8. The Greenhouse Effect: Science and Policy.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1989-01-01

    Discusses many of the scientific questions surrounding the greenhouse effect debate and the issue of plausible responses. Discussion includes topics concerning projecting emissions and greenhouse gas concentrations, estimating global climatic response, economic, social, and political impacts, and policy responses. (RT)

  9. Building and using the solar greenhouse

    SciTech Connect

    1983-01-01

    Thorough directions are given for planning, constructing and using a solar greenhouse attached to a house. Included is a method of calculating the savings accruing from the use of the greenhouse. (LEW)

  10. Capture of green-house carbon dioxide in Portland cement

    SciTech Connect

    Wagh, A.S.; Singh, D.; Pullockaran, J.; Knox, L.

    1993-12-31

    A novel process has been developed to sequester green-house carbon dioxide produced by the cement industry in precast cement products. Typically, 10--24 wt % of CO{sub 2} produced by calcination of calcium carbonate during clinkering of the cement may be captured. The carbonation process also cures the cement paste within minutes into hard bodies. The process maintains high pH conditions during curing, to allow conventional steel reinforcement of concrete. The process will save time and money to the cement industry, and at the same time, help them to comply with the Clean Air Act by sequestering the green-house carbon dioxide.

  11. Engineering concepts for inflatable Mars surface greenhouses.

    PubMed

    Hublitz, I; Henninger, D L; Drake, B G; Eckart, P

    2004-01-01

    A major challenge of designing a bioregenerative life support system for Mars is the reduction of the mass, volume, power, thermal and crew-time requirements. Structural mass of the greenhouse could be saved by operating the greenhouse at low atmospheric pressure. This paper investigates the feasibility of this concept. The method of equivalent system mass is used to compare greenhouses operated at high atmospheric pressure to greenhouses operated at low pressure for three different lighting methods: natural, artificial and hybrid lighting.

  12. Pathogenicity of Two Species of Entomopathogenic Nematodes Against the Greenhouse Whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), in Laboratory and Greenhouse Experiments.

    PubMed

    Rezaei, Nastaran; Karimi, Javad; Hosseini, Mojtaba; Goldani, Morteza; Campos-Herrera, Raquel

    2015-03-01

    The greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) is a polyphagous pest in greenhouse crops. The efficacy of two entomopathogenic nematodes (EPN), Steinernema feltiae and Heterorhabditis bacteriophora, as biological control agents against T. vaporariorum was evaluated using two model crops typical of vegetable greenhouse productions: cucumber and pepper. Laboratory tests evaluated adults and second nymphal instars for pest susceptibility to different EPN species at different concentrations of infective juveniles (IJ; 0, 25, 50, 100, 150, 200, and 250 IJ per cm(2)); subsequent greenhouse trials against second nymphal instars on cucumber and pepper plants evaluated more natural conditions. Concentrations were applied in combination with Triton X-100 (0.1% v/v), an adjuvant for increasing nematode activity. In laboratory studies, both life stages were susceptible to infection by the two nematode species, but S. feltiae recorded a lower LC50 than H. bacteriophora for both insect stages. Similarly, in greenhouse experiments, S. feltiae required lower concentrations of IJ than H. bacteriophora to reach the same mortality in nymphs. In greenhouse trials, a significant difference was observed in the triple interaction among nematode species × concentration × plant. Furthermore, the highest mortality rate of the second nymphal instars of the T. vaporariorum was obtained from the application of S. feltiae concentrated to 250 IJ/cm(2) on cucumber (49 ± 1.23%). The general mortality caused by nematodes was significantly higher in cucumber than in pepper. These promising results support further investigation for the optimization of the best EPN species/concentration in combination with insecticides or adjuvants to reach a profitable control of this greenhouse pest.

  13. Pathogenicity of Two Species of Entomopathogenic Nematodes Against the Greenhouse Whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), in Laboratory and Greenhouse Experiments

    PubMed Central

    Rezaei, Nastaran; Karimi, Javad; Hosseini, Mojtaba; Goldani, Morteza; Campos-Herrera, Raquel

    2015-01-01

    The greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) is a polyphagous pest in greenhouse crops. The efficacy of two entomopathogenic nematodes (EPN), Steinernema feltiae and Heterorhabditis bacteriophora, as biological control agents against T. vaporariorum was evaluated using two model crops typical of vegetable greenhouse productions: cucumber and pepper. Laboratory tests evaluated adults and second nymphal instars for pest susceptibility to different EPN species at different concentrations of infective juveniles (IJ; 0, 25, 50, 100, 150, 200, and 250 IJ per cm2); subsequent greenhouse trials against second nymphal instars on cucumber and pepper plants evaluated more natural conditions. Concentrations were applied in combination with Triton X-100 (0.1% v/v), an adjuvant for increasing nematode activity. In laboratory studies, both life stages were susceptible to infection by the two nematode species, but S. feltiae recorded a lower LC50 than H. bacteriophora for both insect stages. Similarly, in greenhouse experiments, S. feltiae required lower concentrations of IJ than H. bacteriophora to reach the same mortality in nymphs. In greenhouse trials, a significant difference was observed in the triple interaction among nematode species × concentration × plant. Furthermore, the highest mortality rate of the second nymphal instars of the T. vaporariorum was obtained from the application of S. feltiae concentrated to 250 IJ/cm2 on cucumber (49 ± 1.23%). The general mortality caused by nematodes was significantly higher in cucumber than in pepper. These promising results support further investigation for the optimization of the best EPN species/concentration in combination with insecticides or adjuvants to reach a profitable control of this greenhouse pest. PMID:25861117

  14. Mechatronic description of a laser autoguided vehicle for greenhouse operations.

    PubMed

    Sánchez-Hermosilla, Julián; González, Ramón; Rodríguez, Francisco; Donaire, Julián G

    2013-01-01

    This paper presents a novel approach for guiding mobile robots inside greenhouses demonstrated by promising preliminary physical experiments. It represents a comprehensive attempt to use the successful principles of AGVs (auto-guided vehicles) inside greenhouses, but avoiding the necessity of modifying the crop layout, and avoiding having to bury metallic pipes in the greenhouse floor. The designed vehicle can operate different tools, e.g., a spray system for applying plant-protection product, a lifting platform to reach the top part of the plants to perform pruning and harvesting tasks, and a trailer to transport fruits, plants, and crop waste. Regarding autonomous navigation, it follows the idea of AGVs, but now laser emitters are used to mark the desired route. The vehicle development is analyzed from a mechatronic standpoint (mechanics, electronics, and autonomous control).

  15. Micropropagation, Acclimatization, and Greenhouse Culture of Veratrum californicum.

    PubMed

    White, Sarah A; Adelberg, Jeffrey; Naylor-Adelberg, Jacqueline; Mann, David A; Song, Ju Yeon; Sun, Youping

    2016-01-01

    Micropropagation and production of Veratrum californicum is most successful when using a premixed Murishage and Skoog basal medium with vitamins and a 5-week subculture cycle at 16 °C for multiplication. These culture conditions provide the best percent survival after acclimatization in the greenhouse. However, clone response to temperature and light quality within culture conditions varies. Micropropagated plants have mass and morphology similar to 2- or 3-year-old seedlings. Acclimatized plantlets can then be grown in the greenhouse using sub-irrigation (ebb and flood) to maintain substrate volumetric water content > 44 %. Growth cycle in the greenhouse must be about 100 days, followed by dormancy for 5 months at 5 °C.

  16. Mechatronic Description of a Laser Autoguided Vehicle for Greenhouse Operations

    PubMed Central

    Sánchez-Hermosilla, Julián; González, Ramón; Rodríguez, Francisco; Donaire, Julián G.

    2013-01-01

    This paper presents a novel approach for guiding mobile robots inside greenhouses demonstrated by promising preliminary physical experiments. It represents a comprehensive attempt to use the successful principles of AGVs (auto-guided vehicles) inside greenhouses, but avoiding the necessity of modifying the crop layout, and avoiding having to bury metallic pipes in the greenhouse floor. The designed vehicle can operate different tools, e.g., a spray system for applying plant-protection product, a lifting platform to reach the top part of the plants to perform pruning and harvesting tasks, and a trailer to transport fruits, plants, and crop waste. Regarding autonomous navigation, it follows the idea of AGVs, but now laser emitters are used to mark the desired route. The vehicle development is analyzed from a mechatronic standpoint (mechanics, electronics, and autonomous control). PMID:23299624

  17. Micropropagation, Acclimatization, and Greenhouse Culture of Veratrum californicum.

    PubMed

    White, Sarah A; Adelberg, Jeffrey; Naylor-Adelberg, Jacqueline; Mann, David A; Song, Ju Yeon; Sun, Youping

    2016-01-01

    Micropropagation and production of Veratrum californicum is most successful when using a premixed Murishage and Skoog basal medium with vitamins and a 5-week subculture cycle at 16 °C for multiplication. These culture conditions provide the best percent survival after acclimatization in the greenhouse. However, clone response to temperature and light quality within culture conditions varies. Micropropagated plants have mass and morphology similar to 2- or 3-year-old seedlings. Acclimatized plantlets can then be grown in the greenhouse using sub-irrigation (ebb and flood) to maintain substrate volumetric water content > 44 %. Growth cycle in the greenhouse must be about 100 days, followed by dormancy for 5 months at 5 °C. PMID:27108318

  18. The Greenhouse Effect and Built Environment Education.

    ERIC Educational Resources Information Center

    Greenall Gough, Annette; Gough, Noel

    The greenhouse effect has always existed. Without the greenhouse effect, Earth could well have the oven-like environment of Venus or the deep-freeze environment of Mars. There is some debate about how much the Earth's surface temperature will rise given a certain amount of increase in the amount of greenhouse gases such as carbon dioxide, nitrous…

  19. Mitigating greenhouse gas emissions: Voluntary reporting

    SciTech Connect

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  20. Greenhouse gas exchange over grazed systems

    NASA Astrophysics Data System (ADS)

    Felber, R.; Ammann, C.; Neftel, A.

    2012-04-01

    Grasslands act as sinks and sources of greenhouse gases (GHG) and are, in conjunction with livestock production systems, responsible for a large share of GHG emissions. Whereas ecosystem scale flux measurements (eddy covariance) are commonly used to investigate CO2 exchange (and is becoming state-of-the-art for other GHGs, too), GHG emissions from agricultural animals are usually investigated on the scale of individual animals. Therefore eddy covariance technique has to be tested for combined systems (i.e. grazed systems). Our project investigates the ability of field scale flux measurements to reliably quantify the contribution of grazing dairy cows to the net exchange of CO2 and CH4. To quantify the contribution of the animals to the net flux the position, movement, and grazing/rumination activity of each cow are recorded. In combination with a detailed footprint analysis of the eddy covariance fluxes, the animal related CO2 and CH4 emissions are derived and compared to standard emission values derived from respiration chambers. The aim of the project is to test the assumption whether field scale CO2 flux measurements adequately include the respiration of grazing cows and to identify potential errors in ecosystem Greenhouse gas budgets.

  1. Greenhouse Gas Reductions: SF6

    ScienceCinema

    Anderson, Diana

    2016-07-12

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  2. Volcanoes can muddle the greenhouse

    SciTech Connect

    Kerr, R.A.

    1990-01-01

    As scientists and politicians anxiously eye signs of global greenhouse warming, climatologists are finding the best evidence yet that a massive volcanic eruption can temporarily bring the temperature down a notch or two. Such a cooling could be enough to set the current global warming back more than a decade, confusing any efforts to link it to the greenhouse effect. By effectively eliminating some nonvolcanic climate changes from the record of the past 100 years, researchers have detected drops in global temperature of several tenths of a degree within 1 to 2 years of volcanic eruptions. Apparently, the debris spewed into the stratosphere blocked sunlight and caused the temperature drops. For all their potential social significance, the climate effects of volcanoes have been hard to detect. The problem has been in identifying a volcanic cooling among the nearly continuous climate warmings and coolings of a similar size that fill the record. The paper reviews how this was done.

  3. Greenhouse Gas Reductions: SF6

    SciTech Connect

    Anderson, Diana

    2012-01-01

    Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas — one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

  4. Greenhouse gas fluxes during growth of different bioenergy crops

    NASA Astrophysics Data System (ADS)

    Walter, K.; Don, A.; Flessa, H.

    2012-04-01

    Bioenergy crops are expected to contribute to greenhouse gas mitigation by substituting fossil fuels. However, during production, processing and transport of bioenergy crops greenhouse gas emissions are generated that have to be taken into account when evaluating the role of bioenergy for climate mitigation. Especially nitrous oxide (N2O) emissions during feedstock production determine the greenhouse gas balance of bioenergy due to its strong global warming potential. This fact has often been ignored due to insufficient data and knowledge on greenhouse gas emission from cropland soils under bioenergy production. Therefore, we started to investigate the greenhouse gas emissions of major bioenergy crops maize, oil seed rape, grass (grass-clover, without N-fertilizer) and short rotation coppice (SRC, poplar hybrid) at two sites in Central Germany (near Göttingen and in Thuringia). The nitrous oxide and methane (CH4) fluxes from these sites have been determined by weekly chamber measurements since May 2011. The N2O emissions from all fields were low and without extreme peaks during the first five months of measurement (222 to 687 g N2O-N ha-1 for 5 months). The rape field near Göttingen emitted less N2O than the SRC, probably because SRC was newly established in spring 2011 and the rape has not been fertilized during the measurement period (cumulative emission over 5 months: rape seed 366 ± 188 g N2O-N ha-1, grassland 497 ± 153 g N2O-N ha-1, SRC 687 ± 124 g N2O-N ha-1). The maize field in Thuringia emitted more N2O than the SRC due to emission peaks related to the fertilization of maize (cumulative emission over 5 months: maize 492 ± 140 g N2O-N ha-1, grasslands 253 ± 87 and 361 ± 135 g N2O-N ha-1, new SRC 222 ± 90 g N2O-N ha-1, 4 years old SRC 340 ± 264 g N2O-N ha-1). All sites showed a net uptake of atmospheric methane throughout the summer season (104 to 862 g CH4-C ha-1 for 5 months). However, net-exchange of CH4 is of little importance for the greenhouse

  5. Solar energy utilization and microcomputer control in the greenhouse builk curing and drying solar system

    SciTech Connect

    Nassar, A.N.H.

    1987-01-01

    Three agricultural applications in a specially designed greenhouse solar system functioning as a multi-purpose solar air collector for crop production and curing/drying processes are examined. An automated hydroponic crop production system is proposed for the greenhouse solar system. Design criteria of the proposed system and its utilization of solar energy for root-zone warming are presented and discussed. Based upon limited testing of the hydroponic system considered, hydroponic production of greenhouse crops is believed reasonable to complement the year-round use of the greenhouse solar system. The hardware/software design features of a microcomputer-based control system applied in the greenhouse solar barn are presented and discussed. On-line management and utilization of incident solar energy by the microcomputer system are investigated for both the greenhouse and tobacco curing/drying modes of operation. The design approach considered for the microcomputer control system is believed suitable for regulating solar energy collection and utilization for crop production applications in greenhouse systems.

  6. 75 FR 41173 - Call for Information: Information on Greenhouse Gas Emissions Associated With Bioenergy and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... Deterioration and Title V Greenhouse Gas Tailoring Rule (known hence forth as the Tailoring Rule) (75 FR 31514... treatment, livestock respiration, fermentation processes in ethanol production, and combustion of biogas...

  7. Agricultural opportunities to mitigate greenhouse gas emissions.

    PubMed

    Johnson, Jane M-F; Franzluebbers, Alan J; Weyers, Sharon Lachnicht; Reicosky, Donald C

    2007-11-01

    Agriculture is a source for three primary greenhouse gases (GHGs): CO(2), CH(4), and N(2)O. It can also be a sink for CO(2) through C sequestration into biomass products and soil organic matter. We summarized the literature on GHG emissions and C sequestration, providing a perspective on how agriculture can reduce its GHG burden and how it can help to mitigate GHG emissions through conservation measures. Impacts of agricultural practices and systems on GHG emission are reviewed and potential trade-offs among potential mitigation options are discussed. Conservation practices that help prevent soil erosion, may also sequester soil C and enhance CH(4) consumption. Managing N to match crop needs can reduce N(2)O emission and avoid adverse impacts on water quality. Manipulating animal diet and manure management can reduce CH(4) and N(2)O emission from animal agriculture. All segments of agriculture have management options that can reduce agriculture's environmental footprint.

  8. Greenhouse effect may not be all bad

    SciTech Connect

    Senft, D.

    1990-10-01

    Evidence is presented that indicates US temperatures decreased by a fraction of a degree during the past 70 years contrary to the estimates of some researchers concerned with the greenhouse effect. There is general agreement that the carbon dioxide concentrations in the atmosphere will double by the late or mid 21st century. Experiments on cotton growth under increased temperature and carbon dioxide concentrations indicate sizeable gains in yield. This increased yield is exhibited by citrus trees and is projected for other crops. There is a concomitant need for more water and fertilizer. Increased populations of parasitic mites and insects also occur. Climatic changes are seen as being more gradual than previously thought. The possible increases in food production under these changes in climate are one positive element in the emerging scenario.

  9. The NOAA Annual Greenhouse Gas Index - 2012 Update

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Montzka, S. A.; Conway, T. J.; Dlugokencky, E. J.; Elkins, J. W.; Masari, K. A.; Schnell, R. C.; Tans, P. P.

    2012-04-01

    For the past several decades, the U.S. National Oceanic and Atmospheric Administration (NOAA) has monitored all of the long-lived atmospheric greenhouse gases. These global measurements have provided input to databases, analyses, and various relevant products, including national and international climate assessments. To make these data more useful and available, NOAA several years ago released its Annual Greenhouse Gas Index (AGGI), http://www.esrl.noaa.gov/gmd/aggi. This index, based on the climate forcing properties of long-lived greenhouse gases, was designed to enhance the connection between scientists and society by providing a normalized standard that can be easily understood and followed. The long-lived gases capture most of the radiative forcing, and uncertainty in their measurement is very small. This allows us to provide a robust measure and assessment of the long-term, radiative influence of these gases. Continuous greenhouse gas measurements are made at baseline climate observatories (Pt. Barrow, Alaska; Mauna Loa, Hawaii; American Samoa; and the South Pole) and weekly flask air samples are collected through a global network of over 60 sites, including an international cooperative program for carbon dioxide and other greenhouse gases. The gas samples are analyzed at NOAA's Earth System Research Laboratory (NOAA/ESRL) in Boulder, Colorado, using WMO standard reference gases prepared by NOAA/ESRL. The AGGI is normalized to 1.00 in 1990, the Kyoto Climate Protocol baseline year. In 2010, the AGGI was 1.29, indicating that global radiative forcing by long-lived greenhouse gases had increased 29% since 1990. During the 1980s CO2 accounted for about 50-60% of the annual increase in radiative forcing by long-lived greenhouse gases, whereas, since 2000, it has accounted for 85-90% of this increase each year. After nearly a decade of virtually level concentrations in the atmosphere, methane (CH4) increased measurably over the past 2-3 years, as did its

  10. Climate Change and Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Ledley, Tamara S.; Sundquist, Eric; Schwartz, Stephen; Hall, Dorothy K.; Fellows, Jack; Killeen, Timothy

    1999-01-01

    The American Geophysical Union (AGU), as a scientific organization devoted to research on the Earth and space sciences, provides current scientific information to the public on issues pertinent to geophysics. The Council of the AGU approved a position statement on Climate Change and Greenhouse Gases in December 1998. The statement, together with a short summary of the procedures that were followed in its preparation, review, and adoption were published in the February 2, 1999 issue of Eos ([AGU, 1999]. The present article reviews scientific understanding of this issue as presented in peer-reviewed publications that serves as the underlying basis of the position statement.

  11. False advertising in the greenhouse?

    NASA Astrophysics Data System (ADS)

    Banse, K.

    1991-12-01

    Most scientists are convinced of the importance of their own research subjects. Broecker [1991] has deplored the temptation, if not the tendency, to go overboard and exaggerate this importance once funding enters the mind. In particular, he alleges inflated or even false claims by biological (and other) oceanographers regarding the relevance of their research to the "greenhouse effect," caused by the anthropogenic enhancement of the atmospheric CO2 content. He writes [Broecker, 1991, p. 191]: "In my estimation, on any list of subjects requiring intense study with regard to the prediction of the consequences of CO2 buildup in the atmosphere, I would place marine biological cycles near the bottom."

  12. Observational determination of the greenhouse effect

    NASA Technical Reports Server (NTRS)

    Raval, A.; Ramanathan, V.

    1989-01-01

    Satellite measurements are used to quantify the atmospheric greenhouse effect, defined here as the infrared radiation energy trapped by atmospheric gases and clouds. The greenhouse effect is found to increase significantly with sea surface temperature. The rate of increase gives compelling evidence for the positive feedback between surface temperature, water vapor and the greenhouse effect; the magnitude of the feedback is consistent with that predicted by climate models. This study demonstrates an effective method for directly monitoring, from space, future changes in the greenhouse effect.

  13. Engineering concepts for inflatable Mars surface greenhouses

    NASA Technical Reports Server (NTRS)

    Hublitz, I.; Henninger, D. L.; Drake, B. G.; Eckart, P.

    2004-01-01

    A major challenge of designing a bioregenerative life support system for Mars is the reduction of the mass, volume, power, thermal and crew-time requirements. Structural mass of the greenhouse could be saved by operating the greenhouse at low atmospheric pressure. This paper investigates the feasibility of this concept. The method of equivalent system mass is used to compare greenhouses operated at high atmospheric pressure to greenhouses operated at low pressure for three different lighting methods: natural, artificial and hybrid lighting. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  14. Engineering concepts for inflatable Mars surface greenhouses.

    PubMed

    Hublitz, I; Henninger, D L; Drake, B G; Eckart, P

    2004-01-01

    A major challenge of designing a bioregenerative life support system for Mars is the reduction of the mass, volume, power, thermal and crew-time requirements. Structural mass of the greenhouse could be saved by operating the greenhouse at low atmospheric pressure. This paper investigates the feasibility of this concept. The method of equivalent system mass is used to compare greenhouses operated at high atmospheric pressure to greenhouses operated at low pressure for three different lighting methods: natural, artificial and hybrid lighting. PMID:15846884

  15. The role of nuclear energy in mitigating greenhouse warming

    SciTech Connect

    Krakowski, R.A.

    1997-12-31

    A behavioral, top-down, forced-equilibrium market model of long-term ({approximately} 2,100) global energy-economics interactions has been modified with a bottom-up nuclear energy model and used to construct consistent scenarios describing future impacts of civil nuclear materials flows in an expanding, multi-regional (13) world economy. The relative measures and tradeoffs between economic (GNP, tax impacts, productivity, etc.), environmental (greenhouse gas accumulations, waste accumulation, proliferation risk), and energy (resources, energy mixes, supply-side versus demand-side attributes) interactions that emerge from these analyses are focused herein on advancing understanding of the role that nuclear energy (and other non-carbon energy sources) might play in mitigating greenhouse warming. Two ostensibly opposing scenario drivers are investigated: (a) demand-side improvements in (non-price-induced) autonomous energy efficiency improvements; and (b) supply-side carbon-tax inducements to shift energy mixes towards reduced- or non-carbon forms. In terms of stemming greenhouse warming for minimal cost of greenhouse-gas abatement, and with the limitations of the simplified taxing schedule used, a symbiotic combination of these two approaches may offer advantages not found if each is applied separately.

  16. Manure management for greenhouse gas mitigation.

    PubMed

    Petersen, S O; Blanchard, M; Chadwick, D; Del Prado, A; Edouard, N; Mosquera, J; Sommer, S G

    2013-06-01

    Ongoing intensification and specialisation of livestock production lead to increasing volumes of manure to be managed, which are a source of the greenhouse gases (GHGs) methane (CH4) and nitrous oxide (N2O). Net emissions of CH4 and N2O result from a multitude of microbial activities in the manure environment. Their relative importance depends not only on manure composition and local management practices with respect to treatment, storage and field application, but also on ambient climatic conditions. The diversity of livestock production systems, and their associated manure management, is discussed on the basis of four regional cases (Sub-Saharan Africa, Southeast Asia, China and Europe) with increasing levels of intensification and priorities with respect to nutrient management and environmental regulation. GHG mitigation options for production systems based on solid and liquid manure management are then presented, and potentials for positive and negative interactions between pollutants, and between management practices, are discussed. The diversity of manure properties and environmental conditions necessitate a modelling approach for improving estimates of GHG emissions, and for predicting effects of management changes for GHG mitigation, and requirements for such a model are discussed. Finally, we briefly discuss drivers for, and barriers against, introduction of GHG mitigation measures for livestock production. There is no conflict between efforts to improve food and feed production, and efforts to reduce GHG emissions from manure management. Growth in livestock populations are projected to occur mainly in intensive production systems where, for this and other reasons, the largest potentials for GHG mitigation may be found.

  17. Limiting net greenhouse gas emissions in the United States

    SciTech Connect

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  18. Solar/Geothermal Saves Energy in Heating and Cooling of Greenhouses

    NASA Astrophysics Data System (ADS)

    Sanders, Matthew; Thompson, Mark; Sikorski, Yuri

    2010-04-01

    The steady increase in world population and problems associated with conventional agricultural practices demand changes in food production methods and capabilities. Locally grown food minimizes the transportation costs and gas emissions responsible for Global Warming. Greenhouses have the potential to be extremely ecologically friendly by greatly increasing yields per year and facilitating reduced pesticide use. Globally, there are 2.5 million acres of greenhouse cover, including 30,640 acres in North America. In Europe, greenhouses consume 10% of the total energy in agriculture. Most of that energy is utilized for heating. Heating and cooling amount to 35% of greenhouse production costs. This high percentage value can be partially attributed to currently poor insulation values. In moderate-to-cold climate zones, it can take up to 2,500 gallons of propane, currently costing around 5,000, to keep a 2,000 sq. ft. greenhouse producing all winter. Around 350 tons of CO2 per acre per year are released from these structures, contributing to global climate change. Reducing the energy needs of a greenhouse is the first step in saving money and the environment. Therefore, an efficient and environmentally friendly heating and cooling system selection is also crucial. After selecting appropriate energy sources, the next major concern in a greenhouse would be heat loss. Consequently, it is critically important to understand factors contributing to heat loss.

  19. Idaho National Laboratory FY12 Greenhouse Gas Report

    SciTech Connect

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  20. Idaho National Laboratory's FY11 Greenhouse Gas Report

    SciTech Connect

    Kimberly Frerichs

    2012-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2011 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho.

  1. Development of greenhouse grown onion transplants and effect of plant density and fertilizer rate on marketable yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse grown onion (Allium cepa L.) transplants may have potential for use in production systems, but how they respond to cultural practices needs clarification. Seedlings of ‘Candy' and ‘Texas Grano 1015Y' were raised in a greenhouse. ‘Candy' seedlings were heavier than ‘Texas Grano 1015Y' se...

  2. Titan's greenhouse and antigreenhouse effects

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1992-01-01

    Thermal mechanisms active in Titan's atmosphere are discussed in a brief review of data obtained during the Voyager I flyby in 1980. Particular attention is given to the greenhouse effect (GHE) produced by atmospheric H2, N2, and CH4; this GHE is stronger than that on earth, with CH4 and H2 playing roles similar to those of H2O and CO2 on earth. Also active on Titan is an antigreenhouse effect, in which dark-brown and orange organic aerosols block incoming solar light while allowing IR radiation from the Titan surface to escape. The combination of GHE and anti-GHE leads to a surface temperature about 12 C higher than it would be if Titan had no atmosphere.

  3. Cyanobacterial emergence at 2.8 gya and greenhouse feedbacks.

    PubMed

    Schwartzman, David; Caldeira, Ken; Pavlov, Alex

    2008-02-01

    Apparent cyanobacterial emergence at about 2.8 Gya coincides with the negative excursion in the organic carbon isotope record, which is the first strong evidence for the presence of atmospheric methane. The existence of weathering feedbacks in the carbonate-silicate cycle suggests that atmospheric and oceanic CO2 concentrations would have been high prior to the presence of a methane greenhouse (and thus the ocean would have had high bicarbonate concentrations). With the onset of a methane greenhouse, carbon dioxide concentrations would decrease. Bicarbonate has been proposed as the preferred reductant that preceded water for oxygenic photosynthesis in a bacterial photosynthetic precursor to cyanobacteria; with the drop of carbon dioxide level, Archean cyanobacteria emerged using water as a reductant instead of bicarbonate (Dismukes et al., 2001). Our thermodynamic calculations, with regard to this scenario, give at least a tenfold drop in aqueous CO2 levels with the onset of a methane-dominated greenhouse, assuming surface temperatures of about 60 degrees C and a drop in the level of atmospheric carbon dioxide from about 1 to 0.1 bars. The buildup of atmospheric methane could have been triggered by the boost in oceanic organic productivity that arose from the emergence of pre-cyanobacterial oxygenic phototrophy at about 2.8-3.0 Gya; high temperatures may have precluded an earlier emergence. A greenhouse transition timescale on the order of 50-100 million years is consistent with results from modeling the carbonate-silicate cycle. This is an alternative hypothesis to proposals of a tectonic driver for this apparent greenhouse transition.

  4. Cyanobacterial emergence at 2.8 gya and greenhouse feedbacks.

    PubMed

    Schwartzman, David; Caldeira, Ken; Pavlov, Alex

    2008-02-01

    Apparent cyanobacterial emergence at about 2.8 Gya coincides with the negative excursion in the organic carbon isotope record, which is the first strong evidence for the presence of atmospheric methane. The existence of weathering feedbacks in the carbonate-silicate cycle suggests that atmospheric and oceanic CO2 concentrations would have been high prior to the presence of a methane greenhouse (and thus the ocean would have had high bicarbonate concentrations). With the onset of a methane greenhouse, carbon dioxide concentrations would decrease. Bicarbonate has been proposed as the preferred reductant that preceded water for oxygenic photosynthesis in a bacterial photosynthetic precursor to cyanobacteria; with the drop of carbon dioxide level, Archean cyanobacteria emerged using water as a reductant instead of bicarbonate (Dismukes et al., 2001). Our thermodynamic calculations, with regard to this scenario, give at least a tenfold drop in aqueous CO2 levels with the onset of a methane-dominated greenhouse, assuming surface temperatures of about 60 degrees C and a drop in the level of atmospheric carbon dioxide from about 1 to 0.1 bars. The buildup of atmospheric methane could have been triggered by the boost in oceanic organic productivity that arose from the emergence of pre-cyanobacterial oxygenic phototrophy at about 2.8-3.0 Gya; high temperatures may have precluded an earlier emergence. A greenhouse transition timescale on the order of 50-100 million years is consistent with results from modeling the carbonate-silicate cycle. This is an alternative hypothesis to proposals of a tectonic driver for this apparent greenhouse transition. PMID:18237259

  5. A Hiatus of the Greenhouse Effect.

    PubMed

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-01-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth's surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown. PMID:27616203

  6. A Hiatus of the Greenhouse Effect.

    PubMed

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-09-12

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth's surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.

  7. A Hiatus of the Greenhouse Effect

    PubMed Central

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-01-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown. PMID:27616203

  8. Solar Greenhouses and Sunspaces: Lessons Learned.

    ERIC Educational Resources Information Center

    Thomas, Stephen G.; And Others

    Solar technology systems are being studied, managed, built and offered as an effective alternative energy option. This publication presents background material for the building and operation of better sunspaces and greenhouses. Recent developments in solar technology are explained and information on solar greenhouse and sunspace is provided (in…

  9. A Hiatus of the Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-09-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.

  10. Characterization and detection of emerging viroids in North American greenhouse tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato is an economically important vegetable in many countries around the world, with major productions in China, the U.S., Spain, Italy, India, Turkey, and Egypt. Although, most of the tomato production is field grown, there is a growing trend in protective production (greenhouse). Nearly 40% of...

  11. Greenhouse gas mitigation by agricultural intensification

    PubMed Central

    Burney, Jennifer A.; Davis, Steven J.; Lobell, David B.

    2010-01-01

    As efforts to mitigate climate change increase, there is a need to identify cost-effective ways to avoid emissions of greenhouse gases (GHGs). Agriculture is rightly recognized as a source of considerable emissions, with concomitant opportunities for mitigation. Although future agricultural productivity is critical, as it will shape emissions from conversion of native landscapes to food and biofuel crops, investment in agricultural research is rarely mentioned as a mitigation strategy. Here we estimate the net effect on GHG emissions of historical agricultural intensification between 1961 and 2005. We find that while emissions from factors such as fertilizer production and application have increased, the net effect of higher yields has avoided emissions of up to 161 gigatons of carbon (GtC) (590 GtCO2e) since 1961. We estimate that each dollar invested in agricultural yields has resulted in 68 fewer kgC (249 kgCO2e) emissions relative to 1961 technology ($14.74/tC, or ∼$4/tCO2e), avoiding 3.6 GtC (13.1 GtCO2e) per year. Our analysis indicates that investment in yield improvements compares favorably with other commonly proposed mitigation strategies. Further yield improvements should therefore be prominent among efforts to reduce future GHG emissions. PMID:20551223

  12. Embodied greenhouse gas emissions in diets.

    PubMed

    Pradhan, Prajal; Reusser, Dominik E; Kropp, Juergen P

    2013-01-01

    Changing food consumption patterns and associated greenhouse gas (GHG) emissions have been a matter of scientific debate for decades. The agricultural sector is one of the major GHG emitters and thus holds a large potential for climate change mitigation through optimal management and dietary changes. We assess this potential, project emissions, and investigate dietary patterns and their changes globally on a per country basis between 1961 and 2007. Sixteen representative and spatially differentiated patterns with a per capita calorie intake ranging from 1,870 to >3,400 kcal/day were derived. Detailed analyses show that low calorie diets are decreasing worldwide, while in parallel diet composition is changing as well: a discernable shift towards more balanced diets in developing countries can be observed and steps towards more meat rich diets as a typical characteristics in developed countries. Low calorie diets which are mainly observable in developing countries show a similar emission burden than moderate and high calorie diets. This can be explained by a less efficient calorie production per unit of GHG emissions in developing countries. Very high calorie diets are common in the developed world and exhibit high total per capita emissions of 3.7-6.1 kg CO(2eq.)/day due to high carbon intensity and high intake of animal products. In case of an unbridled demographic growth and changing dietary patterns the projected emissions from agriculture will approach 20 Gt CO(2eq.)/yr by 2050. PMID:23700408

  13. Where do California's greenhouse gases come from?

    SciTech Connect

    Fischer, Marc

    2009-01-01

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  14. Where do California's greenhouse gases come from?

    ScienceCinema

    Fischer, Marc

    2016-07-12

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  15. 13. Greenhouse, east elevation. The boardandbatten wall covers an opening ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Greenhouse, east elevation. The board-and-batten wall covers an opening that was originally fitted with windows which allowed sunlight into the greenhouse. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  16. Wavelength-Selective Photovoltaics for Power-generating Greenhouses

    NASA Astrophysics Data System (ADS)

    Carter, Sue; Loik, Michael; Shugar, David; Corrado, Carley; Wade, Catherine; Alers, Glenn

    2014-03-01

    While photovoltaic (PV) technologies are being developed that have the potential for meeting the cost target of 0.50/W per module, the cost of installation combined with the competition over land resources could curtail the wide scale deployment needed to generate the Terrawatts per year required to meet the world's electricity demands. To be cost effective, such large scale power generation will almost certainly require PV solar farms to be installed in agricultural and desert areas, thereby competing with food production, crops for biofuels, or the biodiversity of desert ecosystems. This requirement has put the PV community at odds with both the environmental and agricultural groups they would hope to support through the reduction of greenhouse gas emissions. A possible solution to this challenge is the use of wavelength-selective solar collectors, based on luminescent solar concentrators, that transmit wavelengths needed for plant growth while absorbing the remaining portions of the solar spectrum and converting it to power. Costs are reduced through simultaneous use of land for both food and power production, by replacing the PV cells by inexpensive long-lived luminescent materials as the solar absorber, and by integrating the panels directly into existing greenhouse or cold frames. Results on power generation and crop yields for year-long trials done at academic and commercial greenhouse growers in California will be presented.

  17. Biological methanogenesis and the CO2 greenhouse effect

    NASA Technical Reports Server (NTRS)

    Guthrie, P. D.

    1986-01-01

    It is well established that plants tend to increase net photosynthesis under increased carbon dioxide. It is also well established that a large fraction of atmospheric methane is produced by microbial metabolism of organic sediments in paddies and freshwater wetlands, where a major source of organic debris is local plant growth. As CO2 increases, it may lead to increased methane production and a resulting enhancement of the expected greenhouse warming. A rough estimate of the present rate of this biologically mediated feedback on the climate system indicates that it might account for as much as 30 percent of the observed methane increase and speed up the greenhouse forcing by as much as 15 percent.

  18. Greenhouse gas mitigation options for Washington State

    SciTech Connect

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  19. Scientists' internal models of the greenhouse effect

    NASA Astrophysics Data System (ADS)

    Libarkin, J. C.; Miller, H.; Thomas, S. R.

    2013-12-01

    A prior study utilized exploratory factor analysis to identify models underlying drawings of the greenhouse effect made by entering university freshmen. This analysis identified four archetype models of the greenhouse effect that appear within the college enrolling population. The current study collected drawings made by 144 geoscientists, from undergraduate geoscience majors through professionals. These participants scored highly on a standardized assessment of climate change understanding and expressed confidence in their understanding; many also indicated that they teach climate change in their courses. Although geoscientists held slightly more sophisticated greenhouse effect models than entering freshmen, very few held complete, explanatory models. As with freshmen, many scientists (44%) depict greenhouse gases in a layer in the atmosphere; 52% of participants depicted this or another layer as a physical barrier to escaping energy. In addition, 32% of participants indicated that incoming light from the Sun remains unchanged at Earth's surface, in alignment with a common model held by students. Finally, 3-20% of scientists depicted physical greenhouses, ozone, or holes in the atmosphere, all of which correspond to non-explanatory models commonly seen within students and represented in popular literature. For many scientists, incomplete models of the greenhouse effect are clearly enough to allow for reasoning about climate change. These data suggest that: 1) better representations about interdisciplinary concepts, such as the greenhouse effect, are needed for both scientist and public understanding; and 2) the scientific community needs to carefully consider how much understanding of a model is needed before necessary reasoning can occur.

  20. A Greenhouse for Mars and Beyond

    NASA Astrophysics Data System (ADS)

    Rahaim, Christopher P.; Czysz, Paul A.

    2008-01-01

    A detailed design study for a deployable greenhouse for Mars mission is has been completed. The greenhouse has been designed so that it has a life span of at least 20 years, a leakage rate of no more that 1% of the total volume per day at the target working pressure of 50 kPa and provides at least six crewmembers with approximately twenty five percent of their food supply. Artificial light is provided by high intensity red and blue light emitting diodes, but sunlight is also used by installing small Lexan windows on the rooftop. The greenhouse structure is a rigid IM7/977-3 graphite/epoxy sandwich structure with a footprint of 38 m2. Radioisotope thermal electric generators are used to produce power for the greenhouse and its subsystems and the plants are grown in nested pockets located on vertical cylinders which allows for a growth area of 48 m2. An aeroponic water and nutrient delivery system is used in order to reduce the greenhouse water usage. Harvesting and planting is achieved through the use of robotics specifically designed for this mission. The greenhouse structure and subsystems have a total weight of less than 10 metric tons. In this paper the design highlights of several of the subsystems of the greenhouse design will be summarized.

  1. Assessment of a closed greenhouse aquaculture and hydroponic system

    SciTech Connect

    Head, W.D.

    1984-01-01

    Research was conducted to address three objectives: 1) to determine the nitrogen cycling of a closed greenhouse aquaculture and hydroponic system; 2) to determine the energy budget of a closed greenhouse aquaculture and hydroponic system; and 3) to determine which low cost fish diets could be used as a replacement or supplement to commercial diets for Tilapia mossambica. A 6435 liter recirculating aquaculture system was enclosed in a 32.6 m/sup 2/ greenhouse. Water was recirculated through two 416 liter trickling filter towers and three 5.5 m long hydroponic troughs. The aquaculture tank was stocked with a polyculture of channel catfish (Ictalurus punctatus) and tilapia (Tilapia mossambica) and the hydroponic troughs were planted with tomatoes (Lycopersicon esculentum). The fishes were fed a commercial fish diet and the tomatoes were irrigated with the aquaculture water using a modified Nutrient Film Technique. The fish yield was 42.2 kg and the average tomato yield from 24 plants was 4.1 kg/plant. The combined fish and tomato production accounted for 65% of the total nitrogen input. Leaf analyses and visual inspection showed that the tomato plants from the hydroponic troughs were deficient in potassium and magnesium. An energy analysis of the greenhouse and aquaculture-hydroponic system showed that when combining the energy outputs of heat, fish, and tomatoes the energy ratio (energy output/energy input) was similar to literature values for milkfish pond culture. When only the fish production was considered the energy ratio was similar to literature values reported for intensive water recirculating systems.

  2. The greenhouse and antigreenhouse effects on Titan

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1991-01-01

    The parallels between the atmospheric thermal structure of the Saturnian satellite Titan and the hypothesized terrestrial greenhouse effect can serve as bases for the evaluation of competing greenhouse theories. Attention is presently drawn to the similarity between the roles of H2 and CH4 on Titan and CO2 and H2O on earth. Titan also has an antigreenhouse effect due to a high-altitude haze layer which absorbs at solar wavelengths, while remaining transparent in the thermal IR; if this haze layer were removed, the antigreenhouse effect would be greatly reduced, exacerbating the greenhouse effect and raising surface temperature by over 20 K.

  3. Greenhouse Trace Gases in Deadwood

    NASA Astrophysics Data System (ADS)

    Covey, Kristofer; Bueno de Mesquita, Cliff; Oberle, Brad; Maynard, Dan; Bettigole, Charles; Crowther, Thomas; Duguid, Marlyse; Steven, Blaire; Zanne, Amy; Lapin, Marc; Ashton, Mark; Oliver, Chad; Lee, Xuhui; Bradford, Mark

    2016-04-01

    Deadwood, long recognized as playing an important role in carbon cycling in forest ecosystems, is more recently drawing attention for its potential role in the cycling of other greenhouse trace gases. We report data from four independent studies measuring internal gas concentrations in deadwood in in three Quercus dominated upland forest systems in the Northeastern and Central United States. Mean methane concentrations in deadwood were 23 times atmospheric levels, indicating a lower bound, mean radial wood surface area flux of ~6 x 10-4 μmol CH4 m-2 s-1. Site, decay class, diameter, and species were all highly significant predictors of methane abundance in deadwood, and log diameter and decay stage interacted as important controls limiting methane concentrations in the smallest and most decayed logs. Nitrous oxide concentrations were negatively correlated with methane and on average ~25% lower than ambient, indicating net consumption of nitrous oxide. These data suggest nonstructural carbohydrates fuel archaeal methanogens and confirm the potential for widespread in situ methanogenesis in both living and deadwood. Applying this understanding to estimate methane emissions from microbial activity in living trees implies a potential global flux of 65.6±12.0 Tg CH4 yr-1, more than 20 times greater than currently considered.

  4. Methane Greenhouses and Anti-Greenhouses During the Archean Era

    NASA Astrophysics Data System (ADS)

    Kasting, J. F.; Pavlov, A. A.

    2002-12-01

    Climate and life are coupled today through the biogeochemical carbon cycle, but they may have been even more tightly coupled in the distant past when atmospheric O2 levels were lower. The finding of mass-independently fractionated S isotopes in Archean rocks confirms that pO2 was very low, probably <10-13 times the present level, prior to 2.3 Ga (1). The Sun was also some 20 percent less luminous at this time (2). High CO2 levels were initially proposed to solve this `faint young Sun problem' (3); however, these levels are in conflict in data from paleosols (4). CH4 is an alternative greenhouse gas which could have kept the Archean climate warm if present at concentrations of 0.01-0.1 percent by volume (5). The primary source of methane is biological. CH4 is produced by methanogenic bacteria that today live in anaerobic environments such as the intestines of ruminants and the water-logged soils underlying rice paddies. During the Archean, however, methanogens should have been widespread, and the methane they produced would have had a long photochemical lifetimes, around 10,000 years (6). Most methanogens are thermophiles or hyperthermophiles, and those which are more thermophilic have shorter doubling times than those that prefer cooler temperatures. This suggests that a positive feedback loop may have existed, whereby methanogens warmed the climate by releasing CH4, which in turn promoted the proliferation of faster-growing methanogens. This positive feedback would have been halted, however, once the ratio of CH4 to CO2 in the atmosphere exceeded unity. At this point, polymerization of CH4 by solar UV radiation would have caused the formation of an organic haze layer similar to that observed today on Titan. Such a haze layer would have cooled the climate by creating an `anti-greenhouse effect.' This creates an overall negative feedback loop that may have been responsible for maintaining a stable Archean climate. The rise of O2 at 2.3 Ga disrupted this equilibrium

  5. Greenhouse gas accounting and waste management.

    PubMed

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.

  6. The greenhouse effect: Physiological changes in plants

    SciTech Connect

    Beard, R.; Harrison, M. )

    1990-05-01

    Elevated atmospheric carbon dioxide is timely topic of study for all biology students at all levels. The stimulatory effect of elevated atmospheric carbon dioxide (700 {mu}l/l) on plant growth, flower induction, protein production and the Calvin-Benson cycle can be easily demonstrated in seedlings in student laboratories. In our lab, the shoot growth of rapid cycling brassicas (Wisconsin fast plants) was measured under ambient and elevated CO{sub 2} conditions for three weeks. Plants grown under elevated CO{sub 2} conditions were significantly taller and showed earlier flower development. These plants also contained greater protein content per gram fresh weight. Crude leaf extracts was used as a source of pentose-5-isomerase which controls the conversion of ribose-5-phosphate to ribulose-5-phosphate in carbon fixation. The activity of this enzyme was measured spectrophotometrically and found to be somewhat greater in plants grown under the higher CO{sub 2} conditions. These physiological changes associated with elevated CO{sub 2} can be used as an introduction to the greenhouse effect as well as to study the regulation of carbon fixation.

  7. Greenhouse Gas Emissions from Brazilian Sugarcane Soils

    NASA Astrophysics Data System (ADS)

    Carmo, J.; Pitombo, L.; Cantarella, H.; Rosseto, R.; Andrade, C.; Martinelli, L.; Gava, G.; Vargas, V.; Sousa-Neto, E.; Zotelli, L.; Filoso, S.; Neto, A. E.

    2012-04-01

    Bioethanol from sugarcane is increasingly seen as a sustainable alternative energy source. Besides having high photosynthetic efficiency, sugarcane is a perennial tropical grass crop that can re-grow up to five or more years after being planted. Brazil is the largest producer of sugarcane in the world and management practices commonly used in the country lead to lower rates of inorganic N fertilizer application than sugarcane grown elsewhere, or in comparison to other feedstocks such as corn. Therefore, Brazilian sugarcane ethanol potentially promotes greenhouse gas savings. For that reason, several recent studies have attempted to assess emissions of greenhouse gases (GHG) during sugarcane production in the tropics. However, estimates have been mainly based on models due to a general lack of field data. In this study, we present data from in situ experiments on emission of three GHG (CO2, N2O, and CH4) in sugarcane fields in Brazil. Emissions are provided for sugarcane in different phases of the crop life cycle and under different management practices. Our results show that the use of nitrogen fertilizer in sugarcane crops resulted in an emission factor for N2O similar to those predicted by IPCC (1%), ranging from 0.59% in ratoon cane to 1.11% in plant cane. However, when vinasse was applied in addition to mineralN fertilizer, emissions of GHG increased in comparison to those from the use of mineral N fertilizer alone. Emissions increased significantly when experiments mimicked the accumulation of cane trash on the soil surface with 14 tons ha-1and 21 tons ha-1, which emission factor were 1.89% and 3.03%, respectively. This study is representative of Brazilian sugarcane systems under specific conditions for key factors affecting GHG emissions from soils. Nevertheless, the data provided will improve estimates of GHG from Brazilian sugarcane, and efforts to assess sugarcane ethanol sustainability and energy balance. Funding provided by the São Paulo Research

  8. Nonlinear adaptive PID control for greenhouse environment based on RBF network.

    PubMed

    Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production.

  9. Nonlinear Adaptive PID Control for Greenhouse Environment Based on RBF Network

    PubMed Central

    Zeng, Songwei; Hu, Haigen; Xu, Lihong; Li, Guanghui

    2012-01-01

    This paper presents a hybrid control strategy, combining Radial Basis Function (RBF) network with conventional proportional, integral, and derivative (PID) controllers, for the greenhouse climate control. A model of nonlinear conservation laws of enthalpy and matter between numerous system variables affecting the greenhouse climate is formulated. RBF network is used to tune and identify all PID gain parameters online and adaptively. The presented Neuro-PID control scheme is validated through simulations of set-point tracking and disturbance rejection. We compare the proposed adaptive online tuning method with the offline tuning scheme that employs Genetic Algorithm (GA) to search the optimal gain parameters. The results show that the proposed strategy has good adaptability, strong robustness and real-time performance while achieving satisfactory control performance for the complex and nonlinear greenhouse climate control system, and it may provide a valuable reference to formulate environmental control strategies for actual application in greenhouse production. PMID:22778587

  10. A compatible control algorithm for greenhouse environment control based on MOCC strategy.

    PubMed

    Hu, Haigen; Xu, Lihong; Zhu, Bingkun; Wei, Ruihua

    2011-01-01

    Conventional methods used for solving greenhouse environment multi-objective conflict control problems lay excessive emphasis on control performance and have inadequate consideration for both energy consumption and special requirements for plant growth. The resulting solution will cause higher energy cost. However, during the long period of work and practice, we find that it may be more reasonable to adopt interval or region control objectives instead of point control objectives. In this paper, we propose a modified compatible control algorithm, and employ Multi-Objective Compatible Control (MOCC) strategy and an extant greenhouse model to achieve greenhouse climate control based on feedback control architecture. A series of simulation experiments through various comparative studies are presented to validate the feasibility of the proposed algorithm. The results are encouraging and suggest the energy-saving application to real-world engineering problems in greenhouse production. It may be valuable and helpful to formulate environmental control strategies, and to achieve high control precision and low energy cost for real-world engineering application in greenhouse production. Moreover, the proposed approach has also potential to be useful for other practical control optimization problems with the features like the greenhouse environment control system.

  11. [Effects of fertilizer application on greenhouse vegetable yield: a case study of Shouguang].

    PubMed

    Liu, Ping; Li, Yan; Jiang, Li-Hua; Liu, Zhao-Hui; Gao, Xin-Hao; Lin, Hai-Tao; Zheng, Fu-Li; Shi, Jing

    2014-06-01

    Data collected from 51 representative greenhouses of Shouguang through questionnaire survey were analyzed to investigate the effect of chemical fertilizers on vegetable yield, relationship between application of organic manure and yield, and influence factors and evolution rule of fertilizer application rate. The results showed that averages of 3338 kg N x hm(-2), 1710 kg P2O5 x hm(-2) 3446 kg K2O x hm(-2) were applied to greenhouse vegetables annually in Shouguang, 6-14 times as that in the local wheat-maize rotation system. The application rates of chemical N, P, and K fertilizers accounted for about 35%, 49% and 42% of the total input. Increasing application of chemical fertilizers had no significant effect on vegetable yields, while organic manure input significantly increased the vegetable yields. With the increase of greenhouse cultivating time, no significant changes in the input of chemical N, P, and K fertilizers were observed in greenhouse vegetable production while organic manure input decreased significantly. Differences in vegetable species, planting pattern and cultivating time of greenhouses was one of the reasons for large variations in nutrient application rate. In recent more than ten years, organic manure nutrient input increased significantly, chemical N and P fertilizer input presented a downward trend, chemical K fertilizer input increased significantly, and the N/P/K ratio became more and more reasonable in greenhouse vegetable production in Shouguang.

  12. The Greenhouse Effect and Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V.

    2012-06-01

    We review the theory of the greenhouse effect and climate feedback. We also compare the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan.

  13. The Greenhouse Effect in a Vial.

    ERIC Educational Resources Information Center

    Golden, Richard; Sneider, Cary

    1989-01-01

    Presents an example of a greenhouse-effect experiment from the Climate Protection Institute. Analyzes the amount of carbon dioxide in ambient air, human exhalation, automobile exhaust, and nearly pure carbon dioxide by titrating with ammonia and bromthymol blue. (MVL)

  14. Arctic climate change: Greenhouse warming unleashed

    NASA Astrophysics Data System (ADS)

    Mauritsen, Thorsten

    2016-04-01

    Human activity alters the atmospheric composition, which leads to global warming. Model simulations suggest that reductions in emission of sulfur dioxide from Europe since the 1970s could have unveiled rapid Arctic greenhouse gas warming.

  15. Reservoir Greenhouse Gas Emissions at Russian HPP

    SciTech Connect

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V.; Savvichev, A. S.; Zinchenko, A. V.

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  16. The passenger car and the greenhouse effect

    SciTech Connect

    Amann, C.A.

    1990-01-01

    This paper reports that concern is mounting over the possibility of global warming from the greenhouse effect. Carbon dioxide from the combustion of fossil fuel is a major greenhouse gas, and automobile exhaust is one of the contributors. The only way to decrease carbon dioxide emissions from a car consuming carbonaceous fuel is to decrease its fuel consumption. The best alternative fossil fuels offer a carbon dioxide reduction of about 20%. Without introducing any new greenhouse-gas controls, it is projected that the total greenhouse-gas contribution of the average car will be halved from recent levels just through fleet turnover and already planned elimination of the current air-conditioning refrigerant. If global warming develops into a serious problem, cars can be operated without fossil fuel. Leading options include battery-electric cars using nuclear power and engine-propelled cars burning biomass-derived alcohol or hydrogen extracted from water with solar cells or nuclear power.

  17. Voluntary reporting of greenhouse gases, 1995

    SciTech Connect

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  18. Bibliography of greenhouse-gas reduction strategies

    SciTech Connect

    Tompkins, M.M.; Mintz, M.M.

    1995-03-01

    A bibliography of greenhouse-gas reduction strategies has been compiled to assist the Climate change Action Plan Task Force in their consideration of strategies to reduce greenhouse-gas emissions from personal motor vehicles. The document contains a summary of the literature, including it major directions and implications; and annotated listing of 32 recent pertinent documents; and a listing of a larger group of related reports.

  19. Heavy metals relationship in arable and greenhouse soils of SE Spain using a geostatistical analysis

    NASA Astrophysics Data System (ADS)

    Gil, Carlos; Joaquin Ramos-Miras, Jose; Rodríguez Martín, Jose Antonio; Boluda, Rafael; Roca, Núria; Bech, Jaume

    2013-04-01

    This study compares heavy metals contents and the main edaphic parameters in greenhouse soils from the W Almería region one of the most productive agricultural systems in Europe, with agricultural soils (arable soils) in western Andalusia, SW Spain. Heavy metals input in agricultural soils mainly occur through pesticides and phytosanitary control products. The hazardousness of the studied elements (Cr, Ni, Pb, Cu, Zn and Cd) is particularly relevant in soils used for intensive greenhouse farming where such agricultural practices, which centre on maximising production, end up with products that finally enter the human food chain directly. Here we explore a total of 199 greenhouse soils and 142 arable soils, representing two scales of variation in this Mediterranean area. Despite their similar edaphic characteristics, the main differences between arable soils and greenhouse soils lie in nutrients contents (P and K) and in certain heavy metals (Cd, Pb and Zn), which reflect widespread use of pesticides in greenhouse farming. One of the most toxic metals is Cd given its mobility, whose concentrations triple in greenhouse soils, although it does not exceed the limits set by Spanish legislation. We conclude that despite anthropic heavy metals input, the association patterns of these elements were similar on the two spatial variability scales. Cd, Pb and Zn contents, and partly those of Cu, are related with agricultural practices. On the short spatial scale, grouping these heavy metals shows very high contents in greenhouse soils in the central northern area of the W Almería region. On the other hand, the associations of Cr and Ni suggest a lithogenic influence combined with a pedogenic effect on spatial maps. This natural origin input becomes more marked on the long spatial scale (arable soils) where the main Cr and Ni contents are found in the vicinity of the Gádor Mountain Range.

  20. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    SciTech Connect

    DeLuchi, M.A. |

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  1. Greenhouse-gas payback times for crop-based biofuels

    NASA Astrophysics Data System (ADS)

    Elshout, P. M. F.; van Zelm, R.; Balkovic, J.; Obersteiner, M.; Schmid, E.; Skalsky, R.; van der Velde, M.; Huijbregts, M. A. J.

    2015-06-01

    A global increase in the demand for crop-based biofuels may be met by cropland expansion, and could require the sacrifice of natural vegetation. Such land transformation alters the carbon and nitrogen cycles of the original system, and causes significant greenhouse-gas emissions, which should be considered when assessing the global warming performance of crop-based biofuels. As an indicator of this performance we propose the use of greenhouse-gas payback time (GPBT), that is, the number of years it takes before the greenhouse-gas savings due to displacing fossil fuels with biofuels equal the initial losses of carbon and nitrogen stocks from the original ecosystem. Spatially explicit global GPBTs were derived for biofuel production systems using five different feedstocks (corn, rapeseed, soybean, sugarcane and winter wheat), cultivated under no-input and high-input farm management. Overall, GPBTs were found to range between 1 and 162 years (95% range, median: 19 years) with the longest GPBTs occurring in the tropics. Replacing no-input with high-input farming typically shortened the GPBTs by 45 to 79%. Location of crop cultivation was identified as the primary factor driving variation in GPBTs. This study underscores the importance of using spatially explicit impact assessments to guide biofuel policy.

  2. Geothermal heating for the Arizona Environmental Research Laboratory greenhouses

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    A preliminary study of the technical and economic feasibility of installing a retrofit geothermal heating system is analyzed for the Environmental Research Laboratory Farms greenhouse facility located in Tucson, Arizona. The facility consists of 10.6 acres of greenhouse area, of which 7.4 acres are currently operational. Natural gas or diesel fuel are presently used for heating. The maximum heating load is estimated to be 28,620,000 Btu/hr. Average annual heating energy consumption between 1974 and 1979 was 35,684 million But/year for 7.4 acres of greenhouse, costing an estimated $96,703 at 1981 natural gas prices. Two 2500 foot geothermal production wells are required, each capable of producing 1500 gpm of 130{sup 0}F water. The geothermal water is expected to contain 500 ppM total dissolved solids. Total estimated capital cost for installing the system is $902,946. The expected first year geothermal energy cost savigs are estimated to be $58,920. A simple payback of 9.1 years is calculated and the project has a net present value of $961,751. Geothermal heat could be supplied at a cost of $5.39 per million Btu in the first year of operation. The project as herein presented is marginally economic. However, it became clear after the study that an attractive economic case could be made for providing about 50 to 60 percent of the required heating load as a base load using geothermal energy.

  3. Impact of greenhouse gas emissions reduction in Indonesia: NO2

    NASA Astrophysics Data System (ADS)

    Susandi, A.

    2004-12-01

    In this study, we develop scenarios of total air pollution from fossil fuel consumption and its impacts for the 21st century, using an inter-temporal general equilibrium model MERGE. The Model for Evaluating the Regional and Global Effects of greenhouse gas reduction policies (MERGE) is used to project energy consumption and production. We use the base scenarios from IPCC (2000). These scenarios assume that no measures are undertaken to control greenhouse gas emissions. We extend the IPCC scenarios with mitigation scenarios, estimating the air pollution impacts of greenhouse gas emission reduction. The MERGE model was extended to analyze emissions of nitrogen dioxide (NO2), their concentrations, impacts on human health, and economic valuation. To estimate of nitrogen dioxide (NO2) impacts on respiratory symptoms, we calculated the NO2 concentration as derived from nitrogen oxide (NOx). In the baseline scenario, the concentrations of NO2 are rising to 2,263 μg/m3 in 2100. If the Organisation for Economic Co-operation and Development (OECD) countries reduce their emissions, respiratory symptoms among adult's associated with NO2 case would reach the highest to 65,741% of adult population cases by the end of century. If all countries reduce their emission in the future, the total health problem cost associated with NO2 will lower 35% of GDP than in the baseline scenario during the century.

  4. HFCs contribution to the greenhouse effect. Present and projected estimations

    SciTech Connect

    Libre, J.M.; Elf-Atochem, S.A.

    1997-12-31

    This paper reviews data that can be used to calculate hydrofluorocarbon (HFC) contribution to the greenhouse effect and compare it to other trace gas contributions. Projections are made for 2010 and 2100 on the basis of available emission scenarios. Industrial judgement on the likelihood of those scenarios is also developed. Calculations can be made in two different ways: from Global Warming Potential weighted emissions of species or by direct calculation of radiative forcing based on measured and projected atmospheric concentrations of compounds. Results show that HFCs corresponding to commercial uses have a negligible contribution to the greenhouse effect in comparison with other trace gases. The projected contributions are also very small even if very high emission scenarios are maintained for decades. In 2010 this contribution remains below 1%. Longer term emissions projections are difficult. However, based on the IPCC scenario IS92a, in spite of huge emissions projected for the year 2100, the HFC contribution remains below 3%. Actually many factors indicate that the real UFC contribution to the greenhouse effect will be even smaller than presented here. Low emissive systems and small charges will likely improve sharply in the future and have drastically improved in the recent past. HFC technology implementation is likely to grow in the future, reach a maximum before the middle of the next century; the market will stabilise driven by recycling, closing of systems and competitive technologies. This hypothesis is supported by previous analysis of the demand for HTCs type applications which can be represented by {open_quotes}S{close_quotes} type curves and by recent analysis indicating that the level of substitution of old products by HFCs is growing slowly. On the basis of those data and best industrial judgement, the contribution of HFCs to the greenhouse effect is highly likely to remain below 1% during the next century. 11 refs., 2 figs., 5 tabs.

  5. Demonstration of a commercial solar greenhouse. Final report

    SciTech Connect

    Figueras, A.

    1982-03-31

    The greenhouse is located in the town of Russell, in St. Lawrence County, New York. It was built to demonstrate the economics of using the solar greenhouse design as a commercial greenhouse growing vegetables for local sale. The design and construction of the greenhouse are briefly described. Records of temperatures monitored and produce grown and sold are included. (BCS)

  6. Greenhouse gases in the corn-to-fuel ethanol pathway.

    SciTech Connect

    Wang, M. Q.

    1998-06-18

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

  7. Greenhouse-gas-trading markets.

    PubMed

    Sandor, Richard; Walsh, Michael; Marques, Rafael

    2002-08-15

    This paper summarizes the extension of new market mechanisms for environmental services, explains of the importance of generating price information indicative of the cost of mitigating greenhouse gases (GHGs) and presents the rationale and objectives for pilot GHG-trading markets. It also describes the steps being taken to define and launch pilot carbon markets in North America and Europe and reviews the key issues related to incorporating carbon sequestration into an emissions-trading market. There is an emerging consensus to employ market mechanisms to help address the threat of human-induced climate changes. Carbon-trading markets are now in development around the world. A UK market is set to launch in 2002, and the European Commission has called for a 2005 launch of an European Union (EU)-wide market, and a voluntary carbon market is now in formation in North America. These markets represent an initial step in resolving a fundamental problem in defining and implementing appropriate policy actions to address climate change. Policymakers currently suffer from two major information gaps: the economic value of potential damages arising from climate changes are highly uncertain, and there is a lack of reliable information on the cost of mitigating GHGs. These twin gaps significantly reduce the quality of the climate policy debate. The Chicago Climate Exchange, for which the authors serve as lead designers, is intended to provide an organized carbon-trading market involving energy, industry and carbon sequestration in forests and farms. Trading among these diverse sectors will provide price discovery that will help clarify the cost of combating climate change when a wide range of mitigation options is employed. By closing the information gap on mitigation costs, society and policymakers will be far better prepared to identify and implement optimal policies for managing the risks associated with climate change. Establishment of practical experience in providing

  8. Greenhouse Earth: A Traveling Exhibition. Final report, September 1, 1991--August 31, 1992

    SciTech Connect

    Booth, W.H.; Caesar, S.

    1992-09-01

    The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to ten US cities, reaching two million visitors. Greenhouse Earth aims to deepen public understanding of the scientific issues of global warming and the conservation measures that can be taken to slow its effects. The exhibit features hands-on exhibitry, interactive computer programs and videos, a theater production, a ``demonstration cart,`` guided tours, and lectures. supplemental educational programs at the Institute included a teachers preview, a symposium on climate change, and a ``satellite field trip.`` The development of Greenhouse Earth included front-end and formative evaluation procedures. Evaluation includes interviews with visitors, prototypes, and summative surveys for participating museums. During its stay in Philadelphia, Greenhouse Earth was covered by the local and national press, with reviews in print and broadcast media. Greenhouse Earth is the first large-scale museum exhibit to address global climate change.

  9. Current and Future Greenhouse Gas Emissions from Global Crop Intensification and Expansion

    NASA Astrophysics Data System (ADS)

    Carlson, K. M.; Gerber, J. S.; Mueller, N. D.; O'Connell, C.; West, P. C.

    2014-12-01

    Food systems currently contribute up to one-third of total anthropogenic greenhouse gas emissions, and these emissions are expected to rise as demand for agricultural products increases. Thus, improving the greenhouse gas emissions efficiency of agriculture - the tons or kilocalories of production per ton of CO2 equivalent emissions - will be critical to support a resilient future global system. Here, we model and evaluate global, 2000-era, spatially explicit relationships between a suite of greenhouse gas emissions from various agronomic practices (i.e., fertilizer application, peatland draining, and rice cultivation) and crop yields. Then, we predict potential emissions from future crop production increases achieved through intensification and extensification, including CO2 emissions from croplands replacing non-urban land cover. We find that 2000-era yield-scaled agronomic emissions are highly heterogeneous across crops types, crop management practices, and regions. Rice agriculture produces more total CO2-equivalent emissions than any other crop. Moreover, inundated rice in just a few countries contributes the vast majority of these rice emissions. Crops such as sunflower and cotton have low efficiency on a caloric basis. Our results suggest that intensification tends to be a more efficient pathway to boost greenhouse gas emissions efficiency than expansion. We conclude by discussing potential crop- and region-specific agricultural development pathways that may boost the greenhouse gas emissions efficiency of agriculture.

  10. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou

    2015-05-01

    Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses.

  11. Reconstruction of inundation and greenhouse gas emissions from Siberian wetlands over the last half-century

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Schroeder, R.; Podest, E.; Pinto, N.; McDonald, K. C.; Chiu, C.; Bowling, L. C.; Lettenmaier, D. P.

    2010-12-01

    Changes in greenhouse gas emissions such as methane and carbon dioxide from high-latitude wetlands in a warming climate may have important implications for global warming, due to the large amounts of carbon stored in high-latitude soils and the high greenhouse warming potential of methane. As much as 1/3 of global natural methane emissions come from high latitudes. Efforts to monitor high-latitude greenhouse gas emissions are hampered by the sparseness of in situ data at high latitudes, especially in Northern Eurasia. While biogeochemical modeling can provide estimates of greenhouse gas emissions in such areas, the lack of in situ measurements also makes it difficult to constrain these models. Fortunately, emissions of greenhouse gases, especially methane, are sensitive to hydrologic variables such as inundation that now can be observed via passive microwave and synthetic aperture radar remote sensors. Here we apply a combination of large-scalehydrologic/biogeochemical models and remote sensing observations across the West Siberian lowlands to estimate soil moisture, inundation, and greenhouse gas fluxes. Our modeling framework consists of the Variable Infiltration Capacity macroscale hydrological model (VIC), extended to include carbon cycling and coupled to a methane emissions model. In particular, we include a representation of the spatial distribution of soil moisture, which allows us to compare our simulated emissions to both large-scale remote sensing observations and point-scale in-situ observations. We have calibrated this framework using observed streamflow, inundation products derived from PALSAR and AMSR-E, and in situ water table and greenhouse gas emissions observations. Using the calibrated model, we examine the interannual variabilityof a model-derived inundation and greenhouse gas emission data set across W. Siberia for the period 1948-2007.

  12. Reconstruction of inundation and greenhouse gas emissions from Siberian wetlands over the last half-century

    NASA Astrophysics Data System (ADS)

    Bohn, T. J.; Podest, E.; Schroeder, R.; McDonald, K. C.; Chiu, C.; Bowling, L. C.; Glagolev, M.; Lettenmaier, D. P.

    2009-12-01

    Changes in greenhouse gas emissions such as methane (CH4) and carbon dioxide (CO2) from high-latitude wetlands in a warming climate may have important implications for projections of global warming, due to the large amounts of carbon stored in high-latitude soils and the high greenhouse warming potential of methane. As much as 1/3 of global natural methane emissions come from high latitudes. Efforts to monitor high-latitude greenhouse gas emissions are hampered by the sparseness of in situ data at high latitudes, especially in Northern Eurasia. While biogeochemical modeling can provide estimates of greenhouse gas emissions in such areas, the lack of in situ measurements also makes it difficult to constrain these models. Fortunately, emissions of greenhouse gases, especially methane, are sensitive to hydrologic variables such as inundation that now can be observed via passive microwave and synthetic aperture radar remote sensors. Here we apply a combination of large-scale hydrologic/biogeochemical models and remote sensing observations across the West Siberian lowlands to estimate soil moisture, inundation, and greenhouse gas fluxes. Our modeling framework consists of the Variable Infiltration Capacity macroscale hydrological model (VIC), extended to include carbon cycling and coupled to a methane emissions model. In particular, our modeling framework includes a parameterization of the spatial distribution of soil moisture, which allows us to compare our simulated emissions to both large-scale remote sensing observations and point-scale in-situ observations. We have calibrated this framework using observed streamflow, inundation products derived from PALSAR and AMSR-E, and in situ water table and greenhouse gas emissions observations. Using the calibrated model, we examine the interannual variability of simulated inundation and greenhouse gas emissions across W. Siberia for the period 1948-2007.

  13. Gardener's solar greenhouse: how to build and use a solar greenhouse for year-round gardening

    SciTech Connect

    Wolf, R.

    1984-01-01

    The design of a solar greenhouse is presented. Subtleties of its use are discussed, and site selection criteria for it are discussed. Rather complete instructions for construction are presented in sections. Separate sections are included for foundation, framing, glazing and trim, and movable insulation. Recipes for using the goodies grown in the greenhouse are also included. 92 figures.

  14. Greenhouse gas accounting and waste management.

    PubMed

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities. PMID:19808731

  15. Biological control of greenhouse whitefly (Trialeurodes vaporariorum) with fungal insecticides.

    PubMed

    Siongers, C; Coosemans, J

    2003-01-01

    The influence of the biological insecticide Botanigard (Beauveria bassiana) on different developmental stages of the greenhouse whitefly (Trialeurodes vaporariorum) has been tested and compared with the influence of Preferal (Paecilomyces fumosoroseus), also a biological product. Six experiments were set up to test the two products on eggs, which were four and seven days old, on larvae of the first, second/third and fourth stage and to test the effect on egg-deposition. These experiments were all conducted on cucumber. Egg-deposition was limited to a small area on the leaf by using leaf cages. To evaluate these tests the number of eggs or larvae developed to the next stage has been counted and compared to the total amount of eggs or larvae on the leaves. The results revealed that Botanigard has an effect on the larval stages. The first larval stage is most sensitive; the next stages have a decreasing sensitivity. There was no influence on the hatching of the eggs, but a treatment short before the hatching could have a residual effect on the new nymphs. When the treatment with Botanigard is performed shortly before a moult or a fungicide treatment, the efficacy of the product decreases significantly. The influence of Preferal on the greenhouse whitefly is, under the same circumstances, less obvious.

  16. The Greenhouse Effect and Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V.

    This chapter reviews the theory of the greenhouse effect and climate feedback. It also compares the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan. The greenhouse effect traps infrared radiation in the atmosphere, thereby increasing surface temperature. It is one of many factors that affect a world's climate. (Others include solar luminosity and the atmospheric scattering and absorption of solar radiation.) A change in these factors — defined as climate forcing — may change the climate in a way that brings other processes — defined as feedbacks — into play. For example, when Earth's atmospheric carbon dioxide increases, warming the surface, the water vapor content of the atmosphere increases. This is a positive feedback on global warming because water vapor is itself a potent greenhouse gas. Many positive and negative feedback processes are significant in determining Earth's climate, and probably the climates of our terrestrial neighbors.

  17. Voluntary reporting of greenhouse gases 1997

    SciTech Connect

    1999-05-01

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  18. FETC Programs for Reducing Greenhouse Gas Emissions

    SciTech Connect

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called `greenhouse gases.` Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth`s atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide.

  19. Greenhouse Gas Analysis by GC/MS

    NASA Astrophysics Data System (ADS)

    Bock, E. M.; Easton, Z. M.; Macek, P.

    2015-12-01

    Current methods to analyze greenhouse gases rely on designated complex, multiple-column, multiple-detector gas chromatographs. A novel method was developed in partnership with Shimadzu for simultaneous quantification of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in environmental gas samples. Gas bulbs were used to make custom standard mixtures by injecting small volumes of pure analyte into the nitrogen-filled bulb. Resulting calibration curves were validated using a certified gas standard. The use of GC/MS systems to perform this analysis has the potential to move the analysis of greenhouse gasses from expensive, custom GC systems to standard single-quadrupole GC/MS systems that are available in most laboratories, which wide variety of applications beyond greenhouse gas analysis. Additionally, use of mass spectrometry can provide confirmation of identity of target analytes, and will assist in the identification of unknown peaks should they be present in the chromatogram.

  20. Greenhouse gas emissions from alternative water supply processes in southern California, USA

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Townsend-Small, A.

    2012-12-01

    Burgeoning population centers and declining hydrological resources have encouraged the development of alternative water treatment systems, including desalination and wastewater recycling. These processes currently provide potable water for millions of people and assist in satisfying agricultural and landscaping irrigation demands. There are a variety of alternative water production methods in place, and while they help to reduce the demands placed on aquifers, during their operation they are also significant sources of greenhouse gases. The environmental advantages of these alternative water production methods need to be carefully weighed against their energy footprints and greenhouse gas emissions profiles. This study measured the greenhouse gas emissions of a wastewater treatment and recycling facility in Orange County, California to get a more complete picture of the carbon footprint of the plant. We measured atmospheric emissions of CO2, CH4, and N2O throughout the water recycling process and at various times of the day and week. This allowed us to assemble a thorough, cross-sectional profile of greenhouse gas emissions from the facility. We then compared the measured emissions of the treatment plant to the modeled emissions of desalination plants in order to assess the relative carbon footprints of the two water production methods. Other water supply alternatives, including regional water importation, were also included in the comparison in order to provide a more complete understanding of the potential greenhouse gas emissions. Finally, we assessed the significance of wastewater treatment as an urban greenhouse gas source when compared to other known emissions in the region. This research offers a valuable tool for sustainable urban and regional development by providing planners with a quantified comparison of the carbon footprints of several water production options.

  1. The greenhouse emissions footprint of free-range eggs.

    PubMed

    Taylor, R C; Omed, H; Edwards-Jones, G

    2014-01-01

    Eggs are an increasingly significant source of protein for human consumption, and the global poultry industry is the single fastest-growing livestock sector. In the context of international concern for food security and feeding an increasingly affluent human population, the contribution to global greenhouse-gas (GHG) emissions from animal protein production is of critical interest. We calculated the GHG emissions footprint for the fastest-growing sector of the UK egg market: free-range production in small commercial units on mixed farms. Emissions are calculated to current Intergovernmental Panel on Climate Change and UK standards (PAS2050): including direct, indirect, and embodied emissions from cradle to farm gate compatible with a full product life-cycle assessment. We present a methodology for the allocation of emissions between ruminant and poultry enterprises on mixed farms. Greenhouse gas emissions averaged a global warming potential of 2.2 kg of CO2e/dozen eggs, or 1.6 kg of CO2equivalent (e)/kg (assuming average egg weight of 60 g). One kilogram of protein from free-range eggs produces 0.2 kg of CO2e, lower than the emissions from white or red meat (based on both kg of meat and kg of protein). Of these emissions, 63% represent embodied carbon in poultry feed. A detailed GHG emissions footprint represents a baseline for comparison with other egg production systems and sources of protein for human consumption. Eggs represent a relatively low-carbon supply of animal protein, but their production is heavily dependent on cereals and soy, with associated high emissions from industrial nitrogen production, land-use change, and transport. Alternative sources of digestible protein for poultry diets are available, may be produced from waste processing, and would be an effective tool for reducing the industry's GHG emissions and dependence on imported raw materials.

  2. The greenhouse emissions footprint of free-range eggs.

    PubMed

    Taylor, R C; Omed, H; Edwards-Jones, G

    2014-01-01

    Eggs are an increasingly significant source of protein for human consumption, and the global poultry industry is the single fastest-growing livestock sector. In the context of international concern for food security and feeding an increasingly affluent human population, the contribution to global greenhouse-gas (GHG) emissions from animal protein production is of critical interest. We calculated the GHG emissions footprint for the fastest-growing sector of the UK egg market: free-range production in small commercial units on mixed farms. Emissions are calculated to current Intergovernmental Panel on Climate Change and UK standards (PAS2050): including direct, indirect, and embodied emissions from cradle to farm gate compatible with a full product life-cycle assessment. We present a methodology for the allocation of emissions between ruminant and poultry enterprises on mixed farms. Greenhouse gas emissions averaged a global warming potential of 2.2 kg of CO2e/dozen eggs, or 1.6 kg of CO2equivalent (e)/kg (assuming average egg weight of 60 g). One kilogram of protein from free-range eggs produces 0.2 kg of CO2e, lower than the emissions from white or red meat (based on both kg of meat and kg of protein). Of these emissions, 63% represent embodied carbon in poultry feed. A detailed GHG emissions footprint represents a baseline for comparison with other egg production systems and sources of protein for human consumption. Eggs represent a relatively low-carbon supply of animal protein, but their production is heavily dependent on cereals and soy, with associated high emissions from industrial nitrogen production, land-use change, and transport. Alternative sources of digestible protein for poultry diets are available, may be produced from waste processing, and would be an effective tool for reducing the industry's GHG emissions and dependence on imported raw materials. PMID:24570444

  3. Design requirements for a Mars base greenhouse

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Mancinelli, Rocco

    1988-01-01

    One potential method of supplying life support to a manned base on Mars utilizes a Controlled Ecological Life Support Systems (CELSS). A major component of the CELSS is a plant growth unit to produce food. This paper describes the results of several experiments conducted to determine whether or not a low atmospheric pressure greenhouse could be used to grow crop plants on the Martian surface. The results of these experiments are described and integrated with other information to produce a set of design requirements and a conceptual design for such a greenhouse.

  4. U.S. Regional Agricultural Production in 2030 and 2095: Response to CO2 Fertilization and Hadley Climate Model (HadCM2) Projections of Greenhouse-Forced Climatic Change

    SciTech Connect

    NJ Rosenberg; RC Izaurralde: RA Brown

    1999-11-19

    Research activities underway to evaluate potential consequences of climate change and variability on the agriculture, water resources, and other U.S. sectors were mandated by the Global Change Research Act of 1990. These activities are being carried out in a public-private partnership under the guidance of the U.S. Global Change Research Program. Researchers at Pacific Northwest National Laboratory (PNNL) have been using integrated assessment methodologies to appraise the possible impacts of global warming and climatic variability on the behavior of managed and natural systems. This interim PNNL report contributes to the U.S. National Assessment process with an analysis of the modeled impacts of climatic changes projected by the Hadley/UKMO (HadCM2) general circulation model on agricultural productivity and selected environmental variables. The construction of climatic data for the simulation runs followed general guidelines established by the U.S. National Assessment Synthesis Team. The baseline climate data were obtained from national records for the period 1961 - 1990. The scenario runs for two future periods (2025 - 2030 and 2090 - 2099) were extracted from results of a HadCM2 run distributed at a half-degree spatial resolution. The Erosion Productivity Impact Calculator (EPIC) was used to simulate the behavior of 204 "representative farms" (i.e., soil-climate-management combinations) under baseline climate, the two future periods and their combinations with two levels of atmospheric C02 concentrations (365 and 560 ppm). Analysis of simulation results identified areas in Texas, New Mexico, Colorado, Utah, Arizona, and California that would experience large temperature increases by 2030. Slight cooling is expected by 2030 in parts of Alabama, Florida, Maine, Montana, Idaho, and Utah. Larger areas will experience increased warming by 2095. Uniform precipitation increases are expected by 2030 in the north eastern quarter of the country. These uniform precipitation

  5. Greenhouse effect due to chlorofluorocarbons - Climatic implications

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.

    1975-01-01

    The infrared bands of chlorofluorocarbons and chlorocarbons enhance the atmospheric greenhouse effect. This enhancement may lead to an appreciable increase in the global surface temperature if the atmospheric concentrations of these compounds reach values of the order of 2 parts per billion.

  6. 78 FR 23149 - Mandatory Greenhouse Gas Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 98 Mandatory Greenhouse Gas Reporting CFR Correction In Title 40 of the Code of Federal Regulations, Parts 96 to 99, revised as of July 1, 2012, on page 768, in Sec. 98.226, in...

  7. Studying the Greenhouse Effect: A Simple Demonstration.

    ERIC Educational Resources Information Center

    Papageorgiou, G.; Ouzounis, K.

    2000-01-01

    Studies the parameters involved in a presentation of the greenhouse effect and describes a simple demonstration of this effect. Required equipment includes a 100-120 watt lamp, a 250mL beaker, and a thermometer capable of recording 0-750 degrees Celsius together with a small amount of chloroform. (Author/SAH)

  8. Geological assessment of the greenhouse effect

    SciTech Connect

    Crowley, T.J. )

    1993-12-01

    Geologic studies provide a valuable perspective on the importance of greenhouse forcing for climate change. On both Pleistocene and tectonic time scales, changes in climate are positively correlated with greenhouse gas variations. However, the sensitivity of the system to greenhouse gas changes cannot yet be constrained by paleoclimate data below its present large range. Geologic records do not support one of the major predictions of greenhouse models-namely, that tropical sea surface temperatures will increase. Geologic data also suggest that winter cooling in high-latitude land areas is less than predicted by models. As the above-mentioned predictions appear to be systemic features of the present generation of climate models, some significant changes in model design may be required to reconcile models and geologic data. However, full acceptance of this conclusion requires more measurements and more systematic compilations of existing geologic data. Since progress in data collection in this area has been quite slow, uncertainties associated with these conclusions may persist for some time. 106 refs., 6 figs.

  9. Broader perspectives for comparing different greenhouse gases.

    PubMed

    Manning, Martin; Reisinger, Andy

    2011-05-28

    Over the last 20 years, different greenhouse gases have been compared, in the context of climate change, primarily through the concept of global warming potentials (GWPs). This considers the climate forcing caused by pulse emissions and integrated over a fixed time horizon. Recent studies have shown that uncertainties in GWP values are significantly larger than previously thought and, while past literature in this area has raised alternative means of comparison, there is not yet any clear alternative. We propose that a broader framework for comparing greenhouse gases has become necessary and that this cannot be addressed by using simple fixed exchange rates. From a policy perspective, the framework needs to be clearly aligned with the goal of climate stabilization, and we show that comparisons between gases can be better addressed in this context by the forcing equivalence index (FEI). From a science perspective, a framework for comparing greenhouse gases should also consider the full range of processes that affect atmospheric composition and how these may alter for climate stabilization at different levels. We cover a basis for a broader approach to comparing greenhouse gases by summarizing the uncertainties in GWPs, linking those to uncertainties in the FEIs consistent with stabilization, and then to a framework for addressing uncertainties in the corresponding biogeochemical processes.

  10. Greenhouse Management and Operations. Teacher Edition.

    ERIC Educational Resources Information Center

    Gowdy, Mary Ann Schwartz

    This document is the teacher's edition of a module containing 16 instructional units covering competencies for students with career aspirations in horticulture. It is designed to provide high school students with an in-depth perspective of both the technical and the commercial aspects of running a greenhouse. The 16 units cover the following…

  11. Assessing Greenhouse Gas Emissions from University Purchases

    ERIC Educational Resources Information Center

    Thurston, Matthew; Eckelman, Matthew J.

    2011-01-01

    Purpose: A greenhouse gas (GHG) inventory was conducted for Yale University's procurement of goods and services over a one-year period. The goal of the inventory was to identify the financial expenditures resulting in the greatest "indirect" GHG emissions. This project is part of an ongoing effort to quantify and reduce the university's…

  12. Mitigating Greenhouse Gas Emissions: Voluntary Reporting 1996

    EIA Publications

    1997-01-01

    Presents information on voluntary actions to reduce greenhouse gases or remove such gases from the atmosphere in 1995. It provides an overview of participation in the Voluntary Reporting Program, a perspective on the composition of activities reported, and a review of some key issues in interpreting and evaluating achievements associated with reported emissions mitigation initiatives.

  13. Guide to School Greenhouses: Growing Ideas.

    ERIC Educational Resources Information Center

    Beliveau, Victoria

    This booklet is part of the Growing Ideas series for educators which supports teachers by enabling them to expand their own skills as they help students use plants and gardens as contexts for developing a deeper, richer understanding of the world around them. This booklet, on school greenhouses, gives an overview of key issues relevant to…

  14. Computer simulation of energy use, greenhouse gas emissions and process economics of the fluid milk process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On-farm activities associated with fluid milk production contribute approximately 70% of total greenhouse gas (GHG) emissions while off-farm activities arising from milk processing, packaging, and refrigeration, contribute the remainder in the form of energy-related carbon dioxide (CO2) emissions. W...

  15. Evaluation of disinfectants to control mechanical transmission of tomato viruses and viroids in greenhouse tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse tomato production has increased significantly in recent years. The cultural practices and intensive hands-on activities implemented in protected tomato culture have created ideal conditions for a number of plant pathogens to be mechanically transmitted. In some situations, disease outbr...

  16. Extracted sweet corn tassels as a renewable alternative to peat in greenhouse substrates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soilless substrates are primarily used in the production of containerized greenhouse and nursery crops. Sphagnum peat moss is a primary constituent of these substrates and its harvest from endangered ecosystems has become a worldwide concern. Ethanol-extracted, coarse-ground corn (Zea mays L. ‘Sil...

  17. 78 FR 69337 - Greenhouse Gas Reporting Program: Amendments and Confidentiality Determinations for Fluorinated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... Reporting Tool EPA U.S. Environmental Protection Agency ] FR Federal Register GHG greenhouse gas GHGRP... published in the Federal Register on October 30, 2009 (74 FR 56260). Part 98 became effective on December 29... finalizing reporting requirements for Fluorinated Gas Production was published on December 1, 2010 (75...

  18. Corn stover removal impacts on soil greenhouse gas emissions in irrigated continuous corn systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harvesting corn stover for livestock feed or for cellulosic biofuel production may impact the greenhouse gas (GHG) mitigation potential of high-yield irrigated corn. Soil emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were measured over the 2011 growing season at two irri...

  19. Virtual Grower: Estimating Greenhouse Energy Costs and Plant Growth Using New Computer Software

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Greenhouse crop production is a complex, integrated system wherein a change in one component inevitably influences different, sometimes seemingly disparate components. For example, growers may modify their heating schedules to reduce energy costs, but a cooler temperature set-point can delay crop d...

  20. 75 FR 26904 - Mandatory Reporting of Greenhouse Gases: Notice of Data Availability; Default Emission Factors...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-13

    ... of Greenhouse Gases: Additional Sources of Fluorinated GHGs (75 FR 18652) which included proposed... factor, EPA proposed a range of values differentiated by production technology generation (i.e., wafer... factors as well as the underlying data that was used to develop the draft emission factors available...

  1. Thermodynamics of greenhouse systems for the northern latitudes: analysis, evaluation and prospects for primary energy saving.

    PubMed

    Bronchart, Filip; De Paepe, Michel; Dewulf, Jo; Schrevens, Eddie; Demeyer, Peter

    2013-04-15

    In Flanders and the Netherlands greenhouse production systems produce economically important quantities of vegetables, fruit and ornamentals. Indoor environmental control has resulted in high primary energy use. Until now, the research on saving primary energy in greenhouse systems has been mainly based on analysis of energy balances. However, according to the thermodynamic theory, an analysis based on the concept of exergy (free energy) and energy can result in new insights and primary energy savings. Therefore in this paper, we analyse the exergy and energy of various processes, inputs and outputs of a general greenhouse system. Also a total system analysis is then performed by linking the exergy analysis with a dynamic greenhouse climate growth simulation model. The exergy analysis indicates that some processes ("Sources") lie at the origin of several other processes, both destroying the exergy of primary energy inputs. The exergy destruction of these Sources is caused primarily by heat and vapour loss. Their impact can be compensated by exergy input from heating, solar radiation, or both. If the exergy destruction of these Sources is reduced, the necessary compensation can also be reduced. This can be accomplished through insulating the greenhouse and making the building more airtight. Other necessary Sources, namely transpiration and loss of CO2, have a low exergy destruction compared to the other Sources. They are therefore the best candidate for "pump" technologies ("vapour heat pump" and "CO2 pump") designed to have a low primary energy use. The combination of these proposed technologies results in an exergy efficient greenhouse with the highest primary energy savings. It can be concluded that exergy analyses add additional information compared to only energy analyses and it supports the development of primary energy efficient greenhouse systems.

  2. Thermodynamics of greenhouse systems for the northern latitudes: analysis, evaluation and prospects for primary energy saving.

    PubMed

    Bronchart, Filip; De Paepe, Michel; Dewulf, Jo; Schrevens, Eddie; Demeyer, Peter

    2013-04-15

    In Flanders and the Netherlands greenhouse production systems produce economically important quantities of vegetables, fruit and ornamentals. Indoor environmental control has resulted in high primary energy use. Until now, the research on saving primary energy in greenhouse systems has been mainly based on analysis of energy balances. However, according to the thermodynamic theory, an analysis based on the concept of exergy (free energy) and energy can result in new insights and primary energy savings. Therefore in this paper, we analyse the exergy and energy of various processes, inputs and outputs of a general greenhouse system. Also a total system analysis is then performed by linking the exergy analysis with a dynamic greenhouse climate growth simulation model. The exergy analysis indicates that some processes ("Sources") lie at the origin of several other processes, both destroying the exergy of primary energy inputs. The exergy destruction of these Sources is caused primarily by heat and vapour loss. Their impact can be compensated by exergy input from heating, solar radiation, or both. If the exergy destruction of these Sources is reduced, the necessary compensation can also be reduced. This can be accomplished through insulating the greenhouse and making the building more airtight. Other necessary Sources, namely transpiration and loss of CO2, have a low exergy destruction compared to the other Sources. They are therefore the best candidate for "pump" technologies ("vapour heat pump" and "CO2 pump") designed to have a low primary energy use. The combination of these proposed technologies results in an exergy efficient greenhouse with the highest primary energy savings. It can be concluded that exergy analyses add additional information compared to only energy analyses and it supports the development of primary energy efficient greenhouse systems. PMID:23474336

  3. The greenhouse effect: science and policy.

    PubMed

    Schneider, S H

    1989-02-10

    Global warming from the increase in greenhouse gases has become a major scientific and political issue during the past decade. That infrared radiation is trapped by greenhouse gases and particles in a planetary atmosphere and that the atmospheric CO(2) level has increased by some 25 percent since 1850 because of fossil fuel combustion and land use (largely deforestation) are not controversial; levels of other trace greenhouse gases such as methane and chlorofluorocarbons have increased by even larger factors. Estimates of present and future effects, however, have significant uncertainties. There have also recently been controversial claims that a global warming signal has been detected. Results from most recent climatic models suggest that global average surface temperatures will increase by some 2 degrees to 6 degrees C during the next century, but future changes in greenhouse gas concentrations and feedback processes not properly accounted for in the models could produce greater or smaller increases. Sea level rises of 0.5 to 1.5 meters are typically projected for the next century, but there is a small probability of greater or even negative change. Forecasts of the distribution of variables such as soil moisture or precipitation patterns have even greater uncertainties. Policy responses range from engineering countermeasures to passive adaptation to prevention and a "law of the atmosphere." One approach is to implement those policies now that will reduce emissions of greenhouse gases and have additional societal benefits. Whether the uncertainties are large enough to suggest delaying policy responses is not a scientific question per se, but a value judgment.

  4. 22. Greenhouse, south elevation. This winter 2002 view was taken ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Greenhouse, south elevation. This winter 2002 view was taken by Joseph Elliot while conducting photographic documentation of the landscape. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  5. Stuccoed building within greenhouse complex, north and west (front) sides, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Stuccoed building within greenhouse complex, north and west (front) sides, looking south towards building no. 121 (tennis courts) across W. Pennington Ave. - Fitzsimons General Hospital, Greenhouse, West Pennington Avenue, East of Building No. 139, Aurora, Adams County, CO

  6. Feasibility study for solar greenhouse at Columbus Zoo. Final report, September 14, 1981-September 14, 1982

    SciTech Connect

    Beard, S.J.

    1982-12-07

    The results of an engineering analysis of the heating and ventilating requirements of various greenhouse designs are reported. The objective of the study was to identify the major design trade-offs in order to arrive at the most energy efficient design consistent with performance and reliability requirements. The glazing type, roof design and orientation, insulation, and heat storage have been used to guide the overall design to optimize the cost effectiveness of the proposed greenhouse. Appended is an overview of methane digestion and bio-gas production and information on operating digesters around the country. General information on the growing of hydroponic crops and the benefits received is included. (LEW)

  7. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    NASA Technical Reports Server (NTRS)

    Langhans, Robert W.

    1994-01-01

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. Specific technical qualities of fluorescent and HID lamps have been critically reviewed. I will direct my remarks to fluorescent and high intensity discharge (HID) lamps in growth chambers, growth rooms, and greenhouses. I will discuss the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses.

  8. A proposal for climate stability on H2-greenhouse planets

    NASA Astrophysics Data System (ADS)

    Abbot, D. S.

    2015-12-01

    A terrestrial planet in an orbit far outside of the standard habitable zone could maintain surface liquid water as a result of H2-H2 collision-induced absorption by a thick H2 atmosphere. Without a stabilizing climate feedback, however, habitability would be accidental and likely brief. We propose a stabilizing climate feedback for such a planet that requires only biological production of H2 to balance net loss to space that has some optimal temperature, and operates less efficiently at higher temperatures. A stable feedback is possible on such a planet through which a perturbation increasing temperature decreases H2 production, which decreases H2 greenhouse warming and therefore temperature. The potential of such a feedback makes H2-warmed planets more attractive astrobiological targets.

  9. The greenhouse gas balance of European grasslands.

    PubMed

    Chang, Jinfeng; Ciais, Philippe; Viovy, Nicolas; Vuichard, Nicolas; Sultan, Benjamin; Soussana, Jean-François

    2015-10-01

    The greenhouse gas (GHG) balance of European grasslands (EU-28 plus Norway and Switzerland), including CO2 , CH4 and N2 O, is estimated using the new process-based biogeochemical model ORCHIDEE-GM over the period 1961-2010. The model includes the following: (1) a mechanistic representation of the spatial distribution of management practice; (2) management intensity, going from intensively to extensively managed; (3) gridded simulation of the carbon balance at ecosystem and farm scale; and (4) gridded simulation of N2 O and CH4 emissions by fertilized grassland soils and livestock. The external drivers of the model are changing animal numbers, nitrogen fertilization and deposition, land-use change, and variable CO2 and climate. The carbon balance of European grassland (NBP) is estimated to be a net sink of 15 ± 7 g C m(-2 ) year(-1) during 1961-2010, equivalent to a 50-year continental cumulative soil carbon sequestration of 1.0 ± 0.4 Pg C. At the farm scale, which includes both ecosystem CO2 fluxes and CO2 emissions from the digestion of harvested forage, the net C balance is roughly halved, down to a small sink, or nearly neutral flux of 8 g C m(-2 ) year(-1) . Adding CH4 and N2 O emissions to net ecosystem exchange to define the ecosystem-scale GHG balance, we found that grasslands remain a net GHG sink of 19 ± 10 g C-CO2 equiv. m(-2 ) year(-1) , because the CO2 sink offsets N2 O and grazing animal CH4 emissions. However, when considering the farm scale, the GHG balance (NGB) becomes a net GHG source of -50 g C-CO2 equiv. m(-2 ) year(-1) . ORCHIDEE-GM simulated an increase in European grassland NBP during the last five decades. This enhanced NBP reflects the combination of a positive trend of net primary production due to CO2 , climate and nitrogen fertilization and the diminishing requirement for grass forage due to the Europe-wide reduction in livestock numbers. PMID:26059550

  10. The greenhouse gas balance of European grasslands.

    PubMed

    Chang, Jinfeng; Ciais, Philippe; Viovy, Nicolas; Vuichard, Nicolas; Sultan, Benjamin; Soussana, Jean-François

    2015-10-01

    The greenhouse gas (GHG) balance of European grasslands (EU-28 plus Norway and Switzerland), including CO2 , CH4 and N2 O, is estimated using the new process-based biogeochemical model ORCHIDEE-GM over the period 1961-2010. The model includes the following: (1) a mechanistic representation of the spatial distribution of management practice; (2) management intensity, going from intensively to extensively managed; (3) gridded simulation of the carbon balance at ecosystem and farm scale; and (4) gridded simulation of N2 O and CH4 emissions by fertilized grassland soils and livestock. The external drivers of the model are changing animal numbers, nitrogen fertilization and deposition, land-use change, and variable CO2 and climate. The carbon balance of European grassland (NBP) is estimated to be a net sink of 15 ± 7 g C m(-2 ) year(-1) during 1961-2010, equivalent to a 50-year continental cumulative soil carbon sequestration of 1.0 ± 0.4 Pg C. At the farm scale, which includes both ecosystem CO2 fluxes and CO2 emissions from the digestion of harvested forage, the net C balance is roughly halved, down to a small sink, or nearly neutral flux of 8 g C m(-2 ) year(-1) . Adding CH4 and N2 O emissions to net ecosystem exchange to define the ecosystem-scale GHG balance, we found that grasslands remain a net GHG sink of 19 ± 10 g C-CO2 equiv. m(-2 ) year(-1) , because the CO2 sink offsets N2 O and grazing animal CH4 emissions. However, when considering the farm scale, the GHG balance (NGB) becomes a net GHG source of -50 g C-CO2 equiv. m(-2 ) year(-1) . ORCHIDEE-GM simulated an increase in European grassland NBP during the last five decades. This enhanced NBP reflects the combination of a positive trend of net primary production due to CO2 , climate and nitrogen fertilization and the diminishing requirement for grass forage due to the Europe-wide reduction in livestock numbers.

  11. Metabolite changes in nine different soybean varieties grown under field and greenhouse conditions.

    PubMed

    Maria John, K M; Natarajan, Savithiry; Luthria, Devanand L

    2016-11-15

    Global food security remains a worldwide concern due to changing climate, increasing population, and reduced agriculture acreages. Greenhouse cultivation increases productivity by extending growing seasons, reducing pest infestations and providing protection against short term drastic weather fluctuations like frost, heat, rain, and wind. In the present study, we examined and compared the metabolic responses of nine soybean varieties grown under field and greenhouse conditions. Extracts were assayed by GC-FID, GC-MS, and LC-MS for the identification of 10 primary (amino acids, organic acids, and sugars) and 10 secondary (isoflavones, fatty acid methyl esters) metabolites. Sugar molecules (glucose, sucrose, and pinitol) and isoflavone aglycons were increased but the isoflavones glucoside content decreased in the greenhouse cultivated soybeans. The amino acids and organic acids varied between the varieties. The results show that clustering (PCA and PLS-DA) patterns of soybean metabolites were significantly influenced by the genetic variation and growing conditions. PMID:27283642

  12. Metabolite changes in nine different soybean varieties grown under field and greenhouse conditions.

    PubMed

    Maria John, K M; Natarajan, Savithiry; Luthria, Devanand L

    2016-11-15

    Global food security remains a worldwide concern due to changing climate, increasing population, and reduced agriculture acreages. Greenhouse cultivation increases productivity by extending growing seasons, reducing pest infestations and providing protection against short term drastic weather fluctuations like frost, heat, rain, and wind. In the present study, we examined and compared the metabolic responses of nine soybean varieties grown under field and greenhouse conditions. Extracts were assayed by GC-FID, GC-MS, and LC-MS for the identification of 10 primary (amino acids, organic acids, and sugars) and 10 secondary (isoflavones, fatty acid methyl esters) metabolites. Sugar molecules (glucose, sucrose, and pinitol) and isoflavone aglycons were increased but the isoflavones glucoside content decreased in the greenhouse cultivated soybeans. The amino acids and organic acids varied between the varieties. The results show that clustering (PCA and PLS-DA) patterns of soybean metabolites were significantly influenced by the genetic variation and growing conditions.

  13. Project of conveyer-type space greenhouse for cosmonauts' supply with vitamin greenery.

    PubMed

    Berkovich YuA; Krivobok, N M; Sinyak YuE

    1998-01-01

    Design and advantages of conveyer-type growth chamber PHYTOCYCLE with a cylindrical crop surface are featured. Based on the results of testing, an experimental prototype of conveyer-type vegetable greenhouse VITACYCLE for space vehicles is being developed at the SSC-IBMP in conjunction with a number of institutions of the Russian space industry to provide space crews with fresh greenery. Rated daily production of the greenhouse is 150 g of eatable biomass with power consumption of 1 kW. The system is to be mounted within the Life support module of international space station Alpha (ISSA). Design of the greenhouse is outlined. Brief description, state-of-the-art, and further plans regarding VITACYCLE elaboration and construction are presented.

  14. Pesticide exposure and sprayer's task goals: comparison between vineyards and greenhouses.

    PubMed

    Lambert, Mandy; Richardson, James; Grimbuhler, Sonia

    2012-01-01

    Plant protection products are used in agriculture to improve yields, but this use can cause contamination of the environment and is also likely to have adverse short and long term effects on agricultural workers. The field study took place in greenhouses and vineyards where operators are involved in high levels of pesticide spraying. The objective of this intervention was to identify factors explaining the influence of task factors on the exposure of greenhouse growers and vineyard workers. Thirteen operators were selected for detailed observations during one session of spraying. Video recordings provide counts of physical contacts between the operator and all the surrounding surfaces during the spraying operation. Both in vineyards and in greenhouses, physical and temporal constraints are the predominant factors in establishing a specific spraying procedure. Every action taken by the operator is a result of a compromise between safety, task performance and quality.

  15. 10. Detail view, greenhouse, south wall. These groundlevel openings were ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Detail view, greenhouse, south wall. These ground-level openings were part of the original heating system used to warm the greenhouse. The openings were likely related to the flues, while a larger opening to the west (not in photograph) contained an exterior-fed iron stove. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  16. 5. Greenhouse and storeroom, west elevation. Portions of the storeroom ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Greenhouse and storeroom, west elevation. Portions of the storeroom might predate the greenhouse construction (1760-1761), however the two structures were not linked until late in the eighteenth century or early in the nineteenth century. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  17. Introduction to solar greenhouses: using the sun for home heating

    SciTech Connect

    Not Available

    1981-01-01

    The pictures and captions in this photographic essay are not a step-by-step plan to build a greenhouse, but are simply examples of major construction points in most solar greenhouses. A list of publications covering all aspects of solar greenhouses is included.

  18. Runaway greenhouse atmospheres: Applications to Earth and Venus

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1991-01-01

    Runaway greenhouse atmospheres are discussed from a theoretical standpoint and with respect to various practical situation in which they might occur. The following subject areas are covered: (1) runaway greenhouse atmospheres; (2) moist greenhouse atmospheres; (3) loss of water from Venus; (4) steam atmosphere during accretion; and (5) the continuously habitable zone.

  19. Greenhouse gas fluxes in southeastern U.S. coastal plain wetlands under contrasting land uses.

    PubMed

    Morse, Jennifer L; Ardón, Marcelo; Bernhardt, Emily S

    2012-01-01

    Whether through sea level rise or wetland restoration, agricultural soils in coastal areas will be inundated at increasing rates, renewing connections to sensitive surface waters and raising critical questions about environmental trade-offs. Wetland restoration is often implemented in agricultural catchments to improve water quality through nutrient removal. Yet flooding of soils can also increase production of the greenhouse gases nitrous oxide and methane, representing a potential environmental trade-off. Our study aimed to quantify and compare greenhouse gas emissions from unmanaged and restored forested wetlands, as well as actively managed agricultural fields within the North Carolina coastal plain, USA. In sampling conducted once every two months over a two-year comparative study, we found that soil carbon dioxide flux (range: 8000-64 800 kg CO2 x ha(-1) x yr(-1)) comprised 66-100% of total greenhouse gas emissions from all sites and that methane emissions (range: -6.87 to 197 kg CH4 x ha(-1) x yr(-1)) were highest from permanently inundated sites, while nitrous oxide fluxes (range: -1.07 to 139 kg N2O x ha(-1) x yr(-1)) were highest in sites with lower water tables. Contrary to predictions, greenhouse gas fluxes (as CO2 equivalents) from the restored wetland were lower than from either agricultural fields or unmanaged forested wetlands. In these acidic coastal freshwater ecosystems, the conversion of agricultural fields to flooded young forested wetlands did not result in increases in greenhouse gas emissions.

  20. Soil genotoxicity induced by successive applications of chlorothalonil under greenhouse conditions.

    PubMed

    Jin, Xiangxiang; Cui, Ning; Zhou, Wei; Khorram, Mahdi Safaei; Wang, Donghong; Yu, Yunlong

    2014-05-01

    Greenhouse production of vegetables has been developed rapidly in China. High temperature and humidity inside the greenhouse make this environment more suitable for fast reproduction of fungal diseases. Fungicides are among the chemicals used extensively in the greenhouse to prevent crops from invasive infections by phytopathogens; however, little is known about the accumulation of fungicides in soil and their effect on soil quality under greenhouse conditions. In the present study, the accumulation of the fungicide chlorothalonil (CT) and its toxic metabolite hydroxy-chlorothalonil (HCT) in soil as well as their related soil genotoxicity under greenhouse conditions was investigated. The results indicated that both CT and HCT accumulated in soil with repeated applications of CT, and the accumulation level was strongly correlated to application dosage and its frequency. In addition, soil genotoxicity, which was measured by Vicia faba, also increased with the accumulation of CT and HCT, and the main contributor to this phenomenon was CT rather than HCT. The data demonstrated that successive applications of fungicides may result in their accumulation in soil and thus a decline in soil quality.

  1. Greenhouse Gas Management Program Overview (Fact Sheet)

    SciTech Connect

    Not Available

    2011-11-01

    Program fact sheet highlighting federal requirements for GHG emissions management, FEMP services to help agencies reduce emissions, and additional resources. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) assists Federal agencies with managing their greenhouse gas (GHG) emissions. GHG management entails measuring emissions and understanding their sources, setting a goal for reducing emissions, developing a plan to meet this goal, and implementing the plan to achieve reductions in emissions. FEMP provides the following services to help Federal agencies meet the requirements of inventorying and reducing their GHG emissions: (1) FEMP offers one-on-one technical assistance to help agencies understand and implement the Federal Greenhouse Gas Accounting and Reporting Guidance and fulfill their inventory reporting requirements. (2) FEMP provides training, tools, and resources on FedCenter to help agencies complete their annual inventories. (3) FEMP serves a leadership role in the interagency Federal Working Group on Greenhouse Gas Accounting and Reporting that develops recommendations to the Council on Environmental Quality (CEQ) for the Federal Greenhouse Gas Accounting and Reporting Guidance. (4) As the focus continues to shift from measuring emissions (completing inventories) to mitigating emissions (achieving reductions), FEMP is developing a strategic planning framework and resources for agencies to prioritize among a variety of options for mitigating their GHG emissions, so that they achieve their reduction goals in the most cost-effective manner. These resources will help agencies analyze their high-quality inventories to make strategic decisions about where to use limited resources to have the greatest impact on reducing emissions. Greenhouse gases trap heat in the lower atmosphere, warming the earth's surface temperature in a natural process known as the 'greenhouse effect.' GHGs include carbon dioxide (CO{sub 2}), methane (CH{sub 4

  2. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons,...

  3. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons,...

  4. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons,...

  5. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons,...

  6. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons,...

  7. Greenhouse gas impacts of natural gas: Influence of deployment choice, methane leak rate, and methane GWP

    NASA Astrophysics Data System (ADS)

    Cohan, D. S.

    2015-12-01

    Growing supplies of natural gas have heightened interest in the net impacts of natural gas on climate. Although its production and consumption result in greenhouse gas emissions, natural gas most often substitutes for other fossil fuels whose emission rates may be higher. Because natural gas can be used throughout the sectors of the energy economy, its net impacts on greenhouse gas emissions will depend not only on the leak rates of production and distribution, but also on the use for which natural gas is substituted. Here, we present our estimates of the net greenhouse gas emissions impacts of substituting natural gas for other fossil fuels for five purposes: light-duty vehicles, transit buses, residential heating, electricity generation, and export for electricity generation overseas. Emissions are evaluated on a fuel cycle basis, from production and transport of each fuel through end use combustion, based on recent conditions in the United States. We show that displacement of existing coal-fired electricity and heating oil furnaces yield the largest reductions in emissions. The impact of compressed natural gas replacing petroleum-based vehicles is highly uncertain, with the sign of impact depending on multiple assumptions. Export of liquefied natural gas for electricity yields a moderate amount of emissions reductions. We further show how uncertainties in upstream emission rates for natural gas and in the global warming potential of methane influence the net greenhouse gas impacts. Our presentation will make the case that how natural gas is deployed is crucial to determining how it will impact climate.

  8. Limiting net greenhouse gas emissions in the United States

    SciTech Connect

    Bradley, R A; Watts, E C; Williams, E R

    1991-09-01

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  9. Greenhouse-gas emissions from soils increased by earthworms

    NASA Astrophysics Data System (ADS)

    Lubbers, Ingrid M.; van Groenigen, Kees Jan; Fonte, Steven J.; Six, Johan; Brussaard, Lijbert; van Groenigen, Jan Willem

    2013-03-01

    Earthworms play an essential part in determining the greenhouse-gas balance of soils worldwide, and their influence is expected to grow over the next decades. They are thought to stimulate carbon sequestration in soil aggregates, but also to increase emissions of the main greenhouse gases carbon dioxide and nitrous oxide. Hence, it remains highly controversial whether earthworms predominantly affect soils to act as a net source or sink of greenhouse gases. Here, we provide a quantitative review of the overall effect of earthworms on the soil greenhouse-gas balance. Our results suggest that although earthworms are largely beneficial to soil fertility, they increase net soil greenhouse-gas emissions.

  10. Greenhouse role in reef stress unproven

    SciTech Connect

    Roberts, L.

    1991-07-19

    In the late 1980s, as coral reefs throughout the Caribbean and elsewhere fell victim to a phenomenon known as bleaching, a few scientists stated that greenhouse warming is upon us and that the exquisitely sensitive corals, reacting to elevated water temperatures, are serving as biological sentinels. This stirred up so much concern that Congress assigned the National Science Foundation (NSF) to investigate the connection between coral bleaching and global warming. Late last month investigators at an NSF-sponsored meeting rendered their verdict. Following the Miami meeting, which brought together, for the first time, climatologists, oceanographers, and meteorologists with marine biologists, ecologists, and other reef experts, the participants issued a statement saying essentially that, yes, higher temperatures seem to be at least partly at fault but, no, greenhouse warming cannot be blamed.

  11. Greenhouse models of the atmosphere of Titan.

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1973-01-01

    The greenhouse effect is calculated for a series of Titanian atmosphere models with different proportions of methane, hydrogen, helium, and ammonia. A computer program is used in temperature-structure calculations based on radiative-convective thermal transfer considerations. A brightness temperature spectrum is derived for Titan and is compared with available observational data. It is concluded that the greenhouse effect on Titan is generated by pressure-induced transitions of methane and hydrogen. The helium-to-hydrogen ratio is found to have a maximum of about 1.5. The surface pressure is estimated to be at least 0.4 atm, with a daytime temperature of about 155 K at the surface. The presence of methane clouds in the upper troposphere is indicated. The clouds have a significant optical depth in the visible, but not in the thermal, infrared.

  12. Greenhouse effect due to atmospheric nitrous oxide

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Wang, W. C.; Lacis, A. A.

    1976-01-01

    The greenhouse effect due to nitrous oxide in the present atmosphere is about 0.8 K. Increase in atmospheric N2O due to perturbation of the nitrogen cycle by man may lead to an increase in surface temperature as large as 0.5 K by 2025, or 1.0 K by 2100. Other climatic effects of N2O are briefly discussed.

  13. Effect of Greenhouse Gases Dissolved in Seawater.

    PubMed

    Matsunaga, Shigeki

    2015-12-30

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  14. Joint implementation: Biodiversity and greenhouse gas offsets

    SciTech Connect

    Cutright, N.J.

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases form increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de janeiro during the June 19923 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled {open_quotes}Joint Implementation,{close_quotes} whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a JI project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically self-sustaining after ten years, and will have substantial biodiversity benefits. 6 refs., 1 tab.

  15. Monitoring soil greenhouse gas emissions from managed grasslands

    NASA Astrophysics Data System (ADS)

    Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2014-05-01

    Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter

  16. Energy and greenhouse gas profiles of polyhydroxybutyrates derived from corn grain: a life cycle perspective.

    PubMed

    Kim, Seungdo; Dale, Bruce E

    2008-10-15

    Polyhydroxybutyrates (PHB) are well-known biopolymers derived from sugars orvegetable oils. Cradle-to-gate environmental performance of PHB derived from corn grain is evaluated through life cycle assessment (LCA), particularly nonrenewable energy consumption and greenhouse gas emissions. Site-specific process information on the corn wet milling and PHB fermentation and recovery processes was obtained from Telles. Most of energy used in the corn wet milling and PHB fermentation and recovery processes is generated in a cogeneration power plant in which corn stover, assumed to be representative of a variety of biomass sources that could be used, is burned to generate electricity and steam. County level agricultural information is used in estimating the environmental burdens associated with both corn grain and corn stover production. Results show that PHB derived from corn grain offers environmental advantages over petroleum-derived polymers in terms of nonrenewable energy consumption and greenhouse gas emissions. Furthermore, PHB provides greenhouse gas credits, and thus PHB use reduces greenhouse gas emissions compared to petroleum-derived polymers. Corn cultivation is one of the environmentally sensitive areas in the PHB production system. More sustainable practices in corn cultivation (e.g., using no-tillage and winter cover crops) could reduce the environmental impacts of PHB by up to 72%. PMID:18983094

  17. Impact of Various Biochars on Greenhouse Gas Production Potentials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A potential abatement strategy to increasing atmospheric levels of carbon dioxide (CO2) is to sequester atmospheric CO2 into a more stable form through the use of pyrolysis. The biomass feed stock generates energy and a more stable carbon form (biochar) that then can be returned to the soil sequeste...

  18. Impacts of Sixteen Different Biochars on Soil Greenhouse Gas Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One potential abatement strategy to increasing atmospheric levels of carbon dioxide (CO2) is to sequester atmospheric CO2 captured through photosynthesis in biomass and pyrolysed into a more stable form of carbon called biochar. We evaluated the impacts of 16 different biochars from different pyroly...

  19. Biomass burning and the production of greenhouse gases

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    The present discussion of related aspects of biomass burning describes a technique for estimating the instantaneous emission of trace gases generated by such fires on the basis of satellite imagery, and notes that burning results in significantly enhanced biogenic emissions of N2O, NO, and CH4. Biomass burning therefore has both immediate and long-term impacts on the trace-gas content of the atmosphere. The effects of Kuwait's oil fires, which encompass both combustion gases and particulates, are compared with those of the more general problem.

  20. Atmospheric sulfur hexafluoride - Sources, sinks and greenhouse warming

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Sze, Nien D.; Wang, Wei-Chyung; Shia, George; Goldman, Aaron; Murcray, Frank J.; Murcray, David G.; Rinsland, Curtis P.

    1993-01-01

    An estimate is obtained of worldwide production of SF6, from which a global emission rate is derived and extrapolated for the next 20 years. The atmospheric lifetime of SF6 is then estimated based on a known mechanism (e.g., photolysis and atmospheric oxidation) and/or on the mass balance method. Finally, the radiative forcing of SF6 is calculated based on recent laboratory IR absorption data, and the expected warming over the time period 1950-2010 is computed for several emission scenarios. Calculations showed that SF6 is 3 times more effective as a greenhouse gas compared to CFC 11 on a per-molecule basis. However, based on projected emission scenarios, the expected warming from SF6 through 2010 is small (0.004 C), compared to the warming from CO2 and other trace gases (0.8 C).

  1. Greenhouse-gas emissions from biofuel use in Asia.

    SciTech Connect

    Streets, D. G.; Waldhoff, S. T.

    1999-07-06

    Biomass is a primary fuel for much of the world's population. In some developing countries it can contribute 80-90% of total primary energy consumption. In Asia as a whole we estimate that biomass contributes about 22 EJ, almost 24% of total energy use. Much of this biomass is combusted in inefficient domestic stoves and cookers, enhancing the formation of products of incomplete combustion (PIC), many of which are greenhouse gases. An inventory of the combustion of biofuels (fuelwood, crop residues, and dried animal waste) in Asia is used to develop estimates of the emissions of carbon-containing greenhouse gases (CO{sub 2},CO, CH{sub 4}, and NMHC) in Asian countries. The data are examined from two perspectives: total carbon released and total global warming potential (GWP) of the gases. We estimate that blofuels contributed 573 Tg-C in 1990, about 28% of the total carbon emissions from energy use in Asia. China (259 Tg-C) and India (187 Tg-C) were the largest emitting countries by far. The majority of the emissions, 504 Tg-C, are in the form of CO{sub 2}; however, emissions of non-CO{sub 2} greenhouse gases are significant: 57 Tg-C as CO, 6.4 Tg-C as CH{sub 4}, and 5.9 Tg-C as NMHC. Because of the high rate of incomplete combustion in typical biofuel stoves and the high GWP coefficients of the products of incomplete combustion, biofuels comprise an even larger share of energy-related emissions when measured in terms of global warming potential (in CO{sub 2} equivalents): 38% over a 20-year time frame and 31% over 100 years. Even when the biofuel is assumed to be harvested on a completely sustainable basis (all CO{sub 2} emissions are reabsorbed in the following growing season), PIC emissions from biofuel combustion account for almost 5% of total carbon emissions and nearly 25% of CO{sub 2} equivalents in terms of short-term (20-year) GWP.

  2. Modeling the infrastructure dynamics of China -- Water, agriculture, energy, and greenhouse gases

    SciTech Connect

    Conrad, S.H.; Drennen, T.E.; Engi, D.; Harris, D.L.; Jeppesen, D.M.; Thomas, R.P.

    1998-08-01

    A comprehensive critical infrastructure analysis of the People`s Republic of China was performed to address questions about China`s ability to meet its long-term grain requirements and energy needs and to estimate greenhouse gas emissions in China likely to result from increased agricultural production and energy use. Four dynamic computer simulation models of China`s infrastructures--water, agriculture, energy and greenhouse gas--were developed to simulate, respectively, the hydrologic budgetary processes, grain production and consumption, energy demand, and greenhouse gas emissions in China through 2025. The four models were integrated into a state-of-the-art comprehensive critical infrastructure model for all of China. This integrated model simulates diverse flows of commodities, such as water and greenhouse gas, between the separate models to capture the overall dynamics of the integrated system. The model was used to generate projections of China`s available water resources and expected water use for 10 river drainage regions representing 100% of China`s mean annual runoff and comprising 37 major river basins. These projections were used to develop estimates of the water surpluses and/or deficits in the three end-use sectors--urban, industrial, and agricultural--through the year 2025. Projections of the all-China demand for the three major grains (corn, wheat, and rice), meat, and other (other grains and fruits and vegetables) were also generated. Each geographic region`s share of the all-China grain demand (allocated on the basis of each region`s share of historic grain production) was calculated in order to assess the land and water resources in each region required to meet that demand. Growth in energy use in six historically significant sectors and growth in greenhouse gas loading were projected for all of China.

  3. Ecophysiological Changes in Microbial Mats Incubated in a Greenhouse Collaboratory

    NASA Technical Reports Server (NTRS)

    Bebout, Brad; DesMarais, David J.; GarciaPichel, Ferran; Hogan, Mary; Jahnke, Linda; Keller, Richard M.; Miller, Scott R.

    2001-01-01

    Microbial mats are modern examples of the earliest microbial communities known. Among the best studied are microbial mats growing in hypersaline ponds managed for the production of salt by Exportadora de Sal, S.A. de C.V., Guerrero Negro, Baja California Sur, Mexico. In May, 2001, we collected mats from Ponds 4 and 5 in this system and returned them to Ames Research Center, where they have been maintained for a period of over nine months. We report here on both the ecophysiological changes occurring in the mats over that period of time as well as the facility in which they were incubated. Mats (approximately 1 sq. meter total area) were incubated in a greenhouse facility modified to provide the mats with natural levels of visible and ultraviolet radiation as well as constantly flowing, temperature-controlled water. Two replicated treatments were maintained, a 'high salinity' treatment (about 120 ppt) and a 'low salinity' treatment (about 90 ppt). Rates of net biological activity (e.g., photosynthesis, respiration, trace gas production) in the mats were relatively constant over the several months, and were similar to rates of activity measured in the field. However, over the course of the incubation, mats in both treatments changed in physical appearance. The most obvious change was that mats in the higher salinity treatments developed a higher proportion of carotenoid pigments (relative to chlorophyll), resulting in a noticeably orange color in the high salinity mats. This trend is also seen in the natural salinity gradient present at the field site. Changes in the community composition of the mats, as assayed by denaturing gradient gel electrophoresis (DGGE), as well as biomarker compounds produced in the mats were also monitored. The degree to which the mats kept in the greenhouse changed from the originally collected mats, as well as differences between high and low salinity mats will be discussed. Additional information is contained in the original extended

  4. Greenhouse gas mitigation potentials in the livestock sector

    NASA Astrophysics Data System (ADS)

    Herrero, Mario; Henderson, Benjamin; Havlík, Petr; Thornton, Philip K.; Conant, Richard T.; Smith, Pete; Wirsenius, Stefan; Hristov, Alexander N.; Gerber, Pierre; Gill, Margaret; Butterbach-Bahl, Klaus; Valin, Hugo; Garnett, Tara; Stehfest, Elke

    2016-05-01

    The livestock sector supports about 1.3 billion producers and retailers, and contributes 40-50% of agricultural GDP. We estimated that between 1995 and 2005, the livestock sector was responsible for greenhouse gas emissions of 5.6-7.5 GtCO2e yr-1. Livestock accounts for up to half of the technical mitigation potential of the agriculture, forestry and land-use sectors, through management options that sustainably intensify livestock production, promote carbon sequestration in rangelands and reduce emissions from manures, and through reductions in the demand for livestock products. The economic potential of these management alternatives is less than 10% of what is technically possible because of adoption constraints, costs and numerous trade-offs. The mitigation potential of reductions in livestock product consumption is large, but their economic potential is unknown at present. More research and investment are needed to increase the affordability and adoption of mitigation practices, to moderate consumption of livestock products where appropriate, and to avoid negative impacts on livelihoods, economic activities and the environment.

  5. Decision Support system- DSS- for irrigation management in greenhouses: a case study in Campania Region

    NASA Astrophysics Data System (ADS)

    Monaco, Eugenia; De Mascellis, Roberto; Riccardi, Maria; Basile, Angelo; D'Urso, Guido; Magliulo, Vincenzo; Tedeschi, Anna

    2016-04-01

    In Mediterranean Countries the proper management of water resources is important for the preservation of actual production systems. The possibility to manage water resources is possible especially in the greenhouses systems. The challenge to manage the soil in greenhouse farm can be a strategy to maintain both current production systems both soil conservation. In Campania region protected crops (greenhouses and tunnels) have a considerable economic importance both for their extension in terms of surface harvested and also for their production in terms of yields. Agricultural production in greenhouse is closely related to the micro-climatic condition but also to the physical and agronomic characteristics of the soil-crop system. The protected crops have an high level of technology compare to the other production systems, but the irrigation management is still carried out according to empirical criteria. The rational management of the production process requires an appropriate control of climatic parameters (temperature, humidity, wind) and agronomical inputs (irrigation, fertilization,). All these factors need to be monitored as well is possible, in order to identify the optimal irrigation schedule. The aim of this work is to implement a Decision Support system -DSS- for irrigation management in greenhouses focused on a smart irrigation control based on observation of the agro-climatic parameters monitored with an advanced wireless sensors network. The study is conducted in a greenhouse farm of 6 ha located in the district of Salerno were seven plots were cropped with rocket. Preliminary a study of soils proprieties was conducted in order to identify spatial variability of the soil in the farm. So undisturbed soil samples were collected to define chemical and physical proprieties; moreover soil hydraulic properties were determined for two soils profiles deemed representation of the farm. Then the wireless sensors, installed at different depth in the soils

  6. Biofuels, land use change, and greenhouse gas emissions: some unexplored variables.

    PubMed

    Kim, Hyungtae; Kim, Seungdo; Dale, Bruce E

    2009-02-01

    Greenhouse gas release from land use change (the so-called "carbon debt") has been identified as a potentially significant contributor to the environmental profile of biofuels. The time required for biofuels to overcome this carbon debt due to land use change and begin providing cumulative greenhouse gas benefits is referred to as the "payback period" and has been estimated to be 100-1000 years depending on the specific ecosystem involved in the land use change event. Two mechanisms for land use change exist: "direct" land use change, in which the land use change occurs as part of a specific supply chain for a specific biofuel production facility, and "indirect" land use change, in which market forces act to produce land use change in land that is not part of a specific biofuel supply chain, including, for example, hypothetical land use change on another continent. Existing land use change studies did not consider many of the potentially important variables that might affect the greenhouse gas emissions of biofuels. We examine here several variables that have not yet been addressed in land use change studies. Our analysis shows that cropping management is a key factor in estimating greenhouse gas emissions associated with land use change. Sustainable cropping management practices (no-till and no-till plus cover crops) reduce the payback period to 3 years for the grassland conversion case and to 14 years for the forest conversion case. It is significant that no-till and cover crop practices also yield higher soil organic carbon (SOC) levels in corn fields derived from former grasslands or forests than the SOC levels that result if these grasslands or forests are allowed to continue undisturbed. The United States currently does not hold any of its domestic industries responsible for its greenhouse gas emissions. Thus the greenhouse gas standards established for renewable fuels such as corn ethanol in the Energy Independence and Security Act (EISA) of 2007 set a

  7. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation.

    PubMed

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-09-01

    Soil properties and soil-atmosphere fluxes of CO2, CH4 and N2O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil-atmosphere CO2-equivalent flux of 137.27 mg CO2 m(-2) h(-1), which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH4 and N2O fluxes from Spartina soil were 13.77 and 1.14 μmol m(-2) h(-1), respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil-atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation.

  8. Biofuels, land use change, and greenhouse gas emissions: some unexplored variables.

    PubMed

    Kim, Hyungtae; Kim, Seungdo; Dale, Bruce E

    2009-02-01

    Greenhouse gas release from land use change (the so-called "carbon debt") has been identified as a potentially significant contributor to the environmental profile of biofuels. The time required for biofuels to overcome this carbon debt due to land use change and begin providing cumulative greenhouse gas benefits is referred to as the "payback period" and has been estimated to be 100-1000 years depending on the specific ecosystem involved in the land use change event. Two mechanisms for land use change exist: "direct" land use change, in which the land use change occurs as part of a specific supply chain for a specific biofuel production facility, and "indirect" land use change, in which market forces act to produce land use change in land that is not part of a specific biofuel supply chain, including, for example, hypothetical land use change on another continent. Existing land use change studies did not consider many of the potentially important variables that might affect the greenhouse gas emissions of biofuels. We examine here several variables that have not yet been addressed in land use change studies. Our analysis shows that cropping management is a key factor in estimating greenhouse gas emissions associated with land use change. Sustainable cropping management practices (no-till and no-till plus cover crops) reduce the payback period to 3 years for the grassland conversion case and to 14 years for the forest conversion case. It is significant that no-till and cover crop practices also yield higher soil organic carbon (SOC) levels in corn fields derived from former grasslands or forests than the SOC levels that result if these grasslands or forests are allowed to continue undisturbed. The United States currently does not hold any of its domestic industries responsible for its greenhouse gas emissions. Thus the greenhouse gas standards established for renewable fuels such as corn ethanol in the Energy Independence and Security Act (EISA) of 2007 set a

  9. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation.

    PubMed

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-09-01

    Soil properties and soil-atmosphere fluxes of CO2, CH4 and N2O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil-atmosphere CO2-equivalent flux of 137.27 mg CO2 m(-2) h(-1), which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH4 and N2O fluxes from Spartina soil were 13.77 and 1.14 μmol m(-2) h(-1), respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil-atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation. PMID:25918889

  10. On greenhouse gas signal detection strategies

    SciTech Connect

    Schlesinger, M.E.; Barnett, T.P.

    1989-02-24

    The indisputable detection of a greenhouse gas signal in the global climate system will be a true decision point for mankind. Yet, at this stage of knowledge, the details of an appropriate detection strategy are only beginning to be developed. Two key elements in the eventual strategy are the subject of this report: (1) what variables should be monitored in a detection program, and (2) the comparison of the equilibrium versus transient climate system response. Subsequent sections consider these items in turn while a final section summarizes the main conclusion of the study. 10 refs., 14 figs., 2 tabs.

  11. Managing biogeochemical cycles to reduce greenhouse gases

    SciTech Connect

    Post, Wilfred M; Venterea, Rodney

    2012-01-01

    This special issue focuses on terrestrial biogeochemical cycles as they relate to North America-wide budgeting and future projection of biogenic greenhouse gases (GHGs). Understanding the current magnitude and providing guidance on the future trajectories of atmospheric concentrations of these gases requires investigation of their (i) biogeochemical origins, (ii) response to climate feedbacks and other environmental factors, and (iii) susceptibility to management practices. This special issue provides a group of articles that present the current state of continental scale sources and sinks of biogenic GHGs and the potential to better manage them in the future.

  12. [An early warning method of cucumber downy mildew in solar greenhouse based on canopy temperature and humidity modeling].

    PubMed

    Wang, Hui; Li, Mei-lan; Xu, Jian-ping; Chen, Mei-xiang; Li, Wen-yong; Li, Ming

    2015-10-01

    The greenhouse environmental parameters can be used to establish greenhouse nirco-climate model, which can combine with disease model for early warning, with aim of ecological controlling diseases to reduce pesticide usage, and protecting greenhouse ecological environment to ensure the agricultural product quality safety. Greenhouse canopy leaf temperature and air relative humidity, models were established using energy balance and moisture balance principle inside the greenhouse. The leaf temperature model considered radiation heat transfer between the greenhouse crops, wall, soil and cover, plus the heat exchange caused by indoor net radiation and crop transpiration. Furthermore, the water dynamic balance in the greenhouse including leaf transpiration, soil evaporation, cover and leaf water vapor condensation, was considered to develop a relative humidity model. The primary infection and latent period warning models for cucumber downy mildew (Pseudoperonospora cubensis) were validated using the results of the leaf temperature and relative humidity model, and then the estimated disease occurrence date of cucumber downy mildew was compared with actual disease occurrence date of field observation. Finally, the results were verified by the measured temperature and humidity data of September and October, 2014. The results showed that the root mean square deviations (RMSDs) of the measured and estimated leaf temperature were 0.016 and 0.024 °C, and the RMSDs of the measured and estimated air relative humidity were 0.15% and 0.13%, respectively. Combining the result of estimated temperature and humidity models, a cucumber disease early warning system was established to forecast the date of disease occurrence, which met with the real date. Thus, this work could provide the micro-environment data for the early warning system of cucumber diseases in solar greenhouses.

  13. [An early warning method of cucumber downy mildew in solar greenhouse based on canopy temperature and humidity modeling].

    PubMed

    Wang, Hui; Li, Mei-lan; Xu, Jian-ping; Chen, Mei-xiang; Li, Wen-yong; Li, Ming

    2015-10-01

    The greenhouse environmental parameters can be used to establish greenhouse nirco-climate model, which can combine with disease model for early warning, with aim of ecological controlling diseases to reduce pesticide usage, and protecting greenhouse ecological environment to ensure the agricultural product quality safety. Greenhouse canopy leaf temperature and air relative humidity, models were established using energy balance and moisture balance principle inside the greenhouse. The leaf temperature model considered radiation heat transfer between the greenhouse crops, wall, soil and cover, plus the heat exchange caused by indoor net radiation and crop transpiration. Furthermore, the water dynamic balance in the greenhouse including leaf transpiration, soil evaporation, cover and leaf water vapor condensation, was considered to develop a relative humidity model. The primary infection and latent period warning models for cucumber downy mildew (Pseudoperonospora cubensis) were validated using the results of the leaf temperature and relative humidity model, and then the estimated disease occurrence date of cucumber downy mildew was compared with actual disease occurrence date of field observation. Finally, the results were verified by the measured temperature and humidity data of September and October, 2014. The results showed that the root mean square deviations (RMSDs) of the measured and estimated leaf temperature were 0.016 and 0.024 °C, and the RMSDs of the measured and estimated air relative humidity were 0.15% and 0.13%, respectively. Combining the result of estimated temperature and humidity models, a cucumber disease early warning system was established to forecast the date of disease occurrence, which met with the real date. Thus, this work could provide the micro-environment data for the early warning system of cucumber diseases in solar greenhouses. PMID:26995910

  14. Browns Ferry waste heat greenhouse environmental control system design

    SciTech Connect

    Olszewski, M.; Stovall, T.K.; Hicks, N.G.; Pile, R.S.; Burns, E.R.; Waddell, E.L. Jr.

    1980-03-01

    Oak Ridge National Laboratory, Tennessee Valley Authority and the Environmental Research Laboratory at the University of Arizona cooperated on the design of an experimental greenhouse located at TVA's Browns Ferry Nuclear Generating Station. Two greenhouse zones are heated by waste heat from the plant's condenser effluent. For comparison, a third greenhouse zone is heated conventionally (fossil-fueled burners) as a control. Design specifics for each of the three zones and a qualitative operating evaluation are presented.

  15. [Preliminary assessment of the potential of biochar technology in mitigating the greenhouse effect in China].

    PubMed

    Jiang, Zhi-Xiang; Zheng, Hao; Li, Feng-Min; Wang, Zhen-Yu

    2013-06-01

    The production of biochar by pyrolysis and its application to soil can sequester the CO2 which was absorbed by plants from atmosphere into soil, in addition it can also bring multiple benefits for agriculture production. On the basis of the available potential survey of the biomass residues from agriculture and forestry section, life cycle assessment was employed to quantify the potential of biochar technology in mitigation of greenhouse gases in our country. The results showed: In China, the amount of available biomass resource was 6.04 x 10(8) t every year and its net greenhouse effect potential was 5.32 x 10(8) t CO(2e) (CO(2e): CO2 equivalent), which was equivalent to 0.88 t CO(2e) for every ton biomass. The greatest of contributor to the total potential was plant carbon sequestration in soil as the form of biochar which accounts for 73.94%, followed by production of renewable energy and its percentage was 23.85%. In summary, production of biochar from agriculture and forestry biomass residues had a significant potential for our country to struggle with the pressure of greenhouse gas emission.

  16. Static Linear Fresnel Lenses as LCPV System in a Greenhouse

    NASA Astrophysics Data System (ADS)

    Sonneveld, P. J.; Swinkels, G. L. A. M.; van Tuijl, B. A. J.; Janssen, H. J. J.; de Zwart, H. F.

    2011-12-01

    A low concentrating PV system with water cooling (LCPVT system) will result in electrical and thermal energy output from the solar energy excess entering a building or greenhouse. All the direct radiation could be converted, which corresponds to 75% of the incoming solar energy. This will significantly reduce the demand of cooling of the building. For an optimal performance it is beneficial to construct asymmetric roof elements with a steep inclination at the north side (the exact angle of course depends on the latitude of the building site). The Fresnel lens structure is oriented in upwards direction. In the current design, two of them are placed between an AR-coated double glass structure to prevent pollution and condensation on the lenses. Compared with a previous system, the number of lenses is reduced from 3 to 2 lenses, which reduces the costs of the system by limiting the number of receivers. By the upward facing of the lens structure, the focus quality is preserved over a much broader range of angles of incidence compared to a lens with downward facing structures. Each PMMA lens with a size of 1.20 m×1.60 m is composed of 12 `tiles' for easy production. The focal distance of the lens is 1,875 m and the concentration factor 50x. In most cases the focus line is thinner than 3 cm and the transmission is above 80%. The performance of these lenses with respect of the shape of the focal area and the position of the focal line has been analyzed with ray tracing techniques. From this analyses it was concluded that tracking of the receiver module is possible with two motors. One motor controls the distance between lens and receiver and one motor controls the translocation of the receivers parallel to the lens. The second conclusion was that the positions of the focal line are within the bounds of the greenhouse construction for almost the whole year. Only in winter, the focal line will be unreachable from time to time. A 480 m2 greenhouse with the LCPVT system

  17. Greenhouse Gas Fluxes from Forested Wetland and Upland Soils

    NASA Astrophysics Data System (ADS)

    Savage, K. E.; Davidson, E. A.

    2015-12-01

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the most important greenhouse gases. Soils are the dominant natural source of N2O, and have been shown to be a small sink under N-limited conditions. Wetlands are a significant natural source of CH4, and dry upland soils a natural CH4 sink. Soils release CO2 produced by both autotrophic (root) and heterotrophic (microbial) respiration processes. Variation in soil moisture can be very dynamic, and it is one of the dominant factors controlling soil aeration, and hence the balance between aerobic (predominantly CO2 producing) and anaerobic (both CO2 and CH4 producing) respiration. The production and consumption of N2O is also highly dependent on spatial and temporal variation in soil moisture. Howland forest, ME is a mosaic of well drained upland, wetland and small transitional upland/wetland soils which makes for a unique and challenging environment to measure the effects of soil moisture on the net exchange of these important greenhouse gases. To quantify the flux of CO2, CH4 and N2O from the Howland forest soils, we utilized a previously developed automated chamber system for measuring CO2 efflux (Licor 6252 IRGA) from soils, and configured it to run in-line with a new model quantum cascade laser (QCL) system which measures N2O and CH4 (Aerodyne model QC-TILDAS-CS). This system allowed for simultaneous, high frequency, continuous measurement of all three greenhouse gases. Fourteen sampling chambers were deployed in an upland soil (8), nearby wetland (3) and a transitional upland/wetland (3). Each chamber was measured every 90 minutes. Upland soils were consistent sources of CO2 and sinks for CH4, however the N2O fluxes were transient between sources and sinks. The wetland soils were consistent sources of high CH4 emissions, low CO2 emissions and a consistently small N2O sink. The transitional upland/wetland soil was a consistent source of CO2 but was much more transient between CH4 and N2O sources and

  18. The greenhouse effect in a gray planetary atmosphere.

    NASA Technical Reports Server (NTRS)

    Wildt, R.

    1966-01-01

    Hopf analytical solution for values of ratio of gray absorption coefficients for insolating and escaping radiation /greenhouse parameter/ assumed constant at all depths, presenting temperature distribution graphs

  19. On strategies for reducing greenhouse gas emissions

    PubMed Central

    Bolin, Bert; Kheshgi, Haroon S.

    2001-01-01

    Equity is of fundamental concern in the quest for international cooperation to stabilize greenhouse gas concentrations by the reduction of emissions. By modeling the carbon cycle, we estimate the global CO2 emissions that would be required to stabilize the atmospheric concentration of CO2 at levels ranging from 450 to 1,000 ppm. These are compared, on both an absolute and a per-capita basis, to scenarios for emissions from the developed and developing worlds generated by socio-economic models under the assumption that actions to mitigate greenhouse gas emissions are not taken. Need and equity have provided strong arguments for developing countries to request that the developed world takes the lead in controlling its emissions, while permitting the developing countries in the meantime to use primarily fossil fuels for their development. Even with major and early control of CO2 emissions by the developed world, limiting concentration to 450 ppm implies that the developing world also would need to control its emissions within decades, given that we expect developing world emissions would otherwise double over this time. Scenarios leading to CO2 concentrations of 550 ppm exhibit a reduction of the developed world's per-capita emission by about 50% over the next 50 years. Even for the higher stabilization levels considered, the developing world would not be able to use fossil fuels for their development in the manner that the developed world has used them. PMID:11296250

  20. On strategies for reducing greenhouse gas emissions.

    PubMed

    Bolin, B; Kheshgi, H S

    2001-04-24

    Equity is of fundamental concern in the quest for international cooperation to stabilize greenhouse gas concentrations by the reduction of emissions. By modeling the carbon cycle, we estimate the global CO(2) emissions that would be required to stabilize the atmospheric concentration of CO(2) at levels ranging from 450 to 1,000 ppm. These are compared, on both an absolute and a per-capita basis, to scenarios for emissions from the developed and developing worlds generated by socio-economic models under the assumption that actions to mitigate greenhouse gas emissions are not taken. Need and equity have provided strong arguments for developing countries to request that the developed world takes the lead in controlling its emissions, while permitting the developing countries in the meantime to use primarily fossil fuels for their development. Even with major and early control of CO(2) emissions by the developed world, limiting concentration to 450 ppm implies that the developing world also would need to control its emissions within decades, given that we expect developing world emissions would otherwise double over this time. Scenarios leading to CO(2) concentrations of 550 ppm exhibit a reduction of the developed world's per-capita emission by about 50% over the next 50 years. Even for the higher stabilization levels considered, the developing world would not be able to use fossil fuels for their development in the manner that the developed world has used them.

  1. HYDROGEN GREENHOUSE PLANETS BEYOND THE HABITABLE ZONE

    SciTech Connect

    Pierrehumbert, Raymond; Gaidos, Eric E-mail: gaidos@hawaii.edu

    2011-06-10

    We show that collision-induced absorption allows molecular hydrogen to act as an incondensible greenhouse gas and that bars or tens of bars of primordial H{sub 2}-He mixtures can maintain surface temperatures above the freezing point of water well beyond the 'classical' habitable zone defined for CO{sub 2} greenhouse atmospheres. Using a one-dimensional radiative-convective model, we find that 40 bars of pure H{sub 2} on a three Earth-mass planet can maintain a surface temperature of 280 K out to 1.5 AU from an early-type M dwarf star and 10 AU from a G-type star. Neglecting the effects of clouds and of gaseous absorbers besides H{sub 2}, the flux at the surface would be sufficient for photosynthesis by cyanobacteria (in the G star case) or anoxygenic phototrophs (in the M star case). We argue that primordial atmospheres of one to several hundred bars of H{sub 2}-He are possible and use a model of hydrogen escape to show that such atmospheres are likely to persist further than 1.5 AU from M stars, and 2 AU from G stars, assuming these planets have protecting magnetic fields. We predict that the microlensing planet OGLE-05-390Lb could have retained an H{sub 2}-He atmosphere and be habitable at {approx}2.6 AU from its host M star.

  2. Evolving Views on a Dynamic Greenhouse Earth

    NASA Astrophysics Data System (ADS)

    Hollis, Chris; Huber, Matthew

    2009-06-01

    Climatic and Biotic Events of the Paleogene (CBEP 2009) Conference; Wellington, New Zealand, 12-15 January 2009; The Paleogene (65-24 million years ago) was a dynamic period in Earth's history in which major mammal groups became established and diversified, rapid and repeated extreme global warming events occurred, and climate began its stuttering progression from a greenhouse to an icehouse climate state. With atmospheric carbon dioxide concentrations in the range projected to occur over the next several centuries (>1000 parts per million), the Paleogene is also a window into our future (see J. C. Zachos et al., Nature, 451, 279-283, 2008). Long-standing interest in understanding the causes and consequences of global change in the Paleogene and the current timeliness of greenhouse climate research explain why conferences are periodically devoted to the climatic and biotic events of the Paleogene. The 2009 conference, held in New Zealand, attracted 130 participants from 20 countries. Presentations demonstrated substantial progress in new climate proxy development, new multiproxy approaches, and closer integration of paleoclimate records with climate models, consolidating around three main issues.

  3. Potential operator exposure to procymidone in greenhouses.

    PubMed

    Capri, E; Alberici, R; Glass, C R; Minuto, G; Trevisan, M

    1999-10-01

    Recent legislation in the European Union requires regulators of member states to carry out risk assessments using data for actual or potential operator exposure, or estimates of exposure from models. However, the existing models have few datasets from studies carried out on greenhouse or indoor crops, particularly in southern Europe. In this study potential dermal and inhalatory exposures were measured in two trials in Italian greenhouses. The total potential dermal operator exposure of the applicator, measured with a whole-body passive dosimetry method, was 15.4 and 37.1 mL/h of the diluted pesticide mixture. The majority of the contamination was on the hands and on the lower part of the coverall. Approximately 0. 003% of the active ingredient (ai) applied to the crop area contaminated the coverall worn by the operator. The potential dermal exposure during the mixing and loading phase accounted for 6-8% of the total potential dermal exposure during the whole process. Inhalation exposure accounted for only 0.05-0.07% of the total potential operator exposure. Model predictions of the potential operator exposure using a modified version of the German model overestimate the mixing-loading exposure while underestimating the application exposure. These data are evidence that the estimation coefficient set for hand-held application to ornamental and horticultural crops may be inadequate for the agronomic conditions of southern Europe. PMID:10552831

  4. On strategies for reducing greenhouse gas emissions.

    PubMed

    Bolin, B; Kheshgi, H S

    2001-04-24

    Equity is of fundamental concern in the quest for international cooperation to stabilize greenhouse gas concentrations by the reduction of emissions. By modeling the carbon cycle, we estimate the global CO(2) emissions that would be required to stabilize the atmospheric concentration of CO(2) at levels ranging from 450 to 1,000 ppm. These are compared, on both an absolute and a per-capita basis, to scenarios for emissions from the developed and developing worlds generated by socio-economic models under the assumption that actions to mitigate greenhouse gas emissions are not taken. Need and equity have provided strong arguments for developing countries to request that the developed world takes the lead in controlling its emissions, while permitting the developing countries in the meantime to use primarily fossil fuels for their development. Even with major and early control of CO(2) emissions by the developed world, limiting concentration to 450 ppm implies that the developing world also would need to control its emissions within decades, given that we expect developing world emissions would otherwise double over this time. Scenarios leading to CO(2) concentrations of 550 ppm exhibit a reduction of the developed world's per-capita emission by about 50% over the next 50 years. Even for the higher stabilization levels considered, the developing world would not be able to use fossil fuels for their development in the manner that the developed world has used them. PMID:11296250

  5. Environment resistant windows for space greenhouses

    NASA Astrophysics Data System (ADS)

    Gan, B. K.; Kondyurin, A.; Bilek, M.; Latella, B. A.

    One of the ways of providing a self-sustainable environment in space is to provide food and life support systems through bio-regenerative power i e a greenhouse It is an essential structure because it provides oxygen and food in a controlled environment The windows and frames of a greenhouse are generally made from glass or polymer panels which allow sunlight to enter Polymers are useful because they are lightweight transparent corrosion resistant and inexpensive However windows which are made from polymeric materials or polymer-based composites suffer from accelerated erosion due to the presence of atomic oxygen in space environment A metal oxide deposited on the surface of the polymer will aid in the resistance of these polymers to chemical attack as well as improving surface hardness and wear resistance characteristics In this study we modified the surfaces of polycarbonate PC by deposition and implantation of thin and transparent aluminium oxide Al 2 O 3 coatings The Al 2 O 3 plasma was produced using a cathodic arc deposition system with a combination of plasma immersion ion implantation PIII The coatings were then tested for resistance to atomic oxygen environment These were carried out by monitoring the mass loss of the deposited samples exposed to an rf oxygen plasma The morphology and optical properties of the coatings before and after exposure to oxygen plasma were then examined using electron microscopy profilometry and ellipsometry Mechanical properties and adhesion characteristics of the coatings

  6. Cost of abating greenhouse gas emissions with cellulosic ethanol.

    PubMed

    Dwivedi, Puneet; Wang, Weiwei; Hudiburg, Tara; Jaiswal, Deepak; Parton, William; Long, Stephen; DeLucia, Evan; Khanna, Madhu

    2015-02-17

    We develop an integrated framework to determine and compare greenhouse gas (GHG) intensities and production costs of cellulosic ethanol derived from corn stover, switchgrass, and miscanthus grown on high and low quality soils for three representative counties in the Eastern United States. This information is critical for assessing the cost-effectiveness of utilizing cellulosic ethanol for mitigating GHG emissions and designing appropriate policy incentives to support cellulosic ethanol production nationwide. We find considerable variations in the GHG intensities and production costs of ethanol across feedstocks and locations mostly due to differences in yields and soil characteristics. As compared to gasoline, the GHG savings from miscanthus-based ethanol ranged between 130% and 156% whereas that from switchgrass ranged between 97% and 135%. The corresponding range for GHG savings with corn stover was 57% to 95% and marginally below the threshold of at least 60% for biofuels classified as cellulosic biofuels under the Renewable Fuels Standard. Estimates of the costs of producing ethanol relative to gasoline imply an abatement cost of at least $48 Mg(-1) of GHG emissions (carbon dioxide equivalent) abated and can be used to infer the minimum carbon tax rate needed to induce consumption of cellulosic ethanol. PMID:25588032

  7. Cost of abating greenhouse gas emissions with cellulosic ethanol.

    PubMed

    Dwivedi, Puneet; Wang, Weiwei; Hudiburg, Tara; Jaiswal, Deepak; Parton, William; Long, Stephen; DeLucia, Evan; Khanna, Madhu

    2015-02-17

    We develop an integrated framework to determine and compare greenhouse gas (GHG) intensities and production costs of cellulosic ethanol derived from corn stover, switchgrass, and miscanthus grown on high and low quality soils for three representative counties in the Eastern United States. This information is critical for assessing the cost-effectiveness of utilizing cellulosic ethanol for mitigating GHG emissions and designing appropriate policy incentives to support cellulosic ethanol production nationwide. We find considerable variations in the GHG intensities and production costs of ethanol across feedstocks and locations mostly due to differences in yields and soil characteristics. As compared to gasoline, the GHG savings from miscanthus-based ethanol ranged between 130% and 156% whereas that from switchgrass ranged between 97% and 135%. The corresponding range for GHG savings with corn stover was 57% to 95% and marginally below the threshold of at least 60% for biofuels classified as cellulosic biofuels under the Renewable Fuels Standard. Estimates of the costs of producing ethanol relative to gasoline imply an abatement cost of at least $48 Mg(-1) of GHG emissions (carbon dioxide equivalent) abated and can be used to infer the minimum carbon tax rate needed to induce consumption of cellulosic ethanol.

  8. The potential for biomass to mitigate greenhouse gas emissions in the Northeastern US

    SciTech Connect

    Bernow, S.S.; Gurney, K.; Prince, G.; Cyr, M.

    1992-04-01

    This study, for the Northeast Regional Biomass Program (NRBP) of the Coalition of Northeast Governors (CONEG), evaluates the potential for local, state and regional biomass policies to contribute to an overall energy/biomass strategy for the reduction of greenhouse gas releases in the Northeastern United States. Biomass is a conditionally renewable resource that can play a dual role: by reducing emissions of greenhouse gases in meeting our energy needs; and by removing carbon from the atmosphere and sequestering it in standing biomass stocks and long-lived products. In this study we examine the contribution of biomass to the energy system in the Northeast and to the region's net releases of carbon dioxide and methane, and project these releases over three decades, given a continuation of current trends and policies. We then compare this Reference Case with three alternative scenarios, assuming successively more aggressive efforts to reduce greenhouse gas emissions through strategic implementation of energy efficiency and biomass resources. Finally, we identify and examine policy options for expanding the role of biomass in the region's energy and greenhouse gas mitigation strategies.

  9. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  10. Multi-Objective Control Optimization for Greenhouse Environment Using Evolutionary Algorithms

    PubMed Central

    Hu, Haigen; Xu, Lihong; Wei, Ruihua; Zhu, Bingkun

    2011-01-01

    This paper investigates the issue of tuning the Proportional Integral and Derivative (PID) controller parameters for a greenhouse climate control system using an Evolutionary Algorithm (EA) based on multiple performance measures such as good static-dynamic performance specifications and the smooth process of control. A model of nonlinear thermodynamic laws between numerous system variables affecting the greenhouse climate is formulated. The proposed tuning scheme is tested for greenhouse climate control by minimizing the integrated time square error (ITSE) and the control increment or rate in a simulation experiment. The results show that by tuning the gain parameters the controllers can achieve good control performance through step responses such as small overshoot, fast settling time, and less rise time and steady state error. Besides, it can be applied to tuning the system with different properties, such as strong interactions among variables, nonlinearities and conflicting performance criteria. The results implicate that it is a quite effective and promising tuning method using multi-objective optimization algorithms in the complex greenhouse production. PMID:22163927

  11. Microbial mitigation of greenhouse gas emissions from landfill cover soils

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Woo

    Landfills are one of the major sources of methane (CH4), a potent greenhouse gas with a global warming potential (GWP) ˜23 times higher than that of carbon dioxide (CO2). Although some effective strategies have been formulated to prevent methane emissions from large landfills, many landfills allow methane to be freely emitted to the atmosphere. In such situations, it is often proposed to stimulate methanotrophs, a group of bacteria that consume methane, in the cover soil to prevent fugitive methane emissions. Several factors, however, must be addressed to make such a biogenic removal mechanism effective. First, methanotrophic activity can be inhibited by nonmethane organic compounds (NMOCs) that are commonly found in landfill soil gas. Second, although methanotrophs can be easily stimulated with the addition of nitrogenous fertilizers, biogenic production of nitrous oxide with a GWP ˜296 times higher than that of carbon dioxide, is also stimulated. To consider these issues, two general areas of research were performed. First, a dimensionless number was developed based on Michaelis-Menten kinetics that describes the effects of the presence of multiple NMOCs on methanotrophic growth and survival. This model was validated via experimental measurements of methanotrophic growth in the presence of varying amounts of NMOCs. Second, the effects of nutrient amendments on methane oxidation and nitrous oxide production were examined by constructing soil microcosms using landfill cover soils. Here, it was shown that the addition of ammonium in the presence of phenylacetylene stimulated methane oxidation but inhibited nitrous oxide production. Furthermore, to understand the methanotrophic community structure and activity in response to these amendments, DNA microarray and transcript analyses were performed. The results indicated the predominance of Type II methanotrophs but that Type I methanotrophs responded more significantly to these amendments. Also, substantial activity

  12. Greenhouse gas emissions from forestry operations: a life cycle assessment.

    PubMed

    Sonne, Edie

    2006-01-01

    Most forest carbon assessments focus only on biomass carbon and assume that greenhouse gas (GHG) emissions from forestry activities are minimal. This study took an in-depth look at the direct and indirect emissions from Pacific Northwest (PNW) Douglas-fir [Pseudotsuga menziesii (Mirbel) Franco] forestry activities to support or deny this claim. Greenhouse gas budgets for 408 "management regimes" were calculated using Life Cycle Assessment (LCA) methodology. These management regimes were comprised of different combinations of three types of seedlings (P + 1, 1 + 1, and large plug), two types of site preparation (pile and burn, and chemical), 17 combinations of management intensity including fertilization, herbicide treatment, pre-commercial thinning (PCT), commercial thinning (CT), and nothing, and four different rotation ages (30, 40, 50, and 60 yr). Normalized to 50 yr, average direct GHG emissions were 8.6 megagrams (Mg) carbon dioxide equivalents (CO2e) ha(-1), which accounted for 84% of total GHG emissions from the average of 408 management regimes. Harvesting (PCT, CT, and clear cutting) contributed the most to total GHG emissions (5.9 Mg CO2e per 700 m3 harvested timber), followed by pile and burn site preparation (4.0 Mg CO2e ha(-1) or 32% of total GHG emissions) and then fertilization (1.9 Mg CO2e ha(-1) or 15% of total GHG emissions). Seedling production, seedling transportation, chemical site preparation, and herbicide treatment each contributed less than 1% of total GHG emissions when assessed per hectare of planted timberland. Total emissions per 100 m3 averaged 1.6 Mg CO2e ha(-1) over all 408 management regimes. An uncertainty analysis using Monte Carlo simulations revealed that there are significant differences between most alternative management regimes. PMID:16825464

  13. Floral-greenhouse geothermal-heating demonstration. Final report, January 24, 1979-September 30, 1982

    SciTech Connect

    Not Available

    1982-10-01

    The planning and execution of a commercial geothermal development program for heating floral greenhouses are summarized. The program site was the Utah Roses property located about four miles from the Wasatch Mountains Faultline at Sandy in Salt Lake County, Utah. The report is concerned with four primary project features: a) resource exploration; b) well drilling and testing; c) production and distribution; and d) economics of resource development and use.

  14. Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River Irrigation Region, Northwest China.

    PubMed

    Kong, Xiaole; Cao, Jing; Tang, Rangyun; Zhang, Shengqiang; Dong, Fang

    2014-11-01

    The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0-20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg(-1), respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0-20- and 20-40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0-20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by 'natural' factors and As originated from natural sources, deposition and irrigation water.

  15. Direct Demonstration of the Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Jaffe, D. A.; Malashanka, S.; Call, K.; Bernays, N.

    2012-12-01

    Consider these three "theories:" climate change, evolution, and gravity. Why are two of them hotly debated by non-scientists, but not gravity? In part, the answer is that climate change and evolution are more complex processes and not readily observable over short time scales to most people. In contrast, the "theory of gravity" is tested every day by billions of people world-wide and is therefore not challenged. While there are numerous "demonstrations" of the greenhouse effect available online, unfortunately, many of them are based on poor understanding of the physical principles involved. For this reason, we sought to develop simple and direct experiments that would demonstrate aspects of the greenhouse effect that would be suitable for museums, K-12, and/or college classrooms. We will describe two experiments. In the first, we use a simple plexiglass tube, approximately 12 cm long, with IR transparent windows. The tube is first filled with dry nitrogen and exposed to an IR heat lamp. Following this, the tube is filled with pure, dry CO2. Both tubes warm up, but the tube filled with CO2 ends up about 0.7 degrees C warmer. It is useful to compare this 12 cm column of CO2 to the column in the earth's atmosphere, which is equivalent to approximately 2.7 meters of pure CO2. This demonstration would be suitable for museum exhibits to demonstrate the physical basis of CO2 heating in the atmosphere. In the second experiment, we use FTIR spectroscopy to quantify the CO2 content of ambient air and indoor/classroom air. For this experiment, we use a commercial standard of 350 ppm CO2 to calibrate the absorption features. Once the CO2 content of ambient air is found, it is useful for students to compare their observed value to background data (e.g. NOAA site in Hawaii) and/or the "Keeling Curve". This leads into a discussion on causes for local variations and the long-term trends. This experiment is currently used in our general chemistry class but could be used in many

  16. Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn

    SciTech Connect

    Wang, Michael; Saricks, Christoper; Wu, May

    1997-12-19

    This study addresses two issues: (1) data and information essential to an informed choice about the corn-to-ethanol cycle are in need of updating, thanks to scientific and technological advances in both corn farming and ethanol production; and (2) generalized national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than estimates based specifically on activities and practices in the principal domestic corn production and milling region -- the upper Midwest.

  17. Materials for luminescent greenhouse solar collectors.

    PubMed

    Levitt, J A; Weber, W H

    1977-10-01

    Luminescent greenhouse solar collectors are potentially useful for concentrating sunlight onto photovoltaic power cells. Measurements of the performance of small-scale collectors made of two commercially available materials (Owens-Illinois ED2 neodymium-doped laser glass and rhodamine 6G-doped plastic) are presented. The results are encouraging, but they indicate a need for further spectral sensitization and for reduced matrix loss coefficient. The measurements with monochromatic illumination agree with the predictions of a mathematical model developed to take account of reemission following the absorption of luminescence. Under solar illumination, the model predicts photon flux concentrations of about 15 for optimized full-scale collectors made of the materials studied and concentrations of 110 for reasonably improved glass.

  18. Revised projection of future greenhouse warming

    NASA Astrophysics Data System (ADS)

    Schlesinger, Michael E.; Jiang, Xingjian

    1991-03-01

    Recent projections of greenhouse warming to 2100 are broadened here to include a recently suggested lower temperature sensitivity Delta T(2x) = 0.5 C. All projections are also revised by prescribing a lower value for a key parameter of the simple ocean model Pi which indicates the warming of the polar ocean relative to the warming of the nonpolar ocean. It is found that, for any value of Delta T(2x), the atmospheric temperature increases more rapidly with time as a consequence of the reduction in Pi. It is also found that a delay of 10 yrs in initiating a 20-year transition from the IPCC (Intergovernmental Panel on Climate Change) 'business as usual' scenario to any other IPCC scenario has only a small effect on the projected warming in 2100, regardless of the value of Delta T(2x). This indicates that the penalty for a 10-yr delay is small.

  19. 76 FR 73885 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-29

    .... Environmental Protection Agency FR Federal Register GHG greenhouse gas GHGRP Greenhouse Gas Reporting Program... September 22, 2009 and published in the Federal Register on October 30, 2009 (74 FR 56260, October 30, 2009... notices were published in 2010 promulgating the requirements for subparts FF, II, and TT (75 FR...

  20. Microtrap assembly for greenhouse gas and air pollution monitoring

    SciTech Connect

    Mitra, Somenath; Saridara, Chutarat

    2015-08-25

    A microtrap assembly includes a carbon nanotube sorbent. The microtrap assembly may be employed as a preconcentrator operable to deliver a sample to an analytical device to measure the concentrations of greenhouse gases. A system includes a microtrap having a carbon nanotube sorbent for measuring the concentrations of greenhouse gases in a sample.

  1. 16. Interior view, greenhouse, south wall taken from the ground. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Interior view, greenhouse, south wall taken from the ground. The original floor height is indicated by the joists on the left. The large opening on the right was formerly fitted with an exterior-fed iron stove used to heat the space on particularly cold days. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  2. 18. Detail view, greenhouse, north wall (Note the type of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Detail view, greenhouse, north wall (Note the type of stone used in the wall construction, the degradation of the interior stucco, and one of the pockets for a former floor joist). - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  3. 9. Detail view, greenhouse, fragment of Doric frieze located in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Detail view, greenhouse, fragment of Doric frieze located in the south wall (Note the decorative mortar work known as galleting in which small stones are imbedded on the surface of the mortar. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  4. 14. Interior view, greenhouse, from the door in the west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Interior view, greenhouse, from the door in the west wall. The timbers extending horizontally across the east wall and pocketed into the stone north and south walls would have originally supported the window sash. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  5. Greenhouse Effect Detection Experiment (GEDEX). Selected data sets

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.; Warnock, Archibald, III

    1992-01-01

    This CD-ROM contains selected data sets compiled by the participants of the Greenhouse Effect Detection Experiment (GEDEX) workshop on atmospheric temperature. The data sets include surface, upper air, and/or satellite-derived measurements of temperature, solar irradiance, clouds, greenhouse gases, fluxes, albedo, aerosols, ozone, and water vapor, along with Southern Oscillation Indices and Quasi-Biennial Oscillation statistics.

  6. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    ERIC Educational Resources Information Center

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  7. Greenhouse gas emissions related to ethanol produced from corn

    SciTech Connect

    Marland, G.

    1994-04-01

    This report confers the details of a panel meeting discussion on greenhouse gases. The topic of this discussion was ethanol. Members discussed all aspects of growing corn and producing ethanol. Then the question was raised as to whether or not this is a suitable substitute to fossil fuel usage in the reduction of greenhouse gas emissions.

  8. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    ERIC Educational Resources Information Center

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  9. Ideas of Elementary Students about Reducing the "Greenhouse Effect."

    ERIC Educational Resources Information Center

    Francis, Claire; And Others

    1993-01-01

    Presents the results of a questionnaire given to 563 elementary students to study their ideas of actions that would reduce the greenhouse effect. Most of the children (87%) appreciated that planting trees would help reduce global warming. During interviews it was discovered that children were confused between the greenhouse effect and ozone layer…

  10. Valuation of carbon capture and sequestration under Greenhouse gas regulations

    SciTech Connect

    Lokey, Elizabeth

    2009-05-15

    The value assigned to CCS depends on the type of greenhouse gas regulation chosen and details of how the market is implemented. This article describes some ways in which CCS can be incorporated into greenhouse gas regulations, together with their implications, and how CCS is treated in current regulations for regulated entities. (author)

  11. 40 CFR 1036.530 - Calculating greenhouse gas emission rates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Calculating greenhouse gas emission... Procedures § 1036.530 Calculating greenhouse gas emission rates. This section describes how to calculate... applicable duty cycle as specified in 40 CFR 1065.650. Do not apply infrequent regeneration...

  12. 75 FR 79091 - Mandatory Reporting of Greenhouse Gases

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... -equivalent CWPB center worked prebake FR Federal Register FTIR Fourier transform infrared GC gas... Protection Agency 40 CFR Part 98 Mandatory Reporting of Greenhouse Gases; Final Rule #0;#0;Federal Register... AGENCY 40 CFR Part 98 RIN 2060-AQ33 Mandatory Reporting of Greenhouse Gases AGENCY:...

  13. Nursery and Greenhouse Worker. Student Material. Competency Based Education Curriculum.

    ERIC Educational Resources Information Center

    Long, Diana

    This secondary-level, competency-based curriculum contains 11 modules for Nursery and Greenhouse Worker. A companion teacher's guide is available separately--see note. Each module contains a number of West Virginia-validated Nursery and Greenhouse Worker tasks/competencies with a performance guide listing the steps needed to perform each task,…

  14. Greenhouse gas emissions from soil under changing environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This manuscript is the Guest Editors’ Introduction to a special issue on greenhouse gas emissions from agriculture. The papers were assembled following presentation at EuroSoil 2012. Exchange of greenhouse gases between soils and the atmosphere is a natural consequence of several ecosystem process...

  15. 17. Interior view, greenhouse, north wall taken from the ground. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Interior view, greenhouse, north wall taken from the ground. Stucco-painted white-covered the interior walls in order to seal-off any drafts and to reflect the sunlight entering through the east-facing windows. - John Bartram House & Garden, Greenhouse, 54th Street & LIndbergh Boulevard, Philadelphia, Philadelphia County, PA

  16. The greenhouse gas emissions performance of cellulosic ethanol supply chains in Europe

    PubMed Central

    Slade, Raphael; Bauen, Ausilio; Shah, Nilay

    2009-01-01

    Background Calculating the greenhouse gas savings that may be attributed to biofuels is problematic because production systems are inherently complex and methods used to quantify savings are subjective. Differing approaches and interpretations have fuelled a debate about the environmental merit of biofuels, and consequently about the level of policy support that can be justified. This paper estimates and compares emissions from plausible supply chains for lignocellulosic ethanol production, exemplified using data specific to the UK and Sweden. The common elements that give rise to the greatest greenhouse gas emissions are identified and the sensitivity of total emissions to variations in these elements is estimated. The implications of including consequential impacts including indirect land-use change, and the effects of selecting alternative allocation methods on the interpretation of results are discussed. Results We find that the most important factors affecting supply chain emissions are the emissions embodied in biomass production, the use of electricity in the conversion process and potentially consequential impacts: indirect land-use change and fertiliser replacement. The large quantity of electricity consumed during enzyme manufacture suggests that enzymatic conversion processes may give rise to greater greenhouse gas emissions than the dilute acid conversion process, even though the dilute acid process has a somewhat lower ethanol yield. Conclusion The lignocellulosic ethanol supply chains considered here all lead to greenhouse gas savings relative to gasoline An important caveat to this is that if lignocellulosic ethanol production uses feedstocks that lead to indirect land-use change, or other significant consequential impacts, the benefit may be greatly reduced. Co-locating ethanol, electricity generation and enzyme production in a single facility may improve performance, particularly if this allows the number of energy intensive steps in enzyme

  17. An Impact Triggered Runaway Greenhouse on Mars

    NASA Technical Reports Server (NTRS)

    Segura, T. L.; McKay, C. P.; Toon, O. B.

    2004-01-01

    When a planet is in radiative equilibrium, the incoming solar flux balances the outgoing longwave flux. If something were to perturb the system slightly, say the incoming solar flux increased, the planet would respond by radiating at a higher surface temperature. Since any radiation that comes in must go out, if the incoming is increased, the outgoing must also increase, and this increase manifests itself as a warmer equilibrium temperature. The increase in solar flux would correspond to an increase in temperature, which would increase the amount of water vapor in the atmosphere due to increased evaporation. Since water vapor is a greenhouse gas, it would absorb more radiation in the atmosphere leading to a yet warmer equilibrium temperature. The planet would reach radiative equilibrium at this new temperature. There exists a point, however, past which this positive feedback leads to a "runaway" situation. In this case, the planet does not simply evaporate a little more water and eventually come to a slightly higher equilibrium temperature. Instead, the planet keeps evaporating more and more water until all of the planet's available liquid and solid water is in the atmosphere. The reason for this is generally understood. If the planet's temperature increases, evaporation of water increases, and the absorption of radiation increases. This increases the temperature and the feedback continues until all water is in the atmosphere. The resulting equilibrium temperature is very high, much higher than the equilibrium temperature of a point with slightly lower solar flux. One can picture that as solar flux increases, planetary temperature also increases until the runaway point where temperature suddenly "jumps" to a higher value, in response to all the available water now residing in the atmosphere. This new equilibrium is called a "runaway greenhouse" and it has been theorized that this is what happened to the planet Venus, where the surface temperature is more than 700 K

  18. Opportunities for reducing greenhouse gas emissions in tropical peatlands

    PubMed Central

    Murdiyarso, D.; Hergoualc’h, K.; Verchot, L. V.

    2010-01-01

    The upcoming global mechanism for reducing emissions from deforestation and forest degradation in developing countries should include and prioritize tropical peatlands. Forested tropical peatlands in Southeast Asia are rapidly being converted into production systems by introducing perennial crops for lucrative agribusiness, such as oil-palm and pulpwood plantations, causing large greenhouse gas (GHG) emissions. The Intergovernmental Panel on Climate Change Guidelines for GHG Inventory on Agriculture, Forestry, and Other Land Uses provide an adequate framework for emissions inventories in these ecosystems; however, specific emission factors are needed for more accurate and cost-effective monitoring. The emissions are governed by complex biophysical processes, such as peat decomposition and compaction, nutrient availability, soil water content, and water table level, all of which are affected by management practices. We estimate that total carbon loss from converting peat swamp forests into oil palm is 59.4 ± 10.2 Mg of CO2 per hectare per year during the first 25 y after land-use cover change, of which 61.6% arise from the peat. Of the total amount (1,486 ± 183 Mg of CO2 per hectare over 25 y), 25% are released immediately from land-clearing fire. In order to maintain high palm-oil production, nitrogen inputs through fertilizer are needed and the magnitude of the resulting increased N2O emissions compared to CO2 losses remains unclear. PMID:21081702

  19. Opportunities for reducing greenhouse gas emissions in tropical peatlands.

    PubMed

    Murdiyarso, D; Hergoualc'h, K; Verchot, L V

    2010-11-16

    The upcoming global mechanism for reducing emissions from deforestation and forest degradation in developing countries should include and prioritize tropical peatlands. Forested tropical peatlands in Southeast Asia are rapidly being converted into production systems by introducing perennial crops for lucrative agribusiness, such as oil-palm and pulpwood plantations, causing large greenhouse gas (GHG) emissions. The Intergovernmental Panel on Climate Change Guidelines for GHG Inventory on Agriculture, Forestry, and Other Land Uses provide an adequate framework for emissions inventories in these ecosystems; however, specific emission factors are needed for more accurate and cost-effective monitoring. The emissions are governed by complex biophysical processes, such as peat decomposition and compaction, nutrient availability, soil water content, and water table level, all of which are affected by management practices. We estimate that total carbon loss from converting peat swamp forests into oil palm is 59.4 ± 10.2 Mg of CO(2) per hectare per year during the first 25 y after land-use cover change, of which 61.6% arise from the peat. Of the total amount (1,486 ± 183 Mg of CO(2) per hectare over 25 y), 25% are released immediately from land-clearing fire. In order to maintain high palm-oil production, nitrogen inputs through fertilizer are needed and the magnitude of the resulting increased N(2)O emissions compared to CO(2) losses remains unclear.

  20. Unconventional Heavy Oil Growth and Global Greenhouse Gas Emissions.

    PubMed

    Nduagu, Experience I; Gates, Ian D

    2015-07-21

    Enormous global reserves of unconventional heavy oil make it a significant resource for economic growth and energy security; however, its extraction faces many challenges especially on greenhouse gas (GHG) emissions, water consumption, and recently, social acceptability. Here, we question whether it makes sense to extract and use unconventional heavy oil in spite of these externalities. We place unconventional oils (oil sands and oil shale) alongside shale gas, coal, lignite, wood and conventional oil and gas, and compare their energy intensities and life cycle GHG emissions. Our results reveal that oil shale is the most energy intensive fuel among upgraded primary fossil fuel options followed by in situ-produced bitumen from oil sands. Lignite is the most GHG intensive primary fuel followed by oil shale. Based on future world energy demand projections, we estimate that if growth of unconventional heavy oil production continues unabated, the incremental GHG emissions that results from replacing conventional oil with heavy oil would amount to 4-21 Gt-CO2eq GtCO2eq over four decades (2010 by 2050). However, prevailing socio-economic, regional and global energy politics, environmental and technological challenges may limit growth of heavy oil production and thus its GHG emissions contributions to global fossil fuel emissions may be smaller. PMID:26114481