Science.gov

Sample records for grenville orogenic cycle

  1. The Grenville Orogenic Cycle (ca. 1350-1000 Ma): an Adirondack perspective

    NASA Astrophysics Data System (ADS)

    McLelland, James; Daly, J. Stephen; McLelland, Jonathan M.

    1996-11-01

    The Adirondack Mountains are characterized by three major events that took place during the interval ca. 1350-1000 Ma. The earliest of these is the arc-related Elzevirian Orogeny (ca. 1350-1185 Ma) during which substantial volumes of juvenile calc-alkaline crust were added to the Adirondacks as well as to the northwest segment of the Central Metasedimentary Belt. Data from the southwestern United States as well as from Ireland and Baltica indicate that Elzevirian magmatism and orogeny were of global dimensions. Within the southwestern sector of the Grenville Province, the Elzevirian Orogeny culminated at ca. 1185 Ma when accretion of all outboard terranes was completed. Compressional orogeny related to this convergence resulted in overthickened crust and lithosphere which subsequently delaminated giving rise to orogen collapse and AMCG magmatism that swept southeastward from the Frontenac Terrane into the Adirondack Highlands during the interval ca. 1180-1130 Ma. Localized compressional events within neighboring parts of the Grenville Province emphasize the continued existence of contraction during this interval, although crustal extension caused local in sedimentary basins in which were deposited the Flinton and the St. Boniface Groups. The Adirondacks have not yet provided any record of events within the interval ca. 1125-1100 Ma, although there is evidence of contraction elsewhere in the southwestern Grenville Province at that time. At 1100-1090 Ma the northern Adirondack Highlands were invaded by mildly A-type hornblende granites (Hawkeye suite) that are interpreted to be the result of local crustal thinning contemporaneous with rifting and mafic magmatism taking place in the Midcontinent rift. Immediately following, at ca. 1090 Ma, the global-scale continental collision of the Ottawan Orogeny was initiated. Strong convergence, deformation, and metamorphism continued to at least ca. 1070 Ma, and rocks older than this are profoundly affected by this event

  2. Exhumed Himalayan-type syntaxis in the Grenville orogen, northeastern Laurentia

    NASA Astrophysics Data System (ADS)

    Gates, Alexander E.; Valentino, David W.; Chiarenzelli, Jeffrey R.; Solar, Gary S.; Hamilton, Michael A.

    2004-04-01

    A deep-seated analog of the syntaxis developed in the Tibetan Plateau occurs in the Grenville Orogen of eastern Laurentia. During the final assembly of Rodinia, Amazonia collided with Laurentia and produced a series of large, conjugate, transcurrent, shear systems and pervasive strike-slip deformation that overprinted compressional structures related to the Ottawan Orogeny (the last orogenic phase of what is considered Grenvillian). A northeast-striking dextral system at least 35-km wide developed in the Reading Prong of New York (locally known as the Hudson Highlands), New Jersey, and Pennsylvania. U-Pb SHRIMP zircon geochronology and Ar/Ar thermochronology on the lowest grade cataclasites constrain the age of movement between 1008 and 876 Ma. A 60-km-wide, east-west striking, sinistral shear system developed across the central Adirondack Highlands. This system overprints rocks with granulite-facies metamorphic assemblages containing ca. 1050 Ma metamorphic zircons and is cut by a swarm of 950 Ma leucogranites. The timing, geometric relationships, and shear sense of the Adirondacks and Reading Prong shear systems suggest a conjugate system within a syntaxis with bulk compression directed ENE-WSW. This tectonic scenario invokes a component of strike-parallel deformation during the Ottawan Orogeny and provides a kinematic mechanism for an otherwise enigmatic, synchronous, late (ca. 930 Ma) extensional event including the Carthage-Colton mylonite zone in the northwest Adirondacks and Canada.

  3. U-Pb geochronology of the Grenville Orogen of Ontario and New York: constraints on ancient crustal tectonics

    NASA Astrophysics Data System (ADS)

    Mezger, K.; Essene, E. J.; van der Pluijm, B. A.; Halliday, A. N.

    1993-05-01

    Based on lithological, structural and geophysical characteristics, the Proterozoic Grenville Orogen of southern Ontario and New York has been divided into domains that are separated from each other by ductile shear zones. In order to constrain the timing of metamorphism, U-Pb ages were determined on metamorphic and igneous sphenes from marbles, calc-silicate gneisses, amphibolites, granitoids, skarns and pegmatites. In addition, U-Pb ages were obtained for monazites from metapelites and for a rutile from an amphibolite. These mineral ages constrain the timing of mineral growth, the duration of metamorphism and the cooling history of the different domains that make up the southern part of the exposed Grenville Orogen. Based on the ages from metamorphic minerals, regional and contact metamorphism occurred in the following intervals: Central Granulite Terrane: Adirondack Highlands: 1150 Ma; 1070 1050 Ma; 1030 1000 Ma Central Metasedimentary Belt: Adirondack Lowlands 1170 1130 Ma Frontenac domain 1175 1150 Ma Sharbot Lake domain ca. 1152 Ma Flzevir domain: 1240 Ma; 1060 1020 Ma Bancroft domain: ca. 1150 Ma; 1045 1030 Ma Central Gneiss Belt: ca. 1450 Ma; ca. 1150 Ma; 1100 1050 Ma Grenville Front Tectonic Zone ca. 1000 Ma. Combination of mineral ages with results from thermobarometry indicates that metamorphic pressures and temperatures recorded by thermobarometers were reached polychronously in the different domains that are separated by major shear zones. Some of these shear zones such as the Robertson Lake shear zone and the Carthage-Colton shear zone represent major tectonic boundaries. The Grenville Orogen is made up of a collage of crustal terranes that have distinct thermal and tectonic histories and that were accreted laterally by tectonic processes analogous to those observed along modern active continental margins. The subsequent history of the orogen is characterized by slow time-integrated cooling rates of 3±1°C/Ma and denudation rates of 120±40m/Ma.

  4. How does the deep orogenic crust deform? The example of the Central Gneiss Belt (CGB), Grenville Province, Ontario.

    NASA Astrophysics Data System (ADS)

    Culshaw, Nicholas; Gerbi, Christopher; Marsh, Jeffrey; Slagstad, Trond

    2013-04-01

    The CGB may be understood as the product of deep crustal nappe flow requiring high strains during thickening- (P1) and flow- (P2) related phases. We attempt to describe, in terms of structural geometry and rheology, how these deformations are accommodated. The CGB consists of domains (thrust sheets) primarily composed of Proterozoic allochthonous and parautochthonous granitoid continental arc protoliths. These were either deformed at high grade (polycyclic) or never deformed (monocyclic) prior to granulite and amphibolite facies deformation in the Grenville orogeny. Grenville-age structure: polycyclic rocks do not melt and in P1-2 form narrow gneissic shear zones transposing pre-Grenville fabric or uniform domain-wide transposition gneissosity. Monocyclic rocks interlayed with polycylic form thick uniform migmatite sheets. Monocyclic domains not associated with polycyclic units form nappe complexes of highly strained granulite gneiss (P1) or migmatite sheets (P2). At later stages of progressive deformation accompanying nappe flow (P2), gneissosity of monocyclic rocks may be deformed coplanar with P1 gneissosity or form spectacular shear zone systems (amphibolite facies-on-granulite facies, or amphibolite-on-amphibolite). Overall, tracts of uniform deformation (gneiss domains/thrust sheets) are dominant over discrete shear zones. Grenville-age rheology: the largest scale rheological gradient, that between the Archean foreland, showing minor Grenville deformation, and highly deformed Proterozoic arc rocks, depends on the latters' protolith age and history as upper plate in a convergent margin. On the oceanward orogen margin, contrasting arc and back-arc properties resulted in P1 granulite- to amphibolite grade juxtaposition of upper- and deep crustal lithologies. At smaller scale, melting of fertile monocyclic granitoids is a major process, controlling formation of the large uniformly deformed thrust sheets (few internal strain gradients) and low competency layers

  5. The Carthage-Colton mylonite zone (Adirondack Mountains, New York): The site of a cryptic suture in the Grenville Orogen

    SciTech Connect

    Mezger, K.; Pluijm, B.A. van der; Essene, E.J.; Halliday, A.N. )

    1992-09-01

    U-Pb ages were determined on metamorphic sphenes and monazites from the Late Proterozoic Adirondack Highlands and Lowlands in the vicinity of the Carthage-Colton mylonite zone. Monazites were extracted from metapelites, and sphenes were separated from marbles, calc-silicate gneisses, and granite gneisses in order to determine the timing and the duration of metamorphism as well as the cooling histories for rocks on either side of the mylonite zone. Monazite ages from the Lowlands range from 1,171-1,137 Ma; sphene ages in the Lowlands range from 1,156-1,103 Ma, those from the Highlands immediately to the east of the mylonite zone range from 1,050-982 ma. The ages indicate that the last high-grade metamorphism in the Highlands is ca. 100 m.y. younger than in the Lowlands and that both terranes had separate cooling histories at least until ca. 1,000 Ma. Sphenes from within the Carthage-Colton mylonite zone yield ages of about 1,098 Ma, which are distinct from sphene ages on either side of the shear zone. The mineral ages, structures, and metamorphic histories suggests that the Carthage-Colton mylonite zone is a fundamental tectonic boundary within the Proterozoic Grenville Orogen of North America.

  6. A Reconsideration of Pan African Orogenic Cycle in the Anti-Atlas Mountains, Morocco

    NASA Astrophysics Data System (ADS)

    Hefferan, K. P.; Soulaimani, A.; Samson, S. D.; Admou, H.; Inglis, J.; Saquaque, A.; Heywood, N. C.

    2013-12-01

    The term 'Pan African' orogeny was first proposed in 1964 for a tectonothermal event in Africa ~ 500+/- 50 Ma. Over the past 50 years, the Pan African orogeny has been extended to as much as ~1050-450 Ma and recognized in other Gondwanan continents where regional names such as Brasiliano (South America), Adelaidean (Australian) and Bearmore (Antarctica) have been applied. The Pan African time span of ~500 million years is much longer than any Phanerozoic orogeny. However, it does correlate with time ranges of well defined Phanerozoic orogenic cycles such as the Appalachian cycle, extending from ~1,100 to 250 Ma, and the Cordilleran cycle of ~350 Ma to the present. A significant difference of course is that the Appalachian orogenic cycle has long been recognized as consisting of separate Grenville, Taconic, Acadian and Alleghenian orogenies. Similarly, the Mesozoic-Cenozoic Cordilleran orogenic cycle consists of distinct Antler, Sonoma, Nevadan, Sevier, Laramide and ongoing Cascadian-Andean orogenies. Until recently, the absence of precise geochronology in West Africa has prevented a more refined analysis of individual orogenic events within the Pan-African orogenic cycle. Since 2000, precision geochronologic dating by various researchers in the Anti-Atlas Mountains, Morocco, has provided critical data by which it is now appropriate to designate a Pan African orogenic cycle consisting of three separate orogenic events. We herein propose the following distinct orogenic events in the Anti-Atlas Mountains of Morocco: Iriri-Tichibanine orogeny (750-700 Ma), Bou Azzer orogeny (660-640 Ma) and the WACadomian orogeny (620-580 Ma). Generalized tectonic map of the Anti-Atlas Mountain inliers (Adapted from Ennih and Liégeois, 2008). Geodynamic model of the Pan African orogenic cycle in the Anti-Atlas Mountains. Modified from Walsh et al. (2012) and incorporating ideas from Thomas et al. (2002) and El Hadi et al. (2012).

  7. The fate of olivine in the lower crust: Pseudomorphs after olivine in coronitic metagabbro from the Grenville Orogen, Ontario

    NASA Astrophysics Data System (ADS)

    Kendrick, J. L.; Jamieson, R. A.

    2016-09-01

    Orthopyroxene-oxide symplectites after olivine are among the most enigmatic features of corona assemblages in metagabbros. Two coronitic metagabbro bodies from the Algonquin suite in the Grenville Orogen, Ontario, contain exceptionally well preserved orthopyroxene + Fe-Ti oxide symplectite formed during prograde Ottawan (ca. 1060 Ma) granulite-facies metamorphism. Based on textural evidence, we propose a new hypothesis for the formation of these symplectites. Under oxidising conditions associated with fluid infiltration, magmatic olivine and ilmenite underwent a coupled reaction whereby magnetite produced by oxidation of olivine replaced adjacent igneous ilmenite. Ilmenite was re-precipitated as a fine-grained intergrowth with orthopyroxene and some magnetite in the former olivine sites. This hypothesis is supported by textural evidence showing partial replacement of magmatic ilmenite by magnetite and a close spatial association between magmatic oxides and orthopyroxene + Fe-Ti oxide symplectite, which locally radiates from ilmenite into olivine. Measured orthopyroxene/oxide ratios in the symplectite (20-35% oxides) agree with the ratio predicted from the proposed reaction (ca. 30%). Coronas and pseudomorphs formed during high-grade metamorphism, with increasing fO2 interpreted to result from fluid infiltration at near-peak conditions of ca. 13 kbar, 800 °C. The same samples contain red-brown fine-grained aggregates interpreted as iddingsite pseudomorphs after olivine. Raman spectroscopy suggests that the iddingsite consists largely of amorphous silica and Fe-hydroxide; textural evidence indicates that it formed by late-stage oxidation and hydration of olivine that survived earlier metamorphism. The unusual co-occurrence of granulite-facies pseudomorphs after olivine with an alteration product formed at near-surface conditions indicates that some olivine may survive protracted high-grade metamorphism in environments where fluid access is limited.

  8. Determining the significance of high-grade shear zones by using temperature-time paths, with examples from the Grenville orogen

    NASA Astrophysics Data System (ADS)

    van der Pluijm, Ben A.; Mezger, Klaus; Cosca, Michael A.; Essene, Eric J.

    1994-08-01

    Ductile shear zones preserve essential information on processes that are active in orogenic roots, but the significance of these zones is often difficult to interpret. Structural, petrologic, and geochronologic data from shear zones yield elements of the history that are not necessarily synchronous. However, by combining these data with temperature-time (T-t) paths, insights are obtained into the nature of shear zones, the relation between bounding blocks, and orogenic evolution of the deep crust. This procedure is illustrated with two examples from the mid-Proterozoic Grenville orogen. T-t paths from ˜1160 to ˜900 Ma are based on U-Pb dating of metamorphic minerals—including garnet (closure temperature, Tc, >800 °C), monazite (Tc ≅ 725 °C), sphene (Tc ≅ 600 °C), and rutile (Tc ≅ 400 °C)—and 40Ar/39Ar hornblende ages (Tc ≅ 480°C). Comparison of T-t paths from adjacent blocks allows predictions about the significance, kinematics, and timing of displacement of shear zones. In the Grenville orogen, T-t paths can distinguish between major terrane boundaries (e.g., the Carthage-Colton shear zone) and within-terrane shear zones (e.g., the Bancroft shear zone). Thus, these data can also be used to identify individual tectonic terranes in the deep crust. This integrated approach to analysis of shear zones provides constraints needed to determine the nature and rate of deep orogenic processes in areas that are complicated by high metamorphic grades.

  9. Cooling and inferred uplift/erosion history of the Grenville Orogen, Ontario: Constraints from sup 40 Ar/ sup 39 Ar thermochronology

    SciTech Connect

    Cosca, M.A.

    1989-01-01

    Thermochronological ({sup 40}Ar/{sup 39}Ar) data are presented from 76 mineral separates of hornblende, muscovite, biotite, phlogopite, and K-feldspar. Samples were selected from regionally metamorphosed gneiss, amphibolite, metasediment, marble, metagabbro and pegmatite across the two major metamorphic belts of the Grenville Province, the Central Metasedimentary Belt (CMB) and the Central Gneiss Belt (CGB). When combined with published temperature estimates for closure to argon diffusion in the phases analyzed, cooling rates from {approximately}500 C to {approximately}120 C of 1-4 C/MA are calculated across the entire Grenville Province of Ontario. Regional uplift/erosion rates for the Grenville Orogen of Ontario have been estimated from the {sup 40}Ar/{sup 39}Ar data, a retrograde P-T path for rocks of the CGB, and an upper time constraint provided by flat, overlying Cambro-Ordovician sediments. Twenty-two of the hornblendes used for thermochronology have been quantitatively analyzed for major elements by microprobe, Fe{sup 2+}/Fe{sup 3+} by wet chemistry, and for H{sub 2}O by manometric measurement. Water activities calculated from hornblende equilibria are typically low (<0.01) because of the exponential dilutions in hornblende (tremolite) activity required by present activity-composition models. An oxyamphibole component of 25% further reduces any amphibole component and the H{sub 2}O activity by as much as 50% below that calculated with simplifying assumption. These findings indicate that different amphibole normalization schemes have a marked effect on the activity calculated for a specific amphibole or H{sub 2}O, and should be carefully evaluated.

  10. Visualizing the sedimentary response through the orogenic cycle using multi-dimensional scaling

    NASA Astrophysics Data System (ADS)

    Spencer, C. J.; Kirkland, C.

    2015-12-01

    Changing patterns in detrital provenance through time have the ability to resolve salient features of an orogenic cycle. Such changes in the age spectrum of detrital minerals can be attributed to fluctuations in the geodynamic regime (e.g. opening of seaways, initiation of subduction and arc magmatism, and transition from subduction to collisional tectonics with arrival of exotic crustal material). These processes manifest themselves through a variety of sedimentary responses due to basin formation, transition from rift to drift sedimentation, or inversion and basement unroofing. This generally is charted by the presence of older detrital zircon populations during basement unroofing events and is followed by a successive younging in the detrital zircon age signature either through arrival of young island arc terranes or the progression of subduction magmatism along a continental margin. The sedimentary response to the aforementioned geodynamic environment can be visualized using a multi-dimensional scaling approach to detrital zircon age spectra. This statistical tool characterizes the "dissimilarity" of age spectra of the various sedimentary successions, but importantly also charts this measure through time. We present three case studies in which multi-dimensional scaling reveals additional useful information on the style of basin evolution within the orogenic cycle. The Albany-Fraser Orogeny in Western Australia and Grenville Orogeny (sensu stricto) in Laurentia demonstrate clear patterns in which detrital zircon age spectra become more dissimilar with time. In stark contrast, sedimentary successions from the Meso- to Neoproterozoic North Atlantic Region reveal no consistent pattern. Rather, the North Atlantic Region reflects a signature consistent with significant zircon age communication due to a distal position from an orogenic front, oblique translation of terranes, and complexity of the continental margin. This statistical approach provides a mechanism to

  11. Reconstructing deep crustal dynamics in a large, hot orogen: Application of integrated zircon petrochronology and petrological modeling to the Canadian Grenville Province

    NASA Astrophysics Data System (ADS)

    Marsh, Jeffrey; Culshaw, Nicholas

    2014-05-01

    The timing and conditions of high pressure (HP) metamorphism, crustal anatexis, and shear zone formation are of primary importance in understanding lithosphere-scale dynamics of collisional orogens. Within the western Grenville Province, Ontario, Canada, a number of structural and metamorphic relationships are preserved that represent specific orogenic stages or processes. Lower allochthonous domains contain variably retrogressed mafic complexes that typically retain vestages of earlier HP metamorphic assemblages (e.g. garnet porphyroblasts, kyanite, and rutile) within a matrix dominated by incomplete decompression reactions (e.g. pseudomorphous diopside + sodic plagioclase intergrowths after omphacite and concentric coronas of aluminous minerals surrounding kyanite). Zircon from these samples yield U-Pb ages between 1085-1097 Ma, and exhibit REE characteristics consistent with crystallization in an eclogite-facies (garnet-rich, plagioclase-poor) mineral assemblage. REE partitioning between zircon and garnet suggests zircon growth coincided with the latter stages of garnet growth. Titanium concentrations in zircon constrain crystallization temperatures between ~678-736 °C, whereas Zr concentration in rutile yield crystallization temperatures of ~705-740 °C (for rutile inclusions in garnet) and 742-764 °C (for rutile in the matrix). Intersection of zircon and rutile crystallization temperature with the calculated stability field for the HP assemblage (Grt+Cpx+Ky+Rt+Zrn±Hbl) yields minimum pressures of ~15 kbar. Thus, HP metamorphism apparently occurred at ca. 1090 Ma across the orogen, at minimum depths of ~53 km and T ~700±50 °C, yielding a geothermal gradient of < 15 °C/km. Widespread high-T, medium-P metamorphism and migmatization in the surrounding gneisses apparently began around 1090-1080 Ma, suggesting a rapidly evolving thermal field synchronous with the exhumation of HP rocks to mid-crustal depths. Zircon U-Pb ages and REE patterns from a large

  12. Sensitive high resolution ion microprobe (SHRIMP) detrital zircon geochronology provides new evidence for a hidden neoproterozoic foreland basin to the Grenville Orogen in the eastern Midwest, U.S.A

    USGS Publications Warehouse

    Santos, J.O.S.; Hartmann, L.A.; McNaughton, N.J.; Easton, R. M.; Rea, R.G.; Potter, P.E.

    2002-01-01

    A sensitive high resolution ion microprobe (SHRIMP) was used in combination with backscattered electron (BSE) and cathodoluminescence (CL) images to determine the age of detrital zircons from sandstones in the Neoproterozoic Middle Run Formation of the eastern Midwest, United States. Eleven samples from seven drill cores of the upper part of the Middle Run Formation contain detrital zircons ranging in age from 1030 to 1982 Ma (84 analyses), with six distinctive modes at 1.96, 1.63, 1.47, 1.34, 1.15, and 1.08 Ga. This indicates that most, but not all, of the zircon at the top of the Middle Run Formation was derived from the Grenville Orogen. The youngest concordant detrital zircon yields a maximum age of 1048 ?? 22 Ma for the Middle Run Formation, indicating that the formation is younger than ca. 1026 Ma minus the added extra time needed for later uplift, denudation, thrusting, erosion, and transport to southwestern Ohio. Thus, as judged by proximity, composition, thickness, and geochronology, it is a North American equivalent to other Neoproterozoic Grenvillian-derived basins, such as the Torridon Group of Scotland and the Palmeiral Formation of South America. An alternate possibility, although much less likely in our opinion, is that it could be much younger, any time between 1048 ?? 22 Ma and the deposition of the Middle Cambrian Mount Simon Sandstone at about 510 Ma, and still virtually almost all derived from rocks of the Grenville Orogen.

  13. The Impact of Partial Melting in the Orogenic Cycle

    NASA Astrophysics Data System (ADS)

    Rey, P. F.; Teyssier, C.; Whitney, D. L.

    2010-12-01

    Open source, community driven numerical codes available at geodynamics.org allow geologists to model orogenic processes including partial melting and its consequences during orogenic cycles. Here we explore the role of partial melting during continental subduction and its impact on the evolution of orogenic plateaux and that of migmatite-cored metamorphic core complexes. Continental subduction and orogenic plateaux: Numerical experiments show that when continental slabs buried into the mantle meet their solidus, crustal melt is confined to the slab during its ascent and ponds at the Moho (Fig. 1a). The displaced overlying crust is extruded horizontally into the weak lower crust of the continent, resulting in Earth’s surface uplift to form an orogenic plateau, and Moho downward motion to accommodate the influx of material into the lower crust. This model suggests a link between continental subduction, melting and the build up of orogenic plateaux, and show that partial melting may be a significant process in exhumation of ultrahigh-pressure (UHP) rocks. Model results are consistent with the common association of UHP rocks and migmatite. Growth and destruction of orogenic plateaux: The lateral growth of orogenic plateaux is often attributed to the flow of the plateau weak partially melted lower crust into its foreland in some cases over a distance > 1500 km in 15 myr. Using pre-thickening temperatures compatible with Tibet’s uplift history, we show that mass redistribution processes are dynamically coupled, and that CFE velocities are limited to less than 1 cm.yr-1 (~150 km in 15 myr) by cooling and crystallization of the melted channel in the foreland and by any upward deviation into metamorphic domes of the melted channel by extension in the plateau (Fig. 1b). Gravitational collapse and metamorphic core complexes: Localization of extension in the upper crust triggers convergent flow in the partially molten deep crust channel. This convergent flow leads to the

  14. The thermal-mechanical evolution of crustal orogenic belts at convergent plate boundaries: A reappraisal of the orogenic cycle

    NASA Astrophysics Data System (ADS)

    Vanderhaeghe, Olivier

    2012-05-01

    Convergent plate boundaries are characterized by the development of crustal orogenic wedges and orogenic plateaus but also by gravitational collapse of previously thickened crust leading to the opening of intermontane and eventually oceanic back-arc basins. Foreland and extensional sedimentary basins in the plate boundary region are filled by the erosional products of the orogenic crust. Metamorphic rocks forming orogenic crust attest to burial and exhumation under contrasted geothermal gradients. These features portray the crustal orogenic cycle and are first-order indicators of the thermal and mechanical evolution of the crust within the plate boundary region. This evolution is controlled by complex interactions among (i) the dynamic balance among forces that arise from plate-tectonic, gravitational potential energy, and buoyancy, (ii) the thermal balance between deformation-induced and radioactive heat production and heat advection related to subduction, orogenic deformation, and magma transfer, and (iii) the mass transfer balance between uplift and erosion. To account for these geological characteristics, a generic model, that integrates results from physical modeling, is proposed for the thermal-mechanical evolution of crustal orogenic belts and for its implication in controlling the transition between the different phases of the orogenic cycle. In this model, the transition from low to high geothermal gradient is associated with increased heat production in the thickened crust owing to radioactive decay and deformation. Partial melting and rheologic weakening of the thermally mature thickened crust triggers gravity-driven lateral flow of the lower crust and controls the transition from wedge to orogenic plateau. Destruction of the orogenic crust is achieved in part by erosion but mostly by gravitational collapse. The style of extension is controlled by the rheology of the crust at the onset of gravitational collapse and its evolution as the crust thins and

  15. Juvenile Middle Proterozoic crust in the Adirondack Highlands, Grenville province, northeastern North America

    SciTech Connect

    Daly, J.S. ); McLelland, J.M. )

    1991-02-01

    Nd isotope data indicate that minimal amounts of significantly older crust have contributed to the genesis of the oldest (ca. 1.3-13.5 Ga) plutons in the Adirondack Highlands. These are magmatic arc tonalites with positive initial {epsilon}{sub Nd} values and Sm-Nd depleted mantle model ages (t{sub DM}) that are within 70 m.y. of the time of their crystallization. Granitoids of the anorthosite-mangerite-charnockite-granite suite, dated at 1,156-1,134 Ma, as well as the 1,100-1,050 Ma plutons, associated with the Ottawan phase of the Grenvillian orogenic cycle, also have positive initial {epsilon}{sub Nd} values and t{sub DM} ages similar to the tonalites. Derivation of both groups of granitoids by crustal melting of the magmatic arc is consistent with the available isotopic and geochemical data. Juvenile late Middle Proterozoic crust that formed during or just prior to the Grenville cycle appears to dominate the southwestern Grenville province as well as the Grenville inliers to the south. In contrast, most of the contiguous Grenville province in Canada comprises largely reworked older crust.

  16. Paleomagnetism and Thermochronometry of the Grenville Province, Canada

    NASA Astrophysics Data System (ADS)

    Dunlop, D. J.

    2009-05-01

    The Grenville Province, a marginal orogen of the Canadian Precambrian Shield, extends through southern Ontario, Québec and Labrador, with equivalents in Fennoscandia. Before the Iapetus Ocean opened, the Canadian and Fennoscandian orogens were contiguous. Age-equivalent rocks in small exposures in the Appalachians, Texas and Mexico suggest that the subsurface extent of Grenvillia is comparable to that of the Superior Province, the Archean core of the Canadian Shield. It was therefore a substantial continent in its own right at the time it collided with the Superior, Southern and Nain Provinces. However, most of our paleomagnetic knowledge comes from a narrow zone on the (present-day) northern margin of Grenvillia, comprising the Grenville Front Tectonic Zone of reactivated rocks as old as Archean, the Central Gneiss Belt (CGB) with deeply buried and exhumed Proterozoic rocks, and the Central Medisedimentary Belt (CMB), containing a core of less deeply buried rocks where some pre-collisional paleomagnetic information has survived. 40Ar/39Ar thermochronometry has been vital in determining the age relationships of paleomagnetic overprints (often two, occasionally even three, in individual formations) and establishing the Grenville Track of the Laurentian APWP. Most 40Ar/39Ar mineral ages are in the 850 to 1000 Ma range but there is enough separation between key tiepoint poles to permit clockwise and counterclockwise alternatives for the Grenville "Loop". Of great interest are the short track segments defined by mean poles for different domains of the CGB and terranes of the CMB because these may record the sequence of assemblage and/or burial and uplift. Unfortunately the profound contrast between uplift ages of different CMB terranes, as indicated by their hornblende, mica and feldspar 40Ar/39Ar data, is not borne out by the relatively minor differences in mean poles for the same terranes. The "Grenville problem" is therefore still not laid to rest, and furthermore

  17. Short-lived orogenic cycles and the eclogitization of cold crust by spasmodic hot fluids.

    PubMed

    Camacho, Alfredo; Lee, James K W; Hensen, Bastiaan J; Braun, Jean

    2005-06-30

    Collision tectonics and the associated transformation of continental crust to high-pressure rocks (eclogites) are generally well-understood processes, but important contradictions remain between tectonothermal models and petrological-isotopic data obtained from such rocks. Here we use 40Ar-39Ar data coupled with a thermal model to constrain the time-integrated duration of an orogenic cycle (the burial and exhumation of a particular segment of the crust) to be less than 13 Myr. We also determine the total duration of associated metamorphic events to be approximately 20 kyr, and of individual heat pulses experienced by the rocks to be as short as 10 years. Such short timescales are indicative of rapid tectonic processes associated with catastrophic deformation events (earthquakes). Such events triggered transient heat advection by hot fluid along deformation (shear) zones, which cut relatively cool and dry subducted crust. In contrast to current thermal models that assume thermal equilibrium and invoke high ambient temperatures in the thickened crust, our non-steady-state cold-crust model satisfactorily explains several otherwise contradictory geological observations.

  18. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles

    NASA Astrophysics Data System (ADS)

    Cawood, Peter A.; Strachan, Robin A.; Pisarevsky, Sergei A.; Gladkochub, Dmitry P.; Murphy, J. Brendan

    2016-09-01

    Periodic assembly and dispersal of continental fragments has been a characteristic of the solid Earth for much of its history. Geodynamic drivers of this cyclic activity are inferred to be either top-down processes related to near surface lithospheric stresses at plate boundaries or bottom-up processes related to mantle convection and, in particular, mantle plumes, or some combination of the two. Analysis of the geological history of Rodinian crustal blocks suggests that internal rifting and breakup of the supercontinent were linked to the initiation of subduction and development of accretionary orogens around its periphery. Thus, breakup was a top-down instigated process. The locus of convergence was initially around north-eastern and northern Laurentia in the early Neoproterozoic before extending to outboard of Amazonia and Africa, including Avalonia-Cadomia, and arcs outboard of Siberia and eastern to northern Baltica in the mid-Neoproterozoic (∼760 Ma). The duration of subduction around the periphery of Rodinia coincides with the interval of lithospheric extension within the supercontinent, including the opening of the proto-Pacific at ca. 760 Ma and the commencement of rifting in east Laurentia. Final development of passive margin successions around Laurentia, Baltica and Siberia was not completed until the late Neoproterozoic to early Paleozoic (ca. 570-530 Ma), which corresponds with the termination of convergent plate interactions that gave rise to Gondwana and the consequent relocation of subduction zones to the periphery of this supercontinent. The temporal link between external subduction and internal extension suggests that breakup was initiated by a top-down process driven by accretionary tectonics along the periphery of the supercontinent. Plume-related magmatism may be present at specific times and in specific places during breakup but is not the prime driving force. Comparison of the Rodinia record of continental assembly and dispersal with that

  19. The Midcontinent Rift and Grenville connection

    SciTech Connect

    Cambray, F.W.; Fujita, K. . Dept. of Geological Sciences)

    1994-04-01

    The Mid-Proterozoic, Midcontinent Rift System (MRS) is delineated by an inverted U shaped gravity and magnetic anomaly. It terminates in southeast Michigan but a less continuous series of anomalies and sediments, the Eastcontinent Rift occur on a north-south line through Ohio and Kentucky. The geometry allows for a north-south opening, the Lake Superior section being orthogonal to opening, the western arm transtensional and the north-south trending eastern arm a transform boundary offset by pull-apart basins. The opening and closing of the rift overlaps in time with the Grenville Orogeny. Grenville age rocks can also be found in the Llano uplift of Texas. The authors propose a model to explain the temporal and geographic association of the opening and closing of the MRS with the Grenville Orogeny that involves irregular suturing between two continental masses. Initiation of Grenville suturing, associated with south dipping subduction, in the northeast and in the Llano area of Texas would leave portion of unclosed ocean in between. Tensional stresses in the continental crust adjacent to the oceanic remnant could lead to its fragmentation and the formation of the MRS. The remaining oceanic lithosphere would eventually subduct, limiting the opening of the MRS. Continued convergence of the plates would induce compressional stresses thus accounting for the deformation of the MRS. An analogy is made with more recent opening of the Red Sea, Gulf of Aden Rift System in association with irregular collision along the Zagros-Bitlis Sutures.

  20. Chronologic constraints on the tectonic evolution of the Wilson Lake terrane of the Grenville Province, Canada

    NASA Astrophysics Data System (ADS)

    Reno, B. L.; Korhonen, F. J.; Stout, J. H.; Waight, T.

    2010-12-01

    The Wilson Lake terrane in central Labrador, Canada is one of a number of terranes that make up the Grenville Province, representing the northern extent of the Grenville Orogen in North America. Many of these terranes record evidence of two orogenies: the Labradorian Orogeny at ca. 1710-1600 Ma, and the Grenville Orogeny at ca. 1080-980 Ma. The rocks in the Wilson Lake terrane are interpreted to have been subjected to peak pressures of ~0.95 GPa and ~930°C during the Labradorian Orogeny (Korhonen et al., in prep., Stability of sapphirine + quartz in the Wilson Lake terrane: calculated equilibria in NCKFMASHTO). The final amalgamation of the Wilson Lake terrane over the underlying Parautochthonous Belt is interpreted to have occurred during the Grenville Orogeny, when the terrane was subjected to a lower-T (500-350°C) overprinting. However, petrologic and chronologic evidence for the Grenville orogeny is limited in the Wilson Lake terrane. Here we present results from a monazite chemical (U-Th)-Pb chronologic study in order to provide constraints on the metamorphic history of the Wilson Lake terrane. Monazite was analyzed in samples of orthopyroxene + sillimanite + quartz bearing and sapphirine + quartz bearing gneisses from throughout the Wilson Lake terrane. These samples contain two distinct populations of monazite: 1) a population of large (up to ~500 μm) monazite exhibits distinct core and rim zoning in yttrium X-ray compositional maps, and occurs predominately in the melanosome of the rocks, and 2) a population of smaller (up to ~50 μm) unzoned monazite rarely occurs in quartz-rich layers of the rocks. In a majority of the melanosome-hosted monazite, (U-Th)-Pb chemical ages yield cores and rims with statistically similar Labradorian ages of ca. 1705-1675 Ma. However, one sample from the middle of the terrane yields monazite grains with Labradorian age cores (ca. 1710 Ma) and post-Labradorian rims (ca. 1590 Ma). Monazite from the second, quartz

  1. Structural investigation of the Grenville Province by radar and other imaging and nonimaging sensors

    NASA Technical Reports Server (NTRS)

    Lowman, P. D., Jr.; Blodget, H. W.; Webster, W. J., Jr.; Paia, S.; Singhroy, V. H.; Slaney, V. R.

    1984-01-01

    The structural investigation of the Canadian Shield by orbital radar and LANDSAT, is outlined. The area includes parts of the central metasedimentary belt and the Ontario gneiss belt, and major structures as well-expressed topographically. The primary objective is to apply SIR-B data to the mapping of this key part of the Grenville orogen, specifically ductile fold structures and associated features, and igneous, metamorphic, and sedimentary rock (including glacial and recent sediments). Secondary objectives are to support the Canadian RADARSAT project by evaluating the baseline parameters of a Canadian imaging radar satellite planned for late in the decade. The baseline parameters include optimum incidence and azimuth angles. The experiment is to develop techniques for the use of multiple data sets.

  2. SW Grenville Province, Canada: the case against post 1.4 Ga accretionary tectonics

    NASA Astrophysics Data System (ADS)

    Hanmer, S.; Corrigan, D.; Pehrsson, S.; Nadeau, L.

    2000-03-01

    Seven accretionary sutures, formed between 1.16 and 1.03 Ga, have been identified by different authors in the Ontario-Quebec-Adirondack (OQA) segment of the Mesoproterozoic Grenville orogen in Canada. With one exception, the inferred accretionary terrane boundaries lie within, or at the margins of the Central Metasedimentary Belt (CMB), located between the Central Gneiss Belt and the Adirondack Highlands (Central Granulite Terrane). However, geological, geochronological, and petrological data suggest that the Grenville orogen on both sides of the proposed terrane boundaries (sutures) preserves a common 1.4-1.03 Ga tectonomagmatic history, inconsistent with its origin as a post-1.4 Ga collage of exotic tectonic blocks. Features which straddle the proposed 1.16-1.03 Ga 'sutures', from the Central Gneiss Belt, via the Adirondack Highlands, to the Mauricie area, include: (1) Mesoproterozoic continental crust (1.5-1.4 Ga) forming the host and/or basement to younger magmatic and supracrustal suites. (2) A 1.35-1.3 Ga continental arc, remnants of which occur from the CMB boundary zone (CMBBZ) in Ontario to the Appalachians in the United States, built on the 1.5-1.4 Ga continental crust. (3) Intrusions of 1.17-1.13 Ga age in the Central Gneiss Belt (mafic suite), and the Adirondack Highlands and their Quebec extension (AMCG suite, i.e. anorthosite massifs and related granitoids). (4) Relics of 1.18-1.14 Ga sedimentary basins in the northwestern CMB and the Mauricie area. We propose that an alternative model can adequately account for the observed geology of this part of the Grenville orogen wherein, the rocks of the OQA segment were part of an Andean-type margin between 1.4 and 1.2 Ga. At 1.35-1.3 Ga, a continental magmatic arc was built upon the southeastern margin of Laurentia represented by the 1.5-1.4 Ga Mesoproterozoic continental crust. The arc split at 1.3 Ga forming an ensialic back arc basin, relics of which now occur in the northwestern part of the CMB, and the

  3. Grenville tectonic events and evolution of the Yenisei Ridge at the western margin of the Siberian Craton

    NASA Astrophysics Data System (ADS)

    Likhanov, I. I.; Nozhkin, A. D.; Reverdatto, V. V.; Kozlov, P. S.

    2014-09-01

    Geological, petrologic, geochemical, and isotopic geochronological evidence for Grenville events at the western margin of the Siberian Craton are considered. These events were related to assembly of the Rodinia supercontinent. Multiple manifestations of riftogenic and within-plate magmatism at the final stage of orogenic evolution gave rise to breakdown of Rodinia and the formation of the Paleoasian ocean. The results allowed us to develop a new concept on the Precambrian geological evolution of the Yenisei Ridge and the processes that created its tectonic structure. The chronological sequence of events in the history of the Transangarian Yenisei Ridge is based on geological evidence and isotopic dating of Precambrian complexes variable in geodynamic nature. Four tectonic stages dated at 1.4-1.1, 1.1-0.9, 0.90-0.85, and 0.8-0.6 Ga were controlled by collision and extension recognized from large regional linear crustal structural elements. The evolution of the Transangarian Yenisei Ridge, which lasted for ˜650 Ma, corresponds in duration to supercontinental cycles that begin from rifting and breakdown of the predated supercontinent and was completed by orogeny and the formation of a new supercontinent. The regional geodynamic history correlates with the synchronous sequence and similar style of tectonothermal events at the periphery of the large Precambrian Laurentia and Baltica cratons. This is evidenced by paleocontinental reconstructions, which confirm close spatiotemporal links of Siberia with cratons in the northern Atlantic 1400-600 Ma ago and indicate incorporation of the Siberian Craton into the ancient Nuna and Rodinia supercontinents.

  4. Acadian orogen Which Acadian orogen

    SciTech Connect

    Ludman, A. )

    1993-03-01

    The Acadian orogeny is widely viewed as the climactic event in much of the Northern Appalachians, resulting from the closing of one or more ocean basins and the accretion of the Avalonian continent to ancestral North America. Unconformities have traditionally dated the Acadian orogeny as Middle Devonian in the east and Late Middle to Late Devonian in the western part of the orogen. The recent recognition that several post-Acadian'' plutons are actually Late Silurian suggests that the tectonic models are too simplistic; that accretion previously attributed to a Devonian (Acadian) event may have been a two-stage process: Late Silurian (Salinic ) and Acadian sensu stricto; that orogenic activity may have been continuous from Taconian through Acadian'' times. Differences between the records of the Taconic (Ordovician) and Acadian orogenies suggest different plate interactions: near-orthogonal subduction for the former vs transcurrent faulting for the latter as the dominant mechanisms. Distribution of Salinic'' unconformities across the Northern Appalachian orogen in Maine suggests that accretion of Avalon may have been completed by that Silurian event, but faunal provincialities displayed by fossils as young as Early Devonian in terranes bordering the Fredericton Trough argue for later (Devonian) accretion. A further complication is the imprecise knowledge of the extent to which post-Devonian tectonism is responsible for the current terrane configuration in the Northern Appalachians. Alleghenian folding and thrusting is well-established in some areas where post-Acadian (Carboniferous) strata are present, and is now being documented in older rocks in eastern Maine as well: transcurrent faulting as young as post-Mesozoic( ) along the Norumbega Fault Zone; east-directed thrusting involving the Early Devonian Center Pond pluton.

  5. Grenville-age, polyphase deformation of mid-Proterozoic basement, NW Van Horn Mountains, trans-Pecos, Texas

    SciTech Connect

    Bristol, D.A.; Mosher, S. )

    1989-01-01

    Psammitic, pelitic, and mafic schists in a basement horst in the NW Van Horn Mountains of west Texas preserve evidence of a multiphase, synmetamorphic, Grenville-age ductile deformation. Three phase of progressive isoclinal folding followed by two later, less intense, nearly coaxial folding phases have been identified. The second phase of deformation produced the dominant foliation and foliation-intersection lineation observed throughout area. This deformation is inferred to have resulted from a regional-scale folding, possible associated with napped formation, at or near peak metamorphic conditions. Mineral assemblages indicated amphibolite facies, and Fe-Mg exchange thermometry provide maximum temperatures of 640 {plus minus} 50 C corresponding to mid-amphibolite facies conditions. Three subsequent fold generations (F{sub 3}-F{sub 5}) formed under progressively lower metamorphic conditions; F{sub 3} produced a weakly developed foliation (S{sub 3}) whereas neither of the two later folding phases formed a penetrative fabric. Fluids or heat associated with the widespread intrusion of late syn- to post-orogenic pegmatites facilitated a static recrystallization event which altered previously formed deformational fabrics. Other basement exposures in the Van Horn area record a later phase of Grenville-age brittle deformation that has wholly or partly obscured the earlier formed ductile features. The Grenville-age, progressive deformational history recorded in the basement rocks of the Van Horn area is similar to that noted in portions of the Llano Uplift of central Texas and in the Adirondack Mountains of New York and suggests that the Grenville orogeny was characterized by oblique convergence along the length of the North American craton.

  6. Grenville foreland thrust belt hidden beneath the eastern US midcontinent

    SciTech Connect

    Hauser, E.C. )

    1993-01-01

    Grenville foreland thrust structures are observed beneath the eastern US midcontinent on COCORP (Consortium for Continental Reflection Profiling) line OH-1 and a short seismic line in southwest Ohio. These structures represent the first evidence for a significant Grenville foreland thrust belt preserved in eastern North America. On the COCORP lines, the structures include a thrust ramp anticline and an associated asymmetric syncline. The Grenville front tectonic zone appears to truncate these foreland structures, indicating a later, second phase expressed as a deeply penetrating, out-of-sequence thrust zone associated with the main uplift of the Grenville province on the east. A short, shallow seismic line in southwestern Ohio reveals an east-dipping sequence of prominently layered rocks that may lie above a footwall ramp to a deeper Grenville thrust fault. A drill hole into the less reflective top of this dipping sequence encountered unmetamorphosed sedimentary rocks like those increasingly reported from other drill holes in southwestern Ohio and adjacent states. Although possibly part of a late Precambrian (Keweenawan ) rift, these clastic sedimentary rocks may instead preserve evidence of a heretofore unrecognized Grenville foreland basin in eastern North America. Alternatively these Precambrian sedimentary rocks together with an underlying, but yet undrilled, strongly layered sequence may correlate with similarly layered rocks observed on COCORP and industrial seismic lines within the Middle Proterozoic granite-rhyolite province to the west in Indiana and Illinois and indicate that unmetamorphosed sedimentary material is an important constituent of the granite-rhyolite province. 25 refs., 6 figs.

  7. Middle to Late Proterozoic tectonic history of Grenville province at Van Horn, Trans-Pecos Texas

    SciTech Connect

    Soegaard, K.; Nielsen, K.C.; Manton, W.I. . Programs in Geosciences)

    1993-02-01

    Middle to Late Proterozoic volcanic and sedimentary sequences near Van Horn in west Texas record the pre- and syn-tectonic history of deformation from shallow crustal levels. Pre-deformational sequences include the Carrizo Mountain Group, the Allamoore and Tumbledown formations. The Carrizo Mountain Group is thrust northward, along the Streeruwitz fault, over a para-autochthonous sequence of unmetamorphosed carbonate and polymodal volcanic rocks of Allamoore and Tumbledown formations. Carbonates in the Allamoore Formation were deposited in shallow water and contain diverse stromatolites, desiccation cracks, and halite pseudomorphs. The Tumbledown formation unconformably overlies the Allamoore carbonate succession and consists of volcanic sandstones, agglomerates, pillow breccias, and mafic volcanic flows. Deformation of the pre-orogenic sequences led to deposition of more than 2,500 meters of immature alluvial fan conglomerates and eolian sandstones of the Hazel Formation. Based on clast composition of boulder conglomerates in the Hazel Formation, the principal source rocks were the Allamoore and Tumbledown formations and an unknown rhyolite terrain, with Carrizo Mountain Group lithologies notably absent. Alluvial megasequences in the alluvial fan conglomerates are aggradational and indicate at least two episodes of faulting accompanied Hazel sedimentation. A mismatch between source terrain and corresponding sediment composition, in addition to aggradation of alluvial fan megasequences, along the southern fault-bounded basin margin supports a transpressive regime for this orogenic belt in favor of a purely convergent margin. The Hazel orogenic sequence post-dated a 1,126--1,070 Ma old regional igneous event, whereas the Grenville deformation in the Llano uplift of central Texas pre-dated the igneous event.

  8. Ophiolites in the Xing'an-Inner Mongolia accretionary belt of the CAOB: Implications for two cycles of seafloor spreading and accretionary orogenic events

    NASA Astrophysics Data System (ADS)

    Song, Shuguang; Wang, Ming-Ming; Xu, Xin; Wang, Chao; Niu, Yaoling; Allen, Mark B.; Su, Li

    2015-10-01

    The Xing'an-Inner Mongolia accretionary belt in the southeastern segment of the Central Asian Orogenic Belt (CAOB) was produced by the long-lived subduction and eventual closure of the Paleo-Asian Ocean and by the convergence between the North China Craton and the Mongolian microcontinent. Two ophiolite belts have been recognized: the northern Erenhot-Hegenshan-Xi-Ujimqin ophiolite belt and the southern Solonker-Linxi ophiolite belt. Most basalts in the northern ophiolite belt exhibit characteristics of normal-type to enriched-type mid-ocean ridge basalt affinities with depleted Nd isotopic composition (ɛNd(t) > +5), comparable to modern Eastern Pacific mid-ocean ridge basalts. Most basaltic rocks in the southern belt show clear geochemical features of suprasubduction zone-type oceanic crust, probably formed in an arc/back-arc environment. The inferred back-arc extension along the Solonker-Linxi belt started at circa 280 Ma. Statistics of all the available age data for the ophiolites indicates two cycles of seafloor spreading/subduction, which gave rise to two main epochs of magmatic activity at 500-410 Ma and 360-220 Ma, respectively, with a gap of ~50 million years (Myr). The spatial and temporal distribution of the ophiolites and concurrent igneous rocks favor bilateral subduction toward the two continental margins in the convergence history, with final collision at ~230-220 Ma. In the whole belt, signals of continental collision and Himalayan-style mountain building are lacking. We thus conclude that the Xing'an-Inner Mongolia segment of the CAOB experienced two cycles of seafloor subduction, back-arc extension, and final "Appalachian-type" soft collision.

  9. Nd isotopes and the origin of Grenville-age rocks in Texas: Implications for Proterozoic evolution of the United States mid-continent region

    SciTech Connect

    Patchett, P.J.; Ruiz, J. )

    1989-11-01

    Nd isotopic data were obtained for Precambrian Grenville-belt rocks in Texas. The samples represent most components of the crust of the Llano, Van Horn, and Franklin Mountains exposed terranes. Almost all Precambrian igneous, metamorphic, and sedimentary rocks from the three regions document addition to North America of mantle-derived crustal materials in the 1.6-1.0 Ga interval. The exception is a quartzite from the westernmost (Franklin Mountains) exposure, which was derived from {approximately}1.8 Ga crust of the southwestern United States. The initial {epsilon}{sub Nd} values of all rocks except the quartzite lie in the +1 to +6 range for igneous/metamorphic ages of 1.37 to 1.06 Ga. These results can be interpreted in two ways: (1) as documenting 0-20% additions of older crustal material to mantle-derived products 1.4-1.0 Ga ago; or (2) as documenting derivation of the Grenville exposures by recycling of older crustal protoliths separated from the mantle 1.6-1.3 Ga ago. The Nd data in isolation do not resolve these two interpretations. The model mantle separation ages (T{sub DM}) of the rocks are very similar to published values of granulites in Mexico and Virginia: all these regions of the United States and Mexico show a strong peak of T{sub DM} around 1.4 Ga ago. If the ages represent older crustal protoliths, then they would have formed coevally with the 1.5-1.3 Ga Granite-Rhyolite Terranes of the continental interior USA. This would imply that the Granite-Rhyolite Terranes were formed during orogenic/accretionary processes in the adjoining Grenville Belt, and are not anorogenic in association, as conventionally assumed.

  10. 40Ar/39Ar cooling history of the Albany Mobile Belt, Albany-Fraser Orogen, Western Australia

    NASA Astrophysics Data System (ADS)

    Scibiorski, Elisabeth; Tohver, Eric; Jourdan, Fred

    2013-04-01

    The Albany-Fraser Orogen of southwestern Australia is a Grenville-age orogenic belt that marks the suturing of the Yilgarn Craton of Western Australia to the Mawson Craton of South Australia and Antarctica. The Albany Mobile Belt is situated in the west of the orogen and consists of three geological domains: the Nornalup Zone, the Biranup Zone and the Northern Foreland. The crustal genesis and nature of boundaries between these domains is unknown. 40Ar/39Ar thermochronology of biotite and muscovite grains from a 250 km transect across all three domains in the Albany Mobile Belt is used to study the exhumation and cooling history of the amphibolite to granulite facies orogenic root. Previously published geochronological data dates peak amphibolite or granulite facies metamorphism in the Nornalup Zone, Biranup Zone and Northern Foreland at ca. 1170 Ma, ca. 1180 Ma and ca. 1210 - 1180 Ma respectively. All samples reported in this study yielded well defined plateau ages consistent with Stage II of the Albany-Fraser Orogeny (1215 - 1140 Ma). Four biotites from the Nornalup Zone give cooling ages ranging from 1144 ± 5 Ma to 1168 ± 5 Ma, one biotite from the Biranup Zone gives a cooling age of 1159 ± 5 Ma, and four muscovites from the Northern Foreland give statistically indistinguishable cooling ages ranging from 1157 ± 6 Ma to 1164 ± 5 Ma, with a weighted mean age of 1159 ± 6 Ma (P = 0.10). The new cooling ages imply that the three domains had been brought to a similar structural level (12 - 17 km depth) by ca. 1158 Ma, and have shared a common geological history since that time. This suggests that Stage II tectonic activity may have ended at ca. 1158 Ma in the Albany Mobile Belt, 20 Myr earlier than previously assumed. A cooling rate of 25°C/Myr for the Biranup Zone was calculated based on the 20 Myr interval between peak granulite-facies metamorphism and the cooling of the domain through the estimated biotite closure temperature (ca. 300°C) by ca. 1159 Ma

  11. The Central Metasedimentary Belt (Grenville Province) as a failed back-arc rift zone: Nd isotope evidence

    NASA Astrophysics Data System (ADS)

    Dickin, A. P.; McNutt, R. H.

    2007-07-01

    Nd isotope data are presented for granitoid orthogneisses from the Central Metasedimentary Belt (CMB) of the Grenville Province in order to map the extent of juvenile Grenvillian-age crust within this orogenic belt that is composed mostly of older crustal terranes. The data reveal a 150 km-wide belt of juvenile crust in Ontario, but this belt contains a block of pre-Grenvillian crust (containing the Elzevir pluton) which yields an estimated crustal formation age of 1.5 Ga. The recognition of an older block within the CMB has profound implications for its structure and tectonic evolution, because it implies that juvenile Grenvillian crust, apparently forming a wide NE-SW belt, is in fact distributed in two narrower segments with approximately N-S strike. We suggest that the CMB comprises an en echelon series of ensimatic rift segments, created by back-arc spreading behind a continental margin arc. These rift segments extend southwards (in the subsurface) into the northeastern Unites States. The rift segments contain abundant marble outcrops, consistent with marine incursion into the rift zone, and these deposits also continue northwards into a 'Marble domain' of the CMB in Quebec. However, crustal formation ages in the latter domain are largely pre-Grenvillian, implying that the Quebec rift segment was ensialic. Hence, we interpret the CMB in Ontario and Quebec as the northern termination of a failed back-arc rift zone.

  12. Lead isotope mapping of crustal reservoirs within the Grenville Superterrane: I. Central and southern Appalachians

    NASA Astrophysics Data System (ADS)

    Sinha, A. K.; Hogan, J. P.; Parks, J.

    New whole rock Pb isotope data are presented from basement rocks of Grenville age. Samples from nine major basement rocks, extending from Pennsylvania to Georgia have been utilized to delineate isotopic crustal reservoirs. Utilizing Pb isotope correlation diagrams, three distinct isotopic reservoirs can be recognized. The three groups are subdivided on the basis of inferred μ (238U/204Pb) of the Grenville age rocks, as well as evidence of an Archean component in two of the blocks. On the basis of only 94 analyses, the three groups are: (i) Carvers Gap Gneiss and Stage Road Layered Gneiss; (ii) Blue Ridge, Baltimore Gneiss, State Farm Gneiss, and Pine Mountain Gneiss; and (iii) Tallulah Falls, Sauratown Mountain, Corbin and Honeybrook Uplands. It is suggested that Grenville age tectonic processes juxtaposed these isotopic reservoirs, leading to the development of the Grenville Superterrane.

  13. Implications of Laurentian Grenville crust in the northern Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Steltenpohl, Mark; Andresen, Arild; Augland, Lars; Prouty, Jonathan; Corfu, Fernando

    2014-05-01

    Field and geochronological data (40Ar/39Ar and U-Pb ID-TIMS and SHRIMP) on granitoids and their metasedimentary host rocks in the Salten region, northern Norway, document large Early Neoproterozoic plutons intruding slightly older metasedimentary protoliths. The Bratten-Landegode-Tårnvika gneiss complex, herein called the Rørstad complex, and the Heggmo unit have traditionally been interpreted to represent Baltican basement culminations (~ 1.8 Ga), but we document them to be exotic Grenville elements within separate thrust sheets at the structurally highest preserved tectonostratigraphic level (Uppermost Allochthon) of the Scandinavian Caledonides. Neoproterozoic ages for magmatism in these two tectonic units range between ~ 950 and 926 Ma, whereas metasedimentary host rocks of the Heggmo unit were deposited after ~1050 Ma (youngest zircon) prior to their intrusion. We suggest correlation of the metasedimentary rocks between the Heggmo and the Rørstad, although differences in their tectonometamorphic histories are clear. The Rørstad complex was migmatized in the Late Ordovician (~450 Ma) and later intruded by pegmatites and diorite sheets at ~433 and 428 Ma, respectively. Ordovician migmatites have not been found in the Heggmo unit, but relics of ~450 Ma activity might be masked by intense migmatization and associated leuocogranite activity are documented. 40Ar/39Ar step-heating analysis of hornblende and K-feldspar locally record pre-Scandian thermal effects, whereas muscovites and phlogopites indicate Siluro-Devonian metamorphism and cooling from Scandian emplacement. The Rørstad complex and the Heggmo unit show one-to-one correlations in ages with Mesoproterozoic to Neoproterozoic rock complexes from the southern segment of the East Greenland Caledonides, as well as affinities to other complexes throughout the North Atlantic realm. The discovery of Laurentian Grenville-continental crust in the Uppermost Allochthon of the Scandinavian Caledonides requires

  14. The Precambrian of Transangaria, Yenisei Ridge (Siberia): Neoproterozoic microcontinent, Grenville-age orogen, or reworked margin of the Siberian craton?

    NASA Astrophysics Data System (ADS)

    Kuzmichev, Alexander B.; Sklyarov, Eugene V.

    2016-01-01

    The Yenisei Ridge was traditionally perceived as an uplifted segment of the western Siberian craton affected by Neoproterozoic collision events. However, the suggestions for Archaean or Palaeoproterozoic ('Siberian') basement in Transangaria have not been confirmed by reliable geochronological data. A new view regards most of the Ridge, namely, its Transangarian segment, to be an exotic Neoproterozoic terrane that collided with Siberia in the late Neoproterozoic. This paper presents new U-Pb SHRIMP zircon ages demonstrating that Archaean rocks (2611 ± 12 Ma) actually exist in this territory. We also provide a review of published U-Pb zircon ages for igneous and metamorphic rocks of Transangaria together with our new age data. This geochronological dataset clarifies the geology of the Yenisei Ridge and leads to new conclusions, as follows. (1) It is likely that Transangaria was originally underlain by an Archaean-Palaeoproterozoic basement, similar to that of the Siberian craton. (2) Geochronological data do not confirm the idea of widespread "Greenvillian age" granitoides in Transangaria. (3) The Neoproterozoic evolution of the Yenisei Ridge segment of the Siberian craton margin includes the following events. (i) Collision of an unidentified terrane with the western margin (in recent coordinates) of the Siberian craton during 900-855 Ma. The colliding terrane is no longer present in the current structure. (ii) Dextral shearing during 830-800 Ma may have been caused by counter-clockwise rotation of the Siberian craton. (iii) Extensional conditions prevailed during 800-700 Ma. The Isakovka oceanic basin formed at this time interval. (iv) Thrusting of the Isakovka island arc and accretionary prism onto the Siberian margin occurred during the late Neoproterozoic (650-630 Ma) and caused high-pressure metamorphism.

  15. Differential unroofing within the central metasedimentary Belt of the Grenville Orogen: constraints from 40Ar/39Ar thermochronology

    USGS Publications Warehouse

    Cosca, M.A.; Essene, E.J.; Kunk, M.J.; Sutter, J.F.

    1992-01-01

    An 40Ar/39Ar thermochronological investigation of upper greenschist to granulite facies gneiss, amphibolite and marble was conducted in the Central Metasedimentary Belt (CMB), Ontario, to constrain its cooling history. Incremental 40Ar/39Ar release spectra indicate that substantial differential unroofing occurred in the CMB between ??? 1000 and ??? 600 Ma. A consistent pattern of significantly older hornblende and phlogopite 40Ar/3Ar cooling ages on the southeast sides of major northeast striking shear zones is interpreted to reflect late displacement due to extensional deformation. Variations in hornblende 40Ar/39Ar age plateaus exceeding 200 Ma occur over distances less than 50 km with major age discontinuities occurring across the Robertson Lake shear zone and the Sharbot Lake mylonite zone which separate the Sharbot Lake terrane from the Elzevir and Frontenac terranes. Extensional displacements of up to 14 km are inferred between the Frontenac and Elzevir terranes of the CMB. No evidence for significant post argon-closure vertical displacement is indicated in the vicinity of the Perth Road mylonite within the Frontenac terrane. Variations of nearly 100 Ma in phlogopite 40Ar/39Ar plateau ages occur in undeformed marble on either side of the Bancroft Shear Zone. Phlogopites from sheared and mylonitized marble within the shear zone yield 40Ar/39Ar diffusional loss profiles, but have older geologically meaningless ages thought to reflect incorporation of excess argon. By ??? 900 Ma, southeast directed extension was occurring throughout the CMB, possibly initiated along previous zones of compressional shearing. An easterly migration of active zones of extension is inferred, possibly related to an earlier, overall easterly migration of active zones of regional thrusting and easterly migration of an ancient subduction zone. The duration of extensional shearing is not well constrained, but must have ceased before ??? 600 Ma as required by the deposition of overlying undeformed Cambrian and/or Ordovician sedimentary rocks. ?? 1992 Springer-Verlag.

  16. Zinc Oxides, Silicates and Sulfides in Grenville Supergroup Marbles of the Western Central Metasedimentary Belt: Their Distribution and Their Genetic Significance

    NASA Astrophysics Data System (ADS)

    Gauthier, M.

    2004-05-01

    -metamorphosed carbonate-hosted Irish zinc deposits, formerly a classic example of the SEDEX-type, indicate that they are in fact epigenetic deposits related to syn-orogenic fluid flows. This genetic model is drastically different from the one envisioned in publications on Grenville zinc deposits. A recent publication relates the precipitation of willemite (a zinc-silicate), instead of sphalerite, to hot, oxidizing fluids associated with salt diapirism. The close association of Grenville zinc deposits to pure dolomitic marble and to anhydrite (Balmat-Edwards, Cadieux, and Maniwaki) or magnesite (Kilmar, Qué.) beds, points toward a relationship with evaporites. Thus, it is timely to revisit the Grenvillian zinc deposits and to revise their genetic model in accordance with recent scientific advances. The distribution of zinc oxides, silicates and sulfides in the dolomitic and calcitic marbles of the Western CMB will be examined in this perspective. A pre-meeting field-trip organized by DIVEX will provide participants with an opportunity to visit the key outcrops discussed in this presentation.

  17. Timing and conditions of high-pressure metamorphism in the western Grenville Province: Constraints from accessory mineral composition and phase equilibrium modeling

    NASA Astrophysics Data System (ADS)

    Marsh, Jeffrey H.; Culshaw, Nicholas G.

    2014-07-01

    Previous geochronological analyses of high pressure (HP) metamorphic rocks in the western Grenville Province, Ontario, Canada have yielded precise U-Pb zircon ages; however, uncertainty has remained as to whether these ages represent the timing of HP metamorphism or the granulite/amphibolite facies overprint accompanying exhumation to a hot middle orogenic crust. Detailed study of these HP rocks, involving garnet, rutile, and zircon trace element analysis, phase equilibrium modeling, and zircon U-Pb geochronology, has yielded much improved constraints on the timing and conditions of HP metamorphism. Zircon from five of the six HP samples yield anchored discordia upper intercept and 207Pb/206Pb weighted average ages between 1097 and 1085 Ma, and typically have trace element compositions consistent with growth in a garnet-rich, plagioclase-poor eclogite-type assemblage (i.e. no negative Eu anomaly and flat HREE trends). Titanium-in-zircon and Zr-in-rutile thermometry indicates that the range of zircon crystallization temperatures for most samples (643-767 °C) is close to that of rutile inclusions in garnet (668-753 °C) and matrix rutile (690-772 °C). Phase relations in a pseudosection calculated for the sample that best preserves the HP assemblage indicate that: (1) the stability field for the inclusions observed in garnet and kyanite is between 11.5 < P < 14 kbar and 600 < T < 700 °C, and (2) zircon and rutile crystallization temperatures intersect the inferred HP assemblage field (Grt + Cpx + Ky + Rt + Hbl + Qtz) and garnet and kyanite modal isopleths at P > ~ 15 kbar, indicating that the ca. 1090 Ma zircon ages date metamorphism at eclogite facies conditions. Thus, the deep burial of mafic lower crust that resulted in HP metamorphism in the western CGB occurred just prior to the main "Ottawan" phase of continental collision in the western Grenville Province (ca. 1080-1040 Ma).

  18. Seismic images of a tectonic subdivision of the Greenville Orogen beneath lakes Ontario and Erie

    USGS Publications Warehouse

    Forsyth, D. A.; Milkereit, B.; Davidson, A.; Hanmer, S.; Hutchinson, Deborah R.; Hinze, W. J.; Mereu, R. F.

    1994-01-01

    New seismic data from marine air-gun and Vibroseis profiles in Lake Ontario and Lake Erie provide images of subhorizontal Phanerozoic sediments underlain by a remarkable series of easterly dipping reflections that extends from the crystalline basement to the lower crust. These reflections are interpreted as structural features of crustal-scale subdivisions within the Grenville Orogen. Broadly deformed, imbricated, and overlapping thrust sheets within the western Central Metasedimentary Belt are succeeded to the west by a complex zone of easterly dipping, apparent thrust faults that are interpreted as a southwest subsurface extension of the boundary zone between the Central Metasedimentary Belt and the Central Gneiss Belt. The interpreted Central Metasedimentary Belt boundary zone has a characteristic magnetic anomaly that provides a link from the adjacent ends of lakes Ontario and Erie to structures exposed 150 km to the north. Less reflective, west-dipping events are interpreted as structures within the eastern Central Gneiss Belt. The seismic interpretation augments current tectonic models that suggest the exposed ductile structures formed at depth as a result of crustal shortening along northwest-verging thrust faults. Relatively shallow reflections across the boundary region suggest local, Late Proterozoic extensional troughs containing post-Grenville sediments, preserved possibly as a result of pre-Paleozoic reactivation of basement structures.

  19. Reworked pre-Grenville crust and timing of Grenville orogenesis in the southeastern Llano Uplift, Texas: Results from U-Pb geochronometry

    SciTech Connect

    Reese, J.F.; Roback, R.C.; Walker, N.W. . Geological Sciences)

    1992-01-01

    Zircon geochronometry of metaigneous units in the southeastern Llano Uplift (1) show that 1355-1215 Ma rocks were tectonically reworked during the Grenville orogeny, (2) further constrain the timing of Grenville orogenesis along the southern margin of North America, and (3) necessitate revision of previously proposed stratigraphic and structural relations within the Llano Supergroup. Multigrain, abraded zircon fractions from a sample of quartzofeldspathic Valley Spring Gneiss (VSG) define a discordia trajectory with an upper intercept of 1355 [plus minus] 3 Ma, interpreted as the igneous crystallization age of the protolith. This age is the oldest thus far documented for Llano Supergroup protoliths and is substantially older than a recently reported age (1232 [plus minus]4 Ma) from a different part of the VSG. The lithologic and chronometric similarities of the old VSG to rocks to the Mid-continent Granite-Rhyolite terrane raise the possibility of genetic relations between these units. Thus components of the VSG are tentatively interpreted to represent a deformed and metamorphosed part of the southernmost Mid-Continent Granite-Rhyolite terrane. Alternatively, this rock could be part of an ensialic arc built upon the margin of southern North America and later deformed during the Grenville orogeny. Analyses from four abraded zircon fractions from a quartzofeldspathic gneiss in the structurally overlying Packsaddle Schist yield an upper intercept of 1215 [plus minus] 3 Ma, interpreted as the igneous protolith crystallization age. This age is the youngest yet determined for a polydeformed metamorphic rock in the Llano Uplift and more tightly brackets the timing of Grenville deformation in the southeastern Llano Uplift to post-1215 Ma and pre-1098 Ma.

  20. Deep crustal structure and seismic expression of the central Appalachian orogenic belt

    SciTech Connect

    Herman, G.C. Rutgers Univ., New Brunswick, NJ )

    1992-03-01

    Deep-seismic reflection profiles across parts of the Central Appalachian orogenic belt indicate that the crust here includes an exposed Paleozoic fold-and-thrust belt that is mainly soled in Proterozoic Grenville basement. Translation strain in the foreland and Highlands resulting from Paleozoic orogenesis is as much as 25 km, exclusive of layer-parallel-shortening penetrative strains. This estimate is limited by the slight structural relief beneath the Pocono plateau and by the lack of extensive Cambrian-Ordovician cover beneath the sole thrust. Earlier estimates of translation strain are much higher. To the southwest, this parautochthonous region is separated by an unrecognized structural transition from the more allochthonous parts of the central and southern Appalachian overthrust belt, marked by significantly larger translation strains. Crustal architecture in the hinterland part of the region is poorly understood due to data gaps.

  1. Oral Histories in Meteoritics and Planetary Science--XVI: Grenville Turner

    NASA Astrophysics Data System (ADS)

    Sears, Derek W. G.

    2012-03-01

    In this interview, Grenville Turner (Fig. 1) recounts how he became interested in meteorites during postdoctoral research with John Reynolds at the University of California, Berkeley, after completing a DPhil with Ken Mayne at the University of Oxford. At Berkeley, he worked on xenon isotopes with fellow students Bob Pepin and Craig Merrihue, but Reynolds' insistence that they analyze all the inert gases in their samples meant that they also made important contributions to Ne isotope studies and potassium-argon dating leading to the Ar-Ar technique. In 1964, Grenville obtained a teaching position at the University of Sheffield where he developed his own laboratory for inert gas isotope measurements. After the return of samples from the Moon by the Apollo program, he became involved in determining the chronology of volcanism and major impacts on the Moon. In 1988, Grenville and his team moved to the University of Manchester as part of a national reorganization of earth science departments. During the post Apollo years, Grenville's interest turned to the development of new instrumentation (resonance ionization mass spectrometry and the ion microprobe), and to problems in terrestrial isotope geochemistry, particularly the source of inert gases in fluid inclusions. He received the Leonard Medal of the Meteoritical Society in 1999, and he has also received awards from the Royal Society, the European Association of Geochemistry, and the Royal Astronomical Society.

  2. Crimean orogene: A nappe interpretation

    SciTech Connect

    Popadyuk, I.V.; Smirnov, S.E. )

    1993-09-01

    On the International Tectonic Map of Europe, the Crimean orogene presents a structure that has no analog in the Alpine orogenic belt. The Crimean mountain system lacks nappe structures of Alpine age. Its geosynclinal folding deformation is restricted to the Tavria flysch formation, previously dated as Triassic-Liassic. Therefore, the Crimean orogene was considered as the Kimmerian tectonotype. In our model, the Crimean orogene is characterized by nappe structures. The Yayla nappe is composed to Upper Jurassic and Neocomian sediments and is located below the Tavrian nappe, which consists of the Tavrian flysch formation. We dated the age of the Tavrian formation as Hauterivian-Aptian on the basis of published ammonite finds in the stratotype section. Nappe displacements are dated roughly as Austrian (albian) by the occurrence of upper-middle Albian sediments below the nappes and the Upper Cretaceous age of their neoautochthonous sedimentary cover. These north-vergent nappes have a horizontal displacement of about 20 km. In the eastern part of the orogene, these nappe structures were overprinted by Laramide-Savic (Paleocene and end Oligocene-early Miocene) deformations, as evident in the Kerch peninsula. The nature of these late deformation is not clear. The hydrocarbon potential of the prenapping autochthonous series has not yet been studied. Exploration for oil and gas in the Crimean sector of the Black Sea must take the suggested model and its implications into account.

  3. Accretionary orogens through Earth history

    USGS Publications Warehouse

    Cawood, Peter A.; Kroner, A.; Collins, W.J.; Kusky, T.M.; Mooney, W.D.; Windley, B.F.

    2009-01-01

    Accretionary orogens form at intraoceanic and continental margin convergent plate boundaries. They include the supra-subduction zone forearc, magmatic arc and back-arc components. Accretionary orogens can be grouped into retreating and advancing types, based on their kinematic framework and resulting geological character. Retreating orogens (e.g. modern western Pacific) are undergoing long-term extension in response to the site of subduction of the lower plate retreating with respect to the overriding plate and are characterized by back-arc basins. Advancing orogens (e.g. Andes) develop in an environment in which the overriding plate is advancing towards the downgoing plate, resulting in the development of foreland fold and thrust belts and crustal thickening. Cratonization of accretionary orogens occurs during continuing plate convergence and requires transient coupling across the plate boundary with strain concentrated in zones of mechanical and thermal weakening such as the magmatic arc and back-arc region. Potential driving mechanisms for coupling include accretion of buoyant lithosphere (terrane accretion), flat-slab subduction, and rapid absolute upper plate motion overriding the downgoing plate. Accretionary orogens have been active throughout Earth history, extending back until at least 3.2 Ga, and potentially earlier, and provide an important constraint on the initiation of horizontal motion of lithospheric plates on Earth. They have been responsible for major growth of the continental lithosphere through the addition of juvenile magmatic products but are also major sites of consumption and reworking of continental crust through time, through sediment subduction and subduction erosion. It is probable that the rates of crustal growth and destruction are roughly equal, implying that net growth since the Archaean is effectively zero. ?? The Geological Society of London 2009.

  4. Petrologic, geochemical, and geochronologic constraints on the tectonic evolution of the southern Appalachian orogen, Blue Ridge Province of western North Carolina

    NASA Astrophysics Data System (ADS)

    Anderson, Eric Douglas

    2011-07-01

    The Blue Ridge Province of western North Carolina contains a wide variety of metamorphosed igneous and sedimentary rocks that record the tectonic effects of Precambrian and Paleozoic orogenic cycles. Tectonic interpretations of the events that led to the present configuration are varied and often conflicting. This investigation examines metamorphosed mafic rocks that are widely interpreted to have formed during the closure of ocean basins. Metabasites, and specifically eclogites, have a tendency to mark tectonic sutures and frequently preserve pressure (P), temperature (T), and age data (t) that can be gleaned from mineral equilibria and U-Pb isotopic compositions. As such, the examination of the metabasites is considered the key to understanding the orogenic history of the southern Blue Ridge where these metabasites occur. Chapter 2 is an investigation of the retrograde reactions related to the decompression of sodic pyroxenes that react to form diopside-plagioclase-hornblende-quartz symplectites as stability fields are overstepped during isothermal decompression. In Chapter 3 metabasites from the central and eastern Blue Ridge are re-examined and P-T pathways of these lithologies are determined. The argument is made that the Taconic orogeny of the Blue Ridge is the result of a continent-continent collision event that culminated in a mega-melange that coincides with the Cullowhee terrane and the eastern Blue Ridge melange of western North Carolina. Chapter 4 contains the results of a geochronological investigation of the Precambrian basement complex of the eastern Great Smoky Mountains. Chapter 5 is a whole rock geochemical study of the same basement complex. In Chapter 6, a potential lithologic correlation between the southern Blue Ridge basement and the Arequipa-Antofalla block of Peru is discussed. The geologic history of western South America from the Mesoproterozoic through Cambrian is summarized, a potential isotope-based lithologic correlation is proposed

  5. Time-space focused intrusion of genetically unrelated arc magmas in the early Paleozoic Ross-Delamerian Orogen (Morozumi Range, Antarctica)

    NASA Astrophysics Data System (ADS)

    Rocchi, S.; Di Vincenzo, G.; Dini, A.; Petrelli, M.; Vezzoni, S.

    2015-09-01

    The growth of continental crust in accretionary orogenic belts takes place through repeated cycles of subduction-accretion of rock units from continental and oceanic magmatic arcs, supra-subduction zone backarcs and forearcs loaded with continent-derived materials. An ancient example relevant to magmatic arc accretion models is represented by the remnants of the Cambrian-Ordovician Ross Orogen in the Morozumi Range, Victoria Land (Antarctica). There, late Neoproterozoic phyllites host an intrusive complex which preserves a remarkably uncommon record of genetically unrelated magma pulses emplaced under a variable stress regime in a short time span: (1) a dominant K-feldspar-phyric granite, (2) fine-grained dioritic stocks and dykes, (3) a peraluminous granite; and (4) a tonalitic-granodioritic dyke swarm. Laserprobe U-Pb zircon dates cluster at late Cambrian times for all these units, yet they carry differential cargoes of relict cores. Unique geochemical-isotopic signatures for both the less evolved magmas (diorite and dyke tonalite) and the most acidic ones (granite and peraluminous granite) indicate that each one of them originated from distinct sources at depth. Additionally, field relationships and chemical evolutionary trends testify for a variety of shallow level open-system processes, such as magma mingling/mixing between diorite and main granite magmas, as well as progressive incorporation of the host schists by the dyke tonalite magma. In summary, crustal growth in the Morozumi intrusive complex was contributed by fresh mantle magma issuing from the metasomatised mantle wedge, while the production of other melts did recycle different crustal portions/layers: the main granite derived from Grenville-age granulitic lower crust; the peraluminous granite from late Proterozoic upper crust, and the tonalite magmas derived from subduction erosion-enriched subarc mantle and evolved by ingestion of local metasedimentary rocks. Overall, the Morozumi intrusive complex

  6. U-Pb zircon dates of morin anorthosite suite rocks, Grenville Province, Quebec

    SciTech Connect

    Doig, R. )

    1991-09-01

    U-Pb zircon ages of samples of anorthosite, pyroxene monzodiorite (jotunite), and pyroxene quartz monzonite (quartz mangerite) of the Morin anorthosite complex, Grenville Province, Quebec, are 1155 {plus minus} 3, 1146 {plus minus} 4 and 1135 {plus minus} 3 Ma, respectively. These dates are very similar to available dates for equivalent units of the Lac St-Jean and Adirondack anorthosite suite occurrences and slightly predate estimates of 1075-1100 Ma for peak metamorphic conditions during the Grenville orogeny in this region. {sup 87}Sr/{sup 86}Sr initial ratios of 0.7048-0.7051 for the three Morin units sampled permit a comagmatic origin if the different emplacement or cooling times can be reconciled. The mangerite sampled cannot have been formed by fusion of the upper crust, but may have been derived from a relatively juvenile crust at depth. All three units have interacted with continental crust, given the likely depleted nature of the mantle in this region.

  7. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  8. Detrital mineral chronology of the Uinta Mountain Group: Implications for the Grenville flood in southwestern Laurentia

    USGS Publications Warehouse

    Mueller, P.A.; Foster, D.A.; Mogk, D.W.; Wooden, J.L.; Kamenov, George D.; Vogl, J.J.

    2007-01-01

    Numerous studies have shown that large quantities of Grenville-age detritus dominate Neo-proterozoic to Cambrian arenites in southwest Laurentia (southwestern United States). U-Pb ages and Hf isotopic compositions of zircons and 40Ar/39Ar ages of white mica from clastic sedimentary rocks of the Neoproterozoic Uinta Mountain Group also indicate significant Mesoproterozoic detritus mixed with a variably abundant Archean component. Zircons with ages representative of the Paleoproterozoic basement in the eastern Uinta Mountains or the younger Paleoproterozoic rocks of the adjacent Yavapai-Mazatzal terranes were not observed. A limited range of initial ??Hf (???90% between -3 and +3) for Mesoproterozoic zircons suggests derivation from a source region (or regions) characterized by mixing between juvenile and reworked older crust during Grenville orogenesis. The enriched Grenville-age basement proposed to underlie much of southeastern North America may be this source based on similarities of Hf isotopic data from Mesoproterozoic zircons in Mississippi River sand and available paleocurrent data. If so, then disruption of this supply in the Cambrian may be related to Iapetan rifting and, perhaps, the separation of the Precordillera terrane from Laurentia. ?? 2007 The Geological Society of America.

  9. The initiation of orogenic margin reverse faulting

    NASA Astrophysics Data System (ADS)

    Bailey, R. C.

    2002-04-01

    Laboratory values of rock friction coefficients suggest that reverse faulting should be very difficult to initiate by simple horizontal compression of the crust. Values of stresses required by Andersonian faulting may be an order of magnitude higher than those actually present in orogenic margins. A simple stress balance calculation shows that the effect of the excess lithostatic pressure under an elevated orogen, if transmitted laterally through a crustal ductile layer to the orogenic margin, is to provide sufficient hydraulic lift under the orogen flanks to initiate reverse faulting by direct lift, even with rock friction coefficients of order 0.8. The required orogenic elevation above surrounding ``normal'' lithosphere is about one fifth of the thickness of the brittle crust of the orogen. This elevation may be as small as 2 km in tectonically active regions. The mechanism works even in the absence of regional lithospheric compressive stresses.

  10. A tale of two sutures: COCORP's deep seismic surveys of the Grenville province in the eastern U.S. midcontinent

    NASA Astrophysics Data System (ADS)

    Culotta, Raymond C.; Pratt, T.; Oliver, J.

    1990-07-01

    A pair of oppositely dipping, crustal-scale shear zones imaged within Grenville basement beneath the Paleozoic cover of Ohio can be correlated, via geopotential lineaments, with similarly oriented geologic and seismically imaged structures hundreds of kilometres to the northeast and southwest, suggesting a relatively simple structural framework for the eastern midcontinent region. An east-dipping zone extending from Lake Huron through western Ohio, and possibly farther southwest, marks the western edge of the Grenville province. Perhaps of greater consequence to an understanding of Grenville tectonics is the discovery of a west-dipping zone underlying the Appalachian basin from northern Alabama to New York within the Grenville province. Correlation of this feature with the seismogenic Clarendon-Linden fault in western New York and a boundary between terranes containing magmatic-arc rocks exposed in Canada suggests that it could mark the site of an intra-Grenville province suture zone. Implications of this interpretation are that the Precambrian foundation of the eastern U.S. midcontinent comprises a relatively simple assemblage of laterally extensive terranes or belts of coeval terranes accreted by familiar plate tectonic processes, and that deep seismic profiling is an effective tool for mapping the three-dimensional distribution of these terranes.

  11. A tale of two sutures: COCORP's deep seismic surveys of the Grenville province in the eastern U. S. midcontinent

    SciTech Connect

    Culotta, R.C.; Oliver, J.; Pratt, T. )

    1990-07-01

    A pair of oppositely dipping, crustal-scale shear zones imaged within Grenville basement beneath the Paleozoic cover of Ohio can be correlated, via geopotential lineaments, with similarly oriented geologic and seismically imaged structures hundreds of kilometres to the northeast and southwest, suggesting a relatively simple structural framework for the eastern midcontinent region. An east-dipping zone extending from Lake Huron through western Ohio, and possibly farther southwest, marks the western edge of the Grenville province. Perhaps of greater consequence to an understanding of Grenville tectonics is the discovery of a west-dipping zone underlying the Appalachian basin from northern Alabama to New York within the Grenville province. Correlation of this feature with the seismogenic Clarendon-Linden fault in western New York and a boundary between terranes containing magmatic-arc rocks exposed in Canada suggests that it could mark the site of an intra-Grenville province suture zone. Implications of this interpretation are that the Precambrian foundation of the eastern U.S. midcontinent comprises a relatively simple assemblage of laterally extensive terranes or belts of coeval terranes accreted by familiar plate tectonic processes, and that deep seismic profiling is an effective tool for mapping the three-dimensional distribution of these terranes.

  12. Ages and petrogenetic significance of igneous mangerite-charnockite suites associated with massif anorthosites, Grenville Province

    SciTech Connect

    Emslie, R.F.; Hunt, P.A. )

    1990-03-01

    U-Pb ages of zircon fractions of major anorthosite-mangerite-charnockite-granite (AMCG) igneous suites imply that this magmatism inaugurated what is widely regarded as the Grenvillian event between about 1.16 and 1.12 Ga ago over about two-thirds of the Grenville Province east, northeast, and southeast of the Central Metasedimentary Belt. Pre-Grenvillian AMCG suites about 1.36 and 1.64 Ga old have much more restricted distribution. An apparent time lag of about 0.05 to 0.10 Ga is indicated between culmination of AMCG magmatism and the widely recognized Grenvillian metamorphic peak (about 1.10 to 1.03 Ga), perhaps the most distinctive hallmark of the Grenville event. The time lag is consistent with conductive heating of thick subcontinental lithosphere that began with initiation of AMCG magmatism and continued until geotherms rose sufficiently to produce granulites in much of the lower to middle crust. Tectonic crustal thickening did not likely occur until later in the sequence of events, perhaps after some cooling from the metamorphic peak. Compressive forces were externally applied, possibly at a distant plate margin, while the continental lithosphere was still thermally weakened from preceding magmatic-metamorphic culminations.

  13. And the Variscan Orogen Buckled

    NASA Astrophysics Data System (ADS)

    Pastor-Galán, D.; Groenewegen, T.; Gutiérrez-Alonso, G.; Langereis, C. G.

    2013-12-01

    Oroclines are the largest scale folds in nature, and as folds can be produced by bending or by buckling. The most commonly invoked bending mechanisms are indentation (the Himalayan syntaxes) and slab roll-back (The Calabria Arc) whereas buckling usually are commonly related with collision of the apex of ribbon continents along strike (Alaskan oroclines). In Western Europe the tectonostratigraphic zonation of Variscan orogen shows a complex 'S' shape pattern recently interpreted as a double orocline consisting of a northern and southern arc. The northern arc, known as Cantabria-Asturias Arc or Cantabrian Orocline, was developed after closure of the Rheic Ocean and the building and collapse of the Variscan orogenic edifice and, therefore, is considered post-Variscan in age. On the other hand, neither the geometry nor the kinematics of the so-called Central Iberian orocline, situated at the south of the Iberian peninsula are properly known. However, it seems reasonable to think that both oroclines developed at the same time as other coupled oroclines, such as the New England oroclines or the Carpathian oroclines. The particular paleogeography of the Variscan belt in Pangea and the kinematics of the oroclinal formation make impossible the mechanisms of indentation or buckling of a ribbon continent. The occurrence of an intense syn- and slightly post-Cantabrian orocline magmatic event (310-290 Ma) has been linked to the development of the orocline(s) due to the particular spatial-temporal distribution of these post-tectonic granitoids and its isotopic signature which would imply that the oroclines (if synchronous) are thick-skinned. This magmatic pulse has also been interpreted as due to slab roll-back. We present widespread evidences of buckling around the whole orocline at different lithospheric levels and new insights of the particular geometry of the southern orocline which is difficult to reconcile with a roll-back related origin. Therefore, a major change in the

  14. Composition of the crust in the Grenville and Appalachian Provinces of North America inferred from VP/VS ratios

    USGS Publications Warehouse

    Musacchio, G.; Mooney, W.D.; Luetgert, J.H.; Christensen, N.I.

    1997-01-01

    We use the ratios between P and S wave velocities (VP/VS), derived from seismic refraction data, to infer the composition of the crust in the Grenville and the Appalachian Provinces of North America. The crust exhibits VP/VS increasing with depth from 1.64 to 1.84; there is a clear distinction between the Grenville Province (average VP/VS=1.81) and the Appalachian Province (average VP/VS=1.73) which persists at all depths. The boundary between these provinces is east dipping extending for 100 km east of the Champlain thrust. In the Appalachian Province the increase in VP/VS ratios with depth from 1.67 to 1.74 ?? 0.02 may reflect a normal decrease of silica content in the continental crust. In the Grenville Province beneath the Central Granulite Terrane, an anomalous VP/VS ratio of 1.82 ?? 0.02 is observed extending to a depth of 10 km; this correlates with the abundance of Ca-plagioclase in the Marcy Anorthosite. At greater depth (15-20 km), where seismic lamination and high electrical conductivity is observed, VP/VS is 1-84 ?? 0.02 and correlates with the Tahawus Complex, a layered mafic intrusion. Within the 25-km-thick lower crust of the Grenville Province the VP/VS is 1-84 ?? 0.02 and P-velocity is 7.0 ?? 0.1 km/s, which are typical for plagioclase-bearing rocks (gabbro-norite). The high VP/VS ratio in the Grenville Province has not been reported in crust of any other age. Since the Grenville Province contains 75% of the world's known anorthosites, high VP/VS ratio is related to high plagioclase. We suggest that the composition of the Grenville lower crust was significantly modified by the emplacement of the anorthosites in the mid-Proterozoic. Copyright 1997 by the American Geophysical Union.

  15. Continental deformation and the mid-lithospheric discontinuity along the Grenville Front

    NASA Astrophysics Data System (ADS)

    Abrahams, L.; Long, M. D.; Ford, H. A.; Wirth, E. A.

    2015-12-01

    The existence of a mid-lithospheric discontinuity (MLD) within the stable continental mantle lithosphere of North America has been well established, but its interpretation remains difficult. Recent work with Ps receiver functions has found evidence for anisotropic structure at MLD depths within the western portion of the Granite-Rhyolite Province, suggesting that the MLD is the result of deformation associated with the formation of the continent. The last significant deformation to occur within the province was approximately 1.3-0.9 Ga and impacted the lithosphere east of the Grenville Front. In this study we analyzed six stations east of the front using Ps receiver functions in order to characterize anisotropy associated with the MLD in the region. Transverse and radial component Ps receiver functions were calculated for six stations (ACSO, BINY, ERPA, MCWV, SSPA, TZTN) using a multi-taper correlation technique and binned as a function of back azimuth and of epicentral distance. All six stations analyzed displayed significant positive phase energy on the radial component at ~6 seconds, which was interpreted as the Moho. At four of the six stations (ACSO, MCWV, SSPA, TZTN) the Moho showed moderate to significant complexity. At stations MCWV, SSPA, TZTN, all located along the Appalachian margin, there was significant transverse component energy at crustal depths with both two- and four-lobed anisotropy patterns observed. While ACSO, BINY, and ERPA displayed evidence of isotropic and/ or anisotropic crustal structure, a coherent pattern in back azimuth could not be established. The radial component receiver functions also exhibited negative phase energy, interpreted as the MLD, between 7.5 and 12.5 seconds (or ~80 to 120 km), at five of the six stations, with the exception of BINY, where no negative phase was observed. The transverse component receiver functions at stations ACSO, ERPA, SSPA and TZTN, also displayed a two-lobed pattern in back azimuth at MLD depths

  16. River Valley pluton, Ontario: A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    USGS Publications Warehouse

    Ashwal, L.D.; Wooden, J.L.

    1989-01-01

    The River Valley pluton is a ca. 100 km2 body of anorthositic and gabbroic rocks located about 50 km northeast of Sudbury, Ontario. The pluton is situated entirely within the Grenville Province, but its western margin is a series of imbricate thrust faults associated with the Grenville Front Tectonic Zone. It is dominated by coarse leuconorite and leucogabbro, with lesser anorthosite, gabbro, and rare ultramafics. Igneous textured rocks are abundant and consist of plagioclase (An60-70) charged with Fe-Ti oxide inclusions, low Ca pyroxene (orthopyroxene and/or inverted pigeonite) and augite. The most unfractionated rocks are minor olivine gabbros with Fo70-80. A variety of deformed and recrystallized equivalents of the igneous-textured rocks is also present, and these are composed largely of calcic plagioclase and hornblende. Ten samples, including both igneous and deformed lithologies give a Pb-Pb whole-rock isochron of 2560??155Ma, which is our best estimate of the time of primary crystallization. The River Valley pluton is thus the oldest anorthositic intrusive yet reported from the Grenville Province, but is more calcic and augitic than typical massifs, and lacks their characteristic Fe-Ti oxide ore deposits. The River Valley body may be more akin to similar gabbro-anorthosite bodies situated at the boundary between the Archean Superior Province and Huronian supracrustal belt of the Southern Province west of the Grenville Front. An Sm-Nd isochron from 3 igneous-textured leucogabbros and an augite mineral separate gives 2377 ?? 68 Ma, implying slight disturbance of the Sm-Nd whole-rock-mineral system during later metamorphism. The Rb-Sr system has been substantially disturbed, giving an age of 2185 ?? 105 Ma, which is similar to internal Pb-Pb isochron ages of 2165 ?? 130 Ma and 2100 ?? 35 Ma for two igneous-textured rocks. It is uncertain whether these ages correspond to a discrete event at this time or represent a partial resetting of the Rb-Sr and Pb

  17. River Valley pluton, Ontario: A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    SciTech Connect

    Ashwal, L.D. ); Wooden, J.L. )

    1989-03-01

    The River Valley pluton is a ca. 100 km{sup 2} body of anorthositic and gabbroic rocks located about 50 km northeast of Sudbury, Ontario. The pluton is situated entirely within the Grenville Province, but its western margin is a series of imbricate thrust faults associated with the Grenville Front Tectonic Zone. It is dominated by coarse leuconorite and leucogabbro, with lesser anorthosite, gabbro, and rare ultramafics. Igneous textured rocks are abundant and consist of plagioclase (An{sub 60-70}) charged with Fe-Ti oxide inclusions, low Ca pyroxene (orthopyroxene and/or inverted pigeonite) and augite. The most unfractionated rocks are minor olivine gabbros with Fo{sub 70-80}. A variety of deformed and recrystallized equivalents of the igneous-textured rocks is also present, and these are composed largely of calcic plagioclase and hornblende. An Sm-Nd isochron from 3 igneous-textured leucogabbros and an augite mineral separate gives 2,377 {plus minus} 68 Ma, implying slight disturbance of the Sm-Nd whole-rock-mineral system during later metamorphism. The Rb-Sr system has been substantially disturbed, giving an age of 2,185 {plus minus} 105 Ma, which is similar to internal Pb-Pb isochron ages of 2,165 {plus minus} 130 Ma and 2,100 {plus minus} 35 Ma for two igneous-textured rocks. Initial isotopic ratios for the River Valley pluton correspond to single-stage model parameters of {mu} = 8.06, {epsilon}{sub Nd} = O to {minus}3, and I{sub Sr} = 0.7015 to 0.7021. Collectively, these suggest either an enriched mantle source or crustal contamination of a mantle-derived magma. The crustal component involved must have been older and more radiogenic than the majority of rocks exposed at the surface in the nearby Superior Province.

  18. Convergence rate controls seismicity styles in collision orogens

    NASA Astrophysics Data System (ADS)

    Dal Zilio, Luca; van Dinther, Ylona; Gerya, Taras

    2016-04-01

    The 25 April 2015 Mw 7.8 Gorkha earthquake in Nepal resulted from the unzipping of the previously locked Main Himalayan Thrust (MHT) fault, along which the Himalayan wedge is thrust over India. Strong ground shaking caused the collapse of more than half a million homes, killing more than 8500 people. Can such a large magnitude event also occur within the populated European Alps? Or is there a distinctly different seismicity pattern in different orogens? We show that their long-term seismicity patterns are indeed different and that their differences can be explained by a single parameter: their convergence rate. To do so we present the first self-consistent seismic cycle model for continental collisional margins. We use the viscoelastoplastic continuum Seismo-Thermo-Mechanical model (STM) validated for seismic cycle applications against a laboratory model (van Dinther et al., 2013a) and natural observations (van Dinther et al., 2013b), which includes Drucker-Prager plasticity and spontaneous rupture events governed by strongly rate-dependent friction. The 2-D model setup consists of two continental plates separated by an oceanic plate, in which the incipient subduction phase is followed by collisional orogeny. Results show the physically consistent spontaneous emergence of complex rupture paths, both on and off the main frontal thrust. These off-main frontal thrust events within the upper and lower plate complement the main frontal thrust seismicity leading to a Gutenberg-Richter frequency-magnitude distribution. This is a key observational feature of seismicity, which is typically not reproduced in seismic cycle models. The range of simulated b-values agrees with natural ranges, as we observe values from 0.97 up to 1.25 for convergence rates decreasing from 5 to 1 cm/yr. Decreasing convergence rates thus lead to relatively larger amounts of smaller earthquakes (increasing b-value) and lower maximum magnitudes. This change in b-value also observed to corresponds to

  19. The Western Sierras Pampeanas: Protracted Grenville-age history (1330-1030 Ma) of intra-oceanic arcs, subduction-accretion at continental-edge and AMCG intraplate magmatism

    NASA Astrophysics Data System (ADS)

    Rapela, C. W.; Pankhurst, R. J.; Casquet, C.; Baldo, E.; Galindo, C.; Fanning, C. M.; Dahlquist, J. M.

    2010-01-01

    basic amphibolites with geochemical fingerprints of emplacement in a more mature crust, and (ii) a 1027 ± 17 Ma TTG juvenile suite, which is the youngest Grenville-age magmatic event registered in the Western Sierras Pampeanas. The geodynamic history in both study areas reveals a complex orogenic evolution, dominated by convergent tectonics and accretion of juvenile oceanic arcs to the continent.

  20. On the link between orogenic shortening and back-arc extensional collapse in low topography orogens

    NASA Astrophysics Data System (ADS)

    Matenco, L. C.

    2012-04-01

    Classical models of orogenic evolution assume that back arc basins form in the hinterland of orogens, collapsing the upper plate above oceanic subduction zones. This is a common characteristic commonly thought to apply to all low-topography orogens of Mediterranean type driven by the fast roll-back of subducted slabs, or other analogues such as the Miocene to recent evolution of the SE Asia subduction zones. This extension may take place far at the interior of the upper plate, as is the case in various segments of the Carpathians or in the core of the SE Asian domain, but in most cases of the Dinarides, Apennines or Hellenides it take place superposed or far into the foreland of oceanic suture zones. Therefore, the term back-arc extension in many cases is misleading, as exhumation along major detachment zones takes place in the core of the orogen (Rif, Betics), in the accreted crustal material of the lower plate (Apennines, Dinarides) or even in a presumed former fore-arc (Aegean, Sunda-Banda arc). In all these subduction zones, collision has largely duplicated crustal blocks from the lower plate and has gradually shifted subduction zone far towards the lower plate. As a result, crustal thickening takes place in the foreland of the orogen, in contrast with the typical crustal roots of the high convergence orogens, such as the Alps or Himalaya. This demonstrate an active shift of the main subduction zone, the position of slabs detected by teleseismic mantle tomography is displaced to the foreland and cannot be connected with the position of the lower plate crust beneath the orogen. This shift is associated with large scale magmatism with unusual large crustal signatures, atypical for subduction related magmas. These observations demonstrate the need for an active reconsideration of existing orogenic models which should include displacements of subduction zones during orogenic shortening and an active investigation of the role of continental subduction and associated

  1. Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution

    NASA Astrophysics Data System (ADS)

    Fritz, H.; Abdelsalam, M.; Ali, K. A.; Bingen, B.; Collins, A. S.; Fowler, A. R.; Ghebreab, W.; Hauzenberger, C. A.; Johnson, P. R.; Kusky, T. M.; Macey, P.; Muhongo, S.; Stern, R. J.; Viola, G.

    2013-10-01

    The East African Orogen, extending from southern Israel, Sinai and Jordan in the north to Mozambique and Madagascar in the south, is the world´s largest Neoproterozoic to Cambrian orogenic complex. It comprises a collage of individual oceanic domains and continental fragments between the Archean Sahara-Congo-Kalahari Cratons in the west and Neoproterozoic India in the east. Orogen consolidation was achieved during distinct phases of orogeny between ∼850 and 550 Ma. The northern part of the orogen, the Arabian-Nubian Shield, is predominantly juvenile Neoproterozoic crust that formed in and adjacent to the Mozambique Ocean. The ocean closed during a protracted period of island-arc and microcontinent accretion between ∼850 and 620 Ma. To the south of the Arabian Nubian Shield, the Eastern Granulite-Cabo Delgado Nappe Complex of southern Kenya, Tanzania and Mozambique was an extended crust that formed adjacent to theMozambique Ocean and experienced a ∼650-620 Ma granulite-facies metamorphism. Completion of the nappe assembly around 620 Ma is defined as the East African Orogeny and was related to closure of the Mozambique Ocean. Oceans persisted after 620 Ma between East Antarctica, India, southern parts of the Congo-Tanzania-Bangweulu Cratons and the Zimbabwe-Kalahari Craton. They closed during the ∼600-500 Ma Kuungan or Malagasy Orogeny, a tectonothermal event that affected large portions of southern Tanzania, Zambia, Malawi, Mozambique, Madagascar and Antarctica. The East African and Kuungan Orogenies were followed by phases of post-orogenic extension. Early ∼600-550 Ma extension is recorded in the Arabian-Nubian Shield and the Eastern Granulite-Cabo Delgado Nappe Complex. Later ∼550-480 Ma extension affected Mozambique and southern Madagascar. Both extension phases, although diachronous,are interpreted as the result of lithospheric delamination. Along the strike of the East African Orogen, different geodynamic settings resulted in the evolution of

  2. Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution☆

    PubMed Central

    Fritz, H.; Abdelsalam, M.; Ali, K.A.; Bingen, B.; Collins, A.S.; Fowler, A.R.; Ghebreab, W.; Hauzenberger, C.A.; Johnson, P.R.; Kusky, T.M.; Macey, P.; Muhongo, S.; Stern, R.J.; Viola, G.

    2013-01-01

    The East African Orogen, extending from southern Israel, Sinai and Jordan in the north to Mozambique and Madagascar in the south, is the world́s largest Neoproterozoic to Cambrian orogenic complex. It comprises a collage of individual oceanic domains and continental fragments between the Archean Sahara–Congo–Kalahari Cratons in the west and Neoproterozoic India in the east. Orogen consolidation was achieved during distinct phases of orogeny between ∼850 and 550 Ma. The northern part of the orogen, the Arabian–Nubian Shield, is predominantly juvenile Neoproterozoic crust that formed in and adjacent to the Mozambique Ocean. The ocean closed during a protracted period of island-arc and microcontinent accretion between ∼850 and 620 Ma. To the south of the Arabian Nubian Shield, the Eastern Granulite–Cabo Delgado Nappe Complex of southern Kenya, Tanzania and Mozambique was an extended crust that formed adjacent to theMozambique Ocean and experienced a ∼650–620 Ma granulite-facies metamorphism. Completion of the nappe assembly around 620 Ma is defined as the East African Orogeny and was related to closure of the Mozambique Ocean. Oceans persisted after 620 Ma between East Antarctica, India, southern parts of the Congo–Tanzania–Bangweulu Cratons and the Zimbabwe–Kalahari Craton. They closed during the ∼600–500 Ma Kuungan or Malagasy Orogeny, a tectonothermal event that affected large portions of southern Tanzania, Zambia, Malawi, Mozambique, Madagascar and Antarctica. The East African and Kuungan Orogenies were followed by phases of post-orogenic extension. Early ∼600–550 Ma extension is recorded in the Arabian–Nubian Shield and the Eastern Granulite–Cabo Delgado Nappe Complex. Later ∼550–480 Ma extension affected Mozambique and southern Madagascar. Both extension phases, although diachronous,are interpreted as the result of lithospheric delamination. Along the strike of the East African Orogen, different geodynamic settings

  3. Exploration of the Banda orogen, Indonesia

    SciTech Connect

    Harris, R.A. ); Audley-Charles, M.G. ); Tobing, S.L. )

    1990-06-01

    An integrated geologic evaluation of the late Miocene to present Banda orogen and its petroleum potential is in progress. The focus of the investigation involves sedimentary sections of the NW Australian continental margin incorporated into the Banda orogen. The islands of Timor and Seram, and several other islands throughout the Banda orogenic arc, are the closest exposed lithostratigraphic equivalents of the hydrocarbon producing NW Australian subsurface stratigraphy. Hydrocarbon occurrences are well documented on many of the islands, and over 13 million barrels of oil have been produced from the Bula field in Seram. Recent studies of seeps in Timor and associated stratigraphic, structural, and geochemical relations indicate that (1) oil and gas seeps occur throughout the Permian to Pliocene stratigraphic section; (2) bituminous limestones of the Triassic Aituti Formation are the most likely source for many of the seeps; (3) preliminary geochemical analyses of the oils indicate a mixed terrestrial and marine organic source, and suggest a genetic link between the Aitutu oils and oils seeping from Tertiary reservoirs; (4) triterpane and sterane parameters indicate some of these oils are highly mature; (5) palynomorph coloration, conodont alteration, and clay mineralogy data yield paleotemperature estimates in the range of hydrocarbon generation from much of the pre-rift sequence (Permian-Jurassic); (6) structural modeling suggests that the initial decollement zone of the orogenic wedge formed near the Jurassic breakup unconformity of the underthrust NW Australian margin, imbricating the post-rift sequence; (7) in Timor and Seram the decollement has stepped to deeper levels involving prerift sequences that form structural culminations in the core of the orogen. The culminations are expressed as topographic highs as in New Guinea and Oman.

  4. 13C 12C exchange between calcite and graphite: A possible thermometer in Grenville marbles

    USGS Publications Warehouse

    Valley, J.W.; O'Neil, J.R.

    1981-01-01

    The fractionation of 13C between calcite and graphite, ??(Cc-Gr). is consistently small (2.6-4.8 permil) in 34 assemblages from upper amphibolite- and granulite-facies marbles of the Grenville Province. In 25 samples from the Adirondack Mountains, New York, it decreases regularly with increasing metamorphic temperature. The fractionations are independent of absolute ??13C values of calcite (-2.9 to +5.0). For T = 600-800??C, the Adirondack data are described by ??(Cc-Gr) = -0.00748T (??C) + 8.68. This good correlation between ?? and T suggests that carbon isotope equilibrium was attained in these high-grade marbles and that the theoretical calculations of this fractionation by Bottinga are approximately 2 permil too large in this temperature range. Because of the relatively high temperature sensitivity suggested by these results and by Bottinga's calculations, and the pressure independence of isotope fractionation, ??(Cc-Gr) may provide a very good thermometer for high-grade marbles. Comparison of this field calibration for ??(Cc-Gr) vs temperature with results from other terranes supports the utility of ??(Cc-Gr) for geothermometry and suggests that graphite is much more sluggish to exchange than calcite, that exchange between calcite and graphite occurs at temperatures as low as 300??C, and that equilibrium may normally be attained only when peak metamorphic temperatures are greater than 500-600??C. Because 13C exchange is an unavoidable metamorphic process at temperatures above 300??C, high values of ??13C(Gr) in moderate- to high-grade carbonate-bearing rocks do not provide a sufficient criterion to infer an abiogenic origin for the graphite. ?? 1981.

  5. Refining Rodinia: New Paleomagnetic Results From Amazonia and Paleogeographic Implications For The Grenville Orogeny.

    NASA Astrophysics Data System (ADS)

    Tohver, E.; van der Pluijm, B. A.; van der Voo, R.

    The Grenville province of eastern Laurentia is commonly considered to be the product of continental collision between ancestral North America and an as yet unidentified continent. New paleogeographic information for the Amazon craton in early Grenvil- lian times was determined from a new paleomagnetic pole based on the hypabyssal gabbros and flat-lying basalts of the Nova Floresta Fm. found in the western Brazil- ian state of Rondonia. Measurement of the anisotropy of magnetic susceptibility of the gabbros reveals a flat-lying fabric, suggesting an undeformed, igneous body. A paleomagnetic pole (n = 16 sites, Plat = 24.6N, Plon. = 164.6E, A95 = 5.5, Q = 5) is calculated from a steep, characteristic remanence (ChRM) that is inferred to be primary. This ChRM is isolated at applied field >30 mT and is probably carried by magnetite present in large, oxyexsolved titanomagnetites or igneous reaction rims. Emplacement of the body and acquisition of magnetization is dated by 40Ar/39Ar analysis of igneous biotite and plagioclase, both phases yielding ages of ca.1.2 Ga. Comparison of the position of Amazonia with that of ancestral North America deter- mined from the Laurentian APWP from 1.3 - 1.15 Ga suggests that Amazonia may have collided with the southernmost portion of Laurentia at ca.1.2 Ga. The timing of this collision is in agreement with geochronological constraints on the timing of de- formation in the Llano segment of Laurentia as well as observed deformation of the western Amazon craton.

  6. High-pressure metamorphism in the southern New England Orogen: Implications for long-lived accretionary orogenesis in eastern Australia

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Offler, R.; Rubatto, D.; Phillips, D.

    2015-09-01

    New geochemical, metamorphic, and isotopic data are presented from high-pressure metamorphic rocks in the southern New England Orogen (eastern Australia). Conventional and optimal thermobarometry are augmented by U-Pb zircon and 40Ar/39Ar phengite dating to define pressure-temperature-time (P-T-t) histories for the rocks. The P-T-t histories are compared with competing geodynamic models for the Tasmanides, which can be summarized as (i) a retreating orogen model, the Tasmanides formed above a continuous, west dipping, and eastward retreating subduction zone, and (ii) a punctuated orogen model, the Tasmanides formed by several arc accretion, subduction flip, and/or transference events. Whereas both scenarios are potentially supported by the new data, an overlap between the timing of metamorphic recrystallization and key stages of Tasmanides evolution favors a relationship between a single, long-lived subduction zone and the formation, exhumation, and exposure of the high-pressure rocks. By comparison with the retreating orogen model, the following links with the P-T-t histories emerge: (i) exhumation and underplating of oceanic eclogite during the Delamerian Orogeny, (ii) recrystallization of underplated and exhuming high-pressure rocks at amphibolite facies conditions coeval with a period of rollback, and (iii) selective recrystallization of high-pressure rocks at blueschist facies conditions, reflecting metamorphism in a cooled subduction zone. The retreating orogen model can also account for the anomalous location of the Cambrian-Ordovician high-pressure rocks in the Devonian-Carboniferous New England Orogen, where sequential rollback cycles detached and translated parts of the leading edge of the overriding plate to the next, younger orogenic cycle.

  7. Tectonics of Atlantic Canada

    USGS Publications Warehouse

    Williams, H.; Dehler, S.A.; Grant, A.C.; Oakey, G.N.

    1999-01-01

    The tectonic history of Atlantic Canada is summarized according to a model of multiple ocean opening-closing cycles. The modern North Atlantic Ocean is in the opening phase of its cycle. It was preceded by an early Paleozoic lapetus Ocean whose cycle led to formation of the Appalachian Orogen. lapetus was preceded by the Neoproterozoic Uranus Ocean whose cycle led to formation of the Grenville Orogen. The phenomenon of coincident, or almost coincident orogens and modern continental margins that relate to repeated ocean opening-closing cycles is called the Accordion Effect. An understanding of the North Atlantic Ocean and its continental margins provides insights into the nature of lapetus and the evolution of the Appalachian Orogen. Likewise, an understanding of lapetus and the Appalachian Orogen raises questions about Uranus and the development of the Grenville Orogen. Modern tectonic patterns in the North Atlantic may have been determined by events that began before 1000 m.y.

  8. GEOPHYSICS. Layered deformation in the Taiwan orogen.

    PubMed

    Huang, T-Y; Gung, Y; Kuo, B-Y; Chiao, L-Y; Chen, Y-N

    2015-08-14

    The underthrusting of continental crust during mountain building is an issue of debate for orogens at convergent continental margins. We report three-dimensional seismic anisotropic tomography of Taiwan that shows a nearly 90° rotation of anisotropic fabrics across a 10- to 20-kilometer depth, consistent with the presence of two layers of deformation. The upper crust is dominated by collision-related compressional deformation, whereas the lower crust of Taiwan, mostly the crust of the subducted Eurasian plate, is dominated by convergence-parallel shear deformation. We interpret this lower crustal shearing as driven by the continuous sinking of the Eurasian mantle lithosphere when the surface of the subducted plate is coupled with the orogen. The two-layer deformation clearly defines the role of subduction in the formation of the Taiwan mountain belt. PMID:26273051

  9. Compressional intracontinental orogens: Ancient and modern perspectives

    NASA Astrophysics Data System (ADS)

    Raimondo, Tom; Hand, Martin; Collins, William J.

    2014-03-01

    Compressional intracontinental orogens are major zones of crustal thickening produced at large distances from active plate boundaries. Consequently, any account of their initiation and subsequent evolution must be framed outside conventional plate tectonics theory, which can only explain the proximal effects of convergent plate-margin interactions. This review considers a range of hypotheses regarding the origins and transmission of compressive stresses in intraplate settings. Both plate-boundary and intraplate stress sources are investigated as potential driving forces, and their relationship to rheological models of the lithosphere is addressed. The controls on strain localisation are then evaluated, focusing on the response of the lithosphere to the weakening effects of structural, thermal and fluid processes. With reference to the characteristic features of intracontinental orogens in central Asia (the Tien Shan) and central Australia (the Petermann and Alice Springs Orogens), it is argued that their formation is largely driven by in-plane stresses generated at plate boundaries, with the lithosphere acting as an effective stress guide. This implies a strong lithospheric mantle rheology, in order to account for far-field stress propagation through the discontinuous upper crust and to enable the support of thick uplifted crustal wedges. Alternative models of intraplate stress generation, primarily involving mantle downwelling, are rejected on the grounds that their predicted temporal and spatial scales for orogenesis are inconsistent with the observed records of deformation. Finally, inherited mechanical weaknesses, thick sedimentary blanketing over a strongly heat-producing crust, and pervasive reaction softening of deep fault networks are identified as important and interrelated controls on the ability of the lithosphere to accommodate rather than transmit stress. These effects ultimately produce orogenic zones with architectural features and evolutionary

  10. RbSr isotopic equilibrium during Sveconorwegian (= Grenville) deformation and metamorphism of the Orust dykes, S.W. Sweden

    NASA Astrophysics Data System (ADS)

    Daly, J. S.; Park, R. G.; Cliff, R. A.

    1983-10-01

    The Orust dykes and their regional correlatives are an important time marker in the polymetamorphic Östfold-Marstrand belt of S.E. Norway and S.W. Sweden. They were deformed and metamorphosed in the amphibolite facies during the Sveconorwegian (= Grenville) orogeny. Three narrow strongly deformed dykes yield RbSr whole-rock ages (1106 ± 52 m.y., 1062 ± 90 m.y., 1000 ± 153 m.y.). The weighted mean age (1087 m.y.) is interpreted as the age of the first post-dyke deformation and the accompanying amphibolite facies metamorphism. High initial 87Sr/ 86Sr ratios (0.7074 ± 9, 0.710 ± 2, 0.713 ± 3, respectively) and other geochemical evidence point to considerable exchange of mobile elements between the dykes and the country rocks. The emplacement age is not known precisely. However, the dykes may be correlated with widespread mafic magnatism which accompanied crustal instability in the N. Atlantic region early in the Sveconorwegian (= Grenville) orogeny about 1200 m.y. ago.

  11. SVM-based base-metal prospectivity modeling of the Aravalli Orogen, Northwestern India

    NASA Astrophysics Data System (ADS)

    Porwal, Alok; Yu, Le

    2010-05-01

    The Proterozoic Aravalli orogen in the state of Rajasthan, northwestern India, constitutes the most important metallogenic province for base-metal deposits in India and hosts the entire economically viable lead-zinc resource-base of the country. The orogen evolved through near-orderly Wilson cycles of repeated extensional and compressional tectonics resulting in sequential opening and closing of intracratonic rifts and amalgamation of crustal domains during a circa 1.0-Ga geological history from 2.2 Ga to 1.0 Ga. This study develops a conceptual tectonostratigraphic model of the orogen based on a synthesis of the available geological, geophysical and geochronological data followed by deep-seismic-reflectivity-constrained 2-D forward gravity modeling, and links it to the Proterozoic base-metal metallogeny in the orogen in order to identify key geological controls on the base-metal mineralization. These controls are translated into exploration criteria for base-metal deposits, validated using empirical spatial analysis, and used to derive input spatial variables for model-based base-metal prospectivity mapping of the orogen. A support vector machine (SVM) algorithm augmented by incorporating a feature selection procedure is used in a GIS environment to implement the prospectivity mapping. A comparison of the SVM-derived prospectivity map with the ones derived using other established models such as neural-networks, logistic regression, and Bayesian weights-of-evidence indicates that the SVM outperforms other models, which is attributed to the capability of the SVM to return robust classification based on small training datasets.

  12. Where the Caledonides crosses the Grenville: The Grenvillian Glenelg Inlier as an allochthonous pip within a fold-nappe complex in the Scottish Caledonides

    NASA Astrophysics Data System (ADS)

    Krabbendam, M.; Ramsay, J. G.; Leslie, A. G.; Tanner, P. W. G.; Dietrich, D.; Goodenough, K. M.

    2012-04-01

    The Grenvillian (1100 - 990 Ma) and Caledonian (470-420 Ma) orogenies represent pivotal tectonic events in the evolution of Laurentia and Baltica. Significantly, these two orogenic belts lie at a high angle to one another, with an inferred intersection in NW Scotland. This relationship is most readily examined at the Glenelg Inlier of NW Scotland, a basement gneiss inlier within the Scottish Caledonides nappe pile. This inlier contains a Western Glenelg Inlier, composed of orthogneiss with no record of Grenville metamorphism, and a separate Eastern Glenelg Inlier, comprising both ortho-and paragneisses that experienced Grenvillian eclogite-facies metamorphism. The two components of the Glenelg Inlier are interleaved and/or infolded with locally unconformable, basal Moine Supergroup metasediments, deposited (just) after Grenvillian orogenesis. The inlier and the metasediments are now located in the hanging wall of the well-studied Caledonian Moine Thrust. Despite decades of research and classical structural studies, the overall geometry and structural evolution of the Glenelg Inlier and the surrounding Moine metasediments remain elusive. The synthesis presented here is based upon both new, and hitherto unpublished, mapping. The Glenelg Inlier and enclosing Moine were deformed by three generations of major ductile fold structures (F1-F3). In areas of medium strain, away from the basement inliers, F2 and F3 large-scale structures face and verge towards the west, and record coaxial interference patterns. In areas of higher strain, F2 fold axes were rotated into parallelism with the (westerly) transport direction. Subsequent refolding of these F2 folds by west-vergent (N-S trending) F3 folds led in some areas to high-angle, non-coaxial fold interference patterns, including dome-and-basin structures. On structural grounds, both F2 and F3 are thought to be of Caledonian age. An approximate restoration of the F2 and F3 folds reveals the pre-F2 basement-cover architecture

  13. Lu-Hf and Sm-Nd geochronology of garnet gneisses in the central Appalachians, U.S.: Implications for the timing and duration of Grenville Orogeny

    NASA Astrophysics Data System (ADS)

    Vervoort, Jeff; Ramsey, Molly; Mulcahy, Sean; Aleinikoff, John; Southworth, Scott

    2014-05-01

    The Grenville orogeny is one of the most significant geological events in Earth's history with remnants of this event prominent on virtually every continent. Constraining its timing and duration is important not only for understanding the tectonics of the Grenville itself, but also for understanding supercontinent cycles and other questions of Earth's evolution. In order to provide better constraints on the timing of Grenvillian metamorphism, we analyzed garnet-bearing Mesoproterozoic ortho and paragneisses, collected along a 150 km transect in the northern Blue Ridge Province, using combined Lu-Hf and Sm-Nd geochronology. The orthogneisses have U-Pb zircon crystallization ages of ~1140 and 1100 Ma. The paragneisses have maximum depositional ages ~1050 to 1020 Ma, based on the youngest detrital zircon populations. Zircon overgrowths and monazite ages suggest metamorphic events between ~1050 and 960 Ma. The Lu-Hf and Sm-Nd data for these samples both yield robust garnet ages with large spread of parent/daughter ratios, low age uncertainties, and low MSWD values. Lu-Hf ages define a narrow time span (1043±12 Ma to 1016±4 Ma; wtd. mean, 1024±7 Ma, 2σ). The Sm-Nd ages, determined on the same solutions as Lu-Hf, also define a narrow time range but are systematically younger (974±11 Ma to 932±5 Ma; wtd. mean, 957±10 Ma). The average difference between Lu-Hf and Sm-Nd ages is 67 Ma; the oldest Sm-Nd age is 40 Ma younger than the youngest Lu-Hf age. These large systematic differences in the ages are enigmatic. While Sm-Nd ages younger than Lu-Hf are not uncommon, these differences are typically small. There are, however, potential explanations for these differences. (1) Lu partitions strongly into garnet during growth resulting in high Lu/Hf ratios in the core and yielding ages weighted toward the beginning of growth (e.g., Skora, 2006); no similar partitioning exists in Sm/Nd and these ages reflect mean garnet growth. (2) Lu diffuses much faster than Hf at elevated

  14. The East African Orogen: Accretion versus Collision

    NASA Astrophysics Data System (ADS)

    Kröner, A.; Muhongo, S.; Sommer, H.; Vogt, M.

    2003-04-01

    The East African Orogen is an extensive Neoproterozoic (Pan-African) orogenic belt extending from Arabia to Mozambique and containing elements of both accretion and collision tectonics. The predominantly upper crustal northern part (Arabian-Nubian Shield, ANS) consists of Neoproterozoic juvenile arc assemblages that accreted onto the African continent along ophiolite-decorated sutures. In contrast, the tectonic evolution of the predominantly middle to lower crustal southern part (Mozambique belt, MB) is still poorly understood, and simple continental collision models as previously applied are not compatible with new isotopic and petrological data. Published Nd isotopic systematics and our new zircon ages demonstrate that large parts of the high-grade MB in Tanzania consists of late Archaean to Palaeoproterozoic granitoid gneisses which may either constitute an extension of the Tanzania craton to the E, reworked during the Pan-African orogeny, or these rocks may constitute a separate terrane, or terranes, tectonically interdigitated with Neoproterozoic gneisses, similar to the situation in Madagascar. Small-scale tectonic interlayering of >1800 Ma and 650-800 Ma gneisses have been documented at several localities, and the amount of pre-Neoproterozoic crust in the MB appears to be ˜70% or more. Relatively small volumes of ˜1000-1100 Ma granitoids have so far only been recorded in southern Tanzania, and their significance in the orogenic evolution and their relation to more extensive rocks of this age in northern Mozambique are not known. High-grade metamorphism in the MB of Tanzania led to granulite and charnockite formation and occurred at 620-640 Ma, slightly earlier than in Mozambique (˜615 Ma) but significantly earlier than in Malawi (˜550-580 Ma) and in Madagascar (˜550-560 Ma). The significance of these age differences is not understood. Petrological data suggest both clockwise and anti-clockwise PT path for the metamorphic assemblages, suggesting that

  15. Anorthosite Magma Revisited: Field and Petrographic Evidence From the CRUML Belt, Grenville Province, Quebec

    NASA Astrophysics Data System (ADS)

    Dymek, R. F.

    2004-05-01

    The "CRUML belt" comprises a series of relatively small (each <500 km2), late- to post-tectonic, Grenville-aged (~1010-1060 Ma) anorthositic plutons that extends from near Quebec City to north of Chicoutimi, a distance of >400 km. The dominant lithology in each pluton is andesine anorthosite (AA) of exceptional purity (typical outcrops contain >95% plag), with minor leuconorite, oxide-rich norite, and ilmenitite (locally ore bodies) also present. Northern CRUML plutons (Labrieville and Mattawa) contain a leucogabbroic border facies in addition, and are more sodic and potassic (with higher Ba and Sr) than the southern ones (Chateau Richer=CR, St. Urbain, Lac Chaudiere, Lac a Jack, and Lac Piche). Each pluton is dome-shaped (concentric, outward-dipping foliations), and displays a subtle yet persistent pluton-scale, core-to-margin increase in plag An-content that is suggestive of a pressure decrease during crystallization. It thus appears that the CRUML-belt plutons were emplaced as magmatic diapirs. Strong reverse zoning in individual plag crystals, however, has a different origin (see below). Excepting CR, the CRUML-belt plutons also contain enclaves of labradorite anorthosite (LA) that range in size from dm to km. Contacts between the AA and LA typically are very sharp, with no obvious evidence of interaction between the two lithologies. However, rare outcrops having plag compositions intermediate between AA and LA may represent examples of modified rock. Most LA outcrops are invaded by dikes and veins (even anastomosing veinlets and net-veins) of the AA, and some dikes contain LA xenoliths as well. Locally, lit-par-lit injection of AA into LA is accompanied by disruption and rotation of the latter. Thus, field relations provide compelling evidence for the mobile nature of AA and its emplacement as "magma" into the LA. Plag grain boundaries in many AA samples (all dike samples) are decorated by fine-grained vermicular intergrowths of ~An80 + quartz, termed "calcic

  16. Lead and barium sources in Cambrian siliciclastics and sediment provenance of a sector of the Taconic Orogen, Quebec: a mixing scenario based on Pb-isotopic evidence

    USGS Publications Warehouse

    Schrijver, K.; Zartman, R.E.; Williams-Jones, A. E.

    1994-01-01

    To test the hypothesis that siliciclastic rocks constituted the major source of Pb and Ba in barite-galena deposits of the Taconic Orogen, we determined Pb-isotope ratios in galena, barren rocks and contained minerals, as well as concentrations of Pb, U, Th and Ba in the latter (detrital feldspars, sandstones, mudstones, rock clasts and carbonate cements and clasts). Ranges in 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb of 28 galena samples are 17.96-18.05, 15.56-15.59 and 37.75-37.93, respectively; ranges for 41 barren rocks and minerals are 16.17-23.31, 15.26-15.86 and 35.98-42.51, respectively. The lowest ratios are in feldspar, and the highest in carbonate and mudstone. Values of the mudstones samples overlap those of galena when corrected for in situ decay of U and Th since galena precipitation (???450 Ma). We thus propose that mudstones constituted a source of lead. Corrected ratios for anomalously Pb-rich mudstones are virtually identical to galena-Pb ratios and may be due to contamination by lead-bearing brines. Assuming that burial diagenesis did not disturb the Pb-isotope values of sandstones, these rocks contributed only a minor fraction of lead to the galena, estimated at ???20% for one deposit. The source of barite-Ba was probably perthite. Low Ba and Pb concentrations of sandstone adjacent to this deposit, compared to high concentrations remote from it, support leaching of barium (and minor lead) from feldspar penecontemporaneous with feldspar dissolution. Geological data indicate that the provenance of the siliciclastic rocks was mainly from Grenville terrane. A comparison of our Pb-isotopic data for Taconic perthite with those of Grenville K-feldspar, as well as ratios of trace elements, support this provenance for both sandstones and mudstones. The presence of carbonate platforms peripheral to the orogen, and the Middle Ordovician-Middle Devonian depositional range of the studied and Mississippi Valley type deposits north (Newfoundland) and south (U

  17. SW U. S. diabase province: A 1. 1-Ga intrusion event of middle Grenville and middle Keweenawan age

    SciTech Connect

    Conway, C.M.; Elston, D.P. ); Wrucke, C.T. )

    1993-02-01

    Diabase in the southwestern US intrudes Middle Proterozoic stratified rocks as sills and Early and Middle Proterozoic crystalline rocks as subhorizontal sheets and subvertical dikes. It is discontinuous in a broad belt extending from western Texas to southeastern California. The best known intrusions are sills in Middle Proterozoic strata in Death Valley, Grand Canyon, and central Arizona. Sparse to rare dikes in some of these strata trend mostly north but range from north-northeast to west-northwest. Diabase dikes widespread in crystalline rocks in western Arizona and adjacent parts of southeastern California strike from north to west-northwest, but are predominantly northwesterly. Dikes and sheets are also present in crystalline rocks in the southern Pinaleno Mountains, southeastern Arizona, where dikes strike west-northwest. The northwest trend of the diabase province and prevalent northwesterly trend of dikes in crystalline rocks suggest that intrusion was controlled by an approximately horizontal least compressive stress field roughly parallel to the Grenville Front. Radiometric ages of Arizona and California diabase indicate emplacement at [approximately]1,100 Ma. Paleomagnetic poles from diabase sills and enclosing stratified rocks in Arizona correlate with poles reported from middle and early-late Keweenawan rocks of Lake Superior. Emplacement of the diabase coincides with: (1) the middle Keweenawan eruptive and intrusive episode of the Midcontinent Rift System; (2) a major episode of (middle) Grenville thrusting and deformation documented in the Van Horn area; and (3) a time of abrupt reversal in North American apparent polar wander. These interrelated manifestations presumably arose in response to a major episode of plate interaction and collision between North American and a plate that encroached from the southeast.

  18. Mantle refertilization and magmatism in old orogenic regions: The role of late-orogenic pyroxenites

    NASA Astrophysics Data System (ADS)

    France, Lydéric; Chazot, Gilles; Kornprobst, Jacques; Dallai, Luigi; Vannucci, Riccardo; Grégoire, Michel; Bertrand, Hervé; Boivin, Pierre

    2015-09-01

    Pyroxenites and garnet pyroxenites are mantle heterogeneities characterized by a lower solidus temperature than the enclosing peridotites; it follows that they are preferentially involved during magma genesis. Constraining their origin, composition, and the interactions they underwent during their subsequent evolution is therefore essential to discuss the sources of magmatism in a given area. Pyroxenites could represent either recycling of crustal rocks in mantle domains or mantle originated rocks (formed either by olivine consuming melt-rock reactions or by crystal fractionation). Petrological and geochemical (major and trace elements, Sr-Nd and O isotopes) features of xenoliths from various occurrences (French Massif-Central, Jordan, Morocco and Cameroon) show that these samples represent cumulates crystallized during melt percolation at mantle conditions. They formed in mantle domains at pressures of 1-2 GPa during post-collisional magmatism (possibly Hercynian for the French Massif-Central, and Panafrican for Morocco, Jordan and Cameroon). The thermal re-equilibration of lithospheric domains, typical of the late orogenic exhumation stages, is also recorded by the samples. Most of the samples display a metasomatic overprint that may be either inherited or likely linked to the recent volcanic activity that occurred in the investigated regions. The crystallization of pyroxenites during late orogenic events has implications for the subsequent evolution of the mantle domains. The presence of large amounts of mantle pyroxenites in old orogenic regions indeed imparts peculiar physical and chemical characteristics to these domains. Among others, the global solidus temperature of the whole lithospheric domain will be lowered; in turn, this implies that old orogenic regions are refertilized zones where magmatic activity would be enhanced.

  19. Orogenic delamination - dynamics, effects, and geological expression

    NASA Astrophysics Data System (ADS)

    Ueda, Kosuke; Gerya, Taras

    2010-05-01

    Unbundling of continental lithosphere and removal of its mantle portion have been described by two mutually rather exclusive models, convective thinning and integral delamination. Either disburdens the remaining lithosphere, weakens the remainder, and causes uplift and extension. Increased heat flux is likely to promote high-degree crustal melting, and has been viewed as a source for voluminous granitic intrusions in late or collapsing orogenic settings. Collapse may be driven by any of gravitational potential differences from orogen to foreland, by stress inversion in the unburdened domain, or by suction of a retreating trench. In this study, we investigate prerequisites, mechanism, and development paths for orogeny-related mantle lithosphere removal. Our experiments numerically reproduce delamination which self-consistently results from the dynamics of a decoupling collision zone. In particular, it succeeds without a seed facilitating initial separation of layers. External shortening of a continent - ocean - continent assembly, such as to initiate oceanic subduction, is lifted before the whole oceanic part is consumed, leaving slab pull to govern further convergence. Once buoyant continental crust enters, the collision zone locks, and convergence diminishes. Under favourable conditions, delamination then initiates close to the edge of the mantle wedge and at deep crustal levels. While it initially separates upper crust from lower crust according to the weakness minimum in the lithospheric strength profile, the lower crust is eventually also delaminated from the subducting lithospheric mantle, owing to buoyancy differences. The level of delamination within the lithosphere seems thus first rheology-controlled, then density-controlled. Subduction-coupled delamination is contingent on retreat and decoupling of the subducting slab, which in turn is dependent on effective rheological weakening of the plate contact. Weakening is a function of shear-heating and hereby of

  20. Ambient tremors in a collisional orogenic belt

    USGS Publications Warehouse

    Chuang, Lindsay Yuling; Chen, Kate Huihsuan; Wech, Aaron G.; Byrne, Timothy; Peng, Wei

    2014-01-01

    Deep-seated tectonic tremors have been regarded as an observation tied to interconnected fluids at depth, which have been well documented in worldwide subduction zones and transform faults but not in a collisional mountain belt. In this study we explore the general features of collisional tremors in Taiwan and discuss the possible generation mechanism. In the 4 year data, we find 231 ambient tremor episodes with durations ranging from 5 to 30 min. In addition to a coseismic slip-induced stress change from nearby major earthquake, increased tremor rate is also highly correlated with the active, normal faulting earthquake swarms at the shallower depth. Both the tremor and earthquake swarm activities are confined in a small, area where the high attenuation, high thermal anomaly, the boundary between high and low resistivity, and localized veins on the surfaces distributed, suggesting the involvement of fluids from metamorphic dehydration within the orogen.

  1. Tectonothermal history in the Mattawa area, Ontario, Canada, deduced from paleomagnetism and Ar-40/Ar-39 dating of a Grenville dike

    NASA Astrophysics Data System (ADS)

    Hyodo, Hironobu; York, Derek; Dunlop, David J.

    1993-10-01

    The paleomagnetic ambient has been determined from samples at various distances from a Grenville diabase dike cutting late Protozoic tonalitic gneiss near Mattawa in the Grenville Province, Canada. Using the Ar-40/Ar-39 technique, the intrusion age of the dike is estimated to be 570 +/- 3 Ma from a 0.5-mm-diameter chilled margin chip. The paleo-ambient temperature of the country rock at the time of intrusion, 184 +/- 40 C was calculated from Jaeger's (1964) one-dimensional heat conduction model. The burial depth of the presently exposed rocks is estimated to be 6.5 +/- 1.7 km, assuming a surface temperature of 15 C and a geothermal gradient of 26 C/km. This depth at 570 Ma is discordant with the presence of Ordovician shallow-water (less than 100 m) limestones about 200 km distant, suggesting that differential uplift may have occurred between the two areas.

  2. Gravity evidence for a mafic intrusion beneath a mineralized zone in the Bondy gneiss complex, Grenville Province, Quebec - Exploration implications

    NASA Astrophysics Data System (ADS)

    Dufréchou, Grégory; Harris, Lyal B.; Corriveau, Louise; Antonoff, Vladimir

    2011-09-01

    A ground gravity survey over the Bondy gneiss complex and its mineralized iron oxide- and copper-rich hydrothermal system(s) in the Grenville Province of SW Quebec was undertaken to aid mineral exploration in mapping subsurface intrusions. Several kilometric-scale positive Bouguer anomalies were identified that coincide with outcropping mafic and intermediate intrusive rocks of the post peak-metamorphic, 1.17-1.16 Ga mafic to intermediate Chevreuil suite intrusions and a 1.09-1.07 Ga Rolleau ultramafic stock. An additional 4 × 3 kilometre positive gravity anomaly indicates a mafic body underlies part of the metamorphosed hydrothermal system in the area of magnetite, pyrite, pyrrhotite, and chalcopyrite mineralization. Advanced argilic alteration associated with sulphide enrichment here is however indicative of an epithermal system with a felsic intrusion fluid source. As a felsic intrusion cannot explain the positive Bouguer gravity anomaly both felsic and mafic bodies must be present beneath the mineralized zone. Our preferred interpretation based on integrating gravity data and 2D forward gravity modelling with the results of field and geochemical studies is that this anomaly corresponds to a ca. 500 m deep mafic 1.17-1.16 Ga Chevreuil suite pluton that may have provided the source for hydrothermal fluids associated with late ductile shear- and fault-related mineralization or remobilization of early mineralization associated with a felsic pluton into late structures. This interpretation is compatible with gabbro xenoliths in the 1.07 Ga Rivard lamprophyre dyke on the NW margin of the gravity anomaly that bear significant similarities with those of the Chevreuil intrusive suite. The presence of both early felsic and late mafic intrusions beneath a group of three mineral occurrences in the Bondy gneiss complex strengthens their prospectivity in comparison to other mineral occurrences in the area. That early, pre-metamorphic mineralization was upgraded late in the

  3. Palaeomagnetism of The Stoer Group (neoprotrozoic), NW Scotland: Deposition and Magnetisation Prior To Culmination of The Grenville Orogeny

    NASA Astrophysics Data System (ADS)

    Darabi, M. H.; Piper, J. D. A.

    The Stoer Group redbeds comprise the lower of two groups making up the Torridonian Supergroup. It was deposited on Lewisian metamorphic rocks of the Laurentian Shield and deformed before deposition of the Torridon Group. A recent Rb/Sr age of 1199 Ma is associated with a large error of 70 Ma and we have restudied the palaeomag- netism with a view to refining the age and tectonic setting of deposition. AMS results show a primary sedimentary fabric with imbrication indicating a westerly source con- sistent with sedimentary evidence. Study of penecontemporaneous slumps shows that remanence postdates early stages of consolidation but study of blocks which have slipped into the base of the Torridon Group shows that it was fixed by the time of later sedimentation. A fold test also suggests that it predates the folding episode. Mag- netisations resident in magnetite and hematite show an increase from shallower to steeper inclinations upwards through the succession. We interpret this as an increase in inclination of the palaeofield during the time of lithification recorded by primary magnetite, which was soon after partially oxidised to hematite. Palaeopoles show a time sequence, which correlates with the Gardar APW Track at ca. 1160 Ma and we attribute folding of the Stoer Group to the culminating stages of tectonism at 1100 Ma in the Grenville Belt formerly sited to the south.

  4. Paleozoic orogens in New England, USA

    USGS Publications Warehouse

    Robinson, P.; Tucker, R.D.; Bradley, D.; Berry, H.N.; Osberg, P.H.

    1998-01-01

    Stratigraphy and isotope geochronology in the crystalline core of the Appalachians suggest revised interpretations of the extent, nature and timing of Paleozoic orogens in New England. Five major episodes of magmatism, deformation, and high-grade regional metamorphism are recognized: Taconian (455-442 Ma), Acadian (423-385 Ma), Neo-Acadian (366-350 Ma), Late Pennsylvanian (300-290 Ma) and Alleghanian (280-260 Ma). In the Taconian, the passive margin of Laurentia was subducted below a complex magmatic arc lasting from 480 to 442 Ma, founded in part on continental crust of a Medial New England terrane with possible affinities with Amazonia. Questions about Medial New England involve its coherence as a single plate, and the nature of its underlying crust. The Acadian began in Late Silurian as a collision between the amalgamated Laurentia-Medial New England and outer belts of Composite Avalon along a cryptic suture in coastal Maine, and progressed northwestward to the Connecticut Valley basin by mid-Devonian. Tonalitic-granitic magmatism and up to granulite-facies metamorphism culminated in Early Devonian, possibly tied to lithospheric detachment below the subducting northwestern plate and consequent asthenosphere upwelling. Newly discovered Neo-Acadian Late Devonian to Early Mississippian tonalitic-granitic magmatism, up to granulite-facies metamorphism, and severe deformation in central Massachusetts took place in a plate context poorly understood. Late Pennsylvanian effects include magmatism, metamorphism, and deformation near south New England gneiss domes and the Sebago batholith, and development of the right-lateral Norumbega fault system. Permian Alleghanian effects include penetrative deformation, granitic intrusions and up to sillimanite-grade metamorphism of Pennsylvanian beds in southeastern New England. These last two episodes relate to the arrival of Africa.

  5. Stalled Orogen Linked to East Antarctic Craton Assembly

    NASA Astrophysics Data System (ADS)

    Martos, Y. M.; Ferraccioli, F.; Finn, C.; Bell, R. E.; Jordan, T. A.; Damaske, D.

    2015-12-01

    The interior of East Antarctica is often regarded as a coherent Archean craton surrounded by Paleo to Neoproterozoic orogenic belts. Here we use recent aerogeophysical, satellite magnetic, satellite gravity and passive seismic results in central East Antarctica to challenge this view. Firstly, anomalously thick crust (compared to most other cratons) has been imaged in East Antarctica by both passive seismic and gravity modelling with values up to 60 km (Ferraccioli et al., 2011, Nature; An et al., 2015, JGR). The thick crust underlies both the Gamburtsev Subglacial Mountains and an elevated region between Lake Vostok and Dronning Maud Land, referred to as the East Antarctic Mountain Ranges plateau (An et al., 2015). Second, satellite magnetic data reveal that the Gamburtev Province lies in between the Ruker/Princess Elizabeth Land, Vostok, Nimrod/South Pole and Recovery provinces. The Nimrod/ South Pole province is a Paleo to Meso Proterozoic igneous province formed along the edges of the Archean/Paleoproterozoic Mawson continent (e.g. Goodge and Fanning, 2010 JGR). Our aerogeophysical and sediment provenance data interpretations suggest that the Gamburtsev Province represents a distinct Grenvillian-age orogenic belt. A stalled orogen with thick crust (i.e. an orogen where widespread orogenic collapse and root delamination has not occurred)- is preserved in the interior of East Antarctica resembling e.g. the Paleoproterozoic Trans Hudson Orogen and segments of Grenvillian orogens in Laurentia. The stalled orogen may relate to widespread accretionary and collisional events within Rodinia. However, passive seismic interpretations (An et al., 2015) favour linking crustal thickening to the Pan-African age assembly of Greater India, East Antarctica and Australia within Gondwana (e.g. Aitken et al., 2014 GRL). Further aerogeophysical observations over Princess Elizabeth Land are timely to enable more robust correlations with geological observations and to help dating the

  6. Strong imprint of past orogenic events on the thermochronological record

    NASA Astrophysics Data System (ADS)

    Braun, Jean

    2016-06-01

    Using a simple solution to the heat conduction equation, I show how, at the end of an orogenic event, the relaxation of isotherms from a syn-orogenic advection-dominated geometry to a post-orogenic conduction-dominated geometry leads to the creation of a thick iso-age crustal layer. Subsequent erosion of this layer yields peculiar age-elevation profiles and detrital age distributions that cannot be easily interpreted using traditional techniques. I illustrate these points by using a simple analytical solution of the heat equation as well as a transient, three-dimensional numerical model. I also demonstrate that the age of the end of an orogenic event is so strongly imprinted in the thermochronological record that it erases most of the information pertaining to the orogenic phase itself and the subsequent isostatically-driven exhumation. The concept is used to explain two thermochronological datasets from the Himalayas and demonstrate that their most likely interpretation involves the sudden interruption of extremely fast exhumation accommodated by movement along the South Tibetan Detachment in the Higher Himalayas around 15 Ma.

  7. Linking magmatism with collision in an accretionary orogen

    NASA Astrophysics Data System (ADS)

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-05-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251–245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen.

  8. Linking magmatism with collision in an accretionary orogen.

    PubMed

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-01-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251-245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen. PMID:27167207

  9. Linking magmatism with collision in an accretionary orogen

    PubMed Central

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-01-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251–245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen. PMID:27167207

  10. Cumberland batholith, Trans-Hudson Orogen, Canada: Petrogenesis and implications for Paleoproterozoic crustal and orogenic processes

    NASA Astrophysics Data System (ADS)

    Whalen, Joseph B.; Wodicka, Natasha; Taylor, Bruce E.; Jackson, Garth D.

    2010-06-01

    Large volume, plutonic belts, such as the ˜ 221,000 km 2, ca. 1.865-1.845 Ga Cumberland batholith (CB) of the Trans-Hudson Orogen in Canada, are major components of Paleoproterozoic orogenic belts. In many cases, they have been interpreted as continental arc batholiths. The petrogenesis and tectonic context of the CB and implications for crustal growth and recycling are interpreted herein based on a 900 km geochemical-isotopic (Nd-O) transect across it and into granitoid plutons within bounding Archean cratons in central and southern Baffin Island. The mainly granulite grade CB, emplaced over an age span of between 14 and 24 Ma, consists mainly of high-K to shoshonitic monzogranite and granodiorite, but also includes low- and medium-K granitoid rocks. Metaluminous to slightly peraluminous compositions and δ 18O (VSMOW) values (+ 6 to + 10‰) indicate derivation from infracrustal (I-type) sources. ɛ Nd 1.85 Ga signatures (- 12 to - 2) of both mafic and felsic units suggest a dominance of evolved sources. Isotopic signatures in the interior of the CB (- 2 to - 7) are more radiogenic than those within Archean domains in central (- 8 to - 15) and southern (- 5 to - 19) Baffin Island. The isotopic transect is interpreted as 'imaging' an accreted microcontinental block (Meta Incognita) and bounding Archean cratons. The CB includes granites of arc, within-plate (A-type) and post-collisional affinity and volumetrically minor mafic rocks with both arc and non-arc features. (La/Yb) CN and Sr/Y values range from < 1 to 225 and < 1 to 611, respectively. In these respects, some CB granitoid rocks resemble Paleozoic adakitic granites, interpreted as partial melts of greatly thickened crust within post-collisional settings, such as Tibet. Thus, the CB likely encompasses various non-consanguineous magmatic suites generated at deep- to mid-crustal depths. Although CB granitoid rocks undoubtedly had important crustal sources, it is hard to assess the relative contribution of

  11. Mesoproterozoic syntectonic garnet within Belt Supergroup metamorphic tectonites: Evidence of Grenville-age metamorphism and deformation along northwest Laurentia

    USGS Publications Warehouse

    Nesheim, T.O.; Vervoort, J.D.; McClelland, W.C.; Gilotti, J.A.; Lang, H.M.

    2012-01-01

    Northern Idaho contains Belt-Purcell Supergroup equivalent metamorphic tectonites that underwent two regional deformational and metamorphic events during the Mesoproterozoic. Garnet-bearing pelitic schists from the Snow Peak area of northern Idaho yield Lu-Hf garnet-whole rock ages of 1085??2. Ma, 1198??79. Ma, 1207??8. Ma, 1255??28. Ma, and 1314??2. Ma. Garnet from one sample, collected from the Clarkia area, was micro-drilled to obtain separate core and rim material that produced ages of 1347??10. Ma and 1102??47. Ma. The core versus rim ages from the micro-drilled sample along with the textural and spatial evidence of the other Lu-Hf garnet ages indicate two metamorphic garnet growth events at ~. 1330. Ma (M1) and ~. 1080. Ma (M2) with the intermediate ages representing mixed ages. Some garnet likely nucleated and grew M1 garnet cores that were later overgrown by younger M2 garnet rims. Most garnet throughout the Clarkia and Snow Peak areas are syntectonic with a regional penetrative deformational fabric, preserved as a strong preferred orientation of metamorphic matrix minerals (e.g., muscovite and biotite). The syntectonic garnets are interpreted to represent one regional, coeval metamorphic and deformation event at ~. 1080. Ma, which overlaps in time with the Grenville Orogeny. The older ~. 1330. Ma ages may represent an extension of the East Kootenay Orogeny described in western Canada. These deformational and metamorphic events indicate that western Laurentia (North America) was tectonically active in the Mesoproterozoic and during the assembly of the supercontinent Rodinia. ?? 2011 Elsevier B.V.

  12. Mesoproterozoic syntectonic garnet within Belt Supergroup metamorphic tectonites: Evidence of Grenville-age metamorphism and deformation along northwest Laurentia

    NASA Astrophysics Data System (ADS)

    Nesheim, Timothy O.; Vervoort, Jeffrey D.; McClelland, William C.; Gilotti, Jane A.; Lang, Helen M.

    2012-03-01

    Northern Idaho contains Belt-Purcell Supergroup equivalent metamorphic tectonites that underwent two regional deformational and metamorphic events during the Mesoproterozoic. Garnet-bearing pelitic schists from the Snow Peak area of northern Idaho yield Lu-Hf garnet-whole rock ages of 1085 ± 2 Ma, 1198 ± 79 Ma, 1207 ± 8 Ma, 1255 ± 28 Ma, and 1314 ± 2 Ma. Garnet from one sample, collected from the Clarkia area, was micro-drilled to obtain separate core and rim material that produced ages of 1347 ± 10 Ma and 1102 ± 47 Ma. The core versus rim ages from the micro-drilled sample along with the textural and spatial evidence of the other Lu-Hf garnet ages indicate two metamorphic garnet growth events at ~ 1330 Ma (M1) and ~ 1080 Ma (M2) with the intermediate ages representing mixed ages. Some garnet likely nucleated and grew M1 garnet cores that were later overgrown by younger M2 garnet rims. Most garnet throughout the Clarkia and Snow Peak areas are syntectonic with a regional penetrative deformational fabric, preserved as a strong preferred orientation of metamorphic matrix minerals (e.g., muscovite and biotite). The syntectonic garnets are interpreted to represent one regional, coeval metamorphic and deformation event at ~ 1080 Ma, which overlaps in time with the Grenville Orogeny. The older ~ 1330 Ma ages may represent an extension of the East Kootenay Orogeny described in western Canada. These deformational and metamorphic events indicate that western Laurentia (North America) was tectonically active in the Mesoproterozoic and during the assembly of the supercontinent Rodinia.

  13. Proterozoic magmatic events (1510-985 Ma) and ilmenite-apatite mineralisations in the central Grenville Province, Québec, Canada.

    NASA Astrophysics Data System (ADS)

    Hébert, C.; Cadieux, A.-M.; van Breemen, O.

    2003-04-01

    The Grenville Province, largely Proterozoic, occupies a vast territory in the northeastern North America. New geochronological data and field observations demonstrate that from 1506 to 985 Ma, at least ten distinct magmatic events took place within the central Grenville Province in Québec province, Canada. Three of them are related to a gneissic basement and four to the younger anorthositic (AMCG) magmatic episodes of which three took place during the Grenvillian orogeny (about 1160 to 1000 Ma in the central Grenville Province). Two events involved mafic and felsic magmatism that occured during a pause in anorthositic magmatic activity. Finally, alkalic granitic plutons were emplaced in post-Grenville time. The gneissic basement that form prior to the anorthositic events contains a ~1510 Ma amphibolite related to extrusive volcanism event, a ~1480 Ma granulitic orthogneiss and a 1390-1380 Ma series of massive to gneissic charnockitic to granitic plutons. The ~1330 Ma labadorite-type De La Blache Plutonic Suite is the oldest anorthositic suite intruding the basement assemblages in the central Grenville. It was followed by the huge 1160-1140 Ma multi-phase labradorite-type Lac-Saint-Jean Anorthositic Suite (~20,000km2). Later, the andesine-type 1080-1060 Ma Saint-Urbain Anorthositic Suite was emplaced. It was followed by mafic and felsic magmatic events dated at 1050-1045 Ma and 1030-1020 Ma, respectively. The fourth anorthositic event in represented by the 1010-1008 Ma andesine-type Labrieville Anorthositic Suite. Finally, 990-980 Ma alkalic granites intrude the Lac-Saint-Jean Anorthositic Suite. All the anorthositic suites were emplaced along a system of at least three regional NE-SW thrust and/or strike slip shear zones, which developed in association with several conjugate NNE-SSW strike slip faults. These structures were active throughout the Grenvillian orogeny an gave rise to metamorphic and deformational textures. Oxide mineralisations occur within all these

  14. Pn anisotropic tomography under the entire Tienshan orogenic belt

    NASA Astrophysics Data System (ADS)

    Zhou, Zhigang; Lei, Jianshe

    2015-11-01

    We present a new anisotropic tomography of the uppermost mantle under the Tienshan orogenic belt and surrounding regions using a number of Pn arrival-time data hand-picked from portable seismic stations and chosen from the Xinjiang provincial observation bulletins and the EHB datasets. Our results exhibit prominent lateral heterogeneities in the study region. Distinct low-velocity anomalies are visible under the tectonically active regions, such as the Tienshan orogenic belt and western Kunlun Mountains, whereas pronounced high-velocity anomalies are imaged beneath the stable blocks, such as the Kazakh shield, the Junggar, Tarim, Qaidam, and Turpan-Hami basins, and the Tajik depression. Most strong earthquakes (Ms > 7.0) are mainly distributed along the transition zone of high to low velocity anomalies, suggesting a possible correlation between the strong earthquakes and the upper mantle structure. The fast directions of Pn anisotropy beneath the Tienshan orogenic belt are generally parallel to its striking orientation, whereas those beneath Pamir show a northward arc-shaped distribution. The Pn fast-velocity directions on the boundaries of the Kazakh shield and the Tarim and Junngar basins are approximately perpendicular to the strike of the Tienshan orogenic belt. By integrating with previous findings, our results suggest that the Tarim and Kazakh lithospheric materials could have underthrusted beneath the Tienshan orogenic belt that leads to the hot mantle material upwelling under the Tienshan orogenic belt, which is attributable to the Indo-Asian collision. These dynamic processes could play important roles in the Tienshan mountain building.

  15. The Capricorn Orogen Passive source Array (COPA) in Western Australia

    NASA Astrophysics Data System (ADS)

    Gessner, K.; Yuan, H.; Murdie, R.; Dentith, M. C.; Johnson, S.; Brett, J.

    2015-12-01

    COPA is the passive source component of a multi-method geophysical program aimed at assessing the mineral deposits potential of the Proterozoic Capricorn Orogen. Previous results from the active source surveys, receiver functions and magnetotelluric studies show reworked orogenic crust in the orogen that contrasts with more simple crust in the neighbouring Archean cratons, suggesting progressive and punctuated collisional processes during the final amalgamation of the Western Australian craton. Previous seismic studies are all based on line deployment or single station analyses; therefore it is essential to develop 3D seismic images to test whether these observations are representative for the whole orogen. With a careful design that takes advantage of previous passive source surveys, the current long-term and short-term deployments span an area of approximately 500 x 500 km. The 36-month total deployment can guarantee enough data recording for 3D structure imaging using body wave tomography, ambient noise surface wave tomography and P- and S-wave receiver function Common Conversion Point (CCP) stacking techniques. A successive instrument loan from the ANSIR national instrument pool, provided 34 broadband seismometers that have been deployed in the western half of the orogen since March 2014. We expect approximately 40-km lateral resolution near the surface for the techniques we propose, which due to low frequency nature of earthquake waves will degrade to about 100 km near the base of the cratonic lithosphere, which is expected at depths between 200 to 250 km. Preliminary results from the first half of the COPA deployment will be presented in the light of the hypotheses that 1) distinct crustal blocks can be detected continuously throughout the orogen (using ambient noise/body wave tomography); 2) distinct lithologies are present in the crust and upper mantle across the orogen (using receiver function CCP images); and 3) crustal and lithosphere deformation along

  16. Curved orogen and syntaxes formation during subduction and collision

    NASA Astrophysics Data System (ADS)

    Bajolet, F.; Replumaz, A.; Faccenna, C.; Lainé, R.

    2012-04-01

    The sustained convergence between India and Asia with successive stages of oceanic subduction, continental subduction and continental collision has lead to the formation of the Tibetan plateau while the Himalayan orogenic front acquired an arcuate shape convex toward the South. The Indian plate is bounded by north-south strike-slip faults, which accommodate a large indentation of Asia, between two oceanic subductions, beneath Makran to the west, beneath Indonesia to the east. Two syntaxes formed at both east and west termination of the Himalayan orogenic front at the transition between Indian and Asian plates. In order to better understand this particular configuration, we performed analog experiments at the Laboratory of Experimental Tectonics of Roma TRE to simulate, at the scale of the mantle - lithosphere system, the mechanics of the indentation process. The configuration is set to drive the India indenter towards the Asian continent with a motor-controlled-piston, to simulate far field stresses necessary for indentation. In particular, we test (1) which geometry and rheological parameters favor arcuate orogen and syntaxes formation, (2) what are the consequences on the topography of both the orogenic front and the plateau, and (3) how they relate with the subduction/collision dynamics. The setup is composed of a subducting and an overriding plate made of visco-elastic silicone putty, floating on low-viscosity syrup simulating the asthenosphere. The subducting plate simulates an oceanic lithosphere followed by a continental indenter (analog for the Indian craton) flanked or not by oceans (analog for Makran and Indonesian domains), while the upper continental plate simulates the Tibetan plateau. Results show that the curvature of the orogen and syntaxes' formation are primarily controlled by the strength and gravitational potential energy of the upper plate, and the shape of the subducting plate. A relatively strong upper plate flanked by oceans leads to a

  17. Proterozoic orogens in southern Peninsular India: Contiguities and complexities

    NASA Astrophysics Data System (ADS)

    Chetty, T. R. K.; Santosh, M.

    2013-12-01

    The Precambrian terranes of southern Peninsular India have been central to discussions on the history of formation and breakup of supercontinents. Of particular interest are the Proterozoic high grade metamorphic orogens at the southern and eastern margins of the Indian shield, skirting the 3.4 Ga Dharwar craton which not only preserve important records of lower crustal processes and lithospheric geodynamics, but also carry imprints of the tectonic framework related to the assembly of the major Neoproterozoic supercontinents - Rodinia and Gondwana. These Proterozoic orogens are described as Southern Granulite Terrane (SGT) in the southern tip and the Eastern Ghats Mobile Belt (EGMB) in the eastern domains of the peninsula. The contiguity of these orogens is broken for a distance of ˜400 km and disappears in the Bay of Bengal. These orogens expose windows of middle to lower crust with well-preserved rock records displaying multiple tectonothermal events and multiphase exhumation paths.Recent studies in these orogens have led to the recognition of discrete crustal blocks or terranes separated by major shear zone systems, some of which represent collisional sutures. The SGT and EGMB carry several important features such as fold-thrust tectonics, regional granulite facies metamorphism of up to ultrahigh-temperature conditions in some cases, multiple P-T paths, development of lithospheric shear zones, emplacement of ophiolites, presence of alkaline and anorthositic complexes, development of crustal-scale "flower structures", transpressional strains, and reactivation tectonics. A heterogeneous distribution of different metamorphic and magmatic assemblages with distinct spatial and temporal strain variations in shaping the fabric elements in different blocks is identified. Both EGMB and SGT share a common transpressional deformation history during the latest Neoproterozoic characterized by the steepening of the initial low angle crustal scale structures leading to a

  18. Grenville age of basement rocks in Cape May NJ well: New evidence for Laurentian crust in U.S. Atlantic Coastal Plain basement Chesapeake terrane

    USGS Publications Warehouse

    Sheridan, R.E.; Maguire, T.J.; Feigenson, M.D.; Patino, L.C.; Volkert, R.A.

    1999-01-01

    The Chesapeake terrane of the U.S. mid-Atlantic Coastal Plain basement is bounded on the northwest by the Salisbury positive gravity and magnetic anomaly and extends to the southeast as far as the Atlantic coast. It underlies the Coastal Plain of Virginia, Maryland, Delaware and southern New Jersey. Rubidium/Strontium dating of the Chesapeake terrane basement yields an age of 1.025 ?? 0.036 Ga. This age is typical of Grenville province rocks of the Middle to Late Proterozoic Laurentian continent. The basement lithologies are similar to some exposed Grenville-age rocks of the Appalachians. The TiO2 and Zr/P2O5 composition of the metagabbro from the Chesapeake terrane basement is overlapped by those of the Proterozoic mafic dikes in the New Jersey Highlands. These new findings support the interpretation that Laurentian basement extends southeast as far as the continental shelf in the U.S. mid-Atlantic region. The subcrop of Laurentian crust under the mid-Atlantic Coastal Plain implies unroofing by erosion of the younger Carolina (Avalon) supracrustal terrane. Dextral-transpression fault duplexes may have caused excessive uplift in the Salisbury Embayment area during the Alleghanian orogeny. This extra uplift in the Salisbury area may have caused the subsequent greater subsidence of the Coastal Plain basement in the embayment.

  19. Neoproterozoic to Paleozoic Geological Evolution of Mongolia: Constraints on Modes of "Crustal Growth" in the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Macdonald, F. A.; Bold, U.; Smith, E.; Olin, P. H.; Crowley, J. L.; Schmitz, M. D.

    2012-12-01

    The Central Asian Orogenic Belt (CAOB) is widely considered the largest area of Phanerozoic juvenile crustal growth on Earth. However, the timing and nature of the orogenic events in the core of the CAOB in Mongolia has remained poorly constrained due to a dearth of detailed geological and geochronological studies. To bridge this gap and test models of crustal growth, here we refine the sequencing of geological events by focusing on the formation and destruction of Neoproterozoic and Paleozoic tectonic basins. Mongolia's basins record a complete Neoproterozoic to Cambrian Wilson cycle with rifting of the Mongolian continent at ca. 700 Ma, the development of a Cryogenian to Ediacaran thermally subsiding passive margin, an arc-continent collision at ca. 520 Ma, and a continent-arc-continent collision at ca. 500 Ma. During this collisional orogeny, that is the Cambrian Altaids, crustal growth occurred largely through the obduction of ophiolites. Rifting of the southern margin occurred during the Ordovician Period, with the development of a Silurian passive margin. Oblique northwest-dipping subduction was initiated during the Devonian and resulted in a transpressional accretionary orogen. The CAOB culminated with a continent-arc-continent collision and the accretion of the North China and Tarim Blocks in the latest Permian. The Devonian to early Permian accretionary orogen is associated not only with voluminous plutonism, but also, major translational structures oblique to the margin resulting in the appearance of many accreted terranes. These data are consistent with existing coarse Hf and Nd isotopic data, but also provide a framework for future detailed studies. Although our geological constraints suggest distinct periods of apparent crustal growth through either collisional or accretionary orogenies, net crustal growth after accounting for recycling is equivocal.

  20. Structural inversion of the Tamworth Belt: Insights into the development of orogenic curvature in the southern New England Orogen, Australia

    NASA Astrophysics Data System (ADS)

    Phillips, G.; Robinson, J.; Glen, R.; Roberts, J.

    2016-05-01

    The middle to late Permian Hunter Bowen Event is credited with the development of orogenic curvature in the southern New England Orogen, yet contention surrounds the structural dynamics responsible for the development of this curvature. Debate is largely centred on the roles of orogen parallel strike-slip and orogen normal extension and contraction to explain the development of curvature. To evaluate the dynamic history of the Hunter Bowen Event, we present new kinematic reconstructions of the Tamworth Belt. The Tamworth Belt formed as a Carboniferous forearc basin and was subsequently inverted during the Hunter Bowen Event. Kinematic reconstructions of the Tamworth Belt are based on new maps and cross-sections built from a synthesis of best-available mapping, chronostratigraphic data and new interpretations of depth-converted seismic data. The following conclusions are made from our study: (i) the Hunter Bowen Event was dominantly driven by margin normal contraction (east-west shortening; present-day coordinates), and; (ii) variations in structural style along the strike of the Tamworth Belt can be explained by orthogonal vs. oblique inversion, which reflects the angular relationship between the principal shortening vector and continental-arc margin. Given these conclusions, we suggest that curvature around the controversial Manning Bend was influenced by the presence of primary curvature in the continental margin, and that the Hastings Block was translated along a sinistral strike-slip fault system that formed along this oblique (with respect to the regional east-west extension and convergence direction) part of the margin. Given the available temporal data, the translation of the Hastings Block took place in the Early Permian (Asselian) and therefore preceded the Hunter Bowen Event. Accordingly, we suggest that the Hunter Bowen Event was dominantly associated with enhancing curvature that was either primary in origin, or associated with fault block translation

  1. Sr, Nd and Pb isotopes in Proterozoic intrusives astride the Grenville Front in Labrador: Implications for crustal contamination and basement mapping

    USGS Publications Warehouse

    Ashwal, L.D.; Wooden, J.L.; Emslie, R.F.

    1986-01-01

    We report Sr, Nd and Pb isotopic compositions of mid-Proterozoic anorthosites and related rocks (1.45-1.65 Ga) and of younger olivine diabase dikes (1.4 Ga) from two complexes on either side of the Grenville Front in Labrador. Anorthositic or diabasic samples from the Mealy Mountains (Grenville Province) and Harp Lake (Nain-Churchill Provinces) complexes have very similar major, minor and trace element compositions, but distinctly different isotopic signatures. All Mealy Mountains samples have ISr = 0.7025-0.7033, ??{lunate}Nd = +0.6 to +5.6 and Pb isotopic compositions consistent with derivation from a mantle source depleted with respect to Nd/Sm and Rb/Sr. Pb isotopic compositions for the Mealy Mountains samples are slightly more radiogenic than model mantle compositions. All Harp Lake samples have ISr = 0.7032-0.7066, ??{lunate}Nd = -0.3 to -4.4 and variable, but generally unradiogenic 207Pb 204Pb and 206Pb 204Pb compared to model mantle, suggesting mixing between a mantle-derived component and a U-depleted crustal contaminant. Crustal contaminants are probably a variety of Archean high-grade quartzofeldspathic gneisses with low U/Pb ratios and include a component that must be isotopically similar to the early Archean (>3.6 Ga) Uivak gneisses of Labrador or the Amitsoq gneisses of west Greenland. This would imply that the ancient gneiss complex of coastal Labrador and Greenland is larger than indicated by present surface exposure and may extend in the subsurface as far west as the Labrador Trough. If Harp Lake and Mealy Mountains samples were subjected to the same degree of contamination, as suggested by their chemical similarities, then the Mealy contaminants must be much younger, probably early or middle Proterozoic in age. The Labrador segment of the Grenville Front, therefore, appears to coincide with the southern margin of the Archean North Atlantic craton and may represent a pre mid-Proterozoic suture. ?? 1986.

  2. Field Vectors to Metamorphosed Ores: A Prelude to Finding Currently Concealed Volcano-Plutonic Arc Settings and Their Mineral Deposits in The Grenville Province

    NASA Astrophysics Data System (ADS)

    Corriveau, L.; Bonnet, A.; van Breemen, O.

    2004-05-01

    Recent mineral deposits synthesis highlights the largely barren nature of the high-grade metamorphic terrains of the Canadian Shield in terms of large mining camps. No where is the gap most startling than in the Grenville Province even though a lot of its Paleo- to Mesoproterozoic crust consists of magmatic arcs renown worldwide to host IOCG, VHMS and Porphyry Cu deposits. All these deposit types have significant alteration halos that can serve as vectors to ore. The use of such vectors forced a complete reinterpretation of the nature of the La Romaine domain in the eastern Grenville Province. Mapped in the 70's as being a metasedimentary basin with >500 km2 of meta-arkose and minor pelite, quartzite, conglomerate and marble, the domain is herein reassessed as a major 1.5 Ga Pinwarian continental magmatic arc fertile in Cu-sulphides and Fe-oxides mineralizing systems. The original markers used to prognosticate a sedimentary origin can now be demonstrated to be a series of rhyolitic to dacitic lapillistone, sericitized tuff with Al nodules and veins, Al gneiss locally with lapilli textures, garnetite, ironstones and calc-silicate rocks. The distribution, paragenesis and mode of the Al-, Fe- and Ca-rich units significantly depart from those of normal metasediments but are very diagnostic of metamorphosed hydrothermal alteration zones and meta-exhalites. Mapping alteration vectors provided clues to search for and find the volcanic rocks concealed among the composite granitic gneiss, the zones of hydrothermal leaching (e.g., sericitic, argillic and advanced argillic alterations) and discharge, the cap rocks, and the Cu mineralization. Spatial and stratigraphic relationships provided a means to compare their settings with ore deposit models. Roof pendants of Ba-rich meta-exhalite in surrounding 1.5 Ga granitic plutons and intrusion of 1495 Ma Qtz-Kfs porphyry across hydrothermally altered 1500 Ma tuffs attest to coeval hydrothermal activity and sub-volcanic plutons. The

  3. Taconic plate kinematics as revealed by foredeep stratigraphy, Appalachian Orogen

    USGS Publications Warehouse

    Bradley, D.C.

    1989-01-01

    Destruction of the Ordovician passive margin of eastern North America is recorded by an upward deepening succession of carbonates, shales, and flysch. Shelf drowning occurred first at the northern end of the orogen in Newfoundland, then at the southern end of the orogen in Georgia, and finally in Quebec. Diachronism is attributed to oblique collision between an irregular passive margin, that had a deep embayment in Quebec, and at least one east dipping subduction complex. The rate of plate convergence during collision is estimated at 1 to 2 cm/yr, and the minimum width of the ocean that closed is estimated at 500 to 900 km. The drowning isochron map provides a new basis for estimating tectonic transport distances of four of these allochthons (about 165 to 450 km), results not readily obtained by conventional structural analysis. -Author

  4. Paleozoic tectonics of the Ouachita Orogen through Nd isotopes

    SciTech Connect

    Gleason, J.D.; Patchett, P.J.; Dickinson, W.R.; Ruiz, J. . Dept. of Geosciences)

    1992-01-01

    A combined isotopic and trace-element study of the Late Paleozoic Ouachita Orogenic belt has the following goals: (1) define changing provenance of Ouachita sedimentary systems throughout the Paleozoic; (2) constrain sources feeding into the Ouachita flysch trough during the Late Paleozoic; (3) isolate the geochemical signature of proposed colliding terranes to the south; (4) build a data base to compare with possible Ouachita System equivalents in Mexico. The ultimate aim is to constrain the tectonic setting of the southern margin of North America during the Paleozoic, with particular emphasis on collisional events leading to the final suturing of Pangea. Nd isotopic data identify 3 distinct groups: (1) Ordovician passive margin sequence; (2) Carboniferous proto-flysch (Stanley Fm.), main flysch (Jackfork and Atoka Fms.) and molasse (foreland Atoka Fm.); (3) Mississippian ash-flow tuffs. The authors interpret the Ordovician signature to be essentially all craton-derived, whereas the Carboniferous signature reflects mixed sources from the craton plus orogenic sources to the east and possibly the south, including the evolving Appalachian Orogen. The proposed southern source is revealed by the tuffs to be too old and evolved to be a juvenile island arc terrane. They interpret the tuffs to have been erupted in a continental margin arc-type setting. Surprisingly, the foreland molasse sequence is indistinguishable from the main trough flysch sequence, suggesting the Ouachita trough and the craton were both inundated with sediment of a single homogenized isotopic signature during the Late Carboniferous. The possibility that Carboniferous-type sedimentary dispersal patterns began as early as the Silurian has important implications for the tectonics and paleogeography of the evolving Appalachian-Ouachita Orogenic System.

  5. Jurassic sedimentary basins in the Central Asian orogenic belt

    SciTech Connect

    Bebeshev, I.I.

    1995-05-01

    The principal stages of development of Jurassic sedimentary basins (from their origin to the end of their existence) in the Central Asian orogenic belt are considered. The interrelations of the basins with the surrounding paleorises are investigated. Paleogeographic maps are compiled representing the evolution of paleolandscapes and revealing their interrelations in space and time for each stage. Areas with the highest prospects for coal are found.

  6. Orogenic gold and geologic time: A global synthesis

    USGS Publications Warehouse

    Goldfarb, R.J.; Groves, D.I.; Gardoll, S.

    2001-01-01

    Orogenic gold deposits have formed over more than 3 billion years of Earth's history, episodically during the Middle Archean to younger Precambrian, and continuously throughout the Phanerozoic. This class of gold deposit is characteristically associated with deformed and metamorphosed mid-crustal blocks, particularly in spatial association with major crustal structures. A consistent spatial and temporal association with granitoids of a variety of compositions indicates that melts and fluids were both inherent products of thermal events during orogenesis. Including placer accumulations, which are commonly intimately associated with this mineral deposit type, recognized production and resources from economic Phanerozoic orogenic-gold deposits are estimated at just over one billion ounces gold. Exclusive of the still-controversial Witwatersrand ores, known Precambrian gold concentrations are about half this amount. The recent increased applicability of global paleo-reconstructions, coupled with improved geochronology from most of the world's major gold camps, allows for an improved understanding of the distribution pattern of orogenic gold in space and time.

  7. Sr, Nd, and Pb isotopes in Proterozoic intrusives astride the Grenville Front in Labrador - Implications for crustal contamination and basement mapping

    NASA Technical Reports Server (NTRS)

    Ashwal, L. D.; Wooden, J. L.; Emslie, R. F.

    1986-01-01

    Trace element and Pb, Sr, and Nd isotopic compositions of anorthosites and related rocks, and of younger mafic dikes from Harp Lake and Mealy Mountains in Labrador, Canada are estimated and compared. The effects of crustal component contaminants on the isotopic compositions of the dikes are investigated. The correlation between the isotopic data and the crustal contamination model is studied. It is observed that for Harp Lake the initial Sr ratios are higher and the Nd values are lower than Mealy samples, and the data do not correspond to the crustal contamination model; however, the Pb isotope data favor a crustal contamination model. It is noted that the Labrador segment of the Grenville Front appears to coincide with the southern margin of the Archean North Atlantic craton, and may represent a pre mid-Proterozoic suture.

  8. The crust-mantle interaction in continental subduction channels: Zircon evidence from orogenic peridotite in the Sulu orogen

    NASA Astrophysics Data System (ADS)

    Li, Hai-Yong; Chen, Ren-Xu; Zheng, Yong-Fei; Hu, Zhaochu

    2016-02-01

    A combined secondary ion mass spectrometer and laser ablation-(multicollector)-inductively coupled plasma mass spectrometer study of zircon U-Pb ages, trace elements, and O and Hf isotopes was carried out for orogenic peridotite and its host gneiss in the Sulu orogen. Newly grown zircon domains exhibit weak zoning or no zoning, relatively low Th/U ratios (<0.1), low heavy rare earth element (HREE) contents, steep middle rare earth element-HREE patterns, negative Eu anomalies, and negative to low δ18O values of -11.3 to 0.9‰ and U-Pb ages of 220 ± 2 to 231 ± 4 Ma. Thus, these zircons would have grown from metasomatic fluids during the early exhumation of deeply subducted continental crust. The infiltration of metasomatic fluids into the peridotite is also indicated by the occurrence of hydrous minerals such as amphibole, serpentine, and chlorite. In contrast, relict zircon domains exhibit magmatic zircon characteristics. Their U-Pb ages and trace element and Hf-O isotope compositions are similar to those for protolith zircons from ultrahigh-pressure metamorphic rocks in the Dabie-Sulu orogenic belt. Thus, these relict magmatic zircons would be physically transported into the peridotite by metasomatic fluids originated from the deeply subducted continental crust. Therefore, the peridotite underwent metasomatism by aqueous solutions derived from dehydration of the deeply subducted continental crust during the early exhumation. It is these crustally derived fluids that would have brought not only such chemical components as Zr and Si but also tiny zircon grains from the deeply subducted crustal rocks into the peridotite at the slab-mantle interface in continental subduction channels. As such, the orogenic peridotite records the crust-mantle interaction at the deep continental subduction zone.

  9. Applications of seismic pattern recognition and gravity inversion techniques to obtain enhanced subsurface images of the Earth's crust under the Central Metasedimentary Belt, Grenville Province, Ontario

    NASA Astrophysics Data System (ADS)

    Roy, Baishali; Mereu, R. F.

    2000-12-01

    Project Lithoprobe's Abitibi-Grenville transect seismic reflection lines 32 and 33 traverse the exposed Central Metasedimentary Belt (CMB) located in the Grenville province of the Precambrian Shield of Canada in southern Ontario. These seismic lines image a zone with a protracted deformational history spanning more than 300Myr. Detailed examination of the commercially processed stacked sections reveals a number of significant deficiencies in some important areas. The image quality in these zones of reduced coherency needs to be enhanced to examine specific features and their relation to the surface geology. Examination of near-vertical seismic data from Lines 32 and 33 revealed that the signal-to-noise ratio was not improved by stacking, due to misalignment of signals even after static, normal moveout corrections and residual static corrections. The presumed reason is that reflected seismic energy following long ray paths in heterogeneous media suffers from relative advances and delays in its propagation, and hence arrives at slightly different times at the receivers, tending to be poorly aligned relative to its theoretical traveltime curves. A pattern recognition (PR) method for signal enhancement followed by energy stacking in moving time windows was used in this study to improve the images in spite of misalignments. Reprocessing has refined the geometry of the reflection profiles. The objective of this paper is to use enhanced images of the seismic reflection data obtained by using a PR approach together with gravity data, using 2.5-D forward and 3-D inversion routines, to give an improved model of subsurface structure in the vicinity of lines 32 and 33. Line 32 is dominated by southeast-dipping reflectors soling into the lower crust. The listric geometry of the strong reflection packages of the CMB boundary thrust zone is interpreted to represent a crustal-scale ramp-flat geometry that accommodated northwest-directed tectonic transport of the CMB. This

  10. Orogenic structural inheritance and rifted passive margin formation

    NASA Astrophysics Data System (ADS)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  11. Deformation during terrane accretion in the Saint Elias orogen, Alaska

    USGS Publications Warehouse

    Bruhn, R.L.; Pavlis, T.L.; Plafker, G.; Serpa, L.

    2004-01-01

    The Saint Elias orogen of southern Alaska and adjacent Canada is a complex belt of mountains formed by collision and accretion of the Yakutat terrane into the transition zone from transform faulting to subduction in the northeast Pacific. The orogen is an active analog for tectonic processes that formed much of the North American Cordillera, and is also an important site to study (1) the relationships between climate and tectonics, and (2) structures that generate large- to great-magnitude earthquakes. The Yakutat terrane is a fragment of the North American plate margin that is partly subducted beneath and partly accreted to the continental margin of southern Alaska. Interaction between the Yakutat terrane and the North American and Pacific plates causes significant differences in the style of deformation within the terrane. Deformation in the eastern part of the terrane is caused by strike-slip faulting along the Fairweather transform fault and by reverse faulting beneath the coastal mountains, but there is little deformation immediately offshore. The central part of the orogen is marked by thrusting of the Yakutat terrane beneath the North American plate along the Chugach-Saint Elias fault and development of a wide, thin-skinned fold-and-thrust belt. Strike-slip faulting in this segment may he localized in the hanging wall of the Chugach-Saint Elias fault, or dissipated by thrust faulting beneath a north-northeast-trending belt of active deformation that cuts obliquely across the eastern end of the fold-and-thrust belt. Superimposed folds with complex shapes and plunging hinge lines accommodate horizontal shortening and extension in the western part of the orogen, where the sedimentary cover of the Yakutat terrane is accreted into the upper plate of the Aleutian subduction zone. These three structural segments are separated by transverse tectonic boundaries that cut across the Yakutat terrane and also coincide with the courses of piedmont glaciers that flow from

  12. The role of post-orogenic inheritance for the formation of rifted margins: Example of the Alpine Tethys

    NASA Astrophysics Data System (ADS)

    Mohn, Geoffroy; Petri, Benoit; Manatschal, Gianreto

    2015-04-01

    Rifting, leading eventually to the formation of an ocean, often develops over a region, which was previously affected by orogenic and post-orogenic processes. This contribution aims to investigate the role of structural, lithological and thermal inheritance resulting from late- to post-orogenic processes on the formation of subsequent continental rifted margins. The Alpine belt in Western Europe preserves a complete Wilson Cycle, spanning from Devono-Carboniferous Variscan orogeny, over Permian post-Variscan extension and Jurassic rifting to Late Cretaceous-Tertiary Alpine orogeny. In detail, the Permian post-Variscan extension represents a critical event that strongly modified the architecture and the composition of all crustal levels. The upper crust recorded the formation of intracontinental sedimentary basins associated with extrusive magmatism. Mid-crustal levels were characterized by the development of mylonitic shear zones and the emplacement of felsic to mafic plutons, while the lower crust was mainly intruded by mafic magmas locally associated with high-temperature (HT) metamorphism. The strong structural and lithological inheritance resulting from Permian post-orogenic processes has a key control on the evolution of the subsequent Jurassic rifting during the Alpine Tethys opening: (1) The location of Jurassic rift basins was - at least locally - controlled by Permian sedimentary basins, (2) Jurassic structures accommodating crustal thinning reactivated Permian shear zones, (3) Permian mafic plutons may represent rigid bodies in the continental crust controlling the localization of the Jurassic deformations, (4) the pre-rift lower crust was likely strong and refractory due to the emplacement of mafic underplated bodies and associated HT-metamorphism, and (5) the pre-rift lithospheric mantle was already depleted at the onset of the Jurassic rifting as being the source of Permian mafic magmas. In conclusion, post-orogenic processes strongly modified the

  13. Late-stage orogenic processes: How to link surface motion with distinct lithospheric processes

    NASA Astrophysics Data System (ADS)

    Neubauer, F.; Heberer, B.

    2009-04-01

    There is still a lack of knowledge of surface expression caused by deep-seated lithospheric processes, and how such processes could be distinguished from other, e.g. climate-induced, surface processes like denudation. Surface expressions of deep-seated lithospheric processes in convergent settings are expected to have been long-lived and to show large wave-length structures creating a dynamic topography (Wortel and Spakman, 2000; Cloetingh and Ziegler, 2007). Resulting continent-continent collisional orogens are bivergent, and the principal vergency of collisional orogens is controlled by the previous subduction of oceanic lithosphere (Beaumont et al., 1996). A number of tectonic processes are shown to be active during late orogenic phases and these processes particularly result in specific patterns of surface uplift and denudation of the evolving orogens as well as subsidence in the associated foreland basin. A number of these processes are not fully understood. Late-stage orogenic processes include, among others, slab break-off, slab delamination respectively of lithospheric roots, back-thrusting, tectonic indentation and consequent orogen-parallel lateral extrusion and formation of Subduction-Transform Edge Propagator (STEP) faults acting on the subducting lithosphere (Molnar and Tapponnier, 1975; Wortel and Spakman, 2000; Ratschbacher et al., 1991; Govers and Wortel, 2005). Here, we discuss these processes mainly in terms of their near-surface geological expressions within the orogen and the associated foreland basins, and how these processes could be distinguished by such geological features. We also show distinct theoretical models applied to the arcuate Alpine-Balkan-Carpathian-Dinaric system, which is driven by the oblique convergence of Africa-Europe. Slab-break-off results in lateral orogen-parallel migration of sharp subsidence in a linear belt in front of the slab window, coupled subsidence and subsequent uplift/basin inversion of peripheral foreland

  14. Sand fairway mapping as a tool for tectonic restoration in orogenic belts

    NASA Astrophysics Data System (ADS)

    Butler, Rob

    2016-04-01

    geomorphology. The stratigraphic records are preserved in many parts of the Alpine-Mediterranean region. Examples are drawn from the Eo-Oligocene of the western Alps and the early Miocene of the Maghreb-Apennine system to illustrate how turbidite sedimentology, linked to studies of basin structure, can inform understanding of tectonic processes on regional and local scales. In both examples, sediment was delivered across deforming basin arrays containing contractional structures, sourced from beyond the immediate orogenic segments. The depositional systems show that multiple structures were active in parallel, rather than develop in any particular sequence. Both systems show that significant deformation occurs, emerging to the syn-orogenic surface ahead of the main orogenic wedge. The cycling of uplift and subsidence of "massifs" can be significantly more complex that the histories resolved from thermochronological data alone.

  15. Rapid exhumation of deep crust in an obliquely convergent orogen: The Kaoko Belt of the Damara Orogen

    NASA Astrophysics Data System (ADS)

    Foster, David A.; Goscombe, Ben D.; Gray, David R.

    2009-08-01

    The exhumation of deep crustal rocks and juxtaposition of structural-metamorphic domains from different depths in a transpressional orogen may occur during the prograde evolution of the orogen by vertical extrusion or during the retrograde evolution of the orogen via extension. Metamorphic petrology, kinematics, and thermochronology of strike-slip shear zones in the Kaoko Belt of the Damara Orogen are used to evaluate extrusion and extension processes in this transpressional orogen. Mineral assemblages and deformation mechanisms record shearing at pressures of 4-6 kbar and temperatures of ˜550°C for the Three Palms mylonite zone, 600-650°C for the Purros mylonite zone, and ˜630-700°C for the Village and Khumib mylonite zones. The Three Palms mylonite zone, which separates the accreted Coastal Terrane from the former passive margin of the Congo Craton, exhibits progressive deformation during decreasing temperatures through lower greenschist facies and into the brittle field, with consistent oblique normal shear indicators. Lower-temperature fabrics and brittle features also overprint the Village mylonite zone. The 207Pb-206Pb (titanite) and 40Ar/39Ar (hornblende, muscovite, and biotite) data indicate rapid cooling, at rates of 30-100°C/Ma, of all high-grade structural domains in the core of the Kaoko Belt between circa 535 and 525 Ma, which is about 20-30 Ma younger then peak metamorphism. The 40Ar/39Ar data from synkinematic muscovite fish in the retrograde shear zone assemblages indicate that the Khumib, Village, and Three Palms mylonite zones were actively deforming at temperatures below 350°C at circa 530-524 Ma. These data indicate that the high-grade metamorphic rocks of the Kaoko were rapidly exhumed and juxtaposed after the main transpressive deformation by oblique extension. Reactivation of the shear zones and tectonic exhumation of high-grade structural domains from beneath the accreted Coastal Terrane was caused by collision in the Damara Belt and

  16. Thermo-kinematic evolution of the Annapurna-Dhaulagiri Himalaya, central Nepal: The Composite Orogenic System

    NASA Astrophysics Data System (ADS)

    Parsons, A. J.; Law, R. D.; Lloyd, G. E.; Phillips, R. J.; Searle, M. P.

    2016-04-01

    The Himalayan orogen represents a "Composite Orogenic System" in which channel flow, wedge extrusion, and thrust stacking operate in separate "Orogenic Domains" with distinct rheologies and crustal positions. We analyze 104 samples from the metamorphic core (Greater Himalayan Sequence, GHS) and bounding units of the Annapurna-Dhaulagiri Himalaya, central Nepal. Optical microscopy and electron backscatter diffraction (EBSD) analyses provide a record of deformation microstructures and an indication of active crystal slip systems, strain geometries, and deformation temperatures. These data, combined with existing thermobarometry and geochronology data are used to construct detailed deformation temperature profiles for the GHS. The profiles define a three-stage thermokinematic evolution from midcrustal channel flow (Stage 1, >700°C to 550-650°C), to rigid wedge extrusion (Stage 2, 400-600°C) and duplexing (Stage 3, <280-400°C). These tectonic processes are not mutually exclusive, but are confined to separate rheologically distinct Orogenic Domains that form the modular components of a Composite Orogenic System. These Orogenic Domains may be active at the same time at different depths/positions within the orogen. The thermokinematic evolution of the Annapurna-Dhaulagiri Himalaya describes the migration of the GHS through these Orogenic Domains and reflects the spatial and temporal variability in rheological boundary conditions that govern orogenic systems.

  17. Isolating active orogenic wedge deformation in the southern Subandes of Bolivia

    NASA Astrophysics Data System (ADS)

    Weiss, Jonathan R.; Brooks, Benjamin A.; Foster, James H.; Bevis, Michael; Echalar, Arturo; Caccamise, Dana; Heck, Jacob; Kendrick, Eric; Ahlgren, Kevin; Raleigh, David; Smalley, Robert; Vergani, Gustavo

    2016-08-01

    A new GPS-derived surface velocity field for the central Andean backarc permits an assessment of orogenic wedge deformation across the southern Subandes of Bolivia, where recent studies suggest that great earthquakes (>Mw 8) are possible. We find that the backarc is not isolated from the main plate boundary seismic cycle. Rather, signals from subduction zone earthquakes contaminate the velocity field at distances greater than 800 km from the Chile trench. Two new wedge-crossing velocity profiles, corrected for seasonal and earthquake affects, reveal distinct regions that reflect (1) locking of the main plate boundary across the high Andes, (2) the location of and loading rate at the back of orogenic wedge, and (3) an east flank velocity gradient indicative of décollement locking beneath the Subandes. Modeling of the Subandean portions of the profiles indicates along-strike variations in the décollement locked width (WL) and wedge loading rate; the northern wedge décollement has a WL of ~100 km while accumulating slip at a rate of ~14 mm/yr, whereas the southern wedge has a WL of ~61 km and a slip rate of ~7 mm/yr. When compared to Quaternary estimates of geologic shortening and evidence for Holocene internal wedge deformation, the new GPS-derived wedge loading rates may indicate that the southern wedge is experiencing a phase of thickening via reactivation of preexisting internal structures. In contrast, we suspect that the northern wedge is undergoing an accretion or widening phase primarily via slip on relatively young thrust-front faults.

  18. Late-orogenic, post-orogenic, and anorogenic granites: Distinction by major-element and trace-element chemistry and possible origins

    SciTech Connect

    Rogers, J.J.W.; Greenberg, J.K. )

    1990-05-01

    Granites classified into four categories based solely on tectonics of occurrence and associated rock types also have compositional characteristics that are consistent within groups and different among groups. Orogenically related granites include late-orogenic varieties (LO) associated with calc-alkaline batholiths, and post-orogenic varieties (PO), which occur in broad zones of isolated diapiric plutons in recently deformed orogenic belts. Inclined REE patterns, moderate Sr contents, and K{sub 2}O-SiO{sub 2} relationships show that late-orogenic granites formed by fractionation of plagioclase, clinopyroxene, and amphibole from calcalkaline magmas. Flatter REE patterns and K{sub 2}O contents near 5%, plus the absence of associated magmatic rocks, indicate that the post-orogenic granites developed by partial melting of subduction-produced mafic/intermediate magmatic rocks. Both the late- and post-orogenic granites can be part of material newly added to continental crust as a result of orogeny. Anorogenic granites in anorthosite/rapakivi complexes (AR) or alkaline ring complexes (RC) have LIL contents too high to have been equilibrated with a mafic mineral assemblage. These anorogenic rocks probably formed by partial melting of preexisting sialic crust and do not represent new crustal increment.

  19. Using crystal records to investigate the parentage of orogenic andesites

    NASA Astrophysics Data System (ADS)

    Kent, A. J.; Koleszar, A. M.

    2011-12-01

    The role of andesitic magmas in continental growth and differentiation and in material fluxes related to subduction zones continues to be an active research topic. The high proportion of andesitic magmas erupted in convergent margin settings contrasts with much more limited evidence for the presence of true andesitic liquids. This suggests that magma mixing plays a dominant role in andesite genesis, consistent with the prevalence of disequilibrium textures and mineral assemblages evident in many orogenic andesites. The high proportion of andesitic magma erupted in convergent margins can be related to the link between mafic recharge, which results in magma mixing to produce andesitic magmas, and eruption initiation. We describe this process as recharge filtering, as it results in preferential eruption of mixed andesites relative to the mafic and felsic components that combine to produce them. Many discussions about andesites also revolve around the relative importance of crustal and mantle contributions. This information is crucial for understanding andesite genesis, although owing to the prevalence of mixing, bulk rock compositions may be difficult to interpret. Fortunately a range of techniques based on the study of crystalline material lets us explore the compositions and origins of the parental magmas involved in formation of orogenic andesite magmas in greater detail. Important records reside in the abundance and composition of erupted phenocryst phases, together with their entrained mineral and melt inclusions, and the relatively long timescales required for crystal re-equilibration, relative to the often-shorter timescales of mixing and eruption mean that phenocrysts primarily preserve information about their parental melts. Phenocrysts from a wide range of orogenic andesites show evidence for contributions from a diversity of mafic and felsic parental melts. This is reflected in major, trace and isotopic compositions, and interactions between these melts are

  20. The appalachian-Ouachita orogen in the United States

    SciTech Connect

    Hatcher, R.D. Jr.; Thomas, W.A.; Viele, G.W.

    1989-01-01

    This book presents information from more than 1,000 sources in academia, state and federal agencies, and industry on the geology and geophysics of the crustal plates in the Appalachian and Ouachita mountains of the U.S. Discusses the tectonics, magnetic and gravity anomaly patterns, regional stress fields, thermal aspects, seismicity, and neotectonics of the area. Other topics include energy resources of the Appalachian orogen; stratigraphy, sedimentology, and depositional setting of reorogenic rocks; and mineral deposits and resources of the Ouachita Mountains. Includes separate maps and charts.

  1. Asymmetric gravitational spreading - Analogue experiments on the Svecofennian orogen

    NASA Astrophysics Data System (ADS)

    Nikkilä, Kaisa; Korja, Annakaisa; Koyi, Hemin; Eklund, Olav

    2015-04-01

    Over-thickened orogenic crust may suffer from rheological, gravitational and topographical unbalancing resulting in discharging via gravitational spreading. If the thickened orogen is also hot, then increased temperature may reduce the viscosity of the crust that may induce large-scale horizontal flow. The effect of flow on the crustal architecture has previously been modeled with symmetric two-way spreading or asymmetric one- or two-way spreading (like channel flow) experiments. Most models do not take into account of the contrasting mechanical properties of the juxtaposed terranes. We have made analogue experiments to study gravitational one-way spreading and the interplay between two crustal blocks with contrasting rheological properties. The models are 3 cm thick replicas of 60 km thick crust. They have three horizontal layers representing strong lower, weak middle and brittle upper crust. The models have cuts to study the effect of inherited crustal-scale weakness zones. The experiments have been conducted within a large centrifuge in the Hans Ramberg Tectonic Laboratory at Uppsala University. The analogue models propose that asymmetric, unilateral flow has different effect on the contrasting crustal units, in both horizontal and vertical directions. The laterally heterogeneous crust flows towards the direction of extension, and it rotates and extends the pre-existing weakness zones. The weakness zones facilitate exhumation and they increase strain rate. The weakness zones split the crust into subblocks, which stretch individually and which may show signatures of compression or rotation. The changes in thickness of the model reflect changes in the layers, which may thin or thicken depending on the mechanical properties of crustal layers. A consequence of this the total amount of flattening is less than the model extension. The results are compared to geophysical and geological data from Precambrian Svecofennian orogen in Fennoscandia. The comparison suggest

  2. Predictive mapping of prospectivity for orogenic gold in Uganda

    NASA Astrophysics Data System (ADS)

    Herbert, Sarah; Woldai, Tsehaie; Carranza, Emmanuel John M.; van Ruitenbeek, Frank J. A.

    2014-11-01

    Integration of enhanced regional geo-datasets has facilitated new geological interpretation and modelling of prospectivity for orogenic gold in southwestern Uganda. The geo-datasets include historical geological maps, geological field data, digital terrain models, Landsat TM data and airborne geophysical data. The study area, bordered by the western branch of the East African Rift, covers a range of different aged terranes including the Archaean basement gneisses, Palaeoproterozoic volcano-sedimentary Buganda Toro Belt, Mesoproterozoic clastic sedimentary Karagwe Ankolean Belt and several outliers of undeformed Neoproterozoic sediments. The mineral systems approach to practical exploration targeting requires a framework to link conceptual models of mineralisation with available data. A conceptual model requires good understanding of key processes and their timing within the geodynamic history of an area. The challenge is that processes cannot be mapped, only their results or effects. In this study, a district-scale (1:100,000) investigation is considered appropriate given the scarcity of geological information and the absence of world-renowned gold deposits in southwestern Uganda. At this scale of orogenic gold mineral systems understanding, evidence for the source of gold, active pathways and the physical traps are considered critical. Following the mineral system approach, these processes critical to orogenic gold systems are translated into district-scale mappable proxies using available regional-scale datasets. Tectono-stratigraphic domains, mantle indicators and gold occurrences represent the “source of gold” as a critical process. Zones of hydrothermal alteration were extracted from radiometric data, structures involved in the orogenies and terrane contacts were extracted to represent the active pathway as a critical process and finally the physical throttle is represented by rheological contrasts and geological complexity. Then, the knowledge

  3. Tectonic evolution of the Qinling orogen, China: Review and synthesis

    NASA Astrophysics Data System (ADS)

    Dong, Yunpeng; Zhang, Guowei; Neubauer, Franz; Liu, Xiaoming; Genser, Johann; Hauzenberger, Christoph

    2011-05-01

    This contribution reviews the tectonic structure and evolution of the Qinling orogenic belt, which extends east-west nearly 2500 km across Central China and is a giant orogenic belt formed by the convergence and collision between North China and South China Blocks. The principal tectonic elements including metamorphic basement and its Neoproterozoic to Triassic cover, ophiolitic sutures, nature and ages of granitoid belts, provenance studies and tectonometamorphic studies of metamorphic belts allow tracing the polarity of two stages of plate convergence and collision and the further tectonic history. In this review, we present new distribution maps of the Early Paleozoic ophiolites and associated volcanics in the Shangdan suture zone and the Middle Devonian-Middle Triassic ophiolitic melange in the Mianlue suture zone, as well as the maps of granitoid and metamorphic belts displaying various ages (Silurian-Devonian, Triassic, Late Jurassic-Early Cretaceous). These maps allow better constrain the polarity of subduction and collision. We also discuss the significance of the Early Cretaceous Yanshanian events, which represent a linkage between tectonic events in the Tethyan and East China/Pacific realms. Two ophiolitic sutures, the Shangdan suture zone in the north and the Mianlue suture in the south, have been intensively studied during the past two decades. The Qinling Orogen is divided into the North Qinling and the South Qinling Belts by the Shangdan suture zone, and this suture zone is thought to represent the major suture separating the North China and South China Blocks. However, the timing and processes of convergence between these two blocks have been disputed for many years, and Silurian-Devonian or Late Triassic collision has been proposed as well. Based on the recent results, a detailed convergent evolutionary history between the North China and South China Blocks along the Shangdan suture is here proposed. The Mianlue suture zone is well documented and

  4. Tectonics of an early Proterozoic geosuture: The Halls Creek orogenic sub-province, northern Australia

    NASA Astrophysics Data System (ADS)

    Hancock, S. L.; Rutland, R. W. R.

    1984-12-01

    metamorphic belts are present in the orogenic belts, and it is concluded that the lithospheric extension and subsequent convergence did not involve the generation of oceanic crust or B-subduction. In the Halls Creek domain vergence is south-easterly across all zones and is related to oblique convergence leading to limited A-subduction of the basinal area in the south-east beneath the island continent to the north-west, accompanied by left-lateral strike-slip or transform fault movements on the north-trending major faults. The convergence generated the associated high temperature metamorphism and plutonism on the leading edge of the lower plate. A phase of upright folding (with trends varying continuously form E-W in the King Leopold belt to NNE-SSW in the Halls Creek belt) intervenes between the main recumbent deformation and metamorphism (ca 1920 Ma ago) and the emplacement of the late tectonic granite batholiths (ca 1840 Ma ago) which are fault controlled. The province represents a distinctive type of linear Proterozoic ensialic orogeny, not explicitly identified previously, and it needs to be distinguished both from true collision orogenies of the Phanerozoic, involving a Wilson Cycle, and from the areally extensive Proterozoic orogenies with which it is associated. Its essential characteristics are due to convergence between a small continent and an 'oceanic' area underlain by thin continental crust, resulting in limited A-subduction of the latter prior to crustal shortening.

  5. Plume-orogenic lithosphere interaction recorded in the Haladala layered intrusion in the Southwest Tianshan Orogen, NW China

    NASA Astrophysics Data System (ADS)

    He, Peng-Li; Huang, Xiao-Long; Xu, Yi-Gang; Li, Hong-Yan; Wang, Xue; Li, Wu-Xian

    2016-03-01

    The plume-orogenic lithosphere interaction may be common and important for the generation of large igneous provinces. The information regarding such a process is recorded by the Haladala gabbroic intrusion (~300 Ma), the largest layered ultramafic-mafic intrusion hosting V-Ti magnetite deposits in the Southwest Tianshan Orogen, NW China. The Haladala gabbros exhibit unfractionated chondrite-normalized rare earth element patterns with negative Nb and Ta anomalies and positive Pb anomaly on the primitive mantle-normalized multielement variation diagram. They are characterized by low initial Sr isotopes, slightly decoupled but high positive bulk rock ɛNd(t) and ɛHf(t), and high 207Pb/204Pb and 208Pb/204Pb relative to 206Pb/204Pb, delineating a DUPAL signature in the sources. The Haladala gabbros cannot be arc or postcollisional magmatism, given the lack of hydrous minerals and low K contents, respectively. This is further supported by the relatively low oxygen fugacity required for the gradual enrichment of V-Ti magnetite during the magma fractionation and by an overall anhydrous mantle source suggested by troctolite mineral assemblage (olivine + plagioclase). The emplacement age of the Haladala gabbros is identical to that of the Wajilitag kimberlites in the Tarim's interior, which have been interpreted as the first magmatic expression of the Tarim mantle plume. We thus propose that the Haladala gabbroic intrusion was generated in a hybrid geodynamic setting in which the Southwest Tianshan Orogen was impacted by an upwelling mantle plume. In this sense, the Haladala layered gabbroic intrusion records the early phase of magmatism of the Tarim plume, which was preferentially emplaced in a lithospheric weak zone.

  6. Comparative tectonic and dynamic analysis of cratons, orogens, basins, and metallogeny: A special volume to honor the career of Brian F. Windley

    NASA Astrophysics Data System (ADS)

    Kusky, Tim; Xiao, Wenjiao

    2015-11-01

    Cratons, orogens, and basins of the world each show a distinctive pattern of evolution and metallogeny, and relationships to supercontinent cycles. Some aspects of these histories have remained similar through time, yet others have changed with Earth's changing biota, heat production and flow, and atmospheric composition and temperature. To understand the similarities and differences between these cratons, orogens, and basins through time, we need systematic comparative tectonic analyses between these different elements from similar and widely different ages. One of the pioneers in comparative tectonic analysis is Brian F. Windley, whose research has spanned all of these topics, and more, for more than five decades. This special issue is a tribute to his career.

  7. Post-orogenic thermal evolution of newborn Archean continents

    NASA Astrophysics Data System (ADS)

    Jaupart, C.; Mareschal, J.-C.

    2015-12-01

    The post-orogenic thermal evolution of newborn cratons in the Archean is marked by high-temperature metamorphism and plutonic activity that lag accretion by several tens of million years. The source of the heat that is required remains controversial. Here, we show that such late activity is consistent with the thermal evolution of new continental crust that adjusts to heat released by radioactive decay. Quantitative results depend on the total amount of radioactive elements in the newborn crust. Using heat flow and heat production data from the Archean Superior Province of the Canadian Shield, we show that temperatures ≈800-900 °C were reached in the lower crust a few tens of million years after the final accretion event. The timing of post-orogenic metamorphism is sensitive to the thermal structure acquired at the end of accretion. For the Superior Province, the relatively short time-lag between the end of accretion and metamorphism suggests that the lithosphere was thin or had been heated up by sustained magma percolation.

  8. Continuation of the New England Orogen, Australia, beneath the Queensland Plateau and Lord Howe rise

    USGS Publications Warehouse

    Mortimer, N.; Hauff, F.; Calvert, A.T.

    2008-01-01

    Greywacke, argillite, greyschist and hypabyssal igneous rocks have been obtained from an Ocean Drilling Program core on the Queensland Plateau and from xenoliths in a volcanic breccia dredged from the crest of the Lord Howe Rise. Low to intermediate detrital quartz contents, 260-240 Ma K-Ar ages, and only moderately radiogenic Sr and Nd isotope compositions, suggest a correlation with the New England Orogen of eastern Australia, rather than with Australia's Lachlan Orogen or other adjacent geological provinces. Our results indicate that the New England Orogen terranes continue towards New Zealand at least as far as the southern Lord Howe Rise. The projected offshore boundaries of the major east Australian orogens are now known with more confidence, and do not appear to require any major cross-orogen offsets.

  9. The Andes as a peripheral orogen of the breaking-up Pangea

    NASA Astrophysics Data System (ADS)

    Lomize, M. G.

    2008-05-01

    Formation conditions of the peripheral orogen are expressed most fully in the Central Andes, a mountain system almost not yielding in height to the Himalayan-Tibetan system but formed at the margin of ocean without any relations to intercontinental collision. The marine transgression and rejuvenation of subduction in the Early Jurassic during the origination of foldbelt at the margin of Pangea marked the transition to a new supercontinental cycle, and the overall further evolution began and continues now in the frame of the first half of this cycle. The marginal position of this belt above the subduction zone, the rate and orientation of convergence of the lithospheric plates, the age of “absolute” movement of the continental plate, variation in slab velocity, and subduction of heterogeneities of the oceanic crust were the crucial factors that controlled the evolution of the marginal foldbelt. At the stage of initial subsidence (Jurassic-Mid-Cretaceous), during extension of the crust having a moderate thickness (30-35 km), the Andean continental margin comprises the full structural elements of an ensialic island arc that resembled the present-day Sunda system. These conditions changed with the separation and onset of the western drift of the South American continent. Being anchored in the mantle and relatively young, the slab of the Andean subduction zone served as a stop that brought about compression that controlled the subsequent evolution. Due to the contribution of deep magma sources along with marine sediments and products of tectonic erosion removed to a depth, the growth of crust above the subduction zone was favorable for heating of the crust. By the middle Eocene, when compression enhanced owing to the acceleration of subduction, the thermal evolution of the crust had already prepared the transition to the orogenic stage of evolution, i.e., to the progressive viscoplastic shortening and swelling of the mechanically weakened lower crust and the

  10. Crustal Development in the Northeast Asian Orogenic Belt and its comparison with the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Jahn, Bor-ming

    2016-04-01

    The Northeast Asian Orogenic Belt is a Mesozoic-Cenozoic accretionary orogenic collage, and it constitutes the northern and principal part of the "Nipponides" (Sengor and Natal'in, 1996). The tectonic framework was formed in Mesozoic and Cenozoic, and it continues to evolve along the modern Pacific arc-trench systems. Generally, a oceanward younging of tectonic units may be discerned, but such a simple pattern is disrupted in many places by extensive strike-slip faulting, most of which is left-lateral. In this talk, the issue of crustal development in the sector of Sikhote-Alin and Japanese Islands will be discussed based on the geochemical and isotopic analyses of granitoids that intruded in various tectonostratigraphic terrains. The majority of granitoids in the NE Asian Orogenic Belt formed from Jurassic to late Cenozoic, with Cretaceous as the dominant period of granitic magmatism and tectonothermal events. A few Early Paleozoic granitic rocks (500 to 450 Ma) have been identified in SW Japan (Kurosegawa Belt) as well as in NE Japan (Kitakami Belt), among them the ca. 500 Ma diorites and tonalites of southern Kitakami are the oldest rocks in Japan and interpreted as the first TTG crust of proto-Japan (Isozaki et al., 2015). Cretaceous granitoids are widespread in Sikhote-Alin and in NE and SW Japan. However, granitoids were emplaced only in the Cenozoic in Sakhalin (ca. 44 - 42 Ma) and Hokkaido (45, 37 and 18 Ma). Most granitoids from Sikhote-Alin are of I-type and have ISr = 0.7040 to 0.7083, and ɛNd(T) = +3.0 to -6.0 (mostly 0 to -5). The Sr-Nd isotopic data fall within the range of granitoids from SW Japan (0.704 to 0.712; +5.0 to -13.0), and the data of Cretaceous granitoids from Sikhote-Alin and SW Japan overlap almost completely. The Cenozoic granitoids of Hokkaido are characterized by ISr = 0.7044 - 0.7061, ɛNd(T) = +1.0 to +4.7, and Sm-Nd model-1 ages = 400-1000 Ma. This is remarkably similar to the Sakhalin granitoids with ISr = 0.7047 - 0.7050,

  11. Gravitational removal of volcanic arc roots in Cordilleran orogens

    NASA Astrophysics Data System (ADS)

    Currie, C. A.; Ducea, M. N.; DeCelles, P. G.; Beaumont, C.

    2013-12-01

    Cordilleran orogens, such as the central Andes, form above subduction zones and their evolution depends on processes associated with oceanic plate subduction and continental plate shortening. Such orogens are characterized by abundant arc volcanism and the formation of thick (>30 km) granitoid batholiths. The magma composition is consistent with a multi-stage model, in which parental mantle-derived basaltic magmas stagnate within the continental lithosphere and then undergo differentiation. Felsic partial melts rise through the crust, leaving a high-density garnet pyroxenite root in the deep lithosphere. Here, we study the dynamics of gravitational removal of this root using regional two-dimensional thermal-mechanical models of subduction below a continent. In the models, the volcanic arc location is determined dynamically based on subduction zone thermal structure, and formation of the batholith-root complex is simulated by changing the density of the volcanic arc lithosphere over time. For the lithosphere structure used in our models, arc roots that undergo even a small density increase are readily removed through gravitational foundering for a wide range of root strengths and subduction rates. The dynamics of removal depend on the relative rates of downward gravitational growth and horizontal shearing by subduction-induced mantle flow. Gravitational growth dominates for high root densification rates, high root viscosities and low subduction rates, leading to drip-like removal of the root as a single downwelling over 1-3 Myr. At lower growth rates, the root is removed over ~6 Myr through shear entrainment, as it is carried sideways by mantle flow and then subducted on top of the oceanic plate. In all models, >80% of the root is removed, making this an effective way to thin mantle lithosphere in the volcanic arc region. This can help resolve the mass problem in the central Andes, where observations indicate a thin mantle lithosphere, despite significant crustal

  12. Magnetic constraints on the thermal evolution of a collapsing orogen

    NASA Astrophysics Data System (ADS)

    Platzman, Ellen

    2002-06-01

    The thermal evolution of an orogen undergoing late-stage extension was investigated using rock magnetic properties of a suite of mafic dyke rocks affected by greenschist facies metamorphism in the internal zones of the Betic Cordillera, southern Spain. The natural remanent magnetization (NRM) in the dykes intruded into the lowest geological unit is made up of up to three components. The lowest temperature component (LT) is in the direction of the present day magnetic field and is believed to be a chemical remanent magnetization (CRM) or viscous remanent magnetization (VRM) acquired in the recent magnetic field. The intermediate temperature (IT) component unblocked between 200°C and 450°C is thought to be largely a thermoviscous overprint acquired during metamorphism. This component is carried by either primary or authogenic sulfides and low-unblocking temperature magnetite. The component of magnetization with the highest blocking temperature (HT) is isolated above 450°C and is interpreted as the primary component of remanent magnetization. It is most likely that this component is carried by magnetite that resides in the plagioclase and has been shielded from the metamorphism, which transformed most of the original magnetite to metamorphic amphibole, chlorite and biotite. Thermal demagnetization of these dykes separates the IT overprint from the HT primary remanence at a sharp junction occurring at 450°C. For single domain grains this translates to a peak palaeotemperature in the natural sample of approximately 370°C, which is close to the estimated temperature experienced by the greenschist facies country rocks (400°C). In contrast, results obtained from a dyke that is intruded into an overlying weakly metamorphosed geological unit, indicates that temperatures only reached about 175°C in this unit. These results are consistent with temperatures deduced from geological constraints and they imply that between 4 and 6 km of section has been removed between the

  13. Stress Dynamics of Magma Activity during Orogenic Evolution: An Example from Kinmen Island, SE China

    NASA Astrophysics Data System (ADS)

    Chen, Ping-Chuan; Yeh, En-Chao; Lin, Jian-Wei; Lee, Chi-Yu; Chen, Rou-Fei; Lin, Wayne; Hsieh, Pei-Shan; Lin, Cheng-Kuo; Iizuka, Yoshiyuki

    2016-04-01

    During orogeny, a mountain belt experienced different orogenic stages with various conditions of temperature, pressure, stress and fluid pressure. The speculation, that the orogenic stresses evolve from reverse faulting via strike-slip faulting to normal faulting stress regimes corresponding to syn-orogenic, post-orogenic and an-orogenic stage respectively, has been proposed but has not been proved yet. Here we report the study of dikes from Kinmen Island can shed light on understanding the stress evolution of orogeny. The Kinmen Island, located in the southeastern continental margin of Mainland China, cropped out the middle to lower crust of NE structural grain, which was experienced deformation and metamorphism during Late Yenshanian Orogeny(LYO). Based on previous studies of geochemistry, geochronology, and P-T conditions, various types of dike have been identified. They are syn-orognic dikes of amphibolite (130-110Ma), post-orogenic dikes of pegmatite and aplite (110-100Ma), and an-orogenic dike of gabbro (94-76Ma). During syn-orogenic stage of LYO, dike intrusion appeared as low-angle dip, which reflected that reverse faulting regime and horizontal maximum stress direction in E-W orientation. In post-orogenic stage, stress would be divided into two sub-stages. The early one was strike-slip faulting regime and horizontal maximum stress was in NW-SE orientation. The late one was normal faulting regime and horizontal maximum stress direction returned to E-W orientation. Finally, an-orogenic dike intrusion striked NE-SW with vertical dip, which displayed that normal faulting regime and NE-SW horizontal maximum stress direction. Our observation is consistent with the expected stress evolution during orogeny. Deviatoric stresses from new findings were decreased at early post-orogenic stage but increased after late post-orogenic stage, indicating the change of fluid pressure ratio with time. The spatiotemporal variation of stress field might be suggested the change

  14. Field evidence of hydraulic connections between bedrock aquifers and overlying granular aquifers: examples from the Grenville Province of the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Richard, Sandra K.; Chesnaux, Romain; Rouleau, Alain; Morin, Roger; Walter, Julien; Rafini, Silvain

    2014-12-01

    Field evidence of hydraulic connections between a bedrock aquifer and an overlying granular aquifer in the Canadian Shield (Grenville Province) is presented. This issue is rarely considered and investigated despite its important hydraulic and chemical consequences and its widespread occurrence worldwide. The methodology employed is based on complementary field tests conducted at specific experimental sites instrumented both in the rock and in the overlying deposits. One of the bedrock sites revealed a natural hydraulic connection with the overlying granular aquifer caused by the weathered surface of the uppermost bedrock. Another site revealed an artificial hydraulic connection between the bedrock and the granular aquifer created by an improperly sealed casing. A regional study showed that hydraulic connections yield an erroneous interpretation of the true hydraulic properties of the tested aquifer. The detection of hydraulic connections is therefore essential to properly define well-capture areas and contamination conditions. It is recommended to practitioners that pumping tests be performed as well as hydrochemical comparisons of each existing aquifer unit. Falling-head permeability tests are also helpful in verifying the quality of the seal at the bedrock-casing contact. More effective procedural controls and better well-construction practices are necessary to reduce the risks of cross-contamination induced by defective seals.

  15. Regional and local controls on mineralization and pluton emplacement in the Bondy gneiss complex, Grenville Province, Canada interpreted from aeromagnetic and gravity data

    NASA Astrophysics Data System (ADS)

    Dufréchou, G.; Harris, L. B.; Corriveau, L.; Antonoff, V.

    2015-05-01

    The Bondy gneiss complex in the Grenville Province of Southwest Quebec hosts a mineralized iron oxide- and copper-rich hydrothermal system. The northern part of the complex overlies the lithospheric-scale Mont-Laurier lineament and is cut by the regional Mont-Laurier South shear zone interpreted from Bouguer gravity. A sinistral 6 km wide strike-slip corridor defined by several second-order shears (the Mont-Laurier South shear zone) in the complex was identified from geophysical data, including a new high-resolution airborne magnetic survey, and field observations. The spatial association of a metamorphosed alteration system, several pre- to post-metamorphic mineralized zones and mafic intrusions within the Mont-Laurier South shear zone suggests that (i) underlying basement structures controlled hydrothermal fluid migration during the formation of epithermal-IOCG mineralization and associated alteration system before ca. 1.2 Ga high-grade metamorphism and penetrative ductile deformation in the complex; (ii) post-metamorphic reactivation allowed magma ascent and pluton emplacement in the complex and adjacent supracrustal rocks within dilatational sites; and (iii) brittle-ductile shears that postdate high-grade metamorphism provided channel ways for fluid migration associated with magnetite-related mineralization. Although the complex does not host an economic mineral deposit, the role between structures at different levels and the combination of gravity and aeromagnetics at different scales provides an example of an approach for mineral exploration in similar high grade gneiss terrains.

  16. Proterozoic collisional tectonism in the Trans-Hudson orogen, Saskatchewan

    SciTech Connect

    Bickford, M.E.; Chiarenzelli, J.R.; Van Schmus, W.R. ); Collerson, K.D. ); Lewry, J.F. )

    1990-01-01

    Isotopic and structural data from the juvenile Reindeer zone of the Trans-Hudson orogen, northern Saskatchewan, indicate a pre-1.85 Ga thermotectonic event, possibly reflecting arc-continent collision, followed by a more extensive, nappe-forming, ca. 1.83-1.80 Ga thermotectonism during terminal continent-continent collision. Preliminary data from the adjacent, ensialic Cree Lake zone suggest high-grade reworking of Archean crust by the pre-1.85 Ga event. In the Rae province to the west, high-grade metamorphism and reworking of Archean crust occurred about 2.0 Ga and may be related to the formation of the coeval Taltson magmatic zone.

  17. Neoproterozoic and Paleozoic accretionary orogens exposed at different crustal levels

    NASA Astrophysics Data System (ADS)

    Kroener, A.

    2002-12-01

    Accretionary orogens in the upper crust are dominated by trench and forearc deposits, obducted ophiolite fragments, exotic terranes and well defined structural boundaries such as major shear zones. The Neoproterozoic Arabian-Nubian shield (ANS) of western Arabia and NE Africa, the huge terrain of the Neoproterozoic to Palaeozoic Central Asian mobile belt (CAMB) and the present Indonesian Archipelago are prime examples of such orogens. In the ANS and CAMB, field relationships, rock associations, differences in structural style and metamorphic grade, and geochronology have led to the recognition of terrane assemblages that are related to processes of lateral accretion as now observed in the southwest Pacific and lasting for several hundred my. In the ANS, ocean crust and arc formation began about 900 Ma ago, and terrane accretion was completed by ~600 Ma, whereas in the CAMB the oldest oceanic crust formed some 1000 Ma ago, and terrane accretion continued into the late Palaeozoic. Typical rock associations are trench and forearc sediments, island-arc volcanics, calc-alkaline granitoids, dismembered ophiolite suites and gneissic rocks (microcontinents?) constituting exotic terranes and mostly of distinctly older age and more complex tectono-metamorphic history than the surrounding lower grade rocks. Shear zones frequently separate the terranes and in the ANS also constitue seismic discontinuities extending to the lower crust. The middle to lower crustal high grade assemblages of the Neoproterozoic Mozambique belt (MB) of East Africa, Madagascar, southernmost India, Sri Lanka and East Antarctica are considered to be a deep crustal analogue to the upper crustal accretionary belts described above. Typical characteristics are (1) voluminous calc-alkaline granitoid suites, now layered gneisses, and interpreted as root zones of arc terranes, (2) tectonic interdigitation of Archaean to Palaeoproterozoic gneisses with Neoproterozoic rocks, probably brought about during

  18. Seismic anisotropy and mantle creep in young orogens

    USGS Publications Warehouse

    Meissner, R.; Mooney, W.D.; Artemieva, I.

    2002-01-01

    Seismic anisotropy provides evidence for the physical state and tectonic evolution of the lithosphere. We discuss the origin of anisotropy at various depths, and relate it to tectonic stress, geotherms and rheology. The anisotropy of the uppermost mantle is controlled by the orthorhombic mineral olivine, and may result from ductile deformation, dynamic recrystallization or annealing. Anisotropy beneath young orogens has been measured for the seismic phase Pn that propagates in the uppermost mantle. This anisotropy is interpreted as being caused by deformation during the most recent thermotectonic event, and thus provides information on the process of mountain building. Whereas tectonic stress and many structural features in the upper crust are usually orientated perpendicular to the structural axis of mountain belts, Pn anisotropy is aligned parallel to the structural axis. We interpret this to indicate mountain-parallel ductile (i.e. creeping) deformation in the uppermost mantle that is a consequence of mountain-perpendicular compressive stresses. The preferred orientation of the fast axes of some anisotropic minerals, such as olivine, is known to be in the creep direction, a consequence of the anisotropy of strength and viscosity of orientated minerals. In order to explain the anisotropy of the mantle beneath young orogens we extend the concept of crustal 'escape' (or 'extrusion') tectonics to the uppermost mantle. We present rheological model calculations to support this hypothesis. Mountain-perpendicular horizontal stress (determined in the upper crust) and mountain-parallel seismic anisotropy (in the uppermost mantle) require a zone of ductile decoupling in the middle or lower crust of young mountain belts. Examples for stress and mountain-parallel Pn anisotropy are given for Tibet, the Alpine chains, and young mountain ranges in the Americas. Finally, we suggest a simple model for initiating mountain parallel creep.

  19. Metabasalts as sources of metals in orogenic gold deposits

    NASA Astrophysics Data System (ADS)

    Pitcairn, Iain K.; Craw, Dave; Teagle, Damon A. H.

    2015-03-01

    Although metabasaltic rocks have been suggested to be important source rocks for orogenic gold deposits, the mobility of Au and related elements (As, Sb, Se, and Hg) from these rocks during alteration and metamorphism is poorly constrained. We investigate the effects of increasing metamorphic grade on the concentrations of Au and related elements in a suite of metabasaltic rocks from the Otago and Alpine Schists, New Zealand. The metabasaltic rocks in the Otago and Alpine Schists are of MORB and WPB affinity and are interpreted to be fragments accreted from subducting oceanic crust. Gold concentrations are systematically lower in the higher metamorphic grade rocks. Average Au concentrations vary little between sub-greenschist (0.9 ± 0.5 ppb) and upper greenschist facies (1.0 ± 0.5 ppb), but decrease significantly in amphibolite facies samples (0.21 ± 0.07 ppb). The amount of Au depleted from metabasaltic rocks during metamorphism is on a similar scale to that removed from metasedimentary rocks in Otago. Arsenic concentrations increase with metamorphic grade with the metabasaltic rocks acting as a sink rather than a source of this element. The concentrations of Sb and Hg decrease between sub-greenschist and amphibolite facies but concentration in amphibolite facies rocks are similar to those in unaltered MORB protoliths and therefore unaltered oceanic crust cannot be a net source of Sb and Hg in a metamorphic environment. The concentrations of Au, As, Sb, and Hg in oceanic basalts that have become integrated into the metamorphic environment may be heavily influenced by the degree of seafloor alteration that occurred prior to metamorphism. We suggest that metasedimentary rocks are much more suitable source rocks for fluids and metals in orogenic gold deposits than metabasaltic rocks as they show mobility during metamorphism of all elements commonly enriched in this style of deposit.

  20. Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen: Ladakh Range, northern India

    USGS Publications Warehouse

    Owen, L.A.; Caffee, M.W.; Bovard, K.R.; Finkel, R.C.; Sharma, M.C.

    2006-01-01

    Terrestrial cosmogenic nuclide surface exposure dating of moraine boulders and alluvial fan sediments define the timing of five glacial advances over at least the last five glacial cycles in the Ladakh Range of the Transhimalaya. The glacial stages that have been identified are: the Indus Valley glacial stage, dated at older than 430 ka; the Leh glacial stage occurring in the penultimate glacial cycle or older; the Karglacial stage, occurring during the early part of the last glacial cycle; the Bazgo glacial stage, at its maximum during the middle of the last glacial cycle; and the early Holocene Khalling glacial stage. The exposure ages of the Indus Valley moraines are the oldest observed to date throughout the Himalayan orogen. We observe a pattern of progressively more restricted glaciation during the last five glacial cycles, likely indicating a progressive reduction in the moisture supply necessary to sustain glaciation. A possible explanation is that uplift of Himalayan ranges to the south and/or of the Karakoram Mountains to the west of the region may have effectively blocked moisture supply by the south Asian summer monsoon and mid-latitude westerlies, respectively. Alternatively, this pattern of glaciation may reflect a trend of progressively less extensive glaciation in mountain regions that has been observed globally throughout the Pleistocene. ?? 2006 Geological Society of America.

  1. Pressure--Temperature--Time (P--T--t) Histories of Orogenic Belts

    NASA Astrophysics Data System (ADS)

    Thompson, A. B.; Ridley, J. R.

    1987-01-01

    Thermal modelling shows that a cycle of crustal thickening and erosion reproduces many of the characteristics of medium-pressure metamorphic terranes. In contrast, the structural and metamorphic features of high-pressure terranes suggest rapid exhumation, possibly tectonically as fault-bounded blocks. Low-pressure metamorphism requires an augmented heat supply. Such terranes are characterized by granite--gneiss domes, and evidence of crustal extension, and hence may be the result of the mechanically likely orogenic sequence of early thickening followed by extension. Whether earlier isograd sequences are extended, condensed, or reset depends upon the relative rates of deformation and thermal relaxation, and when the deformation occurs relative to the thermal peak of metamorphism. Detailed determinations of relations between deformation events and metamorphism is made difficult by the contrast between continuous metamorphic evolution and short time-span deformation events. Combined microstructural and geochronological studies, together with a consideration of the distribution of isograds will give most information on complex, polymetamorphic histories, and allow distinction between regional and local features, especially those due to differential uplift. Considerations of rates of heat flow within the crust indicate how isotherms evolve in response to tectonic events, and how isograd distribution will relate to local and regional structures. Important controls are the relative rates of deformation and thermal relaxation, and whether the deformation predates, is synchronous with, or postdates the metamorphic peak. Only tectonic events close to or after the metainorphic peak, result in deformed isograds; at the peak, in areas where deformation induces local cooling; after the peak isograd sequences may be folded and expanded or condensed by crustal thickening or thinning. As repeated Information on orogenic development during the cooling and uplift stage of

  2. Controls of erosional denudation in the orogen on foreland basin evolution: The Oligocene central Swiss Molasse Basin as an example

    NASA Astrophysics Data System (ADS)

    Schlunegger, Fritz; Jordan, Teresa E.; Klaper, Eva Maria

    1997-10-01

    A high-resolution three-dimensional reconstruction of the 25-m.y.-old central Swiss Molasse Basin reveals two sedimentary domains separated by a ˜5-km-wide flood-plain. The proximal domain of the basin attained a width of 20 km, and its basement is steeply flexed (6°-7° dip). Petrographic data indicate that it was filled by sediment from the Rigi dispersal system derived from the central Alps of eastern Switzerland and by locally sourced bajadas. In contrast, the distal sedimentary domain, located farther north, was gently dipping (<2°) and was filled by the meandering Lac Léman and Honegg dispersal systems. Chronological data reveal that sedimentation in the northern proximal part of the basin started at ˜27 Ma, when sediment supply to the basin started to increase. Deflection of the foreland plate at ˜25 Ma is successfully simulated by flexural modeling of the thrust load and the sediment load. The model reveals that the Lac Léman and Honegg dispersal systems are located on a buried flexural bulge. Furthermore, it shows that burial and suppression of the flexural bulge at ˜27 Ma as well as an increase of the basin wavelength were controlled by the contemporaneous increase in the sediment supply rate of the Rigi system. The model presented suggests that the tectonic subsidence of the Molasse Basin was mainly controlled by tectonic events in the northern part of the orogen, within ˜70 km distance from the tip of the orogenic wedge. Crustal thickening in this part of the orogen is reflected in the proximal Molasse by sedimentary cycles characterized by an increase in the sediment accumulation rates up section and by the presence of locally sourced bajada fans at the top of each cycle. Although south vergent back thrusting along the Insubric Line ˜150 km south of the foreland basin contributed little to flexure, it resulted in an increase of the sediment supply to the foreland basin. This is reflected in the Molasse by coarsening and thickening upward

  3. Tectonic stress evolution in the Pan-African Lufilian Arc and its foreland (Katanga, DRC): orogenic bending, late orogenic extensional collapse and transition to rifting

    NASA Astrophysics Data System (ADS)

    Kipata, M. L.; Delvaux, D.; Sebagenzi, M. N.; Cailteux, J.; Sintubin, M.

    2012-04-01

    Between the paroxysm of the Lufilian orogeny at ~ 550 Ma and the late Neogene to Quaternary development of the south-western branch of the East African rift system, the tectonic evolution of the Lufilian Arc and Kundelungu foreland in the Katanga region of the Democratic Republic of Congo remains poorly unknown although it caused important Cu-dominated mineral remobilizations leading to world-class ore deposits. This long period is essentially characterized by brittle tectonic deformations that have been investigated by field studies in open mines spread over the entire arc and foreland. Paleostress tensors were computed for a database of 1450 fault-slip data by interactive stress tensor inversion and data subset separation, and the relative succession of 8 brittle deformation events established. The oldest brittle structures observed are related to the Lufilian brittle compressional climax (stage 1). They have been re-oriented during the orogenic bending that led to the arcuate shape of the belt. Unfolding the stress directions from the first stage allows to reconstruct a consistent NE-SW direction of compression for this stage. Constrictional deformation occurred in the central part of the arc, probably during orogenic bending (Stage 2). After the orogenic bending, a sequence of 3 deformation stages marks the progressive onset of late-orogenic extension: strike-slip deformations (stages 3-4) and late-orogenic arc-parallel extension (stage 5). It is proposed that these 3 stages correspond to orogenic collapse. In early Mesozoic, NW-SE compression was induced by a transpressional inversion, interpreted as induced by far-field stresses generated at the southern active margin of Gondwana (stage 6). Since then, this region was affected by rift-related extension, successively in a NE-SW direction (stage 7, Tanganyika trend) and NW-SE direction (stage 8, Moero trend).

  4. The Grenville orogeny in the Llano Uplift, Texas: A record of collision and contraction along the southern margin of North America

    SciTech Connect

    Reese, J.F. . Dept. of Geological Sciences)

    1993-02-01

    Precambrian metamorphic rocks in the SE Llano Uplift record NE-directed ductile thrusting and regional-scale polyphase folding. This deformation is in response to Grenville-age shortening and crustal thickening associated with the collision of a south-lying tectonic block with the southern margin of North America. In the SE Llano Uplift, the most intense and pervasive deformational event, D2, is characterized in the Packsaddle Schist (PS) and Valley Spring Gneiss (VSG) by SSE-plunging, NE-verging isoclinal folds (F2) with an associated SW-dipping axial planar metamorphic layering (S2), and SW-dipping mylonite zones with kinematic indicators showing top-to-the-NE motion. In the Red Mountain and augen-bearing Big Branch gneisses, D2 structures are SW-dipping mylonite zones parallel to S2, and a SW-plunging stretching lineation. Taken together, this suite of structures indicates tectonic transport was to the NE, perpendicular to the NW trending regional structural and metamorphic grain. D2 structures were reoriented by at least two later phases of folding. Timing of all ductile deformation in the SE Llano Uplift is constrained from post-1,215 Ma (deformed PS) to pre-1,098 Ma (undeformed melarhyolite dike). From south to north, metatonalitic, arc-derived Big Branch Gneiss ([approximately] 1,303 Ma) and older mafic schist country rock, previously interpreted as possible ophiolitic melange, structurally overlie much younger, lithologically heterogeneous PS units (1,248-1,215 Ma), previously considered as arc flank deposits. In turn, the PS has been tectonically emplaced above the predominantly felsic VSG (1,270-1,232 Ma). The presence of older zircons in the VSG, of similar age ([approximately]1360 Ma) to Western Granite-Rhyolite Terrane rocks to the north, suggests that the VSG formed in a settling proximal to North America.

  5. Evidence for the importance of ductile shear in regional fabric development in Grenville-age gneisses of the Beaver Creek region, Northwest Lowlands, New York State

    SciTech Connect

    Tewksbury, B.; Culbertson, H.; Marcoline, J.; Walvoord, M. . Dept. of Geology)

    1993-03-01

    In the Beaver Creek region of the Northwest Lowlands, Brown (1989) has described Grenville-age metasedimentary and metaigneous rocks as showing a prominent regional foliation, early southeastward emplacement of a nappe complex (the North Gouverneur Nappe), 2 subsequent generations of folds, and late regional faulting along the Beaver Creek, Pleasant Lake, and Hickory-Mud Lakes faults. The authors examined a variety of units across the Beaver Creek region, including a granitic augen gneiss immediately west of the Beaver Creek Fault Zone, an alaskitic gneiss immediately below Brown's (1989) North Gouverneur Nappe Sole Fault, a biotitic granitic gneiss within the body of Brown's North Gouverneur Nappe, and hornblende augen gneisses and metasediments adjacent to the granitic gneisses. Each of the granitic units has moderately well-developed to extremely well-developed quartz ribbon lineations, and all show at least 2 ductile shear fabrics. Shear fabrics are present as well in the hornblende augen gneisses but are essentially absent in most of the metasedimentary lithologies, even those immediately adjacent to well-lineated, sheared granitic gneiss. The earliest shear fabrics exhibit spectacular quartz ribbon lineations, sigma grains, and, in the hornblende augen gneiss, shear bands. Granitic gneisses in the Beaver Creek Region show shear fabrics in addition to the main fabric in the rock. A second, variably-recovered shear fabric with quartz ribbons and well-developed sigma grains with core and mantle structure overprints the main shear fabric and shows largely the same sense of shear. The authors suggest further that a regional kinematic model for the Beaver Creek region must take into account significant, protracted regional shear, perhaps including formation of sheath folds, as in the Hyde School Gneiss at Payne Lake and Dobbs Creek.

  6. Magmatism in the Carolina terrane: Isotopic evidence for a Grenville-age source for Late Proterozoic volcanics and a mantle source for Silurian Concord syenite

    SciTech Connect

    Kozuch, M.; Heatherington, A.L.; Mueller, P.A. . Dept. of Geology); Offield, T.W.; Koeppen, R.P.; Klein, T.L. )

    1992-01-01

    Rhyolitic to andesitic volcanic rocks from the central portion of the Carolina slate belt in North Carolina were analyzed for Sr and Nd isotopic composition and dated by U-Pb zircon geochronology. Samples were from the greenschist-facies Late Proterozoic Albemarle Group, Uwharrie Formation, and the informal Virginia sequence. A rhyolite from the Cid Formation of the Albemarle Group dated by U-Pb zircon geochronology yielded a Pb-207/Pb-206 age of 575 [+-] 7.6 Ma, consistent with its position below strata containing the Late Proterozoic trace fossil Pteridinium and above rocks previously dated at 586 [+-] 10 Ma. Rb-Sr isotopic analyses of late Proterozoic rocks showed average initial Sr-87/Sr-86 ratios of approximately 0.704, indicating a moderately depleted source for these samples. E[sub ND] values at 600 Ma are moderately positive (+0.7 [minus] +2.3) and T(DM) values range from 1.19--1.04 Ga. These isotopic data, along with major and trace element data, suggest that andesites and rhyolites of the Carolina slate belt may have formed by partial melting of attenuated, Grenville-aged continental lithosphere during a 600 Ma episode of arc volcanism. In contrast, Sr and Nd data for the younger ([approximately]400 Ma) Concord pluton indicate it was derived from a depleted mantle source (Sr-87/Sr-86 = 0.7021 and E[sub ND] = +0.4 at 400 Ma) without significant involvement of older lithosphere (T(DM) = 370 Ma).

  7. The geometries and development of late orogenic strike-slip faults

    NASA Astrophysics Data System (ADS)

    Anderson, M. W.; Peacock, D. C. P.

    2003-04-01

    Strike-slip faults are commonly the final phase of contraction in orogenic belts, occurring when the folds have locked-up and the thrusts have become too steep for further displacement to occur. Where the maximum stress axis (sigma1) is perpendicular to the orogenic belt (i.e. pure shear), the strike-slip faults are conjugate and represent strike-perpendicular shortening and necessary strike-parallel extension. An example of such behaviour occurs in the steeply dipping Silurian sandstones and shales in Kirkcudbrightshire, in the Southern Uplands of Scotland. If sigma1 is at ~ 70°; to the strike of the orogenic belt, the conjugate strike-slip faults become asymmetric. One set of strike-slip faults occurs at a high angle to the strike of bedding, and the conjugate set has a ramp-flat trajectory across steeply dipping beds. An example of this behaviour occurs in the steeply dipping Silurian turbidites at Ardglass, in the Longford-Down terrane of Northern Ireland. If sigma1 is at a lower angle to the orogenic belt (i.e. transpression), one set of strike-slip faults tends to dominate. In some cases, the dominant strike-slip fault set is parallel to the strike of the orogenic belt, the Caledonian-age Great Glen Fault of Scotland being such an example. In other cases, block rotation occurs on the set of strike-slip faults that are at a high angle to the orogenic belt, as in the Variscan Orogenic Belt of SW England. An annulus model is presented to illustrate the variations in geometries of late-orogenic strike-slip faults from pure shear to transpression.

  8. Mechanisms of doubly-vergent vs. single-sided orogens: insights from numerical modelling

    NASA Astrophysics Data System (ADS)

    Vogt, K.; Matenco, L. C.; Gerya, T.; Cloetingh, S.

    2014-12-01

    Zones of continent collision form mountain ranges with high topographies and complex geometries. Compressional stresses during ongoing convergence result in crustal thickening and localized deformation, where crustal material is transported and redistributed within the orogen. We use numerical high-resolution thermo-mechanical models to investigate the physical processes of continent collision zones and its implications on rock exhumation. We demonstrate that compression of two continental blocks, separated by a rheologically weak suture zone can result in (i) doubly-vergent (Fig. A) or (ii) single-sided orogens (Fig. B), with distinct geometries, deformation and exhumation patterns. The transition between these different modes of collision is strongly controlled by the rheology of the continental lithosphere and therefore its temperature distribution. Doubly-vergent orogens form at relatively high thermal gradients, while single-sided orogens are typical for lower ones. Doubly-vergent orogens (Fig. A) are formed in response to the gradual accretion of crustal material to the upper plate along retro-shears. In these models continental subduction results in upper plate deformation and nested exhumation against retro-shears. Typical examples include the collision recorded by the Swiss Alps and the Pyrenees. In contrast, single-sided orogens are characterized by large-scale lower plate deformation and are accompanied by the subduction of lower crustal material (Fig. B). Modeling infers that shortening and associated exhumation will gradually propagate towards the foreland. In this situation, no significant retro-shear formation is observed, which is in agreement with recent physical modelling studies on deformation of the continental lithosphere [Willingshofer et al., 2013]. Natural examples of such single sided orogens are common in the Mediterranean (Carpathians, Dinarides, Apennines, Betics) or the SE Asia subduction zones. We conclude that deformation and

  9. Late Paleozoic orogenic episodes, Trans-Pecos Texas

    SciTech Connect

    Muehlberger, W.R. . Dept. of Geological Sciences)

    1993-04-01

    The onset of the Ouachita orogeny is marked by the absence of rock of Early Mississippian age. This is interpreted to be the result of the narrowing of the trans-equatorial seaway between North America and the oncoming South American plate. Foredeep filling (Pulse I) began in Early Meramecian time with northward-prograding Tesnus Fm siliciclastic turbidites. Pulse 2 began in Atokan time with northward-prograding siliciclastic turbidites of the Haymond Fm. The thrust belt to the south had now intersected the edge of the NAm carbonate platform as shown by clasts of Middle Cambrian carbonates, as well as Ouachita facies clasts, and rounded clasts of Precambrian quartzite, metarhyolite, and gneiss of unknown source. During Late Pennsylvanian time deltaic sediments prograded across the Marathon region into the southern Permian Basin (Gaptank Fm). In Early Wolfcampian time (Pulse 3), all these units were translated on the Dugout Creek thrust, then (Pulse 4 ) translated finally on a frontal imbricate before deposition of Upper Wolfcampian units across the eroded toes of the thrust sheets. Permian Basin orogenic phases parallel those outlined above. Transgressive clastics from the south and the subdivision of the earlier broad, shallow Tobosa Basin into the uplifts and basins that characterize the Permian Basin began in the Mississippian and became prominent structural units by Late Mississippian time.

  10. Tectonic evolution of the western Kunlun orogenic belt, western China

    NASA Astrophysics Data System (ADS)

    Zhihong, Wang

    2004-11-01

    The western Kunlun orogenic belt in western China evolved through the development of a large subduction-accretionary complex, including flysch sediments and granitic plutons, and by collision of three terranes, namely the North and South Kunlun and Karakorum-Qiangtang blocks from the early Paleozoic to the early Mesozoic. North-dipping subduction of the Paleo-Tethys ocean beneath the Kunlun terranes, which may have commenced in the Cambrian, produced an early Paleozoic Andean-type magmatic arc on the South Kunlun, and a marginal back arc basin, represented by the early Paleozoic Oytag-Kudi ophiolite belt, between the North and South Kunlun. A northward subduction zone consumed the basin and the young, hot upper plate lithosphere was obducted southward onto the South Kunlun following closure of the basin. This resulted in collision of the North and South Kunlun in the early Devonian. Continuous northward subduction of Paleo-Tethys resulted in the development of a Carboniferous-Triassic magmatic arc, and a back arc rifting sequence composed of the Carboniferous to Permian carbonates and clastic sediments on the North and South Kunlun terranes. The Paleo-Tethys ocean finally closed in the late Triassic-early Jurassic, when the Kunlun and Karakorum-Qiangtang blocks were accreted, with the Kara-Kunlun accretionary prism marking their suture zone.

  11. Lithosphere delamination and topography evolution in collisional orogens

    NASA Astrophysics Data System (ADS)

    Li, Z. H.; Liu, M.; Gerya, T.

    2015-12-01

    Systematic high-resolution thermo-mechanical numerical models are conducted in order to better understand the behavior of deep mantle lithosphere and surface topography response during continental collision. In the models with similar rheological properties for the pro- (subducting) and retro- (overriding) continental plates, subduction mode is preferred, with localized topography uplift and mountain building. However, if the effective viscosities of the retro-plate are decreased, then delamination of the lithospheric mantle may occur there, which results in large-scale topography buildup and plateau formation. Several other factors that may also influence the delamination dynamics are further investigated, e.g., plastic weakening of the lithospheric mantle, density contrast between the lithospheric and asthenospheric mantle, convergence velocity, as well as the possible lower crust eclogitization effects. Based on the series of numerical simulations, the delamination processes in collisional orogens are summarized into three modes: (1) pro-plate delamination, (2) retro-plate delamination, and (3) a transitional double-plates (both the pro- and retro-plate) delamination. The controlling factors, as well as the geological applications in nature, of the variable delamination modes are also discussed.

  12. How Orogen-scale Exhumed Strike-slip Faults Initiate

    NASA Astrophysics Data System (ADS)

    Cao, S.; Neubauer, F.

    2015-12-01

    Orogen-scale strike-slip faults present one the most important geodynamic processes affecting the lithosphere-asthenosphere system. In specific subtypes, faulting is virtually initiated along hot-to-cool boundaries, e.g. at such of hot granite intrusions or metamorphic core complexes to cool country rocks. Such fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust and are stacked within each other ("telescoping"). Exhumation of rocks is, therefore, a common feature of such strike-slip faults implying major transtensive and/or transpressive processes accompanying pure strike-slip motion. The hot-to-cool thermal structure across the fault zone significantly influences the physical fault rock properties. One major question is how and where a major strike-slip initiates and further development. Here, we propose a model in which major continental exhumed strike-slip faults potentially evolve along rheologically weak zones such as plutons or margins of metamorphic complexes. As an example, we propose a model for the Ailao Shan-Red River (ASRR) fault, SE Asia, which initiated along the edge of a plutonic belt and evolved in response to India-Asia collision with four tectonic phases.

  13. Patterns of glaciation and topographic hypsometry across semi-arid western Himalayan-Tibetan orogen (Invited)

    NASA Astrophysics Data System (ADS)

    Dortch, J.; Hughes, P.; Owen, L. A.; Murari, M. K.; Caffee, M. W.

    2013-12-01

    It has been hypothesized that the reduction of mountain glacier extent throughout late Quaternary glacial cycles may reflect adjustment of topographic hypsometry and lowering of accumulation area via glacial erosion. The Himalayan-Tibetan orogen represents a good test case due to high relief, fast rates of erosion, and recently developed regional glacial chronologies. In particular, analysis of all terrestrial cosmogenic nuclide ages of moraines in the drylands of the western Himalayan-Tibetan orogen show 16 regional glacial stages extending back >300 ka; stages older than the global Last Glacial Maximum (gLGM) broadly correlate with strong monsoons, while younger stages correlate with northern hemisphere climatic events. These patterns suggest that frequent glacial advances are driven by mid-latitude westerlies within each glacial cycle, but that each cycle is punctuated by more extensive advances driven by the monsoon. This raises the question of which style of glaciation has the greatest effect on the shaping and incision of topography: frequent, less-extensive variations in glaciation, or infrequent more-extensive advances (the latter being akin to punctuated equilibrium)? To investigate this question, changes in glacier position based on moraines and climatic proxies are used to model changes in equilibrium line altitude (ELA), which is then compared to topographic hypsometry in catchments were the glacial buzzsaw hypothesis has been previously invoked. The loss in resolution due to the decrease in moraine preservation through time must be accounted for. Thus, the MIS curve and monsoon index are combined to fit to the regional chronology with the view that ages represents the minimum age of deglaciation. A best fit curve is used as a proxy for glacial extent to estimate higher-frequency fluctuations for the pre-gLGM portion of the regional chronology. ELAs are then calculated for selected glaciers at various extents to enable the determination of the average

  14. Tectono-metamorphic evolution of the internal zone of the Pan-African Lufilian orogenic belt (Zambia): Implications for crustal reworking and syn-orogenic uranium mineralizations

    NASA Astrophysics Data System (ADS)

    Eglinger, Aurélien; Vanderhaeghe, Olivier; André-Mayer, Anne-Sylvie; Goncalves, Philippe; Zeh, Armin; Durand, Cyril; Deloule, Etienne

    2016-01-01

    The internal zone of the Pan-African Lufilian orogenic belt (Zambia) hosts a dozen uranium occurrences mostly located within kyanite micaschists in a shear zone marking the contact between metasedimentary rocks attributed to the Katanga Neoproterozoic sedimentary sequence and migmatites coring domes developed dominantly at the expense of the pre-Neoproterozoic basement. The P-T-t-d paths reconstructed for these rocks combining field observations, microstructural analysis, metamorphic petrology and thermobarometry and geochronology indicate that they have recorded burial and exhumation during the Pan-African orogeny. Both units of the Katanga metasedimentary sequence and pre-Katanga migmatitic basement have underwent minimum peak P-T conditions of ~ 9-11 kbar and ~ 640-660 °C, dated at ca. 530 Ma by garnet-whole rock Lu-Hf isochrons. This suggests that this entire continental segment has been buried up to a depth of 40-50 km with geothermal gradients of 15-20 °C.km- 1 during the Pan-African orogeny and the formation of the West Gondwana supercontinent. Syn-orogenic exhumation of the partially molten root of the Lufilian belt is attested by isothermal decompression under P-T conditions of ~ 6-8 kbar at ca. 530-500 Ma, witnessing an increase of the geothermal gradients to 25-30 °C·km- 1. Uranium mineralizations that consist of uraninite and brannerite took place at temperatures ranging from ~ 600 to 700 °C, and have been dated at ca. 540-530 Ma by U-Pb ages on uraninite. The main uranium deposition thus occurred at the transition from the syn-orogenic burial to the syn-orogenic exhumation stages and has been then partially transposed and locally remobilized during the post-orogenic exhumation accommodated by activation of low-angle extensional detachment.

  15. The nature of orogenic crust in the central Andes

    NASA Astrophysics Data System (ADS)

    Beck, Susan L.; Zandt, George

    2002-10-01

    The central Andes (16°-22°S) are part of an active continental margin mountain belt and the result of shortening of the weak western edge of South America between the strong lithospheres of the subducting Nazca plate and the underthrusting Brazilian shield. We have combined receiver function and surface wave dispersion results from the BANJO-SEDA project with other geophysical studies to characterize the nature of the continental crust and mantle lithospheric structure. The major results are as follows: (1) The crust supporting the high elevations is thick and has a felsic to intermediate bulk composition. (2) The relatively strong Brazilian lithosphere is underthrusting as far west (65.5°W) as the high elevations of the western part of the Eastern Cordillera (EC) but does not underthrust the entire Altiplano. (3) The subcrustal lithosphere is delaminating piecemeal under the Altiplano-EC boundary but is not completely removed beneath the central Altiplano. The Altiplano crust is characterized by a brittle upper crust decoupled from a very weak lower crust that is dominated by ductile deformation, leading to lower crustal flow and flat topography. In contrast, in the high-relief, inland-sloping regions of the EC and sub-Andean zone, the upper crust is still strongly coupled across the basal thrust of the fold-thrust belt to the underthrusting Brazilian Shield lithosphere. Subcrustal shortening between the Altiplano and Brazilian lithosphere appears to be accommodated by delamination near the Altiplano-EC boundary. Our study suggests that orogenic reworking may be an important part of the "felsification" of continental crust.

  16. Lithosphere profiles across Central Asian Orogenic Belt in Uzbekistan

    NASA Astrophysics Data System (ADS)

    Sidorova, Irina

    2014-05-01

    This study was made with complex geophysical and geological observations by the DSS-MRW seismic profiles, which cross CAOB in the southern Tien Shan in part of Uzbekistan. The southern Tien Shan is situated along the SW margin of the Central Asian Orogenic Belt-one of key region for understanding both the amalgamation of Eurasia and the Phanerozoic growth of the CAOB itself. The aim of our study was to reveal new features, which characteristic of the upper mantle rocks, related to morphology of bodies. their physical properties, consisting mainly in their contrasting values for contiguous blocks, and general increased velocity and density of the rocks they contain. The most interesting results were obtained by three DSS profiles in Central Kyzylkum: anomalous geological objects (Muruntau, Kokpatas, Kuldjuktau and other) having anomalous high velocity and density values, have been mapped at different depths within the part of CAOB. The alteration zones, the tectonic faults and circular structures related to the cones and calderas determined these methods and checked by group truth studies may the target areas to explore for some new deposits.New regional features have been revealed:they include peculiarities of the Earth's crust's deep geological structure and spatial distribution of deposits:they are contrast areas of the earth's crust geoblocks with anomalously high and low seismic and density parameters. Mapping of these zones helps select new ways in th search for mineral deposits. All the final products was created using ArcGIS and RS methodologies:1)DEM on the base of SRTM dataset;2) 3-D models of crustal basement and Moho surface;3) 3-D potential fields modeling;4) tabular database of tectonic, boreholes data;5)various types of original geological information concerning the Paleozoic to present geological evolution of the region.

  17. Distribution of strain rates in the Taiwan orogenic wedge

    NASA Astrophysics Data System (ADS)

    Mouthereau, F.; Fillon, C.; Ma, K.-F.

    2009-07-01

    To constrain the way Eurasian crust is accreted to the Taiwan orogenic wedge we investigate the present-day 3D seismogenic deformation field using the summation of 1129 seismic moment tensors of events ( Mw > 4) covering a period of 11 years (1995 to 2005). Based on the analysis of the principal strain-rate field, including dilatation and maximum shear rates, we distinguish four domains. Domain I comprises the Coastal Plain and the Western Foothills. It is mainly contractional in both the horizontal plane and in cross-section. Domain II comprises the eastern Western Foothills, the Hsuehshan Range and the Backbone Range. It is characterized by the highest contraction rates of 10 - 6 yr - 1 in association with area expansion in cross-section and area contraction in the horizontal plane. Domain III corresponds to the Central Range. It is characterized by area contraction in cross-section and area expansion in the horizontal plane. The maximum contractional axis is typically low and plunges ~ 30°E. Extension is larger, horizontal and strikes parallel to the axis of the mountain range. Domain IV corresponding to the Coastal Range and offshore Luzon Arc shows deformation patterns similar to domain II. This seismogenic strain-rate field, which is found in good agreement with the main features of the geodetic field, supports shortening within a thick wedge whose basal décollement is relatively flat and located in the middle-to-lower crust > 20 km. The east plunges of maximum strain-rate axes below the Central Range argue for the development of top-to-the-east transport of rocks resulting from the extrusion of the whole crust along west-dipping crustal-scale shear zones. The study of seismogenic strain rates argues that the initiation of subduction reversal has already started in the Taiwan collision domain.

  18. Crustal Architecture along BABEL and FIRE profiles - Insight in the Growth of the Svecofennian Orogen

    NASA Astrophysics Data System (ADS)

    Korja, Annakaisa

    2016-04-01

    The Precambrian Svecofennian orogen is characterized by LP- HT metamorphism and voluminous granitoid magmatism that usually develop in transitional to plateau stages of a collisional orogeny. Deep seismic reflection profiles BABEL and FIRE have been interpreted using PURC concepts: prowedge, retrowedg, uplifted plug, subduction conduit and elevated plateau. BABEL profiles image a transitional orogen with several nuclei displaying prowedge-uplifted plug-retrowedge architecture above paleo-subduction conduits. Prowedge and -continent are on the south-southwestern side and retrowedge and -continent on the north-northwestern side. This implies a long-lived southwesterly retreating convergent margin, where transitional accretionary orogens have developed. FIRE1-3 profiles images a hot orogen with a pronounced super-infra structure, typical of an elevated plateau stage, below the Central Finland Granitoid Complex. Large volumes of granitoid intrusions suggest large scale melting of the middle and/or lower crust. Reflection structures, analogue and numerical modeling suggest midcrustal flow. The plateau is flanked by prowedges that are characterized by HT-LP migmatite belts. The Svecofennian orogeny has progressed to an elevated plateau stage in the thickest core of the orogen, west of the arc-continent collision zone.

  19. Early Cretaceous extensional reworking of the Triassic HP-UHP metamorphic orogen in Eastern China

    NASA Astrophysics Data System (ADS)

    Lin, Wei; Ji, Wenbin; Faure, Michel; Wu, Lin; Li, Qiuli; Shi, Yonghong; Scharer, Urs; Wang, Fei; Wang, Qingchen

    2015-11-01

    Corresponding to the Early Mesozoic continental subduction between the North China Block (NCB) and the South China Block (SCB), the Tongbaishan-Hong'an-Dabieshan-Sulu massifs are famous for their HP-UHP metamorphism. More than 50% of the HP-UHP Orogenic Belt was significantly reworked by Early Cretaceous extensional tectonics. This Early Cretaceous event with a fast cooling period, at 130-120 Ma, superimposed on the Early Mesozoic HP-UHP orogenic belt and intensively changed the architecture of this orogen. Each individual segment documents different Early Cretaceous extensional structures, namely the central Tongbaishan domain is a metamorphic core complex (MCC) represented by an A-type non-cylindrical antiform; the central Dabieshan domain is a typical Cordilleran-type migmatite-cored MCC; the Southern Sulu UHP domain is a "wedge-shaped" structure exhumed by a simple detachment fault. These late stage extensional structures expose the previous HP-UHP orogenic belt as fragments along the NCB-SCB boundary. The geodynamic setting of this Early Cretaceous extensional tectonics along the HP-UHP orogen is a part of a 1000 km-scale crustal extension belt that is widespread in eastern Eurasia continent from Trans-Baikal to the central part of SCB. Convective erosion or delamination of the mantle lithosphere might be considered as a possible mechanism for mantle removal.

  20. Early Cretaceous extensional reworking of the Triassic HP-UHP metamorphic orogen in Eastern China

    NASA Astrophysics Data System (ADS)

    Lin, W.; Ji, W.; Faure, M.; Wu, L.; Li, Q. L.; Shi, Y.; Scharer, U.; Wang, F.; Wang, Q.

    2015-12-01

    Corresponding to the Early Mesozoic continental subduction between the North China Block (NCB) and the South China Block (SCB), the Tongbaishan-Hong'an-Dabieshan-Sulu massifs are famous for their HP-UHP metamorphism. More than 50% of the HP-UHP Orogenic Belt was significantly reworked by Early Cretaceous extensional tectonics. This Early Cretaceous event with a fast cooling period, at 130-120 Ma, superimposed on the Early Mesozoic HP-UHP orogenic belt and intensively changed the architecture of this orogen. Each individual segment documents different Early Cretaceous extensional structures, namely the central Tongbaishan domain is a metamorphic core complex (MCC) represented by an A-type non-cylindrical antiform; the central Dabieshan domain is a typical Cordilleran-type migmatite-cored MCC; the Southern Sulu UHP domain is a "wedge-shaped" structure exhumed by a simple detachment fault. These late stage extensional structures expose the previous HP-UHP orogenic belt as fragments along the NCB-SCB boundary. The geodynamic setting of this Early Cretaceous extensional tectonics along the HP-UHP orogen is a part of a 1000 km-scale crustal extension belt that is widespread in eastern Eurasia continent from Trans-Baikal to the central part of the South China Block. Convective erosion or delamination of the mantle lithosphere might be considered as a possible mechanism for mantle removal.

  1. Architecture of orogenic belts and convergent zones in Western Ishtar Terra, Venus

    NASA Technical Reports Server (NTRS)

    Head, James W.; Vorderbruegge, R. W.; Crumpler, L. S.

    1989-01-01

    Linear mountain belts in Ishtar Terra were recognized from Pioneer-Venus topography, and later Arecibo images showed banded terrain interpreted to represent folds. Subsequent analyses showed that the mountains represented orogenic belts, and that each had somewhat different features and characteristics. Orogenic belts are regions of focused shortening and compressional deformation and thus provide evidence for the nature of such deformation, processes of crustal thickening (brittle, ductile), and processes of crustal loss. Such information is important in understanding the nature of convergent zones on Venus (underthrusting, imbrication, subduction), the implications for rates of crustal recycling, and the nature of environments of melting and petrogenesis. The basic elements of four convergent zones and orogenic belts in western Ishtar Terra are identified and examined, and then assess the architecture of these zones (the manner in which the elements are arrayed), and their relationships. The basic nomenclature of the convergent zones is shown.

  2. Remagnetization and orogenic fluids: testing the hypothesis in the central Appalachians

    NASA Astrophysics Data System (ADS)

    Elmore, R. Douglas; Kelley, Jeff; Evans, Mark; Lewchuk, Michael T.

    2001-03-01

    Palaeomagnetic and geochemical studies on Devonian sedimentary rocks in the Valley and Ridge province in West Virginia indicate that the hypothesized relationship between orogenic fluids and remagnetization is not straightforward. The Helderberg Group, an aquitard, and the Oriskany Formation, a palaeoaquifer, both contain similar, synfolding late Palaeozoic chemical remanent magnetizations (CRMs) residing in magnetite. The results from the Oriskany Formation are consistent with remagnetization by orogenic fluids because the unit contains geochemical evidence for the migration of such fluids. In contrast, there is no geochemical evidence for the widespread migration of orogenic fluids into the Helderberg Group and thus the CRM cannot be related to such fluids. Another remagnetization mechanism, which remains elusive, must be responsible for the CRM in the Helderberg Group.

  3. Mechanical model for subduction-collision tectonics of Alpine-type compressional orogens

    NASA Astrophysics Data System (ADS)

    Beaumont, Christopher; Ellis, Susan; Hamilton, Juliet; Fullsack, Philippe

    1996-08-01

    Alpine-type orogens are characterized by three distinct convergent tectonic phases: subduction with deformation that has primarily single vergence, a transition from subduction to collision, and continental collision with double vergence. Although the Cenozoic history of the European Alps has additional complexities, a mechanical explanation for these three phases would provide the necessary crustal-scale framework in which to develop an understanding of the smaller-scale processes. We present results from a simple numerical model, which explain the mechanics of these three phases as a consequence of the changing buoyancy of the lithosphere subducted beneath the orogen. The development and exhumation of a subduction complex, suture zone, and basement nappe stack (Piemont suture, Penninic Nappes); the presence of a crustal-scale back fold and thrust (Insubric Line); and uplift of basement on the pro- (European) side of the orogen (external basement massifs) may be explained as a simple consequence of changing dynamics during the transition from subduction to collision.

  4. Reconciling the detrital zircon record and crustal growth within juvenile accretionary orogens

    NASA Astrophysics Data System (ADS)

    Spencer, C. J.; Cawood, P. A.; Roberts, N. M. W.

    2014-12-01

    Ancient cratons are generally characterised by Archaean cores surrounded by Proterozoic accretionary belts with large volumes of juvenile crust. Their crustal growth histories provide important insights into the genesis of continents and orogenic evolution. Whole-rock and detrital zircon isotopic studies are often used to deduce those histories, but the extent to which representative lithologies within the orogens are reliably sampled for such studies is not well established. This is especially true in cases where juvenile, zircon-poor mafic crust comprises a significant proportion of an orogen such as the East African (0.8-0.5 Ga), Namaqua-Natal (1.2-1.0 Ga), Trans-Hudson (1.9-1.8 Ga), and Kola (2.5 Ga). In particular, the Mesoproterozoic Namaqua-Natal orogenic belt (NNO) fringing the Kalahari Craton is a case in point in which Nd isotopic studies of whole-rock outcrop samples and U-Pb-Hf isotopic studies of detrital zircons from sediments of the Orange River (which drains the NNO) show different crust-formation ages and proportions of new and reworked crustal material. We hypothesise that this discrepancy is due to biasing of the detrital zircon record towards felsic rocks. Understanding the representative nature of the crustal archive preserved in detrital zircons remains critical for many studies of crustal evolution. We present data that: (a) addresses the scale of potential bias within an accretionary orogen containing large proportions of juvenile material, (b) demonstrates how the whole-rock and detrital zircon records can be reconciled for the Namaqua-Natal orogen to start, and (c) can be used to evaluate the effect of zircon bias on previous crustal growth models.

  5. Anomalous nitrogen isotopes in ultrahigh-pressure metamorphic rocks from the Sulu orogenic belt: Effect of abiotic nitrogen reduction during fluid-rock interaction

    NASA Astrophysics Data System (ADS)

    Li, Long; Zheng, Yong-Fei; Cartigny, Pierre; Li, Jianghanyang

    2014-10-01

    Modern nitrogen (N) fixation is primarily mediated by biological processes. However, in the early Earth where biological activity was absent or limited, abiotic N reduction in hydrothermal systems is thought to be a key process to transform atmospheric N2 and NOx to ammonium, an essential nutrient to support the emergence of life and also an N form that can be incorporated into rocks. Surprisingly, evidence for abiotic N reduction in the rock record has not been clearly identified. In this study, we reported anomalously low N isotope compositions (δN15 values as low as -15.8‰) of mica samples in ultrahigh-pressure metamorphic rocks from the Donghai area in the Sulu orogenic belt, eastern China. Compared with mica samples with typical crustal δN15 values (3-9‰) in similar metamorphic rocks from the western Dabie orogen, the 15N-depleted mica samples from the Sulu orogen are characterized by significant N enrichment (10 times higher) and extreme 18O depletion (δO18 values as low as -9‰). These features can be best explained by assimilation of N from a source characterized by extremely low δN15 values (less than ∼-16‰). The extremely low δN15 value would be produced by abiotic N reduction during reaction of a meteoric-hydrothermal fluid with crustal rocks before subduction. This observation provides a clue to the occurrence of abiotic N reduction in continental supracrustal rocks and infer that abiotic N reduction process could be a fundamental process driving the geological N cycling in early Earth.

  6. Conflicting Lu-Hf and Sm-Nd ages in the garnet gneisses of the Central Appalachians, Eastern U.S.: Implications for the timing and duration of Grenville Orogeny and a case for using coupled Lu-Hf and Sm-Nd geochronology

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Ramsey, M.; Aleinikoff, J. N.; Southworth, S.

    2013-12-01

    The Grenville orogeny is one of the most significant geological events in Earth's history with remnants of this event prominent on virtually every continent. Constraining its timing and duration is important not only for understanding the tectonics of the Grenville itself, but also for understanding supercontinent cycles and other questions of Earth's evolution. In order to provide better constraints on the timing of Grenvillian metamorphism, we analyzed garnet-bearing Mesoproterozoic ortho- and paragneisses, collected along a 150 km transect in the northern Blue Ridge Province, using combined Lu-Hf and Sm-Nd geochronology. The orthogneisses have U-Pb zircon crystallization ages of ~1140 and 1100 Ma. The paragneisses have maximum depositional ages ~1050-1020 Ma, based on the youngest detrital zircon populations. Zircon overgrowths and monazite suggest metamorphic events between ~1050 and 960 Ma. The Lu-Hf and Sm-Nd data for these samples both yield robust garnet ages with large spread of parent/daughter ratios, low age uncertainties, and low MSWD values. Lu-Hf ages define a narrow time span (1043×12 Ma to 1016×4 Ma; wtd. mean, 1024×7 Ma, 2σ). The Sm-Nd ages, determined on the same solutions as Lu-Hf, also define a narrow time range but are systematically younger (974×11 Ma to 932×5 Ma; wtd. mean, 957×10 Ma). The average difference between Lu-Hf and Sm-Nd ages is 67 Ma; the oldest Sm-Nd age is 40 Ma younger than the youngest Lu-Hf age. These large systematic differences in the ages are enigmatic. While Sm-Nd ages younger than Lu-Hf are not uncommon, these differences are typically small; nothing of this magnitude has been previously reported. There are, however, potential explanations for these differences. (1) Lu partitions strongly into garnet during growth yielding ages weighted toward the beginning of growth (e.g., Skora, 2006); no similar partitioning exists in Sm-Nd and these ages reflect mean garnet growth. (2) Lu diffuses much faster than Hf at

  7. Reconciling competing models for the tectono-stratigraphic zonation of the Variscan orogen in Western Europe

    NASA Astrophysics Data System (ADS)

    Murphy, J. Brendan; Quesada, Cecilio; Gutiérrez-Alonso, Gabriel; Johnston, Stephen T.; Weil, Arlo

    2016-06-01

    The Late Paleozoic Variscan orogen in Europe is the result of convergence and collision between Laurussia and Gondwana during closure of the Rheic Ocean. The orogen is divided into tectonostratigraphic zones that have a distinct curvature (Ibero-Armorican Arc, IAA) and record the Late Cambrian-Early Ordovician opening of the Rheic Ocean, the migration of terranes from the Gondwanan margin towards Laurussia, as well as the closure of that ocean and development of the IAA. Three models have emerged to explain the distribution of tectonostratigraphic zones:

  8. Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China

    NASA Astrophysics Data System (ADS)

    Wu, X.; Qi, X.; Zheng, M.

    2015-12-01

    Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas

  9. Brittle tectonic history document the late- to post-orogenic evolution in the Lufilian Arc, RDCongo

    NASA Astrophysics Data System (ADS)

    Kipata, Louis; Delvaux, Damien; Ntabwoba Sebagenzi, Mwene; Cailteux, Jean-Jacques; Sintubin, Manuel

    2013-04-01

    Pan-African orogenic processes in Centra Africa involve intracontinental collision but also late-orogenic and intraplate processes that occurred in dominantly brittle conditions and can be documented by fault kinematic analysis and paleostress reconstructions. The Congo and Tanzania cratons in Central Africa are surrounded by Pan-African belts orogenic belts which all entered almost synchronously in collision stage in the early Paleozoic. While their tectonic history up to the collision stage is increasingly better documented by ductile deformation and metamorphic studies, their late evolution remain poorly known as soon as they enter in the brittle deformation regime. This results in an incomplete understanding of the orogenic processes, especially when the transition from ductile to the brittle regime occurred at the end of the orogenic compression. In this case, the last compressional stages and the entire late orogenic extension and extensional collapse stages remain undocumented. This is the case for the Lufilian orogeny which developed along the southern margin of the Congo Craton in Central Africa during the pan-African and was marked by a collisional event with crustal thickening and white schist formation at 550-530 Ma. The Lufilian Arc which forms the external part of the Lufilian orogeny developed as an arcuate fold-and-thrust belt. Its foreland is formed by the Kundelungu plateau, between the Bangweulu block and the Kibaran belt. This entire region is also tectonically active, as part of the incipient SW branch of the East African rift system. The long period between the paroxysm of the Lufilian orogeny and the late Neogene to Quaternary rifting has been investigated by fault-kinematic analysis and paleostress reconstruction in open mines spread over the entire arc and foreland. Paleostress tensors were computed from 23 sites totaling 1900 fault-slip data by interactive stress tensor inversion and data subset separation, and a succession of 8 brittle

  10. Trans-Hudson Orogen of North America and Himalaya-Karakoram-Tibetan Orogen of Asia: Structural and thermal characteristics of the lower and upper plates

    NASA Astrophysics Data System (ADS)

    St-Onge, Marc R.; Searle, Michael P.; Wodicka, Natasha

    2006-08-01

    The Trans-Hudson Orogen (THO) of North America and the Himalaya-Karakoram-Tibetan Orogen (HKTO) of Asia preserve a Paleoproterozoic and Cenozoic record, respectively, of continent-continent collision that is notably similar in scale, duration and character. In THO, the tectonothermal evolution of the lower plate involves (1) early thin-skinned thrusting and Barrovian metamorphism, (2) out-of-sequence thrusting and high-T metamorphism, and (3) fluid-localized reequilibration, anatexis, and leucogranite formation. The crustal evolution of the Indian lower plate in HKTO involves (1) early subduction of continental crust to ultrahigh pressure (UHP) eclogite depths, (2) regional Barrovian metamorphism, and (3) widespread high-T metamorphism, anatexis, and leucogranite formation. The shallow depths of the high-T metamorphism in HKTO are consistent with early to mid-Miocene ductile flow of an Indian lower plate midcrustal channel, from beneath the southern Tibetan Plateau to the Greater Himalaya. Melt weakening of the lower plate in THO is not observed at a similar scale probably due to the paucity of pelitic lithologies. Tectonothermal events in the upper plate of both orogens include precollisional accretion of crustal blocks, emplacement of Andean-type plutonic suites, and high-T metamorphism. Syncollisional to postcollisional events include emplacement of garnet-biotite-muscovite leucogranites, anatectic granites, and sporadic metamorphism (up to 90 Myr following the onset of collision in THO). Comparing the type and duration of tectonothermal events for THO and HKTO supports the notion of tectonic uniformitarianism for at least the later half of dated Earth history and highlights the complementary nature of the rock record in an older "exhumed" orogen compared to one undergoing present-day orogenesis.

  11. The crustal structures from Wuyi-Yunkai orogen to Taiwan orogen: the onshore-offshore wide-angle seismic experiment of TAIGER and ATSEE projects

    NASA Astrophysics Data System (ADS)

    Kuochen, H.; Kuo, N. Y. W.; Wang, C. Y.; Jin, X.; Cai, H. T.; Lin, J. Y.; Wu, F. T.; Yen, H. Y.; Huang, B. S.; Liang, W. T.; Okaya, D. A.; Brown, L. D.

    2015-12-01

    The crustal structure is key information for understanding the tectonic framework and geological evolution in the southeastern China and its adjacent area. In this study, we integrated the data sets from the TAIGER and ATSEE projects to resolve onshore-offshore deep crustal seismic profiles from the Wuyi-Yunkai orogen to the Taiwan orogen in southeastern China. Totally, there are three seismic profiles resolved and the longest profile is 850 km. Unlike 2D and 3D first arrival travel-time tomography from previous studies, we used both refracted and reflected phases (Pg, Pn, PcP, and PmP) to model the crustal structures and the crustal reflectors. 40 shots, 2 earthquakes, and about 1,950 stations were used and 15,319 arrivals were picked among three transects. As a result, the complex crustal evolution since Paleozoic era are shown, which involved the closed Paleozoic rifted basin in central Fujian, the Cenozoic extension due to South China sea opening beneath the coastline of southern Fujian, and the on-going collision of the Taiwan orogen.

  12. How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen

    NASA Astrophysics Data System (ADS)

    Cottle, John M.; Larson, Kyle P.; Kellett, Dawn A.

    2015-09-01

    The presence of hot, weak crust is a central component of recent hypotheses that seek to explain the evolution of continent-continent collisions, and in particular may play an important role in accommodating the >3000 km of convergence within the Himalaya-Tibetan collision over the last ˜55 Myr. Models that implicate flow of semi-viscous midcrustal rocks south toward the front of the Himalayan orogen, 'channel flow', are able to account for many geologic observations in the Himalaya, while alternative models of collision, particularly 'thrust-wedge taper', demonstrate that much of the observed geology could have formed in the absence of a low-viscosity mid-crustal layer. Several recent studies, synthesized here, have prompted a shift from initial assumptions that channel flow and thrust-wedge taper processes are by definition mutually exclusive. These new studies reveal the presence of several tectonometamorphic discontinuities in the midcrust that appear to reflect a continuum of deformation in which both channel- and wedge-type processes operate in spatially and temporally distinct domains within the orogen, and further, that the system may migrate back and forth between these types of behavior. This continuum of deformation styles within the collisional system is of crucial importance for explaining the evolution of the Himalayan orogen and, hence, for understanding the evolution of Earth's many continent-continent collision zones.

  13. Sulfur- and lead-isotope signatures of orogenic gold mineralisation associated with the Hill End Trough, Lachlan Orogen, New South Wales, Australia

    NASA Astrophysics Data System (ADS)

    Downes, P. M.; Seccombe, P. K.; Carr, G. R.

    2008-11-01

    The Hill End Trough (HET) is a deformed middle Silurian to Early Devonian sediment-dominated rift within the northeastern Lachlan Orogen. The HET hosts the Hill End, Hargraves, Napoleon Reefs, Stuart Town and Windeyer low-sulfide orogenic gold deposits. Adjacent to the HET are the Bodangora and Gulgong gold deposits. In this study we present 91 new sulfur- and 18 new lead-isotope analyses and collate a further 25 sulfur- and 32 lead-isotopes analyses from unpublished sources for these deposits. Larger gold deposits in the HET have near 0 δ34S‰ values indicating that sulfur in these systems was sourced from a magmatic reservoir. The dominant lead isotope signature for HET-hosted deposits reflects a crustal source however some mantle-derived lead has been introduced into the HET. Sulfur- and lead-isotopic results suggest that gold was sourced from mantle-derived magmatic units beneath the HET. The study supports earlier studies at Hill End by concluding that the majority of orogenic gold mineralisation in and adjacent to the HET formed during the Early Carboniferous period.

  14. Feeding the ';aneurysm': Orogen-parallel mass flux into Nanga Parbat and the western Himalayan syntaxis

    NASA Astrophysics Data System (ADS)

    Whipp, D. M.; Beaumont, C.; Braun, J.

    2013-12-01

    Over the last ~2 Ma, exhumation of the Nanga Parbat-Haramosh massif (NPHM) in the western Himalayan syntaxis region has occurred at rates that are more than double the exhumation rates in the central Himalaya (up to 13 mm/a). Coupled with surface elevations comparable to the rest of the Himalaya, this suggests an additional source of mass flux, over and above that supplied by normal convergence, is required to sustain localized, very rapid exhumation of the NPHM. The ';tectonic aneurysm' model provides an explanation for localized, rapid exhumation in the NPHM based on incision by the Indus River, but the source of the excess mass is not clear. One source capable of providing the requisite crustal mass is orogen-parallel (OP) mass transport as a result of strain partitioning along the Himalayan thrust front, where convergence is variably oblique, with obliquity up to ~40°. Conceptual and analog models of strain partitioning in convergent orogens have indicated how orogen-normal thrust motion results in OP mass transport within oblique orogenic wedges. However, there has been no quantitative demonstration that this may lead to the development of NPHM-type structures. We use geometrically simple 3D mechanical numerical experiments of an obliquely convergent orogen to demonstrate that the OP mass transport flux resulting from strain partitioning is capable of sustaining syntaxis topography and rapid exhumation rates. The model design includes a frictional-plastic orogenic wedge with predefined weak shear zones at its base and rear, and a neighboring plateau underlain by low-viscosity middle-lower crust. The geometry of the orogen thrust front is segmented, such that there is a region of oblique convergence at 45° obliquity bounded by two regions of orogen-normal convergence. Analytical and numerical results show that strain partitioning in the critical wedge orogen requires both the basal and rear shear zones to be very weak, with angles of internal friction of ~2

  15. Redefinition of the Lac-St.-Jean Anorthosite, Central Grenville Province, Québec, Based on Compositional, Structural, Geochronological, and Mineral Deposit Features

    NASA Astrophysics Data System (ADS)

    Hebert, C.; van Breemen, O.

    2004-05-01

    The Lac-St.-Jean Anorthosite was previously recognized as one of the biggest anorthositic masses in the world (20,000 km2). Recent field and geochronological work has demonstrated that this anorthositic mass is, in fact, an assemblage resulting from four temporally distinct magmatic episodes, which took place between 1327 and 1012 Ma. This discovery has required the redefinition of the Lac-St.-Jean Anorthosite in terms of its component units. The 1327 ± 16 Ma De La Blache Mafic Plutonic Suite occupies the northeastern limb of the former Lac-St.-Jean Anorthosite. This suite is characterized by labradorite-type anorthosite, a large volume of olivine-bearing anorthositic rocks, a wide gabbronoritic fringe, and Fe-Ti and Ni-Cu occurrences. This magmatic body is constrained by a paired, dextral and sinistral strike-slip fault system. The Lac-St.-Jean Anorthositic Suite represents that part of the former Lac St.-Jean Anorthosite that was emplaced between 1160 and 1140 Ma. The suite still occupies the largest area of any anorthositic mass in the Central Grenville Province. It is characterized by labradorite- and andesine-type anorthositic rocks, is bordered by gabbronoritic fringes along its northern and southeastern margins, and contains sizeable Ti-Fe-P and Ni-Cu occurrences. The western part of this huge anorthositic mass is undeformed, whereas the eastern part was pervasively affected by a system of thrust and strike-slip faults, which resulted in a high degree of recrystallization of the anorthositic rocks. The 1180-1160 Ma Vanel Anorthosite occupies a large part of the eastern margin of the former Lac-St.-Jean-Anorthosite. This unit is characterized by labradorite- and andesine-type anorthositic rocks containing typically pink-colored and almost ubiquitously recristallized plagioclase. It includes abundant coronitic leuconorite, orthopyroxene-bearing leucotroctolite, and norite, and contains a few Ti-Fe-P occurrences. The 1012 +6/-4 Ma Mattawa Anorthosite is an

  16. Trondhjemitic, 1.35-1.31 Ga gneisses of the Mount Holly Complex of Vermont: evidence for an Elzevirian event in the Grenville Basement of the United States Appalachians

    USGS Publications Warehouse

    Ratcliffe, N.M.; Aleinikoff, J.N.; Burton, W.C.; Karabinos, P.

    1991-01-01

    A newly recognized suite of trondhjemite-tonalite and dacitic gneiss forms a 10 km wide belt of rocks within the Mount Holly Complex in the central part of the Green Mountain massif. Field relationships and chemistry indicate that these gneisses are calc-alkaline, volcanic, and hypabyssal plutonic rocks older than the Middle Proterozoic regional deformation that affected the Mount Holly Complex. U-Pb zircon dates indicate ages as great as 1.35 Ga for crystallization of the volcanic protoliths and for intrusion of crossing trondhjemite. Tonalitic plutonism continued until 1.31 Ga. The Mount Holly intrusives and volcanics may have formed during 1.35-1.31 Ga ensialic volcanic-arc activity, contemporaneous with ensimatic arc activity during the early part of the Elzevirian phase of the Grenville orogeny. -from Authors

  17. Evidence of Early Cretaceous transpression in the Sulu orogenic belt, eastern China

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Chang, Su-Chin; Lin, Peijun; Zhu, Xiaoqing; Fu, Yongtao; Zhang, Haichun

    2016-09-01

    Recent studies have documented marine turbidites with syn-sedimentary deformation features in the central Sulu orogenic belt of eastern China. These units preserve essential information on the Late Mesozoic evolution of the Sulu orogenic belt. Referred to as the Baxiandun Formation, the turbidites exhibit similar lithologic characteristics to nearby units such as the Lingshandao Formation that have been well studied even though precise geochronologic constraints are lacking for a more precise correlation. This study reports detrital zircon Usbnd Pb age data that correlate the Baxiandun Formation turbidites of the central Sulu orogenic belt to the Early Cretaceous Lingshandao Formation. We also report Al-in-hornblende emplacement depth estimates for granitic intrusions of the Sulu orogenic belt's Laoshan mountain. A sharp contact between the Laoshan granites and the marine Baxiandun Formation indicates that the Baxiandun basin rapidly subsided to the emplacement depth of the Laoshan plutons. Lateral correlation among the marine turbidites, the Lingshandao and Baxiandun Formations, combined with information established by previous studies indicates initiation of transpressional tectonics at 122-121 Ma. Transpression ceased with the emplacement of the Laoshan granites, whose A1-type composition indicates a return to extensional tectonics at ca. 111 Ma.

  18. The role of radiogenic heat in prolonged intraplate reworking: The Capricorn Orogen explained?

    NASA Astrophysics Data System (ADS)

    Korhonen, Fawna J.; Johnson, Simon P.

    2015-10-01

    Links between intraplate crustal deformation and the thermal regime of the lithosphere have been investigated using numerical models, but these conceptual models must be tested using well-constrained natural systems. The Proterozoic Capricorn Orogen of Western Australia is ideally suited for such a study; after arc accretion, it records a protracted history of intracrustal differentiation and over one billion years of subsequent tectonic reworking. The early addition of juvenile arc material initially reduced the heat production of the crust, whereas subsequent recycling of the deep crust ultimately produced radiogenic granites in the shallow crust. Using whole rock and magmatic zircon compositions, we show that the shallow crust of the Capricorn Orogen has been progressively enriched in heat-producing elements with time. The high heat production is mainly controlled by thorium, concentrated in LREE-enriched phosphates that grew during the late stages of crystallization of crustally-derived granites. Using a numerical model, we investigate the thermal effects of this evolved crustal stratification and compare them with quantitative data on the pressure-temperature-time evolution of a non-magmatic Mesoproterozoic reworking event. The results provide new information concerning the process by which the thermal conditions necessary for the reworking of orogenic crust are generated and sustained for prolonged timescales (>110 Ma). Furthermore, we demonstrate that perturbations to the radiogenic crust lead to warmer geotherms and consequent lithospheric weakening, which has a fundamental control on intraplate reworking of long-lived orogens.

  19. Paleomagnetic data from the New England Orogen (eastern Australia) and implications for oroclinal bending

    NASA Astrophysics Data System (ADS)

    Shaanan, Uri; Rosenbaum, Gideon; Pisarevsky, Sergei; Speranza, Fabio

    2015-11-01

    Orogenic curvatures (oroclines) are common in modern and ancient orogens, but the geodynamic driving forces of many oroclines remain controversial. Here we focus on the New England oroclines of eastern Australia, the formation of which had been previously broadly constrained to the Early-Middle Permian. This time interval encompasses periods of both back-arc extension (at ~ 300-280 Ma) and subsequent contractional deformation (Hunter-Bowen Orogeny) that commenced at ~ 270 Ma along the paleo-Pacific and Gondwanan subduction plate boundary. We present new paleomagnetic data from volcanic rocks that were extruded during the transition from extension to contraction (at ~ 272 Ma), and we show that the oroclinal structure must have formed prior to the emplacement of the volcanic rocks. Our results thus indicate that oroclinal bending in the southernmost New England Orogen has been completed prior to the onset of Middle Permian contractional deformation. It is therefore concluded that the oroclines have likely formed during back-arc extension, and that a major contribution to the orogenic curvature was driven by trench retreat.

  20. Crustal structure and orogenic material budget in the west central Pyrenees

    NASA Astrophysics Data System (ADS)

    Teixell, Antonio

    1998-06-01

    Surface and subsurface data are combined to construct a crustal-scale cross section of the western central Pyrenees (France and Spain) at the boundary between the European and Iberian plates. The position of Moho reflections in the ECORS-Arzacq reflection profile suggests a tectonic wedge of European crust and upper mantle had indented the Iberian plate at lower crustal levels. The European wedge is overlain by an upper, Iberian wedge thus constituting a double (stacked) wedge geometry. The upper wedge was delaminated and deformed giving rise to the Pyrenean orogenic prism, manifested as a bivergent fan in upper crustal levels. The underthrust lower Iberian plate has been imaged to depths of 55-60 km, but crustal budget considerations based on a palinspastic reconstruction require that this continental root subducted to depths up to 90 km. Total orogenic contraction calculated from surface structures is about 75-80 km, which was accomplished between the latest Cretaceous and the early Miocene at an averaged rate of 1.2 mm/yr. Consistent with these moderate values, exhumation of the orogen is much less than in the more shortened eastern parts of the range. Paleozoic basement and preorogenic Mesozoic rocks are little eroded, and much of the exhumation involved cannibalization of early foreland basins, which once covered the entire, poorly emergent orogen at this transect. This resulted in a continuous process of sediment recycling and, coupled with a considerable lateral arrival of material, a bulk negative erosion-sedimentation budget.

  1. Post-collisional magmatism in the central East African Orogen: The Maevarano Suite of north Madagascar

    USGS Publications Warehouse

    Goodenough, K.M.; Thomas, Ronald J.; De Waele, B.; Key, R.M.; Schofield, D.I.; Bauer, W.; Tucker, R.D.; Rafahatelo, J.-M.; Rabarimanana, M.; Ralison, A.V.; Randriamananjara, T.

    2010-01-01

    Late tectonic, post-collisional granite suites are a feature of many parts of the Late Neoproterozoic to Cambrian East African Orogen (EAO), where they are generally attributed to late extensional collapse of the orogen, accompanied by high heat flow and asthenospheric uprise. The Maevarano Suite comprises voluminous plutons which were emplaced in some of the tectonostratigraphic terranes of northern Madagascar, in the central part of the EAO, following collision and assembly during a major orogeny at ca. 550 Ma. The suite comprises three main magmatic phases: a minor early phase of foliated gabbros, quartz diorites, and granodiorites; a main phase of large batholiths of porphyritic granitoids and charnockites; and a late phase of small-scale plutons and sheets of monzonite, syenite, leucogranite and microgranite. The main phase intrusions tend to be massive, but with variably foliated margins. New U-Pb SHRIMP zircon data show that the whole suite was emplaced between ca. 537 and 522 Ma. Geochemically, all the rocks of the suite are enriched in the LILE, especially K, and the LREE, but are relatively depleted in Nb, Ta and the HREE. These characteristics are typical of post-collisional granitoids in the EAO and many other orogenic belts. It is proposed that the Maevarano Suite magmas were derived by melting of sub-continental lithospheric mantle that had been enriched in the LILE during earlier subduction events. The melting occurred during lithospheric delamination, which was associated with extensional collapse of the East African Orogen. ?? 2009 Natural Environment Research Council.

  2. New isotopic ages and the timing of orogenic events in the Cordillera Darwin, southernmost Chilean Andes

    NASA Astrophysics Data System (ADS)

    Hervé, F.; Nelson, E.; Kawashita, K.; Suárez, M.

    1981-10-01

    The Cordillera Darwin, a structural culmination in the Andes of Tierra del Fuego, exposes an orogenic core zone that has undergone polyphase deformation and metamorphism. Some of the classic problems of orogenic zones have remained unanswered in the Cordillera Darwin: the age of deformed plutonic rocks, the distinction of structurally reactivated basement and metamorphosed cover rocks, and the timing of orogenic events. This study addresses and partially answers these questions. A well-constrained Rb-Sr isochron age of157±8m.y. and an initial 87Sr/ 86Sr ratio of 0.7087 obtained from a pre-tectonic granitic suite suggest a genetic relation between this suite and Upper Jurassic silicic volcanic rocks in the cover sequence (Tobifera Formation), and also suggest involvement of continental crust in formation of these magmas. A poorly constrained Rb-Sr isochron age of240±40m.y. obtained from supposed basement schists is consistent with field relations in the area which suggest a late Paleozoic/early Mesozoic metamorphism for these pre-Late Jurassic rocks. However, because of scatter in the data and the uncertainties involved in dating metasedimentary rocks, the significance of the isotopic age is dubious. Compilation of previously published ages in the area [9] with new mineral ages reported here indicate that "early Andean" orogenic events occurred between 100 and 84 m.y. ago, and that subduction-related magmatism has contributed, probably discontinuously, to the crustal evolution of the region throughout the Mesozoic.

  3. Transient and Steady-State Kinematic Response to Erosional Forcing in an Orogenic Wedge: Sandbox Perspective

    NASA Astrophysics Data System (ADS)

    Cruz, L.; Teyssier, C.; Annia, F.; Take, A.

    2005-12-01

    The evolution of orogens is highly affected by surface processes that control mass distribution. Transportation and redistribution of mass at the Earth's surface modifies the gravitational load and alters the stress field and kinematics within orogens. We explore the role of asymmetric erosion, indenter dip angle, and flux steady/non-steady state in determining the patterns of deformation and exhumation in doubly-sided orogenic wedges. In our analogue model, shortening of the orogen is driven by rigid indenters, represented by Plexiglas wedged blocks (35 and 70 degrees) that deform a non-cohesive dry Coulomb material (walnut shells) representing crustal material. Three end-member erosional scenarios are considered. In the first case, erosion is not applied, and thus the doubly-sided orogenic wedge evolves without restraints (non-steady state). In the second case, erosion is concentrated solely on the indenters side of the orogen (retrowedge), and in the third case, erosion is focused on the flank opposite to the indenter side (prowedge). In the last two cases, steady-state conditions were present in the middle stages of shortening. Strain and exhumation were calculated using displacement fields from 2D particle image velocimetry (PIV analysis). In the three cases, the model deforms as a combination of lateral compaction and localization of strain in shear bands. In the early stages of deformation, a "pop-up" structure develops, bounded by a fore-shear on the front and a back-shear toward the indenter. As deformation continues, a new fore-shear develops, and the previous one remains inactive and is passively pushed up the wedge. In the case of no erosion, the old fore-shears rotate slightly toward the indenter, and the shear bands evolve to steeply dipping structures. In the case of retrowedge erosion, the old fore-shears back rotate toward the indenter, and the shear bands evolve to shallowly dipping structures. In the case of prowedge erosion, old fore

  4. Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands

    USGS Publications Warehouse

    Bradley, D.C.; Leach, D.L.

    2003-01-01

    Most of the world's Mississippi Valley-type (MVT) zinc-lead deposits occur in orogenic forelands. We examine tectonic aspects of foreland evolution as part of a broader study of why some forelands are rich in MVT deposits, whereas others are barren. The type of orogenic foreland (collisional versus Andean-type versus inversion-type) is not a first-order control, because each has MVT deposits (e.g., Northern Arkansas, Pine Point, and Cevennes, respectively). In some MVT districts (e.g., Tri-State and Central Tennessee), mineralization took place atop an orogenic forebulge, a low-amplitude (a few hundred meters), long-wavelength (100-200 km) swell formed by vertical loading of the foreland plate. In the foreland of the active Banda Arc collision zone, a discontinuous forebulge reveals some of the physiographic and geologic complexities of the forebulge environment, and the importance of sea level in determining whether or not a forebulge will emerge and thus be subject to erosion. In addition to those on extant forebulges, some MVT deposits occur immediately below unconformities that originated at a forebulge, only to be subsequently carried toward the orogen by the plate-tectonic conveyor (e.g., Daniel's Harbour and East Tennessee). Likewise, some deposits are located along syn-collisional, flexure-induced normal and strike-slip faults in collisional forelands (e.g., Northern Arkansas, Daniel's Harbour, and Tri-State districts). These findings reveal the importance of lithospheric flexure, and suggest a conceptual tectonic model that accounts for an important subset of MVT deposits-those in the forelands of collisional orogens. The MVT deposits occur both in flat-lying and in thrust-faulted strata; in the latter group, mineralization postdated thrusting in some instances (e.g., Picos de Europa) but may have predated thrusting in other cases (e.g., East Tennessee).

  5. North-vergent thrust fault between Baltica and Laurentian affinity rocks in the frontal part of Romanzof orogen, NE Brooks Range, Alaska

    NASA Astrophysics Data System (ADS)

    Moore, T. E.; O'Sullivan, P. B.

    2012-12-01

    One of the most striking features of Arctic physiography is the long, linear Canadian Arctic margin of the Arctic Basin, which extends from the Lincoln Sea north of Greenland to the eastern Beaufort Sea and projects into northeastern Alaska. Among other ideas, this margin has been proposed to have developed by sinistral transform faulting in the Middle Devonian as a result of tectonic escape of terranes from the Caledonites (the so-called "Northwest Passage"). The faults on which the transform motion might have occurred, however, have not been recognized along the northern margin of North America. One candidate for such a fault is exposed at the southern boundary of the Sadlerochit Mountains province in the Tertiary frontal part of the NE Brooks Range. In the Plunge Creek area of the Arctic National Wildlife Refuge, a contact between rocks of Laurentian affinity and Baltica affinity is exposed on the back limb of a basement-involved map-scale thrust block formed by Brookian thrusting. The regional unconformity at the base of the Mississippian to Triassic Ellesmerian Sequence provides a near flat-lying datum that overlaps the contact between the pre-Mississippian tectonic units and demonstrates that it was not reactivated by Brookian thrusting. The Sadlerochit Mountains succession to the north of the contact consists of a Neoproterozoic and lower Paleozoic carbonate sequence that rests on metaclastic rocks that yield Grenville-Sveconorwegian (0.95-1.2 Ga) and other Mesoproterozoic detrital zircon U-Pb age populations similar to those reported from the northern parts of Baltica and eastern Greenland. In contrast, the Romanzof Mountains succession to the south consists of Neoproterozoic deep-marine clastic rocks (Neruokpuk Quartzite) and overlying lower Paleozoic chert and argillite. Detrital zircon U-Pb age populations from the Neruokpuk are very similar to those from Laurentian-derived clastic rocks in the Canadian margin of North America. Field relations show that

  6. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types

    USGS Publications Warehouse

    Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F.

    1998-01-01

    The so-called 'mesothermal' gold deposits are associated with reginally metamorphosed terranes of all ages. Ores were formed during compressional to transpressional deformation processes at convergent plate margins in accretionary and collisional orogens. In both types of orogen, hydrated marine sedimentary and volcanic rocks have been added to continental margins during tens to some 100 million years of collision. Subduction-related thermal events, episodically raising geothermal gradients within the hydrated accretionary sequences, initiate and drive long-distance hydrothermal fluid migration. The resulting gold-bearing quartz veins are emplaced over a unique depth range for hydrothermal ore deposits, with gold deposition from 15-20 km to the near surface environment. On the basis of this broad depth range of formation, the term 'mesothermal' is not applicable to this deposit types as a whole. Instead, the unique temporal and spatial association of this deposit type with orogeny means that the vein systems are best termed orogenic gold deposits. Most ores are post-orogenic with respect to to tectonism of their immediate host rocks, but are simultaneously syn-orogenic with respect to ongoing deep-crustal, subduction-related thermal processes and the prefix orogenic satisfies both these conditions. On the basis of their depth of formation, the orogenic deposits are best subdivided into epizonal (12 km) classes.

  7. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: A review

    NASA Astrophysics Data System (ADS)

    Liou, Juhn G.; Tsujimori, Tatsuki; Yang, Jingsui; Zhang, R. Y.; Ernst, W. G.

    2014-12-01

    Newly recognized occurrences of ultrahigh-pressure (UHP) minerals including diamonds in ultrahigh-temperature (UHT) felsic granulites of orogenic belts, in chromitites associated with ophiolitic complexes, and in mantle xenoliths suggest the recycling of crustal materials through deep subduction, mantle upwelling, and return to the Earth's surface. This circulation process is supported by crust-derived mineral inclusions in deep-seated zircons, chromites, and diamonds from collision-type orogens, from eclogitic xenoliths in kimberlites, and from chromitities of several Alpine-Himalayan and Polar Ural ophiolites; some of these minerals contain low-atomic number elements typified by crustal isotopic signatures. Ophiolite-type diamonds in placer deposits and as inclusions in chromitites together with numerous highly reduced minerals and alloys appear to have formed near the mantle transition zone. In addition to ringwoodite and inferred stishovite, a number of nanometric minerals have been identified as inclusions employing state-of-the-art analytical tools. Reconstitution of now-exsolved precursor UHP phases and recognition of subtle decompression microstructures produced during exhumation reflect earlier UHP conditions. For example, Tibetan chromites containing exsolution lamellae of coesite + diopside suggest that the original chromitites formed at P > 9-10 GPa at depths of >250-300 km. The precursor phase most likely had a Ca-ferrite or a Ca-titanite structure; both are polymorphs of chromite and (at 2000 °C) would have formed at minimum pressures of P > 12.5 or 20 GPa respectively. Some podiform chromitites and host peridotites contain rare minerals of undoubted crustal origin, including zircon, feldspars, garnet, kyanite, andalusite, quartz, and rutile; the zircons possess much older U-Pb ages than the time of ophiolite formation. These UHP mineral-bearing chromitite hosts evidently had a deep-seated evolution prior to extensional mantle upwelling and partial

  8. Oroclines of the Variscan orogen of Iberia: Paleocurrent analysis and paleogeographic implications

    NASA Astrophysics Data System (ADS)

    Shaw, Jessica; Johnston, Stephen T.; Gutiérrez-Alonso, Gabriel; Weil, Arlo B.

    2012-05-01

    Coupled structural and paleomagnetic analyses have shown that the northern Iberian bend of the Variscan orogen, referred to as the Cantabrian Orocline, developed by vertical axis rotation of an originally linear orogen. However, palinspastic restoration of the orocline has proven difficult owing to (1) an unusually great orogenic width of over 700 km and (2) exposure of shallow water strata of the Gondwanan margin in the northern and southern portions of the orogen. We present paleocurrent data from Lower Ordovician shallow marine clastic sedimentary rocks across the Variscan of northern and central Iberia collected to constrain palinspastic restoration of the orogen. Paleocurrent data were collected from over 50 sites, and include cross bed foresets, ripple crests and casts, as well as rare ball and pillow structures, syn-sedimentary slump folds, and incised channels. Paleocurrent directions fan around the Cantabrian Orocline, are consistently oriented at a high angle to structural strike, and yield a consistent offshore direction outward from the oroclinal core. Similarly, changes in structural strike and paleocurrent direction across central Iberia imply the presence of a second more southerly orocline, the Central Iberian Orocline, that is continuous with, but convex in the opposite direction of the Cantabrian Orocline. Together, the Cantabrian and Central Iberian oroclines define an S-shaped pair of continental-scale buckle folds. Palinspastic restoration of the oroclines yields a linear continental margin > 1500 km long characterized by consistent offshore paleoflow to the west, defining a westerly oceanic domain (presumably the Rheic Ocean) and an easterly landward direction (presumably Gondwana). Recognition of the southern orocline explains the unusual width of the orogen, the geometry of aeromagnetic anomalies attributable to Variscan rocks, and is consistent with available structural data, paleomagnetic declination data, and the distribution of

  9. The deep structure of Alpine-type orogens: how important is rift-inheritance?

    NASA Astrophysics Data System (ADS)

    Tugend, Julie; Manatschal, Gianreto; Mohn, Geoffroy

    2016-04-01

    Collisional belts are commonly thought to result from the closure of oceanic basins and subsequent inversion of former rifted margins. The formation and evolution of collisional belts should therefore be closely interlinked with the initial architecture of former rifted margins. Reflection and refraction seismic data from present-day magma-poor rifted margins show the omnipresence of hyperextended domains (severely thinned continental crust (<10 km) and/or exhumed serpentinized mantle with minor magmatic additions) between unequivocal continental and oceanic domains. Integrating these new observations and exploring their impact on mountain building processes may result in alternative interpretations of the lithospheric structure of collisional orogens. We focus on the Pyrenees and Western to Central Alps, respectively resulting from the inversion of a Late Jurassic to Mid Cretaceous and an Early to Mid Jurassic rift system eventually floored by hyperextended crust, exhumed mantle or proto-oceanic crust. The rift-related pre-collisional architecture of the Pyrenees shows many similarities with that proposed for the Alps; although the width of the hyperextended and in particular of the proto-oceanic domains is little constrained. Contrasting with the Pyrenees, remnants of these domains are largely affected by orogeny-related deformation and show a HP-LT to HT-MP metamorphic overprint in the Alps. Nevertheless, in spite of the occurrence of these highly deformed and metamorphosed rocks constituting the internal parts of the Alps, the overall crustal and lithospheric structure looks surprisingly comparable. High resolution tomographic images across both orogens unravel the occurrence of a velocity anomaly dipping underneath the internal domains and progressively attenuated at depth that we interpret as former hyperextended domains subducted/underthrusted during collision. This interpretation contrasts with the classical assumption that the subducted material is made of

  10. Crustal Structure And Magmatism, Coast Mountains Orogen, Latitude 52-53 degrees North, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Rusmore, M. E.; Gehrels, G.; Woodsworth, G. J.

    2007-12-01

    New geologic data and U-Pb ages reveal complex history of arc accretion, crustal thickening and migration of magmatic fronts during deformation. Plutonic ages define distinct western and eastern Jurassic - mid Cretaceous arcs that share a common history after ~90 Ma. Juxtaposition of these arcs occurred during mid- Cretaceous crustal shortening in a dominantly SW-vergent crustal-scale thrust belt. Significant crustal thickening buried 151 Ma granitic clasts to pressures > 6 kb, and mid-Cretaceous plutons were emplaced at this depth along the axis of the orogen. Thrusting continued after establishment of the 90 Ma arc; a regional SW-verging thrust emplaced high-grade metamorphic rocks of the Yukon-Tanana terrane and deep-seated plutons over low- grade rocks of the Alexander and Wrangellia terranes. The shear zone is coincident with the western boundary of 82-89 Ma plutons and a regionally extensive, late-kinematic, sill-like pluton. Dextral shear zones preserved on the flanks of the orogen suggest a component of Late Cretaceous transpression. By 75 Ma, metamorphism, deformation, and magmatism had migrated central portions of the orogen and there is no evidence of ductile deformation and syn-kinematic metarmorphism younger than ~70 - 65 along the western flank of the orogen. The Coast shear zone localized 62-58 Ma synkinematic plutons during NE-side up displacement, creating a sharp western magmatic front. Sparse cooling ages suggest plutons and metamorphic rocks adjacent to the CSZ cooled through 500-600 deg between 54-58 Ma during exhumation along the shear zone. Voluminous granitic plutons were emplaced from ~55-50 Ma, but significant crustal extension that affected the eastern side of the orogen farther north is not evident along this transect. This history supports previous models of crustal subcretion and the generation of arc magmas in thickened crust. Definition of two pre-90 Ma arcs negates models calling for simple Andean-style orogen prior to mid

  11. Thermochemical cycles

    NASA Technical Reports Server (NTRS)

    Funk, J. E.; Soliman, M. A.; Carty, R. H.; Conger, W. L.; Cox, K. E.; Lawson, D.

    1975-01-01

    The thermochemical production of hydrogen is described along with the HYDRGN computer program which attempts to rate the various thermochemical cycles. Specific thermochemical cycles discussed include: iron sulfur cycle; iron chloride cycle; and hybrid sulfuric acid cycle.

  12. Tectonic interpretation of the westernmost part of the Ouachita-Marathon (Hercynian) orogenic belt, west Texas Mexico

    NASA Astrophysics Data System (ADS)

    Shurbet, D. H.; Cebull, S. E.

    1987-05-01

    The disposition of the Ouachita-Marathon orogenic belt as it extends through west Texas into Mexico has been the subject of diverse interpretations. However, an explanation developed earlier for the general shape of the Ouachita-Marathon orogenic belt in the southern United States, which was based on the relation of craton margin to direction of Paleozoic plate motion, is adequate to account for the belt's puzzling disposition upon entering Mexico. It is suggested that crustal thickness, gravity, and geologic data indicate that the orogen follows the shape of the craton margin, which swings around a reentrant south of the Marathon region and extends southward into Mexico. In Mexico the orogen apparently ends in association with the westernmost of the Ouachita-Marathon zones of transform offset.

  13. Testing models of orogen exhumation using zircon (U-Th)/He thermochronology: Insight from the Ligurian Alps, Northern Italy

    NASA Astrophysics Data System (ADS)

    Maino, Matteo; Dallagiovanna, Giorgio; Dobson, Katherine J.; Gaggero, Laura; Persano, Cristina; Seno, Silvio; Stuart, Finlay M.

    2012-08-01

    Testing models of orogen exhumation requires precise constraint of the time-temperature paths of the exhumed rocks. The zircon (U-Th)/He (ZHe) thermochronometer has a closure temperature of ~ 140-210 °C, and can provide temporal constraints on the exhumation history of rocks through a thermal range which crucially corresponds the onset of brittle behaviour of an exhuming orogen. We performed ZHe analyses to test the existing contradictory models for the exhumation of the Ligurian Alps. The ZHe ages indicate a very rapid (1.3-6.8 mm/yr) and southward migrating exhumation of the orogen between ~ 32 and 25 Ma. These high exhumation rates are unique within the Alpine belt and cannot be reconciled with existing geodynamic models of the evolution of the Ligurian Alps. We propose a model of tectonic denudation via detachment accomplished in the shallowest crust (< 5 km) as a result of the last orogenic phase of extension.

  14. Geology of the Byrd Glacier Discontinuity (Ross Orogen): New survey data from the Britannia Range, Antarctica

    USGS Publications Warehouse

    Carosi, R.; Giacomini, F.; Talarico, F.; Stump, E.

    2007-01-01

    Field activities in the Britannia Range (Transantarctic Mountains, Antarctica) highlighted new geological features around the so-called Byrd Glacier discontinuity. Recent field surveys revealed the occurrence of significant amounts of medium- to high-grade metamorphic rocks, intruded by abundant coarse-grained porphyritic granitoids. Most of the granitoids are deformed, with foliation parallel to the regional foliation in the metamorphics. Two main episodes of deformation are observed. Tight to isoclinal folds and penetrative axial plane foliation are related to the D1 phase, open folds to the D2. The main foliation (D1) trends nearly E-W in agreement with the trend in the southern portion of the Byrd Glacier. In most outcrops, granitic dykes are folded and stretched by the D2 deformation, which shows similar characteristics with the D2 deformation south of the Byrd Glacier. This suggests the occurrence in the Ross orogen of an orogen-normal structure south and north of the Byrd Glacier.

  15. Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China

    NASA Astrophysics Data System (ADS)

    Wu, Xiaozhi; He, Dengfa; Qi, Xuefeng

    2016-04-01

    Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas

  16. Association of orogenic activity with the Ordovician radiation of marine life

    NASA Technical Reports Server (NTRS)

    Miller, A. I.; Mao, S.

    1995-01-01

    The Ordovician radiation of marine life was among the most substantial pulses of diversification in Earth history and coincided in time with a major increase in the global level of orogenic activity. To investigate a possible causal link between these two patterns, the geographic distributions of 6576 individual appearances of Ordovician vician genera around the world were evaluated with respect to their proximity to probable centers of orogeny (foreland basins). Results indicate that these genera, which belonged to an array of higher taxa that diversified in the Middle and Late Ordovician (trilobites, brachiopods, bivalves, gastropods, monoplacophorans), were far more diverse in, and adjacent to, foreland basins than they were in areas farther removed from orogenic activity (carbonate platforms). This suggests an association of orogeny with diversification at that time.

  17. Tectonic Implications of U-Pb Zircon Ages of the Himalayan Orogenic Belt in Nepal

    NASA Astrophysics Data System (ADS)

    DeCelles, P. G.; Gehrels, G. E.; Quade, J.; LaReau, B.; Spurlin, M.

    2000-04-01

    Metasedimentary rocks of the Greater Himalaya are traditionally viewed as Indian shield basement that has been thrust southward onto Lesser Himalayan sedimentary rocks during the Cenozoic collision of India and Eurasia. Ages determined from radioactive decay of uranium to lead in zircon grains from Nepal suggest that Greater Himalayan protoliths were shed from the northern end of the East African orogen during the late Proterozoic pan-African orogenic event. These rocks were accreted onto northern Gondwana and intruded by crustal melts during Cambrian-Ordovician time. Our data suggest that the Main Central thrust may have a large amount of pre-Tertiary displacement, that structural restorations placing Greater Himalayan rocks below Lesser Himalayan rocks at the onset of Cenozoic orogenesis are flawed, and that some metamorphism of Greater Himalayan rocks may have occurred during early Paleozoic time.

  18. Tectonic implications of U-Pb zircon ages of the himalayan orogenic belt in nepal

    PubMed

    DeCelles; Gehrels; Quade; LaReau; Spurlin

    2000-04-21

    Metasedimentary rocks of the Greater Himalaya are traditionally viewed as Indian shield basement that has been thrust southward onto Lesser Himalayan sedimentary rocks during the Cenozoic collision of India and Eurasia. Ages determined from radioactive decay of uranium to lead in zircon grains from Nepal suggest that Greater Himalayan protoliths were shed from the northern end of the East African orogen during the late Proterozoic pan-African orogenic event. These rocks were accreted onto northern Gondwana and intruded by crustal melts during Cambrian-Ordovician time. Our data suggest that the Main Central thrust may have a large amount of pre-Tertiary displacement, that structural restorations placing Greater Himalayan rocks below Lesser Himalayan rocks at the onset of Cenozoic orogenesis are flawed, and that some metamorphism of Greater Himalayan rocks may have occurred during early Paleozoic time.

  19. Geologic evolution of the Cordillera Darwin orogenic core complex, Southern Andes

    NASA Astrophysics Data System (ADS)

    Nelson, E. P.

    1981-08-01

    Located in the east-west trending Andes of Tierra del Fuego is a structural culmination exposing deeper crustal levels than in surrounding areas, termed an orogenic core complex because of the localization there of relatively high-grade metamorphism, intense polyphase deformation, and differential uplift. Strongly deformed and regionally metamorphosed pre-Late Jurassic basement rocks mainly of sedimentary origin are unconformably overlain by a cover sequence of Upper Jurassic silicic-intermediate volcanic rocks (Tobifera Formation) and Lower Cretaceous clastic sedimentary rocks (Yahgan Formation). The D1 and D2 phases produced major and minor fold structures, extension and intersection lineations, and axial planar and transposition foliations in complex patterns similar to those in other collision-type orogens. The Darwin and Beagle suites show affinities with S- and I-type granitic suites respectively.

  20. The structure, stratigraphy, tectonostratigraphy, and evolution of the southernmost part of the Appalachian Orogen

    SciTech Connect

    Higgins, M.W.; Atkins, R.L.; Crawford, T.J.; Crawford, R.F. III; Brooks, R.; Cook, R.B.

    1988-01-01

    The southernmost part of the Appalachian Orogen is composed of three stacks of folded thrust sheets, which preserve rocks formed in a variety of environments that virtually spanned the Iapetus Ocean. All of the metamorphism, deformation, and plutonism in the southernmost Appalachians can be related to the movement of the thrust sheets and stacks. Thrusting took place continuously from Early Ordovician through Carboniferous time. An account is given of the origins, assembly, transport, and arrival of the thrust sheets and stacks.

  1. Tectonic evolution of the Black Sea orogene belt and the history of opening of the Black Sea basin

    SciTech Connect

    Uesuemezsoy, S. )

    1988-08-01

    The Black Sea basin is surrounded by successive orogenic belts of Hercynian, Cimmerian, and Alpine ages. The Rhodope, Thracian, western Pontian, and Transcaucasian (RTPT) blocks of Precambrian age were involved by the circum-Black Sea orogene belts. The Hercynian orogene was documented in the Balkanide, Great Caucasian, Kriastide, southern Pontian, and Transcaucasian belts. The Cimmerian orogene extended north and south of the Black Sea. The southern Cimmerian orogene was represented by the circum-Rhodope and East Thracian-Strandja-Kuere belts. The northern Cimmerian orogene belt extended along the Dobruca-Crimean and southern slope belts. Following the demise of the Black Sea Cimmerian basin, the northernmost oceanic branch extending from Nish-Trajan through the present Black Sea to the intra-Transcaucasian basin, was opened within the Hercynian and Cimmerian consolidated terrain in the Late Jurassic. The other oceanic branch, extending from Izmir-Ankara through circum Kirsehir to various basins, was opened within the Paleotethyan collision belt, considered to be eastern extension of the Pindus basin. The Nish-Trajan sector of the northernmost basin was closed in the middle Cretaceous, and the Moesian platform re-fused to the Getic-Serbo-Macedonian-Rhodope belt. The easternmost extension of the intra-Transcaucasian basin disappeared in the Late Cretaceous. Consequently, the northernmost oceanic branch was reduced to the present Black Sea basin.

  2. Formation of Secondary Lherzolite and Refertilization of the Subcontinental Lithospheric Mantle: The Record of Orogenic Peridotites

    NASA Astrophysics Data System (ADS)

    Garrido, Carlos J.; Varas-Reus, María Isabel; Bodinier, Jean-Louis; Marchesi, Claudio; Bosch, Delphine; Hidas, Károly

    2016-04-01

    Correlations observed between major and minor transition elements in tectonically-emplaced orogenic peridotites have classically been ascribed to variable degrees of melt extraction. There is a growing body of evidence indicating that these chemical variations mostly reflect melt redistribution and near solidus reactions superimposed onto previous melting depletion events. Here we will assess this hypothesis using a large database of peridotites from orogenic peridotites in the westernmost Mediterranean (Ronda and Beni Bousera peridotites). We show that lherzolite samples show some trends in major elements and modal variations that are inconsistent with their interpretation as depleted MORB mantle (DMM). These trends are more consistent with the secondary formation of lherzolites by refertilization processes involving a least two different near-solidus, melt-processes: refertilization by pyroxenite-derived melts and by hydrous melts leading, respectively, to secondary lherzolites with Ol/Opx and Cpx/Opx ratios greater than those expected from residues from a primitive upper mantle source. Together with their N-MORB, LREE-depleted pattern, their fertile lherzolitic composition may have been acquired as a result of melt-rock interaction processes associated with the thermomechanical erosion of lithospheric mantle by asthenosphere. Major refertilization of depleted subcontinental mantle is an alternative to the small degrees of melt extraction to account for LREE depletion in otherwise fertile orogenic lherzolites.

  3. Amalgamating eastern Gondwana: The evolution of the Circum-Indian Orogens

    NASA Astrophysics Data System (ADS)

    Collins, Alan S.; Pisarevsky, Sergei A.

    2005-08-01

    The Neoproterozoic global reorganisation that saw the demise of Rodinia and the amalgamation of Gondwana took place during an incredibly dynamic period of Earth evolution. To better understand the palaeogeography of these times, and hence help quantify the interrelations between tectonics and other Earth systems, we here integrate Neoproterozoic palaeomagnetic solutions from the various blocks that made up eastern Gondwana, with the large amount of recent geological data available from the orogenic belts that formed as eastern Gondwana amalgamated. From this study, we have: (1) identified large regions of pre-Neoproterozoic crust within late Neoproterozoic/Cambrian orogenic belts that significantly modify the geometry and number of continental blocks present in the Neoproterozoic world; (2) suggested that one of these blocks, Azania, which consists of Archaean and Palaeoproterozoic crust within the East African Orogen of Madagascar, Somalia, Ethiopia and Arabia, collided with the Congo/Tanzania/Bangweulu Block at ˜ 650-630 Ma to form the East African Orogeny; (3) postulated that India did not amalgamate with any of the Gondwana blocks until the latest Neoproterozoic/Cambrian forming the Kuunga Orogeny between it and Australia/Mawson and coeval orogenesis between India and the previously amalgamated Congo/Tanzania/Bangweulu-Azania Block (we suggest the name 'Malagasy Orogeny' for this event); and, (4) produced a palaeomagnetically and geologically permissive model for Neoproterozoic palaeogeography between 750 and 530 Ma, from the detritus of Rodinia to an amalgamated Gondwana.

  4. Orogen-parallel mass transport along the arcuate Himalayan front into Nanga Parbat and the western Himalayan syntaxis

    NASA Astrophysics Data System (ADS)

    Whipp, David; Beaumont, Christopher

    2016-04-01

    Along the length of the Himalayan arc, Quaternary rock exhumation rates are highest in the Himalayan syntaxes at the lateral ends of the arc. In the western Himalayan syntaxis, these rates may exceed 10 mm/a over the past 2 Ma, requiring an additional source of crustal mass into this region to maintain the high-elevation topography. We have previously demonstrated that strain partitioning of oblique convergence can produce a significant orogen-parallel mass flux into the syntaxis of a Himalaya-like orogen and balance the rapid rates of surface denudation. However, the magnitude of this orogen parallel mass flux and whether strain is partitioned across the Himalayan thrust front is affected by the strength of the material bounding and within the Himalayan orogenic wedge, the dip angle of the basal detachment and the convergence obliquity angle γ. Strain partitioning is expected for a finite-length Himalaya-like segmented linear orogen with an obliquity of γ = 30 - 40°, but the obliquity angle in the Himalayan arc varies from 0 at the center of the arc to ˜ 40° in the western Himalayan syntaxis region. Thus, the conditions in which strain partitioning will occur may not be met along much of the length of the arc. Though there is clear evidence of strain partitioning in the Himalaya, preliminary results from 3D numerical geodynamic models of an orogen with an arcuate geometry based on the Himalaya suggest strain partitioning does not occur for the same conditions observed in earlier models of segmented linear orogens or orogens with a smaller arc radius. In those models, the proportion of the orogen length with a high obliquity angle was greater, which favors strain partitioning. In numerical experiments of an arcuate Himalayan orogen with weak material (friction angle φ ≤ 5°) at the back of the orogenic wedge, strain partitioning is only observed in the toe of the orogenic wedge (10-15 km from the thrust front) at the western end of the arc, rather than for

  5. The tectonic frame of the Variscan Alleghanian orogen in Southern Europe and Northern Africa

    NASA Astrophysics Data System (ADS)

    Simancas, J. Fernando; Tahiri, Abdelfatah; Azor, Antonio; Lodeiro, Francisco González; Martínez Poyatos, David J.; El Hadi, Hassan

    2005-04-01

    By confronting different geological and geophysical data, we attempt to reconstruct the Variscan-Alleghanian orogenic belt, with especial emphasis on the links between Iberia, northwest Africa, and northeast America. The northern Iberia transect corresponds to the rifted margin of Gondwana, inverted during the Variscan orogeny and overthrust in its westernmost sector by a pile of allochthonous units, some of them with oceanic affinity and witnessing an orogenic suture. The southern Iberia section reveals two sutures at both boundaries of a terrane closely tied to Gondwana, namely the Ossa-Morena Zone. The southern boundary of this zone (i.e., the contact with the South Portuguese Zone) is enhanced by amphibolites with oceanic affinity and probably represents the suture of the Rheic Ocean. The Moroccan Variscides can be divided into: (i) a western external zone, namely the Coastal Block and the Central Massif; (ii) an internal zone, namely the Eastern Meseta; (iii) an eastern external zone represented in the Anti Atlas region; and (iv) the African cratonic foreland. Since neither ophiolites nor eclogites crop out along this transect of the orogen, we consider it to be an incomplete transect, lacking the main suture zone (Rheic Ocean). Stratigraphic and faunal affinities between the Moroccan Meseta, on the one hand, and the Central Iberian, Western Asturian-Leonese, and Cantabrian zones of Iberia, on the other hand, suggest that they may well have been part of a common pre-orogenic domain at the margin of Gondwana. On the contrary, there are no counterparts in Morocco for the Ossa-Morena Zone. Thus, the northern Iberia palaeogeographic zones would prolong in the Moroccan Meseta through an eastward arcuate structure, while the suture of the Rheic Ocean would do so offshore Morocco. In our reconstruction, an Avalonian spur (Grand Banks indentor), which included the Caledonian Sehoul block in northern Morocco and the crust of the South Portuguese Zone in SW Iberia

  6. Window into the Caledonian orogen: Structure of the crust beneath the East Shetland platform, United Kingdom

    USGS Publications Warehouse

    McBride, J.H.; England, R.W.

    1999-01-01

    Reprocessing and interpretation of commercial and deep seismic reflection data across the East Shetland platform and its North Sea margin provide a new view of crustal subbasement structure beneath a poorly known region of the British Caledonian orogen. The East Shetland platform, east of the Great Glen strike-slip fault system, is one of the few areas of the offshore British Caledonides that remained relatively insulated from the Mesozoic and later rifting that involved much of the area around the British Isles, thus providing an "acoustic window" into the deep structure of the orogen. Interpretation of the reflection data suggests that the crust beneath the platform retains a significant amount of its original Caledonian and older architecture. The upper to middle crust is typically poorly reflective except for individual prominent dipping reflectors with complex orientations that decrease in dip with depth and merge with a lower crustal layer of high reflectivity. The three-dimensional structural orientation of the reflectors beneath the East Shetland platform is at variance with Caledonian reflector trends observed elsewhere in the Caledonian orogen (e.g., north of the Scottish mainland), emphasizing the unique tectonic character of this part of the orogen. Upper to middle crustal reflectors are interpreted as Caledonian or older thrust surfaces that were possibly reactivated by Devonian extension associated with post-Caledonian orogenic collapse. The appearance of two levels of uneven and diffractive (i.e., corrugated) reflectivity in the lower crust, best developed on east-west-oriented profiles, is characteristic of the East Shetland platform. However, a north-south-oriented profile reveals an interpreted south-vergent folded and imbricated thrust structure in the lower crust that appears to be tied to the two levels of corrugated reflectivity on the east-west profiles. A thrust-belt origin for lower crustal reflectivity would explain its corrugated

  7. Unravelling the impact of inheritance within the Wilson Cycle: a combined mapping and numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Chenin, Pauline; Manatschal, Gianreto; Lavier, Luc

    2015-04-01

    Our study aims to unravel how structural, lithological and thermal heterogeneities may influence both orogenic and rift systems within the Wilson Cycle. To do this, we map first-order rift structural domains, timing of the main rift events as well as major heterogeneities and structures inherited from previous orogenies. Besides, we design numerical modelling experiments to investigate the relationships highlighted from the comparison of these maps. We apply this approach to the North Atlantic region, which underwent two major orogenic phases during the Palaeozoic: (1) the Caledonian orogeny - now extending from United-Kingdom to northern Norway and Eastern Greenland - resulted from the Late Ordovician closure of the large Iapetus ocean (> 2 000 km) and smaller Tornquist Seaway. It was followed by purely mechanical extensional orogenic collapse; (2) the Variscides of Southwestern Europe were essentially built from the Devono-Carboniferous suturing of several small oceanic basins (< 200 km) in addition to the large Rheic Ocean. The subsequent orogenic collapse was accompanied by significant magmatic activity, which resulted in mafic underplating and associated mantle depletion over the whole orogenic area. Our study is twofolds: On the one hand, we investigate how the size and maturity of the intervening oceanic basins affect subduction and orogeny, considering two end-members: (a) immature oceanic basins defined as hyperextended rift systems that never achieved steady state seafloor spreading; and (b) mature oceans characterized by a self-sustained magmatic system forming homogeneous oceanic crust. On the other hand, we study how post-orogenic collapse-related underplating and associated mantle depletion may impact subsequent rifting depending on the thermal state (e.g. the duration of relaxation time between the magmatic episode and the onset of rifting). Our results highlight a very different behaviour of the North Atlantic rift with respect to the Caledonian and

  8. Late Paleozoic closure of the Ob-Zaisan Ocean along the Irtysh/Chara shear zone and implications for arc amalgamation and oroclinal bending in the western Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon

    2016-04-01

    The Irtysh/Chara Shear Zone is one of the largest strike-slip systems in the Central Asian Orogenic Belt (CAOB). It records collisional processes of the peri-Siberian orogenic system with the West Junggar-Kazakhstan-Tianshan orogenic system following the closure of the Ob-Zaisan Ocean, but the exact timing of these events remains enigmatic. We conducted detailed structural analysis along the Irtysh Shear Zone (NW China), which together with new geochronological data allows us to reconstruct the tectonic evolution during the final closure of the Ob-Zaisan Ocean. Our results showed that subduction-accretion processes lasted at least until the Late Carboniferous in the Chinese Altai and the East/West Junggar. The subsequent arc amalgamation is characterized by a cycle of crustal thickening, orogenic collapse and transpressional thickening. On a larger scale, the West Junggar- Kazakhstan -Tianshan orogenic system defines a U-shape oroclinal structure (e.g. Xiao et al., 2010). A major phase of oroclinal bending that involved ~110° rotation may have occurred during the Late Devonian to Early Carboniferous (Levashova et al., 2012). Previous authors have linked oroclinal bending with the late Paleozoic amalgamation of the western CAOB, and proposed that a quasi-linear West Junggar- Kazakhstan -Tianshan orogenic system was buckled during the convergence of the Siberian and Tarim cratons following the closure of the Ob-Zaisan Ocean (in the north) and the South Tianshan Ocean (in the south) (e.g. Abrajevitch et al., 2008). This model, however, is not supported by our new data that constrain the closure of the Ob-Zaisan Ocean to the Late Carboniferous. Alternatively, we propose that oroclinal bending may have involved two phases of bending, with the ~110° rotation in the Late Devonian to Early Carboniferous possibly associated with trench retreat. Further tightening may have occurred in response to the convergence of the Siberian and Tarim cratons during the Late

  9. Crustal and lithospheric structure of the Albany-Fraser Orogen, Western Australia, from passive-source seismology

    NASA Astrophysics Data System (ADS)

    Sippl, C.; Tkalcic, H.; Kennett, B. L. N.; Spaggiari, C. V.; Gessner, K.

    2014-12-01

    The Paleoproterozoic to Mesoproterozoic Albany-Fraser Orogen is situated along the southeastern margin of the Archean Yilgarn Craton in Western Australia. The orogen records a long history of extension and magmatism, dominantly in a rift or back-arc setting, inboard of the collision zone between the West Australian and South Australian Cratons. The extensional structures were inverted during formation of a fold and thrust architecture during the Mesoproterozoic, which must have left its mark on the orogen's deep crustal and lithospheric structure. In November 2013, a 40-station passive seismic array was installed across the east Albany-Fraser Orogen, which was shifted southeast, along strike of the orogen, in October 2014. The goal of this project is the retrieval of three-dimensional models of crustal and mantle lithospheric structure for the east Albany-Fraser Orogen, thereby extending recently acquired active seismic profiles into the third dimension. First results from analyzing the data recorded by the northern sub-array are presented, exploiting ambient noise, receiver functions and information from occasional local events. Ambient noise tomography yields a three-dimensional S-wave velocity model of the upper and middle crust. The obtained velocity distribution shows a marked contrast between faster upper crustal velocities throughout the Yilgarn margin and the Albany-Fraser Orogen and markedly slower velocities in the Eucla Basin further east. The Fraser Zone, a ~450 km long body of metamorphic gabbros in the Albany-Fraser Orogen, shows up as a prominent upper crustal high-wavespeed anomaly. At mid-crustal levels, the average seismic velocitiy decreases, and the basement beneath the Eucla Basin appears to be faster than the regions further west. P receiver functions have been used for the estimation of bulk crustal Vp/Vs (H-K stacking) as well as for Bayesian inversion that yields a 1D S-wave velocity profiles. The westernmost stations, which lie on the

  10. Spatially Concentrated Erosion Focuses Deformation Within the Himalayan Orogenic Wedge: Sutlej Valley, NW Himalaya, India

    NASA Astrophysics Data System (ADS)

    Thiede, R. C.; Arrowsmith, J.; Bookhagen, B.; McWilliams, M.; Sobel, E. R.; Strecker, M. R.

    2004-12-01

    Long-term erosion processes in the NW-Himalaya have not only shaped the distribution of topography and relief, but may also exert a regional control on the kinematic history of the Himalayan orogenic wedge. The topographic front of the orogenic wedge forms the southern margin of the High Himalaya and may be related to subsurface structures such as a crustal ramp or a blind thrust. Drastic along- and across-strike erosional gradients characterize the modern Himalaya and range from high-erosion regions along the southern High Himalayan front where monsoonal precipitation is able to penetrate far into the range, to low-erosion sectors across the moderately elevated Lesser Himalaya to the south and the high-elevation, arid sectors to the north. Published paleo-elevation estimates from the Thakkhola Graben (Nepal) suggest that by ~11 Ma the southern Tibetan Plateau and probably the High Himalaya had been uplifted to elevations comparable to the recent conditions. Thus, the presently observed pronounced erosional gradients have likely existed across the orogen since then. However, the cause of high rock-uplift and exhumation rates along distinct segments of the southern front of the High Himalaya are still a matter of debate. New apatite fission track (AFT) and 40Ar/39Ar data sampled along an orogen-perpendicular transect following the Sutlej Valley, approximately perpendicular to the Himalayan orogen, constrain the distribution patterns of rapid cooling related to rock uplift and exhumation. Combined with published thermochronologic data, this comprehensive AFT dataset from south of the High Himalaya mountain front to the interior of the Tethyan Himalaya allows us to derive a regional uplift and exhumation scenario. Our new 40Ar/39Ar ages ranging between 17 and 4 Ma reveal diachronous exhumation of two crystalline nappes (Higher and Lesser Himalayan crystalline) during Miocene-Pliocene time. In contrast, the AFT data ranging from 1.3 to 4.6 Ma indicate synchronous, fast

  11. Feeding the "aneurysm": Orogen-parallel mass transport into Nanga Parbat and the western Himalayan syntaxis

    NASA Astrophysics Data System (ADS)

    Whipp, David M.; Beaumont, Christopher; Braun, Jean

    2014-06-01

    The Nanga Parbat-Haramosh massif (NPHM; western Himalayan syntaxis) requires an influx of mass exceeding that in the adjacent Himalayan arc to sustain high topography and rapid erosional exhumation rates. What supplies this mass flux and feeds this "tectonic aneurysm?" We show, using a simple 3-D model of oblique orogen convergence, that velocity/strain partitioning results in horizontal orogen-parallel (OP) crustal transport, and the same behavior is inferred for the Himalaya, with OP transport diverting converging crust toward the syntaxis. Model results also show that the OP flow rate decreases in the syntaxis, thereby thickening the crust and forming a structure like the NPHM. The additional crustal thickening, over and above that elsewhere in the Himalayan arc, sustains the rapid exhumation of this "aneurysm." Normally, velocity/strain partitioning would be minimal for the Himalayan arc where the convergence obliquity is no greater than ~40°. However, we show analytically that the Himalayan system can act both as a critical wedge and exhibit strain partitioning if both the detachment beneath the wedge and the bounding rear shear zone, which accommodates OP transport, are very weak. Corresponding numerical results confirm this requirement and demonstrate that a Nanga Parbat-type shortening structure can develop spontaneously if the orogenic wedge and bounding rear shear zone can strain rate soften while active. These results lead us to question whether the position of NPHM aneurysm is localized by river incision, as previously suggested, or by a priori focused tectonic shortening of the crust in the syntaxis region as demonstrated by our models.

  12. Exhumation of the southern Pyrenean fold-thrust belt (Spain) from orogenic growth to decay

    NASA Astrophysics Data System (ADS)

    Rushlow, Caitlin R.; Barnes, Jason B.; Ehlers, Todd A.; Vergés, Jaume

    2013-07-01

    The deformation and exhumation history of an orogen reflects the interactions between tectonic and surface processes. We investigate orogenic wedge deformation, erosion, and sedimentation in the Pyrenees by (a) quantifying the spatiotemporal patterns of exhumation across the southern fold-thrust belt (FTB) with bedrock apatite fission track (AFT) thermochronology and (b) comparing the results with existing deformation, exhumation, and sedimentation chronologies. Eighteen new samples record exhumation during and after orogenesis between 90 and 10 Ma. Rocks from the range core (Axial Zone) record rapid exhumation that progresses east to west and north to south, consistent with patterns of tectonically driven uplift. Synorogenic sediments shed into piggyback basins on the southern fold-thrust belt during mountain building retain a detrital exhumation signal from the Axial Zone. In contrast, samples from other structural positions record exhumation of the thin-skinned Pyrenean thrust sheets, suggesting sediment burial and heating of sufficient magnitudes to reset the AFT system (>~3 km). In some locations, exhumation of these fold-thrust structures is likely an erosional response to thrust-driven rock uplift. We identify an exhumation phase ~25-20 Ma that occurs along the central and eastern Spanish Pyrenees at the boundary between thick- and thin-skinned portions of the wedge. We suggest that this distributed exhumation event records (a) a taper response in the southern orogenic wedge to sediment loading and/or (b) a shift to wetter, stormier climate conditions following convergence-driven uplift and full topographic development. A final exhumation phase between ~20 and 10 Ma may record the excavation of the southern fold-thrust system following base level lowering in the Ebro Basin.

  13. Erosion and Sediment Transport Across Pronounced Topographic and Climatic Gradients in the Himalayan Orogen

    NASA Astrophysics Data System (ADS)

    Strecker, M. R.; Bookhagen, B.

    2014-12-01

    The interaction between the NW-directed trajectories of moisture transport associated with the Indian Summer Monsoon circulation and the high topography of the Himalayan orogen results in one of the most efficient orographic barriers on Earth. The steep topographic gradients, the impact of focused rainfall along the southern flank of the range, and northward shifts of rainfall during frequent intensified Indian Summer Monsoons are responsible for an efficient erosional regime, with some of the highest known erosion rates. The spatiotemporal correlation between various topographic, tectonic, climatic, and exhumational phenomena in this region has resulted in the formulation of models of possible long-term erosional and tectonic feedback processes that drive the lateral expansion and vertical growth of the mountain belt. However, despite an increase in thermochronologic, cosmogenic radionuclide, and sedimentological datasets that help explain the underlying mechanisms, the true nature of these relationships is still unclear and controversies particularly exist concerning the importance of the different forcing factors that drive exhumation and, ultimately, deformation. Here, we synthesize and assess these controversies with observations from studies conducted perpendicular to and along strike of the orogen, and combine them with our new basin-wide erosion-rate data from the Sutlej Valley in the NW Himalaya. In our regional comparison we highlight the importance of large river systems and climate-controlled aspects of weathering concerning fluvial mass distribution as there appear to be positive feedbacks between tectonics and surface processes. In contrast, observations from smaller catchments along the orogenic front suggest a negative correlation. Similar to other environments with steep topographic and climatic gradients, our observations from the Sutlej catchments emphasize that erosional processes in the Himalayan realm are most efficient in geomorphic

  14. Porphyry molybdenum deposits in the Tianshan-Xingmeng orogenic belt, northern China

    NASA Astrophysics Data System (ADS)

    Zeng, Qingdong; Qin, Kezhang; Liu, Jianming; Li, Guangming; Zhai, Mingguo; Chu, Shaoxiong; Guo, Yunpeng

    2015-06-01

    Molybdenum (Mo) exploration activity in China has increased tremendously over the past decade, and China is now known to have the largest Mo reserves in the world. The Tianshan-Xingmeng orogenic belt, the second largest Mo metallogenic belt, possesses over 8.2 Mt of Mo reserves. Porphyry Mo deposits contain 99 % of the Mo reserves in the Tianshan-Xingmeng orogenic belt; other Mo deposits contain 1 % of the Mo reserves. Five subtypes of the porphyry Mo deposits can be distinguished by deposit associations, such as Mo, Mo-Cu, Mo-W, Mo-Pb-Zn-Ag, and Cu-Mo deposits. These porphyry Mo deposits are formed at different stages: during the Ordovician, Devonian, Carboniferous, Late Permian, Triassic, Jurassic, and Cretaceous Periods. The polystage porphyry Mo mineralizations indicate that polystage tectonic-magmatic activity occurred in the orogenic belt. The Ordovician-Carboniferous porphyry Cu-Mo deposits are formed in an island-arc setting; the Late Permian porphyry Mo deposits are formed in a syn-collisional tectonic setting; and the Triassic porphyry Mo deposits are formed in a syn-collisional to post-collisional tectonic setting. The Ordovician-Triassic porphyry deposits are related to the Paleo-Asian Ocean tectonic system. The Jurassic porphyry Mo deposits are formed at the eastern margin of the Asian continent and are associated with a Paleo-Pacific plate-subduction tectonic setting. Cretaceous porphyry Mo deposits are formed in a lithospheric thinning setting and are related to the rollback of the Paleo-Pacific subduction plate.

  15. Noble gases fingerprint a metasedimentary fluid source in the Macraes orogenic gold deposit, New Zealand

    NASA Astrophysics Data System (ADS)

    Goodwin, Nicholas R. J.; Burgess, Ray; Craw, Dave; Teagle, Damon A. H.; Ballentine, Chris J.

    2016-04-01

    The world-class Macraes orogenic gold deposit (˜10 Moz resource) formed during the late metamorphic uplift of a metasedimentary schist belt in southern New Zealand. Mineralising fluids, metals and metalloids were derived from within the metasedimentary host. Helium and argon extracted from fluid inclusions in sulphide mineral grains (three crush extractions from one sample) have crustal signatures, with no evidence for mantle input (R/Ra = 0.03). Xenon extracted from mineralised quartz samples provides evidence for extensive interaction between fluid and maturing organic material within the metasedimentary host rocks, with 132Xe/36Ar ratios up to 200 times greater than air. Similarly, I/Cl ratios for fluids extracted from mineralised quartz are similar to those of brines from marine sediments that have interacted with organic matter and are ten times higher than typical magmatic/mantle fluids. The Macraes mineralising fluids were compositionally variable, reflecting either mixing of two different crustal fluids in the metasedimentary pile or a single fluid type that has had varying degrees of interaction with the host metasediments. Evidence for additional input of meteoric water is equivocal, but minor meteoric incursion cannot be discounted. The Macraes deposit formed in a metasedimentary belt without associated coeval magmatism, and therefore represents a purely crustal metamorphogenic end member in a spectrum of orogenic hydrothermal processes that can include magmatic and/or mantle fluid input elsewhere in the world. There is no evidence for involvement of minor intercalated metabasic rocks in the Macraes mineralising system. Hydrothermal fluids that formed other, smaller, orogenic deposits in the same metamorphic belt have less pronounced noble gas and halogen evidence for crustal fluid-rock interaction than at Macraes, but these deposits also formed from broadly similar metamorphogenic processes.

  16. Flake tectonics in the Sulu orogen in eastern China as revealed by seismic tomography

    NASA Astrophysics Data System (ADS)

    Xu, Peifen; Liu, Futian; Ye, Kai; Wang, Qingchen; Cong, Bolin; Chen, Hui

    2002-05-01

    Seismic tomographic image reveals a crocodile-like P-waves velocity structure beneath the Sulu orogenic belt, which marks the subduction/collision zone between the Sino-Korean block (SK) and Yangtze block (YZ) in eastern China. It may imply that the upper crust of the YZ was detached from its lower crust and thrust over the SK for a maximum of ~400 km in the Sulu region, whereas the remnant of the subducted Yangtze lithosphere was lay beneath the SK. This crustal detached structure (flake tectonics) might have occurred after the Triassic subduction/collision.

  17. Tectonic and kinematics of curved orogenic systems: insights from AMS analysis and paleomagnetism

    NASA Astrophysics Data System (ADS)

    Cifelli, Francesca; Mattei, Massimo

    2016-04-01

    During the past few years, paleomagnetism has been considered a unique tool for constraining kinematic models of curved orogenic systems, because of its great potential in quantifying vertical axis rotations and in discriminating between primary and secondary (orocline s.l.) arcs. In fact, based on the spatio-temporal relationships between deformation and vertical axis rotation, curved orogens can be subdivided as primary or secondary (oroclines s.l.), if they formed respectively in a self-similar manner without undergoing important variations in their original curved shape or if their curvature in map-view is the result of a bending about a vertical axis of rotation. In addition to the kinematics of the arc and the timing of its curvature, a crucial factor for understanding the origin of belts curvature is the knowledge of the geodynamic process governing arc formation. In this context, the detailed reconstruction of the rotational history is mainly based on paleomagnetic and structural analyses (fold axes, kinematic indicators), which include the magnetic fabric. In fact, in curved fold and thrust belts, assuming that the magnetic lineation is tectonically originated and formed during layer-parallel shortening (LPS) before vertical axis rotations, the orientation of the magnetic lineation often strictly follows the curvature of the orogeny. This assumption represents a fundamental prerequisite to fully understand the origin of orogenic arcs and to unravel the geodynamic processes responsible for their curvature. We present two case studies: the central Mediterranean arcs and the Alborz Mts in Iran. The Mediterranean area has represented an attractive region to apply paleomagnetic analysis, as it shows a large number of narrow arcs, whose present-day shape has been driven by the space-time evolution of the Mediterranean subduction system, which define a irregular and rather diffuse plate boundary. The Alborz Mts. form a sinuous range over 1,200 km long, defining

  18. Carbonatitic metasomatism in orogenic dunites from Lijiatun in the Sulu UHP terrane, eastern China

    NASA Astrophysics Data System (ADS)

    Su, Bin; Chen, Yi; Guo, Shun; Chu, Zhu-Yin; Liu, Jing-Bo; Gao, Yi-Jie

    2016-10-01

    Among orogenic peridotites, dunites suffer the weakest crustal metasomatism at the slab-mantle interface and are the best lithology to trace the origins of orogenic peridotites and their initial geodynamic processes. Petrological and geochemical investigations of the Lijiatun dunites from the Sulu ultrahigh-pressure (UHP) terrane indicate a complex petrogenetic history involving melt extraction and multistage metasomatism (carbonatitic melt and slab-derived fluid). The Lijiatun dunites consist mainly of olivine (Fo = 92.0-92.6, Ca = 42-115 ppm), porphyroblastic orthopyroxene (En = 91.8-92.8), Cr-spinel (Cr# = 50.4-73.0, TiO2 < 0.2 wt.%) and serpentine. They are characterized by refractory bulk-rock compositions with high MgO (45.31-47.07 wt.%) and Mg# (91.5-91.9), and low Al2O3 (0.48-0.70 wt.%), CaO (0.25-0.44 wt.%) and TiO2 (< 0.03 wt.%) contents. Whole-rock platinum group elements (PGE) are similar to those of cratonic mantle peridotites and Re-Os isotopic data suggest that dunites formed in the early Proterozoic (~ 2.2 Ga). These data indicate that the Lijiatun dunites were the residues of ~ 30% partial melting and were derived from the subcontinental lithospheric mantle (SCLM) beneath the North China craton (NCC). Subsequent carbonatitic metasomatism is characterized by the formation of olivine-rich (Fo = 91.6-92.6, Ca = 233-311 ppm), clinopyroxene-bearing (Mg# = 95.9-96.7, Ti/Eu = 104-838) veins cutting orthopyroxene porphyroblasts. Based on the occurrence of dolomite, mass-balance calculation and thermodynamic modeling, carbonatitic metasomatism had occurred within the shallow SCLM (low-P and high-T conditions) before dunites were incorporated into the continental subduction channel. These dunites then suffered weak metasomatism by slab-derived fluids, forming pargasitic amphibole after pyroxene. This work indicates that modification of the SCLM beneath the eastern margin of the NCC had already taken place before the Triassic continental subduction. Orogenic

  19. A crustal model of the ultrahigh-pressure Dabie Shan orogenic belt, China, derived from deep seismic refraction profiling

    USGS Publications Warehouse

    Wang, Chun-Yong; Zeng, Rong-Sheng; Mooney, W.D.; Hacker, B.R.

    2000-01-01

    We present a new crustal cross section through the east-west trending ultrahigh-pressure (UHP) Dabie Shan orogenic belt, east central China, based on a 400-km-long seismic refraction profile. Data from our profile reveal that the cratonal blocks north and south of the orogen are composed of 35-km-thick crust consisting of three layers (upper, middle, and lower crust) with average seismic velocities of 6.0±0.2 km/s, 6.5±0.1 km/s, and 6.8±0.1 km/s. The crust reaches a maximum thickness of 41.5 km beneath the northern margin of the orogen, and thus the present-day root beneath the orogen is only 6.5 km thick. The upper mantle velocity is 8.0±0.1 km/s. Modeling of shear wave data indicate that Poisson's ratio increases from 0.24±0.02 in the upper crust to 0.27±0.03 in the lower crust. This result is consistent with a dominantly felsic upper crustal composition and a mafic lower crustal composition within the amphibolite or granulite metamorphic facies. Our seismic model indicates that eclogite, which is abundant in surface exposures within the orogen, is not a volumetrically significant component in the middle or lower crust. Much of the Triassic structure associated with the formation of the UHP rocks of the Dabie Shan has been obscured by post-Triassic igneous activity, extension and large-offset strike-slip faulting. Nevertheless, we can identify a high-velocity (6.3 km/s) zone in the upper (<5 km depth) crustal core of the orogen which we interpret as a zone of ultrahigh-pressure rocks, a north dipping suture, and an apparent Moho offset that marks a likely active strike-slip fault.

  20. A comparative analysis of pre-Silurian crustal building blocks of the northern and the southern Appalachian orogen

    USGS Publications Warehouse

    Hibbard, J.P.; van Staal, C.R.; Rankin, D.W.

    2007-01-01

    The New York promontory serves as the divide between the northern and southern segments of the Appalachian orogen. Antiquated subdivisions, distinct for each segment, implied that they had lithotectonic histories that were independent of each other. Using new lithotectonic subdivisions we compare first order features of the pre-Silurian orogenic 'building blocks' in order to test the validity of the implication of independent lithotectonic histories for the two segments. Three lithotectonic divisions, termed here the Laurentian, Iapetan, and the peri-Gondwanan realms, characterize the entire orogen. The Laurentian realm, composed of native North American rocks, is remarkably uniform for the length of the orogen. It records the multistage Neoproterozoic-early Paleozoic rift-drift history of the Appalachian passive margin, formation of a Taconic Seaway, and the ultimate demise of both in the Middle Ordovician. The Iapetan realm encompasses mainly oceanic and magmatic arc tracts that once lay within the Iapetus Ocean, between Laurentia and Gondwana. In the northern segment, the realm is divisible on the basis of stratigraphy and faunal provinciality into peri-Laurentian and peri-Gondwanan tracts that were amalgamated in the Late Ordovician. South of New York, stratigraphic and faunal controls decrease markedly; rock associations are not inconsistent with those of the northern Appalachians, although second-order differences exist. Exposed exotic crustal blocks of the peri-Gondwanan realm include Ganderia, Avalonia, and Meguma in the north, and Carolinia in the south. Carolinia most closely resembles Ganderia, both in early evolution and Late Ordovician-Silurian docking to Laurentia. Our comparison indicates that, to a first order, the pre-Silurian Appalachian orogen developed uniformly, starting with complex rifting and a subsequent drift phase to form the Appalachian margin, followed by the consolidation of Iapetan components and ending with accretion of the peri

  1. Zirconolite, zircon and monazite-(Ce) U-Th-Pb age constraints on the emplacement, deformation and alteration history of the Cummins Range Carbonatite Complex, Halls Creek Orogen, Kimberley region, Western Australia

    NASA Astrophysics Data System (ADS)

    Downes, Peter J.; Dunkley, Daniel J.; Fletcher, Ian R.; McNaughton, Neal J.; Rasmussen, Birger; Jaques, A. Lynton; Verrall, Michael; Sweetapple, Marcus T.

    2016-04-01

    In situ SHRIMP U-Pb dating of zirconolite in clinopyroxenite from the Cummins Range Carbonatite Complex, situated in the southern Halls Creek Orogen, Kimberley region, Western Australia, has provided a reliable 207Pb/206Pb age of emplacement of 1009 ± 16 Ma. Variably metamict and recrystallised zircons from co-magmatic carbonatites, including a megacryst ~1.5 cm long, gave a range of ages from ~1043-998 Ma, reflecting partial isotopic resetting during post-emplacement deformation and alteration. Monazite-(Ce) in a strongly foliated dolomite carbonatite produced U-Th-Pb dates ranging from ~900-590 Ma. Although the monazite-(Ce) data cannot give any definitive ages, they clearly reflect a long history of hydrothermal alteration/recrystallisation, over at least 300 million years. This is consistent with the apparent resetting of the Rb-Sr and K-Ar isotopic systems by a post-emplacement thermal event at ~900 Ma during the intracratonic Yampi Orogeny. The emplacement of the Cummins Range Carbonatite Complex probably resulted from the reactivation of a deep crustal structure within the Halls Creek Orogen during the amalgamation of Proterozoic Australia with Rodinia over the period ~1000-950 Ma. This may have allowed an alkaline carbonated silicate magma that was parental to the Cummins Range carbonatites, and generated by redox and/or decompression partial melting of the asthenospheric mantle, to ascend from the base of the continental lithosphere along the lithospheric discontinuity constituted by the southern edge of the Halls Creek Orogen. There is no evidence of a link between the emplacement of the Cummins Range Carbonatite Complex and mafic large igneous province magmatism indicative of mantle plume activity. Rather, patterns of Proterozoic alkaline magmatism in the Kimberley Craton may have been controlled by changing plate motions during the Nuna-Rodinia supercontinent cycles (~1200-800 Ma).

  2. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen.

    PubMed

    Ganade de Araujo, Carlos E; Rubatto, Daniela; Hermann, Joerg; Cordani, Umberto G; Caby, Renaud; Basei, Miguel A S

    2014-10-16

    The deeply eroded West Gondwana Orogen is a major continental collision zone that exposes numerous occurrences of deeply subducted rocks, such as eclogites. The position of these eclogites marks the suture zone between colliding cratons, and the age of metamorphism constrains the transition from subduction-dominated tectonics to continental collision and mountain building. Here we investigate the metamorphic conditions and age of high-pressure and ultrahigh-pressure eclogites from Mali, Togo and NE-Brazil and demonstrate that continental subduction occurred within 20 million years over at least a 2,500-km-long section of the orogen during the Ediacaran. We consider this to be the earliest evidence of large-scale deep-continental subduction and consequent appearance of Himalayan-scale mountains in the geological record. The rise and subsequent erosion of such mountains in the Late Ediacaran is perfectly timed to deliver sediments and nutrients that are thought to have been necessary for the subsequent evolution of sustainable life on Earth.

  3. Crustal structure of the alaska range orogen and denali fault along the richardson highway

    USGS Publications Warehouse

    Fisher, M.A.; Pellerin, L.; Nokleberg, W.J.; Ratchkovski, N.A.; Glen, J.M.G.

    2007-01-01

    A suite of geophysical data obtained along the Richardson Highway crosses the eastern Alaska Range and Denali fault and reveals the crustal structure of the orogen. Strong seismic reflections from within the orogen north of the Denali fault dip as steeply as 25?? north and extend downward to depths between 20 and 25 km. These reflections reveal what is probably a shear zone that transects most of the crust and is part of a crustal-scale duplex structure that probably formed during the Late Cretaceous. These structures, however, appear to be relict because over the past 20 years, they have produced little or no seismicity despite the nearby Mw = 7.9 Denali fault earthquake that struck in 2002. The Denali fault is nonreflective, but we interpret modeled magnetotelluric (MT), gravity, and magnetic data to propose that the fault dips steeply to vertically. Modeling of MT data shows that aftershocks of the 2002 Denali fault earthquake occurred above a rock body that has low electrical resistivity (>10 ohm-m), which might signify the presence of fluids in the middle and lower crust. Copyright ?? 2007 The Geological Society of America.

  4. Devonian sedimentation in the Xiqingshan Mountains: Implications for paleogeographic reconstructions of the SW Qinling Orogen

    NASA Astrophysics Data System (ADS)

    Yan, Zhen; Aitchison, Jonathan C.; Fu, Changlei; Guo, Xianqing; Xia, Wenjing; Niu, Manlan

    2016-08-01

    The Qinling Orogen between the North China and Yangtze plates comprises various accreted and collisional terranes, recording the evolution of the Proto-Tethyan Ocean and the formation of east Asia. Knowledge of the provenance and tectonic setting of a thick succession of E-W striking Devonian sedimentary rocks sandwiched tectonically between the Shangdan and Mianlue ophiolitic suture zones in this belt is essential to understanding the evolution of the Qinling Orogen and the assembly of the North China and Yangtze plates during the Late Paleozoic. Systematic studies of the Devonian sedimentary facies in the Xiqingshan Mountains indicate the northern margin of the South Qinling belt was uplifted prior to the Early Devonian. Lower Devonian sandstones are dominated by feldspathic litharenite (Q12-31F18-37L40-65), indicative of a continental arc derivation. Detrital zircon U-Pb data demonstrate that the Lower and Middle Devonian sandstones were derived respectively from ca. 770 Ma and ca. 400 Ma felsic arc-related magmatic sources. Devonian sedimentation in the Xiqingshan Mountains is interpreted to have occurred in a foreland basin between the Yangtze plate and the North Qinling continental arc.

  5. Ediacaran 2,500-km-long synchronous deep continental subduction in the West Gondwana Orogen.

    PubMed

    Ganade de Araujo, Carlos E; Rubatto, Daniela; Hermann, Joerg; Cordani, Umberto G; Caby, Renaud; Basei, Miguel A S

    2014-01-01

    The deeply eroded West Gondwana Orogen is a major continental collision zone that exposes numerous occurrences of deeply subducted rocks, such as eclogites. The position of these eclogites marks the suture zone between colliding cratons, and the age of metamorphism constrains the transition from subduction-dominated tectonics to continental collision and mountain building. Here we investigate the metamorphic conditions and age of high-pressure and ultrahigh-pressure eclogites from Mali, Togo and NE-Brazil and demonstrate that continental subduction occurred within 20 million years over at least a 2,500-km-long section of the orogen during the Ediacaran. We consider this to be the earliest evidence of large-scale deep-continental subduction and consequent appearance of Himalayan-scale mountains in the geological record. The rise and subsequent erosion of such mountains in the Late Ediacaran is perfectly timed to deliver sediments and nutrients that are thought to have been necessary for the subsequent evolution of sustainable life on Earth. PMID:25319269

  6. Shallow, old, and hydrologically insignificant fault zones in the Appalachian orogen

    NASA Astrophysics Data System (ADS)

    Malgrange, Juliette; Gleeson, Tom

    2014-01-01

    The permeability of fault zones impacts diverse geological processes such as hydrocarbon migration, hydrothermal fluid circulation, and regional groundwater flow, yet how fault zones affect groundwater flow at a regional scale (1-10 km) is highly uncertain. The objective of this work is to determine whether faults affect regional patterns of groundwater flow, by using radioactive radon and chloride to quantify groundwater discharge to lakes underlain by faults and not underlain by faults. We sampled lakes overlying the Paleozoic Appalachian fold and thrust belt in the Eastern Townships in Québec, and compared our results to a previous study in a crystalline watershed in the Canadian Shield. The field data was analyzed with an analytical geochemical mixing model. The uncertainties of model parameters were assessed in a sensitivity analysis using Monte Carlo simulation, and the difference between lakes tested with statistical analysis. While the model results indicate non-negligible groundwater discharge for most of the lakes in the Paleozoic orogen, the difference between the groundwater discharge rate into the lakes located on faults and the other lakes is not statistically significant. However, the groundwater discharge rate to lakes in the Paleozoic orogeny is significantly higher than lakes that overlay crystalline bedrock, which is consistent with independent estimates of permeability. The rate of groundwater discharge is not significantly enhanced or diminished around the thrust fault zones, suggesting that in a regional scale, permeability of fault zones is not significantly different from the bedrock permeability at shallow depth in this old, tectonically- inactive orogen.

  7. Sediment-hosted/orogenic gold mineral systems exploration using PALSAR remote sensing data in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2016-06-01

    The Bentong-Raub Suture Zone (BRSZ) is genetically related to the sediment-hosted/orogenic gold deposits associated with the major lineaments and form-lines in the Central Gold Belt of Peninsular Malaysia. In this investigation, the Phased Array type L-band Synthetic Aperture Radar (PALSAR) satellite remote sensing data were used to analyse major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and form-lines in the BRSZ, as well as its implications for sediment-hosted/orogenic gold exploration in tropical environments. The pervasive array of N-S faults in the study area and surrounding terrain is mainly linked to the N-S trending of the BRSZ Suture Zone. N-S striking lineaments are often cut by younger NE-SW and NW-SE-trending lineaments. Three generations of folding event have been discerned from remote sensing structural analysis. Gold mineralized trends lineaments are associated with the intersection of N-S, NE-SW, NNW-SSE and ESE-WNW faults and curvilinear features in shearing and alteration zones. Compressional tectonics structures such as NW-SE trending thrust, ENE-WSW oriented faults in mylonite and phyllite, recumbent folds and asymmetric anticlines in argillite are high potential zones for gold prospecting.

  8. The early Cretaceous orogen-scale Dabieshan metamorphic core complex: implications for extensional collapse of the Triassic HP-UHP orogenic belt in east-central China

    NASA Astrophysics Data System (ADS)

    Ji, Wenbin; Lin, Wei; Faure, Michel; Shi, Yonghong; Wang, Qingchen

    2016-03-01

    The Dabieshan massif is famous as a portion of the world's largest HP-UHP metamorphic belt in east-central China that was built by the Triassic North-South China collision. The central domain of the Dabieshan massif is occupied by a huge migmatite-cored dome [i.e., the central Dabieshan dome (CDD)]. Origin of this domal structure remains controversial. Synthesizing previous and our new structural and geochronological data, we define the Cretaceous Dabieshan as an orogen-scale metamorphic core complex (MCC) with a multistage history. Onset of lithospheric extension in the Dabieshan area occurred as early as the commencement of crustal anatexis at the earliest Cretaceous (ca. 145 Ma), which was followed by primary (early-stage) detachment during 142-130 Ma. The central Dabieshan complex in the footwall and surrounding detachment faults recorded a consistently top-to-the-NW shearing. It is thus inferred that the primary detachment was initiated from a flat-lying detachment zone at the middle crust level. Removal of the orogenic root by delamination at ca. 130 Ma came into the extensional climax, and subsequently isostatic rebound resulted in rapid doming. Along with exhumation of the footwall, the mid-crustal detachment zone had been warped as shear zones around the CDD. After 120 Ma, the detachment system probably experienced a migration accommodated to the crustal adjustment, which led to secondary (late-stage) detachment with localized ductile shearing at ca. 110 Ma. The migmatite-gneiss with HP/UHP relicts in the CDD (i.e., the central Dabieshan complex) was product of the Cretaceous crustal anatexis that consumed the deep-seated part of the HP-UHP slices and the underlying para-autochthonous basement. Compared with the contemporaneous MCCs widely developed along the eastern margin of the Eurasian continent, we proposed that occurrence of the Dabieshan MCC shares the same tectonic setting as the "destruction of the North China craton". However, geodynamic trigger

  9. The Tyrrhenian stage geodinamic evolution of Apenninic-Maghrebian orogen (Southern Apennines and Sicily)

    NASA Astrophysics Data System (ADS)

    Lentini, F.; Carbone, S.; Barreca, G.

    2009-04-01

    In the Central Mediterranean region the foreland domains are represented by two continental blocks, the Apulian Block to the north and the Pelagian Block to the south, respectively belonging to the Adria and to the Africa plates. They are separated since Permo-Triassic times by the oceanic crust of the Ionian Sea. The Apenninic-Maghrebian orogen is located between two oceanic crusts: the old Ionian crust, at present time subducting beneath the Calabrian Arc, and the new crust of the opening Tyrrhenian Sea. The orogenic belt is represented by a multilayer allochthonous edifice, composed of the Calabride Chain (CC) tectonically overlying the Apenninic-Maghrebian Chain (AMC), which in turn overthrust onto the Upper Miocene and Pliocene top-levels of a deep seated thrust system, originating by the deformation of the innermost carbonates of the Pelagian/Apulian blocks (External Thrust System: ETS). The AMC tectonic units derive from the orogenic transport during Oligo-Miocene times of sedimentary sequences deposited in palaeogeographical domains located between the Europe and the Afro-Adriatic plates. These units are composed of Meso-Cenozoic shallow-water carbonate successions detached from a continental type crust sector, the Panormide/Apenninic Block, recognizable by means of seismic lines shot in the Tyrrhenian offshore of Southern Apennines and Northern Sicily. The Meso-Cenozoic basinal units, that compose the AMC, can be distinguished into two main groups of sequences, originally located on oceanic crusts separated by the Panormide/Apenninic Block: the external ones (Ionides) related to an original basin belonging to branches of the Ionian Palaeobasin involved in the orogenesis, and the internal ones ascribed to the Alpine Tethys (Sicilide Units). The terrigenous deposits of the basinal sequences belonging to the Ionides are represented by Tertiary foreland/foredeep deposits, whose relationships with the substratum are occasionally preserved, although large

  10. Tectonic processes during oblique collision: Insights from the St. Elias orogen, northern North American Cordillera

    USGS Publications Warehouse

    Pavlis, T.L.; Picornell, C.; Serpa, L.; Bruhn, R.L.; Plafker, G.

    2004-01-01

    Oblique convergence in the St. Elias orogen of southern Alaska and northwestern Canada has constructed the world's highest coastal mountain range and is the principal driver constructing all of the high topography in northern North America. The orogen originated when the Yakutat terrane was excised from the Cordilleran margin and was transported along margin-parallel strike-slip faults into the subduction-transform transition at the eastern end of the Aleutian trench. We examine the last 3 m.y. of this collision through an analysis of Euler poles for motion of the Yakutat microplate with respect to North America and the Pacific. This analysis indicates a Yakutat-Pacific pole near the present southern triple junction of the microplate and' predicts convergence to dextral-oblique convergence across the offshore Transition fault, onland structures adjacent to the Yakutat foreland, or both, with plate speeds increasing from 10 to 30 mm/yr from southeast to northwest. Reconstructions based on these poles show that NNW transport of the collided block into the NE trending subduction zone forced contraction of EW line elements as the collided block was driven into the subduction-transform transition. This suggests the collided block was constricted as it was driven into the transition. Constriction provides an explanation for observed vertical axis refolding of both earlier formed fold-thrust systems and the collisional suture at the top of the fold-thrust stack. We also suggest that this motion was partially accommodated by lateral extrusion of the western portion of the orogen toward the Aleutian trench. Important questions remain regarding which structures accommodated parts of this motion. The Transition fault may have accommodated much of the Yakutat-Pacific convergence on the basis of our analysis and previous interpretations of GPS-based geodetic data. Nonetheless, it is locally overlapped by up to 800 m of undeformed sediment, yet elsewhere shows evidence of young

  11. South Tien Shan orogenic belt: structure, magmatism and gold mineralization (Uzbekistan)

    NASA Astrophysics Data System (ADS)

    Koneev, Rustam; Seltmann, Reimer

    2014-05-01

    The Southern Tien Shan represents one of the key units of the Central Asian orogenic belt in Uzbekistan. Together with the Beltau-Kurama volcano-plutonic arc it formed as a result of subduction of the crust under the Turkistan paleoocean and the Kazakhstan continent, followed by collision and post-collisional strike-slip processes. The Southern Tien Shan is of particular interest due to its gold mineralisation. It hosts the giant Muruntau gold deposit and the large gold deposits of Amantaitau, Daugyztau, Myutenbay (Kyzylkum ore district) and Charmitan, Guzhumsay, Urtalik (Nurata ore district). The Middle Tienshan hosts within the Beltau-Kurama volcano-plutonic arc the Kurama ore district with the giant Kalmakyr Cu-Au porphyry and large epithermal Au-Ag deposits of Kochbulak and Kyzylalma. Yakubchuk et al. (2005) and others stress that the largest ore clusters are confined by the intersections of volcano-plutonic belts and transform faults in result of sinistral strike slip dislocations during the Permo-Carboniferous. Others believe that the ore giants are in addition controlled by hot spots - a mantle plume, superimposed on the crust architecture shaped by the subduction processes. Zircon U-Pb geochronology of main intrusive massifs of Uzbekistan (CERCAMS data) showed that granitoid magmatism is predominantly of postcollisional age, manifested in the accretionary units at 270-290 Ma, whereas subduction magmatism prevails as characteristic in the volcano-plutonic arc at 300-320 Ma. Determination of sulphide mineralization ages using Os-Re method (CERCAMS data), are respectively 283-289 Ma and 298-314 Ma. The studies were performed in the framework of IGCP- 592. References 1. Yakubchuk A.S., Shatov V.V., Kirwin D. et al., (2005) Gold and base metal metallogeny of the Central Asian Orogenic supercollage: Society of Economic Geologists, Inc. Economic Geology, 100th, Anniversary Volume, 1035-1068. 2. Groves, D.I., Goldfarb, R.J., Gebre-Mariam, M., Hagemann, S.G. and

  12. Kinematics of post-orogenic extension and exhumation of the Taku Schist, NE Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Md Ali, M. A.; Willingshofer, E.; Matenco, L.; Francois, T.; Daanen, T. P.; Ng, T. F.; Taib, N. I.; Shuib, M. K.

    2016-09-01

    Recent studies imply that the formation and evolution of many SE Asian basins was driven by extensional detachments or systems of low-angle normal faults that created significant crustal exhumation in their footwalls. In this context, the architecture of the Triassic Indosinian orogen presently exposed in Peninsular Malaysia is compatible with significant extension post-dating the orogenic event. In this study we performed a kinematic analysis based on fieldwork and microstructural observations in the Taku Schist, Kemahang granite and the surrounding Gua Musang sediments of northern Peninsular Malaysia in order to shed light on processes related to the build-up and subsequent demise of the Indosinian orogen. The first three phases of deformation were related to an overall period of E-W oriented contraction and burial metamorphism. These phases of deformation are characterized by isoclinal folding with flat lying axial plane cleavages (D1), asymmetrical folding, top-to-the-W-SW shearing (D2) and upright folding (D3). All are in general agreement with observations of the previously inferred Permo-Triassic Indosinian orogeny. During these times, the Taku Schist, a sequence of Paleozoic clastic sediments with mafic intercalations was metamorphosed to amphibolite facies. These rocks are most likely equivalent to the ones exposed in the Bentong-Raub suture zone. Structural relations suggest that the Triassic Kemahang pluton is syn-kinematic, which provides important constraints for the timing of these contractional events. We demonstrate that the overall shortening was followed by a hitherto undescribed extension in NW-SE direction resulting in the formation of a large-scale detachment, the Taku detachment, in northern Peninsular Malaysia. Extension probably reactivated the former subduction plane as a detachment and exhumed previously buried and metamorphosed rocks of similar lithological composition to the neighboring Bentong-Raub suture zone. Such a mechanism is

  13. Origin and structure of major orogen-scale exhumed strike-slip

    NASA Astrophysics Data System (ADS)

    Cao, Shuyun; Neubauer, Franz

    2016-04-01

    The formation of major exhumed strike-slip faults represents one of the most important dynamic processes affecting the evolution of the Earth's lithosphere and surface. Detailed models of the potential initiation and properties and architecture of orogen-scale exhumed strike-slip faults and how these relate to exhumation are rare. In this study, we deal with key properties controlling the development of major exhumed strike-slip fault systems, which are equivalent to the deep crustal sections of active across fault zones. We also propose two dominant processes for the initiation of orogen-scale exhumed strike-slip faults: (1) pluton-controlled and (2) metamorphic core complex-controlled strike-slip faults. In these tectonic settings, the initiation of faults occurs by rheological weakening along hot-to-cool contacts and guides the overall displacement and ultimate exhumation. These processes result in a specific thermal and structural architecture of such faults. These types of strike-slip dominated fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust during various stages of faulting. The high variety of distinctive fault rocks is a potential evidence for recognition of these types of strike-slip faults. Exhumation of mylonitic rocks is, therefore, a common feature of such reverse oblique-slip strike-slip faults, implying major transtensive and/or transpressive processes accompanying pure strike-slip motion during exhumation. Some orogen-scale strike-slip faults nucleate and initiate along rheologically weak zones, e.g. at granite intrusions, zones of low-strength minerals, thermally weakened crust due to ascending fluids, and lateral borders of hot metamorphic core complexes. A further mechanism is the juxtaposition of mechanically strong mantle lithosphere to hot asthenosphere in continental transform faults (e.g., San

  14. Lateral flow in the middle crust - Analogue experiments from the Svecofennian orogen

    NASA Astrophysics Data System (ADS)

    Nikkilä, Kaisa; Koyi, Hemin; Korja, Annakaisa; Eklund, Olav

    2013-04-01

    The exposed Svecofennian crust (50-65 km) has been suggested to have thickened in continental accretion between Archean and Paleoproterozoic terranes, probably at a high convergence rate. It is likely that this thickened orogen experienced lateral spreading during its final stages. This post-orogenic event has reshaped the collisional framework and modified its bulk appearance. In this study, we have used scaled analogue centrifuge modeling to simulate extensional lateral flow at the Archean- Paleoproterozoic boundary zone during final stages of the Svecofennian orogeny. The analogue models simulate both the evolution of a mechanical boundary between two rheologically different tectonic blocks, and the role of pre-existing weaknesses at moderate angles (representing the old stacking structures). In models the upper layer is brittle, the middle layer is ductile, and the lower layer is more viscous. The layers represent upper, middle and lower crust, respectively. The Proterozoic layers have lower viscosity values than the Archean layers at similar depths. The materials are based on the plastilina modelling putty, which is mixed with acid oil, silicone, sweetener and/or barium sulphate to get the appropriate composition for each layer. Both the Archean and the Paleoproterozoic blocks have a low-viscous middle crust. The three layered models are extended unilaterally. The model results show that during extension the rheologically different layers deform and spread at different rates during the tectonic collapse. This results in 1) vertical rotation of the Archean and Proterozoic boundary; 2) the pre-existed faults become listric and discontinuous; and 3) the upward flow of the low viscosity middle layer to fill the newly-formed gaps between the upper layer blocks. The experiments show geometrically similar crustal-scale structures to those observed in the deep seismic reflection profiles (FIRE). Thus it is possible that lateral flow has taken place in the core of the

  15. Magmatic to solid state fabrics in syntectonic granitoids recording early Carboniferous orogenic collapse in the Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Žák, Jiří; Verner, Kryštof; Holub, František V.; Kabele, Petr; Chlupáčová, Marta; Halodová, Patricie

    2012-03-01

    The ˜354-336 Ma Central Bohemian Plutonic Complex is a Variscan magmatic arc that developed in the central Bohemian Massif in response to subduction of the Saxothuringian lithosphere beneath the Teplá-Barrandian microplate. Magmatic to solid state fabrics in the most voluminous portion of this arc (the ˜346 Ma Blatná pluton) record two superposed orogenic events: dextral transpression associated with arc-parallel stretching and arc-perpendicular shortening, and normal shearing associated with exhumation of the high-grade core of the orogen (Moldanubian unit). This kinematic switch is an important landmark in the evolution of this segment of the Variscan belt for it marks the cessation of subduction-related compressive forces in the upper crust giving way to gravity-driven normal movements of the Teplá-Barrandian hanging wall block relative to the high-grade Moldanubian footwall. We use thermal modeling to demonstrate that the emplacement of huge volumes of arc magmas and their slow cooling produced a thermally softened domain in the upper crust and that the magmatic arc granitoids may have played a major role in initiating the orogenic collapse in the Bohemian Massif through lubrication and reactivation of a pre-existing lithospheric boundary and decreasing the overall strength of the rigid orogenic lid.

  16. From cessation of south-directed mid-crust extrusion to onset of orogen-parallel extension, NW Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Nagy, Carl

    Field mapping and, structural, microstructural, and chronological analyses confirm the existence of a segment of the Gurla-Mandhata-Humla fault, an orogen-parallel strike-slip dominated shear zone in the upper Karnali valley of northwestern Nepal. This shear zone forms the upper contact of, and cuts obliquely across the Greater Himalayan Sequence (GHS). Data from this study reveal two phases of GHS deformation. Phase 1 is characterized by U-Th-Pb monazite crystallization ages (˜26--12 Ma, peak ˜18--15 Ma), consistent with typical Neohimalayan metamorphic ages, and the final stages of south-directed extrusion of the GHS. Phase 2 is characterized by south-dipping high-strain foliations and intensely developed ESE-WNW trending, shallowly plunging mineral elongation lineations, indicating orogen-parallel extension. Thermochronology of muscovite defining these fabrics implies that the area was cooling and experiencing orogen-parallel extension by ˜15--9 Ma. Mineral deformation mechanisms and quartz c-axis patterns of these fabrics record a rapid increase in temperature from ˜350°C along the shear zone, to ˜650°C at ˜2.5 structural km below the shear zone. Such temperature gradients may be remnants of telescoped and/or flattened isotherms generated during south-directed extrusion of the GHS. Overprinting ESE-WNW fabrics record progressive deformation of the GHS at lower temperatures. Progressive deformation included a significant component of pure shear, as indicated by symmetric high-temperature quartz c-axis fabrics and a lower-temperature vorticity estimate (˜59% pure shear). A transition in c-axis fabrics from type I to type II cross-girdles at ˜ 1.2 km below the fault could indicate a transition from plane strain towards constriction. Together, these data suggest orogen-parallel extension was occurring as a result of transtension. This study reveals a transition from south-directed extrusion of the GHS to orogen-parallel extension between ˜15--13 Ma

  17. The Development of the SW Pacific Margin of Gondwana: Correlations Between the Rangitata and New England Orogens

    NASA Astrophysics Data System (ADS)

    Cawood, Peter A.

    1984-10-01

    Prior to formation of the Tasman Sea, the Late Paleozoic-Mesozoic Rangitata Orogen of New Zealand and New Caledonia abutted the Paleozoic New England Orogen of eastern Australia. Comparison of the record of Permian-Cretaceous igneous and deformational events from the two orogens suggests that their tectonic evolution was interrelated and is a consequence of convergent plate interaction along the southwest Pacific margin of Gondwana. The following relations are proposed: (1) termination of arc volcanism and widespread sedimentation in New England, together with the onset of regional deformation and crustal anatexis were synchronous with the commencement of volcanism and sedimentation within the Rangitata Orogen; (2) Early Permian andesitic volcanism in eastern New England represents an along-strike extension of the Brook Street terrane of New Zealand; (3) Late Permian regional deformation in New England coincides with both a break in subduction-related igneous activity in the New England and Rangitata Orogens and a shift in the locus of this activity; (4) Late Permian-Triassic calc-alkaline igneous activity in New England correlates with a phase of relatively continuous accumulation of pyroclastic material in the forearc basin of the Rangitata Orogen; (5) cessation of plutonism in New England corresponds with commencement of formation of the Esk Head Melange in New Zealand and the probable commencement of juxtaposition of the Te Anau and Alpine Assemblage; (6) Late Cretaceous epizonal plutons intruded into the New England Orogen are similar in character and age to those emplaced during the final phases of Rangitata orogenesis, and both appear to mark initial stages of rifting associated with formation of the Tasman Sea. The generation of Permian and Triassic igneous activity in eastern New England by convergent plate interaction results, on present reconstructions of the Gondwana margin, in an excessively wide arc-trench gap succession, for the position of the

  18. Erosional Control of Orogenesis: Approximate Analytical Solution for a Two-Sided, Frictional Orogenic Wedge at Steady State

    NASA Astrophysics Data System (ADS)

    Whipple, K.; Meade, B.

    2002-12-01

    The recognition of a dynamic coupling among climate, erosion and tectonics is arguably one of the most exciting discoveries in the last 20 years. Numerical simulations using coupled thermo-mechanical and surface process models have been most influential. However, analyses to date leave the strength of the coupling between climate and tectonics uncertain. Can an intensification of erosion induce a sufficiently strong increase in rock uplift rate that steady-state relief is increased rather than reduced? In addition, it has remained unclear whether the details of the erosion processes are important to the geodynamic evolution of the orogen, and if so, how they come into play. We present an approximate analytical solution for two-sided orogenic wedges obeying a frictional rheology, and in a condition of flux steady state, that makes explicit the nature and sensitivity of the coupling between climate and rock uplift rate. A closed-form solution for the inter-relations among steady-state orogen width, rock uplift rate, patterns of internal deformation, and climate is found by combining (1) a statement of mass balance, (2) the geometry dictated by critical taper theory for a frictional wedge, (3) relations for equilibrium topography consistent with both the tapered wedge geometry and with erosion rates necessary to satisfy the mass balance condition, and (4) a kinematic solution for internal deformation. An approximate relation for the timescale of adjustment to a new steady state following a step-function change in climatic or tectonic conditions is also found. We make the simplifying assumption that the topographic taper is invariant with orogen width, tectonic influx rate, climate, and time. Erosion rates are assumed to be dictated by the bedrock channel network and are described by the stream-power model of bedrock channel incision. Erosional efficiency (and its spatial distribution) is shown to control steady-state orogen width, crest elevation, crustal thickness

  19. Tectonic evolution of the Montagne Noire and a possible orogenic model for syncollisional exhumation of deep rocks, Variscan belt, France

    NASA Astrophysics Data System (ADS)

    Aerden, Domingo G. A. M.

    1998-02-01

    Structural analysis in the Montagne Noire, including a study of inclusion trail patterns in andalusite, garnet, and staurolite porphyroblasts, reveals a succession of five foliations in alternately steep and flat-lying orientations. This is inferred to reflect multiple gravitational collapse phases that intervened during continuous plate convergence. Initial crustal thickening by foliation development and folding (D1) was responsible for eclogite-facies metamorphism in the gneissic basement. Subsequent thrusting and recumbent folding (D2) generated a subhorizontal crenulation cleavage during Namuro-Westphalian times, while previous steep structures became rotated. Petrological and microstructural evidence indicate that thrust nappes were emplaced by a gravitational spreading mechanism, while undergoing internal thinning. An important amount of basement exhumation took place synchronously. These observations form the basis for a new orogenic model in which thermal reequilibration of a previously thickened orogen induces gravitational instability in the upper crust. Collapse of the upper crust causes it to spreadout horizontally over continuously converging relatively cool plates thereby creating low-angle thrust nappes. The upper crustal thinning facilitates simultaneous extrusion of lower crust in vertical root zones at the orogen center, which on reaching the higher part of the orogen can be incorporated in the nappes and displaced horizontally. Following such a mechanism of nappe tectonics, renewed horizontal shortening (D3) produced the Montagne Noire gneissic dome by upright folding of nappe-related foliations with orogen-parallel stretching. Previous crustal thinning had led to an increased heat flux between basement and cover so that during D3, cover sequences were still rising in temerature, while basement rocks had already commenced their retrograde path during D2. Peak-metamorphic conditions in the cover triggered a second gravitational collapse during

  20. Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway.

    PubMed

    Spengler, Dirk; van Roermund, Herman L M; Drury, Martyn R; Ottolini, Luisa; Mason, Paul R D; Davies, Gareth R

    2006-04-13

    The buoyancy and strength of sub-continental lithospheric mantle is thought to protect the oldest continental crust (cratons) from destruction by plate tectonic processes. The exact origin of the lithosphere below cratons is controversial, but seems clearly to be a residue remaining after the extraction of large amounts of melt. Models to explain highly melt-depleted but garnet-bearing rock compositions require multi-stage processes with garnet and clinopyroxene possibly of secondary origin. Here we report on orogenic peridotites (fragments of cratonic mantle incorporated into the crust during continent-continent plate collision) from Otrøy, western Norway. We show that the peridotites underwent extensive melting during upwelling from depths of 350 kilometres or more, forming a garnet-bearing cratonic root in a single melting event. These peridotites appear to be the residue after Archaean aluminium depleted komatiite magmatism. PMID:16612379

  1. Drainage Pattern, Along-Strike Topography and Three-Dimensional Construction of the Himalayan orogen

    NASA Astrophysics Data System (ADS)

    Yin, A.

    2005-12-01

    Past studies on the Himalayan orogen have mostly emphasized its 2-D evolution in cross-section view. As a result, how the orogen has grown in 3-D remains poorly understood. For example, it is not clear if the >1500-km long Main Central Thrust (MCT) and Main Boundary Thrust (MBT) were initiated synchronously along the whole orogen or started at one segment and then propagated laterally during subsequent fault motion. To clarify this issue, I examined the Himalayan drainage pattern, along-strike topography, and geometry and kinematics of growing contractional structures across both the Himalayan front and the Shillong Plateau. The main observations may be summarized as follows. (1) The five rivers that cut across the Himalaya are arranged approximately symmetric with respect to the Himalayan-arc axis (~85° E): the Arun River (87° E) is in the middle with the Sutlej (77° E) and Indus (72° E) Rivers in the west and the Subansiri (93° E) and Yalu-Brahmaputra (96° E) Rivers in the east. (2) Between the eastern and western syntaxes, south-flowing drainages east of 85.5° E are consistently deflected to the east by east-growing anticlines and thrusts, whereas drainages west of 85.5°E are deflected systematically to the west by west-growing anticlines and thrusts along the Himalayan front. The only region where no drainage deflection is observed is the Bhutan Himalaya. There all rivers flow straight across the Himalayan front. (3) The deflected drainage pattern indicates that the Shillong Plateau south of the eastern Himalaya has been growing westward. (4) The along-crest Himalayan topographic profile concaves downward, starting from ~5200 m just inside the two syntaxes and reaching 8848 m at Mt. Everest (~87° E). (5) There are a total of 17 major growing contractional structures in the Main Frontal Thrust Zone (MFTZ), with 10 in the west and 7 in the east. Each structure has a length between ~20 km and >150 km, but the west-growing structures in the west are

  2. Deformation Partitioning Processes in a Mid-crustal Detachment System, the Ketilidian Orogen, South Greenland

    NASA Astrophysics Data System (ADS)

    McCaffrey, K.; Grocott, J.; Garde, A.; Hamilton, M.; Chadwick, B.

    2001-12-01

    The upper crust in convergent margins is commonly segmented into fault-bounded blocks or terranes. The mechanism(s) by which orogen-parallel movement and/or rotation of these blocks takes place in convergent margins remains an open question. Models require sub-horizontal detachments within or at the base of the lithosphere in addition to vertical strike-parallel boundaries. We present an example of an exposed mid-crustal detachment system in which vertical and lateral deformation partitioning can be demonstrated. We present a model of how the detachment system developed and suggest that it provides one possible mechanism for decoupling in cordilleran-style orogenic belts. Continental growth by juvenile magmatic arc processes is typified by the Palaeoproterozoic (c.1800 Ma) Ketilidian orogen which formed in response to oblique convergence between an oceanic plate and an Archaean craton. The core of this orogen is a 100-200 km wide, NE-trending continental magmatic arc, the Julianehaab batholith (JB), that was constructed by calc-alkaline magmas emplaced between c.1855-1795 Ma. To the south-east beyond the outboard margin of the batholith, the Psammite (PsZ) and Pelite Zones (PeZ) with a minimum width of c. 100 km, comprise deformed and metamorphosed arkosic, calcareous, semipelitic, pelitic and minor metavolcanic rocks, with an estimated pre-erosional thickness of over 15 km. These zones are collectively interpreted as the relics of a forearc basin. Transpression during early deformation (D1) was partitioned into sinistral strike-slip in the magmatic arc rocks of the JB and SE-directed thrusting in the sedimentary and volcaniclastic sequences of the proximal forearc (PsZ). Subsequently, D1 fabrics in the PsZ were overprinted and transposed in an intense, flat-lying, D2 ductile shear zone with arc-parallel stretching lineations and top-ENE kinematic indicators. The D2 shear zone is interpreted as a mid-crustal partitioning detachment that lay beneath a domain of

  3. Fault dating in the Canadian Rocky Mountains: Evidence for late Cretaceous and early Eocene orogenic pulses

    USGS Publications Warehouse

    van der Pluijm, B.A.; Vrolijk, P.J.; Pevear, D.R.; Hall, C.M.; Solum, J.

    2006-01-01

    Fault rocks from the classic Rocky Mountain foreland fold-and-thrust belt in south-western Canada were dated by Ar analysis of clay grain-size fractions. Using X-ray diffraction quantification of the detrital and authigenic component of each fraction, these determinations give ages for individual faults in the area (illite age analysis). The resulting ages cluster around 72 and 52 Ma (here called the Rundle and McConnell pulses, respectively), challenging the traditional view of gradual forward progression of faulting and thrust-belt history of the area. The recognition of spatially and temporally restricted deformation episodes offers field support for theoretical models of critically stressed wedges, which result in geologically reasonable strain rates for the area. In addition to regional considerations, this study highlights the potential of direct dating of shallow fault rocks for our understanding of upper-crustal kinematics and regional tectonic analysis of ancient orogens. ?? 2006 Geological Society of America.

  4. Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway.

    PubMed

    Spengler, Dirk; van Roermund, Herman L M; Drury, Martyn R; Ottolini, Luisa; Mason, Paul R D; Davies, Gareth R

    2006-04-13

    The buoyancy and strength of sub-continental lithospheric mantle is thought to protect the oldest continental crust (cratons) from destruction by plate tectonic processes. The exact origin of the lithosphere below cratons is controversial, but seems clearly to be a residue remaining after the extraction of large amounts of melt. Models to explain highly melt-depleted but garnet-bearing rock compositions require multi-stage processes with garnet and clinopyroxene possibly of secondary origin. Here we report on orogenic peridotites (fragments of cratonic mantle incorporated into the crust during continent-continent plate collision) from Otrøy, western Norway. We show that the peridotites underwent extensive melting during upwelling from depths of 350 kilometres or more, forming a garnet-bearing cratonic root in a single melting event. These peridotites appear to be the residue after Archaean aluminium depleted komatiite magmatism.

  5. Hillslope response to knickpoint migration in the Southern Appalachians: Implications for the evolution of post-orogenic landscapes

    USGS Publications Warehouse

    Wegmann, S.F.G.; Franke, K.L.; Hughes, S.; Lewis, R.Q.; Lyons, N.; Paris, P.; Ross, K.; Bauer, J.B.; Witt, A.C.

    2011-01-01

    The southern Appalachians represent a landscape characterized by locally high topographic relief, steep slopes, and frequent mass movement in the absence of significant tectonic forcing for at least the last 200 Ma. The fundamental processes responsible for landscape evolution in a post-orogenic landscape remain enigmatic. The non-glaciated Cullasaja River basin of south-western North Carolina, with uniform lithology, frequent debris flows, and the availability of high-resolution airborne lidar DEMs, is an ideal natural setting to study landscape evolution in a post-orogenic landscape through the lens of hillslope-channel coupling. This investigation is limited to channels with upslope contributing areas >2.7 km2, a conservative estimate of the transition from fluvial to debris-flow dominated channel processes. Values of normalized hypsometry, hypsometric integral, and mean slope vs elevation are used for 14 tributary basins and the Cullasaja basin as a whole to characterize landscape evolution following upstream knickpoint migration. Results highlight the existence of a transient spatial relationship between knickpoints present along the fluvial network of the Cullasaja basin and adjacent hillslopes. Metrics of topography (relief, slope gradient) and hillslope activity (landslide frequency) exhibit significant downstream increases below the current position of major knickpoints. The transient effect of knickpoint-driven channel incision on basin hillslopes is captured by measuring the relief, mean slope steepness, and mass movement frequency of tributary basins and comparing these results with the distance from major knickpoints along the Cullasaja River. A conceptual model of area-elevation and slope distributions is presented that may be representative of post-orogenic landscape evolution in analogous geologic settings. Importantly, the model explains how knickpoint migration and channel- hillslope coupling is an important factor in tectonically-inactive (i

  6. Paleozoic accretionary orogenesis in the eastern Beishan orogen: constraints from zircon U-Pb and 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Ao, Songjian; Xiao, Wenjiao; Windley, Brian; Mao, Qigui

    2016-04-01

    The continental growth mechanism of the Altaids in Central Asia is still in controversy between models of continuous subduction-accretion versus punctuated accretion by closure of multiple oceanic basins. The Beishan orogenic belt, located in the southern Altaids, is a natural laboratory to address this controversy. Key questions that are heavily debated are: the closure time and subduction polarity of former oceans, the emplacement time of ophiolites, and the styles of accretion and collision. This paper reports new structural data, zircon ages and Ar-Ar dates from the eastern Beishan Orogen that provide information on the accretion process and tectonic affiliation of various terranes. Our geochronological and structural results show that the younging direction of accretion was northwards and the subduction zone dipped southwards under the northern margin of the Shuangyingshan micro-continent. This long-lived and continuous accretion process formed the Hanshan accretionary prism. Our field investigations show that the emplacement of the Xiaohuangshan ophiolite was controlled by oceanic crust subduction beneath the forearc accretionary prism of the Shuangyingshan-Mazongshan composite arc to the south. Moreover, we address the age and terrane affiliation of lithologies in the eastern Beishan orogen through detrital zircon geochronology of meta-sedimentary rocks. We provide new information on the ages, subduction polarities, and affiliation of constituent structural units, as well as a new model of tectonic evolution of the eastern Beishan orogen. The accretionary processes and crustal growth of Central Asia were the result of multiple sequences of accretion and collision of manifold terranes. Reference: Ao, S.J., Xiao, W., Windley, B.F., Mao, Q., Han, C., Zhang, J.e., Yang, L., Geng, J., Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zircon U-Pb and 40Ar/39Ar geochronology. Gondwana Research, doi: http://dx.doi.org/10.1016/j

  7. Active Tectonics in crossroads of an evolving orogen and morphological consequences: Anatolia

    NASA Astrophysics Data System (ADS)

    Koral, Hayrettin

    2016-04-01

    Anatolia lies in a curved setting of the active Alpine Mountain Range and is located in crossroads of the European and Asian terrains. It is one of the fastest deforming land in the world, manifested by seismicity, characteristic landforms and GPS measurements. Active tectonics in Anatolia provides not only a comparable geological model for the past orogens, but also a laboratory case for morphological consequences of an orogenic processes. Anatolia comprise different tectonic subsettings with its own characteristics. Northern part is influenced by tectonic characteristics of the Black Sea Basin, the Pontides and the Caucasian Range; northwestern part by the Balkanides; eastern-southeastern part by the Bitlis-Zagros suture; and south-southwestern part by the eastern Mediterranean subduction setting. Much of its present tectonic complexity was inherited from the convergence dominant plate tectonic setting of the platelets prior to the Middle-Neogene. Beginning about 11 Ma ago, the deformed and uplifted landmass unable to accommodate further deformation in Anatolia and ongoing tectonic activity gave rise to rearrangement of tectonic forces and westerly translational movements. Formation of major strike-slip faults in Anatolia including the North and East Anatolian Faults and a new platelet called the Anatolian Plate are the consequences of this episode. Such change in the tectonic regime has led to modification of previously-formed landscape, modification and sometimes termination of previously-formed basins. Evidence is present in the Plio-Quaternary stratigraphy, tectonic characteristics and morphology of the well-studied areas. This presentation will discuss active tectonic features of the northwestern, southwestern and eastern Anatolian subsettings and their influence on morphology that is closely related to sites of pre-historical human settlement.

  8. Cross-sectional anatomy and geodynamic evolution of the Central Pontide orogenic belt (northern Turkey)

    NASA Astrophysics Data System (ADS)

    Hippolyte, J.-C.; Espurt, N.; Kaymakci, N.; Sangu, E.; Müller, C.

    2016-01-01

    Geophysical data allowed the construction of a ~250-km-long lithospheric-scale balanced cross section of the southern Black Sea margin (Espurt et al. in Lithosphere 6:26-34, 2014). In this paper, we combine structural field data, stratigraphic data, and fault kinematics analyses with the 70-km-long onshore part of the section to reconstruct the geodynamic evolution of the Central Pontide orogen. These data reveal new aspects of the structural evolution of the Pontides since the Early Cretaceous. The Central Pontides is a doubly vergent orogenic wedge that results from the inversion of normal faults. Extensional subsidence occurred with an ENE-trend from Aptian to Paleocene. We infer that the Black Sea back-arc basin also opened during this period, which was also the period of subduction of the Tethys Ocean below the Pontides. As in the Western Pontides, the Cretaceous-Paleocene subsidence was interrupted from Latest Albian to Coniacian time by uplift and erosion that was probably related to a block collision and accretion in the subduction zone. The restoration of the section to its pre-shortening state (Paleocene) shows that fault-related subsidence locally reached 3600 m within the forearc basin. Structural inversion occurred from Early Eocene to Mid-Miocene as a result of collision and indentation of the Pontides by the Kırşehir continental block to the south, with 27.5 km (~28 %) shortening along the section studied. The inversion was characterized by NNE-trending shortening that predated the Late Neogene dextral escape of Anatolia along the North Anatolian Fault and the modern stress field characterized by NW-trending compression within the Eocene Boyabat basin.

  9. Asymmetric vs. symmetric deep lithospheric architecture of intra-plate continental orogens

    NASA Astrophysics Data System (ADS)

    Calignano, Elisa; Sokoutis, Dimitrios; Willingshofer, Ernst; Gueydan, Frédéric; Cloetingh, Sierd

    2015-08-01

    The initiation and subsequent evolution of intra-plate orogens, resulting from continental plate interior deformation due to transmission of stresses over large distances from the active plate boundaries, is controlled by lateral and vertical strength contrasts in the lithosphere. We present lithospheric-scale analogue models combining 1) lateral strength variations in the continental lithosphere, and 2) different vertical rheological stratifications. The experimental continental lithosphere has a four-layer brittle-ductile rheological stratification. Lateral heterogeneity is implemented in all models by increased crustal strength in a central narrow block. The main investigated parameters are strain rate and strength of the lithospheric mantle, both playing an important role in crust-mantle coupling. The experiments show that the presence of a strong crustal domain is effective in localizing deformation along its boundaries. After deformation is localized, the evolution of the orogenic system is governed by the mechanical properties of the lithosphere such that the final geometry of the intra-plate mountain depends on the interplay between crust-mantle coupling and folding versus fracturing of the lithospheric mantle. Underthrusting is the main deformation mode in case of high convergence velocity and/or thick brittle mantle with a final asymmetric architecture of the deep lithosphere. In contrast, lithospheric folding is dominant in case of low convergence velocity and low strength brittle mantle, leading to the development of a symmetric lithospheric root. The presented analogue modelling results provide novel insights for 1) strain localization and 2) the development of the asymmetric architecture of the Pyrenees.

  10. Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen

    NASA Astrophysics Data System (ADS)

    Jamieson, Rebecca A.; Beaumont, Christopher; Medvedev, Sergei; Nguyen, Mai H.

    2004-06-01

    Results from a thermal-mechanical model (HT1) that includes midcrustal channel flow are compatible with many features of the Himalayan-Tibetan system. Radioactive self-heating and rheological weakening of thickened model orogenic crust lead to the formation of a hot, low-viscosity midcrustal channel and a broad plateau. Channel material, corresponding to the Greater Himalayan Sequence (GHS), flows outward from beneath the plateau in response to topographically induced differential pressure. At the plateau flank it is exhumed by focused surface denudation and juxtaposed with cooler, newly accreted material corresponding to the Lesser Himalayan Sequence (LHS). The model channel is bounded by coeval thrust and normal sense ductile shear zones, interpreted to represent the Main Central Thrust (MCT) zone and South Tibetan Detachment system, respectively. Inverted metamorphism associated with the model MCT zone results from distributed ductile shear along the MCT and extrusion of the hot channel. A variety of model P-T-t path styles, resembling those observed in the GHS and LHS, are produced for points traveling through contrasting tectonic regimes that coexist in different parts of the model. Predicted times of peak metamorphism, cooling, and erosion of metamorphic facies are generally compatible with observations, although model GHS cooling ages are too young. The times of M1 and M2 metamorphic "events" observed in the GHS correspond to model times of maximum burial and maximum heating, respectively. The results highlight the need to integrate tectonics and metamorphism in continental collision models and demonstrate the importance of lateral transport of both heat and material in large hot orogens.

  11. Groundwater flow within a sub-aerial orogenic wedge subject to depth-dependent permeability structure

    NASA Astrophysics Data System (ADS)

    Pollyea, R.; Van Dusen, E.; Fischer, M. P.

    2014-12-01

    In recent years, investigators have revisited the problem of basin-scale fluid flow with an emphasis on depth-dependent permeability, which is a frequently observed geological phenomenon that is seldom accounted for in basin-scale flow models. These recent investigations have shown that depth-dependent permeability at the basin scale strongly influences the relationship between sub-basin and regional-scale flow paths. Here, we revisit topography driven fluid flow within a foreland basin using a numerical modeling experiment designed to assess first-order fluid system behavior when permeability decreases systematically with depth. Critical taper theory is invoked to define two-dimensional basin geometry, and three sub-aerially exposed orogenic wedge models are presented with critical taper angles of 2°, 4°, and 10°. To assess the combined influence of topographic slope and depth-dependent permeability, a constant rate infiltration is applied at the wedge surface and a transient simulation is performed within each model for 500,000 years. Our results suggest that fluid system structure within the narrowly tapering orogenic wedge (2°) is explained by recent investigations applying depth-decaying permeability to the classic Tóth basin; however, increasing topographic slope beyond 3° results in a fundamentally different fluid system architecture. As topographic slope increases, fluid system structure is characterized by (1) dominant regional flow paths and little, if any, sub-basin scale fluid circulation, (2) shallow meteoric water penetration, (3) a stratified distribution of groundwater residence time without pronounced stagnation points. Moreover, for a given detachment slope, these effects become more pronounced as topographic gradient increases.

  12. Seismological structure of the 1.8 Ga Trans-Hudson Orogen of North America

    NASA Astrophysics Data System (ADS)

    Gilligan, Amy; Bastow, Ian D.; Darbyshire, Fiona A.

    2016-06-01

    Precambrian tectonic processes are debated: what was the nature and scale of orogenic events on the younger, hotter, and more ductile Earth? Northern Hudson Bay records the Paleoproterozoic collision between the Western Churchill and Superior plates—the ˜1.8 Ga Trans-Hudson Orogeny (THO)—and is an ideal locality to study Precambrian tectonic structure. Integrated field, geochronological, and thermobarometric studies suggest that the THO was comparable to the present-day Himalayan-Karakoram-Tibet Orogen (HKTO). However, detailed understanding of the deep crustal architecture of the THO, and how it compares to that of the evolving HKTO, is lacking. The joint inversion of receiver functions and surface wave data provides new Moho depth estimates and shear velocity models for the crust and uppermost mantle of the THO. Most of the Archean crust is relatively thin (˜39 km) and structurally simple, with a sharp Moho; upper-crustal wave speed variations are attributed to postformation events. However, the Quebec-Baffin segment of the THO has a deeper Moho (˜45 km) and a more complex crustal structure. Observations show some similarity to recent models, computed using the same methods, of the HKTO crust. Based on Moho character, present-day crustal thickness, and metamorphic grade, we support the view that southern Baffin Island experienced thickening during the THO of a similar magnitude and width to present-day Tibet. Fast seismic velocities at >10 km below southern Baffin Island may be the result of partial eclogitization of the lower crust during the THO, as is currently thought to be happening in Tibet.

  13. Exhumation and subduction erosion in orogenic wedges: Insights from numerical models

    NASA Astrophysics Data System (ADS)

    Dinther, Y.; Morra, G.; Funiciello, F.; Rossetti, F.; Faccenna, C.

    2012-06-01

    At oceanic margins, syn-convergent exhumation, subduction erosion, and inter-plate coupling are intimately related, but ample questions remain concerning their interaction and individual mechanisms. To analyze these interactions for a thick-skinned, visco-elastic wedge, we focus on properly modeling stresses, energies, and topographies at the inter-plate and wedge bounding interfaces using a Coulomb frictional contact algorithm. In this innovative plane-strain, free surface, Lagrangian finite element model, fault dynamics is modulated by retreating subduction. Subduction is dynamically driven by slab-pull due to a slab sinking in a semi-analytic, computationally favorable approximation of three-dimensional induced mantle flow. Nodal trajectories show that continuous underthrusting of a slab induces a steady state corner flow through forced underplating and subsequent trenchward extrusion due to gravitational spreading. This flow pattern confirms early-proposed models of syn-orogenic deep-seated rock exhumation propelled by coexisting extension and continuous shortening at depth. A distinct reduction in upward flowing material and accompanying decrease of exhumation velocities, to millimeters per year as observed in nature, is induced by a diversion of orogenic wedge material toward the mantle once a subduction channel is formed. The key parameter affecting model evolution and spontaneous formation of a subduction channel is basal friction, which modulates the amount of erosion. However, formation of a subduction channel entrance needs to be ensured through the deformability of the overriding plate, which is influenced by applied pressure at the overriding plate tip and material properties. The down dragging of the overriding plate is sufficient above a threshold inter-plate shear stress of about 2-7 MPa.

  14. The Oligocene Alps: Domal unroofing and drainage development during early orogenic growth

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Malusà, Marco G.

    2008-04-01

    Tertiary evolution of the Alps-Apennines orogenic couple, but also for general relationships among tectonic activity, relief formation, drainage development, erosion distribution, and long-distance sediment transfer during continental collision and orogenic growth.

  15. Zircon dating of Neoproterozoic and Cambrian ophiolites in West Mongolia and implications for the timing of orogenic processes in the central part of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Jian, Ping; Kröner, Alfred; Jahn, Bor-ming; Windley, Brian F.; Shi, Yuruo; Zhang, Wei; Zhang, Fuqin; Miao, Laicheng; Tomurhuu, Dondov; Liu, Dunyi

    2014-06-01

    We present new isotopic and trace element data to review the geochronological/geochemical/geological evolution of the central part of the Central Asian Orogenic Belt (CAOB), and find a fundamental geological problem in West Mongolia, which has traditionally been subdivided into northwestern early Paleozoic (formerly Caledonian) and southerly late Paleozoic (formerly Hercynian) belts by the Main Mongolian Lineament (MML). We resolve this problem with SHRIMP zircon dating of ophiolites and re-evaluation of much published literature. In Northwest Mongolia the Dariv-Khantaishir ophiolite marks the boundary between the Lake arc in the west and the Dzabkhan-Baydrag microcontinent in the east. Zircons from a microgabbro and four plagiogranites yielded weighted mean 206Pb/238U ages of 568 ± 5 Ma, 567 ± 4 Ma, 560 ± 8 Ma (Dariv), 573 ± 8 Ma and 566 ± 7 Ma (Khantaishir) that we interpret as reflecting the time of ophiolite formation (ca. 573-560 Ma). Metamorphic zircons from an amphibolite on a thrust boundary between the Khantaishir ophiolite and the Dzabkhan-Baydrag microcontinent formed at 514 ± 8 Ma, which we interpret as the time of overthrusting. In South Mongolia the Gobi Altai ophiolite and the Trans-Altai Gurvan Sayhan-Zoolen forearc with an ophiolite basement were investigated. Zircons of a layered gabbro (lower ophiolite crust) and a leucogabbro (mid-upper crust) of the Gobi Altai ophiolite yielded crystallization ages of 523 ± 5 Ma and 518 ± 6 Ma. The age data constrain the formation time of ophiolite within ca. 523-518 Ma. Zircons from four samples of the Gurvan Sayhan-Zoolen forearc, with similar hybrid adakite-boninite affinities, yielded 519 ± 4 Ma for an anorthosite, ≥ 512 ± 4 Ma for a hornblendite and 520 ± 5 and 511 ± 5 Ma for two diorites. The ophiolite basement has an upper age limit of 494 ± 6 Ma, determined by dating a tonalite dike cutting the Zoolen ophiolite. Integrating available zircon ages as well as geochemical and geological data

  16. Orogenic gold: Common or evolving fluid and metal sources through time

    NASA Astrophysics Data System (ADS)

    Goldfarb, Richard J.; Groves, David I.

    2015-09-01

    Orogenic gold deposits of all ages, from Paleoarchean to Tertiary, show consistency in chemical composition. They are the products of aqueous-carbonic fluids, with typically 5-20 mol% CO2, although unmixing during extreme pressure fluctuation can lead to entrapment of much more CO2-rich fluid inclusions in some cases. Ore fluids are typically characterized by significant concentrations of CH4 and/or N2, common estimates of 0.01-0.36 mol% H2S, a near-neutral pH of 5.5, and salinities of 3-7 wt.% NaCl equiv., with Na > K > > Ca,Mg. This fluid composition consistency favors an ore fluid produced from a single source area and rules out mixing of fluids from multiple sources as significant in orogenic gold formation. Nevertheless, there are broad ranges in more robust fluid-inclusion trapping temperatures and pressures between deposits that support a model where this specific fluid may deposit ore over a broad window of upper to middle crustal depths. Much of the reported isotopic and noble gas data is inconsistent between deposits, leading to the common equivocal interpretations from studies that have attempted to define fluid and metal source areas for various orogenic gold provinces. Fluid stable isotope values are commonly characterized by the following ranges: (1) δ18O for Precambrian ores of + 6 to + 11‰ and for Phanerozoic ores of + 7 to + 13‰; (2) δD and δ34S values that are extremely variable; (3) δ13C values that range from - 11 to - 2‰; and (4) δ15N of + 10 to + 24‰ for the Neoarchean, + 6.5 to + 12‰ for the Paleoproterozoic, and + 1.5 to + 10‰ for the Phanerozoic. Secular variations in large-scale Earth processes appear to best explain some of the broad ranges in the O, S, and N data. Fluid:rock interaction, particularly in ore trap areas, may cause important local shifts in the O, S, and C ratios. The extreme variations in δD mainly reflect measurements of hydrogen isotopes by bulk extraction of waters from numerous fluid inclusion

  17. The Tyrrhenian stage geodinamic evolution of Apenninic-Maghrebian orogen (Southern Apennines and Sicily)

    NASA Astrophysics Data System (ADS)

    Lentini, F.; Carbone, S.; Barreca, G.

    2009-04-01

    In the Central Mediterranean region the foreland domains are represented by two continental blocks, the Apulian Block to the north and the Pelagian Block to the south, respectively belonging to the Adria and to the Africa plates. They are separated since Permo-Triassic times by the oceanic crust of the Ionian Sea. The Apenninic-Maghrebian orogen is located between two oceanic crusts: the old Ionian crust, at present time subducting beneath the Calabrian Arc, and the new crust of the opening Tyrrhenian Sea. The orogenic belt is represented by a multilayer allochthonous edifice, composed of the Calabride Chain (CC) tectonically overlying the Apenninic-Maghrebian Chain (AMC), which in turn overthrust onto the Upper Miocene and Pliocene top-levels of a deep seated thrust system, originating by the deformation of the innermost carbonates of the Pelagian/Apulian blocks (External Thrust System: ETS). The AMC tectonic units derive from the orogenic transport during Oligo-Miocene times of sedimentary sequences deposited in palaeogeographical domains located between the Europe and the Afro-Adriatic plates. These units are composed of Meso-Cenozoic shallow-water carbonate successions detached from a continental type crust sector, the Panormide/Apenninic Block, recognizable by means of seismic lines shot in the Tyrrhenian offshore of Southern Apennines and Northern Sicily. The Meso-Cenozoic basinal units, that compose the AMC, can be distinguished into two main groups of sequences, originally located on oceanic crusts separated by the Panormide/Apenninic Block: the external ones (Ionides) related to an original basin belonging to branches of the Ionian Palaeobasin involved in the orogenesis, and the internal ones ascribed to the Alpine Tethys (Sicilide Units). The terrigenous deposits of the basinal sequences belonging to the Ionides are represented by Tertiary foreland/foredeep deposits, whose relationships with the substratum are occasionally preserved, although large

  18. Menstrual Cycle

    MedlinePlus

    ... Pregnancy This information in Spanish ( en español ) The menstrual cycle Day 1 starts with the first day of ... drop around Day 25 . This signals the next menstrual cycle to begin. The egg will break apart and ...

  19. Biogeochemical Cycling

    NASA Technical Reports Server (NTRS)

    Bebout, Brad; Fonda, Mark (Technical Monitor)

    2002-01-01

    This lecture will introduce the concept of biogeochemical cycling. The roles of microbes in the cycling of nutrients, production and consumption of trace gases, and mineralization will be briefly introduced.

  20. Rivers, re-entrants, and 3D variations in orogenic wedge development: a case study of the NW Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Webb, A. G.; Yu, H.; Hendershott, Z.

    2010-12-01

    Orogenic wedges are standard elements of collisional plate tectonics, from accretionary prisms to retro-arc basins. Recent study of orogenic wedge development has focused on links between mechanisms of internal deformation and surface processes. Models of orogenic wedges are commonly presented in the cross-section plane, which is generally effective as wedges largely develop via plane strain. The 3rd dimension can be utilized to explore effects of differences in controlling parameters on wedge evolution. We are investigating a stretch of the western Himalayan orogenic wedge that has two prominent changes in along-strike morphology: (1) a tectonic window (the Kullu Window) that appears to be strongly influenced by erosion along the 3rd largest river in the Himalayan system, the Sutlej River and (2) the Kangra Re-entrant, the largest re-entrant along the Himalayan arc. In addition to the along-strike heterogeneity, a key advantage of the proposed study area is its rich stratigraphy, with the most known diversity in the Himalayan arc. The stratigraphic wealth, combined with the along-strike heterogeneity in exposure level, offers a high resolution view of regional structural geometry. Our preliminary reconstructions suggest that the Sutlej River erosion increases the exposure depth and shortening budget across a narrow segment of the orogen, strongly warping the Kullu Window. Previous models have suggested that the out-of-sequence Munsiari thrust is the main structure associated with Kullu window formation, while our work suggests that most of this uplift and warping is accomplished by antiformal stacking of basement thrust horses. Late Miocene ages (U-Pb ages of zircons and Th-Pb ages of monazites) from a leucogranite in the core of the Kullu Window along the Sutlej River further suggests that this segment of the orogen represents a middle ground between plane strain orogenic wedge development and a tectonic aneurysm model. We have constructed a palinspastic

  1. On protolith-, metamorphic overprint, microstructure and rheology of mineral assemblages in orogenic peridotites of the central Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Gilio, Mattia; Clos, Frediano; Van Roermund, Herman L. M.

    2013-04-01

    The Scandinavian Caledonides (SC) are a deeply eroded Alpine-type orogenic belt formed by closure of the Iapetus ocean and collision between Baltica and Laurentia (500-380 Ma). The SC consists of a stack of Nappe Complexes (from bottom to top called Lower, Middle, Upper and Uppermost Allochthons) thrusted to the east over the Baltic Shield (Brueckner and Van Roermund, 2004; Gee et al., 2008). Fossil lithospheric mantle fragments, called orogenic peridotites, have been found within the (upper part of) middle, upper and uppermost Allochthons, as well as in the reworked basement gneisses (a.o Western Gneiss Complex (WGC)) along the Norwegian west coast. They occur as isolated lenses that contain diverse mineral parageneses and/or bulk rock compositions. Crustal incorporation of orogenic peridotite is classically interpreted to be the result of plate collisional processes related to orogeny (Brueckner and Medaris, 2000). The WGC and parts of the upper part of the Middle Allochthon (a.o. Seve Nappe Complex (SNC) in N Jämtland/S Västerbotten, central Sweden), are well known for the occurrence of high (HP) and ultrahigh pressure (UHP) metamorphic terranes (of Caledonian age). The (U)HPM evidence clearly demonstrates the deep metamorphic origin of these rocks interpreted to be caused by continental subduction and/or collision. Other metamorphic rocks (of Caledonian age) exposed in allochthonous nappes are solely characterised by greenschist-, amphibolite- and/or MP granulite "facies" mineral assemblages that can be interpreted, in the absence of retrogression, to have formed in less deeply subducted (and/or metamorphic) environments. This duality in metamorphic "facies" allows for a discrimination (at least theoretically) between "deep" versus "shallow" rooted nappes (in central parts of the Scandinavian Caledonides). Conform this reasoning, this duality should also be present within the Caledonian mineral assemblages (= metamorphic overprint) of orogenic peridotites (in

  2. U Pb, Hf and O isotope evidence for two episodes of fluid-assisted zircon growth in marble-hosted eclogites from the Dabie orogen

    NASA Astrophysics Data System (ADS)

    Wu, Yuan-Bao; Zheng, Yong-Fei; Zhao, Zi-Fu; Gong, Bing; Liu, Xiaoming; Wu, Fu-Yuan

    2006-07-01

    A combined study of internal structure, U-Pb age, and Hf and O isotopes was carried out for metamorphic zircons from ultrahigh-pressure eclogite boudins enclosed in marbles from the Dabie orogen in China. CL imaging identifies two types of zircon that are metamorphically new growth and recrystallized domain, respectively. The metamorphic zircons have low Th and U contents with low Th/U ratios, yielding two groups of 206Pb/ 238U age at 245 ± 3 to 240 ± 2 Ma and 226 ± 4 to 223 ± 2 Ma, respectively. Anomalously high δ 18O values were obtained for refractory minerals, with 9.9 to 21.4‰ for garnet and 16.9‰ for zircon. This indicates that eclogite protolith is sedimentary rocks capable of liberating aqueous fluid for zircon growth during continental subduction-zone metamorphism. Most of the zircons are characterized by very low 176Lu/ 177Hf ratios of 0.000001-0.000028, indicating their growth in association with garnet recrystallization. A few of them falling within the older age group have comparatively high 176Lu/ 177Hf ratios of 0.000192-0.000383, suggesting their growth prior to the formation of garnet in the late stage of subduction. The variations in the Lu/Hf ratios for zircons can thus be used to correlate with garnet growth during eclogite-facies metamorphism. In either case, the zircons have variable ɛHf ( t) values for individual samples, suggesting that their protolith is heterogeneous in Hf isotope composition with localized fluid availability in the bulk processes of orogenic cycle. Nevertheless, a positive correlation exists between 206Pb/ 238U ages and Lu-Hf isotope ratios for the metamorphically recrystallized zircons, suggesting that eclogite-facies metamorphism in the presence of fluid has the identical effect on zircon Lu-Hf and U-Th-Pb isotopic systems. We conclude that the zircons of the older group grew in the presence of fluid during the subduction prior to the onset of peak ultrahigh-pressure metamorphism, whereas the younger zircons

  3. Syn-orogenic high-temperature crustal melting: Geochronological and Nd-Sr-Pb isotope constraints from basement-derived granites (Central Damara Orogen, Namibia)

    NASA Astrophysics Data System (ADS)

    Ostendorf, Jörg; Jung, Stefan; Berndt-Gerdes, Jasper; Hauff, Folkmar

    2014-04-01

    Major and trace element and Nd, Sr and Pb isotope data from c. 550 Ma-old gray granites and c. 510 Ma-old red leucogranites of the high-grade central part of the Damara orogen (Namibia) indicate a dominantly deep crustal origin. Moderately peraluminous gray granites are isotopically evolved (initial ɛNd: c. - 17) and were likely derived from meta-igneous sources with late Archean to Paleoproterozoic crustal residence ages. Based on a comparison with experimental results, the granites were derived by partial melting of a granodioritic biotite gneiss at c. 900-950 °C and less than 10 kbar. Slightly peraluminous red leucogranites are also isotopically evolved (initial ɛNd: - 15 to - 18) but have undergone extensive crystal fractionation coupled with minor contamination of mid crustal meta-pelitic material. Major and trace element data do not support closed-system fractional crystallization processes for all samples, however, some chemical features underline the importance of crystal fractionation processes especially for the leucogranites. Isotope data do not support mixing of different crust-derived melts or assimilation of crustal rocks by a mafic magma on a large scale. For the gray granites, unradiogenic Pb isotope compositions with substantial variation in 207Pb/204Pb at almost constant 206Pb/204Pb, strongly negative ɛNd values and moderately radiogenic Sr isotope compositions argue for an undepleted nature of the source. High Rb/Sr ratios of the red leucogranites permit a comparison with the gray granites but similar initial ɛNd values indicate that the source of these granites is not fundamentally different to the source of the gray granites. The most acceptable model for both granite types involves partial melting of meta-igneous basement rocks of Archean to Proterozoic age. The consistency of the chemical data with a crustal anatectic origin and the observation that the gray granites intruded before the first peak of high-grade regional metamorphism

  4. Achaean Continental Crust Under the Pan-African Orogenic Belt, East Antarctica

    NASA Astrophysics Data System (ADS)

    Ishikawa, M.

    2001-12-01

    Lützow-Holm Complex, located in East Antarctica, is a Cambrian collision zone between Achaean craton (Napier Complex) and Dronning Moud Land, where occurs the upper amphibolite- to granulite-facies rocks, and it is regarded as a part of the Pan-African orogenic belt during Gondwana continent amalgamation. The exhumation of the granulite-facies rocks with clockwise P-T path has been attributed to extensive surface erosion (up to 30 km thick) of double-thickened crust, but the common belief that higher-pressure garnet bearing rocks e.g. high-pressure granulites and/or eclogites exist at deeper level of crust is not supported by geophysical data. In this paper we reconstruct crustal structure beneath Lützow-Holm Complex by combining ultrasonic velocity of rocks with seismic velocity structure. Consequently our results suggest that Achaean continental crust (lower pressure) exists under the Pan-African Orogenic Belt (higher pressure), and propose a new tectonic model for exhumation of the granulite-facies metamorphic belt instead of the double-thickened crust model. P-wave velocity (Vp) in ultra-high temperature granulites (UHT) was measured up to 1.0 GPa from 25°C to 400°C with a piston-cylinder-type high-pressure apparatus. Rocks measured are meta-igneous UHT rocks collected from Mount Riiser-Larsen, Enderby Land, East Antarctica where the Achaean Napier Complex occurs. Core rock samples with 14mm diameter and 12mm long were subjected to high-pressure experiments. All rocks show a rapid increase of Vp at low pressure up to 0.4 GPa and nearly constant Vp at higher pressures. The Vp values measured at 1.0 GPa and 400°C are 7.17 km/s for a meta-pyroxenite, 6.93 km/s, 6.88 km/s for mafic granulites and 6.17 km/s for an orthopyroxene felsic gneiss. The Vp values measured for the Napier mafic granulites are comparable to the lower crustal layer (6.95 km/s of Vp at depth from 33 to 40 km) under the Lützow-Holm Complex. The present results suggest that the lower crust

  5. FES cycling.

    PubMed

    Newham, D J; Donaldson, N de N

    2007-01-01

    Spinal cord injury (SCI) leads to a partial or complete disruption of motor, sensory, and autonomic nerve pathways below the level of the lesion. In paraplegic patients, functional electrical stimulation (FES) was originally widely considered as a means to restore walking function but this was proved technically very difficult because of the numerous degrees of freedom involved in walking. FES cycling was developed for people with SCI and has the advantages that cycling can be maintained for reasonably long periods in trained muscles and the risk of falls is low. In the article, we review research findings relevant to the successful application of FES cycling including the effects on muscle size, strength and function, and the cardiovascular and bone changes. We also describe important practical considerations in FES cycling regarding the application of surface electrodes, training and setting up the stimulator limitations, implanted stimulators and FES cycling including FES cycling in groups and other FES exercises such as FES rowing.

  6. Coupled delamination and indentor-escape tectonics in the southern part of the c. 650-500 Ma East African/Antarctic Orogen

    NASA Astrophysics Data System (ADS)

    Jacobs, J.; Thomas, R. J.; Ueda, K.; Kleinhanns, I.; Emmel, B.; Kumar, R.; Engvik, A.; Bingen, B.

    2009-12-01

    The East African/Antarctic Orogen (EAAO) is one of the largest orogenic belts on the planet, resulting from the collision of various parts of East and West- Protogondwana between 620 and 550 Ma. The central and southern parts of the orogen are typified by high-grade rocks, representing the overprinted margins of the various colliding continental blocks. The southern third of this Himalayan-type orogen can be interpreted in terms of a lateral tectonic escape model, similar to the situation presently developing in SE-Asia. One of the escape-related shear zones of the EAAO is exposed as the approximately 20 km wide Heimefront transpression zone in western Dronning Maud Land (Antarctica). During Gondwana break-up, the southern part of the EAAO broke up into a number of microplates (Falkland, Ellsworth-Haag and Filchner blocks). These microplates probably represent shear zone-bound blocks, which were segmented by tectonic translation during lateral tectonic extrusion. The southern part of the EAAO is also typified by large volumes of late-tectonic A2-type granitoids that intruded at c. 530-490 Ma, and can constitute up to 50% of the exposed basement. They are likely the consequence of delamination of the orogenic root and the subsequent influx of hot asthenospheric mantle during tectonic escape. The intrusion of these voluminous melts into the lower crust was accompanied by orogenic collapse. The A2-type magmatism appears to terminate along the Lurio Belt in northern Mozambique. Therefore, the Lurio Belt could represent an accommodation zone, separating an area to the south in which the orogen underwent delamination of the orogenic root, and an area to the north, where the orogenic keel is still present. Erosional unroofing of the northern EAAO is documented by the remnants of originally extensive areas covered by Cambro-Ordovician molasse-type clastic sedimentary rocks throughout North Africa and Arabia, testifying to the size of this mega-orogen. Whilst the EAAO

  7. Disruption and translation of an orogenic wedge by exhumation of large continental ultrahigh pressure terranes: Examples from the Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Cuthbert, S.; Brueckner, H.

    2012-04-01

    Many collisional orogens are cored by extensive metamorphic terranes composed of reworked continental crust that developed high pressure/ultrahigh pressure (HP/UHP) metamorphic assemblages during subduction into the mantle. The return of these large, buoyant masses to shallow crustal levels has a major effect on orogenic architecture. A model is proposed where thrust-dominated accretion of an orogenic wedge during continental subduction is succeeded by stretching and passive transport of the wedge on top of an exhuming UHP terrane. Initial thrusting occurs when cratons collide and one subducts beneath the other into the mantle. The subducted portion of the craton undergoes HP/UHP metamorphism while an accretionary orogenic wedge develops at its junction with the overlying craton. Subsequent exhumation of the HP/UHP portion occurs either by true extension, which pulls it out of the mantle, and/or by buoyancy-driven extrusion, which inserts it along faults between the lower craton and the base of the wedge. In either case, shearing along the top of the exhuming terrane will reverse from foreland-directed thrusting during subduction to hinterlandward normal displacement during exhumation. The latter shear traction stretches the frontal part of the orogenic wedge away from the rearward part and may even detach it, allowing a fragment to be carried passively towards the foreland on the exhuming plate. The length of displacement would be a function of the amount of exhumation of the UHP terrane, and the total displacement of the leading wedge taper could be considerably further than indicated by palinspastic restorations of thrust allochthons alone. The Jotun and Trondheim Nappe Complexes form major allochthon elements of the Caledonide orogenic wedge in southern and central Scandinavia, respectively. We propose the late-stage behaviour of these allochthons was a response to the rise and lateral transport of the underlying HP/UHP Western Gneiss Complex (WGC). During the

  8. Mass flux into the Nanga Parbat-Haramosh massif: Orogen-parallel transport, lower crustal flow, or both?

    NASA Astrophysics Data System (ADS)

    Whipp, D. M.; Beaumont, C.; Braun, J.

    2011-12-01

    Relative to most of the Himalaya, the Nanga Parbat-Haramosh massif requires an additional mass flux into its base to balance extreme rates of surface denudation (>10 mm/a) over the last ~2-3 Ma. One proposed source is middle to lower crustal flow into the massif (e.g., Zeitler et al., 2001), which while likely inactive elsewhere along strike, may be sustainable by very rapid surface denudation, a high geothermal gradient, and thermal weakening of rocks beneath the syntaxes. An alternative source is orogen-parallel (OP) transport due to oblique convergence and strain partitioning along the Himalayan arc (e.g., Seeber and Pêcher, 1998). Several observations including (1) predominantly orogen-normal slip on the frontal thrusts deduced from seismic events, (2) OP extension accommodated on orogen-normal structures, and (3) distributed and segmented strike-slip faulting trending parallel to the arc are consistent with strain partitioning and OP mass transport. A key question is can this mechanism supply sufficient mass to the Nanga Parbat syntaxis, or is local channel flow required? We explore mass transport into the western Himalayan syntaxis region using lithospheric-scale 3D mechanical and coupled thermo-mechanical models of an arcuate orogen. The crust is either frictional plastic or power-law viscous, with a constant low viscosity lower crust present in some experiments. Applied velocity boundary conditions are transmitted to the base of the crust by a strong frictional plastic mantle lithosphere, and mantle detachment/subduction drives formation of a bivergent, arcuate orogen. To assess the magnitude of mass transport from strain partitioning, we first explore purely mechanical experiments featuring a 5-km-high Tibet-like plateau above a weak lower crust and with a frictional plastic decollement that dips at 10° beneath the incipient orogen, similar to the Himalayan basal detachment. Preliminary results show gravitational feedback from the plateau drives

  9. Clinoform deposition across a boundary between orogenic front and foredeep - an example from the Lower Cretaceous in Arctic Alaska

    USGS Publications Warehouse

    Houseknecht, David W.; Wartes, Marwan A.

    2013-01-01

    The Lower Cretaceous Fortress Mountain Formation occupies a spatial and temporal niche between syntectonic deposits at the Brooks Range orogenic front and post-tectonic strata in the Colville foreland basin. The formation includes basin-floor fan, marine-slope and fan-delta facies that define a clinoform depositional profile. Texture and composition of clasts in the formation suggest progressive burial of a tectonic wedge-front that included older turbidites and mélange. These new interpretations, based entirely on outcrop study, suggest that the Fortress Mountain Formation spans the boundary between orogenic wedge and foredeep, with proximal strata onlapping the tectonic wedge-front and distal strata downlapping the floor of the foreland basin. Our reconstruction suggests that clinoform amplitude reflects the structural relief generated by tectonic wedge development and load-induced flexural subsidence of the foreland basin.

  10. Moho depth model from GOCE gravity gradient data for the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Guy, Alexandra; Holzrichter, Nils; Ebbing, Jörg

    2016-04-01

    GOCE gravity gradient data are used together with published seismic data to determine the Moho geometry and the isostatic state of the Central Asian Orogenic Belt (CAOB). The CAOB is an accretionary orogen formed during the Palaeozoic at the periphery of the Siberian cratonic nucleus by the successive amalgamation of different types of crust (cratonic, oceanic, passive margin, magmatic arc, back-arc, ophiolites, accretionary wedge) followed by an oroclinal bending during Permian-Triassic times. This large area was and is still of great interest for geoscientific studies mainly because of its potential in mineral and fossil resources and also for its outstanding, but still misunderstood, geodynamic evolution. However, the geophysical investigations remain scarce due to the remoteness of the area. A systematic analysis of the crustal thickness has been omitted yet, although the geometry of the crust-mantle boundary (Moho boundary) provides crucial information on the evolution of the lithosphere and on the coupling between upper mantle and the crust - particularly interesting for oroclinal bending processes. In this study, the gravity gradient data of GOCE are used to investigate the topography of the Moho for Mongolia and its surroundings. In addition, we used inversion of gravity data and calculation of the isostatic Moho from topographic data to the World Gravity Map (WGM) 2012 satellite-terrestrial model of the Earth's gravity anomalies and these results are compared together with those obtained for the GOCE gravity data. The results of the gravity inversion are constrained by the few xenolith studies and the seismic data available: the receiver function seismic method for north and central Mongolia, deep seismic sounding and seismic reflection profiles in northern China; and tomography in southern Siberia. Then, the effects of isostatic compensation are evaluated by the comparison between the results of the gravity inversion and the isostatic Moho. Finally, a 3D

  11. A Late Cretaceous Orogen Triggering the Tertiary Rifting of the West Sunda Plate; Andaman Sea Region

    NASA Astrophysics Data System (ADS)

    Sautter, B.; Pubellier, M. F.; Menier, D.

    2015-12-01

    Rifted Basins often develop in internal zones of orogenic belts, although the latter may not be easy to unravel. We chose the example of the super-stretched Andaman sea region affected by several stages of rifting in the internal zone of a composite collage of allochthonous terranes. We made use of a set of geophysical, geochronological and structural data to analyze the rifting evolution and reconstruct the previous compressional structures. - Starting in the late Oligocene the East Andaman Basin opened as a back arc in a right-lateral pull- apart. The rifting propagated Westward to the central Andaman basin in the Middle Miocene, and to the oceanic spreading stage in the Pliocene. - An early extension occurred in the Paleogene, marked by widespread opening of isolated continental basins onshore Malay Peninsula and offshore Andaman Shelf and Malacca Straits. The rifting was accommodated by LANF's along preexisting weakness zones such as hinges of folds and granitic batholiths. Continuous extension connected the isolated basins offshore, whereas onshore, the grabens remained confined. There, AFT data show an uplift phase around 30Ma. In the Late Cretaceous, a major deformation occurred oblique to the pre-existing Indosinian basement fabrics. The convergence was partitioned into thrusting and uplift of the Cretaceous volcanic arc in Thailand and Myanmar, inversion of Mesozoic basins, and coeval wrenching responsible for large phacoid-shaped crustal slivers bounded by wide strike slip fault zones. The slivers share similar characteristics: a thick continental core of lower Paleozoic sedimentary basins units surrounded by Late Cretaceous granitoids. Radiometric data and fission tracks indicate a widespread thermal anomaly in all West Sunda Plate synchronous to a strong uplift. In the Latest Mesozoic, the Western Margin of Sunda plate was subjected to a major E-W compression, accommodated by oblique conjugate strike slip faults, leading to the formation of a large

  12. Crustal recycling through intraplate magmatism: Evidence from the Trans-North China Orogen

    NASA Astrophysics Data System (ADS)

    He, Xiao-Fang; Santosh, M.

    2014-12-01

    The North China Craton (NCC) preserves the history of crustal growth and craton formation during the early Precambrian followed by extensive lithospheric thinning and craton destruction in the Mesozoic. Here we present evidence for magma mixing and mingling associated with the Mesozoic tectonic processes from the Central NCC, along the Trans-North China Orogen, a paleo suture along which the Eastern and Western Blocks were amalgamated at end of Paleoproterozoic. Our investigations focus on two granitoids - the Chiwawu and the Mapeng plutons. Typical signatures for the interaction of mafic and felsic magmas are observed in these plutons such as: (1) the presence of diorite enclaves; (2) flow structures; (3) schlierens; (4) varying degrees of hybridization; and (5) macro-, and micro-textures. Porphyritic feldspar crystals show numerous mineral inclusions as well as rapakivi and anti-rapakivi textures. We present bulk chemistry, zircon U-Pb geochronology and REE data, and Lu-Hf isotopes on the granitoids, diorite enclaves, and surrounding basement rocks to constrain the timing of intraplate magmatism and processes of interaction between felsic and mafic magmas. Our LA-ICP-MS zircon U-Pb data show that the pophyritic granodiorite was emplaced at 129.7 ± 1.0 Ma. The diorite enclaves within this granodiorite show identical ages (128.2 ± 1.5 Ma). The basement TTG (tonalite-trondhjemite-granodiorite) gneisses formed at ca. 2.5 Ga coinciding with the major period of crustal accretion in the NCC. The 1.85 Ga age from zircons in the gabbro with positive Hf isotope signature may be related to mantle magmatism during post-collisional extension following the assembly of the Western and Eastern Blocks of the NCC along the Trans-North China Orogen. Our Hf isotope data indicate that the Neoarchean-Paleoproterozoic basement rocks were derived from complex sources of both juvenile magmas and reworked ancient crust, whereas the magma source for the Mesozoic units are dominantly

  13. Sediment supply from the Betic-Rif orogen to basins through Neogene

    NASA Astrophysics Data System (ADS)

    Iribarren, L.; Vergés, J.; Fernàndez, M.

    2009-09-01

    We present a quantification of total and partial (divided by time slices) sedimentary volumes in the Neogene basins of the Betic-Rif orogen. These basins include the Alboran Sea, the intramontane basins, the Guadalquivir and Rharb foreland basins and the Atlantic Margin of the Gibraltar Arc. The total volume of Neogene sediments deposited in these basins is ~ 209,000 km 3 and is equally distributed between the internal (Alboran Basin and intramontane basins) and the external basins (foreland basins and Atlantic Margin). The largest volumes are recorded by the Alboran Basin (89,600 km 3) and the Atlantic Margin (81,600 km 3). The Guadalquivir and Rharb basins amount 14,000 km 3 and 14,550 km 3, respectively whereas the intramontane basins record 9235 km 3. Calculated mean sediment accumulation rates for the early-middle Miocene show an outstanding asymmetry between the Alboran basin (0.24 mm/yr) and the foreland basins (0.06-0.07 mm/yr) and the Atlantic Margin (0.03 mm/yr). During the late Miocene, sedimentation rates range between 0.17 and 0.18 mm/yr recorded in the Alboran Basin and 0.04 mm/yr in the intramontane basins. In the Pliocene-Quaternary, the highest sedimentation rates are recorded in the Atlantic Margin reaching 0.22 mm/yr. Sedimentary contribution shows similar values for the inner and outer basins with a generalized increase from late Miocene to present (from 3500 to 6500 km 3/My). Interestingly, the Alboran Basin records the maximum sedimentary contribution during the late Miocene (5500 km 3/My), whereas the Atlantic Margin does during the Pliocene-Quaternary (6600 km 3/My). The spatial and time variability of the sediment supply from the Betic-Rif orogen to basins is closely related to the morphotectonic evolution of the region. The high sedimentation rates obtained in the Alboran Basin during the early-middle Miocene are related to active extensional tectonics, which produced narrow and deep basins in its western domain. The highest sedimentary

  14. Syn-Uralian orogenic heavy mineral provenance analysis from southeastern Taimyr, Arctic Russia

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Pease, V.; Scott, R. A.

    2012-12-01

    The Taimyr peninsula is on the northern margin of the Siberian craton and divides into the southern, central and northern NE - SW trending domains. The southern Taimyr domain represents the passive margin of Siberia and is dominated by a Paleozoic, extending into the early Mesozoic, succession. The central Taimyr domain accreted to the southern domain during Late Precambrian time, followed by collision with the northern Taimyr domain of Baltican affinity during the Late Paleozoic as part of Uralian orogenesis. The Carboniferous - Permian sedimentary succession, which was deposited during the later stage of Uralian Orogeny, can provide crucial information about the extent of contemporaneous Uralian orogensis and its influence on the tectonic evolution of southern Taimyr. Three Carboniferous - Permian samples from southeastern Taimyr were analyzed for petrography and heavy mineral analysis to define their sedimentary and provenance characteristics. The Upper Carboniferous to Lower Permian sample (VP10-25, Turuzovskya Formation, C2-P1tr), the Lower Permian sample (VP10-14, Sokolinskaya Formation, P1sk) and the Upper Permian sample (VP10-12, Baykurskaya Formation, P2bk)) classify as subarkose, lithic arkose and feldspathic litharenite, respectively- they record decreasing sediment maturity through time. While all the samples represent a 'recycled orogen' source based on QtFL plots, the C2-P1tr sample represents a recycled quartzite, while the P1sk sample plots within the mixed field, and the P2bk sample is transitional on QmFLt plots. According to the heavy mineral analysis results, the C2-P1tr sample and P1sk sample show great similarity in heavy mineral assemblage, dominated by zircon, apatite and rutile. The P2bk sample shows distinct differences, containing apatite, tourmaline, garnet and zircon. The prominent increase of garnet suggests a metamorphic source. These similarities and variations among the three samples are also shown in other discrimination diagrams

  15. From migmatites to granites in the Pan-African Damara orogenic belt, Namibia

    NASA Astrophysics Data System (ADS)

    Toé, W.; Vanderhaeghe, O.; André-Mayer, A.-S.; Feybesse, J.-L.; Milési, J.-P.

    2013-09-01

    The Swakop River exposes a unique structural section into the root of the Pan-African Damara orogenic belt (DOB) in Namibia formed as a result of collision between the Congo and the Kalahari cratons from ca. 550 to 500 Ma. The Central Zone of the Damara orogenic belt is characterized by amphibolite to granulite facies metamorphism accompanied by intense partial melting. Three tectonic units are defined in the Central Zone based on the proportion and distribution of the granitic fraction, namely (1) a lower unit dominated by diatexites and comprising plutons of homogeneous granites, (2) a middle unit composed by metatexites with mainly a metasedimentary protolith, and (3) an upper unit corresponding to metamorphic rocks with intrusive leucogranitic sills and laccoliths. The increase in the granitic fraction with structural depth is suggesting an increase in the degree of partial melting and implies a relative inefficiency of magma mobility from the source to higher structural levels. The transition from metatexites of the middle unit to diatexites and granites of the lower unit is interpreted as reflecting the former transition from partially molten rocks to a crustal-scale magmatic layer. Mushroom-shaped granitic plutons in the lower unit are consistent with their emplacement as diapirs and the development of gravitational instabilities within the magmatic layer. In the middle unit, granitic veins concordant and discordant to the synmigmatitic foliation localized in structurally-controlled sites (foliation, boudin's necks, shear zones, fold hinges) indicate that, within the partially molten zone, deformation plays the dominant role in melt segregation and migration at the outcrop scale. Melt migration from the partially molten zone to the intrusive zone is related to the build-up of an interconnected network of dikes and sills with diffuse contacts with the migmatitic hosts in the middle unit. In contrast, the upper unit is characterized by homogeneous

  16. Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Yarmolyuk, V. V.; Kuzmin, M. I.; Ernst, R. E.

    2014-10-01

    The Central Asian Orogenic Belt (CAOB) was produced as a consequence of the successive closure of the Paleoasian Ocean and the accretion of structures formed within it (island arcs, oceanic islands, and backarc basins) to the Siberian continent. The belt started developing in the latest Late Neoproterozoic, and this process terminated in the latest Permian in response to the collision of the Siberian and North China continents that resulted in closure of the Paleoasian ocean (Metcalfe, 2006; Li et al., 2014; Liu et al., 2009; Xiao et al., 2010; Didenko et al., 2010). Throughout the whole evolutionary history of this Orogenic Belt, a leading role in its evolution was played by convergent processes. Along with these processes, an important contribution to the evolution of the composition and structure of the crust in the belt was made by deep geodynamic processes related to the activity of mantle plumes. Indicator complexes of the activity of mantle plumes are identified, and their major distribution patterns in CAOB structures are determined. A number of epochs and areas of intraplate magmatism are distinguished, including the Neoproterozoic one (Rodinia breakup and the origin of alkaline rock belt in the marginal part of the Siberian craton); Neoproterozoic-Early Cambrian (origin of oceanic islands in the Paleoasian Ocean); Late Cambrian-Early Ordovician (origin of LIP within the region of Early Caledonian structures in CAOB); Middle Paleozoic (origin of LIP in the Altai-Sayan rift system); Late Paleozoic-Early Mesozoic (origin of the Tarim flood-basalt province, Central Asian rift system, and a number of related zonal magmatic areas); Late Mesozoic-Cenozoic (origin of continental volcanic areas in Central Asia). Geochemical and isotopic characteristics are determined for magmatic complexes that are indicator complexes for areas of intraplate magmatism of various age, and their major evolutionary trends are discussed. Available data indicate that mantle plumes

  17. Linking the Timescales of Orogenic growth and Climatic Feedback in Southern New Zealand: A Pilot Study

    NASA Astrophysics Data System (ADS)

    Batt, G. E.; Zwingmann, H.

    2008-12-01

    Orogenic systems are the rejuvenating engines of the Global Earth system, converting the thermal and kinetic energy of tectonic processes into uplift of the landscape that, in turn, drives erosion and renews the fertility of the biosphere. Understanding the relationships between tectonic uplift, erosion, and local climate, however, lags behind quantitative understanding of other areas of Earth Systems Science. The challenge in developing this field lies in the requirement of independently documenting the long-term evolution of these three systems for a given region. Although sensitive chronometric constraint has long been successfully derived for climatic and structural systems, an inability to constrain the temporal evolution of topography has represented a fundamental deficiency in our understanding. Without such chronometric constraint, correlation and testing of models of fundamental links between tectonic forcing and climate variation remain essentially arbitrary and artificial. We present here the results of a pilot investigation into the feasibility of dating authigenic illite extracted from Miocene-Recent paleosols and weathered surfaces formed during the development of the Southern Alps of New Zealand. Chamberlain et al. (1999) have previously attributed a stable isotope signature resolved in Kaolinite from these weathered horizons as recording development of strongly asymmetric climatic zonation as a consequence of Mio-Pliocene growth of the Southern Alps. By re-visiting this approach to assessing the topographic record of the orogen through isotopic proxy measurements, and combining this with direct chronological constraint of the weathered materials making up this record, we hope to examine the potential of developing a robust framework in which to investigate and model the linked processes of mountain growth and local scale climatic effects. Initial results have been mixed. Clay fractions have been separated from 7 variably weathered paleosols and

  18. Continental Construction and Crustal Growth of Central Asian Orogenic Belt in Mongolia

    NASA Astrophysics Data System (ADS)

    Schulmann, K.; Guy, A.; Lehmann, J.; Seltmann, R.; Lexa, O.

    2013-12-01

    The geophysical and geochemical data document crustal growth and continent construction processes responsible for episodic formation of Central Asian Orogenic Belt (CAOB) crust in Mongolia. Here, well-defined Cambrian suture rims the western borders of Proterozoic continental fragments in Mongolia and Russia (1200 to 700 Ma). This arcuate suture zone is defined by numerous ophiolites (800-560 Ma) originated by Early Cambrian obduction of young (Late Proterozoic) oceanic basins and magmatic arcs. The juvenile crust further south is built by gneisses a metasediments dated at 530-470 Ma interpreted as a Cambro-Ordovician accretionary prism intruded by juvenile Devono-Carboniferous Japan type magmatic arcs. The southerly mantle fragments covered by Silurian cherts, Devonian basaltic volcanics and late Devonian volcanoclastic sediments are interpreted as an oceanic crust of back arc and oceanic arc affinity. Following scenario is proposed: 1) Proterozoic basement blocks formed N-S trending zone documented by the shape of Early Cambrian suture, 2) Devono-Carboniferous magmatic arcs were emplaced during E-W shortening event along western margin of this zone leading to moderate crustal shortening, 3) the intra oceanic ophiolites were thrust over Devonian volcanoclastics during Late Carboniferous in the E-W direction. All that suggests that the early Devonian (Phillipiny sea type) back arc spreading was replaced by 50 to 80 My lasting E-W compressive regime during prolonged activity of north trending Mongol-Okhotsk Pacific type subduction zone. The change in tectonic movements from E-W to N-S is responsible for oroclinal bending of trail of Mongolian microcontinents and scissor-like closure of Mongol Okhotsk (Pacific ocean embayment) ocean. We conclude that both crustal growth and crustal construction are episodic in the CAOB. The former process occurred in two main episodes related to Pacific subduction, while the continental construction is a complex sequence of two peri

  19. The pre-Devonian tectonic framework of Xing'an-Mongolia orogenic belt (XMOB) in north China

    NASA Astrophysics Data System (ADS)

    Xu, Bei; Zhao, Pan; Wang, Yanyang; Liao, Wen; Luo, Zhiwen; Bao, Qingzhong; Zhou, Yongheng

    2015-01-01

    A new tectonic division of the Xing'an-Mongolia orogenic belt (XMOB) in north China has been presented according to our research and a lot of new data of tectonics, geochronology and geochemistry. Four blocks and four sutures have been recognized in the XMOB, including the Erguna (EB), Xing'an-Airgin Sum (XAB), Songliao-Hunshandake (SHB), and Jiamusi (JB), and Xinlin-Xiguitu (XXS), Xilinhot-Heihe (XHS), Mudanjiang (MS) and Ondor Sum-Yongji sutures (OYS). The framework of the XMOB is characterized by a tectonic collage of the blocks and orogenic belts between them. Different Precambrian basements have been found in the blocks, including the Neoproterozoic metamorphic rocks and plutons in the EB, the Neoproterozoic metamorphic rocks in western and eastern of segments of the XAB, Mesoproterozoic and Neoproterozoic metamorphic rocks in middle segments of the XAB, respectively, the Neoproterozoic metamorphic rocks and Mesoproterozoic volcanic rocks and plutons in the SHB, and Neoproterozoic metamorphic rocks in the JB. The XXS resulted from a northwestward subduction of the XAB beneath the EB during the Cambrian, which was followed by the forming of the XHS and OYS in the northwest and south margins of the SHB in the Silurian, respectively. The MS was caused by a westward subduction of the JB beneath the east margin of the SHB during the middle Devonian. The three Cambrian, Silurian and middle Devonian events indicate that the XMOB belongs to a pre-middle Devonian multiple orogenic belt in the Central Asian Orogenic Belt (CAOB). Forming of the XMOB suggests that the southeast part of the Paleo Asian Ocean closed before the middle Devonian.

  20. Early Mesozoic granitoid and rhyolite magmatism of the Bureya Terrane of the Central Asian Orogenic Belt: Age and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Sorokin, A. A.; Kotov, A. B.; Kudryashov, N. M.; Kovach, V. P.

    2016-09-01

    Early Mesozoic granitoids and volcanic rocks are widespread throughout the structures of all of the continental massifs in the eastern part of the Central Asian Orogenic Belt, although its tectonic setting is not yet clear. Generally, they are associated with subduction and plume processes or rifting. Such uncertainty is mostly explained by the unequal investigation of Early Mesozoic magmatism. This paper presents the results of geochemical, Sm-Nd isotope, and U-Pb geochronologic (ID-TIMS) studies of "key-type" Early Mesozoic magmatic rock complexes of the Bureya Terrane. This is one of the largest continental massifs in the eastern Central Asian Orogenic Belt and knowledge of its geological structure is of fundamental importance in understanding the history of its formation. It has been established that the leucogranites of the Altakhtinsky Complex and the trachyrhyolites of the Talovsky Complex are practically coeval (~ 209-208 Ma). The subalkaline leucogranites of the Kharinsky Complex have a slightly younger age of ~ 199 Ma. These data correspond to the general stage of Early Mesozoic magmatic and metamorphic events (236-180 Ma) in most continental massifs in the eastern Central Asian Orogenic Belt. We believe that large-scale Early Mesozoic events were related to the amalgamation of the continental massifs of the eastern Central Asian Orogenic Belt into a single continental structure (the Amur superterrane or microcontinent Amuria) and collision with the North Asian Craton. It should be noted that the collision processes were followed by crustal thickening, thus creating the conditions for metamorphism and formation of magmatic rock complexes of various geochemical types.

  1. A Major Out of Sequence Fault in Central Range and Its Implication to Mountain Building Process of Taiwan Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Lee, Y. H.

    2015-12-01

    A Major Out of Sequence Fault in Central Range and Its Implication to Mountain Building Process of Taiwan Orogenic Belt Yuan-Hsi Lee1, Wei Lo2, Wei-Hau Wang1, Tim-Byrne 3, Ruey-Juen Rau 41. Department of Earth and Environmental Sciences, National Chung Cheng University, Taiwan, R.O.C. 2. Department of Materials and Mineral Resources Engineering, Taipei, National Taipei University of Technology, Taiwan, R.O.C. 3. Center for Integrative Geosciences, University of Connecticut, Storrs, CT, USA 4. Department of Earth Science, National Chen-Kung University, Taiwan, R.O.C. Taiwan mountain belt results from collision between Eurasia continental crust and Philippine Sea plate that result in exposing the metamorphic complex with high exhumation rate in eastern Central Range of Taiwan orogenic belt. In this study we combine with field survey, zircon fission track (ZFT), metamorphic grade, and tomography data to identify there exists a major out of sequence fault (MOSF) in eastern Central Range of Taiwan orogenic belt. This MOSF extends from north to south of eastern central Range with several segments and the total length is more than 250 km. The ZFT shows total annealing age of ca.1-3 Ma on the hanging wall and partial annealing ages on the foot wall. The seismicity data indicates the MOSF is still active from central to southern central Range. We consider that the MOSF is related with crustal channel flow in depth. To the western side of crustal flow it shows thrusting mechanism associated with MOSF and the normal faults (or normal shearing zone) develop in eastern side of the crustal channel flow. This crustal channel flow is also related with exposing the metamorphic complex in Central Range that is important mechanism for the mountain building process of Taiwan orogenic belt.

  2. Large along-strike variations in the onset of Subandean exhumation: Implications for Central Andean orogenic growth

    NASA Astrophysics Data System (ADS)

    Lease, Richard O.; Ehlers, Todd A.; Enkelmann, Eva

    2016-10-01

    Plate tectonics drives mountain building in general, but the space-time pattern and style of deformation is influenced by how climate, geodynamics, and basement structure modify the orogenic wedge. Growth of the Subandean thrust belt, which lies at the boundary between the arid, high-elevation Central Andean Plateau and its humid, low-elevation eastern foreland, figures prominently into debates of orogenic wedge evolution. We integrate new apatite and zircon (U-Th)/He thermochronometer data with previously published apatite fission-track data from samples collected along four Subandean structural cross-sections in Bolivia between 15° and 20°S. We interpret cooling ages vs. structural depth to indicate the onset of Subandean exhumation and signify the forward propagation of deformation. We find that Subandean growth is diachronous south (11 ± 3 Ma) vs. north (6 ± 2 Ma) of the Bolivian orocline and that Subandean exhumation magnitudes vary by more than a factor of two. Similar north-south contrasts are present in foreland deposition, hinterland erosion, and paleoclimate; these observations both corroborate diachronous orogenic growth and illuminate potential propagation mechanisms. Of particular interest is an abrupt shift to cooler, more arid conditions in the Altiplano hinterland that is diachronous in southern Bolivia (16-13 Ma) vs. northern Bolivia (10-7 Ma) and precedes the timing of Subandean propagation in each region. Others have interpreted the paleoclimate shift to reflect either rapid surface uplift due to lithosphere removal or an abrupt change in climate dynamics once orographic threshold elevations were exceeded. These mechanisms are not mutually exclusive and both would drive forward propagation of the orogenic wedge by augmenting the hinterland backstop, either through surface uplift or spatially variable erosion. In summary, we suggest that diachronous Subandean exhumation was driven by piecemeal hinterland uplift, orography, and the outward

  3. A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods

    NASA Astrophysics Data System (ADS)

    Hronsky, Jon M. A.; Groves, David I.; Loucks, Robert R.; Begg, Graham C.

    2012-04-01

    Accretionary orogens are the sites of long-lived convergent margin tectonics, both compressional and extensional. They are also the hosts to the majority of the world's important gold deposits. A very diverse range of deposit types occurs within accretionary orogens, commonly in close proximity in space and time to each other. These include porphyry and associated high-sulphidation Au-Cu-Ag deposits, classic low-sulphidation Au-Ag deposits, low-sulphidation Au deposits centred on alkalic intrusive complexes, Carlin-type Au deposits, Au-rich volcanic-hosted massive sulphide deposits, orogenic Au deposits, intrusion-related Au deposits and iron oxide Cu-Au deposits. Empirical patterns of spatial distribution of these deposits suggest there must be fundamental generic controls on gold metallogeny. Various lines of evidence lead to the proposal that the underlying key generic factor controlling accretionary orogen gold metallogeny is regional-scale, long-term, pre- and syn-subduction heterogeneous fertilisation of the lithospheric mantle that becomes a source of mineralisation-associated arc magma or hydrothermal fluid components. This process provides a gold-enriched reservoir that can be accessed later in a diverse range of tectonomagmatic settings. Based on this concept, a unified model is proposed in which the formation of a major gold deposit of any type requires the conjunction in time and space of three essential factors: a fertile upper-mantle source region, a favourable transient remobilisation event, and favourable lithospheric-scale plumbing structure. This framework provides the basis for a practical regional-scale targeting methodology that is applicable to data-poor regions.

  4. Role of Neogene Exhumation and Sedimentation on Critical-Wedge Kinematics in the Zagros Orogenic Belt, Northeastern Iraq, Kurdistan

    NASA Astrophysics Data System (ADS)

    Koshnaw, R. I.; Horton, B. K.; Stockli, D. F.; Barber, D. E.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The Zagros orogenic belt and foreland basin formed during the Cenozoic Arabia-Eurasia collision, but the precise histories of shortening and sediment accumulation remain ambiguous, especially at the NW extent of the fold-thrust belt in Iraqi Kurdistan. This region is characterized by well-preserved successions of Cenozoic clastic foreland-basin fill and deformed Paleozoic-Mesozoic hinterland bedrock. The study area provides an excellent opportunity to investigate the linkage between orogenic wedge behavior and surface processes of erosion and deposition. The aim of this research is to test whether the Zagros orogenic wedge advanced steadily under critical to supercritical wedge conditions involving in-sequence thrusting with minimal erosion or propagated intermittently under subcritical condition involving out-of-sequence deformation with intense erosion. These endmember modes of mountain building can be assessed by integrating geo/thermochronologic and basin analyses techniques, including apatite (U-Th)/He thermochronology, detrital zircon U-Pb geochronology, stratigraphic synthesis, and seismic interpretations. Preliminary apatite (U-Th)/He data indicate activation of the Main Zagros Fault (MZF) at ~10 Ma with frontal thrusts initiating at ~8 Ma. However, thermochronometric results from the intervening Mountain Front Flexure (MFF), located between the MZF and the frontal thrusts, suggest rapid exhumation at ~6 Ma. These results suggest that the MFF, represented by the thrust-cored Qaradagh anticline, represents a major episode of out-of-sequence deformation. Detrital zircon U-Pb analyses from the Neogene foreland-basin deposits show continuous sediment derivation from sources to the NNE in Iraq and western Iran, suggesting that out-of-sequence thrusting did not significantly alter sedimentary provenance. Rather, intense hinterland erosion and recycling of older foreland-basin fill dominated sediment delivery to the basin. The irregular distribution of

  5. U-Pb zircon geochronology of the Adirondack Mountains and implications for their geologic evolution

    SciTech Connect

    McLelland, J. ); Chiarenzelli, J. ); Whitney, P.; Ischsen, Y. )

    1988-10-01

    U-Pb zircon studies of metamorphosed igneous rocks in the Adirondack Mountains have yielded preliminary ages within the range 1420-990 Ma. Several geochronologically and geochemically distinct episodes of igneous intrusion and at least one pre-granulite facies dynamothermal metamorphic event are documented. This information is consistent with recent field and geochronological studies throughout the Grenville province and suggests that a complex sequence of events occurred in the Adirondack Mountains prior to the widespread deformation and metamorphism commonly attributed to the {approximately} 1100-1000 Ma Ottawan phase of the Grenvillian orogenic cycle.

  6. Partial melting of deeply subducted eclogite from the Sulu orogen in China.

    PubMed

    Wang, Lu; Kusky, Timothy M; Polat, Ali; Wang, Songjie; Jiang, Xingfu; Zong, Keqing; Wang, Junpeng; Deng, Hao; Fu, Jianmin

    2014-12-17

    We report partial melting of an ultrahigh pressure eclogite in the Mesozoic Sulu orogen, China. Eclogitic migmatite shows successive stages of initial intragranular and grain boundary melt droplets, which grow into a three-dimensional interconnected intergranular network, then segregate and accumulate in pressure shadow areas and then merge to form melt channels and dikes that transport magma to higher in the lithosphere. Here we show, using zircon U-Pb dating and petrological analyses, that partial melting occurred at 228-219 Myr ago, shortly after peak metamorphism at 230 Myr ago. The melts and residues are complimentarily enriched and depleted in light rare earth element (LREE) compared with the original rock. Partial melting of deeply subducted eclogite is an important process in determining the rheological structure and mechanical behaviour of subducted lithosphere and its rapid exhumation, controlling the flow of deep lithospheric material, and for generation of melts from the upper mantle, potentially contributing to arc magmatism and growth of continental crust.

  7. Extension of a double-wedged orogen potentially leads to the current South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, G.; Lavier, L. L.

    2015-12-01

    The South China Sea (SCS) is surrounded by South China on the NW, Palawan and Reed Bank on the SE, as well as several microplates, resembling a jigsaw puzzle. In an attempt to better understand its evolution, we designed simplified thermomechanical models to simulate extension of a double-wedge-shaped orogen with highlands on both sides and lowland in the center to mimic the geological condition of the proto-SCS. We imposed constant extension rates on both sides and Gaussian-shaped thermal impulse in the center. We also varied the strength of lower crust but did not explicitly incorporate mid-ocean ridges and searfloor spreading mechanisms. We currently used symmetric double-wedge, but further tests are planed for asymmetric double-wedges. Our preliminary results show that the models produced many structures that resemble those of SCS, such as 1) a series of domino or conjugate faults sitting above a subsurface detachment (or décollement), 2) exhumed domes of middle-lower crust, 3) extreme thinning of both upper crust and lower crust, and 4) propagation of extension towards NW and SE margins. Our models suggest that superimposition of these modeled characteristics produced during several phases of extension of the SCS that may be due to thermal impulsion, magmatic events, and subduction related relaxation potentially produces high resemblance of the SCS.

  8. Timing of Mississippi Valley-type mineralization: Relation to Appalachian orogenic events

    SciTech Connect

    Kesler, S.E.; van der Pluijm, B.A. )

    1990-11-01

    Although Mississippi Valley-type deposits in Lower Ordovician carbonate rocks of the Appalachian orogen are commonly interpreted to have been precipitated by basinal brines, the timing of brine migration remains poorly known. Late Paleozoic K-Ar isotopic ages on authigenic K-feldspar, which is widespread in Appalachian carbonate rocks, as well as evidence of paleomagnetic overprints of similar age, have focused attention on the possibility that these Mississippi Valley-type deposits formed as a result of late Paleozoic deformation. Geologic and geochemical similarities among most of these deposits, from Georgia to Newfoundland, including unusually high sphalerite/galena ratios, isotopically heavy sulfur, and relatively nonradiogenic lead, suggest that they are coeval. Sphalerite sand that parallels host-rock layering in many of the deposits indicates that mineralization occurred before regional deformation. Although the late Paleozoic age of deformation in the southern Appalachians provides little constraint on the age of Mississippi Valley-type mineralization, deformation of these deposits in the Newfoundland Appalachians is early to middle Paleozoic in age. Thus, if Ordovician-hosted, Appalachian Mississippi Valley-type deposits are coeval, they must have formed by middle Paleozoic time and cannot be the product of a late Paleozoic fluid-expulsion event. This hypothesis has important implications for basin evolution, fluid events, and remagnetization in the Appalachians.

  9. Crustal Structure across the Appalachian Orogen in Pennsylvania from P-wave receiver functions

    NASA Astrophysics Data System (ADS)

    Arroyo, G.; Nyblade, A.; Homman, K.

    2014-12-01

    Crustal structure across the Appalachian Orogen from eastern Ohio to New Jersey is investigated using P-wave receiver functions to estimate Moho depths and crustal Vp/Vs ratios. Data for this study comes from the PASEIS and the USArray Transportable Array. The PASEIS seismic network includes 22 broadband seismic stations throughout Pennsylvania that were in installed in February 2013. Preliminary results from H-K stacking show that Moho depth varies greatly across the Appalachians, ranging from 53 km in northern Pennsylvania to only 32 km just west of the New Jersey border. The thickest crust can be found nearest to Lake Erie, and a relatively thick crust is maintained in northeastern Pennsylvania and along the Pennsylvania-Ohio border. Crustal thickness decreases to the southeast, and a rather sharp decrease can be seen well before the start of the Allegheny Front. Crustal thickness remains relatively uniform between 43 and 45km in the Appalachian Mountains, and decreases to 33-38km in the Piedmont province. Vp/Vs values range from 1.75 to 1.83, with no observable pattern to the variation.

  10. Sedimentation in detachment-dominated extensional orogens: Examples from the Mojave extensional belt, California

    SciTech Connect

    Travis, C.J.; Dokka, R.K. )

    1990-06-01

    Recent studies of syntectonic sedimentary rocks of the early Miocene Mojave Extensional Belt (MEB) provide new data on sediment dispersal within an evolving continental extensional orogen. Sediment dispersal within the MEB apparently reflects the evolution of the major tectonic elements of the belt. Sediments deposited in the breakaway zone of the Daggett terrane in the Newberry Mountains were derived from unextended regions to the southwest and from intraterrane tilted fault blocks to the northeast. Sediment dispersal patterns near transfer zones are typically perpendicular to extensional axes. In the Daggett terrane, coarse clastic materials were transported northwestward from unextended areas across the Kane Springs transfer fault into upper plate fault-bounded basins. Sequences accumulated in the hanging walls of upper plate tilted fault blocks exhibit geometries similar to those of breakaway zones, but show differences in thickness and textural attributes. Intraterrane arching is indicated by dispersal patterns in conglomerates of the central Cady Mountains in the Daggett terrane. Locally, detachment faulting may be succeeded by high-angle, normal faulting. In the Waterman terrane, this has resulted in relative uplift and the development of a metamorphic core complex in the Waterman Hills-Mitchell Range area. The uplift and unroofing history of the Waterman Hills is recorded in the thick deposits of the formation of Ross Canyon and the Barstow Formation of the Mud Hills.

  11. Contrasting Metamorphic Record of Heat Production Anomalies in the Penokean Orogen of Northern Michigan.

    PubMed

    Attoh

    2000-05-01

    It is proposed that the contrasting metamorphic mineral assemblages of the isolated amphibolite facies metamorphic highs in the Penokean orogen of northern Michigan may be caused by different heat production rates in the Archean basement. This hypothesis is based on concentrations of K, U, and Th in the Archean basement gneisses and Paleoproterozoic metasediments that indicate significant contribution of radiogenic heating during Penokean metamorphism. Heat production was anomalously high ( approximately 10.6 µWm-3) where andalusite-bearing mineral assemblages indicate that high temperatures were attained at shallow crustal levels ( approximately 550 degrees -600 degrees C at approximately 3 kbar). In contrast, where exposed metamorphic rocks indicate peak temperatures of 600 degrees -650 degrees C at 6-7 kbar, heat production in the Archean basement was lower ( approximately 3.7 µWm-3). The effect of heat production rates on the metamorphic pressure-temperature paths was tested with numerical thermal models. The calculations show (1) that if the heat production rate, where andalusite-bearing assemblages formed, was significantly <6.0 µWm-3, the estimated pressure at peak temperatures (PTmax) would be much higher and lie in the sillimanite or kyanite stability fields; and (2) differences between PTmax estimates for the metamorphic highs based on thermobarometry can be reproduced if thermal history involved significant crustal thickening as well as moderate unroofing rates. PMID:10769161

  12. Contrasting Metamorphic Record of Heat Production Anomalies in the Penokean Orogen of Northern Michigan.

    PubMed

    Attoh

    2000-05-01

    It is proposed that the contrasting metamorphic mineral assemblages of the isolated amphibolite facies metamorphic highs in the Penokean orogen of northern Michigan may be caused by different heat production rates in the Archean basement. This hypothesis is based on concentrations of K, U, and Th in the Archean basement gneisses and Paleoproterozoic metasediments that indicate significant contribution of radiogenic heating during Penokean metamorphism. Heat production was anomalously high ( approximately 10.6 µWm-3) where andalusite-bearing mineral assemblages indicate that high temperatures were attained at shallow crustal levels ( approximately 550 degrees -600 degrees C at approximately 3 kbar). In contrast, where exposed metamorphic rocks indicate peak temperatures of 600 degrees -650 degrees C at 6-7 kbar, heat production in the Archean basement was lower ( approximately 3.7 µWm-3). The effect of heat production rates on the metamorphic pressure-temperature paths was tested with numerical thermal models. The calculations show (1) that if the heat production rate, where andalusite-bearing assemblages formed, was significantly <6.0 µWm-3, the estimated pressure at peak temperatures (PTmax) would be much higher and lie in the sillimanite or kyanite stability fields; and (2) differences between PTmax estimates for the metamorphic highs based on thermobarometry can be reproduced if thermal history involved significant crustal thickening as well as moderate unroofing rates.

  13. Polyphase Neoproterozoic orogenesis within the east Africa- Antarctica orogenic belt in central and northern Madagascar

    USGS Publications Warehouse

    Key, R.M.; Pitfield, P.E.J.; Thomas, Ronald J.; Goodenough, K.M.; Waele, D.; Schofield, D.I.; Bauer, W.; Horstwood, M.S.A.; Styles, M.T.; Conrad, J.; Encarnacion, J.; Lidke, D.J.; O'connor, E. A.; Potter, C.; Smith, R.A.; Walsh, G.J.; Ralison, A.V.; Randriamananjara, T.; Rafahatelo, J.-M.; Rabarimanana, M.

    2011-01-01

    Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa-Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, deformation and metamorphism, and separated by tectonic and/or unconformable contacts. Four consist largely of Archaean metamorphic rocks (Antongil, Masora and Antananarivo Cratons, Tsaratanana Complex). The fifth (Bemarivo Belt) comprises Proterozoic meta-igneous rocks. The older rocks were intruded by plutonic suites at c. 1000 Ma, 820-760 Ma, 630-595 Ma and 560-520 Ma. The evolution of the four Archaean domains and their boundaries remains contentious, with two end-member interpretations evaluated: (1) all five crustal domains are separate tectonic elements, juxtaposed along Neoproterozoic sutures and (2) the four Archaean domains are segments of an older Archaean craton, which was sutured against the Bemarivo Belt in the Neoproterozoic. Rodinia fragmented during the early Neoproterozoic with intracratonic rifts that sometimes developed into oceanic basins. Subsequent Mid- Neoproterozoic collision of smaller cratonic blocks was followed by renewed extension and magmatism. The global 'Terminal Pan-African' event (560-490 Ma) finally stitched together the Mid-Neoproterozoic cratons to form Gondwana. ?? The Geological Society of London 2011.

  14. Ray equation migration of wide-angle reflections in Dabie orogenic zone

    NASA Astrophysics Data System (ADS)

    Zheng, Xu-Yao; Wang, Chun-Yong; Lai, Xiao-Ling; Zhang, Xian-Kang

    1998-03-01

    Ray equation migration of wide-angle reflections in 2-D medium is one kind of Kirchhoff prestack depth migration method. Based on ray theory, this method can be used extensively in 2-D inhomogeneous medium, and shows its advantage in wide-angle reflection study. After calculating ray fields, we can get the wave fields of sources and receivers by interpolation, and the intensity (or amplitude) A p corresponding to the depth point P at travel-time t P =t SP +t PR can be found in seismograms. Ray equation migration is completed by transforming A P according to the specific relation, migrating it to the depth point, then calculating the ray fields of lots of sources and receivers in the same way and finally stacking the outcomes. Numerical calculation has yielded satisfactory results. Data processing of the Zhuangmu-Yuexi-Huangmei-Zhanggondu profile passing through the Dabie orogenic zone provides a structural form of M-discontinuity along the profile. The result shows that the high pressure metamorphic rock zone of South Dabie rock mass is related to the uplifting of M-discontinuity here. "Mountain root" exists under North Dabie rock mass, which conforms with gravity isostasy theory. The Xiaotian-Mozitan fault is a suture zone as a result of the collision of North China plate with Yangtze plate, and extends through M-discontinuity. The abyssal fault near Liu’an is the extended eastern section of the Luonan-Minggang fault, which is also confirmed here.

  15. Strong Lg-wave attenuation in the Middle East continental collision orogenic belt

    NASA Astrophysics Data System (ADS)

    Zhao, Lian-Feng; Xie, Xiao-Bi

    2016-04-01

    Using Lg-wave Q tomography, we construct a broadband crustal attenuation model for the Middle East. The QLg images reveal a relationship between attenuation and geological structures. Strong attenuation is found in the continental collision orogenic belt that extends from the Turkish and Iranian plateau to the Pamir plateau. We investigate the frequency dependence of QLg in different geologic formations. The results illustrate that QLg values generally increase with increasing frequency but exhibit complex relationships both with frequency and between regions. An average QLg value between 0.2 and 2.0 Hz, QLg (0.2-2.0 Hz), may be a critical index for crustal attenuation and is used to infer the regional geology. Low-QLg anomalies are present in the eastern Turkish plateau and correlate well with low Pn-velocities and Cenozoic volcanic activity, thus indicating possible partial melting within the crust in this region. Very strong attenuation is also observed in central Iran, the Afghanistan block, and the southern Caspian Sea. This in line with the previously observed high crustal temperature, high-conductivity layers, and thick marine sediments in these areas, suggests the high Lg attenuation is caused by abnormally high tectonic and thermal activities.

  16. Partial melting of deeply subducted eclogite from the Sulu orogen in China.

    PubMed

    Wang, Lu; Kusky, Timothy M; Polat, Ali; Wang, Songjie; Jiang, Xingfu; Zong, Keqing; Wang, Junpeng; Deng, Hao; Fu, Jianmin

    2014-01-01

    We report partial melting of an ultrahigh pressure eclogite in the Mesozoic Sulu orogen, China. Eclogitic migmatite shows successive stages of initial intragranular and grain boundary melt droplets, which grow into a three-dimensional interconnected intergranular network, then segregate and accumulate in pressure shadow areas and then merge to form melt channels and dikes that transport magma to higher in the lithosphere. Here we show, using zircon U-Pb dating and petrological analyses, that partial melting occurred at 228-219 Myr ago, shortly after peak metamorphism at 230 Myr ago. The melts and residues are complimentarily enriched and depleted in light rare earth element (LREE) compared with the original rock. Partial melting of deeply subducted eclogite is an important process in determining the rheological structure and mechanical behaviour of subducted lithosphere and its rapid exhumation, controlling the flow of deep lithospheric material, and for generation of melts from the upper mantle, potentially contributing to arc magmatism and growth of continental crust. PMID:25517619

  17. Active shortening within the Himalayan orogenic wedge implied by the 2015 Gorkha earthquake

    NASA Astrophysics Data System (ADS)

    Whipple, Kelin X.; Shirzaei, Manoochehr; Hodges, Kip V.; Ramon Arrowsmith, J.

    2016-09-01

    Models of Himalayan neotectonics generally attribute active mountain building to slip on the Himalayan Sole Thrust, also termed the Main Himalayan Thrust, which accommodates underthrusting of the Indian Plate beneath Tibet. However, the geometry of the Himalayan Sole Thrust and thus how slip along it causes uplift of the High Himalaya are unclear. We show that the geodetic record of the 2015 Gorkha earthquake sequence significantly clarifies the architecture of the Himalayan Sole Thrust and suggests the need for revision of the canonical view of how the Himalaya grow. Inversion of Gorkha surface deformation reveals that the Himalayan Sole Thrust extends as a planar gently dipping fault surface at least 20-30 km north of the topographic front of the High Himalaya. This geometry implies that building of the high range cannot be attributed solely to slip along the Himalayan Sole Thrust over a steep ramp; instead, shortening within the Himalayan wedge is required to support the topography and maintain rapid rock uplift. Indeed, the earthquake sequence may have included a moderate rupture (Mw 6.9) on an out-of-sequence thrust fault at the foot of the High Himalaya. Such internal deformation is an expected response to sustained, focused rapid erosion, and may be common to most compressional orogens.

  18. New seismic images of the crust in the central Trans-Hudson Orogen of Saskatchewan

    NASA Astrophysics Data System (ADS)

    Pandit, B. I.; Hajnal, Z.; Stauffer, M. R.; Lewry, J.; Ashton, K. E.

    1998-05-01

    A reprocessing program to enhance the correlation between the surface geology and the seismic data has been completed for seismic line 9 (eastern 100 km) and line 10 in the central region of the Trans-Hudson Orogen of Saskatchewan, Canada. The new seismic images through lateral continuity of reflectivity provide sufficient detail to resolve the discrepancy between the low-dipping, layer-parallel and dextral-reverse nature of the Sturgeon-Weir shear zone (line 9) observed in the field and its steeply dipping (apparent) normal displacement character interpreted on the basis of the initial processing. Furthermore, the new interpretation provides a strong confirmation of the role of Pelican Thrust as a major detachment zone — the main `sole thrust' — along which juvenile allochthons have been carried across the Archaean microcontinental block. The images are also refined enough to suggest: (a) a boundary within the Pelican Thrust between its internal and external suites; (b) a possible boundary separating a lower (older?) Archaean basement from its upper (younger?) counterpart; and (c) sub-Moho events (M2) which reveal possible involvement of the upper mantle in the collisional tectonic process in addition to the well defined Moho (M1) which probably represents the youngest of the post-collisional detachments.

  19. Partial melting of deeply subducted eclogite from the Sulu orogen in China

    PubMed Central

    Wang, Lu; Kusky, Timothy M.; Polat, Ali; Wang, Songjie; Jiang, Xingfu; Zong, Keqing; Wang, Junpeng; Deng, Hao; Fu, Jianmin

    2014-01-01

    We report partial melting of an ultrahigh pressure eclogite in the Mesozoic Sulu orogen, China. Eclogitic migmatite shows successive stages of initial intragranular and grain boundary melt droplets, which grow into a three-dimensional interconnected intergranular network, then segregate and accumulate in pressure shadow areas and then merge to form melt channels and dikes that transport magma to higher in the lithosphere. Here we show, using zircon U–Pb dating and petrological analyses, that partial melting occurred at 228–219 Myr ago, shortly after peak metamorphism at 230 Myr ago. The melts and residues are complimentarily enriched and depleted in light rare earth element (LREE) compared with the original rock. Partial melting of deeply subducted eclogite is an important process in determining the rheological structure and mechanical behaviour of subducted lithosphere and its rapid exhumation, controlling the flow of deep lithospheric material, and for generation of melts from the upper mantle, potentially contributing to arc magmatism and growth of continental crust. PMID:25517619

  20. Tectonic setting of the low-grade metamorphic rocks of the Dabie Orogen, central eastern China

    NASA Astrophysics Data System (ADS)

    Xu, Shutong; Wu, Weiping; Lu, Yiqun; Wang, Dehua

    2012-04-01

    The tectonic setting on both the northern and southern sides of the Dabie Mountains reveals that low-grade metamorphic rocks are important constituents produced by the subduction of the oceanic crust prior to collision between the Sino-Korean and Yangtze cratons. The Zhangbaling Group/Mulanshan schist is a pre-Ordovician oceanic crust. The Sujiahe and Xinyang/Foziling Groups are trench sediments of the Ordovician-Devonian age, and constitute an accretionary prism associated with subduction. The Yangshan coal measures/Meishan Group was a forearc basin sediment of Carboniferous age, and was overthrust by the accretionary prism during collision. The Susong Group is composed of passive continental margin sediments of the Yangtze craton. Backarc basin sediments are postulated to be concealed by Mesozoic-Cenozoic sediments to the north of the Dabie Mountains. High-ultrahigh pressure terrains are exotic tectonic slices exhumed from depths, located between low-grade metamorphic rocks, and disturb the integrity of the earlier subduction orogen. Subduction occurred during the Ordovician to Devonian periods, and collision initiated at the beginning of the Permian.

  1. Meso-Cenozoic building of the northern Central Asian Orogenic Belt: thermotectonic history of the Tuva region

    NASA Astrophysics Data System (ADS)

    De Grave, Johan; De Pelsmaeker, Elien; Zhimulev, Fedor; Glorie, Stijn; Buslov, Mikhail; Van den haute, Peter

    2014-05-01

    The Tuvinian and West-Sayan mountain ranges (West Sayan, Shapshal, Tannu Ola and Sengilen Range) form part of the Central Asian Orogenic Belt (CAOB), and more specifically they align along the Altai-Sayan-Hangai zone of the CAOB in South Siberia and Mongolia. Its Precambrian-Palaeozoic basement has been subjected to Meso-Cenozoic tectonic reactivation. Two North-South transects across the mountain belts and intervening Meso-Cenozoic basins of Tuva were sampled for apatite fission-track (AFT) thermochronology in order to elucidate the thermal history of the Tuvinian basement in relation to Meso-Cenozoic reactivation of the CAOB. Mainly Palaeozoic granitoid basement was targeted for sampling. Most AFT ages of these granitoids are Late Cretaceous and range between 55 and 115 Ma. Mean lengths of confined fission tracks are relatively long with most values between 13 and 14 µm. Thermal history modeling shows a rapid Late Jurassic - Cretaceous cooling for the sampled Tuvinian crystalline rocks, related to exhumation of the Palaeozoic basement. This exhumation is most likely related to the building and subsequent orogenic collapse of the Mongol-Okhotsk orogen that formed between the Siberian and North China - Mongolian (Sino-Korean or Amurian) continental blocks during the Late Mesozoic. Far-field effects of this orogeny and its collapse, affected the Baikal, Altai and Sayan units of the Central Asian Orogenic Belt, including the Tuvinian basement. After a Palaeogene period of stability, thermal history models for some samples hint at a renewed period of basement cooling during the Neogene. In support of this Neogene event, a single sample from the main West Sayan fault zone contains an apatite population with ~2 Ma reset AFT ages. This is interpreted in the framework of ongoing building of the modern Central Asian orogens and associated fault movements and exhumation of the basement, presumably related with the ongoing India-Eurasia convergence. Sediments derived from

  2. Recognizing remnants of magma-poor rifted margins in high-pressure orogenic belts: The Alpine case study

    NASA Astrophysics Data System (ADS)

    Beltrando, Marco; Manatschal, Gianreto; Mohn, Geoffroy; Dal Piaz, Giorgio Vittorio; Vitale Brovarone, Alberto; Masini, Emmanuel

    2014-04-01

    Magma-poor rifted margins are being increasingly recognized in present-day Atlantic-type systems. However, findings of fossil areas floored by exhumed mantle or hyper-extended crust are comparatively rare within orogenic belts that were originated through the inversion of pre-existing rifted margins. This discrepancy may be due to the common reactivation of lithological contacts during subduction/orogeny, potentially masking pre-orogenic relationships, and, most importantly, to the frequent lack of a pre-orogenic layer-cake architecture, hindering retro-deformation of multiply deformed tectonic units. This study outlines a methodology to detect sections of magma-poor, hyper-extended rifted margins without a layer-cake architecture in multiply deformed/metamorphosed terrains. This approach is defined by comparison to well studied examples of fossil analogues preserved in weakly deformed parts of Alpine orogens. In the latter domains, continental basement and hydrated peridotites were exhumed at the basin floor during Jurassic rifting along long-offset detachment systems. Extensional geometries locally resulted in tectonic sampling of laterally discontinuous slivers of allochthonous continental basement and pre-rift sediments from the hanging wall blocks. Lithostratigraphic associations consisting of continental basement rocks directly juxtaposed with syn- to post-rift meta-sediments and/or serpentinized subcontinental mantle are widespread within sections of Alpine-type orogenic belts that underwent high- to ultra-high-pressure metamorphism. However, similar associations may arise from a variety of processes other than rift-related lithospheric thinning in magma-poor environments, including subduction mélange dynamics or deposition of sedimentary mélanges along convergent/divergent margins. The partial preservation of rift-related lithostratigraphic associations may still be assessed, despite the lack of biostratigraphic evidence, by (1) the consistency of the

  3. Microstructural analysis of the Greater Himalayan Sequence, Annapurna-Dhaulagiri Himalaya, central Nepal: Channel Flow and Orogen-parallel deformation.

    NASA Astrophysics Data System (ADS)

    Parsons, A. J.; Phillips, R. J.; Lloyd, G. E.; Searle, M. P.; Law, R. D.

    2014-12-01

    Knowledge of deformation processes that occur in the lithosphere during orogenesis can be gained from microstructural analysis of exhumed terranes and shear zones. Here, we use Crystallographic Preferred Orientation (CPO) and Anisotropy of Magnetic Susceptibility (AMS) data to reveal the kinematic evolution of the metamorphic core of the Himalayan orogen, the Greater Himalayan Sequence (GHS). The Himalayan orogen is commonly explained with models of channel flow, which describe the GHS as a partially molten, rheologically weak mid crustal channel. Extrusion of the channel was facilitated by coeval reverse- and normal-sense shear zones, at the lower and upper channel margins respectively. Whilst many thermobarometric studies support the occurrence of channel flow, the spatial and temporal distribution of strain within the GHS is one aspect of the model that is yet to be fully resolved. We present a quantified strain proxy profile for the GHS in the Annapurna-Dhaulagiri region of central Nepal and compare our results with the kinematic predictions of the channel flow model. Samples were collected along a NS transect through the Kali Gandaki valley of central Nepal for CPO and AMS analysis. Variations in CPO strength are used as a proxy for relative strain magnitude, whilst AMS data provide a proxy for strain ellipsoid shape. Combining this information with field and microstructural observations and thermobarometric constraints reveals the kinematic evolution of the GHS in this region. Low volumes of leucogranite and sillimanite bearing rocks and evidence of reverse-sense overprinting normal-sense shearing at the top of the GHS suggest that channel flow was not as intense as model predictions. Additionally, observed EW mineral lineations and oblate strain ellipsoid proxies in the Upper GHS, indicative of three dimensional flattening and orogen parallel stretching, cannot be explained by current channel flow models. Whilst the results do not refute the occurrence of

  4. How the Extension-Rate of Rifting Influences an Alpine-Type Orogens: insights from 3D analog models.

    NASA Astrophysics Data System (ADS)

    Nestola, Y.; Storti, F.; Cavozzi, C.

    2015-12-01

    Alpine-type orogens are interpreted as result from the collision of former rifted margins. Recent studies showed that the rift-architecture inheritance could play a critical role in controlling the 4D evolution of Alpine-type orogens. In this framework, differences of inversion modes between the internal and external zones of the Western Alps can be related to the pre-orogenic rift-related domains. The external zone is affected by mild reactivation of the former proximal margin domain. On the other hand, the internal zone results from the reactivation of the former distal margin domain. This caused the stacking of a complex pile of pre- and syn-rift sequences against the 'necking zone', that is the locus where the lithosphere dramatically thins. The 'necking zone' separates the proximal and distal domains and acts as a buttress for shortening. Indeed, both rift architecture and shape of necking play a fundamental role in the building up of an Alpine-type orogen. In this study, we use analog modeling to investigate the role of extension-rate in rift-architecture. We simulated an ideal 4-layer lithosphere where brittle and ductile crustal layers rest on top of brittle and ductile mantle layers. The entire experimental lithosphere floats over a fluid analogue of the asthenosphere. Models were deformed pulling apart a mobile wall of the sandbox that confined the experimental lithosphere. We investigated three different extensional velocities, spanning one-order of magnitude. At the end of deformation, rift architectures show severe differences as a function of extension-rates, at both crustal and lithospheric scales. In particular, at lithospheric scales, localized necking occurred at low extension-rates, while a more distributed deformation happened with increasing the extensional velocity. At crustal scale, well-developed and localized necking zones formed for low and intermediate extension-rates, while tapering occurred over a wide cross-sectional length in high

  5. The evolution of a Gondwanan collisional orogen: A structural and geochronological appraisal from the Southern Granulite Terrane, South India

    NASA Astrophysics Data System (ADS)

    Plavsa, Diana; Collins, Alan S.; Foden, John D.; Clark, Chris

    2015-05-01

    Gondwana amalgamated along a suite of Himalayan-scale collisional orogens, the roots of which lace the continents of Africa, South America, and Antarctica. The Southern Granulite Terrane of India is a generally well-exposed, exhumed, Gondwana-forming orogen that preserves a record of the tectonic evolution of the eastern margin of the East African Orogen during the Ediacaran-Cambrian (circa 600-500 Ma) as central Gondwana formed. The deformation associated with the closure of the Mozambique Ocean and collision of the Indian and East African/Madagascan cratonic domains is believed to have taken place along the southern margin of the Salem Block (the Palghat-Cauvery Shear System, PCSS) in the Southern Granulite Terrane. Investigation of the structural fabrics and the geochronology of the high-grade shear zones within the PCSS system shows that the Moyar-Salem-Attur shear zone to the north of the PCSS system is early Paleoproterozoic in age and associated with dextral strike-slip motion, while the Cauvery shear zone (CSZ) to the south of the PCSS system can be loosely constrained to circa 740-550 Ma and is associated with dip-slip dextral transpression and north side-up motion. To the south of the proposed suture zone (the Cauvery shear zone), the structural fabrics of the Northern Madurai Block suggest four deformational events (D1-D4), some of which are likely to be contemporaneous. The timing of high pressure-ultrahigh temperature metamorphism and deformation (D1-D3) in the Madurai Block (here interpreted as the southern extension of Azania) is constrained to circa 550-500 Ma and interpreted as representing collisional orogeny and subsequent orogenic collapse of the eastern margin of the East African Orogen. The disparity in the nature of the structural fabrics and the timing of the deformation in the Salem and the Madurai Blocks suggest that the two experienced distinct tectonothermal events prior to their amalgamation along the Cauvery shear zone during the

  6. Restoration of Late Neoarchean-Early Cambrian tectonics in the Rengali orogen and its environs (eastern India): The Antarctic connection

    NASA Astrophysics Data System (ADS)

    Bhattacharya, A.; Das, H. H.; Bell, Elizabeth; Bhattacharya, Atreyee; Chatterjee, N.; Saha, L.; Dutt, A.

    2016-10-01

    Geological mapping and P-T path reconstructions are combined with monazite chemical age and Secondary Ion Mass Spectrometric (SIMS) U-Pb zircon age determinations to identify crustal domains with distinctive evolutionary histories in the Rengali orogen sandwiched between two Grenvillian-age metamorphic belts, i.e. the Eastern Ghats Granulite Belt (EGGB) in the south, and the amphibolite facies Gangpur Schist Belt (GSB) in the north, which in turn forms a collar along the NW/W margins of the Paleo/Mesoarchean Singhbhum Craton (SC) north of the Rengali orogen. Anatectic gneisses in the orogen core exhibit multi-phase Neoarchean/Paleoproterozoic deformation, metamorphic P-T histories and juvenile magma emplacement events. The high-grade belt is inferred to be a septum of the Bastar Craton (BC). The flanking supracrustal belt in the orogen - dominated by quartz-muscovite schists (± staurolite, kyanite, garnet pyrophyllite), inter-bedded with poorly-sorted and polymict meta-conglomerate, and meta-ultramafic/amphibolite bands - evolved along P-T paths characterized by sub-greenschist to amphibolite facies peak P-T conditions in closely-spaced samples. The supracrustal rocks and the anatectic gneisses of contrasting metamorphic P-T histories experienced D1, D2 and D3 fabric-forming events, but the high-angle obliquity between the steeply-plunging D3 folds in the anatectic gneisses and the gently-plunging D3 folds in the supracrustal unit suggests the two lithodemic units were tectonically accreted post-S2. The supracrustal belt is inferred to be a tectonic mélange formed in an accretionary wedge at the tri-junction of the Bastar Craton, the Eastern Ghats Granulite Belt and the Singhbhum Craton; the basin closure synchronous with the assembly of EGGB and the Singhbhum Craton-Gangpur Schist belt composite occurred between 510 and 610 Ma. Based on the available evidence across the facing coastlines of the Greater India landmass and the Australo-Antarctic blocks at ~ 500 Ma

  7. Low-temperature thermochronology of the northern Thomson Orogen: Implications for exhumation of basement rocks in NE Australia

    NASA Astrophysics Data System (ADS)

    Verdel, Charles; Stockli, Daniel; Purdy, David

    2016-01-01

    The Tasmanides of eastern Australia record much of the Phanerozoic tectonic development of the retreating Pacific-Australia plate boundary and are an oft-cited example of an orogen that has undergone "tectonic mode switching." To begin to constrain the timing of exhumation of basement rocks that are now exposed in portions of the NE Tasmanides, we measured apatite and zircon (U-Th)/He ages from the Thomson Orogen and overlying Paleozoic strata in the back-arc of the New England Orogen in NE Australia. Zircon (U-Th)/He ages from basement samples (including those recovered from boreholes at depths of up to 1.1 km) are characterized by large inter- and intra-sample variability and range from approximately 180 Ma (Early Jurassic) to 375 Ma (Late Devonian). (U-Th)/He zircon ages from several individual samples are negatively correlated with effective uranium (eU), a pattern that is also true of the dataset as a whole, suggesting that variations in U and Th zoning and radiation damage are partially responsible for the age variability. The oldest zircon (U-Th)/He cooling ages coincide with the formation of regionally extensive Late Devonian-early Carboniferous back-arc basins, suggesting that Late Devonian extension played a significant role in exhumation of parts of the northern Thomson Orogen. Apatite (U-Th)/He ages from a basement sample and a late Permian sandstone in the overlying Bowen Basin, which are also marked by intra-sample variability and age-eU correlations, span from the Early Cretaceous through Oligocene, in general agreement with previous apatite fission track data. In conjunction with observations of key geologic relationships and prior K-Ar and 40Ar/39Ar data, our results suggest four overall phases in the thermal history of the northern Thomson Orogen: (1) Cambrian-early Silurian metamorphism during the Delamerian and Benambran Orogenies; (2) protracted cooling during the Late Devonian through mid-Permian that likely resulted from extensional

  8. Cycle Analysis

    SciTech Connect

    Wright, Steven A.

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop and provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.

  9. Cycle Analysis

    2012-03-20

    1. The Cycle Analysis code is an Microsoft Excel code that performs many different types of thermodynamic cycle analysis for power producing systems. The code will calculate the temperature and pressure and all other thermodynamic properties at the inlet and outlet of each component. The code also calculates the power that is produced, the efficiency, and the heat transported in the heater, gas chiller and recuperators. The code provides a schematic of the loop andmore » provides the temperature and pressure at each location in the loop. The code also provides a T-S (temperature-entropy) diagram of the loop and often it provides an pressure enthalpy plot as well. 2. This version of the code concentrates on supercritical CO2 power cycles, but by simply changing the name of the working fluid many other types of fluids can be analyzed. The Cycle Analysis code provided here contains 18 different types of power cycles. Each cycle is contained in one worksheet or tab that the user can select. The user can change the yellow highlighted regions to perform different thermodynamic cycle analysis.« less

  10. On protolith-, metamorphic overprint, microstructure and rheology of mineral assemblages in orogenic peridotites of the central Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Gilio, Mattia; Clos, Frediano; Van Roermund, Herman L. M.

    2013-04-01

    The Scandinavian Caledonides (SC) are a deeply eroded Alpine-type orogenic belt formed by closure of the Iapetus ocean and collision between Baltica and Laurentia (500-380 Ma). The SC consists of a stack of Nappe Complexes (from bottom to top called Lower, Middle, Upper and Uppermost Allochthons) thrusted to the east over the Baltic Shield (Brueckner and Van Roermund, 2004; Gee et al., 2008). Fossil lithospheric mantle fragments, called orogenic peridotites, have been found within the (upper part of) middle, upper and uppermost Allochthons, as well as in the reworked basement gneisses (a.o Western Gneiss Complex (WGC)) along the Norwegian west coast. They occur as isolated lenses that contain diverse mineral parageneses and/or bulk rock compositions. Crustal incorporation of orogenic peridotite is classically interpreted to be the result of plate collisional processes related to orogeny (Brueckner and Medaris, 2000). The WGC and parts of the upper part of the Middle Allochthon (a.o. Seve Nappe Complex (SNC) in N Jämtland/S Västerbotten, central Sweden), are well known for the occurrence of high (HP) and ultrahigh pressure (UHP) metamorphic terranes (of Caledonian age). The (U)HPM evidence clearly demonstrates the deep metamorphic origin of these rocks interpreted to be caused by continental subduction and/or collision. Other metamorphic rocks (of Caledonian age) exposed in allochthonous nappes are solely characterised by greenschist-, amphibolite- and/or MP granulite "facies" mineral assemblages that can be interpreted, in the absence of retrogression, to have formed in less deeply subducted (and/or metamorphic) environments. This duality in metamorphic "facies" allows for a discrimination (at least theoretically) between "deep" versus "shallow" rooted nappes (in central parts of the Scandinavian Caledonides). Conform this reasoning, this duality should also be present within the Caledonian mineral assemblages (= metamorphic overprint) of orogenic peridotites (in

  11. Progressive orogenic deformation recorded in a mylonite sample from the Dent Blanche Basal Thrust (Pennine Alps)

    NASA Astrophysics Data System (ADS)

    Kirst, Frederik; Froitzheim, Nikolaus; Nagel, Thorsten

    2013-04-01

    The Dent Blanche Basal Thrust (DBBT) represents an Alpine reverse fault along which the continental Dent Blanche Nappe was thrust onto the ocean-derived Combin Zone. Ductile NW-directed shearing associated with Early Tertiary nappe emplacement was localized along this fault resulting in the formation of intensely sheared rocks. These basal mylonites have locally been overprinted by later deformation phases associated with post-nappe compression. In the following, microstructures of a mylonite sample from a locality near the village Ollomont in the Valpelline of Italy are described and correlated with orogen-scale deformational events. The penetrative mylonitic foliation (S1) dips to the E (88/23) and is defined by a distinct metamorphic layering consisting of alternating, sub-mm thin layers of quartz and fine-grained silicates, mainly white mica ± epidote ± feldspar. The mylonitic stretching lineation (L1) is an aggregate lineation that dips to the ESE (119/19). In some parts, a grain shape preferred orientation of quartz grains defines an oblique foliation which probably developed as a result of combined subgrain rotation and grain boundary migration during simple shear deformation (Passchier & Trouw, 2005). The orientation of elongated quartz grains indicates top-NW shearing and is interpreted to reflect the bulk shear sense during nappe emplacement (D1). This type of dynamically recrystallised quartz also indicates deformation at temperatures around 500°C (Stipp et al., 2002). In most parts of the Ollomont mylonite, a secondary foliation (S2) and lineation (L2) are produced by a SE-dipping crenulation cleavage with NE-dipping (47/17) axes. In some spots, this non-penetrative feature is only slightly developed and gradational whereas in others it is a discrete compressional crenulation cleavage with large fold amplitudes in microlithons. This secondary foliation is interpreted to have formed as a result of late-stage orogen-perpendicular (NW-SE) shortening (D2

  12. A geochronological framework for orogenic gold mineralisation in central Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Bierlein, Frank P.; Arne, Dennis C.; Foster, David A.; Reynolds, Peter

    2001-12-01

    New 40Ar/39Ar geochronological data support, and significantly expand upon, preliminary age data that were interpreted to suggest an episodic and diachronous emplacement of gold across the western Lachlan fold belt, Australia. These geochronological data indicate that mineralisation in the central Victorian gold province occurred in response to episodic, eastward progressing deformation, metamorphism and exhumation associated with the formation of the western Lachlan fold belt. Initial gold formation throughout the Stawell and the Bendigo structural zones can be constrained to a broad interval of time between 455 and 435 Ma, with remobilisation of metals into new structures and/or new pulses of mineralisation occurring between 420 and 400 Ma, and again between 380 and 370 Ma, linked to episodic variations in the regional stress-field and during intrusion of felsic dykes and plutons. This separation of ages is incompatible with the view that gold emplacement in the western Lachlan fold belt was the result of a single, orogen-wide event during the Devonian. A distinct phase of gold mineralisation, characterised by elevated Cu, Mo, Sb or W, is associated with both Late Silurian to Early Devonian (~420 to 400 Ma) and Middle to Late Devonian (~380 to 370 Ma) magmatism, when crustal thickening and shortening during the ongoing consolidation of the western Lachlan Fold Belt led to extensive melt development in the lower crust and resulted in widespread magmatism throughout central Victoria. These ~420 to 400 Ma and ~380 to 370 Ma occurrences, best exemplified by the Wonga deposit in the Stawell structural zone and many of the Woods Point deposits in the Melbourne structural zone, but also evidenced by occurrences at Fosterville and Maldon in the Bendigo structural zone, clearly formed synchronous with, or post-date, the emplacement of plutons and dykes, and thus are spatially (if not genetically) related to melt generation at depth. This later, magmatic-associated and

  13. Migration of hydrothermal systems in an evolving collisional orogen, New Zealand

    NASA Astrophysics Data System (ADS)

    Craw, D.; Upton, P.; Horton, T.; Williams, J.

    2013-02-01

    The Pacific-Australian tectonic plate boundary through the South Island of New Zealand consists of the transpressional Southern Alps mountain belt and the transcurrent Marlborough Fault System, both of which have active tectonically driven hydrothermal systems, with topographically driven meteoric incursion and warm springs. The Southern Alps hydrothermal system is relatively diffuse, with little or no fault control, and is channelled through scattered extensional sites beneath the mountains, where gold mineralisation is occurring locally. The hydrothermal activity along the Marlborough Fault System is controlled by the principal faults in well-defined valleys separated by narrow high ridges. Lateral evolution of Marlborough fault strands southwestwards into the Southern Alps has caused diversion of diffuse Southern Alps hydrothermal activity into the structural superimposition zone, where fluid flow is increasingly being controlled by faults. This hydrothermal diversion was accompanied by major topographic reorientation and river drainage reversal in the late Quaternary. Vein swarms now exposed in the remnants of the Southern Alps north of the superimposition zone formed at shallow levels, with some evidence for fluid boiling, from a mixture of meteoric and deep-sourced fluid. These veins, some of which contain gold, are part of an abandoned <1 million-year-old hydrothermal zone beneath the fossil topographic divide of the Southern Alps that has now been dismembered by lateral incursion of the Marlborough fault strands. Observations on this active plate boundary provide some insights into processes that controlled orogenic gold mineralisation in ancient belts, particularly with respect to relationships between hydrothermal fluid flow, structure and topography.

  14. Linking glacial erosion and low-relief landscapes in tropical orogens

    NASA Astrophysics Data System (ADS)

    Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Galewsky, J.; Yoo, J.

    2015-12-01

    One significant way that climate influences orogenic evolution is by modulating glacial erosion. At mid-latitudes it is hypothesized that this climate-tectonic interplay is so strong that a "glacial buzzsaw" acting throughout the Quaternary outpaced tectonic uplift in most mountain belts and concentrated topography in a zone defined by the bounds of ELA fluctuation. Less attention has been paid to how the buzzsaw might manifest itself at low latitudes, where many mountain belts are just high enough to have been glaciated at the LGM but today sit well below the ELA. We have focused on the glacial history of Costa Rica and Taiwan, where we find evidence of ice cap erosion coincident with low-relief landscapes near the LGM ELA. Previous attempts to understand the formation of these perched, low-relief landscapes has mostly concerned interactions between fluvial erosion and geodynamics. Our work aims instead to describe the role that glacial erosion played in the evolution of these landscapes, and how they fit in the buzzsaw paradigm. At Cerro Chirripó in Costa Rica we use 10-Be surface exposure age dating of moraine boulders and scoured bedrock, field mapping, and remote sensing to constrain the timing, areal extent, and pattern of glacial erosion. We made similar observations of ice extent at Nanhudashan in Taiwan, where surface exposure age dating has previously been applied to glacial landforms (e.g. Hebenstreit et al., 2011; Siame et al., 2007). In Costa Rica, our 10-Be dates from scoured bedrock near the highest peak and terminal/lateral moraines show signs of ice-cap erosion until 22 ka. Similar arguments for LGM ice cap erosion have been made for Nanhudashan. Regional climate simulations (WRF) further constrain the timing and spatial extent of glaciation in these places, and the combination of field data and climate modeling will inform estimates of the magnitude of glacial erosion on perched landscapes.

  15. Neotectonics, drainage pattern and geomorphology of the orogen-parallel Upper Enns Valley (Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Keil, Melanie; Neubauer, Franz

    2011-06-01

    The geomorphology and neotectonics of the Upper Enns Valley (Austria) in the Eastern Alps reveal the formation of a fault-controlled orogen-parallel valley. In the study area, the Eastern Alps have been under surface uplift since Early Miocene times. Quaternary processes such as uplift and cyclic glaciations likely interfere with neotectonic activity as the Upper Enns Valley follows the Salzach-Enns-Mariazell-Puchberg (SEMP) fault. The geomorphologically different landscapes comprise three main tectonic units: (1) the Austroalpine crystalline basement exposed in the Niedere Tauern, (2) the Austroalpine Paleozoic units (Greywacke Zone) and (3) the Dachstein Plateau dominated by Triassic carbonate successions. The Upper Pleistocene Ramsau Conglomerate overlying the Greywacke Zone on the northern slope of the Upper Enns Valley is a crucial element to reconstruct the evolution of the valley. A new 14C date (uncalibrated) indicates an age older than 53,300 years, outside of the analytical limit of the methods. Provenance analysis of the Ramsau Conglomerate shows the Niedere Tauern as a source region and consequently a post-early Late Pleistocene dissection of the landscape by the Upper Enns Valley. Paleosurfaces at elevations of about 1100 m on the northern and southern slopes of the Upper Enns Valley allow us to estimate surface uplift/incision of about 2.5 mm/yr. Regularly oriented outcrop-scale faults and joints of the Ramsau Conglomerate document Pleistocene to Holocene tectonic deformation, which is consistent with ongoing seismicity. Paleostress tensors deduced from slickensides and striae of pre-Cenozoic basement rocks indicate two stages of Late Cretaceous to Paleogene deformation independent of the SEMP fault; the Oligocene-Neogene evolution comprises NW-SE strike-slip compression followed by E-W compression and Late Pleistocene ca. E-W extension, the latter recorded in the Ramsau Conglomerate.

  16. Active thrusting within the Himalayan orogenic wedge in the Kashmir Himalayas

    NASA Astrophysics Data System (ADS)

    Gavillot, Y.

    2011-12-01

    Numerous lines of evidence indicate that significant distributed deformation occurs within the Himalayan fold-thrust belt. Active thrust faults lie as much as 100 km north of the active thrust front. Whereas geochemical and topographical data provide circumstantial evidence for internal deformation in Nepal, new mapping demonstrates that an active emergent thrust fault system extends stepwise from the Balakot-Bagh fault (source of the Mw 7.6 2005 Kashmir earthquake in Pakistan) more than 200 km to the southeast on the Riasi fault (RT). The RT with a fault length of ~70 km, is a ~50° northeast-dipping reverse fault system, which sits ~40 km north of the deformation front in the Kashmiri Himalaya of northwest India. Our mapping demonstrates that the Riasi thrust consists of two strands. The northern strand, Main Riasi thrust (MRT) strand, places Precambrian Sirban Limestone on folded unconsolidated (Pleistocene?) conglomerates. Undeformed younger alluvial deposits (Holocene?) overlyie the MRT, which implies no Holocene (?) surface rupture on this strand. To the south, the surface expression of the Riasi frontal thrust (RFT) includes a fault scarp and offset ~10 ka terrace deposits dated with 36CL depth profiles. OSL and 10Be depth profile dating indicate an age range between ~80 ka to ~30 ka for the Bidda terrace in the upper plate of the MRT, yielding estimates of long-term uplift rate of 5.0 ± 2.2 mm/yr, slip rate of 6.4 ± 2.9 mm/yr, and shortening rate of 4.1 ± 1.9mm/yr. Given a ~34 mm/yr India-Asia convergence rate in the NW Himalaya, our results indicate that internal deformation within the orogenic belt accounts for at least ~10% of the total India-Eurasia plate convergence, with remaining shortening absorbed mainly at the deformation front.

  17. Distribution of active faulting along orogenic wedges: Minimum-work models and natural analogue

    NASA Astrophysics Data System (ADS)

    Yagupsky, Daniel L.; Brooks, Benjamin A.; Whipple, Kelin X.; Duncan, Christopher C.; Bevis, Michael

    2014-09-01

    Numerical 2-D models based on the principle of minimum work were used to examine the space-time distribution of active faulting during the evolution of orogenic wedges. A series of models focused on thin-skinned thrusting illustrates the effects of arid conditions (no erosion), unsteady state conditions (accretionary influx greater than erosional efflux) and steady state conditions (accretionary influx balances erosional efflux), on the distribution of fault activity. For arid settings, a general forward accretion sequence prevails, although a significant amount of internal deformation is registered: the resulting fault pattern is a rather uniform spread along the profile. Under fixed erosional efficiency settings, the frontal advance of the wedge-front is inhibited, reaching a steady state after a given forward propagation. Then, the applied shortening is consumed by surface ruptures over a narrow frontal zone. Under a temporal increase in erosional efficiency (i.e., transient non-steady state mass balance conditions), a narrowing of the synthetic wedge results; a rather diffuse fault activity distribution is observed during the deformation front retreat. Once steady balanced conditions are reached, a single long-lived deformation front prevails. Fault activity distribution produced during the deformation front retreat of the latter scenario, compares well with the structural evolution and hinterlandward deformation migration identified in southern Bolivian Subandes (SSA) from late Miocene to present. This analogy supports the notion that the SSA is not in steady state, but is rather responding to an erosional efficiency increase since late Miocene. The results shed light on the impact of different mass balance conditions on the vastly different kinematics found in mountain ranges, suggesting that those affected by growing erosion under a transient unbalanced mass flux condition tend to distribute deformation along both frontal and internal faults, while others

  18. Orogenic structure of the Eastern Alps, Europe, from TRANSALP deep seismic reflection profiling

    NASA Astrophysics Data System (ADS)

    Lüschen, Ewald; Lammerer, Bernd; Gebrande, Helmut; Millahn, Karl; Nicolich, Rinaldo; Transalp Working Group

    2004-09-01

    The TRANSALP Group, comprising of partner institutions from Italy, Austria and Germany, acquired data on a 340 km long deep seismic reflection line crossing the Eastern Alps between Munich and Venice. Although the field work was split into four campaigns, between fall 1998 and summer 2001, the project gathered for the first time a continuous profile across the Alps using consistent field acquisition and data processing parameters. These sections span the orogen itself, at its broadest width, as well as the editor Fred Davey and the two adjacent basins. Vibroseis and explosion data, complementary in their depth penetration and resolution characteristics, were obtained along with wide-angle and teleseismic data. The profile shows a bi-vergent asymmetric structure of the crust beneath the Alpine axis which reaches a maximum thickness of 55 km, and 80-100 km long transcrustal ramps, the southward dipping 'Sub-Tauern-Ramp' and the northward-dipping 'Sub-Dolomites-Ramp'. Strongly reflective patterns of these ramps can be traced towards the north to the Inn Valley and towards the south to the Valsugana thrust belt, both of which show enhanced seismicity in the brittle upper crust. The seismic sections do not reveal any direct evidence for the presence of the Periadriatic Fault system, the presumed equivalent to the Insubric Line in the Western Alps. According to our new evolutionary model, the Sub-Tauern-Ramp is linked at depth with remnants of the subducted Penninic Ocean. The 'crocodile'-type model describes an upper/lower crustal decoupling and wedging of both the European and the Adriatic-African continents.

  19. Thin visous sheet modelling of orogen scale deformation. The Eastern Alps in plan view

    NASA Astrophysics Data System (ADS)

    Robl, J.; Stuewe, K.

    2003-04-01

    We present first results of a new numerical model to describe the dynamic evolution of the eastern Alps in plan view on the orogen scale. We investigate the influence of boundary conditions, gravitational potential energy, rheology contrast of major tectonic units and internal structures on the deformation field. We aim at estimating the Argan number of the Eastern Alps and to calculate slip rates along big lineaments that represent the northern and southern border of the Austro-Alpine extrusion corridor. A further aim is to predict the position and the activity of major faults where they disappear below quartenary sediments. All calculation are perfomed with the mechanical finite element code BASIL that allows computation on a thin visous sheet. The starting conditons are controlled by the varying crustal thickness of the region and by the rheolgy of the Adriatic indenter in the south, the Bohemian massif in the north and the Eastern Alps inbetween. We assume that the Eastern Alps are fixed to the north and the west while the southern boundary moves northward at a rate of 6-8 mm /y. The geodynamic setting in the east changed over the last 5 my. While a roll back subduction zone beneath the Carparthian belt accompanied by extension, crustal thinning and basin formation controlled the deformation of the Eastern Alps until the Miocene. Later on subduction stopped and the overall stress field changed from extension to compression resulting in uplift of many basins and the lack sediments younger than Pliocene. This well known variation of plate tectonic scenarios over the last 5 my allows us to place tight constraints for the boundary conditions of our model. Although our work is only now in progress, we can report some promising results: some of the kinematics and mechaniscs predicted by our modelling are consistent with field observations of the structural geologists and geodeticists.

  20. From orogenic collapse to rifting ; structures of the South China Sea

    NASA Astrophysics Data System (ADS)

    Pubellier, M.; Chan, L. S.; Chamot Rooke, N.; Shen, W.; Ringenbach, J. C.

    2009-04-01

    The opening of the South China Sea has been a matter of debate for many years because of its internal structure, the differences between the conjugate margins and the variations of rifting and spreading directions. Although it is considered as being a back-arc basin, it is not sitting directly above a subduction zone, and the rifting process lasted for an unusually long duration. Among the specific characteristics is the early phase of rifting which took place early in place of the former Yanshanian andean-type mountain range. This stage is marked by narrow basins filled with deformed conglomerate, and initiated around 70My ago within a framework where the oblique subduction marked by igneous activity and ductile wrench faults, was replaced by orogenic collapse. The rifting stage is marked by Eocene syntectonic normal faults and occasional volcanics centres and has proceeded from NW-SE to NS extension. The NW stretching created at least two aborted basins which remained at rift stage. Extension was followed by spreading from 33 to ~20 Ma in the South China Sea. The ocean floor spreading also changed direction to NW-SE with a propagator inside the Sunda shelf from 20 to 17My ago. However the propagator opening implies that deformation is also taken by rifting around a southern wedge which in turn created strain inside the thinned crust. Another extension parallel to the margin is also observed althought the spreading was in process. The southward motion of the southern conjugate margin was later accommodated by its subduction beneath the NW Borneo wedge until completion of the Proto South China Sea subduction. Variations of rifting spreading through time and variations of structural styles are discussed in terms of boundary forces acting to the SE.

  1. Sedimentology and stratigraphy of Mississippian orogenic sediments, east-central Nevada: proposed solution to a paradox

    SciTech Connect

    Mason, R.M.

    1985-02-01

    Mississippian orogenic sediments deposited during the Antler orogeny and exposed in east-central Nevada record the initial breakup of the Cordilleran geosyncline. They also contain one of the thickest, richest, yet most under-explored source rock-reservoir packages in the western US. Numerous geologists have studied the Chainman Shale-Diamond Peak Formation, yet the depositional setting of these formations, a factor critical to effective exploration for these attractive targets, is still controversial. In 1974, F.G. Poole suggested that the entire sequence was deposited as turbidites at abyssal depths, calling these rocks Antler flysch. B.R. Wilson and S.W. Laule thought these same sediments were largely nearshore marine to fluvial molasse sediments. Regional studies in east-central Nevada reveal 2 dramatically different facies within the Mississippian: a turbidite facies consisting of incomplete bouma sequences, interturbidite shales, and disordered conglomerates; and a fluvial-deltaic facies consisting of well cross-bedded, nearshore marine sandstones and fluvial conglomerates, nonmarine to shallow-marine shales, and marine limestones. In several areas these 2 facies are separated by only a few miles, yet structural juxtaposition is not likely. Rather, it appears the turbidite facies is older than the shallow-water facies and represents Early Mississippian in-fill of the narrow Antler trough. The fluvial-deltaic facies represents regressive deposition that prograded over the Antler trough in Late Mississippian time. Both facies contain rich source rocks and the more widespread fluvial-deltaic facies contains numerous reservoirs and potential stratigraphic traps.

  2. Tectonic, magmatic, and metallogenic evolution of the Late Cretaceous arc in the Carpathian-Balkan orogen

    NASA Astrophysics Data System (ADS)

    Gallhofer, Daniela; Quadt, Albrecht von; Peytcheva, Irena; Schmid, Stefan M.; Heinrich, Christoph A.

    2015-09-01

    The Apuseni-Banat-Timok-Srednogorie Late Cretaceous magmatic arc in the Carpathian-Balkan orogen formed on the European margin during closure of the Neotethys Ocean. It was subsequently deformed into a complex orocline by continental collisions. The Cu-Au mineralized arc consists of geologically distinct segments: the Apuseni, Banat, Timok, Panagyurishte, and Eastern Srednogorie segments. New U-Pb zircon ages and geochemical whole rock data for the Banat and Apuseni segments are combined with previously published data to reconstruct the original arc geometry and better constrain its tectonic evolution. Trace element and isotopic signatures of the arc magmas indicate a subduction-enriched source in all segments and variable contamination by continental crust. The magmatic arc was active for 25 Myr (~92-67 Ma). Across-arc age trends of progressively younger ages toward the inferred paleo-trench indicate gradual steepening of the subducting slab away from the upper plate European margin. This leads to asthenospheric corner flow in the overriding plate, which is recorded by decreasing 87Sr/86Sr (0.70577 to 0.70373) and increasing 143Nd/144Nd (0.51234 to 0.51264) ratios over time in some segments. The close spatial relationship between arc magmatism, large-scale shear zones, and related strike-slip sedimentary basins in the Timok and Pangyurishte segments indicates mild transtension in these central segments of the restored arc. In contrast, the Eastern Srednogorie segment underwent strong orthogonal intraarc extension. Segmental distribution of tectonic stress may account for the concentration of rich porphyry Cu deposits in the transtensional segments, where lower crustal magma storage and fractionation favored the evolution of volatile-rich magmas.

  3. Transpressional deformation, strain partitioning and fold superimposition in the southern Chinese Altai, Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Cai, Keda; Chen, Ming; He, Yulin

    2016-06-01

    Transpressional deformation has played an important role in the late Paleozoic evolution of the western Central Asian Orogenic Belt (CAOB), and understanding the structural evolution of such transpressional zones is crucial for tectonic reconstructions. Here we focus on the transpressional Irtysh Shear Zone with an aim at understanding amalgamation processes between the Chinese Altai and the West/East Junggar. We mapped macroscopic fold structures in the southern Chinese Altai and analyzed their relationships with the development of the adjacent Irtysh Shear Zone. Structural observations from these macroscopic folds show evidence for four generations of folding and associated fabrics. The earlier fabric (S1), is locally recognized in low strain areas, and is commonly isoclinally folded by F2 folds that have an axial plane orientation parallel to the dominant fabric (S2). S2 is associated with a shallowly plunging stretching lineation (L2), and defines ∼NW-SE tight-close upright macroscopic folds (F3) with the doubly plunging geometry. F3 folds are superimposed by ∼NNW-SSE gentle F4 folds. The F3 and F4 folds are kinematically compatible with sinistral transpressional deformation along the Irtysh Shear Zone and may represent strain partitioning during deformation. The sub-parallelism of F3 fold axis with the Irtysh Shear Zone may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation (F3) in fold zones. The strain partitioning may have become less efficient in the later stage of transpressional deformation, so that a fraction of transcurrent components was partitioned into F4 folds.

  4. New geomorphic data on the active Taiwan orogen: A multisource approach

    NASA Technical Reports Server (NTRS)

    Deffontaines, B.; Lee, J.-C.; Angelier, J.; Carvalho, J.; Rudant, J.-P.

    1994-01-01

    A multisource and multiscale approach of Taiwan morphotectonics combines different complementary geomorphic analyses based on a new elevation model (DEM), side-looking airborne radar (SLAR), and satellite (SPOT) imagery, aerial photographs, and control from independent field data. This analysis enables us not only to present an integrated geomorphic description of the Taiwan orogen but also to highlight some new geodynamic aspects. Well-known, major geological structures such as the Longitudinal Valley, Lishan, Pingtung, and the Foothills fault zones are of course clearly recognized, but numerous, previously unrecognized structures appear distributed within different regions of Taiwan. For instance, transfer fault zones within the Western Foothills and the Central Range are identified based on analyses of lineaments and general morphology. In many cases, the existence of geomorphic features identified in general images is supported by the results of geological field analyses carried out independently. In turn, the field analyses of structures and mechanisms at some sites provide a key for interpreting similar geomorphic featues in other areas. Examples are the conjugate pattern of strike-slip faults within the Central Range and the oblique fold-and-thrust pattern of the Coastal Range. Furthermore, neotectonic and morphological analyses (drainage and erosional surfaces) has been combined in order to obtain a more comprehensive description and interpretation of neotectonic features in Taiwan, such as for the Longitudinal Valley Fault. Next, at a more general scale, numerical processing of digital elevation models, resulting in average topography, summit level or base level maps, allows identification of major features related to the dynamics of uplift and erosion and estimates of erosion balance. Finally, a preliminary morphotectonic sketch map of Taiwan, combining information from all the sources listed above, is presented.

  5. The Ust-Belaya ophiolite terrane, West Koryak Orogen: Isotopic dating and paleotectonic interpretation

    NASA Astrophysics Data System (ADS)

    Palandzhyan, S. A.

    2015-03-01

    The Ust-Belaya ophiolite terrane in the West Koryak Orogen, which is the largest in northeastern Asia, consists of three nappe complexes. The upper Ust-Belaya Nappe is composed of a thick (>5 km) sheet of fertile peridotites and mafic rocks (remnants of the proto-Pacific lithosphere); its upper age boundary is marked by Late Neoproterozoic plagiogranites. In the middle Tolovka-Otrozhny Nappe, the Late Precambrian lherzolite-type ophiolites are supplemented by fragments of tectonically delaminated harzburgite-type ophiolites, which make up the Tolovka rock association. The isotopic age of metadacite (K-Ar method, whole-rock sample) and zircons from plagiogranite porphyry (U-Pb method, SHRIMP) determines the upper chronological limit of the Tolovka ophiolites as 262-265 Ma ago. It is suggested that igneous rocks of these ophiolites were generated in a backarc basin during the Early Carboniferous and then incorporated into the fold-nappe structure in the Mid-Permian. This was the future basement of the Koni-Taigonos arc, where the Early Carboniferous ophiolites together with Late Neoproterozoic precursors were subject to low-temperature metamorphism and intruded by plagiogranite porphyry dikes in Permian-Triassic. The polymicte serpentinite mélange, which was formed in the accretionary complex of the Koni-Taigonos arc comprises rock blocks of the upper units of Late Precambrian ophiolites (in particular, plagiogranite), the overlying Middle to Upper Devonian and Early Carboniferous deposits, as well as Early Carboniferous (?) Tolovka ophiolites and meta-ophiolites. Mélange of this type with inclusions of Late Precambrian "oceanic" granitoids also developed in the lower Utyosiki Nappe composed of Middle Jurassic-Lower Cretaceous sedimentary and volcanic sequences, the formation of which was related to the next Uda-Murgal island-arc systems.

  6. Modeling Structural and Mechanical Responses to Localized Erosional Processes on a Bivergent Orogenic Wedge

    NASA Astrophysics Data System (ADS)

    Marzen, R.; Morgan, J. K.

    2014-12-01

    Critical Coulomb wedge theory established that orogenic and accretionary wedges should develop self-similarly and maintain a critical taper that reflects the balance of strength of the wedge material and a basal décollement. However, a variety of geological processes can perturb that balance, forcing readjustment of the wedge. For example, glacial erosion and landsliding can concentrate erosion on a localized portion of the wedge slope, leaving that portion of the wedge with an out-of-equilibrium slope that would need to re-develop for the wedge to resume self-similar growth. We use the discrete element method to analyze how growing bivergent wedges with different cohesive strengths respond structurally and mechanically to erosional events localized along upper, middle, and lower segments of the pro-wedge. Mechanically, pro-wedge erosion results in a sudden decrease followed by a quick recovery of the mean stress and maximum shear stress throughout the pro-wedge. However, when erosion is localized in the mid- to lower portions of the pro-wedge, a zone of increased mean stress develops where the wedge is concentrating deformation to recover its taper. In contrast, when erosion is localized in the upper axial zone, there is almost no recovery of the wedge taper, reflecting the fact that the material at the top of the wedge is being carried passively in a transition zone between the pro-wedge and retro-wedge. Structurally, wedges composed of lower cohesion material recover their critical taper almost immediately through distributed deformation, while wedges of higher-cohesion material recover more slowly, and incompletely, by concentrating deformation along existing fault surfaces. As a result, localized erosional episodes can have a lasting effect on the wedge morphology when the wedge is composed of higher cohesion material.

  7. Differential decay of the East-African Antarctic Orogen : an integrated examination of Northeastern Mozambique

    NASA Astrophysics Data System (ADS)

    Ueda, K.; Jacobs, J.; Emmel, B.; Thomas, R. J.; Matola, R.

    2009-04-01

    In Northeastern Mozambique, the late Proterozoic - early Paleozoic East African-Antarctic Orogen can be subdivided into two major blocks that exhibit some relevant differences. The line of divide is represented by the Lurio Belt, a kinematically poorly constrained shear zone that also marks the conceptual northern limit of frequent late-tectonic granitoid intrusions. Moreover, far-travelled granulite-facies nappes cover a much larger area north of this belt (Viola et. al, 2008), giving rise to the assumption of different exhumation and present exposure levels. U/Pb data from previous surveys (e.g., Norconsult consortium, 2007) show coeval high-grade metamorphism in the whole region between c. 610 - 550 Ma, while the block south of the Lurio Belt also shows continuing metamorphism until c. 490 Ma that can be related to extension. Geothermobarometry for samples from within the Lurio Belt (Engvik et. al, 2007) indicates rapid exhumation after high-pressure granulite facies metamorphism and is consistant with the assumption of long tectonic activity. A possible model for the outlined pattern is the delamination of the orogenic root only in the southern part, followed by rapid mechanical thinning as well as by isostatic accommodation along the Lurio Belt. A valuable marker was identified in the metasedimentary Mecuburi group that overlies the southern basement. U/Pb analysis of detrital zircons have yielded a maximum deposition age of c. 600 Ma, while metamorphism is recorded until c. 505 Ma. Investigations of the relationship between metasediments and older basement show that the basal contact is a fairly preserved depositional contact, allowing to suppose a conjoint post-depositional evolution. It is notable that the timing of deposition shortly follows the onset of the main, widespread high-grade metamorphism. Relatively high but variable degrees of migmatisation in the Mecuburi Group require a phase of burial from surface to deep levels after 600 Ma, followed by

  8. Controls on the Post-Orogenic Evolution of the Lannemezan Megafan in the Northern Pyrenean Foreland: Insights from Cosmogenic Nuclide Exposure Dating and Morphometric Analysis

    NASA Astrophysics Data System (ADS)

    Mouchene, M.; Van Der Beek, P.; Mouthereau, F.; Carcaillet, J.

    2015-12-01

    Fluvial megafans are large, low-gradient geomorphic features characterized by sandy and muddy sediments deposited by distributive sheet-flows. They hold a critical position in the source-to-sink routing of sediments and are thus particularly sensitive to changes in the erosion-deposition dynamics through tectonic and/or climatic forcing. The Mio-Pliocene Lannemezan megafan (SW France) is the most prominent feature of the Northern Pyrenean foreland and was abandoned and incised at some point in the Quaternary. However, neither the precise age of megafan abandonment nor its driving mechanism within a stable post-orogenic context has been elucidated, and either tectonic, climatic or base-level controls have been proposed. We report new cosmogenic exposure ages for the abandonment of the surface of the megafan as well as for a series of alluvial terraces produced during the incision. We show that the modern morphology of the foreland was acquired only recently, as the abandonment of the megafan happened at 253 ± 28 ky to 288 ± 12 ky, much later than what was previously assumed (Early Pleistocene). The subsequent incision of the megafan appears to have been strongly influenced by glacial/interglacial cycles, as terrace abandonment ages correlate to the MIS7, MIS5 and post-LGM cold-to-warm transitions. Geomorphic analysis of the stream network reveals that the river profile concavity increased through time and shows no indications for systematic knickpoint generation or retreat, as expected if the river network responds to active tectonics or base-level change, respectively. We do evidence river network reorganizations through river captures using chi proxy (χ) analysis. We propose that this pattern results from flexural isostatic rebound in response to increased erosion rates within the range due to Quaternary glaciations.

  9. Tracing long term tectonic evolution of accretionary orogens by U-Pb zircon geochronology: Proterozoic to Jurassic tectonics of the Santander Massif, northern Colombia

    NASA Astrophysics Data System (ADS)

    Valencia, V. A.; Cardona, A.; Gehrels, G. E.; Ruiz, J.; Ibañez, M.

    2009-12-01

    Accurate orogenic models are nedded to reconstruct complex tectonic histories of long lived convergent margins. Integrated zircon U-Pb geochronology on igneous, sedimentary and metasedimentry rocks within single crustal domains is a powerful tool, as it can be used to trace the timing of rock forming events, magmatic style and episodity, and identify crustal recycling. U-Pb detrital zircon and magmatic geochronology was carried on multiple litostratigraphic units of the Santander Massif in the northeastern Andes, in order to reconstruct its long term Late Proterozoic to Early Mesozoic tectonic evolution. Major zircon forming events includ well defined Grenvillian, Late Neoproterozoic to Ordovician, Silurian, Early Permian and Jurassic events. Major peaks of activity at ca. 197 Ma, 440-410 Ma and 470-490 Ma and 950-1052 Ma, support the existence of continental scale tectonic cycles. Older Mesoproterozoic (1.3-1.5 Ga) crustal input in metasediments and magmatic rocks link these units to crustal recycling on the margins of the Amazon Craton, whereas the older 950-1052 Ma peak indicates the link of this crustal segment with other Andean Grenvillian remnant. Previous interpretations of the Paleozoic Silgara Formation seem incorrect, as acquired dates from this study includ different metamorphic units, deposited and formed after the Silurian and Permian during final stages of Pangea's assemblage, probably as Laurentia migrated to its final Alleghanian position. Finally the presence of the NW South America Jurassic arc is also present in the region by granitoid ages. The limited input of this arc signature within the contemporaneous and overlapping Early Cretaceous sedimentary rocks suggest that this arc was developed in a back arc setting.

  10. Vapor Compression Cycle Design Program (CYCLE_D)

    National Institute of Standards and Technology Data Gateway

    SRD 49 NIST Vapor Compression Cycle Design Program (CYCLE_D) (PC database for purchase)   The CYCLE_D database package simulates the vapor compression refrigeration cycles. It is fully compatible with REFPROP 9.0 and covers the 62 single-compound refrigerants . Fluids can be used in mixtures comprising up to five components.

  11. Detrital muscovite 40Ar/39Ar ages from Carboniferous sandstones of the British Isles: Provenance and implications for the uplift history of orogenic belts

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay M.; Bluck, Brian J.; Pringle, Malcolm S.

    2001-04-01

    Major progradations of clastic sediments are recorded in the sedimentary record of the Famennian and the Visean-Namurian of the United Kingdom and surrounding waters. We have determined 40Ar/39Ar ages of 162 detrital muscovites from 11 coarse sandstones which were deposited between 370 and 465 Ma, spanning both progradations. Detrital mica ages are dominated by a peak at 415 Ma, with minor peaks at 440 Ma and 390 Ma. The 415 Ma muscovites are derived from the unroofing of the Scandian nappes during the compressional phase of the Caledonian orogeny in Scandinavia. The 440 Ma muscovites record pre-Scandian orogenic activity, which is rarely preserved in the orogenic record. Thermochronological evidence suggests that episodic postorogenic uplift, and exhumation events kept the Scandian orogen a major topographic feature and likely a sediment source for over 100 million years after nappe emplacement and implicates tectonic rather than climatic control on the clastic sediment progradations. The near total absence of detrital muscovites with ages <415 Ma suggests that the Scandian nappes had not been entirely eroded despite repeated uplift during the postorogenic extension. The river(s) which supplied the sediments probably ran parallel to the strike of the major Scandian thrusts, along the length of the Caledonian orogen, in a manner analogous to the major river systems of contemporary orogenic highlands.

  12. Contrasting Triassic ferroan granitoids from northwestern Liaoning, North China: Magmatic monitor of Mesozoic decratonization and a craton-orogen boundary

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohui; Yuan, Lingling; Xue, Fuhong; Zhang, Yanbin

    2012-07-01

    The diversity exhibited by ferroan granitoids testifies to multiple distinct crustal and mantle processes generally within extensional environments and thus holds the key to monitoring important geodynamic and crustal evolutionary processes and calibrating terrane tectonic affinity. This study documents three Middle to Late Triassic ferroan granitoid suites from northwestern Liaoning, North China, and proposes distinct petrogenetic scenarios for each. The Middle Triassic (ca. 238 Ma) Ping'andi (PAD) granites are mainly calc-alkali and peraluminous. Their radiogenic whole-rock Nd and zircon Hf isotopic signatures argue for an origin consistent with partial melting of a juvenile quartzofeldspathic crust formed by prior mantle-derived magmatic underplating and their differentiations. By contrast, the Late Triassic (ca. 220 Ma) Dashaoleng (DSL) and Sijiazi (SJZ) suites show an evolved character from alkali-calcic to alkali and from metaluminous to peraluminous. Their variably evolved whole-rock Sr-Nd and mixed zircon Hf isotopic compositions suggest that both suites were formed by variable mixing between depleted mantle-derived mafic magma and old crust-derived felsic magma, with distinctively higher input from juvenile components in the DSL suite. These contrasting ferroan granitoid suites not only provide a spatial marker for monitoring juxtaposition of the North China Craton (NCC) and the Central Asian Orogenic Belt (CAOB) along a lithospheric-scale boundary fault in the region, but also present a temporal snapshot that records a southwardly-progressing crustal growth scenario possibly in response to lithospheric dripping within a post-orogenic extensional regime. The cratonic scale synthesis further indicates that diachronous decratonization pattern of the NCC might record episodic response of the craton to evolved plate tectonic processes with two contrasting Phanerozoic orogenic systems.

  13. Signature of Cenozoic orogenic movements in combustion metamorphic rocks: mineralogy and geochronology (example of the Salair-Kuznetsk Basin transition)

    SciTech Connect

    Novikov, I.S.; Sokol, E.V.; Travin, A.V.; Novikova, S.A.

    2008-06-15

    Cenozoic combustion metamorphic (CM) complexes produced by fossil natural coal fires are widespread at range-basin junctions worldwide. Large-scale fires accompany the initial orogenic phases as fresh coal-bearing strata become drawn into the aeration zone as a result of crustal deformation. In combustion metamorphism, the protolith melts to different degrees either into ferrous basic paralava or in glassy clinker. The melt rocks have a phase composition favorable for Ar-40/Ar-39 dating of ignition coeval with the onset of each episode in Late Cenozoic orogenic events. We suggest an algorithm providing correct Ar-40/Ar-39 age determination of CM rocks followed by well-grounded geological interpretation and test the new approach on melt rocks from the Kuznetsk Coal Basin. Paralava samples were dated by Ar-40/Ar-39 incremental heating and the isotope ratios were corrected for Ca-, Cl-, and K-derived Ar isotopic interferences. The interpretation of age-spectrum results was checked against internal and external criteria. The former were plateau and isochrone ages and the latter included the so-called 'couple criterion' and conventional relative ages inferred from geological and stratigraphic evidence. As a result, we distinguished two groups of dates for combustion metamorphic events bracketed between 1.2 {+-} 0.4 and 0.2 {+-} 0.3 Ma. The older ages represent rocks in the western edge of the Prokopievsk-Kiselevsk block of the Salair zone and the younger dates correspond to those in its eastern edge. The reported dates record the time when the fault boundaries of the blocks were rejuvenated during recent activity and the block accreted to the Salair orogenic area as a submontane step. The suggested approach to the choice of objects, classification of rocks, and interpretation of Ar-40/Ar-39 spectra is universal and can be practiced in any area of combustion metamorphism.

  14. Partial melting of the South Qinling orogenic crust, China: Evidence from Triassic migmatites and diorites of the Foping dome

    NASA Astrophysics Data System (ADS)

    Zhang, He; Ye, Ri-Sheng; Liu, Bing-Xiang; Wang, Yan; Zhang, Yuan-Shuo; Siebel, Wolfgang; Chen, Fukun

    2016-09-01

    The Qinling orogen was ultimately formed by suturing of the South Qinling and Yangtze blocks, but the exact timing of the final amalgamation of the two blocks has not been well established so far. Partial melting of the Qinling orogenic continental crust resulted in the generation of migmatites, and such rocks may help to decipher the chronology of such event. In this paper, we report U-Pb ages, trace element, and Hf isotopic compositions of zircons from migmatites and diorite gneisses of the Foping dome, South Qinling. Zircons from migmatites form anhedral grains of variable sizes that are characterized by complex trace element compositions. Based on zircon U-Pb ages, the migmatites can be subdivided into two groups: Group 1 migmatites mainly retain Triassic zircons with U-Pb ages of 214-211 Ma and Hf model ages of ~ 1.46 Ga in core and rim domains; zircons from Group 2 migmatites record both Triassic (~ 210 Ma) and Neoproterozoic U-Pb ages, analogous to igneous rocks of the Wudang and Yaolinghe Groups exposed in South Qinling. Zircons from the diorite gneisses yield U-Pb ages of 216-210 Ma with Hf isotopic composition (TDM2 ages of ~ 1.46 Ga) similar to the migmatites. Evidence from whole-rock Nd isotopic analyses also points to a similar genesis between migmatites and diorite gneisses. It is proposed that Group 1 migmatites were derived by melting of Triassic diorites, while Group 2 migmatites were derived from Neoproterozoic igneous rocks, a major basement lithology of South Qinling. Partial melting of the orogenic crust took place at ~ 214-210 Ma, approximately consistent with the retrograde metamorphism of granulites exposed along the suture zone between the South Qinling and Yangtze blocks. We suggest that the collision of these two blocks occurred prior to ~ 215 Ma and that the Foping dome resulted from rapid collapse of an overthickened crust followed by partial melting enhanced by asthenospheric influx.

  15. A metamorphic mineral source for tungsten in the turbidite-hosted orogenic gold deposits of the Otago Schist, New Zealand

    NASA Astrophysics Data System (ADS)

    Cave, Ben J.; Pitcairn, Iain K.; Craw, Dave; Large, Ross R.; Thompson, Jay M.; Johnson, Sean C.

    2016-09-01

    The orogenic gold deposits of the Otago Schist, New Zealand, are enriched in a variety of trace elements including Au, As, Ag, Hg, W and Sb. We combine laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) traverses and images to show that detrital rutile is the most important host mineral for W in the subgreenschist facies rocks. Furthermore, the prograde metamorphic recrystallisation of detrital rutile to titanite releases significant amounts of W (potentially 0.41 g/tonne of rock). Scheelite development closely follows the progression of this W-liberating reaction. Scheelite micrograins form early within the fabric of the rock evolving to locally and regionally sourced scheelite-bearing veins. Scheelite from syn-metamorphic veins at Fiddlers Flat and Lake Hāwea shows distinct differences in composition compared with scheelite from late-metamorphic veins at the Macraes Mine, the latter of which is enriched in REEs, Y and Sr. We suggest that the scheelite at Macraes became enriched due to the liberation of these elements during alteration of the Ca-silicate minerals epidote and titanite by the ore-forming fluid. These results are supportive of recent models for orogenic gold mineralisation in the Otago Schist, whereby prograde metamorphic recrystallisation of diagenetic or detrital metal-rich mineral phases (pyrite to pyrrhotite: Au, As, Ag, Hg and Sb; rutile to titanite: W) releases significant amounts of metals into the concurrently developing metamorphic fluids that can be subsequently focussed into regional structures and form significant tungsten-bearing orogenic gold deposits.

  16. Revisiting the Wilson Cycle in the North Atlantic: The role of inheritance

    NASA Astrophysics Data System (ADS)

    Chenin, Pauline; Manatschal, Gianreto; Müntener, Othmar; Picazo, Suzanne; Erratt, Duncan; Karner, Garry; Johnson, Christopher; Ulrich, Marc

    2016-04-01

    According to the Wilson Cycle, oceans open and close approximately parallel to ancient suture zones, suggesting a major control of inheritance in the extension and convergent process. While this paradigm is well illustrated in the northern North Atlantic where the rift follows largely the Iapetus suture between Norway and Greenland, this is not the case for the southern North Atlantic, where neither the westward, nor the northward propagating branch of the Central Atlantic rift, affected the Variscan sutures of Western Europe. These observations suggest that inheritance is not necessarily reactivated during subsequent rifting events and begs the question about what may truly control the localization and details of rift systems. One possible cause for the differing behavior of the North Atlantic rift with respect to the Caledonian and Variscan orogens may be their contrasting paleo-geographic settings. Indeed, the Scandinavian Caledonides resulted from the closure of one wide ocean between two cratonic shields, whereas the Variscides were built from the accretion of several terranes/micro-continents following the closure of a series of narrow oceans. The variability in the initial architecture of the intervening rift systems and in their subduction processes may have significantly controlled the subsequent orogenies. The aim of this presentation is twofold: first we investigate how the first-order structural and lithological characteristics of narrow/embryonic versus wide/mature oceans, as well as the processes associated with their subduction and collision, characterize orogens. Second, we study how this variable orogenic inheritance may impact subsequent rifting. Our results suggest that: (1) the margins from narrow/embryonic and wide/mature oceans are comparable, therefore the major difference between these end-members is the existence of a significant amount of normal oceanic crust; (2) subduction-induced processes significantly impact both the thermal state and

  17. Menu Cycles.

    ERIC Educational Resources Information Center

    Clayton, Alfred; Almony, John

    The curriculum guide for commercial foods instruction is designed to aid the teacher in communicating the importance of menu cycles in commercial food production. It also provides information about the necessary steps in getting food from the raw form to the finished product, and then to the consumer. In addition to providing information on how to…

  18. Two modes of orogenic collapse of the Pamir plateau recorded by titanite

    NASA Astrophysics Data System (ADS)

    Stearns, M. A.; Hacker, B. R.; Ratschbacher, L.; Rutte, D.; Kylander-Clark, A. R.

    2013-12-01

    Processes that operate in the mid- to lower crust during and following continent-continent collision are important for understanding how orogenic plateaux transition from thickening to collapse. In the central and southern Pamir, mid- to lower crustal rocks crop out in two belts of extensional domes. The central Pamir domes were exhumed by symmetrical N-S extension. In contrast, the southern Pamir domes were exhumed by asymmetrical top to the south (NNW-SSE) extension via a rolling-hinge detachment. To investigate the high-temperature exhumation history, titanites were dated using LASS (laser ablation split stream-ICP-MS). A multi-collector ICP was used to collect U-Pb isotopic ratios and a single collector ICP-MS was used to measure trace-element abundances. The data indicate that the central Pamir domes began exhumation synchronously at ~17 Ma. Titanite from the southern Pamir record two periods of protracted (re)crystallization: older metamorphic dates ranging from ~35-18 Ma and younger igneous and metamorphic dates from ~15-7 Ma. Samples with single populations of titanite dates are present throughout both groups. Samples with more-complex date populations typically have distinct trace-element (e.g., Sr, Y, Zr, and Nb) groups that can be used to distinguish different date populations (e.g., older dates may have higher Zr and younger dates lower Zr). The distinct early exhumation histories of the north and south Pamir require either a diachronous single process or two semi-independent processes. The N to S sequence of exhumation, ranges of dates, and overall extension directions may be related to two important plate-tectonic events inferred from seismic data: 1) breakoff of the northward subducting Indian slab around ~20 Ma, and 2) southward subduction and northwestward rollback of the Asian lithosphere between ~15-10 Ma based on geodetic convergence rates and Benioff zone length. We interpret these two lithospheric-detachment events to have driven the

  19. Timing and climatic drivers for glaciation across semi-arid western Himalayan-Tibetan orogen

    NASA Astrophysics Data System (ADS)

    Dortch, Jason M.; Owen, Lewis A.; Caffee, Marc W.

    2013-10-01

    Mapping and forty-seven new 10Be ages help define the timing of glaciation in the Ladakh and Pangong Ranges in Northwest India. Five new local glacial stages are defined for the Ladakh Range. From oldest to youngest these include: the Ladakh-4 glacial stage at 81 ± 20 ka; the Ladakh-3 glacial stage (not dated); the Ladakh-2 glacial stage at 22 ± 3 ka; the Ladakh-1 glacial stage (not dated); and the Ladakh Cirque glacial stage at 1.8 ± 0.4 ka. Three local glacial stages are defined for the Pangong Range, which include: the Pangong-2 glacial stage at 85 ± 15 ka; the Pangong-1 glacial stage at 40 ± 3 ka; and the Pangong Cirque glacial stage at 0.4 ± 0.3 ka. The new 10Be ages are combined with 645 recalculated 10Be ages from previous studies to develop the first regional framework of glaciation across the dryland regions of the Greater Himalaya, Transhimalaya, Pamir and Tian Shan at the western end of the Himalayan-Tibetan orogen. Nineteen regional glacial stages are recognized that are termed semi-arid western Himalayan-Tibetan stages (SWHTS). These include: SWHTS 9 at 311 ± 32 ka; SWHTS 7 at 234 ± 44 ka [tentative]; SWHTS 6 at 146 ± 18 ka; SWHTS 5E at 121 ± 11 ka; SWHTS 5A at 80 ± 5 ka; SWHTS 5A- at 72 ± 8 ka; SWHTS 4 at 61 ± 5 ka; SWHTS 3 at 46 ± 4 ka; SWHTS 2F at 30 ± 3 ka; SWHTS 2E at 20 ± 2 ka; SWHTS 2D at 16.9 ± 0.7 ka; SWHTS 2C at 14.9 ± 0.8 ka; SWHTS 2B at 13.9 ± 0.5 ka; SWHTS 2A at 12.2 ± 0.8 ka; SWHTS 1E at 8.8 ± 0.3 ka [tentative]; SWHTS 1D at 6.9 ± 0.2 ka [tentative]; SWHTS 1C at 3.8 ± 0.6 ka; SWHTS 1B at 1.7 ± 0.2 ka; and SWHTS 1A at 0.4 ± 0.1 ka. Regional glacial stages older than 21 ka are broadly correlated with strong monsoons. SWHTS that are 21 ka or younger, have smaller uncertainties and broadly correlate with global ice volume given by marine Oxygen Isotope Stages, and northern hemisphere climatic events (Oldest Dryas, Older Dryas, Younger Dryas, Roman Humid Period, and Little Ice Age).

  20. Denudation rates across the seaward side of a juvenile orogenic topography, western Cantabrian Range

    NASA Astrophysics Data System (ADS)

    Alvarez-Marron, Joaquina; Menendez-Duarte, R.; Stuart, F.; Fernandez, S.; Grobe, R.; Glasmacher, U. A.; Pallas, R.; Rodes, A.; Braucher, R.; Bourles, D.

    2010-05-01

    of denudation rates is consistent with erosion being concentrated in incised areas as the system accommodates base-level lowering and narrow steep valley slopes developed on resistant bedrock. Ongoing cosmogenic 21Ne and 10Be measurements will provide more precise understanding of the erosional response to landmass uplift during juvenile stages of evolution in a slow-growing coastal orogen.

  1. The Hydrologic Characteristics of an Orogenic Wedge During Burial of Pelites

    NASA Astrophysics Data System (ADS)

    Nabelek, P. I.

    2014-12-01

    The burial and exhumation of oceanic sediments in orogenic wedges is one of the most important processes that occur during continental collisions. During progressive burial, pelites lose porosity and permeability, and eventually pass into the lithostatic pressure regime where the porosity and permeability are thought to be very small. However, prograde metamorphic reactions produce fluids that must ascent though the pore space or fractures. The hydrologic characteristics of schists undergoing burial were modeled using the program SUTRAMET, which is a modified version of the program SUTRA (Voss & Provost, 2002) that allows modeling of metamorphic reactions at high pressures and temperatures and incorporates transient porosity and permeability changes due to overpressure and changing volume of the metamorphic assemblage. The initial model crustal section includes a hydrostatic pressure regime to the depth of 5 km with φ ≥ 0.007 and k ≥ 10-17 m2. Within the lithostatic pressure domain, schists have φ ≤ 0.003 and k ≤ 10-18 m2. Below the schists that are undergoing burial (3 or 6 mm/y) is an impermeable substrate with φ = 0. P and T are maintained at the top and the bottom boundaries and P is also maintained at the top of the lithostatic domain. T-dependent thermal diffusivity and heat capacity were applied. The initial T gradient is ~30°/km. The only heat sink is endothermic metamorphic reactions and the only heat source is a small amount of radioactivity. The initial schist was assumed to have 17.9 wt.% qtz, 13.2% ab, 28.7% ksp, 9.0% ms, 22.8% chl, and 8.5% law. By the time it reaches the bottom of the crustal section, metamorphic reactions produce the anhydrous assemblage 14.5% qtz, 7.8% an, 13.7% ab, 36% ksp, 0.2% sil, and 27.5% grt. Results show that fluid pressure remains slightly above lithostatic within the initially lithostatic pressure regime as metamorphic fluids are released, even at the slow burial rate of 3 mm/y, because the fluids pass to the

  2. COSC-1 - drilling of a subduction-related allochthon in the Palaeozoic Caledonide orogen of Scandinavia

    NASA Astrophysics Data System (ADS)

    Lorenz, H.; Rosberg, J.-E.; Juhlin, C.; Bjelm, L.; Almqvist, B. S. G.; Berthet, T.; Conze, R.; Gee, D. G.; Klonowska, I.; Pascal, C.; Pedersen, K.; Roberts, N. M. W.; Tsang, C.-F.

    2015-05-01

    The Collisional Orogeny in the Scandinavian Caledonides (COSC) scientific drilling project focuses on mountain building processes in a major mid-Palaeozoic orogen in western Scandinavia and its comparison with modern analogues. The project investigates the subduction-generated Seve Nape Complex. These in part under ultra-high-pressure conditions metamorphosed outer continental margin and continent-ocean transition zone assemblages were emplaced onto the Baltoscandian platform and there influenced the underlying allochthons and the basement. COSC-1 is the first of two ca. 2.5 km deep, fully cored drill holes located in the vicinity of the abandoned Fröå mine, close to the town of Åre in Jämtland, central Sweden. It sampled a thick section of the lower part of the Seve Complex and was planned to penetrate its basal thrust zone into the underlying lower-grade metamorphosed allochthon. The drill hole reached a depth of 2495.8 m and nearly 100 % core recovery was achieved. Although planning was based on existing geological mapping and new high-resolution seismic surveys, the drilling resulted in some surprises: the Lower Seve Nappe proved to be composed of rather homogenous gneisses, with only subordinate mafic bodies, and its basal thrust zone was unexpectedly thick (> 800 m). The drill hole did not penetrate the bottom of the thrust zone. However, lower-grade metasedimentary rocks were encountered in the lowermost part of the drill hole together with garnetiferous mylonites tens of metres thick. The tectonostratigraphic position is still unclear, and geological and geophysical interpretations are under revision. The compact gneisses host only eight fluid conducting zones of limited transmissivity between 300 m and total depth. Downhole measurements suggest an uncorrected average geothermal gradient of ~ 20 °C km-1. This paper summarizes the operations and preliminary results from COSC-1 (ICDP 5054-1-A), drilled from early May to late August 2014, and is

  3. Orogenic-type copper-gold-arsenic-(bismuth) mineralization at Flatschach (Eastern Alps), Austria

    NASA Astrophysics Data System (ADS)

    Raith, Johann G.; Leitner, Thomas; Paar, Werner H.

    2015-10-01

    high Hg content (up to 11 mass %). The Cu-Au deposits in the Flatschach area show similarities with meso- to epizonal orogenic lode gold deposits regarding the geological setting, the structural control of mineralization, the type of alteration, the early (stage 1) sulfide assemblage and composition of gold. Unique about the Flatschach district is the lower-temperature overprint of copper arsenides (domeykite and koutekite) and copper sulfides (djurleite, yarrowite/spionkopite) on earlier formed sulfide mineralization. Based on mineralogical considerations temperature of stage 2 mineralization was between about 70 °C and 160 °C. Gold was locally mobilized during this low-temperature hydrothermal overprint as well as during stage 3 supergene oxidation and cementation processes.

  4. TTR triple junction evolution during plate convergence in the southern branch of the european variscan orogen

    NASA Astrophysics Data System (ADS)

    Diaz, M.; Fernandez, C.; Castro, A.

    2003-04-01

    The boundary between the Ossa-Morena and the South Portuguese zones (Iberian Massif) represents a major suture within the southern branch of the European Varis-can orogen. This suture resulted from the collision between the northern Iberian autochthon and the South Portuguese allochthon, and it is outlined by a WNW-ESE oriented, high grade band (the Aracena metamorphic belt, AMB). The main characteristics of the AMB are (1) the presence of a linear belt of MORB derived metabasites which shows a HT/LP inverted metamorphic gradient (Castro et al., 1996). This metamorphic event shows an age gradient (Castro et al., 1999), in such a way that younger ages have been obtained towards the east. (2) The occur-rence of a UHT/LP metamorphic event, related to an extensional deformation phase, affecting the former continental margin of the Iberian autochthon. (3) The existence of syn-to-post-tectonic noritic intrusions with boninite affinity composition, related to partial melting of a shallow mantle wedge (Castro et al., 1996). According to the mentioned characteristics the following tectonic model is pro-posed: (1) During the convergence between the Iberian autochthon and the South Portuguese allochthon, an oceanic ridge intersected the subduction zone giving place to a TTR triple junction, related to which a slab-free window formed and a thermal rebound took place. This triple junction migrated along the continental edge of the Iberian autochthon towards the east, generating a high-grade metamorphic belt (the AMB). (3) As the trailing oceanic plate subducted beneath the continental margin, it was heated up by the latter. In consequence, the upper levels of the oceanic sheet became dehydrated and were accreted to the base of the continental margin. The subduction plane migrated downwards and the oceanic metabasites together with the continental margin overthrusted the rest of the oceanic plate and the accretionary prism. (4) Once the trailing oceanic plate was totally

  5. Thermomechanical analogue modeling of the lateral spreading of the Svecofennian orogen

    NASA Astrophysics Data System (ADS)

    Nikkilä, K.; S. Roy Chowdhury, B.; Dietl, C.; Korja, A.

    2011-12-01

    The modeling exercise simulated the late Svecofennian orogen processes in the Central Finland area. The Svecofennian orogeny in the Northern Europe is characterized by low pressure and high temperature metamorphism (1.88 Ga). The environment was similar to that presently in Tibetian plateau. We assume the thickened continental crust were 80 kilometer thick after the continental collision event, based on the deep seismic reflection profiles BABEL and FIRE. The profiles prove that the thickness of the crust is still 65 kilometers, furthermore, we suppose the 15-20 uppermost kilometers are eroded. The FIRE sections indicate the crust has three different composition layers: the upper, the middle and the lower crust. With rising temperatures, the middle crust became ductile, while the lower crust is more viscous. Thus, the brittle upper crust moves along the flowing middle crust. A set of thermomechanical analogue experiments were used to simulate the lateral spreading of the Svecofennian orogeny in high temperature circumstances. Layered models were constructed with brittle upper crust (sand), flowing middle crust (low viscosity plasticine) and non-flowing lower crust (high viscosity plasticine). The miniature models with dimensions of 12 cm x 12 cm x 8 cm were used to represent 120 km x 120 km wide and 80 km deep Earth's crust, that is, one centimeter corresponds to 10 kilometers. The modeling results are similar to the deep seismic reflection profiles, and to the field observations. The surface structures of the analogue model show normal faulting and fine thrusting in the upper crust. The middle crust was flowing in the experiment, but the thinning of the crust is not as obvious as that observed in the FIRE profiles. However, the lower crust bulges upward and is mainly constant like in the deep seismic profiles. More surprising are the structures which developed subvertical in 45° angle to the extensional direction, and extend from the upper to the lower crust

  6. Late Devonian Anoxia Events in the Central Asian Orogenic Belt: a Global Phenomenon

    NASA Astrophysics Data System (ADS)

    Carmichael, S. K.; Waters, J. A.; Suttner, T. J.; Kido, E.; DeReuil, A. A.; Moore, L. M.; Batchelor, C. J.

    2013-12-01

    Atmospheric CO2 values decreased dramatically during the Middle Devonian due to the rapid rise of land plants. These changing environmental conditions resulted in widespread anoxia and extinction events throughout the Late Devonian, including the critical Kellwasser and Hangenberg anoxia events, which are associated with major mass extinctions at both the beginning and end of the Famennian Stage of the Late Devonian. Fammenian sediments in northwestern Xinjiang Province, China, represent a highly fossiliferous shallow marine setting associated with a Devonian oceanic island arc complex. Analysis of multiple geochemical proxies (such as U/Th, Ba, normalized P2O5, V/Cr, Zr), magnetic susceptibility, and mineralogical data (biogenic apatite and pyrite framboids) indicates that these Famennian sequences record not only the Upper Kellwasser Anoxic Event at the Frasnian/Famennian (F/F) boundary but also the rebound from the F/F extinction event. Preliminary evidence suggests that the Hangenberg Anoxic Event can also be recognized in the same sequence, although our biostratigraphic control is less precise. Previous studies of the Kellwasser and Hangenberg Events have been performed on continental shelf environments of Laurussia, Gondwana, Siberia, and South China. The Devonian formations of northwest Xinjiang in this study, however, are part of the Central Asian Orogenic Belt (CAOB), which is thought to have formed as part of a complex amalgamation of intra-oceanic island arcs and continental fragments prior to the end of the latest Carboniferous. These results allow us to confirm the presence of the Kellwasser and Hangenberg Events in the open oceanic part of Paleotethys, indicating that both events were global in scope. The presence of an abundant diverse Famennian fauna between these anoxia/extinction events suggests that the shallow marine ecosystems in the CAOB were somewhat protected due to their tectonic location and relative isolation within an open ocean system

  7. Extension of the Mid- to Lower Crust with Orogenic Inheritance: Examples from the Death Valley Region (Western US), and the Mauleon Basin (Southwestern France).

    NASA Astrophysics Data System (ADS)

    Lima, R. D.; Hayman, N. W.; Kelly, E. D.; Lavier, L. L.

    2015-12-01

    Continental margins exhibit a range of widths and symmetries defined by the strain patterns that arise during extension and rifting. An important pattern in this respect is the early localization of extension into necking zones. The rheology of the lower crust plays a large role in this localization, and can be affected by inherited orogenic structures, fabrics, and mineral assemblages. Here, we further evaluate the role of orogenic fabrics in continental extension using microstructural observations and thermodynamic modeling of geological sections exposed in the Funeral and Black Mountains of the Death Valley region, California, and from the Mauleon Basin, France. The Death Valley region sits within the Basin-and-Range region of broadly distributed Cenozoic extension, over a relatively flat and deep moho. In contrast, in the Mauleon basin, Cretaceous extension accommodated mantle exhumation, and was strongly localized in older Hercynian orogenic crust. In both areas, mid- to lower crustal rocks are characterized by inherited migmatitic fabrics overprinted by zones of localized, extensional fabrics. Mineral assemblages that formed over a P-T cooling path define the fabrics in each field area. The high-temperature fabrics record decompression-melting due to late- to post-orogenic collapse. Yet, the two field areas show contrasting retrograde assemblages, which are hypothesized to have resulted from changes in the local effective bulk composition produced by differences in melt segregation. At subsequent extensional stages, mid- to lower crustal deformation resulted in the transposition of the inherited post-orogenic fabrics, documented with quartz fabric analysis (including EBSD). The two contrasting regions show how the rheology of inherited orogenic lower crust responds to differences in melt-segregation and metamorphic histories, potentially controlling margin structural evolution.

  8. Marymia: an Archean, amphibolite facies-hosted, orogenic lode-gold deposit overprinted by Palaeoproterozoic orogenesis and base metal mineralisation, Western Australia

    NASA Astrophysics Data System (ADS)

    Vielreicher, Noreen M.; Ridley, John R.; Groves, David I.

    2002-10-01

    The Marymia gold deposit, comprising two orebodies, Keillor 1 and Keillor 2, is at the northern end of the Plutonic Well greenstone belt in the Marymia Inlier, in the southern Capricorn Orogen, just north of the Yilgarn craton. The Marymia Inlier is a discrete fault-bounded Archean gneiss-granitoid-greenstone domain surrounded by sedimentary basins that were formed and variably metamorphosed and deformed during several Palaeoproterozoic orogenic cycles. The greenstone sequence at Marymia is stratigraphically and geochemically similar to greenstone sequences in the Yilgarn craton, but was subjected to further deformation and metamorphism in the Palaeoproterozoic. Late Archean deformation (D1-D2) was ductile to brittle-ductile in style, whereas Palaeoproterozoic deformation was predominantly brittle. Equilibrium mineral assemblages indicate that peak amphibolite-facies metamorphism (540-575 °C, <3 kb) was overprinted by greenschist-facies metamorphism (300-360 °C). Petrographic textures indicate that prograde metamorphism was coeval with D1-D2, with peak metamorphism early to syn D2. Gold mineralisation at Marymia is hosted in metamorphosed tholeiitic basalts and banded iron formation. On a gross scale, the distribution of gold is controlled by D2 folds and shear zones. Lithological contacts with strong rheological or chemical contrasts provide local controls. Gold-related alteration comprises subtle millimetre- to centimetre-wide zones of silicification with variable amounts of quartz, hornblende, biotite, K-feldspar, plagioclase, calcite/siderite, scheelite, titanite, epidote, sulfide and telluride minerals. Quartz veins are generally narrow and discontinuous with low total volume of quartz. Gold is sited in the wall rock, at vein salvedges or within stringers of wall rock within veins. There are two distinct opaque-mineral assemblages: pyrite-pyrrhotite-chalcopyrite-galena and hessite-petzite-altaite-Bi-telluride-galena. Ore samples are variably enriched in Ag

  9. Pan-African granulites of central Dronning Maud Land and Mozambique: A comparison within the East-African-Antarctic orogen

    USGS Publications Warehouse

    Engvik, A.K.; Elevevold, S.; Jacobs, J.; Tveten, E.; de Azevedo, S.; Njange, F.

    2007-01-01

    Granulite-facies metamorphism is extensively reported in Late Neoproterozoic/Early Palaeozoic time during formation of the East-African-Antarctic orogen (EAAO). Metamorphic data acquired from the Pan-African orogen of central Dronning Maud Land (cDML) are compared with data from northern Mozambique. The metamorphic rocks of cDML are characterised by Opx±Grt-bearing gneisses and Sil+Kfs-bearing metapelites which indicate medium-P granulite-facies metamorphism. Peak conditions, which are estimated to 800-900ºC at pressures up to 1.0 GPa, were followed by near-isothermal decompression during late Pan-African extension and exhumation. Granulite-facies lithologies are widespread in northern Mozambique, and Grt+Cpx-bearing assemblages show that high-P granulite-facies conditions with PT reaching 1.55 GPa and 900ºC were reached during the Pan-African orogeny. Garnet is replaced by symplectites of Pl+Opx+Mag indicating isothermal decompression, and the subsequent formation of Pl+amphibole-coronas suggests cooling into amphibolite facies. It is concluded that high-T metamorphism was pervasive in EAAO in Late Neoproterozoic/Early Paleozoic time, strongly overprinting evidences of earlier metamorphic assemblages.

  10. Landscape Evolution in Orogens with Significant Lateral Advection of Rock: Insights from Numerical Simulations of Fault-Bend Folds

    NASA Astrophysics Data System (ADS)

    Miller, S. R.; Slingerland, R. L.; Kirby, E.

    2002-12-01

    Steady-state orogens must balance lateral as well as vertical rock motions by erosion, but how this balance is effected and what its topographic signature might be are open questions. Here we explore the conditions necessary to achieve a topographic steady state above fault-bend folds, a major class of topography-forming orogenic structures in which lateral motion is significant. Field observations indicate that many active fault-bend folds, such as those underlying the Siwalik Hills, Nepal, and the foothills of the Kyrgyz Range, Kyrgyzstan, have only their backlimbs preserved, implying the achievement of at least exhumational steady state. To determine if their topography and drainage networks are at steady-state we have conducted numerical experiments using CHILD, a landscape evolution model. Rock particle motions above a fault bend were modeled using a planar ramp dipping at 30° along which slip occurs at 20 mm/yr. Results indicate that the system achieves a topographic steady-state in which the drainage divide lies above the ramp tip, but drainage nets continuously evolve because longitudinal streams are advected into transverse streams draining the back limb. Transverse streams draining the back of the fold are significantly less concave (θ < 0.4) than streams draining the front (θ > 1), supporting the notion that stream longitudinal profiles reflect lateral advection of their beds in addition to intrinsic hydrologic controls.

  11. Late orogenic mafic magmatism in the North Cascades, Washington: Petrology and tectonic setting of the Skymo layered intrusion

    USGS Publications Warehouse

    Whitney, D.L.; Tepper, J.H.; Hirschmann, M.M.; Hurlow, H.A.

    2008-01-01

    The Skymo Complex in the North Cascades, Washington, is a layered mafic intrusion within the Ross Lake fault zone, a major orogen-parallel structure at the eastern margin of the Cascades crystalline core. The complex is composed dominantly of troctolite and gabbro, both with inclusions of primitive olivine gabbro. Low-pressure minerals in the metasedimentary contact aureole and early crystallization of olivine + plagioclase in the mafic rocks indicate the intrusion was emplaced at shallow depths (<12 km). The Skymo rocks have trace-element characteristics of arc magmas, but the association of Mg-rich olivine (Fo88-80) with relatively sodic plagioclase (An75-60) and the Al/Ti ratios of clinopyroxene are atypical of arc gabbros and more characteristic of rift-related gabbros. A Sm-Nd isochron indicates crystallization in the early Tertiary (ca. 50 Ma), coeval with the nearby Golden Horn alkaline granite. Mantle melting to produce Skymo magma likely occurred in a mantle wedge with a long history of arc magmatism. The Skymo mafic complex and the Golden Horn granite were emplaced during regional extension and collapse of the North Cascades orogen and represent the end of large-scale magmatism in the North Cascades continental arc. ?? 2008 Geological Society of America.

  12. Correlation of the Tonga Formation and the Chiwaukum Schist, North Cascades, Washington: Implications for Late Cretaceous orogenic mechanisms

    NASA Astrophysics Data System (ADS)

    Duggan, K. M.; Brown, E. H.

    1994-12-01

    The Tonga Formation of the North Cascades, Washington, consists of weakly deformed, bedded feldspathic graywacke and shale metamorphosed at chlorite to staurolite grade. Analysis of protolith lithology, Rb-Sr isotopic signature, and plutonic, metamorphic, and deformational evolution in the Tonga Formation suggests that this unit is correlative with the Chiwaukum Schist of the Cascades crystalline core. The Tonga Formation occurs on the flank of the Late Cretaceous orogen, whereas high-grade Chiwaukum Schist is exposed in the core of the orogen. Metamorphic pressure, as reflected by the distribution of metamorphic minerals and thermobarometry, increases continuously northward in the Tonga Formation from the chlorite zone (<4 kbar) to the staurolite zone (≈ 7 kbar) and then to the kyanite zone (≈ 7 kbar) in the Chiwaukum Schist. The findings reported herein do not support the previously advanced concept that the Cascades crystalline core represents the Easton blueschist terrane that was converted into higher-temperature metamorphic rock by thermal relaxation after cessation of subduction. The results of this study suggest a relatively simple two-stage metamorphic history for the Chiwaukum Schist represented by 90-93 Ma shallow contact metamorphism, overprinted by Harrovian metamorphism that increased sharply in pressure from south-west to northeast and reached peak conditions after 90 Ma, all events occurring in a plutonic/magmatic arc setting.

  13. The Ross Orogen and Lachlan Fold Belt in Marie Byrd Land, Northern Victoria Land and New Zealand: implication for the tectonic setting of the Lachlan Fold Belt in Antarctica

    USGS Publications Warehouse

    Bradshaw, J.D.

    2007-01-01

    Correlation of the Cambrian Delamerian Orogen of Australia and Ross Orogen of the Transantarctic Mountains widely accepted but the extension of the adjacent Lachlan Orogen into Antarctica is controversial. Outside the main Ross-Delamerian belt, evidence of this orogeny is preserved at Mt Murphy in Marie Byrd Land and the in Takaka Terrane of New Zealand. In all pre-break- configurations of the SW Pacific, these two areas are far removed from the Ross-Delamerian belt. Evidence from conglomerates in the Takaka Terrane, however, shows that in Late Cambrian times it was adjacent to the Ross Orogen. This indicates major tectonic displacements within Gondwana after the Cambrian and before break-up. The Lachlan Orogen formed in an extensional belt in a supra-subduction zone setting and the Cambrian rocks of Marie Byrd Land and New Zealand are interpreted as parts of a rifted continental ribbon on the outboard side of the Lachlan belt.

  14. Geological and geochemical implications of the genesis of the Qolqoleh orogenic gold mineralisation, Kurdistan Province (Iran)

    NASA Astrophysics Data System (ADS)

    Taghipour, Batoul; Ahmadnejad, Farhad

    2015-03-01

    The Qolqoleh gold deposit is located in the northwestern part of the Sanandaj-Sirjan Zone (SSZ), within the NE-SW trending Qolqoleh shear zone. Oligocene granitoids, Cretaceous meta-limestones, schists and metavolcanics are the main lithological units. Chondrite-normalised REE patterns of the ore-hosting metavolcanics indicate REE enrichment relative to hanging wall (chlorite-sericite schist) and footwall (meta-limestone) rocks. The pattern also reflects an enrichment in LREE relative to HREE. It seems that the LREE enrichment is related to the circulation of SO42- and CO2-bearing fluids and regional metamorphism in the Qolqoleh shear zone. Both positive and negative Eu anomalies are observed in shear-zone metavolcanics. These anomalies are related to the degree of plagioclase alteration during gold mineralisation and hydrothermal alteration. In progressing from a metavolcanic protomylonite to an ultramylonite, significant changes occurred in the major/trace element and REE concentration. Utilising an Al-Fe-Ti isocon for the ore-hosting metavolcanics shows that Sc, Y, K, U, P, and M-HREE (except Eu) are relatively unchanged; S, As, Ag, Au, Ca, LOI, Rb and LREE are enriched, and Sr, Ba, Eu, Cr, Co and Ni decrease with an increasing degree of deformation. Based on geochemical features and comparison with other well-known shear zones in the world, the study area is best classified as an Isovolume-Gain (IVG) type shear zone and orogenic type gold mineralisation. Based on the number of phases observed at room temperature and their microthermometric behaviour, three fluid inclusion types have been recognised in quartz-sulphide and quartz-calcite veins: Type I monophase aqueous inclusions, Type II two-phase liquid-vapour (L-V) inclusions which are subdivided into two groups based on the homogenisation temperature (Th): a) L-V inclusions with Th from 205 to 255°C and melting temperature of last ice (Tm) from -3 to -9°C. b) L-V inclusions with higher Th from 335 to 385

  15. Seismic Tomography Reveals Breaking Crust and Lithosphere Beneath a Classic Orogen

    NASA Astrophysics Data System (ADS)

    Byrne, T. B.; Rau, R.; Kuo-Chen, H.; Lee, Y.; Ouimet, W. B.; Van Soest, M. C.; Huang, C.; Wu, F. T.

    2013-12-01

    The orogenic system in Taiwan is often considered a classic example of an accretionary prism that has grown to a steady-state size and shape above an also steady subduction zone. A new study of vertical and horizontal sections of a tomographic velocity model created by Kuo-Chen et al. (2012) show, however, both a well-developed crack in the subducted crust beneath southern Taiwan and a discontinuous lithosphere beneath northern Taiwan, suggesting that slab breakoff is actively occurring beneath Taiwan. The transition from slab breakoff to cracking crust in southern Taiwan also suggests that slab breakoff is propagating southward, consistent an oblique collision. The crack in the subducting crust is revealed by progressively deeper horizontal sections of the local-scale tomographic model. The sections show an ellipsoidal-shaped area of high velocity that plunges southeast, oblique to all of the regional trends. Taking into account the dip of the slab, however, the area of high velocity is nearly parallel to previously recognized fracture zone in the Eurasian continental margin. We interpret the area of high velocity to be a crack in the Eurasian crust that is filled high velocity Eurasian mantle. Support for this interpretation comes from: 1) new exhumation cooling data from Mt Yu, the highest peak in Taiwan; 2) a recent leveling survey along the South Cross-Island Highway that shows unusually high rates of surface uplift (up to 15 mm/yr; Ching et al., 2011); 3) Vp attenuation studies that suggest anomalously high temperatures and/or the presence of fluids; 4) earthquake focal mechanisms in the core of the southern Central Range that are dominated by NE-SW extension; and finally, 5) the core of the southern Central Range preserves anomalous areas of low topographic relief that straddle the crest of the range. The areas of low relief are fringed by stream channels with relatively high stream gradient indexes and do not appear related to weaker rock types, glacial

  16. Four flavours of orogenic plateau magmatism: what's melting beneath the Turkish-Iranian Plateau?

    NASA Astrophysics Data System (ADS)

    Neill, Iain; Allen, Mark; Kheirkhah, Monireh; Meliksetian, Khachatur; Kaislaniemi, Lars; van Hunen, Jeroen

    2014-05-01

    Orogenic plateaux are first order topographic features of the continents, occurring in collision zones such as Tibet and Andean-style continental arcs. Plateaux are sites of abundant mantle-derived magmatism, but there is little understanding of its geodynamic cause in spite of widespread assumptions that slab break-off or lithospheric thinning are controlling factors. Late Cenozoic magmatism is distributed 100s of km from the Arabia-Eurasia suture zone across the modern Turkish-Iranian Plateau (TIP) in the countries of Armenia, Iran, Turkey and adjacent areas. There is huge compositional variation. Here we document four varieties of recent TIP magmas and argue their occurrence is controlled by: geographic location, prior fertilisation of the lithospheric mantle, lithospheric thickness, temperature and stability, and asthenospheric convection. (1) Close to the original Arabia-Eurasia suture in Eastern Turkey, slab break-off is likely to have occurred at ~10 Myr, and the lithosphere is presently thin (45-50 km) with little or no mantle lithosphere present. Magmatism is mostly calk-alkaline, sourced from the asthenosphere or any remaining mantle lithosphere, and is affected by crustal contamination. (2) In the Lesser Caucasus up to ~500 km from the suture, magmatism is more alkaline, less contaminated and is derived from subduction-modified lithospheric mantle. (3) Close to the suture in Iran, the lithosphere has thickened to >200 km during collision. Magmatism is volumetrically limited and derived almost exclusively from the lithospheric mantle, with highly enriched alkaline or ultrapotassic compositions. Unlike the Lesser Caucasus, there is little or no magmatism in the Iranian desert up to 500 km from the suture. (4) Beyond ~500 km from the suture zone, magmatism is sparse and varies in composition: dominantly OIB-like in Eastern Iran, alkaline but arc-like in the Alborz, and more felsic above the relatively thick (~55 km) crust of the Greater Caucasus. Magmatism

  17. Kinematics of the Torcal Shear Zone: transpressional tectonics shaping orogenic curves in the northern Gibraltar Arc.

    NASA Astrophysics Data System (ADS)

    Barcos, Leticia; Balanyá, Juan Carlos; Díaz-Azpiroz, Manuel; Expósito, Inmaculada; Jiménez-Bonilla, Alejandro

    2014-05-01

    Structural trend line patterns of orogenic arcs depict diverse geometries resulting from multiple factors such as indenter geometry, thickness of pre-deformational sequences and rheology of major decollement surfaces. Within them, salient-recess transitions often result in transpressive deformation bands. The Gibraltar Arc results from the Neogene collision of a composite metamorphic terrane (Alboran Domain, acting as a relative backstop) against two foreland margins (Southiberian and Maghrebian Domains). Within it, the Western Gibraltar Arc (WGA) is a protruded salient, 200 km in length cord, closely coinciding with the apex zone of the major arc. The WGA terminates at two transpressional zones. The main structure in the northern (Betic) end zone is a 70 km long and 4-5 km wide brittle deformation band, the so-called Torcal Shear Zone (TSZ). The TSZ forms a W-E topographic alignment along which the kinematic data show an overall dextral transpression. Within the TSZ strain is highly partitioned into mainly shortening, extensional and strike-slip structures. The strain partitioning is heterogeneous along the band and, accordingly, four distinct sectors can be identified. i) The Peñarrubia-Almargen Transverse Zone (PATZ), located at the W-end of the TSZ presents WNW-ESE folds and dextral faults, together with normal faults that accommodate extension parallel to the dominant structural trend. WNW ESE dextral faults might be related with synthetic splays at the lateral end of the TSZ. ii) The Sierra del Valle de Abdalajís (SVA) is characterized by WSW-ENE trending folds and dextral-reverse faults dipping to SSE, and NW-SE normal faults. The southern boundary of the SVA is a dextral fault zone. iii) The Torcal de Antequera Massif (TAM) presents two types of structural domains. Two outer domains located at both margins characterized by E-W trending, dextral strike-slip structures, and an inner domain, characterized by en echelon SE-vergent open folds and reverse shear

  18. Early Paleozoic crustal anatexis in the intraplate Wuyi-Yunkai orogen, South China

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Zheng, Jianping; Ma, Qiang; Griffin, William L.; Zhao, Huan; Wong, Jean

    2013-08-01

    Early Paleozoic amphibolite- to granulite-facies metamorphism, crustal anatexis and coeval magmatism are extensively developed in the Wuyi-Yunkai intraplate orogen in the South China block. However, the exact timing of granulite-facies partial melting and its link with orogenesis have not been well constrained. In this study, the charnockites, gneissic migmatites and Al-rich gneisses (Grt-Sil-Bt gneiss and Bt-Pl gneiss) from the Gaozhou Complex of the Yunkai uplift in the Cathaysia block were selected for the analysis of whole-rock major elements and zircon U-Pb dating, trace elements and Lu-Hf isotopes. The Gaozhou Complex experienced early Paleozoic regional high-temperature (up to 850 °C), low- to medium-pressure (4-7 kbar) metamorphism accompanied by crustal anatexis. The melts were produced through the dehydration of mica, such as biotite + quartz + plagioclase = orthopyroxene + K-feldspar + melt and biotite + quartz + plagioclase + sillimanite = garnet + K-feldspar + melt in the charnockites, and muscovite + quartz + plagioclase = sillimanite + K-feldspar + melt in the Grt-Sil-Bt gneisses. The charnockites, gneissic migmatites and gneisses are felsic with SiO2 > 64% and peraluminous with A/CNK > 1.0, reflecting protoliths with affinities to sedimentary rocks. Zircons from these rocks partly show clear core-rim structure and yield concordant ages mainly around 440-425 Ma, with minor groups at 2.8-2.4 Ga, 1.5-1.25 Ga, 1.2-0.9 Ga, 850-540 Ma and 460-450 Ma. The 440-425 Ma grains are euhedral, oscillatorily-zoned and have steep slopes from the LREE to the HREE with a positive Ce anomaly and clear negative Eu anomaly, suggesting they (re-) crystallized in the melts. These early Paleozoic zircons have negative εHf (t) (- 34.1 to - 1.5) and much older TCRUST (3.6-1.5 Ga), demonstrating they were formed by re-melting of old crustal materials (> 1.5 Ga). The zircons with ages of 2.8-2.4 Ga, 1.6-1.2 Ga and 1.2-0.9 Ga have relatively high εHf (t) values (up to + 10

  19. Rapid middle Miocene collapse of the Mesozoic orogenic plateau in north-central Nevada

    USGS Publications Warehouse

    Colgan, Joseph P.; Henry, Christopher D.

    2009-01-01

    The modern Sierra Nevada and Great Basin were likely the site of a high-elevation orogenic plateau well into Cenozoic time, supported by crust thickened during Mesozoic shortening. Although crustal thickening at this scale can lead to extension, the relationship between Mesozoic shortening and subsequent formation of the Basin and Range is difficult to unravel because it is unclear which of the many documented or interpreted extensional episodes was the most significant for net widening and crustal thinning. To address this problem, we integrate geologic and geochronologic data that bear on the timing and magnitude of Cenozoic extension along an ???200km east-west transect south of Winnemucca, Battle Mountain, and Elko, Nevada. Pre-Cenozoic rocks in this region record east-west Palaeozoic and Mesozoic compression that continued into the Cretaceous. Little to no tectonism and no deposition followed until intense magmatism began in the Eocene. Eocene and Oligocene ash-flow tuffs flowed as much as 200km down palaeovalleys cut as deeply as 1.5km into underlying Palaeozoic and Mesozoic rocks in a low-relief landscape. Eocene sedimentation was otherwise limited to shallow lacustrine basins in the Elko area; extensive, thick clastic deposits are absent. Minor surface extension related to magmatism locally accompanied intense Eocene magmatism, but external drainage and little or no surface deformation apparently persisted regionally until about 16-17Ma. Major upper crustal extension began across the region ca. 16-17Ma, as determined by cross-cutting relationships, low-temperature thermochronology, and widespread deposition of clastic basin fill. Middle Miocene extension was partitioned into high-strain (50-100%) domains separated by largely unextended crustal blocks, and ended by 10-12Ma. Bimodal volcanic rocks that erupted during middle Miocene extension are present across most of the study area, but are volumetrically minor outside the northern Nevada rift. The modern

  20. A review of the tectonic evolution of the Northern Pacific and adjacent Cordilleran Orogen

    NASA Astrophysics Data System (ADS)

    Jakob, Johannes; Gaina, Carmen; Johnston, Stephen T.

    2014-05-01

    Numerous plate kinematic models for the North Pacific realm have been developed since the advent of plate tectonics in the early seventies (e.g Atwater (1970), Mammerickx and Sharman (1988)). Although published kinematic models are consistent with the broad scale features of the North Pacific, the link between plate motions and the evolution of the North American Cordillera remains poorly understood. Part of the problem lies in conflicting interpretations of geological versus paleomagnetic data sets, with the result being a lack of consensus regarding: the paleolocation of key geological units; the paleogeography of terrane formation and amalgamation; the motion, boundaries and even existence of oceanic plates; and the character (e.g. trend of subduction) and position of plate boundaries within the northern Pacific basin. Remnants of the Farallon and Kula plates, and some short-lived microplates, demonstrate the complicated tectonic evolution of the oceanic realm west of the North American margin (e.g. Rea and Dixon (1983); McCrory and Wilson (2013); Shephard et al. (2013)). The creation and destruction of major tectonic plates and microplates has presumably left a record in the Cordilleran orogen of western North America. However, working backward from the geological relationships to plate reconstructions remains difficult. Here we investigate the relationship between the plate motions of the Pacific Ocean and the terrane movements in the North American Cordillera by revising the marine magnetic and gravity anomalies of the northern Pacific. In particular, we reevaluate plate boundaries at times of major changes in plate geometry of the Pacific, Kula, Chinook and Farallon plates from C34n onward. Our focus is also on the plate geometries of the Resurrection, Eshamy and Siletz-Crescent plates during the time between anomaly C26 and C12, and the links between plate interactions and on-shore tectonic events recorded in the geological record of Vancouver Island

  1. Palaeozoic - Mesozoic tectonics of the western Transbaikalian segment of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Gladkochub, Dmitry; Donskaya, Tatiana; Mazukabzov, Anatoly

    2014-05-01

    The western Transbaikalian segment of the Central Asian Orogenic Belt (CAOB) is a key to understand a scenario of gradual growth of continental crust in this part of the Northern Eurasia. In general this growth was directly controlled by long-living processes related to interaction of the southern margin of the Siberian craton with different units of the Palaeo-Asian and Mongol-Okhotsk oceans. The Neoproterozoic activity within this area was related to opening and development of the Palaeo-Asian Ocean. The early Palaeozoic stage was characterized by collision of numerous terranes (microcontinents, relicts of island arcs and back-arc basins, etc.) with the southern flank of the Siberian craton. These events reflect an early stage of Palaeo-Asian Ocean closure and the beginning of CAOB building. Since the late Palaeozoic the development of the Transbaikalian segment of the CAOB was related to the evolution of the Mongol-Okhotsk Ocean. Late Silurian - middle Devonian clastic and carbonate sediments were deposited along a passive margin of the Mongol-Okhotsk Ocean. The low-angle subduction of oceanic lithosphere of the Mongol-Okhotsk Ocean beneath the Siberian continent started in the middle Devonian. In the early to late Carboniferous, a steeper dip of subduction led to tectonic switching from extension to compression. This period was characterized by compression, metamorphism, deformations and thickening of continental crust. Autochthonous biotite granites of the Angara-Vitim batholith (ca. 320-300 Ma) were emplaced during this phase. Destruction of the subducted slab and roll-back toward the ocean in the late Carboniferous - early Permian caused extension of continental lithosphere and magmatic input from the mantle into the continental crust. These processes were responsible for voluminous magmatism that is spectacularly represented by allochthonous granitoids of the Angara-Vitim batholith and magmatic rocks of the western Transbaikalian belt (ca. 300-270 Ma). In

  2. Miocene magmatism and tectonics within the Peri-Alboran orogen (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    El Azzouzi, M.; Bellon, H.; Coutelle, A.; Réhault, J.-P.

    2014-07-01

    The aim of this paper concerns Miocene igneous activity in the Alboran Sea and Peri-Alboran area (northern Morocco, western Algeria and Betic Cordilleras in Spain), considering its age and its location with regard to major tectonics structures. We have compiled previous K-Ar isotopic ages of lavas and plutonic boulders and intrusives with an error of ±1σ and completed this set by a new K-Ar isotopic age for andesitic tuffites from Alboran Island. Geochemistry of most of these samples has been considered after previous analyses completed with new data for Spain magmatism. These two sets of data allow us to place the magmatic activity within the regional stratigraphy and tectonics and their chronological framework of the three major tectonic phases of the Maghrebian orogen, at 17 Ma (Burdigalian), 15 Ma (Langhian) and 9 Ma (Tortonian). Petro-geochemical characteristics are compared through time and geographical locations. A major goal of this coupled approach is to help the elaboration of possible geodynamical processes. As an application, we present the case study of the Dellys, Djinet and Thenia region (east of Algiers) where the successive magmatic events between 19.4 ± 1 and 11.6 ± 0.5 Ma are closely related to the local tectonics and sedimentation. The Peri-Alboran igneous activity is placed in a multidisciplinary framework. Timing of activity is defined according to the ages of the neighbouring sedimentary units and the K-Ar ages of igneous rocks. In Spain, the Cabo de Gata-Carboneras magmatic province displays late Oligocene and early Miocene leucogranitic dikes, dated from 24.8 ± 1.3 to 18.1 ± 1.2 Ma; three following andesitic to rhyolitic events took place around 15.1 ± 0.8 to 14.0 ± 0.7 Ma, 11.8 ± 0.6 to 9.4 ± 0.4 Ma, 8.8 ± 0.4 to 7.9 ± 0.4 Ma; this last event displays also granitic rocks. Lamproitic magmas dated between 8.4 ± 0.4 and 6.76 ± 0.04 Ma were emplaced after the Tortonian phase. In Morocco, after the complex building of the Ras Tarf

  3. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei; Fu, Bin; Gong, Bing; Li, Long

    2003-07-01

    Discovery of coesite, diamond, and extreme 18O-depletion in eclogites from the Dabie-Sulu orogen in central-east China has contributed much to our understanding of subduction of continental crust to mantle depths and its subsequent exhumation. Hydrogen, oxygen, and carbon isotope distributions were systematically investigated in the past 8 years for ultrahigh pressure (UHP) eclogites, gneisses, granulites, marbles, and peridotites from this exciting region. The available data show the following characteristic features: (1) variable δ18O values of -11‰ to +10‰ for the eclogites and gneisses, with both equilibrium and disequilibrium fractionations of oxygen isotopes among minerals; (2) disequilibrium fractionation of hydrogen isotopes between mica and epidote from both eclogites and gneisses, with low δD values up to -127‰ to -100‰ for phengite; (3) negative δ13C values of -28‰ to -21‰ for apatite as well as host-eclogites and gneisses; (4) positive δ13C values of +1‰ to +6‰ for coesite-bearing marble associated with eclogites; (5) zircons from metamorphic rocks of different grades show a large variation in δ18O from -11‰ to +9‰, with U-Pb ages of 700 to 800 Ma for the timing of low- δ18O magma crystallization. It appears that the UHP metamorphic rocks exhibit ranges of δ18O values that are typical of potential precursor protolith rocks. Preservation of the oxygen isotope equilibrium fractionations among the minerals of the UHP eclogites and gneisses suggests that these rocks acquired the low δ18O values by meteoric-hydrothermal alteration before the UHP metamorphism. Thus, the UHP metamorphic rocks largely reflect the δ18O values of their premetamorphic igneous or sedimentary precursors. The stable isotope data demonstrate that basaltic, granitic, and sedimentary protoliths of the eclogites, orthogneiss, and paragneiss in the orogen were at or near the earth's surface, and subjected to varying degrees of water-rock interaction at some

  4. Pleistocene onset of Simultaneous and Rapid Exhumation in the Eastern Central Range of the Taiwan Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Singh, S.; Hsu, W. H.; Byrne, T. B.; Ouimet, W. B.; Lee, Y. H.; Chen, Y. G.; Van Soest, M. C.; Hodges, K. V.

    2015-12-01

    The Taiwan orogenic belt is often treated as a steady, southward propagating orogenic system with an erosion rate of 4-6 mm/yr for 5 My. A few recent studies of the exhumation history, however, suggest that the collision was initially simultaneous and that exhumation rates changed through time. To test this hypothesis, we constructed four new age-elevation curves that span the length of the orogen from the Central Cross-Island Hwy (CXIH) in northern Taiwan to Small Ghost Lake (XGH) in the south. The age-elevation curves are based on 10 new zircon (U-Th)/He (ZrnHe), 10 new zircon fission track (ZrnFT) ages and 82 previously published ZrnFT and ZrnHe dates. Samples used for each age-elevation analysis extended map distances, ranging from 11 to 17 km for ZrnHe and 11 to 27 Km for ZrnFT to limit the influence of topography on estimated uplift rates. Three of the sites, CXIH, XGH and the South Cross-Island Hwy, are from the eastern Central Range whereas the fourth, Mt Yu, is from western Central Range. The results show that all four sites record similar exhumation histories from about 5 Ma to the present, except for a slight difference at Mt Yu. For example, the three eastern sites record an apparent increase in exhumation rate from < 1.2 mm/yr. to ~ 3-5 mm/yr. at about 1.5 Ma. At Mt. Yu, however, a similar increase in the rate of exhumation occurs at about 2 Ma. In addition, the zero-age intercepts of the youngest phase of uplift from the three eastern sites suggest the possibility of an additional increase in exhumation rate after ~0.4 Ma that is not recorded at Mt. Yu. Interestingly, Mt Yu is also mapped as a continuation of the Eocene rocks exposed in the Hsüehshan Range rather than part of the Central Range, consistent with the presence of a major structural boundary between Mt Yu and the three areas to the east. These data suggest the following conclusions: 1) the Hsüehshan and Central Ranges appear to have different exhumation histories; 2) the eastern Central

  5. Unravelling the influence of orogenic inheritance on the architecture and tectonic evolution of hyper-extended rift systems

    NASA Astrophysics Data System (ADS)

    Chenin, Pauline; Manatschal, Gianreto; Lavier, Luc

    2014-05-01

    The aim of this starting PhD thesis is to determine under what conditions inheritance produced by former orogens influences subsequent rifting, and to unravel the influence of inherited structures and heterogeneities on the architecture and tectonic evolution of hyper-extended rift systems. To complete this task, we map along the Central and North Atlantic margin 1) rift domains; 2) age of the major rift events; and 3) key structure and heterogeneities inherited from the Caledonian and Variscan orogens. We will then study these data in the light of minimal numerical modelling experiments and use them as a basis for designing more comprehensive numerical models for the North Atlantic rifting. In order to map the Atlantic margins, we use gravity, magnetic data, seismic reflection and refraction to identify the necking zone and the continentward limit of the oceanic domain. This allows us to define the proximal domain where continental crust is not or barely thinned on one side, the unequivocal oceanic domain on the other side, and the hyper-extended domain between them. Within the hyper-extended domain, we rely on seismic data (refraction and reflection) to distinguish the area where the crust and the mantle are decoupled from the area where they are coupled, and to identify potential zones with mantle exhumation and/or magmatic additions. Previous studies mapped these domains along Iberia-Newfoundland and Bay of Biscay. The objective of this PhD is to extend this mapping further to the North, along the Irish, UK and Norwegian margins, into domains with polyphase rifting and magmatic additions. One of the goals of this work is to highlight potential correlations between first-order changes in the architecture and/or magmatic evolution of the Atlantic margin and first-order structures and heterogeneities inherited from the Caledonian and/or Variscan orogens. We also aim to assess the importance of inheritance in structuring and controlling the evolution of hyper

  6. Terminal magmatic activities along the Solonker suture zone in the southern Central Asian Orogenic Belt: New insights from the end-Permian magmatic record

    NASA Astrophysics Data System (ADS)

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A.; Xiao, Wen-Jiao; Wang, Tao; Guo, Qian-Qian

    2016-04-01

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geologic evidence, suggest that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred at 255 to 251 Ma along the Solonker-Xar Moron suture zone. The linear end-Permian magmatism is interpreted as in a setting of continental contraction and crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the earliest phases of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251-245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, probably caused by regional lithospheric extension and orogenic collapse. The proposed collision-related magmatism from the southern CAOB is thus a prime example of minor, yet tell-tale linking magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen.

  7. Crustal structure in the junction of Qinling Orogen, Yangtze Craton and Tibetan Plateau: implications for the formation of the Dabashan Orocline and the growth of Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Jiang, Chengxin; Yang, Yingjie; Zheng, Yong

    2016-06-01

    The crust at the junction of Qinling Orogen, Yangtze Craton and NE Tibetan Plateau bears imprints of the Triassic collision and later intracontinental orogeny between the Qinling Orogen and the Yangtze Craton, and the Cenozoic growth of Tibetan Plateau. Investigating detailed crustal structures in this region helps to better understand these tectonic processes. In this study, we construct a 3-D crustal Vs model using seismic ambient noise data recorded at 321 seismic stations. Ambient noise tomography is performed to generate Rayleigh wave phase velocity maps at 8-50 s periods, which are then inverted for a 3-D isotropic Vs model using a Bayesian Monte Carlo method. Our 3-D model reveals deep-rooted high velocities beneath the Hannan-Micang and Shennong-Huangling Domes, which are located on the west and east sides of the Dabashan Orocline. Similar high velocities are observed in the upper/mid crust of the western Qinling Orogen. We suggest the crustal-scale bodies with high velocity beneath the two domes and the western Qinling Orogen may represent mechanically strong rocks, which not only assisted the formation of the major Dabashan Orocline during late Mesozoic intracontinental orogeny, but also have impeded the northeastward expansion of the Tibetan Plateau during the Cenozoic era.

  8. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China: Implications for determining ancient drainage systems and tectonics of the Paleo-Pacific

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Dao; Xu, Yi-Gang; Wilde, Simon A.; Chen, Han-Lin

    2015-06-01

    The Wandashan Orogen of NE China is a typical accretionary orogen related to Paleo-Pacific subduction. The Raohe Complex, as a major part of the orogen, consists of mid-Triassic to mid-Jurassic radiolarian chert and intraoceanic igneous rocks in an accretionary prism overlain by weakly sheared terrestrial-sourced clastic trench slope sediments. Sensitive high-resolution ion microprobe U-Pb dating and LA-MC-ICPMS Hf isotopic analysis of detrital zircons from the terrestrial-sourced Yongfuqiao Formation sandstone show that most zircons are Phanerozoic (90%): 140-150 Ma (10%), 180-220 Ma (25%), 240-270 Ma (15%), 300-360 Ma (15%), 391-395 Ma (3%), and 450-540 Ma (20%), whereas 10% are Precambrian in age. About 90% of the zircons have ɛHf(t) values ranging from +11.1 to -12.8. This suggests that the major provenance of the trench slope sediments was from the adjacent eastern segment of the Central Asian Orogenic Belt and the Jiamusi Block. The age of the Yongfuqiao Formation is constrained to the earliest Cretaceous, which represents the accretion time of the mid-Triassic to mid-Jurassic oceanic complexes. When compared with the Mino Complex in Japan and the Tananao Complex in Taiwan, three different provenances are identified suggesting three ancient drainage systems which transported sediments from NE China, North China, and South China to the Paleo-Pacific subduction-accretion system.

  9. Disclosing the Paleoarchean to Ediacaran history of the São Francisco craton basement: The Porteirinha domain (northern Araçuaí orogen, Brazil)

    NASA Astrophysics Data System (ADS)

    Silva, Luiz Carlos da; Pedrosa-Soares, Antonio Carlos; Armstrong, Richard; Pinto, Claiton Piva; Magalhães, Joana Tiago Reis; Pinheiro, Marco Aurélio Piacentini; Santos, Gabriella Galliac

    2016-07-01

    This geochronological and isotopic study focuses on one of the Archean-Paleoproterozoic basement domains of the São Francisco craton reworked in the Araçuaí orogen, the Porteirinha domain, Brazil. It also includes a thorough compilation of the U-Pb geochronological data related to the adjacent Archean and Rhyacian terranes from the São Francisco craton and Araçuaí orogen. The main target of this study is the TTG gneisses of the Porteirinha complex (Sample 1). The gneiss dated at 3371 ± 6 Ma unraveled a polycyclic evolution characterized by two metamorphic overprinting episodes, dated at 3146 ± 24 Ma (M1) and ca. 600 Ma (M2). The former (M1) is so far the most reliable evidence of the oldest metamorphic episode ever dated in Brazil. The latter (M2), in turn, is endemic in most of the exposed eastern cratonic margin within the Araçuaí orogen. Whole-rock Sm-Nd analysis from the gneiss provided a slightly negative εNd(t3370) = - 0.78 value, and a depleted mantle model (TDM) age of 3.5 Ga, indicating derivation mainly from the melting of a ca. 3.5 Ga tholeiitic source. Sample 2, a K-rich leuco-orthogneiss from the Rio Itacambiriçu Complex, was dated at 2657 ± 25 Ma and also presents a ca. 600 Ma M2 overprinting M2 age. The other two analyses were obtained from Rhyacian granitoids. Sample 3 is syn-collisional, peraluminous leucogranite from the Tingui granitic complex, showing a crystallization age of 2140 ± 14 Ma and strong post-crystallization Pb*-loss, also ascribed to the Ediacaran overprinting. Accordingly, it is interpreted as a correlative of the late Rhyacian (ca. 2150-2050 Ma) collisional stage of the Mantiqueira orogenic system/belt (ca. 2220-2000 Ma), overprinted by the Ediacaran collage. Sample 4 is a Rhyacian post-orogenic (post-collisional), mixed-source, peralkaline, A1-type suite, with a crystallization age of 2050 ± 10 Ma, presenting an important post-crystallization Pb*-loss related to Ediacaran collision. The focused region records some

  10. Late Paleozoic tectonic evolution and concentrated mineralization in Balkhash and West Junggar, western part of the Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Dong, Shuwen; Chen, Xuanhua; Chen, Zhengle

    2016-04-01

    The Central Asia Orogenic Belt (CAOB) is an important area with significant growth of the crust and metallogeny in the Late Paleozoic. The Balkhash-Junggar tectono-metallogenic belt consists of the Balkhash, the West Junggar, and the East Junggar tectono-metallogenic belts in western part of the Central Asian Orogenic Belt (CAOB). According to the structural geological relationship, the East Junggar, the West Junggar, and the Balkhash belts are considered to be once a continuous E-W-trending tectono-metallogenic belt in Late Carboniferous. The West Junggar belt is featured with NE-trending left-lateral strike-slip faulting tectonic system (WJTS), while the left-lateral strike-slip faults are E-W-trending in the Balkhash belt. The WJTS consists of the Darabut, the Mayile, and the Baerluke faults, and the blocks among them. All these left-lateral strike-slip faults are forming due to the transition of tectonic settings from syn-collisional orogeny to post-collisional extension during the closure of the ocean (the Junggar Sea) in Late Carboniferous, with significant intrusion of batholiths and crust growth occurred in this period. These faults are truncated by the right-lateral strike-slip faults, such as the Chingiz-Junggar fault, and the Central Balkhash fault in Mesozoic. The Balkhash-Junggar tectono-metallogenic belt is important for the occurrence of many well-known super-large and large porphyry Cu-Mo deposits (such as the Kounrad, the Aktogai, the Borly, and the Baogutu deposits), large skarn Cu deposits (in the Sayak ore-filed), large rare metal deposits (such as the East Kounrad, the Zhanet, and the Akshatau deposits), and large gold deposits (such as the Hatu deposit). Zircon U-Pb ages, Re-Os isotopic dating of molybdenites, 40Ar/39Ar thermochronology of hornblendes, muscovites, biotites, and K-feldspars, and zircon and apatite fission track (FT) and (U-Th)/He dating and thermal history modeling, provide a multidisciplinary approach to constrain the whole

  11. Post-orogenic extension and metamorphic core complexes in a heterogeneous crust, the role of preexisting nappes

    NASA Astrophysics Data System (ADS)

    Huet, B.; Le Pourhiet, L.; Labrousse, L.; Burov, E. B.; Jolivet, L.

    2009-12-01

    Field observations in post-orogenic domains evidence a strong partitioning of deformation between the upper and lower crusts during the formation of metamorphic core complexes (MCCs). Furthermore, numerical models suggest that major rheological contrasts between a resistant upper crust and a low viscosity lower crust are essential for the development of these structures. As a general agreement, warm thermal profiles are therefore considered to be the main cause of the rheological stratification. This assumption is however not compatible with the limited to absent retrograde heating within some exhumed High Pressure - Low Temperature (HP-LT) metamorphic units, as is observed in the northern Cycladic MCCs in the Aegean domain. The purpose of our study is to reconsider the initial state of the crust at the onset of post-orogenic extension. We investigate, through thermo-mechanical modeling, how crustal stratification, inherited from the nappe stacking stage, influences the occurrence of MCCs in former orogens. Rocks are believed to be more mafic with depth in normal crusts. If the nappe stacking episode is taken into account, the lithological profile of the crust can be more complex with some reversed strength gradients. The history of thickening may therefore strongly influence the crustal rheological profile at the onset of extension. To test this idea, we explored the effect of three possible crustal stratifications (homogeneous, normal and reversed), as well as three thermal profiles (cold, intermediate and warm). The numerical experiments show that the degree of lateral localization and the dynamics of exhumation are strongly controlled by the crustal stratification, and, to a lesser extent, by the temperature profile. Four modes of extension are distinguished: common-type rift, wide rift, metamorphic core complex and spreading dome. Spreading dome distinguishes from metamorphic core complex by the exhumation of material along a ridge located in the center of the

  12. New insights into the late Paleozoic evolution of the New England Orogen (eastern Australia) in view of the recent paleomagnetic data

    NASA Astrophysics Data System (ADS)

    Pisarevsky, Sergei; Rosenbaum, Gideon; Shaanan, Uri; Hoy, Derek

    2014-05-01

    The New England orogen is the youngest segment of the eastern Australian Tasmanides. It was developed as an accretionary orogen during the late Paleozoic to early Mesozoic Gondwanide Orogeny (310-230 Ma) that extended along the Pacific margin of the Gondwana supercontinent. The orogen exhibits a doubly vergent oroclinal structure with southern (Manning orocline) and northern (Texas - Coffs Harbour orocline) segments displaying S- and Z-shaped sets of oroclines, respectively. These opposite vergences led to contrasting models of formation. Cawood et al. (2011) proposed an animated model for the paleomagnetically permissive evolution of the orogen. However this model is not unique due to the limited number of reliable paleomagnetic data. In particular, the northern Texas - Coffs Harbour orocline has been strongly underrepresented paleomagnetically. Additionally, the previously published results of paleomagnetic studies in the North Tamworth terrane involved rocks which are c. 20 m.y. younger than the paleomagnetically studied rocks from the southern (Manning) orocline. Recently we collected oriented paleomagnetic samples from the Visean Caroda Formation of the North Tamworth block and from the previously not studied Emu Creek block located at the eastern flank of the Texas orocline. Our new paleomagnetic results from the North Tamworth block are comparable in age with previously published Visean data from the Manning orocline. The comparison of these results suggests that the North Tamworth terrane has been rotated at ~ 90° anticlockwise between 330 and 260 Ma. The new data from the Emu Creek block support the previous model of the movement of the Texas block (Cawood et al., 2011). Here we present the revised animated model of the evolution of the New England Orogen.

  13. The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic data

    NASA Astrophysics Data System (ADS)

    Khanchuk, A. I.; Kemkin, I. V.; Kruk, N. N.

    2016-04-01

    The Sikhote-Alin orogenic belt, Russian South East, consists of folded terranes made up of Jurassic and Early Cretaceous accretionary prisms, turbidite basins, and island arc terranes that are overlapped unconformably by undeformed upper Cenomanian to Cenozoic volcanic deposits. The Jurassic and Early Cretaceous accretionary prisms, together with the Early Cretaceous island arc, are related to subduction of the Paleo-Pacific plate. The turbidite basin, which began to form at the beginning of the Early Cretaceous, is related to left-lateral movement of the Paleo-Pacific plate along the Paleo-Asian continental margin. The collage of terranes that make up the Sikhote-Alin orogenic belt was amalgamated in two stages. The first began after Jurassic subduction beneath the Asian continent was terminated, and the second took place in the late Albian, when the Early Cretaceous island arc collided with the continental margin. Intense deformation of the terranes took place along the continental margin in the form of large-scale translations from south to north, together with oroclinal folding. The deformation resulted in rapid thickening of sediments in the upper crust, resulting in turn in the formation of granitic-metamorphic material in the continental lithosphere. In the southwestern part of the Sikhote-Alin orogen, granites were intruded during the Hauterivian-Aptian, while the entire orogenic belt was affected by intrusions in the late Albian-early Cenomanian. Synorogenic intraplate volcanic rocks and alkaline ultramafic-mafic intrusions also testify to the fact that the orogenic processes in the Sikhote-Alin were related to a transform continental margin, and not to subduction. Geochemical and Nd isotopic data indicate, the primary continental crust of the Sikhote-Alin was of a "hybrid" nature, consisting of juvenile basic components accreted from an oceanic plate and recycled sedimentary material derived from the erosion of ancient blocks.

  14. Orogen-Parallel and -Normal Extension at the Dinarides-Hellenides Junction during Clockwise Rotation and Radial Expansion of the Retreating Hellenic Arc-Trench System

    NASA Astrophysics Data System (ADS)

    Handy, M.; Fügenschuh, B.; Giese, J.; Le Breton, E.; Muceku, B.; Onuzi, K.; Pleuger, J.; Schmid, S. M.; Ustaszewski, K. M.

    2015-12-01

    Normal faults at the junction of the Dinarides and Hellenides in northern Albania trend both perpendicular and parallel to thrusts and fold axes. Most prominent is the SSE-dipping Skutari-Pec Normal Fault (SPNF), one of a system of normal faults that accommodate NW-SE-directed, orogen-parallel extension. Extensional throw along the SPNF increases from zero in northwestern Albania to at least 2 km near the Albania-Kosovo border, near where the brittle arm of the SPNF bounds the Mio-Pliocene Kosovo Basin. This differential orogen-parallel extension along the SPNF defines a vertical rotational axis in northwestern Albania that is interpreted to have accommodated 20-30° of clockwise motion of internal units on the southeastern (Hellenic) side of the fault with respect to the northwestern (Dinaric) side. Such rotation is in agreement with previously published paleomagnetic data and plate motion studies. The footwall of the SPNF exposes lower units of the Dinaric nappe stack that underwent vertical shortening and non-coaxial shearing during extensional exhumation. In the hangingwall of the SPNF, a system of orogen-parallel trending normal faults accommodate orogen-normal displacement of up to several km. Both orogen-parallel and -perpendicular systems of normal faults cut Late Cretaceous to Oligocene thrusts and folds, and are associated with pronounced Miocene paleo-relief. Most of this normal faulting is Miocene to Pliocene based on syn-extensional deposits in the Kosovo Basins and on thermal modelling of ZHe, AFT and AHe data, which suggest accelerated cooling at 18 Ma and between 4-6 Ma. Both fault systems also cut Holocene deposits, indicating ongoing extension. This corroborates published GPS data and earthquake focal mechanisms indicating active extension of the crust south and southeast of the SPNF. It is proposed that extension and clockwise rotation in this area were coeval and accommodated southwestward retreat and radial expansion of the Hellenic arc during

  15. Mantle Recycling of Crustal Materials through Study of Ultrahigh-Pressure Minerals in Collisional Orogens, Ophiolites, and Xenoliths

    NASA Astrophysics Data System (ADS)

    Liou, J. G.; Tsujimori, T.; Yang, J.; Zhang, R. Y.; Ernst, W. G.

    2014-12-01

    Newly recognized ultrahigh-pressure (UHP) mineral occurrences including diamonds in ultrahigh-temperature (UHT) felsic granulites of orogenic belts, in chromitites associated with ophiolitic complexes, and in mafic/ultramafic xenoliths suggest the recycling of crustal materials through profound subduction, mantle upwelling, and return to the Earth's surface. Recycling is supported by unambiguously crust-derived mineral inclusions in deep-seated zircons, chromites, and diamonds from collision-type orogens, from eclogitic xenoliths, and from ultramafic bodies of several Alpine-Himalayan and Polar Ural ophiolites; some such phases contain low-atomic number elements typified by crustal isotopic signatures. Ophiolite-type diamonds in placer deposits and as inclusions in chromitites together with numerous highly reduced minerals and alloys appear to have formed near the mantle transition zone. In addition to ringwoodite and stishovite, a wide variety of nanometric minerals have been identified as inclusions employing state-of-the-art analysis. Reconstitution of now-exsolved precursor UHP phases and recognition of subtle decompression microstructures produced during exhumation reflect earlier UHP conditions. Some podiform chromitites and associated peridotites contain rare minerals of undoubted crustal origin, including Zrn, corundum, Fls, Grt, Ky, Sil, Qtz, and Rtl; the zircons possess much older U-Pb ages than the formation age of the host ophiolites. These UHP mineral-bearing chromitites had a deep-seated evolution prior to extensional mantle upwelling and its partial melting at shallow depths to form the overlying ophiolite complexes. These new findings plus stable isotopic and inclusion characteristics of diamonds provide compelling evidence for profound underflow of both oceanic and continental lithosphere, recycling of biogenic carbon into the lower mantle, and ascent to the Earth's surface through deep mantle ascent.

  16. Paleomagnetic and geochronological study of Carboniferous forearc basin rocks in the Southern New England Orogen (Eastern Australia)

    NASA Astrophysics Data System (ADS)

    Pisarevsky, Sergei A.; Rosenbaum, Gideon; Shaanan, Uri; Hoy, Derek; Speranza, Fabio; Mochales, Tania

    2016-06-01

    We present results of a paleomagnetic study from Carboniferous forearc basin rocks that occur at both limbs of the Texas Orocline (New England Orogen, eastern Australia). Using thermal and alternating field demagnetizations, two remanence components have been isolated from rocks sampled from the Emu Creek terrane, in the eastern limb of the orocline. A middle-temperature Component M is post-folding and was likely acquired during low-temperature oxidation at 65-35 Ma. A high-temperature Component H is pre-folding, but its comparison with the paleomagnetic data from coeval rocks in the northern Tamworth terrane on the other limb of Texas Orocline does not indicate rotations around a vertical axis, as expected from geological data. A likely explanation for this apparent discrepancy is that Component H postdates the oroclinal bending, but predates folding in late stages of the 265-230 Ma Hunter Bowen Orogeny. The post-Kiaman age of Component H is supported by the presence of an alternating paleomagnetic polarity in the studied rocks. A paleomagnetic study of volcanic and volcaniclastic rocks in the Boomi Creek area (northern Tamworth terrane) revealed a stable high-temperature pre-folding characteristic remanence, which is dated to c. 318 Ma using U-Pb zircon geochronology. The new paleopole (37.8°S, 182.7°E, A95 = 16.2°) is consistent with previously published poles from coeval rocks from the northern Tamworth terrane. The combination of our new paleomagnetic and geochronological data with previously published results allows us to develop a revised kinematic model of the New England Orogen from 340 Ma to 270 Ma, which compared to the previous model, incorporates a different orientation of the northern Tamworth terrane at 340 Ma.

  17. Flexural bending-induced plumelets and their seamounts in accretionary (Japanese-style) and collisional (Tethyan-style) orogenic belts

    NASA Astrophysics Data System (ADS)

    Hirano, N.; Dilek, Y.

    2015-12-01

    Seamounts and seamount chains are common in both the upper and lower plates of active subduction zones. Their OIB-type volcanic products are distinctly different from suprasubduction zone (arc, forearc and backarc) generated volcanic rocks in terms of their compositions and mantle sources. Tectonic accretion of such seamounts into the Japanese archipelago in the NW Pacific and into subduction-accretion complexes and active margins of continents/microcontinents within the Tethyan realm during the Cretaceous played a significant role in continental growth. Seamount assemblages comprise alkaline volcanic rocks intercalated with radiolarian and hemipelagic chert, and limestone, and may also include hypabyssal dolerite and gabbro intrusions. In the Tethyan orogenic belts these seamount rocks commonly occur as km-scale blocks in mélange units beneath the late Jurassic - Cretaceous ophiolites nappes, whereas on the Japanese islands they form discrete, narrow tectonic belts within the late Jurassic - Cretaceous accretionary prism complexes. We interpret some of these OIB occurrences in the Japanese and Tethyan mountain belts as asperities in downgoing oceanic plates that formed in <10 million years before their accretion. Their magmas were generated by decompressional melting of upwelling asthenosphere, without any significant mantle plume component, and were brought to the seafloor along deep-seated brittle fractures that developed in the flexed, downgoing lithosphere as it started bending near a trench. The modern occurrences of these "petit-spot volcanoes" are well established in the northwestern Pacific plate, off the coast of Japan. The proposed mechanism of the formation of these small seamounts better explains the lack of hotspot trails associated with their occurrence in the geological record. Magmatic outputs of such flexural bending-induced plumelets should be ubiquitious in the accretionary (Japanese-style) and collisional (Tethyan-style) orogenic belts.

  18. A tectonic linkage between the Rodelide orogen (Sierra Leone) and the St. Lucie metamorphic complex in the Florida subsurface

    SciTech Connect

    Dallmeyer, R.D. )

    1989-03-01

    Hornblende concentrates prepared from cuttings from two deep test wells penetrating the complex display internally concordant {sup 40}Ar/{sup 39}Ar incremental-release spectra defining plateau ages of 510.8 {plus minus} 1.1 Ma and 513.1 {plus minus} 1.8 Ma, which are interpreted to date post-metamorphic cooling through temperatures required for intracrystalline argon retention. The Kasila Group constitutes the western segment of the Rokelide orogen in Sierra Leone. Four hornblende concentrations prepared for amphibolite within the Kasila Group yield {sup 40}Ar/{sup 39}Ar plateau ages of 505.0 {plus minus} 5.2, 508.2 {plus minus} 2.1, 510.5 {plus minus} 2.6, and 546.1 {plus minus} 6.8 Ma. They are interpreted to date post-metamorphic cooling through appropriate argon closure temperature following a ca. 550-560 Ma, Pan-African II phase of tectonothermal activity. A biotite concentrate from paragneiss within the Kasila Group displays an internally concordant {sup 40}/Ar{sup 39}Ar release spectrum defining a plateau age of 524.7 {plus minus} 1.3 Ma, which likely reflects slight contamination with extraneous (excess) argon. Muscovite from the Marampa Group yields a {sup 40}Ar/{sup 39}Ar plateau age of 561.1 {plus minus} 2.3 Ma, which is interpreted to date cooling through appropriate argon closure temperatures. Although these temperatures are generally considered to be lower than those for hornblenede, the muscovite records an older cooling age, suggesting that the Marampa Group experienced slightly earlier post-metamorphic uplift and cooling relative to the Kasila Group. Lithologic comparison combined with similarities in post-metamorphic thermal evolution suggest that the St. Lucie Metamorphic Complex originated within the Rockelide orogen. This and other lithotectonic elements of the Suwannee terrane appear to represent a fragment of Gondwana which accreted to Laurentia during late Paleozoic amalgamation of Pangea.

  19. The Permian Dongfanghong island-arc gabbro of the Wandashan Orogen, NE China: Implications for Paleo-Pacific subduction

    NASA Astrophysics Data System (ADS)

    Sun, Ming-Dao; Xu, Yi-Gang; Wilde, Simon A.; Chen, Han-Lin; Yang, Shu-Feng

    2015-09-01

    The Dongfanghong hornblende gabbro is located in the western part of the Wandashan Orogen and to the east of the Jiamusi Block in NE China. It was emplaced into Early Paleozoic oceanic crust (i.e. Dongfanghong ophiolite) at ~ 275 Ma and both later collided with the eastern margin of the Jiamusi Block. The Dongfanghong gabbro is sub-alkaline with high Na2O contents and is characterized by enrichment in light rare earth elements (LREE), large ion lithosphile elements (LILE), Sr, Eu, and Ba, and depletion in high field strength elements (HFSE). The enriched isotopic signatures (87Sr/86Sri = ~ 0.7065, εNd(t) = ~- 0.5, 208Pb/204Pbi = ~ 38.05, 207Pb/204Pbi = ~ 15.56, 206Pb/204Pbi = ~ 18.20 and zircon εHf(t) = ~+ 5.8) indicate an enriched mantle (EM2) source, with some addition of continental material. It has arc geochemical affinities similar to Permian arc igneous rocks in the eastern margin of the Jiamusi Block, the Yakuno Ophiolite in SW Japan, arc rocks along the western margin of the North America Craton, and also the Gympie Group in eastern Australia. All these features, together with information from tectonic discrimination diagrams, suggest that the Dongfanghong gabbro formed in an immature island arc. The spatial configuration of ~ 290 Ma immature continental arc rocks in the eastern part of the Jiamusi Block and the ~ 275 Ma immature island arc Dongfanghong gabbro in the Wandashan Orogen to the east is best explained by eastward arc retreat and slab roll-back of the Paleo-Pacific Plate. This model is also supported by the Carboniferous-Permian stratigraphic transition in the Jiamusi Block from oceanic carbonate rocks to coal-bearing terrestrial clastic rocks and andesites. We thus suggest that both Paleo-Pacific subduction and roll-back occurred in the Early Permian along the eastern margin of Asia.

  20. Your Menstrual Cycle

    MedlinePlus

    ... during your menstrual cycle What happens during your menstrual cycle The menstrual cycle includes not just your period, but the rise ... tool is based on a sample 28-day menstrual cycle, but every woman is different in how long ...

  1. Syn- and post-orogenic alkaline magmatism in a continental arc: Along-strike variations in the composition, source, and timing of igneous activity in the Ross Orogen, Antarctica

    NASA Astrophysics Data System (ADS)

    Hagen-Peter, G.; Cottle, J. M.

    2013-12-01

    Neoproterozoic-Paleozoic convergence and subduction along the margin of East Gondwana (Australia, New Zealand, Antarctica) resulted in a belt of deformed and metamorphosed sedimentary rocks and batholith-scale igneous intrusions comparable in size to the present day Andes. Mid-crustal levels of this belt, known as the Ross Orogen in Antarctica, are exposed in the basement of the Cenozoic Transantarctic Mountains, providing snapshots of the intrusive magma system of a major continental arc. Whole rock major- and trace-element geochemistry, Hf isotopes in zircon, and U-Pb geochronology have identified along-strike variations in the composition, source, and timing of magmatism along ~200 km of the southern Victoria Land segment of the orogen. There is an apparent younging of the igneous activity from south to north. New U-Pb ages for intrusive rocks from the Koettlitz Glacier Alkaline Province (KGAP) reveal that igneous activity spanned ca. 565-500 Ma (~30 m.y. longer than previously recognized), while immediately to the north in the Dry Valleys area most igneous activity was confined to a relatively short period (ca. 515-495 Ma). Alkaline and subalkaline igneous rocks occur in both the Dry Valleys area and the KGAP, but alkaline rocks in the Dry Valleys are restricted to the latest phase of magmatism. Na-alkaline rocks in the KGAP, including nepheline syenites, carbonatites, and A-type granites, range in age from ca. 545-500 Ma and overlap in age with more typical subduction/collision-related I- and S-type granites elsewhere in southern Victoria Land. Strong enrichments in the LILE and LREE and high LILE/HFSE and LREE/HREE of samples from the KGAP reveal a source enriched in aqueous-mobile elements, potentially a strongly metasomatized mantle wedge beneath the arc. In the Dry Valleys area, rocks with alkali-calcic composition constitute only the youngest intrusions (505-495 Ma), apparently reflecting a shift to post-orogenic magmatism. Zircons from Dry Valleys

  2. Paleomagnetic study of Siluro-Devonian volcanic rocks from the central Lachlan Orogen: Implications for the apparent pole wander path of Gondwana

    NASA Astrophysics Data System (ADS)

    VéRard, Christian; Tait, Jennifer; Glen, Richard

    2005-06-01

    The apparent pole wander (APW) path for Gondwana is still not clearly established, in particular, for Silurian-Devonian times. A controversial debate places authors who argue for an "X path," running directly through Africa on a reconstruction of Gondwana against those who advocate a large loop passing by southern South America, the "Y path." Most of the paleomagnetic data used to draw this loop come from the Lachlan Orogen (Australia). A paleomagnetic study was carried out in the well-dated Ambone and Ural volcanics in the central subprovince of Lachlan Orogen, New South Wales. Anisotropy of magnetic susceptibility measurements confirms detailed mapping of the region and shows that these massive dacitic sills and/or lava flows are flat lying. Among the different localities studied, only one yields interpretable paleomagnetic results. Two components of magnetization can be identified: a midtemperature direction yielding a corresponding pole in Australian coordinates λ = 67.9°S/ϕ = 084.4°E (B = 5; n = 21; dp = 17.5°/dm = 23.1°) and a high-temperature direction with a corresponding VGP λ = 24.4°S/ϕ = 060.6°E (B = 5; n = 25; dp = 1.4°/dm = 2.5°). The first is interpreted as corresponding to an Early Carboniferous pole position and can be regarded as an overprint probably related to the Early Carboniferous Kanimblan orogenic event. The second does not correspond to any expected Silurian-Devonian or younger pole position. This magnetization is thought to be primary in origin; however, secular variation has apparently not been averaged out in the single lava flow sampled. Therefore the earliest Devonian paleopole position probably lies in a 30° cone around the obtained VGP, and this position can only match the X-type APW path for Gondwana. It is in particular very different from coeval poles obtained in the eastern subprovince of the Lachlan Orogen, and it is mostly used as key poles supporting the Silurian-Devonian loop for the APW path of Gondwana

  3. How is Silurian-Early Devonian faulting in the North America continental interior related to orogenic processes at plate boundaries? A working hypothesis from the Canadian North

    NASA Astrophysics Data System (ADS)

    Pinet, Nicolas

    2015-04-01

    The Paleozoic Appalachian/Franklinian orogen that rims the North America continent on its eastern and northern sides is comparable in size with Tethyan orogenic belts. However, the far-field effects in the continental interior of the multiple Ordovician to Carboniferous deformation phases that built the orogen were relatively minor if compared with those associated with the Himalayas and Alps, a characteristics related to the high integrated strength of the North American craton. Despite the generally little deformation of the continental interior, two regional-scale tectonic features preserved evidence of significant Paleozoic tectonism: the fault bounded Hudson Bay Central High (HBCH) and the Boothia uplift/Cornwallis fold belt (BUCF) in the Canadian Arctic. In the Hudson Bay intracratonic basin, the lower part of the sedimentary succession (Upper Ordovician to Lower Devonian) is cut by high-angle faults and overlain by a saucer-shape, essentially underformed sedimentary package (Middle to Upper Devonian). The main structural feature is the NNW-trending HBCH that extends for a minimum length of 500 km with normal faults characterized by throws up to 500 m that were mainly active during the Silurian - Early Devonian period. The >700-km long, N-trending BUCF is nearly perpendicular to the deformation front of the Franklinian mobile belt. In its southern segment (Boothia uplift), its western side is characterized by an east-dipping reverse fault zone that puts Precambrian rocks over Paleozoic strata. In its northern segment (Cornwallis fold belt), the Paleozoic succession is involved in open folds and cuts by steeply dipping reverse faults. Syn-tectonic clastic sediments constrain the age of structures to the latest Silurian-Early Devonian. Comparison of the HBCH and BUCF indicates that they are grossly parallel, partly contemporaneous but with different kinematics. This kinematic variability may be explained if they are genetically linked with different segments of

  4. Hydrological cycle.

    PubMed

    Gonçalves, H C; Mercante, M A; Santos, E T

    2011-04-01

    The Pantanal hydrological cycle holds an important meaning in the Alto Paraguay Basin, comprising two areas with considerably diverse conditions regarding natural and water resources: the Plateau and the Plains. From the perspective of the ecosystem function, the hydrological flow in the relationship between plateau and plains is important for the creation of reproductive and feeding niches for the regional biodiversity. In general, river declivity in the plateau is 0.6 m/km while declivity on the plains varies from 0.1 to 0.3 m/km. The environment in the plains is characteristically seasonal and is home to an exuberant and abundant diversity of species, including some animals threatened with extinction. When the flat surface meets the plains there is a diminished water flow on the riverbeds and, during the rainy season the rivers overflow their banks, flooding the lowlands. Average annual precipitation in the Basin is 1,396 mm, ranging from 800 mm to 1,600 mm, and the heaviest rainfall occurs in the plateau region. The low drainage capacity of the rivers and lakes that shape the Pantanal, coupled with the climate in the region, produce very high evaporation: approximately 60% of all the waters coming from the plateau are lost through evaporation. The Alto Paraguay Basin, including the Pantanal, while boasting an abundant availability of water resources, also has some spots with water scarcity in some sub-basins, at different times of the year. Climate conditions alone are not enough to explain the differences observed in the Paraguay River regime and some of its tributaries. The complexity of the hydrologic regime of the Paraguay River is due to the low declivity of the lands that comprise the Mato Grosso plains and plateau (50 to 30 cm/km from east to west and 3 to 1.5 cm/km from north to south) as well as the area's dimension, which remains periodically flooded with a large volume of water. PMID:21537597

  5. Possible genetic link between I-type granite and orogenic gold deposits in Egypt (metamorphic-magmatic interaction?)

    NASA Astrophysics Data System (ADS)

    Abd El Monsef, Mohamed

    2015-04-01

    The orogenic gold deposits are a distinctive type of deposits that revealed unique temporal and spatial association with an orogeny. Where, the system of gold veins and related ore minerals was confined to hydrothermal solutions formed during compressional to transpressional deformation processes at convergent plate margins in accretionary and collisional orogens, with the respect to ongoing deep-crustal, subduction-related thermal processes. In Egypt, most of vein-type and dyke-type gold mineralization are restricted to granitic rocks or at least near of granitic intrusion that seems to have had an important influence on gold mineralization. Shear zone-related, mesothermal gold deposits of Fatira and Gidami mines in the northern Eastern Desert of Egypt are found within granitic bodies or at the contact between granites and metavolcanic rocks. The hosting-granitic rocks in Fatira and Gidami areas are mainly of granodioritic composition (I-Type granite) which is related to calc-alkaline magmatic series. However, Fatira granitoids were developed within island arc tectonic settings related to mature island arc system (Late-orogenic stage), at relatively low temperature (around 660° C) and medium pressure between (5 - 10 Kbar). On the other hand, Gidami granitoids were developed during the collision stage in continental arc regime related to active continental margin (Syn-orogeny), which were crystallized at relatively high temperature (700-720° C) and low pressure (around 0.1 Kbar). The ore mineralogy includes pyrite, chalcopyrite, sphalerite, covellite, ilmenite, goethite ± pyrrhotite ± pentlandite ± galena ± molybdenite. Native gold is detected only in Gidami mineralization as small inclusions within pyrite and goethite or as tiny grains scattered within quartz vein (in close proximity to the sulfides). In Fatira deposits, it is detected only by microprobe analysis within the crystal lattice of pyrite and jarosite. Fluid inclusions study for the mineralized

  6. Crustal structure of the Innuitian region of Arctic Canada and Greenland from gravity modelling: implications for the Palaeogene Eurekan orogen

    NASA Astrophysics Data System (ADS)

    Oakey, Gordon N.; Stephenson, Randell

    2008-06-01

    New gravity observations collected over Ellesmere Island and Axel Heiberg Island have been integrated with existing Canadian and Danish data sets to produce a comprehensive regional compilation over the Innuitian Region of the Canadian and Greenland High Arctic. This compilation has provided quantitative assessment of the geometry of the plate boundary between northern Greenland and Ellesmere Island and crustal structures across the Cretaceous-Palaeogene Eurekan Orogen. A large amplitude linear gravity low-Nares Strait Gravity Low (NSGL) (<-160 mGal)-extends obliquely across Nares Strait from northern Greenland to Ellesmere Island. This feature closely correlates with the distribution of the Palaeozoic Franklinian Margin sequences and is cross-cut by the Cenozoic Eurekan Frontal Thrust (EFT), which represents the mappable western limit of the undeformed Greenland Plate associated with the Eurekan Orogen. Newly identified linear gravity features occur north of the NSGL: the Hazen Plateau Gravity High (HPGH), corresponding with the low-lying topography of the Hazen Trough and the Grantland Gravity Low (GGL), over the elevated topography of the Grantland Uplift. Gravity models for profiles crossing the NSGL, the HPGH and the GGL indicate that the long-wavelength component of the gravity anomalies is produced by systematic variations in Moho depth. Although significant Eurekan-age thrusting and thickening of low-density Palaeozoic strata is observed on Ellesmere Island, locally contributing to the mass-deficit generating the NSGL, equivalent strata on Greenland are undeformed. The NSGL is interpreted to be primarily the signature of the remnant (Early Palaeozoic) margin with the downwards flexure of the crust beneath a northwards thickening sedimentary wedge rather than purely the result of crustal thickening from the Eurekan Orogeny. Digital bathymetry and sediment thickness data were used to determine a residual `crustal' gravity field, which in turn was used to

  7. Proto-Pacific-margin source for the Ordovician turbidite submarine fan, Lachlan Orogen, southeast Australia: Geochemical constraints

    NASA Astrophysics Data System (ADS)

    Offler, R.; Fergusson, C. L.

    2016-04-01

    The Early Palaeozoic proto-Pacific Pacific margin of Gondwana was characterised by a huge turbidite submarine fan with abundant clastic detritus derived from unknown sources within Gondwana. These deposits are widespread in the Lachlan Orogen of southeast Australia and include the Ordovician Adaminaby Group. Here we show that the mudstones and sandstones of the Adaminaby Group have chemical compositions that indicate the detritus in them was derived from a felsic, continental source similar in composition to Post Archean Australian Shales (PAAS). Chondrite normalised REE patterns showing LREE enrichment, flat PAAS normalised patterns and elemental ratios La/Sc, Cr/Th, Cr/V, Th/Sc and Th/U, have been used to support this interpretation. The dominance of quartz, and to a lesser degree plagioclase and biotite in the sandstones, suggests that the source was mainly granodioritic to tonalitic in composition. Th/Yb and Ta/Yb ratios indicate that the source was probably calc-alkaline, continental and shoshonitic. In addition, the presence of detrital muscovite, low-grade metamorphic and felsic volcanic clasts, demonstrates that a low-grade metamorphic terrane and volcanic arc contributed to the detritus observed in the samples. The presence of well-rounded zircons and tourmalines, very high Zr contents, high Zr/Sc and higher Cr/V ratios in some samples particularly in the Shoalhaven River area, indicate that some of the detritus was recycled. SiO2 versus (Al2O3 + K2O + Na2O) plots suggest the source areas experienced conditions varying from humid/semi-humid to semi-arid. Textural features and weathering trends of samples from all locations follow a curved pathway on Al2O3 - (CaO* + Na2O) - K2O (ACNK) diagrams, and indicate that the clays formed from weathering had been K-metasomatised prior to penetrative deformation. Chemical indices of alteration (CIA) reveal that even the freshest sandstones are altered and others are moderately to strongly altered. Discrimination

  8. Sedimentary basin evolution and the link with the deformation of surrounding orogens in European case-studies

    NASA Astrophysics Data System (ADS)

    Matenco, Liviu

    2014-05-01

    Sedimentary basin evolution and the link with the deformation of surrounding orogens in European case-studies Liviu C. Matenco Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, the Netherlands Intra-plate contractional deformation and far-field transmission of strain generated at active deforming plate boundaries play a crucial role in inverting extensional basins and the kinematics of thrust belts in Mediterranean orogens (e.g., Ziegler et al., 1995; Ziegler et al., 1998). At the same time, the structural evolution of rifts is significantly controlled by the lithospheric rheology, the availability of inherited crustal weak zones with potential to be re-activated, the mode of extension and the type of crustal material being deformed (Ziegler and Cloetingh, 2004; Ziegler et al., 2006). These critical inferences has proven of major importance for the study of sedimentary basins, in particular relevant for the evolution of Central and SE European mountain chains and associated sedimentary basins. Far-field transmission of contractional strain has proven to be of important for the geometry of both foreland and back-arc basins, such as the Carpathians or Dinaridic forelands and the Pannonian Basin or Black Sea back-arcs. Crustal scale weak zones and rheological contrasts such as inherited nappe stacks or major plate boundaries have been proven recently to be of major importance in conditioning subsequent basin formation and associated footwall exhumation in extensional domains such as the Aegean, Rhodope or the transition from the Dinarides to the Pannonian basin. At a regional level, areas characterized by changes in contractional polarity have proven to efficiently transmit the strain at large distances and condition the localization of major structures, such as the change from the Alpine to the Dinaridic polarity or the change from the Carpathians to the Dinaridic polarity. The same areas were prone to the first order localization of

  9. Late Jurassic blueschist facies pebbles from the Western Carpathian orogenic wedge and paleostructural implications for Western Tethys evolution

    NASA Astrophysics Data System (ADS)

    Dal Piaz, Giorgio V.; Martin, Silvana; Villa, Igor M.; Gosso, Guido; Marschalko, Robert

    1995-08-01

    In spite of the absence of ophiolitic slices at the surface, some traces of the lost Tethys ocean are recorded along the Pieniny Klippen Belt (PKB), a narrow décollement thrust system sutured at the transpressive boundary between the Outer and Inner Carpathians. The enigmatic precollisional evolution of Western Carpathians can be deciphered from some late Albian to Campanian flysch conglomerates which display chrome spinel grains, ophiolitic detritus and pebbles of blueschist facies tholeiitic metabasalts yielding a 40Ar/39Ar plateau age of 155.4+/-0.6 Ma. Other detrital components are represented by extrabasinal pebbles of limestones, arc volcanics, and igneous to metamorphic basement rocks from southern sources. Our results suggest a markedly northward extension of the sublongitudinal Triassic Vardar (Meliata) Ocean and its subduction since the late Middle Jurassic, supposedly balanced westward by coeval spreading in the Ligurian-Piedmont basin of the Apennine-Western Alpine Tethys. A lateral kinematic connection between these diachronous and roughly parallel Tethys branches was provided on the north by a left-lateral east-west trending shear zone running from the Swiss-Austrian Penninic domain to the Northern Carpathians. This reconstruction replaces the classic model of two paired North Penninic and South Penninic oceanic basins and eastern homologues with the Briançonnais-Hochstegen and Czorstin microcontinents in between. The Late Jurassic-Early Cretaceous evolution of the Carpathian active margin was characterized by subduction metamorphism and accretion of a wide orogenic wedge; in this time, the shallowing to deeply subsiding basins inferred from facies analyses on the sedimentary units of the PKB were likely floored by individual sections of the growing wedge. Later, some exhuming blueschist ophiolitic units of the wedge were uplifted to the surface and functioned in the Albian-Campanian as an ``exotic ridge'' supplying clasts to the forearc basin

  10. The Kharapeh orogenic gold deposit: Geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, Northwestern Iran

    USGS Publications Warehouse

    Niroomand, Shojaeddin; Goldfarb, Richard J.; Moore, Farib; Mohajjel, Mohammad; Marsh, Erin E.

    2011-01-01

    The Kharapeh gold deposit is located along the northwestern margin of the Sanandaj–Sirjan Zone (SSZ) in the West Azerbaijan province, Iran. It is an epizonal orogenic gold deposit formed within the deformed zone between central Iran and the Arabian plate during the Cretaceous–Tertiary Zagros orogeny. The deposit area is underlain by Cretaceous schist and marble, as well as altered andesite and dacite dikes. Structural analysis indicates that the rocks underwent tight to isoclinal recumbent folding and were subsequently co-axially refolded to upright open folds during a second deformation. Late- to post-tectonic Cenozoic granites and granodiorites occur northeast of the deposit area. Mineralization mainly is recognized within NW-trending extensional structures as veins and breccia zones. Normal faults, intermediate dikes, and quartz veins, oriented subparallel to the axial surface of the Kharapeh antiform, indicate synchronous extension perpendicular to the fold axis during the second folding event. The gold-bearing quartz veins are >1 km in length and average about 6 m in width; breccia zones are 10–50 m in length and ≤1 m in width. Hydrothermal alteration mainly consists of silicification, sulfidation, chloritization, sericitization, and carbonatization. Paragenetic relationships indicate three distinct stages—replacement and silicification, brecciation and fracture filling, and cataclastic brecciation—with the latter two being gold-rich. Fluid inclusion data suggest mineral deposition at temperatures of at least 220–255°C and depths of at least 1.4–1.8 km, from a H2O–CO2±CH4 fluid of relatively high salinity (12–14 wt.% NaCl equiv.), which may reflect metamorphism of passive margin carbonate sequences. Ore fluid δ18O values between about 7‰ and 9‰ suggest no significant meteoric water input, despite gold deposition in a relatively shallow epizonal environment. Similarities to other deposits in the SSZ suggest that the deposit formed as

  11. Timing of magmatism and migmatization in the 2.0-1.8 Ga accretionary Svecokarelian orogen, south-central Sweden

    NASA Astrophysics Data System (ADS)

    Johansson, Åke; Stephens, Michael B.

    2016-07-01

    The Palaeoproterozoic (2.0-1.8 Ga) Svecokarelian orogen in central Sweden consists of a low-pressure, predominantly medium-grade metamorphic domain (central part of Bergslagen lithotectonic unit), enclosed to the north and south by low-pressure migmatite belts. Two periods of metamorphism (1.87-1.85 and 1.83-1.79 Ga) are known in the migmatite belts. In this study, new U-Th-Pb ion microprobe data on zircon and monazite from twelve samples of locally migmatized gneisses and felsic intrusive bodies determine both protolith and metamorphic ages in four sample areas north of Stockholm, inside or immediately adjacent to the medium-grade metamorphic domain. Two orthogneiss samples from the Rimbo area yield unusually old protolith ages of 1909 ± 4 and 1908 ± 4 Ma, while three orthogneisses from the Skutskär and Forsmark areas yield more typical protolith ages between 1901 ± 3 and 1888 ± 3 Ma. Migmatized paragneiss samples from this and two earlier studies contain a significant detrital component sourced from this 1.9 Ga magmatic suite. They are interpreted to be deposited contemporaneously with or shortly after this magmatism. Migmatization of the paragneiss at Rimbo was followed by intrusion of leucogranite at 1846 ± 3 Ma. Even in the other sample areas to the north (Hedesunda-Tierp, Skutskär and Forsmark), metamorphism including migmatization is constrained to the 1.87-1.85 Ga interval and penetrative ductile deformation is limited by earlier studies in the Forsmark area to 1.87-1.86 Ga. However, apart from a metamorphic monazite age of 1863 ± 1 Ma, precise ages were not possible to obtain due to the presence of only partially reset recrystallized domains in zircon, or highly discordant U-rich metamict and altered metamorphic rims. Migmatization was contemporaneous with magmatic activity at 1.87-1.84 Ga in the Bergslagen lithotectonic unit involving a mantle-derived component, and there is a spatial connection between migmatization and this magmatic phase in the

  12. Early Cretaceous tectono-magmatic activity and tectonic implications along the Sulu Orogenic Belt - case study of the Dashan complex

    NASA Astrophysics Data System (ADS)

    Liu, Yanghe; Liu, Junlai; Shi, Xiaoxiao; Yuan, Fengjie; Ni, Jinlong; Wu, Wenbin; Chen, Xiaoyu

    2016-04-01

    The tectonic extension of the eastern Eurasian continent during the Early Cretaceous resulted in widespread occurrence of metamorphic core complexes, wide rifts and related magmatic emplacement, among which the Dashan complex of the Jiaonan orogenic belt is a typical example. The complex is a complex massif of several types of granitic rocks. The core of the complex is composed of massive porphry-bearing biotite-hornblende granitoid without any evidence of ductile deformation. Mylonitized augen quartz monzonite and granodiorite constitute the margin of the complex. A transition zone is composed of porphyritic biotite-hornblende monzonite with weakly orientated K-feldspar phenocryst and mafic microgranular enclave. The foliations along the northwestern margin of the complex dip to NW at with dip angles of about 38°, and along the southwestern and northeastern margins to SE with dip angles of about 45°. Stretching lineations are constantly plunging WNW-ESE with pitch angles between 10° and 40°, which is consistent with the orientation of lineations in the other regions in eastern China. The granites,porphyritic monzogranite and the mafic microgranular enclaves in monzogranite are dated of ca.126Ma. The similarities in ages of crystallization of the monzogranite and its MME's implies the existence of magmatic mixing processes. Meanwhile, the mylonitized augen quartz monzonite and granodiorite along the margins of the complex possess crystallization ages of 129.8±1.1Ma and 132.7±2.8Ma, respectively. The petrographical zonation , structural characteristics and the systematical zircon U-Pb geochronology of the granitic rocks may suggest that the Dashan complex has experienced multistage emplacement under the same tectonic extension setting. In despite of the location of the complex near the Tanlu fault zone, the remarkable consistency of the orientations of stretching lineation of the Dashan complex to those from the other parts of the eastern China area implies

  13. Geochemistry, Metamorphism, and Partial Melting of Hydrothermally Altered Rocks in the Sherridon Complex, Trans Hudson Orogen, Manitoba

    NASA Astrophysics Data System (ADS)

    Tinkham, D. K.

    2009-05-01

    Lithogeochemistry and field investigations of regionally metamorphosed rocks in the central portion of the Sherridon Complex of the Trans-Hudson orogen indicates high-grade gneisses are dominantly derived from protoliths with rhyodacite and basaltic compositions that subsequently experienced pre-metamorphic seafloor- related hydrothermal alteration. Immobile trace element geochemistry results indicate the voluminous rhyodacite composition rocks formed in a volcanic arc environment, and associated VMS deposits and less voluminous basaltic composition rocks suggest a bimodal-felsic VMS environment. Felsic lithologies are interpreted to have experienced local pre-metamorphic sericite, chlorite, carbonate, and possible silica alteration, with an extensive zone of carbonate alteration associated with more basaltic-composition protoliths. Upper amphibolite facies metamorphism of hydrothermally altered felsic lithologies resulted in a variety of quartz-rich rocks containing combinations of gahnite, garnet, cordierite, sillimanite, orthoamphibole, biotite, and feldspar bearing assemblages. An extensive garnet-cordierite-sillimanite-biotite ± orthoamphibole quartz-rich gneiss unit (GCSB) grades into a stromatic migmatite with a modal decrease in garnet and sillimanite in the host gneiss. Cordierite commonly overgrows and locally completely replaces sillimanite. Increased amounts of melting results in very local diatexite and locally mobilized melt crystallizing to a massive biotite clotted granitoid. The biotite-rich clots in the granitoid are interpreted to have resulted from replacement of garnet ± cordierite within the melt based on their shape, small remnants of garnet, and local sillimanite. Phase equilibria modelling of a suite of GCSB rocks (average Mg# = 0.55) in the MnNCKFMASHT chemical system utilizing program Domino predicts pressures in excess of 5.5 kilobars for sillimanite stability, and is most compatible with pressures between 6.5-7.0 kilobars based on

  14. 40Ar/ 39Ar-ages of phlogopite in mantle xenoliths from South African kimberlites: Evidence for metasomatic mantle impregnation during the Kibaran orogenic cycle

    NASA Astrophysics Data System (ADS)

    Hopp, Jens; Trieloff, M.; Brey, G. P.; Woodland, A. B.; Simon, N. S. C.; Wijbrans, J. R.; Siebel, W.; Reitter, E.

    2008-12-01

    We applied the 40Ar/ 39Ar dating method to an extensive suite of phlogopites from kimberlite-hosted mantle xenoliths (dominantly garnet bearing) from the mines of Bultfontein (South Africa), Letseng-la-Terae and Liqhobong (Lesotho). Argon extraction was performed by conventional high resolution stepwise heating technique, laser incremental heating technique and laser spot analysis. All age spectra obtained by conventional analysis indicate various degrees of 40Ar loss during kimberlite emplacement, but never resulted in a total reset of the argon system. Most intriguingly, the sample-specific maximum apparent ages cluster between 1.0 and 1.22 Ga for the phlogopites with the least disturbed age spectra. A maximum apparent age of 1.02 Ga was observed during laser heating analysis. Individual grains tend to yield older ages in their cores, with successively younger ages at their rims. The range in age obtained via the laser fusion technique and with conventional stepwise heating technique agrees with each other, as well as with literature data. The often inferred presence of excess 40Ar in those phlogopites cannot explain the coherent age pattern in the large suite of samples. Hence, the age constraint of 1.0-1.25 Ga is regarded as geologically meaningful and assigned to metasomatism of the local cratonic mantle during the advent of Kibaran orogenesis (1.00-1.25 Ga). The major consequences of our findings are: (i) The argon system of phlogopite can remain closed for long time scales, even at ambient temperatures of 800-1200 °C within the mantle, most likely because the solid/solid partitioning behaviour of Ar between phlogopite and other major phases in the mantle strongly favours phlogopite, or because conventionally inferred diffusivity of argon in phlogopite is seriously overestimated. Thus, the 40Ar/ 39Ar phlogopite system appears to be a valuable tool for deciphering ancient metasomatic events affecting the lithospheric mantle. (ii) The cratonic lithospheric mantle below southern Africa may have been frequently influenced by different episodes of fluid or melt migration during subduction of oceanic crust at active continental margins.

  15. Evolution of the Dharwar Craton: A terrain of early Archean crustal stability, long term orogenic cycles and large scale palaeobiological activity

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Naqvi, S. M.

    1988-01-01

    Traceable history of the Dharwar Craton goes back to approximately 3400 m.y. old tonalitic to trondhjemitic fundamental gneiss whose REE composition indicates its derivation from a preexisting basalt which apparently had very short time of crustal residence. The fundamental gneiss is preserved only as rare relicts in the vast gneissic complex of the Indian Peninsula (the Peninsular Gneiss), and as pebbles in the conglomerates of the Archean Dharwar sequence. Study of these relicts, shows evidence of a deformation episode prior to the deposition of the high- and low-grade Dharwar supracrustal sequence. The Dharwar supracrustal sequence is briefly described. Geochemistry of the volcanic and sedimentary rocks of the Dharwar supracrustal belts are examined.

  16. Aeromagnetic study of the Hengshan-Wutai-Fuping region: Unraveling a crustal profile of the Paleoproterozoic Trans-North China Orogen

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Zhao, Guochun; Shen, Wenlue; Li, Sanzhong; Sun, Min

    2015-11-01

    An integrated crustal profile of the intervening Trans-North China Orogen (TNCO) is one of the key issues to understanding the tectonic evolution of the North China Craton. However, the existing geological studies focus only on the surface-mapping based petrological, geochemical and structural analysis, but lack subsurface geophysical evidence and thus make the crustal profile interpretations ambiguous. In contrast, the current geophysical data covers a very large-scale lithospheric mantle and fails to image the detailed structural pattern of the orogenic crust. To achieve this goal, we present high-resolution aeromagnetic data for the Hengshan-Wutai-Fuping region, the largest exposure of the central TNCO. The reduced-to-pole magnetic anomaly map firstly verifies the regional tectonic subdivision that the high-grade metamorphic terranes (i.e. Hengshan and Fuping Complexes) are consistent with high-magnetic responses and long-wavelength anomalies, intervened by a low-grade terrane (Wutai Complex) characterized by low-magnetic responses and short-wavelength anomalies. 3D Euler deconvolution reveals that the tendencies of the clustered solutions show large consistence with the major structural pattern of the region which is characterized by a fan-shaped doubly-vergent orogenic wedge. Upward continuation further shows that the northwest part of the orogen yields a thicker crust and is most likely located closer to the paleosubduction zone. The new aeromagnetic data, combined with structural, petrological and metamorphic data indicate that an eastward-dipping subduction zone was most possibly active before the collision of the Western and Eastern Blocks, leading to the formation of the TNCO and the final amalgamation of the North China Craton.

  17. Influence of syn-sedimentary faults on orogenic structures in a collisional belt: Insights from the inner zone of the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Brogi, Andrea

    2016-05-01

    This paper discusses the possible influence of syn-sedimentary structures on the development of orogenic structures during positive tectonic inversion in the inner Northern Apennines (Italy). Examples from key areas located in southern Tuscany provided original cartographic, structural and kinematics data for Late Oligocene-Early Miocene thrusts, organized in duplex systems, verging in the opposite direction of the foreland propagation (back-thrusts), which affected the Late Triassic-Oligocene sedimentary succession of the Tuscan Domain, previously affected by pre-orogenic structures. These latter consist of mesoscopic-to cartographic-scale Jurassic syn-sedimentary normal faults and extensional structures, which gave rise to effective stratigraphic lateral variation and mechanical heterogeneities. Structural analysis of both syn-sedimentary faults and back-thrusts were therefore compared in order to discuss the possible role of the pre-existing anisotropies in influencing the evolution of the back-thrusts. As a result, it can be reasonably proposed that back-thrusts trajectories and stacking pattern were controlled by relevant syn-sedimentary normal faults; these latter were reactivated, in some cases, if properly oriented. Such an issue adds new inputs for discussing the potential role of structural inheritance during tectonic inversions, and helps to better understand the processes suitable for the development of back-thrusts in the inner zones of orogenic belts, as it is the case of the inner Northern Apennines.

  18. The Neoacadian orogenic core of the souther Appalachians: a Geo-traverse through the migmatitic inner Piedmont from the Brushy Mountains to Lincolnton, North Carolina

    USGS Publications Warehouse

    Merschat, Arthur J.; Hatcher, Robert D.; Byars, Heather E.; Gilliam, William G.; Eppes, Martha Cary; Bartholomew, Mervin J.

    2012-01-01

    The Inner Piedmont extends from North Carolina to Alabama and comprises the Neoacadian (360–345 Ma) orogenic core of the southern Appalachian orogen. Bordered to west by the Blue Ridge and the exotic Carolina superterrane to the east, the Inner Piedmont is cored by an extensive region of migmatitic, sillimanite-grade rocks. It is a composite of the peri-Laurentian Tugaloo terrane and mixed Laurentian and peri-Gondwanan affinity Cat Square terrane, which are exposed in several gentle-dipping thrust sheets (nappes). The Cat Square terrane consists of Late Silurian to Early Devonian pelitic schist and metagraywacke intruded by several Devonian to Mississippian peraluminous granitoids, and juxtaposed against the Tugaloo terrane by the Brindle Creek fault. This field trip through the North Carolina Inner Piedmont will examine the lithostratigraphies of the Tugaloo and Cat Square terranes, deformation associated with Brindle Creek fault, Devonian-Mississippian granitoids and charnockite of the Cat Square terrane, pervasive amphibolite-grade Devonian-Mississippian (Neoacadian) deformation and metamorphism throughout the Inner Piedmont, and existence of large crystalline thrust sheets in the Inner Piedmont. Consistent with field observations, geochronology and other data, we have hypothesized that the Carolina superterrane collided obliquely with Laurentia near the Pennsylvania embayment during the Devonian, overrode the Cat Square terrane and Laurentian margin, and squeezed the Inner Piedmont out to the west and southwest as an orogenic channel buttressed against the footwall of the Brevard fault zone.

  19. Extensional deformation structures within a convergent orogen: The Val di Lima low-angle normal fault system (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Clemenzi, Luca; Molli, Giancarlo; Storti, Fabrizio; Muchez, Philippe; Swennen, Rudy; Torelli, Luigi

    2014-09-01

    A low-angle extensional fault system affecting the non metamorphic rocks of the carbonate dominated Tuscan succession is exposed in the Lima valley (Northern Apennines, Italy). This fault system affects the right-side-up limb of a kilometric-scale recumbent isoclinal anticline and is, in turn, affected by superimposed folding and late-tectonic high-angle extensional faulting. The architecture of the low-angle fault system has been investigated through detailed structural mapping and damage zone characterization. Pressure-depth conditions and paleofluid evolution of the fault system have been studied through microstructural, mineralogical, petrographic, fluid inclusion and stable isotope analyses. Our results show that the low-angle fault system was active during exhumation of the Tuscan succession at about 180°C and 5 km depth, with the involvement of low-salinity fluids. Within this temperature - depth framework, the fault zone architecture shows important differences related to the different lithologies involved in the fault system and to the role played by the fluids during deformation. In places, footwall overpressuring influenced active deformation mechanisms and favored shear strain localization. Our observations indicate that extensional structures affected the central sector of the Northern Apennines thrust wedge during the orogenic contractional history, modifying the fluid circulation through the upper crust and influencing its mechanical behavior.

  20. Gulf Coast-East Coast magnetic anomaly I: Root of the main crustal decollement for the Appalachian-Ouachita orogen

    SciTech Connect

    Hall, D.J. )

    1990-09-01

    The Gulf Coast-East Coast magnetic anomaly extends for at least 4000 km from south-central Texas to offshore Newfoundland as one of the longest continuous tectonic features in North America and a major crustal element of the entire North Atlantic-Gulf Coast region. Analysis of 28 profiles spaced at 100km intervals and four computed models demonstrate that the anomaly may be explained by a thick zone of mafic and ultramafic rocks averaging 13-15 km in depth. The trend of the anomaly closely follows the trend of main Appalachian features: in the Gulf Coast of Louisiana, the anomaly is as far south of the Ouachita front as it is east of the western limit of deformation through the central Appalachians. Because the anomaly continues across well-known continental crust in northern Florida and onshore Texas, it cannot plausibly be ascribed to an edge effect at the boundary of oceanic with continental crustal compositions. The northwest-verging, deep-crustal events discovered in COCORP data from the Ouachitas and Appalachians suggest an analogy with the main suture of the Himalayan orogen in the Tibetan Plateau. In this paper the anomaly is identified with the late Paleozoic Alleghenian megasuture, in which the northwest-verging crustal-detachment surfaces ultimately root.

  1. Tectono-stratigraphic terranes in Cape Breton Island, Nova Scotia: Implications for the configuration of the northern Appalachian orogen

    SciTech Connect

    Barr, S.M.; Raeside, R.P. )

    1989-09-01

    Cape Breton Island is divided into four terranes on the basis of contrasts in pre-Carboniferous geology. The Blair River Complex in the north is an exposure of North American Grenvillian basement, analogous to the Humber zone basement in Newfoundland. Ordovician to Devonian metavolcanic, metasedimentary, gneissic, and granitic rocks of the Aspy terrane are correlative with parts of the Gander terrane of Newfoundland and New Brunswick. The Bras d'Or terrane, characterized by low-pressure gneisses, a carbonate-clastic platform sequence, and later Precambrian-Early Cambrian plutons, may be correlative with units previously included in the Gander terrane in southern Newfoundland and the Avalon terrane in southern New Brunswick. The Mira terrane in southeastern Cape Breton Island, including late Precambrian to Early Cambrian volcanic and sedimentary sequences and fossiliferous Cambrian-Ordovician units, is clearly part of the Avalon terrane. Therefore, with the exception of the Dunnage terrane, which is not represented in Cape Breton Island, the terranes of Newfoundland continue through Cape Breton Island. They are offset to the northwest to the mainland part of the Appalachian orogen in New Brunswick.

  2. Zongo-San Gaban zone: Eocene foreland boundary of the Central Andean orogen, northwest Bolivia and southeast Peru

    SciTech Connect

    Farrar, E.; Clark, A.H.; Kontak, D.J.; Archibald, D.A.

    1988-01-01

    Discordant muscovite and biotite K-Ar dates of samples taken in six transects through the Cordillera Oriental of southeast Peru and northwest Bolivia, combined with /sup 40/Ar//sup 39/Ar age spectra, reveal a northwest-trending, structurally cryptic, tectonothermal zone of late Eocene age (ca. 38 Ma) that overprints Triassic and older igneous and metamorphic rocks. The zone is at least 450 km long but is less than 25 km wide; temperatures along its northeast boundary are estimated to have reached 350/sup 0/C. No Paleogene magmatism has been recognized that could account for the thermal resetting of the K-Ar isotopic system. Uplift, erosion, and southwest-verging thrusting accompanied the development of this domain, which defined the foreland boundary of the orogen prior to inception of northeast-verging Andean thrusting in Miocene time. It is proposed that this tectonothermal zone, the Zongo-San Gaban zone (ZSGZ), which involves thrusting and basement shortening, is the southerly manifestation of the Incaic compressional deformation, which produced the thin-skinned Maranon thrust and fold belt (MTFB) north of the Abancay deflection of central Peru.

  3. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet

    NASA Astrophysics Data System (ADS)

    Zhang, Zeming; Xiang, Hua; Dong, Xin; Ding, Huixia; He, Zhenyu

    2015-01-01

    The Namche Barwa Complex exposed in the Eastern Himalayan Syntaxis, south Tibet, underwent high-pressure (HP) and high-temperature (HT) granulite-facies metamorphism and associated anatexis. The HP pelitic granulites contain garnet, kyanite, sillimanite, cordierite, biotite, quartz, plagioclase, K-feldspar, spinel, ilmenite and graphite. These minerals show composite reaction texture and varying chemical compositions and form four successive mineral assemblages. Phase equilibrium modeling constrains the P-T conditions of 10-12 kbar and 550-700 °C for the prograde stage, 13-16 kbar and 840-880 °C for the peak-metamorphic stage, and 5-6 kbar and 830-870 °C for the late retrograde stage, indicating that the HP granulites recorded a clockwise P-T path involving the early heating burial and anatexis through dehydration melting of both muscovite and biotite, and the late isothermal decompression and gradual melt crystallization under HT granulite-facies conditions. The zircon U-Pb dating reveals that the HT granulite-facies metamorphism probably initiated at ca. 40 Ma, and lasted to ca. 8 Ma. Therefore, the present study provides robust evidence for a long-lived HT metamorphism and associated anatexis in the deeply buried Indian continent and important constraints on the leucogranite generation and tectonic evolution of the Himalayan orogen.

  4. Sediment yield along the Andes: continental budget, regional variations, and comparisons with other basins from orogenic mountain belts

    NASA Astrophysics Data System (ADS)

    Latrubesse, Edgardo M.; Restrepo, Juan D.

    2014-07-01

    We assess the sediment yield at 119 gauging stations distributed from Colombia to Patagonia, covering the different morphotectonic and morphoclimatic settings of the Andes. The most productive areas are the Meta River basin within the northern Andes and the Bolivian and northern Argentina-Chaco systems, which produce an average of 3345, 4909 and 2654 t km2 y- 1 of sediment, respectively. The rivers of the northern and central Andes (excluding the Pacific watersheds of Peru, northern Chile, and central Argentina) have a weighted mean sediment yield of 2045 t km- 2 y- 1 and produce 2.25 GTy- 1 of total sediment. A major constraint estimating the Andean continental budget of sediment yield lies in the lack of gauging data for the Peruvian region. Using the available gauge stations, the regional sediment yield appears underestimated. Assuming a higher value of sediment yield for the Peruvian Andes, the total budget for the whole central Andes could range between 2.57 GT y- 1 and 3.44 GT y- 1. A minimum of ~ 0.55 GT y- 1 and a probable maximum of ~ 1.74 GT y- 1 of sediment are deposited in the intramontane and surrounding proximal sedimentary basins. The magnitude of sediment yield in the Andes is comparable to other rivers draining orogenic belts around the world.

  5. Distribution, microfabric, and geochemical characteristics of siliceous rocks in central orogenic belt, China: implications for a hydrothermal sedimentation model.

    PubMed

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch

    2014-01-01

    Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian--Ordovician, and Carboniferous--Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08-95.30%), Ba (42.45-503.0 ppm), and ΣREE (3.28-19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb) N, and (La/Ce) N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  6. Effect of processing on the displacement of whey proteins: applying the orogenic model to a real system.

    PubMed

    Woodward, Nicola C; Wilde, Peter J; Mackie, Alan R; Gunning, A Patrick; Gunning, Paul A; Morris, Victor J

    2004-03-10

    Atomic force microscopy (AFM) has been used to investigate the displacement of a commercial whey protein system and the behavior as compared to that of beta-lactoglobulin (Mackie, A. R.; Gunning, A. P.; Wilde, P. J.; Morris, V. J. Orogenic displacement of protein from the air-water interface by competitive adsorption. J. Colloid Interface Sci. 1999, 210, 157-166). The whey protein isolate (WPI) was displaced from an air-water interface by the surfactants Tween 20 and Tween 60. Displacement data obtained were compared with data obtained for pure beta-lactoglobulin and have shown that WPI was more resistant to displacement from the air-water interface than native beta-lactoglobulin. This was related to the greater surface elasticity of WPI at higher surface stresses. In the presence of Tween 20, WPI was observed to remain on the interface at surface pressures up to 8 mN/m greater than the surface pressure at which complete displacement of beta-lactoglobulin was observed. Displacement of WPI and beta-lactoglobulin films by the surfactant Tween 60 showed similar results. However, because of the lower surface activity of Tween 60, it was not possible to reach surface tension values similar to those obtained for Tween 20. Despite the lower surface activity of Tween 60, WPI was still observed to be present at the interface at surface pressure values greater than those by which beta-lactoglobulin had been completely displaced.

  7. The structure of the Temsamane fold-and-thrust stack (eastern Rif, Morocco): Evolution of a transpressional orogenic wedge

    NASA Astrophysics Data System (ADS)

    Jabaloy-Sánchez, Antonio; Azdimousa, Ali; Booth-Rea, Guillermo; Asebriy, Lahcen; Vázquez-Vílchez, Mercedes; Martínez-Martínez, José Miguel; Gabites, Janet

    2015-11-01

    The structure of the Temsamane fold-and-thrust stack corresponds to four units limited by anastomosing ductile shear zones cutting a trend of south verging recumbent folds. This ductile stack was formed in an inclined left-handed transpressional zone at the North African paleomargin during Chattian to Langhian times producing two main deformational events. The first event (Dp) produced a Sp/Lp planar linear fabric generated in a non-coaxial deformation with a top-to-the-WSW sense of movement and was associated to metamorphic P-T conditions varying from late diagenesis in the southernmost Temsamane outcrops to epizone in the north. According to the 40Ar/39Ar ages, this deformation occurred at Chattian-Aquitanian times. The second deformational event (Dc event) generated ENE-WSW trending folds with SSE vergence and a set of anastomosing shear zones with Sm/Lm planar linear fabric. The latter units were generated at around 15 Ma (Langhian), and indicate a strong localization of the simple shear component of the transpression. Moreover, this orientation is compatible with the kinematics of the Temsamane detachment, which can explain most of the uplift of the Temsamane rocks from the middle to the uppermost crust. The described evolution indicates that collision between the western Mediterranean terranes and the North African paleomargin and the formation of the Rifean orogenic wedge occurred at Chattian to Langhian times.

  8. Distribution, microfabric, and geochemical characteristics of siliceous rocks in central orogenic belt, China: implications for a hydrothermal sedimentation model.

    PubMed

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch

    2014-01-01

    Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian--Ordovician, and Carboniferous--Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08-95.30%), Ba (42.45-503.0 ppm), and ΣREE (3.28-19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb) N, and (La/Ce) N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics. PMID:25140349

  9. From slab rollback to orogenic plateau formation - a numerical modeling study of ocean-continent subduction systems

    NASA Astrophysics Data System (ADS)

    Wolf, Sebastian; Huismans, Ritske S.; Rondenay, Stéphane

    2016-04-01

    The crustal structures of overriding plates in subduction settings around the world can vary between a wide range of deformation styles, ranging from extensional structures and back arc opening induced by slab roll back as in the Hellenic subduction zone to large, plateau-like orogens such as the central Andes. Both end member types have been intensively studied over the last decades and a range of hypotheses have been proposed to explain their characteristics. Here we model ocean-continent collision using lithospheric scale plane-strain thermo-mechanical models, which also account for phase changes of rocks which enter the eclogite stability field. We consider the oceanic plate velocity, back-arc crustal strength, back-arc lithospheric strength, subduction interface strength, strain weakening thresholds in the crust and mantle flow patterns as the main variables in upper plate deformation and conducted a sensibility study with those parameters. The influence of eclogitized lower continental crust is also accounted for and shows to have a modulating effect. To verify and discuss our modeling results, we also present a comparison of the models with natural subduction systems.

  10. The Ediacaran Rio Doce magmatic arc revisited (Araçuaí-Ribeira orogenic system, SE Brazil)

    NASA Astrophysics Data System (ADS)

    Tedeschi, Mahyra; Novo, Tiago; Pedrosa-Soares, Antônio; Dussin, Ivo; Tassinari, Colombo; Silva, Luiz Carlos; Gonçalves, Leonardo; Alkmim, Fernando; Lana, Cristiano; Figueiredo, Célia; Dantas, Elton; Medeiros, Sílvia; De Campos, Cristina; Corrales, Felipe; Heilbron, Mônica

    2016-07-01

    Described half a century ago, the Galiléia tonalite represents a milestone in the discovery of plate margin magmatic arcs in the Araçuaí-Ribeira orogenic system (southeastern Brazil). In the 1990's, analytical studies on the Galiléia tonalite finally revealed the existence of a Late Neoproterozoic calc-alkaline magmatic arc in the Araçuaí orogen. Meanwhile, the name Rio Doce magmatic arc was applied to calc-alkaline plutons found in the Araçuaí-Ribeira boundary. After those pioneer studies, the calc-alkaline plutons showing a pre-collisional volcanic arc signature and age between 630 Ma and 585 Ma have been grouped in the G1 supersuite, corresponding to the Rio Doce arc infrastructure. Here, we revisit the Rio Doce arc with our solid field knowledge of the region and a robust analytical database (277 lithochemical analyses, and 47 U-Pb, 53 Sm-Nd, 25 87Sr/86Sr and 7 Lu-Hf datasets). The G1 supersuite consists of regionally deformed, tonalitic to granodioritic batholiths and stocks, generally rich in melanocratic to mesocratic enclaves and minor gabbroic to dioritic plutons. Gabbroic to dioritic enclaves show evidence of magma mixing processes. The lithochemical and isotopic signatures clearly reveal a volcanic arc formed on a continental margin setting. Melts from a Rhyacian basement form the bulk of the magma produced, whilst gabbroic plutons and enclaves record involvement of mantle magmas in the arc development. Tonalitic stocks (U-Pb age: 618-575 Ma, εNd(t): -5.7 to -7.8, Nd TDM ages: 1.28-1.68 Ga, 87Sr/86Sr(t): 0.7059-0.7118, and εHf(t): -5.2 to -11.7) form the northernmost segment of the Rio Doce arc, which dies out in the ensialic sector of the Araçuaí orogen. At arc eastern and central zones, several batholiths (e.g., Alto Capim, Baixo Guandu, Galiléia, Muniz Freire, São Vítor) record a long-lasting magmatic history (632-580 Ma; εNd(t): -5.6 to -13.3; Nd TDM age: 1.35-1.80 Ga; 87Sr/86Sr(t): 0.7091-0.7123). At arc western border, the magmatic

  11. Systematic correlations of the earthquake frequency-magnitude distribution with the deformation and mechanical regimes in the Taiwan orogen

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Ling; Hung, Shu-Huei; Jiang, Juen-Shi; Chiao, Ling-Yun

    2016-05-01

    We investigate the correlation of the earthquake frequency-magnitude distribution with the style of faulting and stress in Taiwan. The b values estimated for three types of focal mechanisms show significant differences with the lowest for thrust, intermediate for strike slip, and highest value for normal events, consistent with those found in global and other regional seismicity. Lateral distribution of the b values shows a good correlation with the predominant faulting mechanism, crustal deformation, and stress patterns. The two N-S striking thrust zones in western and eastern Taiwan under the larger E-W shortening and differential stress yield the lower b values than those in the in-between mountain ranges subject to the smaller extensional stress and dominated by strike slip and normal faults. The termination of the monotonically decreasing b value with depth at ~15-20 km corroborates its inverse relationship with stress and the existence of the brittle-plastic transition in the weak middle crust beneath the Taiwan orogen.

  12. Distribution, Microfabric, and Geochemical Characteristics of Siliceous Rocks in Central Orogenic Belt, China: Implications for a Hydrothermal Sedimentation Model

    PubMed Central

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch.

    2014-01-01

    Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%), Ba (42.45–503.0 ppm), and ΣREE (3.28–19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb)N, and (La/Ce)N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics. PMID:25140349

  13. Detrital zircon provenance analysis in the Zagros Orogen, SW Iran: implications for the amalgamation history of the Neo-Tethys

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Xiao, Wenjiao; Majidifard, Mahmoud Reza; Zhu, Rixiang; Wan, Bo; Ao, Songjian; Chen, Ling; Rezaeian, Mahnaz; Esmaeili, Rasoul

    2016-03-01

    The Zagros Orogen developed as a result of Arabia-Eurasia collision. New in situ detrital zircon U-Pb and Hf isotopic analyses from a Cenozoic sedimentary sequence in SW Iran are used to unravel the amalgamation history of Neo-Tethys. Data indicate that: (1) Paleocene and Eocene strata (58 and 45 Ma, respectively) were sourced from obducted ophiolite and Triassic volcanics, (2) Lower Miocene (~18 Ma) strata indicate mixed provenance from obducted ophiolite and Iranian magmatic rocks, (3) Mid to Upper Miocene sediments (~14 to 11.2 Ma) were mainly sourced from Sanandaj-Sirjan zone granitoids to the north, and (4) Lower Pliocene (~5 Ma) sediments mainly show Arabian age characteristics, with a minor Eurasian affinity component. Two hypotheses are outlined to highlight the key events: Hypothesis A, previously published by several workers, suggests that the sequence studied lay on the Arabia passive margin and that initial collision occurred prior to 18 Ma; Hypothesis B, modified from the Makran model, which is here preferred, suggests that Paleogene to Upper Miocene sediments were sourced from the northern Neo-Tethyan accretionary complex or Eurasia, and carry no input from Arabia, whereas the Lower Pliocene sample shows a mixed provenance from both Arabia and Eurasia, suggesting that collision occurred between ~11.2 and 5 Ma.

  14. Unraveling complex orogenic histories by integrating Foliation Intersection Axis (FIA) orientation data with thermodynamic modeling: the Swat area case study, NW Himalaya

    NASA Astrophysics Data System (ADS)

    Sayab, M.; Shah, S. Z.; Aerden, D. G.

    2012-12-01

    Barrovian-type mineral assemblages typically result from regional- to plate-scale collision tectonics and resulting clockwise P-T paths. Inclusion trail patterns preserved within such assemblages can provide important information about the kinematics of an orogen and of orogenic processes in general. We have measured Foliation Intersection Axes (FIA) preserved in garnet porphyroblasts of a metapelitic sequence exposed south of the Main Mantle Thrust in the Swat region of the NW Himalaya, Pakistan. This area underwent multiply deformation and metamorphism from ca. 55 to 38 Ma as part of the Himalayan orogen. Metamorphic garnets in the area contain spiral, sigmoidal, millipede and straight inclusion trails that represent progressive stages of a complex succession of deformations during this period. Spiral trails are commonly truncated by the matrix foliation, whereas the other types can be followed in the matrix indicating an older age of the spiral garnets. Determination of FIA for these garnets using two complementary techniques reveals two main FIA sets with broadly E-W versus N-S trends. Relative timing criteria indicate an older age of the E-W trending FIA consistent with development during progressive N-S crustal shortening, thrusting and convergence between the Indian plate and Kohistan-Ladakh Island Arc (KLIA). Younger N-S trending FIA formed in response to E-W crustal shortening as a result of orogen-parallel compression. The trends of FIA sub-classes suggest a progressive rotation of about 125° in the orientation of collision between the Indian Plate and KLIA. In order to estimate P-T conditions during this orogenic evolution, representative samples preserving different geometric types of inclusion trails in garnets (FIAs) are modeled in the chemical system MnNCKFMASH using THERMOCALC 3.33. A sophisticated clockwise P-T-t-d path is obtained that brackets metamorphic conditions during the N-S shortening (M1 metamorphism) between 4.0-8.7 kbars and 495-565o

  15. Porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides: China, Mongolia, Russia, Pakistan, Kazakhstan, Tajikistan, and India: Chapter X in Global mineral resource assessment

    USGS Publications Warehouse

    Mihalasky, Mark J.; Ludington, Stephen; Hammarstrom, Jane M.; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Robinson,, Gilpin R.; Briggs, Deborah A.; Wallis, John C.; Miller, Robert J.; Bookstrom, Arthur A.; Panteleyev, Andre; Chitalin, Andre; Seltmann, Reimar; Guangsheng, Yan; Changyun, Lian; Jingwen, Mao; Jinyi, Li; Keyan, Xiao; Ruizhao, Qiu; Jianbao, Shao; Gangyi, Shai; Yuliang, Du

    2015-01-01

    The U.S. Geological Survey collaborated with international colleagues to assess undiscovered resources in porphyry copper deposits in the Central Asian Orogenic Belt and eastern Tethysides. These areas host 20 known porphyry copper deposits, including the world class Oyu Tolgoi deposit in Mongolia that was discovered in the late 1990s. The study area covers major parts of the world’s largest orogenic systems. The Central Asian Orogenic Belt is a collage of amalgamated Precambrian through Mesozoic terranes that extends from the Ural Mountains in the west nearly to the Pacific Coast of Asia in the east and records the evolution and final closure of the Paleo-Asian Ocean in Permian time. The eastern Tethysides, the orogenic belt to the south of the Central Asian Orogenic Belt, records the evolution of another ancient ocean system, the Tethys Ocean. The evolution of these orogenic belts involved magmatism associated with a variety of geologic settings appropriate for formation of porphyry copper deposits, including subduction-related island arcs, continental arcs, and collisional and postconvergent settings. The original settings are difficult to trace because the arcs have been complexly deformed and dismembered by younger tectonic events. Twelve mineral resource assessment tracts were delineated to be permissive for the occurrence of porphyry copper deposits based on mapped and inferred subsurface distributions of igneous rocks of specific age ranges and compositions. These include (1) nine Paleozoic tracts in the Central Asian Orogenic Belt, which range in area from about 60,000 to 800,000 square kilometers (km2); (2) a complex area of about 400,000 km2 on the northern margin of the Tethysides, the Qinling-Dabie tract, which spans central China and areas to the west, encompassing Paleozoic through Triassic igneous rocks that formed in diverse settings; and (3) assemblages of late Paleozoic and Mesozoic rocks that define two other tracts in the Tethysides, the 100

  16. The stepwise growth of tectonic plates across Earth's evolving supercontinent cycle

    NASA Astrophysics Data System (ADS)

    Van Kranendonk, M. J.; Kirkland, C. L.

    2012-04-01

    Plate tectonics both creates and recycles crust, but the rate of continental growth over Earth history remains contentious: some believe it formed fast and early, others more gradually and, perhaps, episodically, through the supercontinent cycle. Time constrained analysis of both oxygen and hafnium isotopes in zircon grains and incompatible elements (Zr, Th) from magmatic rocks confirms the importance of Earth's supercontinent cycle not only on the degree of crustal recycling rates that arises from the aggregation and dispersal of supercontinents, but also on mantle temperatures, crustal growth rates, and climatic conditions. These changes are used to infer a conditioned duality of the Earth system between alternating periods of hot and cold mantle that arise in response to the supercontinent cycle. Hot mantle periods that accompany supercontinent aggregation events are characterised by mantle superplume events, increased crustal recycling and warm, reducing climatic conditions. Cool mantle periods during supercontinent rifting result from core insulation by slab graveyards and are characterised by low rates of crust production and cool, more oxidizing conditions. Changes in the intensity of the orogenic cycle through time since its inception at c. 3.2 Ga are ascribed to self-reorganisation of progressively larger tectonic plates (tessellation of a sphere) that accommodate the secular decrease in planetary heat. Bursts of crust extraction during Neoarchean and Mesoproterozoic supercontinent assembly led to overstep periods of large plates on subduction-cooled, melt-depleted mantle, accompanied by global ice ages. Optimal packing (pentagonal dodecahedron) of the plates was attained on dispersal of Nuna at 1.4 Ga, leading to a peak in geochemical and isotopic proxies of orogenic intensity during c. 1.2 Ga assembly of Rodinia (large plates on warmer Earth), with declining intensity thereafter as a function of decreasing heat with same-size plates.

  17. Continental Margin of Kamchatka Peninsula, Russia: the Mode and Nature of Crustal Growth in the Accretionary Orogen

    NASA Astrophysics Data System (ADS)

    Konstantinovskaya, E. A.; Bindeman, I. N.

    2001-12-01

    Tectonic accretion of island arc terranes is the process widely developed in Pacific Rim in the present and in the past. The mode and nature of crustal growth of continental margins during arc accretion are various and essentially determined by deformation of the margin. The Cenozoic Kamchatka orogen formed by the accretion of two island arc terranes: Achaivayam-Valaginskaya arc (A-V, Eocene) (2) and Kronotskaya arc (terminal Miocene) to the continental margin of Asia. During the Early Eocene, the southern segment of the A-V arc collided with the Sredinny metamorphic massif, which was the frontal part of the Asian continental margin (3). New results from SHRIMP dating of zircons (1) from metamorphic rocks of Sredinny massif (Kolpakovskaya series) show that the massif contains an abundance of Archean, Proterozoic and Phanerozoic detrital zircon cores, and ubiquitous 77 Ma rims. The youngest ages are from four 47-53 Ma unzoned zircon cores, with dull cathodoluminescence, and irregular morphology. We regard the 47-53 Ma episode of zircon growth in the Sredinny massif as evidence for superimposed metamorphism induced by continental margin subduction at the beginning of its collision with the A-V arc in the early Eocene. Physical modeling experiments of arc-continent collision suggest that deformation at continental margin is controlled by strength of the subducting crust. Failure, accretion and erosion-activated extrusion/exhumation of the subducted crust occur in the continental margin in the case when the margin is weakened by pre-existing faulting, extension, or heating. At the beginning of the continental margin subduction, crust of the margin fails along the continent-vergent thrust. The subducted crustal slice is, then, completely scraped from the mantle base and accreted to the fore-arc block. Subsequent thrusting and thickening of the subducting crust within the continental margin lead to formation of the accretionary orogen composed of crustal slices in front

  18. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    USGS Publications Warehouse

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-01-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion–collision processes in NW China, and hosts Paleozoic Cu–Pb–Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U–Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U–Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9–213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67–1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and

  19. Orogenic development of the Adrar des Iforas (Tuareg Shield, NE Mali): new geochemical and geochronological data and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Bosch, Delphine; Bruguier, Olivier; Caby, Renaud; Buscail, Francois; Hammor, Dalila

    2016-04-01

    Laser-ablation U-Th-Pb analyses of zircon and allanite from magmatic and metamorphic rocks of the Adrar des Iforas (Northern Mali) allow re-examining the relationships between the different crustal units constituting the western part of the Tuareg Shield, as well as the timing of magmatic and metamorphic events in the West Gondwana Orogen. Granulite-facies metamorphism in the Iforas Granulitic Unit (IGU) and at In Bezzeg occurred at 1986 ± 7 Ma and 1988 ± 5 Ma respectively. This age is slightly younger, but consistent with that of the HT granulite facies event characterizing the In Ouzzal granulitic unit (IOGU), thereby substantiating the view that these units once formed a single granulitic belt of c. 800 km long. High-grade metamorphic basement units of the Kidal terrane surrounding the IGU contain Paleoproterozoic magmatic rocks crystallized between 1982 ± 8 Ma and 1966 ± 9 Ma. Inherited components in these rocks (2.1 Ga and 2.3-2.5 Ga) have ages similar to that of detrital zircons at In Bezzeg and to that of basement rocks from the IGU. This is taken as evidence that the Kidal terrane and the IGU formed a single crustal block at least until 1.9 Ga. East of the Adrar fault, the Tin Essako orthogneiss is dated at 2020 ± 5 Ma, but escaped granulite facies metamorphism. During the Neoproterozoic, the Kidal terrane underwent a long-lived continental margin magmatism. To the west, this terrane is bounded by the Tilemsi intra-oceanic island arc, for which a gneissic sub-alkali granite was dated at 716 ± 6 Ma. A synkinematic diorite extends the magmatic activity of the arc down to 643 ± 4 Ma, and, along with litterature data, indicates that the Tilemsi arc had a life span of about 90 Ma. Backward docking to the western margin of the Kidal terrane is documented by migmatites dated at 628 ± 6 Ma. Subduction related processes and the development of the Kidal active margin was responsible for the development of a back-arc basin in the Tafeliant area, with

  20. Orogenic development of the Adrar des Iforas (Tuareg Shield, NE Mali): New geochemical and geochronological data and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Bosch, Delphine; Bruguier, Olivier; Caby, Renaud; Buscail, François; Hammor, Dalila

    2016-05-01

    Laser-ablation U-Th-Pb analyses of zircon and allanite from magmatic and metamorphic rocks of the Adrar des Iforas in Northern Mali allow re-examining the relationships between the different crustal units constituting the western part of the Tuareg Shield, as well as the timing of magmatic and metamorphic events in the West Gondwana Orogen. Granulite-facies metamorphism in the Iforas Granulitic Unit (IGU) and at In Bezzeg occurred at 1986 ± 7 Ma and 1988 ± 5 Ma respectively. This age is slightly younger, but consistent with that of the HT granulite facies event characterizing the In Ouzzal granulitic unit (IOGU), thereby substantiating the view that these units once formed a single granulitic belt of c. 800 km long. High-grade metamorphic basement units of the Kidal terrane surrounding the IGU contain Paleoproterozoic magmatic rocks crystallized between 1982 ± 8 Ma and 1966 ± 9 Ma. Inherited components in these rocks (2.1 Ga and 2.3-2.5 Ga) have ages similar to that of detrital zircons at In Bezzeg and to that of basement rocks from the IGU. This is taken as evidence that the Kidal terrane and the IGU formed a single crustal block at least until 1.9 Ga. East of the Adrar fault, the Tin Essako orthogneiss is dated at 2020 ± 5 Ma, but escaped granulite facies metamorphism. During the Neoproterozoic, the Kidal terrane underwent a long-lived continental margin magmatism. To the west, this terrane is bounded by the Tilemsi intra-oceanic island arc, for which a gneissic sub-alkali granite was dated at 716 ± 6 Ma. A synkinematic diorite extends the magmatic activity of the arc down to 643 ± 4 Ma, and, along with literature data, indicates that the Tilemsi arc has a life span of about 90 Ma. Backward docking to the western margin of the Kidal terrane is documented by migmatites dated at 628 ± 6 Ma. Subduction related processes and the development of the Kidal active margin was responsible for the development of a back-arc basin in the Tafeliant area, with

  1. The Sjelset granitic complex: a tectonic marker of the late evolution of the Sveconorwegian (Grenvillian) orogen in SW Norway

    NASA Astrophysics Data System (ADS)

    Bolle, Olivier; Dembele, Aliou; Vander Auwera, Jacqueline

    2014-05-01

    Granitoids emplaced at 0.99-0.92 Ga occupy an important volume of the Sveconorwegian (Grenvillian) orogen of Southern Norway and SW Sweden. They are widely regarded as reflecting extensive crustal partial melting during the post-collisional evolution of a continent-continent collision orogen, in a context of gravitational collapse. In Southern Norway, this plutonism is represented by two distinct suites of A-type affinity: a geographically widespread hornblende + biotite ferro-potassic granitoid suite (HBG suite; 970-932 Ma) and an orthopyroxene-bearing or anorthosite-mangerite-charnockite suite (AMC suite; 933-916 Ma) restricted to the southwesternmost part of Norway. Structural studies of some AMC and HBG bodies, based on the anisotropy of magnetic susceptibility (AMS) technique, have evidenced various modes of emplacement and deformation of the plutons, including channelling along a major shear-zone and syn-folding emplacement. We have conducted an AMS study of the Sjelset granitic complex (SGC), a Sveconorwegian post-collisional pluton that crops out in SW Norway. The SGC forms, in map view, a N-S elongated body of ca. 43 km2. Its country rocks consist of granulite-facies migmatitic gneisses that have been affected by several phases of folding. The pluton is partly covered by Caledonian nappes to the west. Two contrasted rock types can be distinguished in the SGC: a quartz mangerite, with or without fayalite, and a porphyritic biotite granite, that occupy distinct portions of the complex. Field relationships, available Rb-Sr geochronological data and U-Pb datings in progress demonstrate that the biotite granite corresponds to a first magmatic pulse intruded, possibly some tens of million years after its emplacement, by the quartz mangerite. An ongoing geochemical investigation further suggests that the two components of the SGC show affinities with the AMC suite. The bulk magnetic susceptibility (Km) in the SGC varies from 0.04 to 64.2 x 10-3 SI, which

  2. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    NASA Astrophysics Data System (ADS)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-05-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion-collision processes in NW China, and hosts Paleozoic Cu-Pb-Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U-Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U-Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9-213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67-1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and the lithosphere. In contrast, the

  3. Relative strength of lithospheric mantle compared to granulite lower crust in orogenic roots: insight from field laboratory.

    NASA Astrophysics Data System (ADS)

    Kusbach, V.; Ulrich, S.; Schulmann, K.

    2009-04-01

    The continental lithosphere is composed by strong lithospheric mantle and weak lower crust for average and hot geotherms. However, some experiments and seismic studies show that the strength contrast between mantle and crust can vary in order of several magnitudes. The internal zone of the European Variscan orogen (Bohemian Massif, Czech Republic) contains large complexes of Ky - K-feldspar granulites with incorporated spinel and garnet peridotites that can respond to question of mantle-lower crust strength contrast from the field perspective. The studied spinel-garnet harzburgite body (the Mohelno peridotite) represents probably a fragment of strongly depleted oceanic lithosphere showing peak conditions of 22,4-27,6 kbar and 1120-1275°C. The peridotite forms large folded sheet with steep hinge and vertical axial plane. It exhibits presence of spinel along the outer arc and the internal part of the fold and garnet along inner arc, both related to coarse-grained orthopyroxene - olivine microstructure. This coarse microstructure is dynamically recrystallized forming fine-grained matrix (~10 - 20 microns) and the EBSD measurements show presence of axial [100] LPO olivine pattern dominantly along the outer arc of the fold and in spinel harzburgite, while the inner arc of the fold and partly also garnet harzburgite reveals presence of axial [010] LPO pattern. Steep foliation and sub-horizontal to moderately plunging lineation determined from olivine EBSD data defines the shape of the megafold. Host rocks exhibit transposed mylonitic fabric S1-2 revealing peak conditions of 18 kbar, 800°C and heterogeneous D3 retrogression at about 10 - 7 kbar, 650°C. The foliation S2-3 is fully concordant with limbs of peridotite megafold, but close to the outer arc it is affected by asymmetrical folds with axial planar leucosomes coherent with the shape of the megafold hinge zone. In contrast, the S2 in the internal part of the megafold is affected by sinistral and dextral melt

  4. Late Palaeozoic-Cenozoic assembly of the Tethyan orogen in the light of evidence from Greece and Albania

    NASA Astrophysics Data System (ADS)

    Robertson, A. H. F.

    2012-04-01

    The objective here is to use the geology and tectonics of a critical part of the Tethyan orogen, represented by Greece and Albania, to shed light on the tectonic development of Tethys on a regional, to global scale, particularly the history of convergence during Late Palaeozoic to Cenozoic time. For Carboniferous time much evidence suggests that the Korabi-Pelagonian crustal unit as exposed in Albania and Greece formed above a northward-dipping subduction zone along the Eurasia continental margin, with Palaeotethys to the south. However, there is also some evidence of southward subduction beneath Gondwana especially from southern Greece and central southern Turkey. Palaeotethys is inferred to have closed in Europe as far to the east as the longitude of Libya, while remaining open beyond this. There is still uncertainty about the Pangea A-type reconstruction that would restore all of the present units in the area to within the E Mediterranean region, versus the Pangea B-type reconstruction that would require right-lateral displacement of exotic terranes, by up to 3,500 km eastwards. In either reconstruction, fragments of the Variscan collisional orogen are likely to have been displaced eastwards (variable distances) in the Balkan region prior to Late Permian-Early Triassic time. From ~Late Permian, the Greece-Albania crustal units were located in their present relative position within Tethys as a whole. From the mid-Permian, onwards the northern margin of Gondwana was affected by crustal extension. A Mesozoic ocean (Pindos-Mirdita ocean) then rifted during Early-Middle Triassic time, culminating in final continental break-up and seafloor spreading during the Late Triassic (Carnian-Norian). Subduction-influenced volcanics of mainly Early-Middle Triassic age probably reflect the extraction of magma from sub-continental lithosphere that was enriched in subduction-related fluids and volatiles during an earlier, ?Variscan subduction event. The existence of Upper Triassic

  5. Metasomatism of ferroan granites in the northern Aravalli orogen, NW India: geochemical and isotopic constraints, and its metallogenic significance

    NASA Astrophysics Data System (ADS)

    Kaur, Parampreet; Chaudhri, Naveen; Hofmann, Albrecht W.; Raczek, Ingrid; Okrusch, Martin; Skora, Susanne; Koepke, Jürgen

    2014-06-01

    The late Palaeoproterozoic (1.72-1.70 Ga) ferroan granites of the Khetri complex, northern Aravalli orogen, NW India, were extensively metasomatised ~900 Ma after their emplacement, at around 850-830 Ma by low-temperature (ca. 400 °C) meteoric fluids that attained metamorphic character after exchanging oxygen with the surrounding metamorphic rocks. Albitisation is the dominant metasomatic process that was accompanied by Mg and Ca metasomatism. A two-stage metasomatic model is applicable to all the altered ferroan intrusives. The stage I is represented by a metasomatic reaction interface that developed as a result of transformation of the original microcline-oligoclase (An12-14) granite to microcline-albite (An1-3) granite, and this stage is rarely preserved. In contrast, the stage II metasomatic reaction front, where the microcline-bearing albite granite has been transformed to microcline-free albite granite, is readily recognisable in the field and present in most of the intrusives. Some of them lack an obvious reaction interface due to the presence of stage II albite granites only. When studied in isolation, these intrusives were incorrectly classified and their tectonic setting was misinterpreted. Furthermore, our results show that the mafic mineralogy of metasomatised granites has a significant impact on the characterisation of such rocks in the magmatic classification and discrimination diagrams. Nevertheless, the stage I metasomatised granites can be appropriately characterised in these diagrams, whereas the characterisation of the stage II granites will lead to erroneous interpretations. The close spatial association of these high heat producing ferroan granites with iron oxide-copper-gold (IOCG), U and REE mineralisation in the region indicates a genetic link between the metasomatism and the mineralisation. World-class IOCG, U and REE deposits are associated with metasomatised ferroan granites, suggesting that such a relationship may act as a critical

  6. A network extraction tool for mineral exploration: a case study from the Wopmay Orogen, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Lee, Madeline; Morris, William; Harris, Jeff; Leblanc, George

    2012-03-01

    Many mineral exploration initiatives target regional- and local-scale lineaments (e.g. fault systems and dyke swarms) as they may act as conduits for minerali