Sample records for grey matter differences

  1. Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: a matter of surface area, grey/white matter intensity contrast, and curvature.

    PubMed

    Kong, Li; Herold, Christina J; Zöllner, Frank; Salat, David H; Lässer, Marc M; Schmid, Lena A; Fellhauer, Iven; Thomann, Philipp A; Essig, Marco; Schad, Lothar R; Erickson, Kirk I; Schröder, Johannes

    2015-02-28

    Grey matter volume and cortical thickness are the two most widely used measures for detecting grey matter morphometric changes in various diseases such as schizophrenia. However, these two measures only share partial overlapping regions in identifying morphometric changes. Few studies have investigated the contributions of the potential factors to the differences of grey matter volume and cortical thickness. To investigate this question, 3T magnetic resonance images from 22 patients with schizophrenia and 20 well-matched healthy controls were chosen for analyses. Grey matter volume and cortical thickness were measured by VBM and Freesurfer. Grey matter volume results were then rendered onto the surface template of Freesurfer to compare the differences from cortical thickness in anatomical locations. Discrepancy regions of the grey matter volume and thickness where grey matter volume significantly decreased but without corresponding evidence of cortical thinning involved the rostral middle frontal, precentral, lateral occipital and superior frontal gyri. Subsequent region-of-interest analysis demonstrated that changes in surface area, grey/white matter intensity contrast and curvature accounted for the discrepancies. Our results suggest that the differences between grey matter volume and thickness could be jointly driven by surface area, grey/white matter intensity contrast and curvature. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Grey matter, an endophenotype for schizophrenia? A voxel-based morphometry study in siblings of patients with schizophrenia.

    PubMed

    van der Velde, Jorien; Gromann, Paula M; Swart, Marte; de Haan, Lieuwe; Wiersma, Durk; Bruggeman, Richard; Krabbendam, Lydia; Aleman, André

    2015-05-01

    Grey matter, both volume and concentration, has been proposed as an endophenotype for schizophrenia given a number of reports of grey matter abnormalities in relatives of patients with schizophrenia. However, previous studies on grey matter abnormalities in relatives have produced inconsistent results. The aim of the present study was to examine grey matter differences between controls and siblings of patients with schizophrenia and to examine whether the age, genetic loading or subclinical psychotic symptoms of selected individuals could explain the previously reported inconsistencies. We compared the grey matter volume and grey matter concentration of healthy siblings of patients with schizophrenia and healthy controls matched for age, sex and education using voxel-based morphometry (VBM). Furthermore, we selected subsamples based on age (< 30 yr), genetic loading and subclinical psychotic symptoms to examine whether this would lead to different results. We included 89 siblings and 69 controls in our study. The results showed that siblings and controls did not differ significantly on grey matter volume or concentration. Furthermore, specifically selecting participants based on age, genetic loading or subclinical psychotic symptoms did not alter these findings. The main limitation was that subdividing the sample resulted in smaller samples for the subanalyses. Furthermore, we used MRI data from 2 different scanner sites. These results indicate that grey matter measured through VBM might not be a suitable endophenotype for schizophrenia.

  3. Grey matter, an endophenotype for schizophrenia? A voxel-based morphometry study in siblings of patients with schizophrenia

    PubMed Central

    van der Velde, Jorien; Gromann, Paula M.; Swart, Marte; de Haan, Lieuwe; Wiersma, Durk; Bruggeman, Richard; Krabbendam, Lydia; Aleman, André

    2015-01-01

    Background Grey matter, both volume and concentration, has been proposed as an endophenotype for schizophrenia given a number of reports of grey matter abnormalities in relatives of patients with schizophrenia. However, previous studies on grey matter abnormalities in relatives have produced inconsistent results. The aim of the present study was to examine grey matter differences between controls and siblings of patients with schizophrenia and to examine whether the age, genetic loading or subclinical psychotic symptoms of selected individuals could explain the previously reported inconsistencies. Methods We compared the grey matter volume and grey matter concentration of healthy siblings of patients with schizophrenia and healthy controls matched for age, sex and education using voxel-based morphometry (VBM). Furthermore, we selected subsamples based on age (< 30 yr), genetic loading and subclinical psychotic symptoms to examine whether this would lead to different results. Results We included 89 siblings and 69 controls in our study. The results showed that siblings and controls did not differ significantly on grey matter volume or concentration. Furthermore, specifically selecting participants based on age, genetic loading or subclinical psychotic symptoms did not alter these findings. Limitations The main limitation was that subdividing the sample resulted in smaller samples for the subanalyses. Furthermore, we used MRI data from 2 different scanner sites. Conclusion These results indicate that grey matter measured through VBM might not be a suitable endophenotype for schizophrenia. PMID:25768029

  4. Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies.

    PubMed

    Fornito, A; Yücel, M; Patti, J; Wood, S J; Pantelis, C

    2009-03-01

    Voxel-based morphometry (VBM) is a popular tool for mapping neuroanatomical changes in schizophrenia patients. Several recent meta-analyses have identified the brain regions in which patients most consistently show grey matter reductions, although they have not examined whether such changes reflect differences in grey matter concentration (GMC) or grey matter volume (GMV). These measures assess different aspects of grey matter integrity, and may therefore reflect different pathological processes. In this study, we used the Anatomical Likelihood Estimation procedure to analyse significant differences reported in 37 VBM studies of schizophrenia patients, incorporating data from 1646 patients and 1690 controls, and compared the findings of studies using either GMC or GMV to index grey matter differences. Analysis of all studies combined indicated that grey matter reductions in a network of frontal, temporal, thalamic and striatal regions are among the most frequently reported in literature. GMC reductions were generally larger and more consistent than GMV reductions, and were more frequent in the insula, medial prefrontal, medial temporal and striatal regions. GMV reductions were more frequent in dorso-medial frontal cortex, and lateral and orbital frontal areas. These findings support the primacy of frontal, limbic, and subcortical dysfunction in the pathophysiology of schizophrenia, and suggest that the grey matter changes observed with MRI may not necessarily result from a unitary pathological process.

  5. Characteristics of lesional and extra-lesional cortical grey matter in relapsing-remitting and secondary progressive multiple sclerosis: A magnetisation transfer and diffusion tensor imaging study.

    PubMed

    Yaldizli, Özgür; Pardini, Matteo; Sethi, Varun; Muhlert, Nils; Liu, Zheng; Tozer, Daniel J; Samson, Rebecca S; Wheeler-Kingshott, Claudia Am; Yousry, Tarek A; Miller, David H; Chard, Declan T

    2016-02-01

    In multiple sclerosis (MS), diffusion tensor and magnetisation transfer imaging are both abnormal in lesional and extra-lesional cortical grey matter, but differences between clinical subtypes and associations with clinical outcomes have only been partly assessed. To compare mean diffusivity, fractional anisotropy and magnetisation transfer ratio (MTR) in cortical grey matter lesions (detected using phase-sensitive inversion recovery (PSIR) imaging) and extra-lesional cortical grey matter, and assess associations with disability in relapse-onset MS. Seventy-two people with MS (46 relapsing-remitting (RR), 26 secondary progressive (SP)) and 36 healthy controls were included in this study. MTR, mean diffusivity and fractional anisotropy were measured in lesional and extra-lesional cortical grey matter. Mean fractional anisotropy was higher and MTR lower in lesional compared with extra-lesional cortical grey matter. In extra-lesional cortical grey matter mean fractional anisotropy and MTR were lower, and mean diffusivity was higher in the MS group compared with controls. Mean MTR was lower and mean diffusivity was higher in lesional and extra-lesional cortical grey matter in SPMS when compared with RRMS. These differences were independent of disease duration. In multivariate analyses, MTR in extra-lesional more so than lesional cortical grey matter was associated with disability. Magnetic resonance abnormalities in lesional and extra-lesional cortical grey matter are greater in SPMS than RRMS. Changes in extra-lesional compared with lesional cortical grey matter are more consistently associated with disability. © The Author(s), 2015.

  6. HLA-DRB*1501 associations with magnetic resonance imaging measures of grey matter pathology in multiple sclerosis.

    PubMed

    Yaldizli, Özgür; Sethi, Varun; Pardini, Matteo; Tur, Carmen; Mok, Kin Y; Muhlert, Nils; Liu, Zheng; Samson, Rebecca S; Wheeler-Kingshott, Claudia A M; Yousry, Tarek A; Houlden, Henry; Hardy, John; Miller, David H; Chard, Declan T

    2016-05-01

    The HLA-DRB*1501 haplotype influences the risk of developing multiple sclerosis (MS), but it is not known how it affects grey matter pathology. To assess HLA-DRB(*)1501 effects on magnetic resonance imaging (MRI) cortical grey matter pathology. Whole and lesional cortical grey matter volumes, lesional and normal-appearing grey matter magnetization transfer ratio were measured in 85 people with MS and 36 healthy control subjects. HLA-DRB(*)1501 haplotype was determined by genotyping (rs3135388). No significant differences were observed in MRI measures between the HLA-DRB(*)1501 subgroups. The HLA-DRB(*)1501 haplotype is not strongly associated with MRI-visible grey matter pathology. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Grey-matter volume as a potential feature for the classification of Alzheimer's disease and mild cognitive impairment: an exploratory study.

    PubMed

    Guo, Yane; Zhang, Zengqiang; Zhou, Bo; Wang, Pan; Yao, Hongxiang; Yuan, Minshao; An, Ningyu; Dai, Haitao; Wang, Luning; Zhang, Xi; Liu, Yong

    2014-06-01

    Specific patterns of brain atrophy may be helpful in the diagnosis of Alzheimer's disease (AD). In the present study, we set out to evaluate the utility of grey-matter volume in the classification of AD and amnestic mild cognitive impairment (aMCI) compared to normal control (NC) individuals. Voxel-based morphometric analyses were performed on structural MRIs from 35 AD patients, 27 aMCI patients, and 27 NC participants. A two-sample two-tailed t-test was computed between the NC and AD groups to create a map of abnormal grey matter in AD. The brain areas with significant differences were extracted as regions of interest (ROIs), and the grey-matter volumes in the ROIs of the aMCI patients were included to evaluate the patterns of change across different disease severities. Next, correlation analyses between the grey-matter volumes in the ROIs and all clinical variables were performed in aMCI and AD patients to determine whether they varied with disease progression. The results revealed significantly decreased grey matter in the bilateral hippocampus/parahippocampus, the bilateral superior/middle temporal gyri, and the right precuneus in AD patients. The grey-matter volumes were positively correlated with clinical variables. Finally, we performed exploratory linear discriminative analyses to assess the classifying capacity of grey-matter volumes in the bilateral hippocampus and parahippocampus among AD, aMCI, and NC. Leave-one-out cross-validation analyses demonstrated that grey-matter volumes in hippocampus and parahippocampus accurately distinguished AD from NC. These findings indicate that grey-matter volumes are useful in the classification of AD.

  8. Whole-brain grey matter density predicts balance stability irrespective of age and protects older adults from falling.

    PubMed

    Boisgontier, Matthieu P; Cheval, Boris; van Ruitenbeek, Peter; Levin, Oron; Renaud, Olivier; Chanal, Julien; Swinnen, Stephan P

    2016-03-01

    Functional and structural imaging studies have demonstrated the involvement of the brain in balance control. Nevertheless, how decisive grey matter density and white matter microstructural organisation are in predicting balance stability, and especially when linked to the effects of ageing, remains unclear. Standing balance was tested on a platform moving at different frequencies and amplitudes in 30 young and 30 older adults, with eyes open and with eyes closed. Centre of pressure variance was used as an indicator of balance instability. The mean density of grey matter and mean white matter microstructural organisation were measured using voxel-based morphometry and diffusion tensor imaging, respectively. Mixed-effects models were built to analyse the extent to which age, grey matter density, and white matter microstructural organisation predicted balance instability. Results showed that both grey matter density and age independently predicted balance instability. These predictions were reinforced when the level of difficulty of the conditions increased. Furthermore, grey matter predicted balance instability beyond age and at least as consistently as age across conditions. In other words, for balance stability, the level of whole-brain grey matter density is at least as decisive as being young or old. Finally, brain grey matter appeared to be protective against falls in older adults as age increased the probability of losing balance in older adults with low, but not moderate or high grey matter density. No such results were observed for white matter microstructural organisation, thereby reinforcing the specificity of our grey matter findings. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Increased Grey Matter Associated with Long-Term Sahaja Yoga Meditation: A Voxel-Based Morphometry Study.

    PubMed

    Hernández, Sergio Elías; Suero, José; Barros, Alfonso; González-Mora, José Luis; Rubia, Katya

    2016-01-01

    To investigate regional differences in grey matter volume associated with the practice of Sahaja Yoga Meditation. Twenty three experienced practitioners of Sahaja Yoga Meditation and twenty three non-meditators matched on age, gender and education level, were scanned using structural Magnetic Resonance Imaging and their grey matter volume were compared using Voxel-Based Morphometry. Grey matter volume was larger in meditators relative to non-meditators across the whole brain. In addition, grey matter volume was larger in several predominantly right hemispheric regions: in insula, ventromedial orbitofrontal cortex, inferior temporal and parietal cortices as well as in left ventrolateral prefrontal cortex and left insula. No areas with larger grey matter volume were found in non-meditators relative to meditators. The study shows that long-term practice of Sahaja Yoga Meditation is associated with larger grey matter volume overall, and with regional enlargement in several right hemispheric cortical and subcortical brain regions that are associated with sustained attention, self-control, compassion and interoceptive perception. The increased grey matter volume in these attention and self-control mediating regions suggests use-dependent enlargement with regular practice of this meditation.

  10. Increased Grey Matter Associated with Long-Term Sahaja Yoga Meditation: A Voxel-Based Morphometry Study

    PubMed Central

    Hernández, Sergio Elías; Suero, José; Barros, Alfonso; González-Mora, José Luis; Rubia, Katya

    2016-01-01

    Objectives To investigate regional differences in grey matter volume associated with the practice of Sahaja Yoga Meditation. Design Twenty three experienced practitioners of Sahaja Yoga Meditation and twenty three non-meditators matched on age, gender and education level, were scanned using structural Magnetic Resonance Imaging and their grey matter volume were compared using Voxel-Based Morphometry. Results Grey matter volume was larger in meditators relative to non-meditators across the whole brain. In addition, grey matter volume was larger in several predominantly right hemispheric regions: in insula, ventromedial orbitofrontal cortex, inferior temporal and parietal cortices as well as in left ventrolateral prefrontal cortex and left insula. No areas with larger grey matter volume were found in non-meditators relative to meditators. Conclusions The study shows that long-term practice of Sahaja Yoga Meditation is associated with larger grey matter volume overall, and with regional enlargement in several right hemispheric cortical and subcortical brain regions that are associated with sustained attention, self-control, compassion and interoceptive perception. The increased grey matter volume in these attention and self-control mediating regions suggests use-dependent enlargement with regular practice of this meditation. PMID:26938433

  11. Whole genome grey and white matter DNA methylation profiles in dorsolateral prefrontal cortex.

    PubMed

    Sanchez-Mut, Jose Vicente; Heyn, Holger; Vidal, Enrique; Delgado-Morales, Raúl; Moran, Sebastian; Sayols, Sergi; Sandoval, Juan; Ferrer, Isidre; Esteller, Manel; Gräff, Johannes

    2017-06-01

    The brain's neocortex is anatomically organized into grey and white matter, which are mainly composed by neuronal and glial cells, respectively. The neocortex can be further divided in different Brodmann areas according to their cytoarchitectural organization, which are associated with distinct cortical functions. There is increasing evidence that brain development and function are governed by epigenetic processes, yet their contribution to the functional organization of the neocortex remains incompletely understood. Herein, we determined the DNA methylation patterns of grey and white matter of dorsolateral prefrontal cortex (Brodmann area 9), an important region for higher cognitive skills that is particularly affected in various neurological diseases. For avoiding interindividual differences, we analyzed white and grey matter from the same donor using whole genome bisulfite sequencing, and for validating their biological significance, we used Infinium HumanMethylation450 BeadChip and pyrosequencing in ten and twenty independent samples, respectively. The combination of these analysis indicated robust grey-white matter differences in DNA methylation. What is more, cell type-specific markers were enriched among the most differentially methylated genes. Interestingly, we also found an outstanding number of grey-white matter differentially methylated genes that have previously been associated with Alzheimer's, Parkinson's, and Huntington's disease, as well as Multiple and Amyotrophic lateral sclerosis. The data presented here thus constitute an important resource for future studies not only to gain insight into brain regional as well as grey and white matter differences, but also to unmask epigenetic alterations that might underlie neurological and neurodegenerative diseases. © 2017 Wiley Periodicals, Inc.

  12. Differences in regional grey matter volumes in currently ill patients with anorexia nervosa.

    PubMed

    Phillipou, Andrea; Rossell, Susan Lee; Gurvich, Caroline; Castle, David Jonathan; Abel, Larry Allen; Nibbs, Richard Grant; Hughes, Matthew Edward

    2018-01-01

    Neurobiological findings in anorexia nervosa (AN) are inconsistent, including differences in regional grey matter volumes. Methodological limitations often contribute to the inconsistencies reported. The aim of this study was to improve on these methodologies by utilising voxel-based morphometry (VBM) analysis with the use of diffeomorphic anatomic registration through an exponentiated lie algebra algorithm (DARTEL), in a relatively large group of individuals with AN. Twenty-six individuals with AN and 27 healthy controls underwent a T1-weighted magnetic resonance imaging (MRI) scan. AN participants were found to have reduced grey matter volumes in a number of areas including regions of the basal ganglia (including the ventral striatum), and parietal and temporal cortices. Body mass index (BMI) and global scores on the Eating Disorder Examination Questionnaire (EDE-Q) were also found to correlate with grey matter volumes in a region of the brainstem (including the substantia nigra and ventral tegmental area) in AN, and predicted 56% of the variance in grey matter volumes in this area. The brain regions associated with grey matter reductions in AN are consistent with regions responsible for cognitive deficits associated with the illness including anhedonia, deficits in affect perception and saccadic eye movement abnormalities. Overall, the findings suggest reduced grey matter volumes in AN that are associated with eating disorder symptomatology. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Grey matter abnormalities in social anxiety disorder: a pilot study.

    PubMed

    Syal, Supriya; Hattingh, Coenraad J; Fouché, Jean-Paul; Spottiswoode, Bruce; Carey, Paul D; Lochner, Christine; Stein, Dan J

    2012-09-01

    While a number of studies have explored the functional neuroanatomy of social anxiety disorder (SAD), data on grey matter integrity are lacking. We conducted structural MRI scans to examine the cortical thickness of grey matter in individuals with SAD. 13 unmedicated adult patients with a primary diagnosis of generalized social anxiety disorder and 13 demographically (age, gender and education) matched healthy controls underwent 3T structural magnetic resonance imaging. Cortical thickness and subcortical volumes were estimated using an automated algorithm (Freesurfer Version 4.5). Compared to controls, social anxiety disorder patients showed significant bilateral cortical thinning in the fusiform and post central regions. Additionally, right hemisphere specific thinning was found in the frontal, temporal, parietal and insular cortices of individuals with social anxiety disorder. Although uncorrected cortical grey matter volumes were significantly lower in individuals with SAD, we did not detect volumetric differences in corrected amygdala, hippocampal or cortical grey matter volumes across study groups. Structural differences in grey matter thickness between SAD patients and controls highlight the diffuse neuroanatomical networks involved in both social anxiety and social behavior. Additional work is needed to investigate the causal mechanisms involved in such structural abnormalities in SAD.

  14. The relationship of waist circumference and body mass index to grey matter volume in community dwelling adults with mild obesity.

    PubMed

    Hayakawa, Y K; Sasaki, H; Takao, H; Yoshikawa, T; Hayashi, N; Mori, H; Kunimatsu, A; Aoki, S; Ohtomo, K

    2018-02-01

    Previous work has shown that high body mass index (BMI) is associated with low grey matter volume. However, evidence on the relationship between waist circumference (WC) and brain volume is relatively scarce. Moreover, the influence of mild obesity (as indexed by WC and BMI) on brain volume remains unclear. This study explored the relationships between WC and BMI and grey matter volume in a large sample of Japanese adults. The participants were 792 community-dwelling adults (523 men and 269 women). Brain magnetic resonance images were collected, and the correlation between WC or BMI and global grey matter volume were analysed. The relationships between WC or BMI and regional grey matter volume were also investigated using voxel-based morphometry. Global grey matter volume was not correlated with WC or BMI. Voxel-based morphometry analysis revealed significant negative correlations between both WC and BMI and regional grey matter volume. The areas correlated with each index were more widespread in men than in women. In women, the total area of the regions significantly correlated with WC was slightly greater than that of the regions significantly correlated with BMI. Results show that both WC and BMI were inversely related to regional grey matter volume, even in Japanese adults with somewhat mild obesity. Especially in populations with less obesity, such as the female participants in current study, WC may be more sensitive than BMI as a marker of grey matter volume differences associated with obesity.

  15. Global grey matter volume in adult bipolar patients with and without lithium treatment: A meta-analysis.

    PubMed

    Sun, Yue Ran; Herrmann, Nathan; Scott, Christopher J M; Black, Sandra E; Khan, Maisha M; Lanctôt, Krista L

    2018-01-01

    The goal of this meta-analysis was to quantitatively summarize the evidence available on the differences in grey matter volume between lithium-treated and lithium-free bipolar patients. A systematic search was conducted in Cochrane Central, Embase, MEDLINE, and PsycINFO databases for original peer-reviewed journal articles that reported on global grey matter volume in lithium-medicated and lithium-free bipolar patients. Standard mean difference and Hedges' g were used to calculate effect size in a random-effects model. Risk of publication bias was assessed using Egger's test and quality of evidence was assessed using standard criteria. There were 15 studies with a total of 854 patients (368 lithium-medicated, 486 lithium-free) included in the meta-analysis. Global grey matter volume was significantly larger in lithium-treated bipolar patients compared to lithium-free patients (SMD: 0.17, 95% CI: 0.01-0.33; z = 2.11, p = 0.035). Additionally, there was a difference in global grey matter volume between groups in studies that employed semi-automated segmentation methods (SMD: 0.66, 95% CI: 0.01-1.31; z = 1.99, p = 0.047), but no significant difference in studies that used fully-automated segmentation. No publication bias was detected (bias coefficient = - 0.65, p = 0.46). Variability in imaging methods and lack of high-quality evidence limits the interpretation of the findings. Results suggest that lithium-treated patients have a greater global grey matter volume than those who were lithium-free. Further study of the relationship between lithium and grey matter volume may elucidate the therapeutic potential of lithium in conditions characterized by abnormal changes in brain structure. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  16. Grey and white matter differences in brain energy metabolism in first episode schizophrenia: 31P-MRS chemical shift imaging at 4 Tesla.

    PubMed

    Jensen, J Eric; Miller, Jodi; Williamson, Peter C; Neufeld, Richard W J; Menon, Ravi S; Malla, Ashok; Manchanda, Rahul; Schaefer, Betsy; Densmore, Maria; Drost, Dick J

    2006-03-31

    Altered high energy and membrane metabolism, measured with phosphorus magnetic resonance spectroscopy (31P-MRS), has been inconsistently reported in schizophrenic patients in several anatomical brain regions implicated in the pathophysiology of this illness, with little attention to the effects of brain tissue type on the results. Tissue regression analysis correlates brain tissue type to measured metabolite levels, allowing for the extraction of "pure" estimated grey and white matter compartment metabolite levels. We use this tissue analysis technique on a clinical dataset of first episode schizophrenic patients and matched controls to investigate the effect of brain tissue specificity on altered energy and membrane metabolism. In vivo brain spectra from two regions, (a) the fronto-temporal-striatal region and (b) the frontal-lobes, were analyzed from 12 first episode schizophrenic patients and 11 matched controls from a (31)P chemical shift imaging (CSI) study at 4 Tesla (T) field strength. Tissue regression analyses using voxels from each region were performed relating metabolite levels to tissue content, examining phosphorus metabolite levels in grey and white matter compartments. Compared with controls, the first episode schizophrenic patient group showed significantly increased adenosine triphosphate levels (B-ATP) in white matter and decreased B-ATP levels in grey matter in the fronto-temporal-striatal region. No significant metabolite level differences were found in grey or white matter compartments in the frontal cortex. Tissue regression analysis reveals grey and white matter specific aberrations in high-energy phosphates in first episode schizophrenia. Although past studies report inconsistent regional differences in high-energy phosphate levels in schizophrenia, the present analysis suggests more widespread differences that seem to be strongly related to tissue type. Our data suggest that differences in grey and white matter tissue content between past studies may account for some of the variance in the literature.

  17. Staging of cortical and deep grey matter functional connectivity changes in multiple sclerosis.

    PubMed

    Meijer, Kim A; Eijlers, Anand J C; Geurts, Jeroen J G; Schoonheim, Menno M

    2018-02-01

    Functional connectivity is known to increase as well as decrease throughout the brain in multiple sclerosis (MS), which could represent different stages of the disease. In addition, functional connectivity changes could follow the atrophy pattern observed with disease progression, that is, moving from the deep grey matter towards the cortex. This study investigated when and where connectivity changes develop and explored their clinical and cognitive relevance across different MS stages. A cohort of 121 patients with early relapsing-remitting MS (RRMS), 122 with late RRMS and 53 with secondary progressive MS (SPMS) as well as 96 healthy controls underwent MRI and neuropsychological testing. Functional connectivity changes were investigated for (1) within deep grey matter connectivity, (2) connectivity between the deep grey matter and cortex and (3) within-cortex connectivity. A post hoc regional analysis was performed to identify which regions were driving the connectivity changes. Patients with late RRMS and SPMS showed increased connectivity of the deep grey matter, especially of the putamen and palladium, with other deep grey matter structures and with the cortex. Within-cortex connectivity was decreased, especially for temporal, occipital and frontal regions, but only in SPMS relative to early RRMS. Deep grey matter connectivity alterations were related to cognition and disability, whereas within-cortex connectivity was only related to disability. Increased connectivity of the deep grey matter became apparent in late RRMS and further increased in SPMS. The additive effect of cortical network degeneration, which was only seen in SPMS, may explain the sudden clinical deterioration characteristic to this phase of the disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Participation of the dorsal periaqueductal grey matter in the hypoxic ventilatory response in unanaesthetized rats.

    PubMed

    Lopes, L T; Biancardi, V; Vieira, E B; Leite-Panissi, C; Bícego, K C; Gargaglioni, L H

    2014-07-01

    Although periaqueductal grey matter activation is known to elicit respiratory and cardiovascular responses, the role of this midbrain area in the compensatory responses to hypoxia is still unknown. To test the participation of the periaqueductal grey matter in cardiorespiratory and thermal responses to hypoxia in adult male Wistar rats, we performed a chemical lesion of the dorsolateral/dorsomedial or the ventrolateral/lateral periaqueductal grey matter using ibotenic acid. Pulmonary ventilation, mean arterial pressure, heart rate and body temperature were measured in unanaesthetized rats during normoxic and hypoxic exposure (5, 15, 30 min, 7% O2). An ibotenic acid lesion of the dorsolateral/dorsomedial periaqueductal grey matter caused a higher increase in pulmonary ventilation (67.1%, 1730±282.5 mL kg(-1) min(-1)) compared to the Sham group (991.4±194 mL kg(-1) min(-1)) after 15 min in hypoxia, whereas for the ventrolateral/Lateral periaqueductal grey matter lesion, no differences were observed between groups. Mean arterial pressure, heart rate and body temperature were not affected by a dorsolateral/dorsomedial or ventrolateral/lateral periaqueductal grey matter lesion. Middle to caudal portions of the dorsolateral/dorsomedial periaqueductal grey matter neurones modulate the hypoxic ventilatory response, exerting an inhibitory modulation during low O2 situations. In addition, the middle to caudal portions of the dorsolateral/dorsomedial or ventrolateral/lateral periaqueductal grey matter do not appear to exert a tonic role on cardiovascular or thermal parameters during normoxic and hypoxic conditions. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  19. Voxel-wise grey matter asymmetry analysis in left- and right-handers.

    PubMed

    Ocklenburg, Sebastian; Friedrich, Patrick; Güntürkün, Onur; Genç, Erhan

    2016-10-28

    Handedness is thought to originate in the brain, but identifying its structural correlates in the cortex has yielded surprisingly incoherent results. One idea proclaimed by several authors is that structural grey matter asymmetries might underlie handedness. While some authors have found significant associations with handedness in different brain areas (e.g. in the central sulcus and precentral sulcus), others have failed to identify such associations. One method used by many researchers to determine structural grey matter asymmetries is voxel based morphometry (VBM). However, it has recently been suggested that the standard VBM protocol might not be ideal to assess structural grey matter asymmetries, as it establishes accurate voxel-wise correspondence across individuals but not across both hemispheres. This could potentially lead to biased and incoherent results. Recently, a new toolbox specifically geared at assessing structural asymmetries and involving accurate voxel-wise correspondence across hemispheres has been published [F. Kurth, C. Gaser, E. Luders. A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM), Nat Protoc 10 (2015), 293-304]. Here, we used this new toolbox to re-assess grey matter asymmetry differences in left- vs. right-handers and linked them to quantitative measures of hand preference and hand skill. While we identified several significant left-right asymmetries in the overall sample, no difference between left- and right-handers reached significance after correction for multiple comparisons. These findings indicate that the structural brain correlates of handedness are unlikely to be rooted in macroscopic grey matter area differences that can be assessed with VBM. Future studies should focus on other potential structural correlates of handedness, e.g. structural white matter asymmetries. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Meta-analytic investigations of structural grey matter, executive domain-related functional activations, and white matter diffusivity in obsessive compulsive disorder: an integrative review.

    PubMed

    Eng, Goi Khia; Sim, Kang; Chen, Shen-Hsing Annabel

    2015-05-01

    Obsessive-compulsive disorder (OCD) is a debilitating disorder. However, existing neuroimaging findings involving executive function and structural abnormalities in OCD have been mixed. Here we conducted meta-analyses to investigate differences in OCD samples and controls in: Study 1 - grey matter structure; Study 2 - executive function task-related activations during (i) response inhibition, (ii) interference, and (iii) switching tasks; and Study 3 - white matter diffusivity. Results showed grey matter differences in the frontal, striatal, thalamus, parietal and cerebellar regions; task domain-specific neural differences in similar regions; and abnormal diffusivity in major white matter regions in OCD samples compared to controls. Our results reported concurrence of abnormal white matter diffusivity with corresponding abnormalities in grey matter and task-related functional activations. Our findings suggested the involvement of other brain regions not included in the cortico-striato-thalamo-cortical network, such as the cerebellum and parietal cortex, and questioned the involvement of the orbitofrontal region in OCD pathophysiology. Future research is needed to clarify the roles of these brain regions in the disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron

    PubMed Central

    Haider, Lukas; Simeonidou, Constantina; Steinberger, Günther; Hametner, Simon; Grigoriadis, Nikolaos; Deretzi, Georgia; Kovacs, Gabor G; Kutzelnigg, Alexandra; Lassmann, Hans; Frischer, Josa M

    2014-01-01

    In multiple sclerosis (MS), diffuse degenerative processes in the deep grey matter have been associated with clinical disabilities. We performed a systematic study in MS deep grey matter with a focus on the incidence and topographical distribution of lesions in relation to white matter and cortex in a total sample of 75 MS autopsy patients and 12 controls. In addition, detailed analyses of inflammation, acute axonal injury, iron deposition and oxidative stress were performed. MS deep grey matter was affected by two different processes: the formation of focal demyelinating lesions and diffuse neurodegeneration. Deep grey matter demyelination was most prominent in the caudate nucleus and hypothalamus and could already be seen in early MS stages. Lesions developed on the background of inflammation. Deep grey matter inflammation was intermediate between low inflammatory cortical lesions and active white matter lesions. Demyelination and neurodegeneration were associated with oxidative injury. Iron was stored primarily within oligodendrocytes and myelin fibres and released upon demyelination. In addition to focal demyelinated plaques, the MS deep grey matter also showed diffuse and global neurodegeneration. This was reflected by a global reduction of neuronal density, the presence of acutely injured axons, and the accumulation of oxidised phospholipids and DNA in neurons, oligodendrocytes and axons. Neurodegeneration was associated with T cell infiltration, expression of inducible nitric oxide synthase in microglia and profound accumulation of iron. Thus, both focal lesions as well as diffuse neurodegeneration in the deep grey matter appeared to contribute to the neurological disabilities of MS patients. PMID:24899728

  2. Combination of volume and perfusion parameters reveals different types of grey matter changes in schizophrenia.

    PubMed

    Xu, Lixue; Qin, Wen; Zhuo, Chuanjun; Liu, Huaigui; Zhu, Jiajia; Yu, Chunshui

    2017-03-27

    Diverse brain structural and functional changes have been reported in schizophrenia. Identifying different types of brain changes may help to understand the neural mechanisms and to develop reliable biomarkers in schizophrenia. We aimed to categorize different grey matter changes in schizophrenia based on grey matter volume (GMV) and cerebral blood flow (CBF). Structural and perfusion magnetic resonance imaging data were acquired in 100 schizophrenia patients and 95 healthy comparison subjects. Voxel-based GMV comparison was used to show structural changes, CBF analysis was used to demonstrate functional changes. We identified three types of grey matter changes in schizophrenia: structural and functional impairments in the anterior cingulate cortex and insular cortex, displaying reduction in both GMV and CBF; structural impairment with preserved function in the frontal and temporal cortices, demonstrating decreased GMV with normal CBF; pure functional abnormality in the anterior cingulate cortex and lateral prefrontal cortex and putamen, showing altered CBF with normal GMV. By combination of GMV and CBF, we identified three types of grey matter changes in schizophrenia. These findings may help to understand the complex manifestations and to develop reliable biomarkers in schizophrenia.

  3. Grey matter volume in adolescents with anorexia nervosa and associated eating disorder symptoms.

    PubMed

    Martin Monzon, Beatriz; Henderson, Luke A; Madden, Sloane; Macefield, Vaughan G; Touyz, Stephen; Kohn, Michael R; Clarke, Simon; Foroughi, Nasim; Hay, Phillipa

    2017-10-01

    Anorexia nervosa (AN) is a mental health disorder of complex aetiology. Previous neuroimaging studies have found consistent global reductions in global grey matter volume of underweight girls with AN; however, differences in regional grey matter volumes are less consistent. The aims of this study were to investigate grey matter regional volumes of adolescent girls with AN before and after weight recovery and the relationship of any changes with clinical characteristics. We collected high-resolution T1-weighted images from 26 underweight girls with AN before weight gain and 20 healthy control volunteers. Clinical features were assessed using the Eating Disorder Examination Questionnaire. AN subjects displayed reduced grey matter volumes in the insula, amygdala, prefrontal, hippocampal and cingulate cortices and the precuneus, relative to healthy controls. In a subset of 10 AN subjects who were followed after weight recovery, grey matter volumes increased to near-control levels in the orbito- and medial prefrontal, insular, left hippocampal and mid- and posterior cingulate cortices and precuneus. The recovery of the right anterior thalamus and the left orbitofrontal cortex was correlated with improvements in eating concerns and shape concerns, respectively. However, large parts of the anterior cingulate cortex, caudate nuclei and right hippocampus did not display any grey matter recovery following a short-term of treatment. These results show that in adolescents with AN, some brain regions display marked recovery in grey matter volume following weight recovery, whereas others do not, considering grey mater recovery possibly linked to symptom improvement. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Separation of β-amyloid binding and white matter uptake of 18F-flutemetamol using spectral analysis

    PubMed Central

    Heurling, Kerstin; Buckley, Christopher; Vandenberghe, Rik; Laere, Koen Van; Lubberink, Mark

    2015-01-01

    The kinetic components of the β-amyloid ligand 18F-flutemetamol binding in grey and white matter were investigated through spectral analysis, and a method developed for creation of parametric images separating grey and white matter uptake. Tracer uptake in grey and white matter and cerebellar cortex was analyzed through spectral analysis in six subjects, with (n=4) or without (n=2) apparent β-amyloid deposition, having undergone dynamic 18F-flutemetamol scanning with arterial blood sampling. The spectra were divided into three components: slow, intermediate and fast basis function rates. The contribution of each of the components to total volume of distribution (VT) was assessed for different tissue types. The slow component dominated in white matter (average 90%), had a higher contribution to grey matter VT in subjects with β-amyloid deposition (average 44%) than without (average 6%) and was absent in cerebellar cortex, attributing the slow component of 18F-flutemetamol uptake in grey matter to β-amyloid binding. Parametric images of voxel-based spectral analysis were created for VT, the slow component and images segmented based on the slow component contribution; confirming that grey matter and white matter uptake can be discriminated on voxel-level using a threshold for the contribution from the slow component to VT. PMID:26550542

  5. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron.

    PubMed

    Haider, Lukas; Simeonidou, Constantina; Steinberger, Günther; Hametner, Simon; Grigoriadis, Nikolaos; Deretzi, Georgia; Kovacs, Gabor G; Kutzelnigg, Alexandra; Lassmann, Hans; Frischer, Josa M

    2014-12-01

    In multiple sclerosis (MS), diffuse degenerative processes in the deep grey matter have been associated with clinical disabilities. We performed a systematic study in MS deep grey matter with a focus on the incidence and topographical distribution of lesions in relation to white matter and cortex in a total sample of 75 MS autopsy patients and 12 controls. In addition, detailed analyses of inflammation, acute axonal injury, iron deposition and oxidative stress were performed. MS deep grey matter was affected by two different processes: the formation of focal demyelinating lesions and diffuse neurodegeneration. Deep grey matter demyelination was most prominent in the caudate nucleus and hypothalamus and could already be seen in early MS stages. Lesions developed on the background of inflammation. Deep grey matter inflammation was intermediate between low inflammatory cortical lesions and active white matter lesions. Demyelination and neurodegeneration were associated with oxidative injury. Iron was stored primarily within oligodendrocytes and myelin fibres and released upon demyelination. In addition to focal demyelinated plaques, the MS deep grey matter also showed diffuse and global neurodegeneration. This was reflected by a global reduction of neuronal density, the presence of acutely injured axons, and the accumulation of oxidised phospholipids and DNA in neurons, oligodendrocytes and axons. Neurodegeneration was associated with T cell infiltration, expression of inducible nitric oxide synthase in microglia and profound accumulation of iron. Thus, both focal lesions as well as diffuse neurodegeneration in the deep grey matter appeared to contribute to the neurological disabilities of MS patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Brain structural differences associated with the behavioural phenotype in children with Williams syndrome.

    PubMed

    Campbell, Linda E; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Karmiloff-Smith, Annette; Murphy, Declan G M; Murphy, Kieran C

    2009-03-03

    We investigated structural brain morphology of intellectually disabled children with Williams (WS) syndrome and its relationship to the behavioural phenotype. We compared the neuroanatomy of 15 children (mean age:13+/-2) with WS and 15 age/gender-matched healthy children using a manual region-of-interest analysis to measure bulk (white+grey) tissue volumes and unbiased fully-automated voxel-based morphometry to assess differences in grey/white matter throughout the brain. Ratings of abnormal behaviours were correlated with brain structure. Compared to controls, the brains of children with WS had a decreased volume of the right parieto-occipital regions and basal ganglia. We identified reductions of grey matter of the parieto-occipital regions, left putamen/globus pallidus and thalamus; and in white matter of the basal ganglia and right posterior cingulate gyrus. In contrast, significant increases of grey matter were identified in the frontal lobes, anterior cingulate gyrus, left temporal lobe, and of white matter bilaterally in the anterior cingulate. Inattention in WS was correlated with volumetric differences in the frontal lobes, caudate nucleus and cerebellum, and hyperactivity was related to differences in the left temporal and parietal lobes and cerebellum. Finally, ratings of peer problems were related to differences in the temporal lobes, right basal ganglia and frontal lobe. In one of the first studies of brain structure in intellectually disabled children with WS using voxel-based morphometry, our findings suggest that this group has specific differences in grey/white matter morphology. In addition, it was found that structural differences were correlated to ratings of inattention, hyperactivity and peer problems in children with WS.

  7. Relationship between grey matter integrity and executive abilities in aging.

    PubMed

    Manard, Marine; Bahri, Mohamed Ali; Salmon, Eric; Collette, Fabienne

    2016-07-01

    This cross-sectional study was designed to investigate grey matter changes that occur in healthy aging and the relationship between grey matter characteristics and executive functioning. Thirty-six young adults (18-30 years old) and 43 seniors (60-75 years old) were included. A general executive score was derived from a large battery of neuropsychological tests assessing three major aspects of executive functioning (inhibition, updating and shifting). Age-related grey matter changes were investigated by comparing young and older adults using voxel-based morphometry and voxel-based cortical thickness methods. A widespread difference in grey matter volume was found across many brain regions, whereas cortical thinning was mainly restricted to central areas. Multivariate analyses showed age-related changes in relatively similar brain regions to the respective univariate analyses but appeared more limited. Finally, in the older adult sample, a significant relationship between global executive performance and decreased grey matter volume in anterior (i.e. frontal, insular and cingulate cortex) but also some posterior brain areas (i.e. temporal and parietal cortices) as well as subcortical structures was observed. Results of this study highlight the distribution of age-related effects on grey matter volume and show that cortical atrophy does not appear primarily in "frontal" brain regions. From a cognitive viewpoint, age-related executive functioning seems to be related to grey matter volume but not to cortical thickness. Therefore, our results also highlight the influence of methodological aspects (from preprocessing to statistical analysis) on the pattern of results, which could explain the lack of consensus in literature. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Individual differences in personality traits reflect structural variance in specific brain regions.

    PubMed

    Gardini, Simona; Cloninger, C Robert; Venneri, Annalena

    2009-06-30

    Personality dimensions such as novelty seeking (NS), harm avoidance (HA), reward dependence (RD) and persistence (PER) are said to be heritable, stable across time and dependent on genetic and neurobiological factors. Recently a better understanding of the relationship between personality traits and brain structures/systems has become possible due to advances in neuroimaging techniques. This Magnetic Resonance Imaging (MRI) study investigated if individual differences in these personality traits reflected structural variance in specific brain regions. A large sample of eighty five young adult participants completed the Three-dimensional Personality Questionnaire (TPQ) and had their brain imaged with MRI. A voxel-based correlation analysis was carried out between individuals' personality trait scores and grey matter volume values extracted from 3D brain scans. NS correlated positively with grey matter volume in frontal and posterior cingulate regions. HA showed a negative correlation with grey matter volume in orbito-frontal, occipital and parietal structures. RD was negatively correlated with grey matter volume in the caudate nucleus and in the rectal frontal gyrus. PER showed a positive correlation with grey matter volume in the precuneus, paracentral lobule and parahippocampal gyrus. These results indicate that individual differences in the main personality dimensions of NS, HA, RD and PER, may reflect structural variance in specific brain areas.

  9. Insight on AV-45 binding in white and grey matter from histogram analysis: a study on early Alzheimer's disease patients and healthy subjects

    PubMed Central

    Nemmi, Federico; Saint-Aubert, Laure; Adel, Djilali; Salabert, Anne-Sophie; Pariente, Jérémie; Barbeau, Emmanuel; Payoux, Pierre; Péran, Patrice

    2014-01-01

    Purpose AV-45 amyloid biomarker is known to show uptake in white matter in patients with Alzheimer’s disease (AD) but also in healthy population. This binding; thought to be of a non-specific lipophilic nature has not yet been investigated. The aim of this study was to determine the differential pattern of AV-45 binding in healthy and pathological populations in white matter. Methods We recruited 24 patients presenting with AD at early stage and 17 matched, healthy subjects. We used an optimized PET-MRI registration method and an approach based on intensity histogram using several indexes. We compared the results of the intensity histogram analyses with a more canonical approach based on target-to-cerebellum Standard Uptake Value (SUVr) in white and grey matters using MANOVA and discriminant analyses. A cluster analysis on white and grey matter histograms was also performed. Results White matter histogram analysis revealed significant differences between AD and healthy subjects, which were not revealed by SUVr analysis. However, white matter histograms was not decisive to discriminate groups, and indexes based on grey matter only showed better discriminative power than SUVr. The cluster analysis divided our sample in two clusters, showing different uptakes in grey but also in white matter. Conclusion These results demonstrate that AV-45 binding in white matter conveys subtle information not detectable using SUVr approach. Although it is not better than standard SUVr to discriminate AD patients from healthy subjects, this information could reveal white matter modifications. PMID:24573658

  10. Spinal cord grey matter segmentation challenge.

    PubMed

    Prados, Ferran; Ashburner, John; Blaiotta, Claudia; Brosch, Tom; Carballido-Gamio, Julio; Cardoso, Manuel Jorge; Conrad, Benjamin N; Datta, Esha; Dávid, Gergely; Leener, Benjamin De; Dupont, Sara M; Freund, Patrick; Wheeler-Kingshott, Claudia A M Gandini; Grussu, Francesco; Henry, Roland; Landman, Bennett A; Ljungberg, Emil; Lyttle, Bailey; Ourselin, Sebastien; Papinutto, Nico; Saporito, Salvatore; Schlaeger, Regina; Smith, Seth A; Summers, Paul; Tam, Roger; Yiannakas, Marios C; Zhu, Alyssa; Cohen-Adad, Julien

    2017-05-15

    An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Quantitative ultrasonography of the periventricular white and grey matter of the developing brain.

    PubMed

    Mullaart, R A; Thijssen, J M; Rotteveel, J J; Valckx, F M; van Geemen, A J

    1999-05-01

    This study addresses the value of operator-independent computer processing of ultrasonograms of the developing brain. With this aim, routine cranial ultrasonograms obtained from 39 term and preterm infants without clinical or sonographic evidence of brain damage were analyzed by five observers. The procedure, respectively, included: 1. the definition of four regions of interest (ROI), one white matter and one grey matter area on each side of the brain; 2. digitization of the sonogram data within these ROIs; 3. correction for the equipment settings, using data from a tissue-mimicking phantom as a reference; and 4. calculation of four sonogram characteristics (i.e., mean echo level, MEAN, signal-to-noise ratio, SNR, and axial and lateral correlation, CORAX and CORLAT, of the echo level co-occurrence matrix). Significant differences between both sides of the brain or a significant influence of ROI size were not found. The interobserver spread was considerable, but less than the intersubject spread. Two sonogram characteristics seemed strongly correlated in white and grey matter (CORAX and CORLAT) and another only in white matter (SNR with CORAX and CORLAT). MEAN seemed not to be correlated with any other characteristic. Furthermore, it was found that maturation equally decreases white and grey matter MEAN and, thus, hardly affects the ratio between the two. An effect on the other sonogram characteristics was only found in the white matter (i.e., an increase of SNR and a decrease of CORAX and CORLAT). Except for MEAN, the grey matter sonogram characteristics seem hardly affected by maturation. In view of these findings, we conclude that quantitative ultrasonography reveals white and grey matter maturation and, furthermore, provides a conceptional-age-independent reference (MEAN white:grey matter ratio) that might be found to facilitate the detection of pathologic brain alterations.

  12. Illness, at-risk and resilience neural markers of early-stage bipolar disorder.

    PubMed

    Lin, Kangguang; Shao, Robin; Geng, Xiujuan; Chen, Kun; Lu, Rui; Gao, Yanling; Bi, Yanan; Lu, Weicong; Guan, Lijie; Kong, Jiehua; Xu, Guiyun; So, Kwok-Fai

    2018-05-21

    Current knowledge on objective and specific neural markers for bipolar risk and resilience-related processes is lacking, partly due to not subdividing high-risk individuals manifesting different levels of subclinical symptoms who possibly possess different levels of resilience. We delineated grey matter markers for bipolar illness, genetic high risk (endophenotype) and resilience, through comparing across 42 young non-comorbid bipolar patients, 42 healthy controls, and 72 diagnosis-free, medication-naive high-genetic-risk individuals subdivided into a combined-high-risk group who additionally manifested bipolar risk-relevant subsyndromes (N = 38), and an asymptomatic high-risk group (N = 34). Complementary analyses assessed the additional predictive and classification values of grey matter markers beyond those of clinical scores, through using logistic regression and support vector machine analyses. Illness-related effects manifested as reduced grey matter volumes of bilateral temporal limbic-striatal and cerebellar regions, which significantly differentiated bipolar patients from healthy controls and improved clinical classification specificity by 20%. Reduced bilateral cerebellar grey matter volume emerged as a potential endophenotype and (along with parieto-occipital grey matter changes) separated combined-high-risk individuals from healthy and high-risk individuals, and increased clinical classification specificity by approximately 10% and 27%, respectively, while the relatively normalized cerebellar grey matter volumes in the high-risk sample may confer resilience. The cross-validation procedure was not performed on an independent sample using independently-derived features. The BD group had different age and sex distributions than some other groups which may not be fully addressable statistically. Our framework can be applied in other measurement domains to derive complete profiles for bipolar patients and at-risk individuals, towards forming strategies for promoting resilience and preclinical intervention. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Concurrent white matter bundles and grey matter networks using independent component analysis.

    PubMed

    O'Muircheartaigh, Jonathan; Jbabdi, Saad

    2018-04-15

    Developments in non-invasive diffusion MRI tractography techniques have permitted the investigation of both the anatomy of white matter pathways connecting grey matter regions and their structural integrity. In parallel, there has been an expansion in automated techniques aimed at parcellating grey matter into distinct regions based on functional imaging. Here we apply independent component analysis to whole-brain tractography data to automatically extract brain networks based on their associated white matter pathways. This method decomposes the tractography data into components that consist of paired grey matter 'nodes' and white matter 'edges', and automatically separates major white matter bundles, including known cortico-cortical and cortico-subcortical tracts. We show how this framework can be used to investigate individual variations in brain networks (in terms of both nodes and edges) as well as their associations with individual differences in behaviour and anatomy. Finally, we investigate correspondences between tractography-based brain components and several canonical resting-state networks derived from functional MRI. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke

    PubMed Central

    Xing, Shihui; Lacey, Elizabeth H.; Skipper-Kallal, Laura M.; Jiang, Xiong; Harris-Love, Michelle L.; Zeng, Jinsheng

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor’s lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion–symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter volumes in these clusters related to verbal working memory capacity, but not other cognitive functions. Further, grey matter volumes in these areas were greater in stroke survivors than healthy control subjects. To confirm this result, 10 chronic left hemisphere stroke survivors with no history of aphasia were identified. Grey matter volumes in right temporoparietal clusters were greater in stroke survivors with aphasia compared to those without history of aphasia. These findings suggest that the grey matter structure of right hemisphere posterior dorsal stream language homologues independently contributes to language production abilities in chronic left hemisphere stroke, and that these areas may undergo hypertrophy after a stroke causing aphasia. PMID:26521078

  15. Partial volume correction and image segmentation for accurate measurement of standardized uptake value of grey matter in the brain.

    PubMed

    Bural, Gonca; Torigian, Drew; Basu, Sandip; Houseni, Mohamed; Zhuge, Ying; Rubello, Domenico; Udupa, Jayaram; Alavi, Abass

    2015-12-01

    Our aim was to explore a novel quantitative method [based upon an MRI-based image segmentation that allows actual calculation of grey matter, white matter and cerebrospinal fluid (CSF) volumes] for overcoming the difficulties associated with conventional techniques for measuring actual metabolic activity of the grey matter. We included four patients with normal brain MRI and fluorine-18 fluorodeoxyglucose (F-FDG)-PET scans (two women and two men; mean age 46±14 years) in this analysis. The time interval between the two scans was 0-180 days. We calculated the volumes of grey matter, white matter and CSF by using a novel segmentation technique applied to the MRI images. We measured the mean standardized uptake value (SUV) representing the whole metabolic activity of the brain from the F-FDG-PET images. We also calculated the white matter SUV from the upper transaxial slices (centrum semiovale) of the F-FDG-PET images. The whole brain volume was calculated by summing up the volumes of the white matter, grey matter and CSF. The global cerebral metabolic activity was calculated by multiplying the mean SUV with total brain volume. The whole brain white matter metabolic activity was calculated by multiplying the mean SUV for the white matter by the white matter volume. The global cerebral metabolic activity only reflects those of the grey matter and the white matter, whereas that of the CSF is zero. We subtracted the global white matter metabolic activity from that of the whole brain, resulting in the global grey matter metabolism alone. We then divided the grey matter global metabolic activity by grey matter volume to accurately calculate the SUV for the grey matter alone. The brain volumes ranged between 1546 and 1924 ml. The mean SUV for total brain was 4.8-7. Total metabolic burden of the brain ranged from 5565 to 9617. The mean SUV for white matter was 2.8-4.1. On the basis of these measurements we generated the grey matter SUV, which ranged from 8.1 to 11.3. The accurate metabolic activity of the grey matter can be calculated using the novel segmentation technique that we applied to MRI. By combining these quantitative data with those generated from F-FDG-PET images we were able to calculate the accurate metabolic activity of the grey matter. These types of measurements will be of great value in accurate analysis of the data from patients with neuropsychiatric disorders.

  16. Grey matter morphological anomalies in the caudate head in first-episode psychosis patients with delusions of reference.

    PubMed

    Tao, Haojuan; Wong, Gloria H Y; Zhang, Huiran; Zhou, Yuan; Xue, Zhimin; Shan, Baoci; Chen, Eric Y H; Liu, Zhening

    2015-07-30

    Delusions of reference (DOR) are theoretically linked with aberrant salience and associative learning. Previous studies have shown that the caudate nucleus plays a critical role in the cognitive circuits of coding prediction errors and associative learning. The current study aimed at testing the hypothesis that abnormalities in the caudate nucleus may be involved in the neuroanatomical substrate of DOR. Structural magnetic resonance imaging of the brain was performed in 44 first-episode psychosis patients (with diagnoses of schizophrenia or schizophreniform disorder) and 25 healthy controls. Patients were divided into three groups according to symptoms: patients with DOR as prominent positive symptom; patients with prominent positive symptoms other than DOR; and patients with minimal positive symptoms. All groups were age-, gender-, and education-matched, and patient groups were matched for diagnosis, duration of illness, and antipsychotic treatment. Voxel-based morphometric analysis was performed to identify group differences in grey matter density. Relationships were explored between grey matter density and DOR. Patients with DOR were found to have reduced grey matter density in the caudate compared with patients without DOR and healthy controls. Grey matter density values of the left and right caudate head were negatively correlated with DOR severity. Decreased grey matter density in the caudate nucleus may underlie DOR in early psychosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Deep brain stimulation can regulate arterial blood pressure in awake humans.

    PubMed

    Green, Alexander L; Wang, Shouyan; Owen, Sarah L F; Xie, Kangning; Liu, Xuguang; Paterson, David J; Stein, John F; Bain, Peter G; Aziz, Tipu Z

    2005-11-07

    The periaqueductal grey matter is known to play a role in cardiovascular control in animals. Cardiovascular responses to electrical stimulation of the periventricular/periaqueductal grey matter were measured in 15 awake human study participants following implantation of deep brain stimulating electrodes for treatment of chronic pain. We found that stimulation of the ventral periventricular/periaqueductal grey matter caused a mean reduction in systolic blood pressure of 14.2+/-3.6 mmHg in seven patients and stimulation of the dorsal periventricular/periaqueductal grey matter caused a mean increase of 16.7+/-5.9 mmHg in six patients. A comparison between ventral and dorsal electrodes demonstrated significant differences (P<0.05). These changes were accompanied by analogous changes in diastolic blood pressure, pulse pressure, maximum dP/dt but not in the time interval between each R wave on the electrocardiogram.

  18. Structural and functional connectivity underlying grey matter covariance: impact of developmental insult.

    PubMed

    Paquola, Casey; Bennett, Maxwell; Lagopoulos, Jim

    2018-05-15

    Structural covariance networks (SCNs) may offer unique insights into the developmental impact of childhood maltreatment because they are thought to reflect coordinated maturation of distinct grey matter regions. T1-weighted magnetic resonance images were acquired from 121 young people with emerging mental illness. Diffusion weighted and resting state functional imaging was also acquired from a random subset of the participants (n=62). Ten study-specific SCNs were identified using a whole brain grey matter independent component analysis. The effects of childhood maltreatment and age on average grey matter density and the expression of each SCN were calculated. Childhood maltreatment was linked to age-related decreases in grey matter density across a SCN that overlapped with the default mode and fronto-parietal networks. Resting state functional connectivity and structural connectivity were calculated in the study-specific SCN and across the whole brain. Grey matter covariance was significantly correlated with rsFC across the SCN, and rsFC fully mediated the relationship between grey matter covariance and structural connectivity in the non-maltreated group. A unique association of grey matter covariance with structural connectivity was detected amongst individuals with a history of childhood maltreatment. Perturbation of grey matter development across the default mode and fronto-parietal networks following childhood maltreatment may have significant implications for mental well-being, given the networks' roles in self-referential activity. Cross-modal comparisons suggest reduced grey matter following childhood maltreatment could arise from deficient functional activity earlier in life.

  19. Age-related delay in visual and auditory evoked responses is mediated by white- and grey-matter differences.

    PubMed

    Price, D; Tyler, L K; Neto Henriques, R; Campbell, K L; Williams, N; Treder, M S; Taylor, J R; Henson, R N A

    2017-06-09

    Slowing is a common feature of ageing, yet a direct relationship between neural slowing and brain atrophy is yet to be established in healthy humans. We combine magnetoencephalographic (MEG) measures of neural processing speed with magnetic resonance imaging (MRI) measures of white and grey matter in a large population-derived cohort to investigate the relationship between age-related structural differences and visual evoked field (VEF) and auditory evoked field (AEF) delay across two different tasks. Here we use a novel technique to show that VEFs exhibit a constant delay, whereas AEFs exhibit delay that accumulates over time. White-matter (WM) microstructure in the optic radiation partially mediates visual delay, suggesting increased transmission time, whereas grey matter (GM) in auditory cortex partially mediates auditory delay, suggesting less efficient local processing. Our results demonstrate that age has dissociable effects on neural processing speed, and that these effects relate to different types of brain atrophy.

  20. Age-related delay in visual and auditory evoked responses is mediated by white- and grey-matter differences

    PubMed Central

    Price, D.; Tyler, L. K.; Neto Henriques, R.; Campbell, K. L.; Williams, N.; Treder, M.S.; Taylor, J. R.; Brayne, Carol; Bullmore, Edward T.; Calder, Andrew C.; Cusack, Rhodri; Dalgleish, Tim; Duncan, John; Matthews, Fiona E.; Marslen-Wilson, William D.; Rowe, James B.; Shafto, Meredith A.; Cheung, Teresa; Davis, Simon; Geerligs, Linda; Kievit, Rogier; McCarrey, Anna; Mustafa, Abdur; Samu, David; Tsvetanov, Kamen A.; van Belle, Janna; Bates, Lauren; Emery, Tina; Erzinglioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Auer, Tibor; Correia, Marta; Gao, Lu; Green, Emma; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Henson, R. N. A.

    2017-01-01

    Slowing is a common feature of ageing, yet a direct relationship between neural slowing and brain atrophy is yet to be established in healthy humans. We combine magnetoencephalographic (MEG) measures of neural processing speed with magnetic resonance imaging (MRI) measures of white and grey matter in a large population-derived cohort to investigate the relationship between age-related structural differences and visual evoked field (VEF) and auditory evoked field (AEF) delay across two different tasks. Here we use a novel technique to show that VEFs exhibit a constant delay, whereas AEFs exhibit delay that accumulates over time. White-matter (WM) microstructure in the optic radiation partially mediates visual delay, suggesting increased transmission time, whereas grey matter (GM) in auditory cortex partially mediates auditory delay, suggesting less efficient local processing. Our results demonstrate that age has dissociable effects on neural processing speed, and that these effects relate to different types of brain atrophy. PMID:28598417

  1. Limbic grey matter changes in early Parkinson's disease.

    PubMed

    Li, Xingfeng; Xing, Yue; Schwarz, Stefan T; Auer, Dorothee P

    2017-05-02

    The purpose of this study was to investigate local and network-related changes of limbic grey matter in early Parkinson's disease (PD) and their inter-relation with non-motor symptom severity. We applied voxel-based morphometric methods in 538 T1 MRI images retrieved from the Parkinson's Progression Markers Initiative website. Grey matter densities and cross-sectional estimates of age-related grey matter change were compared between subjects with early PD (n = 366) and age-matched healthy controls (n = 172) within a regression model, and associations of grey matter density with symptoms were investigated. Structural brain networks were obtained using covariance analysis seeded in regions showing grey matter abnormalities in PD subject group. Patients displayed focally reduced grey matter density in the right amygdala, which was present from the earliest stages of the disease without further advance in mild-moderate disease stages. Right amygdala grey matter density showed negative correlation with autonomic dysfunction and positive with cognitive performance in patients, but no significant interrelations were found with anxiety scores. Patients with PD also demonstrated right amygdala structural disconnection with less structural connectivity of the right amygdala with the cerebellum and thalamus but increased covariance with bilateral temporal cortices compared with controls. Age-related grey matter change was also increased in PD preferentially in the limbic system. In conclusion, detailed brain morphometry in a large group of early PD highlights predominant limbic grey matter deficits with stronger age associations compared with controls and associated altered structural connectivity pattern. This provides in vivo evidence for early limbic grey matter pathology and structural network changes that may reflect extranigral disease spread in PD. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  2. Lower grey matter density and functional connectivity in the anterior insula in smokers compared to never-smokers

    PubMed Central

    Stoeckel, Luke E.; Chai, Xiaoqian J.; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A. Eden

    2015-01-01

    Rationale While nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. Objectives (1) To evaluate grey matter density and functional connectivity of the anterior insula in cigarette smokers and never-smokers and (2) characterize how differences in these measures related to smoking behavior. Methods We compared structural MRI (grey matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never-smokers. Results Compared to controls, smokers had lower grey matter density in left anterior insula extending into inferior frontal and temporal cortex. Grey matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lateral prefrontal cortex) and semantic processing / emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. Conclusions There were differences in the anterior insula, a central region in the brain’s salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, was also associated with an aspect of smoking behavior (daily cigarettes smoked). PMID:25990865

  3. The CT (Hounsfield unit) number of brain tissue in healthy infants. A new reliable method for detection of possible degenerative disease.

    PubMed

    Boris, P; Bundgaard, F; Olsen, A

    1987-01-01

    It is difficult to correlate CT Hounsfield unit (H. U.) numbers from one CT investigation to another and from one CT scanner to another, especially when dealing with small changes in the brain substance, as in degenerative brain diseases in children. By subtracting the mean value of cerebrospinal fluid (CSF) from the mean value of grey and white matter, it is possible to remove most of the errors due, for example, to maladjustments, short and long-term drift, X-ray fan, and detector asymmetry. Measurements of white and grey matter using these methods showed CT H. U. numbers changing from 15 H. U. to 22 H. U. in white matter and 23 H. U. to 30 H. U. in grey matter in 86 healthy infants aged 0-5 years. In all measurements, the difference between grey and white matter was exactly 8 H. U. The method has proven to be highly accurate and reproducible.

  4. Cerebral morphology and dopamine D2/D3receptor distribution in humans: A combined [18F]fallypride and voxel-based morphometry study

    PubMed Central

    Woodward, Neil D.; Zald, David H.; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M. Sib; Baldwin, Ronald M.; Cowan, Ronald L.; Li, Rui; Kessler, Robert M.

    2009-01-01

    The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D2/D3 ligand [18F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BPND) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BPND were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BPND throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BPND and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BPND were observed. Overall, grey matter density appeared more strongly correlated with BPND than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [18F]fallypride BPND in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization. PMID:19457373

  5. Cerebral morphology and dopamine D2/D3 receptor distribution in humans: a combined [18F]fallypride and voxel-based morphometry study.

    PubMed

    Woodward, Neil D; Zald, David H; Ding, Zhaohua; Riccardi, Patrizia; Ansari, M Sib; Baldwin, Ronald M; Cowan, Ronald L; Li, Rui; Kessler, Robert M

    2009-05-15

    The relationship between cerebral morphology and the expression of dopamine receptors has not been extensively studied in humans. Elucidation of such relationships may have important methodological implications for clinical studies of dopamine receptor ligand binding differences between control and patient groups. The association between cerebral morphology and dopamine receptor distribution was examined in 45 healthy subjects who completed T1-weighted structural MRI and PET scanning with the D(2)/D(3) ligand [(18)F]fallypride. Optimized voxel-based morphometry was used to create grey matter volume and density images. Grey matter volume and density images were correlated with binding potential (BP(ND)) images on a voxel-by-voxel basis using the Biological Parametric Mapping toolbox. Associations between cerebral morphology and BP(ND) were also examined for selected regions-of-interest (ROIs) after spatial normalization. Voxel-wise analyses indicated that grey matter volume and density positively correlated with BP(ND) throughout the midbrain, including the substantia nigra. Positive correlations were observed in medial cortical areas, including anterior cingulate and medial prefrontal cortex, and circumscribed regions of the temporal, frontal, and parietal lobes. ROI analyses revealed significant positive correlations between BP(ND) and cerebral morphology in the caudate, thalamus, and amygdala. Few negative correlations between morphology and BP(ND) were observed. Overall, grey matter density appeared more strongly correlated with BP(ND) than grey matter volume. Cerebral morphology, particularly grey matter density, correlates with [(18)F]fallypride BP(ND) in a regionally specific manner. Clinical studies comparing dopamine receptor availability between clinical and control groups may benefit by accounting for potential differences in cerebral morphology that exist even after spatial normalization.

  6. Distinct white matter injury associated with medial temporal lobe atrophy in Alzheimer's versus semantic dementia.

    PubMed

    Bejanin, Alexandre; Desgranges, Béatrice; La Joie, Renaud; Landeau, Brigitte; Perrotin, Audrey; Mézenge, Florence; Belliard, Serge; de La Sayette, Vincent; Eustache, Francis; Chételat, Gaël

    2017-04-01

    This study aims at further understanding the distinct vulnerability of brain networks in Alzheimer's disease (AD) versus semantic dementia (SD) investigating the white matter injury associated with medial temporal lobe (MTL) atrophy in both conditions. Twenty-six AD patients, twenty-one SD patients, and thirty-nine controls underwent a high-resolution T1-MRI scan allowing to obtain maps of grey matter volume and white matter density. A statistical conjunction approach was used to identify MTL regions showing grey matter atrophy in both patient groups. The relationship between this common grey matter atrophy and white matter density maps was then assessed within each patient group. Patterns of grey matter atrophy were distinct in AD and SD but included a common region in the MTL, encompassing the hippocampus and amygdala. This common atrophy was associated with alterations in different white matter areas in AD versus SD, mainly including the cingulum and corpus callosum in AD, while restricted to the temporal lobe - essentially the uncinate and inferior longitudinal fasciculi - in SD. Complementary analyses revealed that these relationships remained significant when controlling for global atrophy or disease severity. Overall, this study provides the first evidence that atrophy of the same MTL region is related to damage in distinct white matter fibers in AD and SD. These different patterns emphasize the vulnerability of distinct brain networks related to the MTL in these two disorders, which might underlie the discrepancy in their symptoms. These results further suggest differences between AD and SD in the neuropathological processes occurring in the MTL. Hum Brain Mapp 38:1791-1800, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Individual differences in posterior cortical volume correlate with proneness to pride and gratitude

    PubMed Central

    Zahn, Roland; Garrido, Griselda; Moll, Jorge

    2014-01-01

    Proneness to specific moral sentiments (e.g. pride, gratitude, guilt, indignation) has been linked with individual variations in functional MRI (fMRI) response within anterior brain regions whose lesion leads to inappropriate behaviour. However, the role of structural anatomical differences in rendering individuals prone to particular moral sentiments relative to others is unknown. Here, we investigated grey matter volumes (VBM8) and proneness to specific moral sentiments on a well-controlled experimental task in healthy individuals. Individuals with smaller cuneus, and precuneus volumes were more pride-prone, whereas those with larger right inferior temporal volumes experienced gratitude more readily. Although the primary analysis detected no associations with guilt- or indignation-proneness, subgenual cingulate fMRI responses to guilt were negatively correlated with grey matter volumes in the left superior temporal sulcus and anterior dorsolateral prefrontal cortices (right >left). This shows that individual variations in functional activations within critical areas for moral sentiments were not due to grey matter volume differences in the same areas. Grey matter volume differences between healthy individuals may nevertheless play an important role by affecting posterior cortical brain systems that are non-critical but supportive for the experience of specific moral sentiments. This may be of particular relevance when their experience depends on visuo-spatial elaboration. PMID:24106333

  8. Right hemisphere grey matter structure and language outcomes in chronic left hemisphere stroke.

    PubMed

    Xing, Shihui; Lacey, Elizabeth H; Skipper-Kallal, Laura M; Jiang, Xiong; Harris-Love, Michelle L; Zeng, Jinsheng; Turkeltaub, Peter E

    2016-01-01

    The neural mechanisms underlying recovery of language after left hemisphere stroke remain elusive. Although older evidence suggested that right hemisphere language homologues compensate for damage in left hemisphere language areas, the current prevailing theory suggests that right hemisphere engagement is ineffective or even maladaptive. Using a novel combination of support vector regression-based lesion-symptom mapping and voxel-based morphometry, we aimed to determine whether local grey matter volume in the right hemisphere independently contributes to aphasia outcomes after chronic left hemisphere stroke. Thirty-two left hemisphere stroke survivors with aphasia underwent language assessment with the Western Aphasia Battery-Revised and tests of other cognitive domains. High-resolution T1-weighted images were obtained in aphasia patients and 30 demographically matched healthy controls. Support vector regression-based multivariate lesion-symptom mapping was used to identify critical language areas in the left hemisphere and then to quantify each stroke survivor's lesion burden in these areas. After controlling for these direct effects of the stroke on language, voxel-based morphometry was then used to determine whether local grey matter volumes in the right hemisphere explained additional variance in language outcomes. In brain areas in which grey matter volumes related to language outcomes, we then compared grey matter volumes in patients and healthy controls to assess post-stroke plasticity. Lesion-symptom mapping showed that specific left hemisphere regions related to different language abilities. After controlling for lesion burden in these areas, lesion size, and demographic factors, grey matter volumes in parts of the right temporoparietal cortex positively related to spontaneous speech, naming, and repetition scores. Examining whether domain general cognitive functions might explain these relationships, partial correlations demonstrated that grey matter volumes in these clusters related to verbal working memory capacity, but not other cognitive functions. Further, grey matter volumes in these areas were greater in stroke survivors than healthy control subjects. To confirm this result, 10 chronic left hemisphere stroke survivors with no history of aphasia were identified. Grey matter volumes in right temporoparietal clusters were greater in stroke survivors with aphasia compared to those without history of aphasia. These findings suggest that the grey matter structure of right hemisphere posterior dorsal stream language homologues independently contributes to language production abilities in chronic left hemisphere stroke, and that these areas may undergo hypertrophy after a stroke causing aphasia. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Grey matter alterations in patients with Pantothenate Kinase-Associated Neurodegeneration (PKAN).

    PubMed

    Rodriguez-Raecke, Rea; Roa-Sanchez, Pedro; Speckter, Herwin; Fermin-Delgado, Rafael; Perez-Then, Eddy; Oviedo, Jairo; Stoeter, Peter

    2014-09-01

    Pantothenate Kinase-Associated Neurodegeneration (PKAN) is a rare heritable disease marked by dystonia and loss of movement control. In contrast to the well-known "Eye-of-the-Tiger" sign affecting the globus pallidus, little is known about other deviations of brain morphology, especially about grey matter changes. We investigated 29 patients with PKAN and 29 age-matched healthy controls using Magnet Resonance Imaging and Voxel-Based Morphometry. As compared to controls, children with PKAN showed increased grey matter density in the putamen and nucleus caudatus and adults with PKAN showed increased grey matter density in the ventral part of the anterior cingulate cortex. A multiple regression analysis with dystonia score as predictor showed grey matter reduction in the cerebellum, posterior cingulate cortex, superior parietal lobule, pars triangularis and small frontal and temporal areas and an analysis with age as predictor showed grey matter decreases in the putamen, nucleus caudatus, supplementary motor area and anterior cingulate cortex. The grey matter increases may be regarded as a secondary phenomenon compensating the increased activity of the motor system due to a reduced inhibitory output of the globus pallidus. With increasing age, the grey matter reduction of cortical midline structures however might contribute to the progression of dystonic symptoms due to loss of this compensatory control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Brain volumes in psychotic youth with schizophrenia and mood disorders

    PubMed Central

    El-Sayed, Mohamed; Steen, R. Grant; Poe, Michele D.; Bethea, T. Carter; Gerig, Guido; Lieberman, Jeffrey; Sikich, Linmarie

    2010-01-01

    Background We sought to test the hypothesis that deficits in grey matter volume are characteristic of psychotic youth with early-onset schizophrenia-spectrum disorders (EOSS) but not of psychotic youth with early-onset mood disorders (EOMD). Methods We used magnetic resonance imaging to examine brain volume in 24 psychotic youth (13 male, 11 female) with EOSS (n = 12) or EOMD (n = 12) and 17 healthy controls (10 male, 7 female). We measured the volume of grey and white matter using an automated segmentation program. Results After adjustment for age and intracranial volume, whole brain volume was lower in the EOSS patients than in the healthy controls (p = 0.001) and EOMD patients (p = 0.002). The EOSS patients had a deficit in grey matter volume (p = 0.005), especially in the frontal (p = 0.003) and parietal (p = 0.006) lobes, with no significant differences in white matter volume. Limitations The main limitations of our study were its small sample size and the inclusion of patients with depression and mania in the affective group. Conclusion Adolescents with EOSS have grey matter deficits compared with healthy controls and psychotic adolescents with EOMD. Our results suggest that grey matter deficits are not generally associated with psychosis but may be specifically associated with schizophrenia. Larger studies with consistent methods are needed to reconcile the contradictory findings among imaging studies involving psychotic youth. PMID:20569649

  11. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study.

    PubMed

    Whitwell, Jennifer L; Przybelski, Scott A; Weigand, Stephen D; Ivnik, Robert J; Vemuri, Prashanthi; Gunter, Jeffrey L; Senjem, Matthew L; Shiung, Maria M; Boeve, Bradley F; Knopman, David S; Parisi, Joseph E; Dickson, Dennis W; Petersen, Ronald C; Jack, Clifford R; Josephs, Keith A

    2009-11-01

    The behavioural variant of frontotemporal dementia is a progressive neurodegenerative syndrome characterized by changes in personality and behaviour. It is typically associated with frontal lobe atrophy, although patterns of atrophy are heterogeneous. The objective of this study was to examine case-by-case variability in patterns of grey matter atrophy in subjects with the behavioural variant of frontotemporal dementia and to investigate whether behavioural variant of frontotemporal dementia can be divided into distinct anatomical subtypes. Sixty-six subjects that fulfilled clinical criteria for a diagnosis of the behavioural variant of frontotemporal dementia with a volumetric magnetic resonance imaging scan were identified. Grey matter volumes were obtained for 26 regions of interest, covering frontal, temporal and parietal lobes, striatum, insula and supplemental motor area, using the automated anatomical labelling atlas. Regional volumes were divided by total grey matter volume. A hierarchical agglomerative cluster analysis using Ward's clustering linkage method was performed to cluster the behavioural variant of frontotemporal dementia subjects into different anatomical clusters. Voxel-based morphometry was used to assess patterns of grey matter loss in each identified cluster of subjects compared to an age and gender-matched control group at P < 0.05 (family-wise error corrected). We identified four potentially useful clusters with distinct patterns of grey matter loss, which we posit represent anatomical subtypes of the behavioural variant of frontotemporal dementia. Two of these subtypes were associated with temporal lobe volume loss, with one subtype showing loss restricted to temporal lobe regions (temporal-dominant subtype) and the other showing grey matter loss in the temporal lobes as well as frontal and parietal lobes (temporofrontoparietal subtype). Another two subtypes were characterized by a large amount of frontal lobe volume loss, with one subtype showing grey matter loss in the frontal lobes as well as loss of the temporal lobes (frontotemporal subtype) and the other subtype showing loss relatively restricted to the frontal lobes (frontal-dominant subtype). These four subtypes differed on clinical measures of executive function, episodic memory and confrontation naming. There were also associations between the four subtypes and genetic or pathological diagnoses which were obtained in 48% of the cohort. The clusters did not differ in behavioural severity as measured by the Neuropsychiatric Inventory; supporting the original classification of the behavioural variant of frontotemporal dementia in these subjects. Our findings suggest behavioural variant of frontotemporal dementia can therefore be subdivided into four different anatomical subtypes.

  12. Grey matter changes of the pain matrix in patients with burning mouth syndrome.

    PubMed

    Sinding, Charlotte; Gransjøen, Anne Mari; Schlumberger, Gina; Grushka, Miriam; Frasnelli, Johannes; Singh, Preet Bano

    2016-04-01

    Burning mouth syndrome (BMS) is characterized by a burning sensation in the mouth, usually in the absence of clinical and laboratory findings. Latest findings indicate that BMS could result from neuropathic trigeminal conditions. While many investigations have focused on the periphery, very few have examined possible central dysfunctions. To highlight changes of the central system of subjects with BMS, we analysed the grey matter concentration in 12 subjects using voxel-based morphometry. Data were compared with a control group (Ct). To better understand the brain mechanisms underlying BMS, the grey matter concentration of patients was also compared with those of dysgeusic patients (Dys). Dysgeusia is another oral dysfunction condition, characterized by a distorted sense of taste and accompanied by a reduced taste function. We found that a major part of the 'pain matrix' presented modifications of the grey matter concentration in subjects with BMS. Six regions out of eight were affected [anterior and posterior cingulate gyrus, lobules of the cerebellum, insula/frontal operculum, inferior temporal area, primary motor cortex, dorsolateral pre-frontal cortex (DLPFC)]. In the anterior cingulate gyrus, the lobules of the cerebellum, the inferior temporal lobe and the DLPFC, pain intensity correlated with grey matter concentration. Dys also presented changes in grey matter concentration but in different areas of the brain. Our results suggest that a deficiency in the control of pain could in part be a cause of BMS and that BMS and dysgeusia conditions are not linked to similar structural changes in the brain. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Quantitative comparison of cortical and deep grey matter in pathological subtypes of unilateral cerebral palsy.

    PubMed

    Scheck, Simon M; Pannek, Kerstin; Fiori, Simona; Boyd, Roslyn N; Rose, Stephen E

    2014-10-01

    The aim of this study was to quantify grey matter changes in children with unilateral cerebral palsy (UCP), differentiating between cortical or deep grey matter (CDGM) lesions, periventricular white matter (PWM) lesions, and unilateral and bilateral lesions. In a cross-sectional study we obtained high resolution structural magnetic resonance images from 72 children (41 males, 31 females, mean age 10y 9mo [SD 3y 1mo], range 5y 1mo-17y 1mo) with UCP (33 left, 39 right hemiplegia; Manual Ability Classification System level I n=29, II n=43; Gross Motor Function Classification System level I n=46, II n=26), and 19 children with typical development (CTD; eight males, 11 females, mean age 11y 2mo [SD 2y 7mo], range 7y 8mo-16y 4mo). Images were classified by lesion type and analyzed using voxel-based morphometry (VBM) and subcortical volumetric analysis. Deep grey matter volumes were not significantly different between children with CDGM and PWM lesions, with the thalamus, putamen, and globus pallidus being reduced unilaterally in both groups compared with CTD (p≤0.001). Children with CDGM lesions additionally showed widespread cortical changes involving all lobes using VBM (p<0.01). Children with bilateral lesions had reduced thalamus and putamen volumes bilaterally (p<0.001). The thalamic volume was reduced bilaterally in children with unilateral lesions (p=0.004). Lesions to the PWM cause secondary changes to the deep grey matter structures similar to primary changes seen in CDGM lesions. Despite having a unilateral phenotype, grey matter changes are observed bilaterally, even in children with unilateral lesions. © 2014 Mac Keith Press.

  14. Individual differences in posterior cortical volume correlate with proneness to pride and gratitude.

    PubMed

    Zahn, Roland; Garrido, Griselda; Moll, Jorge; Grafman, Jordan

    2014-11-01

    Proneness to specific moral sentiments (e.g. pride, gratitude, guilt, indignation) has been linked with individual variations in functional MRI (fMRI) response within anterior brain regions whose lesion leads to inappropriate behaviour. However, the role of structural anatomical differences in rendering individuals prone to particular moral sentiments relative to others is unknown. Here, we investigated grey matter volumes (VBM8) and proneness to specific moral sentiments on a well-controlled experimental task in healthy individuals. Individuals with smaller cuneus, and precuneus volumes were more pride-prone, whereas those with larger right inferior temporal volumes experienced gratitude more readily. Although the primary analysis detected no associations with guilt- or indignation-proneness, subgenual cingulate fMRI responses to guilt were negatively correlated with grey matter volumes in the left superior temporal sulcus and anterior dorsolateral prefrontal cortices (right >left). This shows that individual variations in functional activations within critical areas for moral sentiments were not due to grey matter volume differences in the same areas. Grey matter volume differences between healthy individuals may nevertheless play an important role by affecting posterior cortical brain systems that are non-critical but supportive for the experience of specific moral sentiments. This may be of particular relevance when their experience depends on visuo-spatial elaboration. Published by Oxford University Press 2013. This work is written by US Government employees and is in the public domain in the US.

  15. Abnormalities in fronto-striatal connectivity within language networks relate to differences in grey-matter heterogeneity in Asperger syndrome☆

    PubMed Central

    Radulescu, Eugenia; Minati, Ludovico; Ganeshan, Balaji; Harrison, Neil A.; Gray, Marcus A.; Beacher, Felix D.C.C.; Chatwin, Chris; Young, Rupert C.D.; Critchley, Hugo D.

    2013-01-01

    Asperger syndrome (AS) is an Autism Spectrum Disorder (ASD) characterised by qualitative impairment in the development of emotional and social skills with relative preservation of general intellectual abilities, including verbal language. People with AS may nevertheless show atypical language, including rate and frequency of speech production. We previously observed that abnormalities in grey matter homogeneity (measured with texture analysis of structural MR images) in AS individuals when compared with controls are also correlated with the volume of caudate nucleus. Here, we tested a prediction that these distributed abnormalities in grey matter compromise the functional integrity of brain networks supporting verbal communication skills. We therefore measured the functional connectivity between caudate nucleus and cortex during a functional neuroimaging study of language generation (verbal fluency), applying psycho-physiological interaction (PPI) methods to test specifically for differences attributable to grey matter heterogeneity in AS participants. Furthermore, we used dynamic causal modelling (DCM) to characterise the causal directionality of these differences in interregional connectivity during word production. Our results revealed a diagnosis-dependent influence of grey matter heterogeneity on the functional connectivity of the caudate nuclei with right insula/inferior frontal gyrus and anterior cingulate, respectively with the left superior frontal gyrus and right precuneus. Moreover, causal modelling of interactions between inferior frontal gyri, caudate and precuneus, revealed a reliance on bottom-up (stimulus-driven) connections in AS participants that contrasted with a dominance of top-down (cognitive control) connections from prefrontal cortex observed in control participants. These results provide detailed support for previously hypothesised central disconnectivity in ASD and specify discrete brain network targets for diagnosis and therapy in ASD. PMID:24179823

  16. Subcortical grey matter changes in untreated, early stage Parkinson's disease without dementia.

    PubMed

    Lee, Hye Mi; Kwon, Kyum-Yil; Kim, Min-Jik; Jang, Ji-Wan; Suh, Sang-Il; Koh, Seong-Beom; Kim, Ji Hyun

    2014-06-01

    Previous MRI studies have investigated cortical or subcortical grey matter changes in patients with Parkinson's disease (PD), yielding inconsistent findings between the studies. We therefore sought to determine whether focal cortical or subcortical grey matter changes may be present from the early disease stage. We recruited 49 untreated, early stage PD patients without dementia and 53 control subjects. Voxel-based morphometry was used to evaluate cortical grey matter changes, and automated volumetry and shape analysis were used to assess volume changes and shape deformation of the subcortical grey matter structures, respectively. Voxel-based morphometry showed neither reductions nor increases in grey matter volume in patients compared to controls. Compared to controls, PD patients had significant reductions in adjusted volumes of putamen, nucleus accumbens, and hippocampus (corrected p < 0.05). Vertex-based shape analysis showed regionally contracted area on the posterolateral and ventromedial putamen bilaterally in PD patients (corrected p < 0.05). No correlations were found between cortical and subcortical grey matter and clinical variables representing disease duration and severity. Our results suggest that untreated, early stage PD without dementia is associated with volume reduction and shape deformation of subcortical grey matter, but not with cortical grey matter reduction. Our findings of structural changes in the posterolateral putamen and ventromedial putamen/nucleus accumbens could provide neuroanatomical basis for the involvement of motor and limbic striatum, further implicating motor and non-motor symptoms in PD, respectively. Early hippocampal involvement might be related to the risk for developing dementia in PD patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Decreased cerebral perfusion in Duchenne muscular dystrophy patients.

    PubMed

    Doorenweerd, Nathalie; Dumas, Eve M; Ghariq, Eidrees; Schmid, Sophie; Straathof, Chiara S M; Roest, Arno A W; Wokke, Beatrijs H; van Zwet, Erik W; Webb, Andrew G; Hendriksen, Jos G M; van Buchem, Mark A; Verschuuren, Jan J G M; Asllani, Iris; Niks, Erik H; van Osch, Matthias J P; Kan, Hermien E

    2017-01-01

    Duchenne muscular dystrophy is caused by dystrophin gene mutations which lead to the absence of the protein dystrophin. A significant proportion of patients suffer from learning and behavioural disabilities, in addition to muscle weakness. We have previously shown that these patients have a smaller total brain and grey matter volume, and altered white matter microstructure compared to healthy controls. Patients with more distal gene mutations, predicted to affect dystrophin isoforms Dp140 and Dp427, showed greater grey matter reduction. Now, we studied if cerebral blood flow in Duchenne muscular dystrophy patients is altered, since cerebral expression of dystrophin also occurs in vascular endothelial cells and astrocytes associated with cerebral vasculature. T1-weighted anatomical and pseudo-continuous arterial spin labeling cerebral blood flow images were obtained from 26 patients and 19 age-matched controls (ages 8-18 years) on a 3 tesla MRI scanner. Group comparisons of cerebral blood flow were made with and without correcting for grey matter volume using partial volume correction. Results showed that patients had a lower cerebral blood flow than controls (40.0 ± 6.4 and 47.8 ± 6.3 mL/100 g/min respectively, p = 0.0002). This reduction was independent of grey matter volume, suggesting that they are two different aspects of the pathophysiology. Cerebral blood flow was lowest in patients lacking Dp140. There was no difference in CBF between ambulant and non-ambulant patients. Only three patients showed a reduced left ventricular ejection fraction. No correlation between cerebral blood flow and age was found. Our results indicate that cerebral perfusion is reduced in Duchenne muscular dystrophy patients independent of the reduced grey matter volume. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Aerobic fitness and the brain: increased N-acetyl-aspartate and choline concentrations in endurance-trained middle-aged adults.

    PubMed

    Gonzales, Mitzi M; Tarumi, Takashi; Kaur, Sonya; Nualnim, Nantinee; Fallow, Bennett A; Pyron, Martha; Tanaka, Hirofumi; Haley, Andreana P

    2013-01-01

    Engagement in regular aerobic exercise is associated with cognitive benefits, but information on the mechanisms governing these changes in humans is limited. The goal of the current study was to compare neurometabolite concentrations relating to cellular metabolism, structure, and viability in endurance-trained and sedentary middle-aged adults. Twenty-eight endurance-trained and 27 sedentary adults, aged 40-65 years, underwent general health assessment, cardiorespiratory fitness measurement, neuropsychological testing, and proton magnetic resonance spectroscopy ((1)H MRS). (1)H MRS was used to examine N-acetyl-aspartate (NAA), creatine (Cr), myo-inositol (mI), choline (Cho), and glutamate (Glu) concentrations in frontal and occipitoparietal grey matter. Group differences in concentrations of NAA, Cho, mI, and Glu, calculated as ratios over Cr, were explored using ANOVA. There were no significant differences in global cognitive function, memory, and executive function performance between the groups. In comparison to sedentary adults, the endurance-trained group displayed significantly higher NAA/Cr in the frontal grey matter (F(1, 53) = 5.367, p = 0.024) and higher Cho/Cr in the occipitoparietal grey matter (F(1, 53) = 5.138, p = 0.028). Within our middle-aged sample, endurance-trained adults demonstrated higher levels of NAA/Cr in the frontal grey matter and higher Cho/Cr in the occipitoparietal grey matter. Higher levels of NAA may indicate greater neuronal integrity and higher cerebral metabolic efficiency in association with cardiorespiratory fitness, whereas increased Cho may represent increased phospholipid levels secondary to neural plasticity.

  19. Brain grey matter volume alterations in late-life depression

    PubMed Central

    Du, Mingying; Liu, Jia; Chen, Ziqi; Huang, Xiaoqi; Li, Jing; Kuang, Weihong; Yang, Yanchun; Zhang, Wei; Zhou, Dong; Bi, Feng; Kendrick, Keith Maurice; Gong, Qiyong

    2014-01-01

    Background Voxel-based morphometry (VBM) studies have demonstrated that grey matter abnormalities are involved in the pathophysiology of late-life depression (LLD), but the findings are inconsistent and have not been quantitatively reviewed. The aim of the present study was to conduct a meta-analysis that integrated the reported VBM studies, to determine consistent grey matter alterations in individuals with LLD. Methods A systematic search was conducted to identify VBM studies that compared patients with LLD and healthy controls. We performed a meta-analysis using the effect size signed differential mapping method to quantitatively estimate regional grey matter abnormalities in patients with LLD. Results We included 9 studies with 11 data sets comprising 292 patients with LLD and 278 healthy controls in our meta-analysis. The pooled and subgroup meta-analyses showed robust grey matter reductions in the right lentiform nucleus extending into the parahippocampus, the hippocampus and the amygdala, the bilateral medial frontal gyrus and the right subcallosal gyrus as well as a grey matter increase in the right lingual gyrus. Meta-regression analyses showed that mean age and the percentage of female patients with LLD were not significantly related to grey matter changes. Limitations The analysis techniques, patient characteristics and clinical variables of the studies included were heterogeneous, and most participants were medicated. Conclusion The present meta-analysis is, to our knowledge, the first to overcome previous inconsistencies in the VBM studies of LLD and provide robust evidence for grey matter alterations within fronto–striatal–limbic networks, thereby implicating them in the pathophysiology of LLD. The mean age and the percentage of female patients with LLD did not appear to have a measurable impact on grey matter changes, although we cannot rule out the contributory effects of medication. PMID:24949867

  20. Brain grey matter volume alterations in late-life depression.

    PubMed

    Du, Mingying; Liu, Jia; Chen, Ziqi; Huang, Xiaoqi; Li, Jing; Kuang, Weihong; Yang, Yanchun; Zhang, Wei; Zhou, Dong; Bi, Feng; Kendrick, Keith M; Gong, Qiyong

    2014-11-01

    Voxel-based morphometry (VBM) studies have demonstrated that grey matter abnormalities are involved in the pathophysiology of late-life depression (LLD), but the findings are inconsistent and have not been quantitatively reviewed. The aim of the present study was to conduct a meta-analysis that integrated the reported VBM studies, to determine consistent grey matter alterations in individuals with LLD. A systematic search was conducted to identify VBM studies that compared patients with LLD and healthy controls. We performed a meta-analysis using the effect size signed differential mapping method to quantitatively estimate regional grey matter abnormalities in patients with LLD. We included 9 studies with 11 data sets comprising 292 patients with LLD and 278 healthy controls in our meta-analysis. The pooled and subgroup meta-analyses showed robust grey matter reductions in the right lentiform nucleus extending into the parahippocampus, the hippocampus and the amygdala, the bilateral medial frontal gyrus and the right subcallosal gyrus as well as a grey matter increase in the right lingual gyrus. Meta-regression analyses showed that mean age and the percentage of female patients with LLD were not significantly related to grey matter changes. The analysis techniques, patient characteristics and clinical variables of the studies included were heterogeneous, and most participants were medicated. The present meta-analysis is, to our knowledge, the first to overcome previous inconsistencies in the VBM studies of LLD and provide robust evidence for grey matter alterations within fronto-striatal-limbic networks, thereby implicating them in the pathophysiology of LLD. The mean age and the percentage of female patients with LLD did not appear to have a measurable impact on grey matter changes, although we cannot rule out the contributory effects of medication.

  1. Familial and environmental influences on brain volumes in twins with schizophrenia.

    PubMed

    Picchioni, Marco M; Rijsdijk, Fruhling; Toulopoulou, Timothea; Chaddock, Christopher; Cole, James H; Ettinger, Ulrich; Oses, Ana; Metcalfe, Hugo; Murray, Robin M; McGuire, Philip

    2017-03-01

    Reductions in whole brain and grey matter volumes are robust features of schizophrenia, yet their etiological influences are unclear. We investigated the association between the genetic and environmental risk for schizophrenia and brain volumes. Whole brain, grey matter and white matter volumes were established from structural MRIs from twins varying in their zygosity and concordance for schizophrenia. Hippocampal volumes were measured manually. We conducted between-group testing and full genetic modelling. We included 168 twins in our study. Whole brain, grey matter, white matter and right hippocampal volumes were smaller in twins with schizophrenia. Twin correlations were larger for whole brain, grey matter and white matter volumes in monozygotic than dizygotic twins and were significantly heritable, whereas hippocampal volume was the most environmentally sensitive. There was a significant phenotypic correlation between schizophrenia and reductions in all the brain volumes except for that of the left hippocampus. For whole brain, grey matter and the right hippocampus the etiological links with schizophrenia were principally associated with the shared familial environment. Lower birth weight and perinatal hypoxia were both associated with lower whole brain volume and with lower white matter and grey matter volumes, respectively. Scan data were collected across 2 sites, and some groups were modest in size. Whole brain, grey matter and right hippocampal volume reductions are linked to schizophrenia through correlated familial risk (i.e., the shared familial environment). The degree of influence of etiological factors varies between brain structures, leading to the possibility of a neuroanatomically specific etiological imprint.

  2. A voxel-based investigation of brain structure in male adolescents with autistic spectrum disorder.

    PubMed

    Waiter, Gordon D; Williams, Justin H G; Murray, Alison D; Gilchrist, Anne; Perrett, David I; Whiten, Andrew

    2004-06-01

    Autistic spectrum disorder (ASD) has been associated with abnormal neuroanatomy in many imaging and neuropathological studies. Both global brain volume differences and differences in the size of specific neural structures have been reported. Here, we report a voxel-based morphometric whole brain analysis, using a group specific template, on 16 individuals of normal intelligence with autistic spectrum disorder (ASD), and a group of 16 age-, sex- and IQ-matched controls. Total grey matter volume was increased in the ASD group relative to the control group, with local volume increases in the right fusiform gyrus, the right temporo-occipital region and the left frontal pole extending to the medial frontal cortex. A local decrease in grey matter volume was found in the right thalamus. A decrease in global white matter volume in the ASD group did not reach significance. We found the increase in grey matter volume in ASD subjects was greatest in those areas recognised for their role in social cognition, particularly face recognition (right fusiform gyrus), mental state attribution: 'theory of mind' (anterior cingulate and superior temporal sulcus) and perception of eye gaze (superior temporal gyrus). The picture as a whole may reflect an abnormally functioning social cognitive neural network. We suggest that increased grey matter volume may play a pivotal role in the aetiology of the autistic syndrome.

  3. Cortical grey matter content is associated with both age and bimanual performance, but is not observed to mediate age-related behavioural decline.

    PubMed

    van Ruitenbeek, Peter; Serbruyns, Leen; Solesio-Jofre, Elena; Meesen, Raf; Cuypers, Koen; Swinnen, Stephan P

    2017-01-01

    Declines in both cortical grey matter and bimanual coordination performance are evident in healthy ageing. However, the relationship between ageing, bimanual performance, and grey matter loss remains unclear, particularly across the whole adult lifespan. Therefore, participants (N = 93, range 20-80 years) performed a complex Bimanual Tracking Task, and structural brain images were obtained using magnetic resonance imaging. Analyses revealed that age correlated negatively with task performance. Voxel-based morphometry analysis revealed that age was associated with grey matter declines in task-relevant cortical areas and that grey matter in these areas was negatively associated with task performance. However, no evidence for a mediating effect of grey matter in age-related bimanual performance decline was observed. We propose a new hypothesis that functional compensation may account for the observed absence of mediation, which is in line with the observed pattern of increased inter-individual variance in performance with age.

  4. Early grey matter changes in structural covariance networks in Huntington's disease.

    PubMed

    Coppen, Emma M; van der Grond, Jeroen; Hafkemeijer, Anne; Rombouts, Serge A R B; Roos, Raymund A C

    2016-01-01

    Progressive subcortical changes are known to occur in Huntington's disease (HD), a hereditary neurodegenerative disorder. Less is known about the occurrence and cohesion of whole brain grey matter changes in HD. We aimed to detect network integrity changes in grey matter structural covariance networks and examined relationships with clinical assessments. Structural magnetic resonance imaging data of premanifest HD ( n  = 30), HD patients (n = 30) and controls (n = 30) was used to identify ten structural covariance networks based on a novel technique using the co-variation of grey matter with independent component analysis in FSL. Group differences were studied controlling for age and gender. To explore whether our approach is effective in examining grey matter changes, regional voxel-based analysis was additionally performed. Premanifest HD and HD patients showed decreased network integrity in two networks compared to controls. One network included the caudate nucleus, precuneous and anterior cingulate cortex (in HD p  < 0.001, in pre-HD p  = 0.003). One other network contained the hippocampus, premotor, sensorimotor, and insular cortices (in HD p  < 0.001, in pre-HD p  = 0.023). Additionally, in HD patients only, decreased network integrity was observed in a network including the lingual gyrus, intracalcarine, cuneal, and lateral occipital cortices ( p  = 0.032). Changes in network integrity were significantly associated with scores of motor and neuropsychological assessments. In premanifest HD, voxel-based analyses showed pronounced volume loss in the basal ganglia, but less prominent in cortical regions. Our results suggest that structural covariance might be a sensitive approach to reveal early grey matter changes, especially for premanifest HD.

  5. The Self-Liking Brain: A VBM Study on the Structural Substrate of Self-Esteem

    PubMed Central

    Agroskin, Dmitrij; Klackl, Johannes; Jonas, Eva

    2014-01-01

    Abundant evidence suggests that self-esteem is an important personality resource for emotion regulation in response to stressful experiences. It was thus hypothesized that the relative grey matter volume of brain regions involved in responding to and coping with stress is related to individual differences in trait self-esteem. Using structural magnetic resonance imaging of 48 healthy adults in conjunction with voxel-based morphometry and diffeomorphic anatomical registration using exponentiated lie algebra (VBM-DARTEL), positive associations between self-esteem and regional grey matter volume were indeed found in the anterior cingulate cortex (ACC), right lateral prefrontal cortex (LPFC), right hippocampus, and left hypothalamus. In addition, self-esteem positively covaried with grey matter volume in the right temporo-parietal junction (TPJ), which has been implicated in pride and theory of mind. The results suggest that persons with low self-esteem have reduced grey matter volume in brain regions that contribute to emotion/stress regulation, pride, and theory of mind. The findings provide novel neuroanatomical evidence for the view that self-esteem constitutes a vital coping resource. PMID:24489727

  6. The self-liking brain: a VBM study on the structural substrate of self-esteem.

    PubMed

    Agroskin, Dmitrij; Klackl, Johannes; Jonas, Eva

    2014-01-01

    Abundant evidence suggests that self-esteem is an important personality resource for emotion regulation in response to stressful experiences. It was thus hypothesized that the relative grey matter volume of brain regions involved in responding to and coping with stress is related to individual differences in trait self-esteem. Using structural magnetic resonance imaging of 48 healthy adults in conjunction with voxel-based morphometry and diffeomorphic anatomical registration using exponentiated lie algebra (VBM-DARTEL), positive associations between self-esteem and regional grey matter volume were indeed found in the anterior cingulate cortex (ACC), right lateral prefrontal cortex (LPFC), right hippocampus, and left hypothalamus. In addition, self-esteem positively covaried with grey matter volume in the right temporo-parietal junction (TPJ), which has been implicated in pride and theory of mind. The results suggest that persons with low self-esteem have reduced grey matter volume in brain regions that contribute to emotion/stress regulation, pride, and theory of mind. The findings provide novel neuroanatomical evidence for the view that self-esteem constitutes a vital coping resource.

  7. Brain anatomy alterations associated with Social Networking Site (SNS) addiction

    PubMed Central

    He, Qinghua; Turel, Ofir; Bechara, Antoine

    2017-01-01

    This study relies on knowledge regarding the neuroplasticity of dual-system components that govern addiction and excessive behavior and suggests that alterations in the grey matter volumes, i.e., brain morphology, of specific regions of interest are associated with technology-related addictions. Using voxel based morphometry (VBM) applied to structural Magnetic Resonance Imaging (MRI) scans of twenty social network site (SNS) users with varying degrees of SNS addiction, we show that SNS addiction is associated with a presumably more efficient impulsive brain system, manifested through reduced grey matter volumes in the amygdala bilaterally (but not with structural differences in the Nucleus Accumbens). In this regard, SNS addiction is similar in terms of brain anatomy alterations to other (substance, gambling etc.) addictions. We also show that in contrast to other addictions in which the anterior-/ mid- cingulate cortex is impaired and fails to support the needed inhibition, which manifests through reduced grey matter volumes, this region is presumed to be healthy in our sample and its grey matter volume is positively correlated with one’s level of SNS addiction. These findings portray an anatomical morphology model of SNS addiction and point to brain morphology similarities and differences between technology addictions and substance and gambling addictions. PMID:28332625

  8. Structural brain aberrations associated with the dissociative subtype of post-traumatic stress disorder.

    PubMed

    Daniels, J K; Frewen, P; Theberge, J; Lanius, R A

    2016-03-01

    One factor potentially contributing to the heterogeneity of previous results on structural grey matter alterations in adult participants suffering from post-traumatic stress disorder (PTSD) is the varying levels of dissociative symptomatology. The aim of this study was therefore to test whether the recently defined dissociative subtype of PTSD characterized by symptoms of depersonalization and derealization is characterized by specific differences in volumetric brain morphology. Whole-brain MRI data were acquired for 59 patients with PTSD. Voxel-based morphometry was carried out to test for group differences between patients classified as belonging (n = 15) vs. not belonging (n = 44) to the dissociative subtype of PTSD. The correlation between dissociation (depersonalization/derealization) severity and grey matter volume was computed. Patients with PTSD classified as belonging to the dissociative subtype exhibited greater grey matter volume in the right precentral and fusiform gyri as well as less volume in the right inferior temporal gyrus. Greater dissociation severity was associated with greater volume in the right middle frontal gyrus. The results of this first whole-brain investigation of specific grey matter volume in dissociative subtype PTSD indentified structural aberrations in regions subserving the processing and regulation of emotional arousal. These might constitute characteristic biomarkers for the dissociative subtype PTSD. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Dispositional Mindfulness Co-Varies with Smaller Amygdala and Caudate Volumes in Community Adults

    PubMed Central

    Taren, Adrienne A.; Creswell, J. David; Gianaros, Peter J.

    2013-01-01

    Mindfulness, a psychological process reflecting attention and awareness to what is happening in the present moment, has been associated with increased well-being and decreased depression and anxiety in both healthy and patient populations. However, little research has explored underlying neural pathways. Recent work suggests that mindfulness (and mindfulness training interventions) may foster neuroplastic changes in cortico-limbic circuits responsible for stress and emotion regulation. Building on this work, we hypothesized that higher levels of dispositional mindfulness would be associated with decreased grey matter volume in the amgydala. In the present study, a self-report measure of dispositional mindfulness and structural MRI images were obtained from 155 healthy community adults. Volumetric analyses showed that higher dispositional mindfulness is associated with decreased grey matter volume in the right amygdala, and exploratory analyses revealed that higher dispositional mindfulness is also associated with decreased grey matter volume in the left caudate. Moreover, secondary analyses indicate that these amygdala and caudate volume associations persist after controlling for relevant demographic and individual difference factors (i.e., age, total grey matter volume, neuroticism, depression). Such volumetric differences may help explain why mindful individuals have reduced stress reactivity, and suggest new candidate structural neurobiological pathways linking mindfulness with mental and physical health outcomes. PMID:23717632

  10. The Relation between 1st Grade Grey Matter Volume and 2nd Grade Math Competence

    PubMed Central

    Price, Gavin R.; Wilkey, Eric D.; Yeo, Darren J.; Cutting, Laurie E.

    2015-01-01

    Mathematical and numerical competence is a critical foundation for individual success in modern society yet the neurobiological sources of individual differences in math competence are poorly understood. Neuroimaging research over the last decade suggests that neural mechanisms in the parietal lobe, particularly the intraparietal sulcus (IPS) are structurally aberrant in individuals with mathematical learning disabilities. However, whether those same brain regions underlie individual differences in math performance across the full range of math abilities is unknown. Furthermore, previous studies have been exclusively cross-sectional, making it unclear whether variations in the structure of the IPS are caused by or consequences of the development of math skills. The present study investigates the relation between grey matter volume across the whole brain and math competence longitudinally in a representative sample of 50 elementary school children. Results show that grey matter volume in the left IPS at the end of 1st grade relates to math competence a year later at the end of 2nd grade. Grey matter volume in this region did not change over that year, and was still correlated with math competence at the end of 2nd grade. These findings support the hypothesis that the IPS and its associated functions represent a critical foundation for the acquisition of mathematical competence. PMID:26334946

  11. Pain Sensitivity is Inversely Related to Regional Grey Matter Density in the Brain

    PubMed Central

    Emerson, Nichole M.; Zeidan, Fadel; Lobanov, Oleg V.; Hadsel, Morten S.; Martucci, Katherine T.; Quevedo, Alexandre S.; Starr, Christopher J.; Nahman-Averbuch, Hadas; Weissman-Fogel, Irit; Granovsky, Yelena; Yarnitsky, David; Coghill, Robert C.

    2014-01-01

    Pain is a highly personal experience that varies substantially among individuals. In search of an anatomical correlate of pain sensitivity we used voxel-based morphometry (VBM) to investigate the relationship between grey matter density across the whole brain and inter-individual differences in pain sensitivity in 116 healthy volunteers (62 females, 54 males). Structural MRI and psychophysical data from 10 previous fMRI studies were used. Age, sex, unpleasantness ratings, scanner sequence, and sensory testing location were added to the model as covariates. Regression analysis of grey matter density across the whole brain and thermal pain intensity ratings at 49°C revealed a significant inverse relationship between pain sensitivity and grey matter density in bilateral regions of the posterior cingulate cortex, precuneus, intraparietal sulcus, and inferior parietal lobule. Unilateral regions of the left primary somatosensory cortex also exhibited this inverse relationship. No regions exhibited a positive relationship to pain sensitivity. These structural variations occurred in areas associated with the default mode network, attentional direction and shifting, as well as somatosensory processing. These findings underscore the potential importance of processes related to default mode thought and attention in shaping individual differences in pain sensitivity and indicate that pain sensitivity can potentially be predicted on the basis of brain structure. PMID:24333778

  12. Grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents.

    PubMed

    Li, Wenjing; Li, Jianhong; Wang, Zhenchang; Li, Yong; Liu, Zhaohui; Yan, Fei; Xian, Junfang; He, Huiguang

    2015-01-01

    Previous studies have shown brain reorganizations after early deprivation of auditory sensory. However, changes of grey matter connectivity have not been investigated in prelingually deaf adolescents yet. In the present study, we aimed to investigate changes of grey matter connectivity within and between auditory, language and visual systems in prelingually deaf adolescents. We recruited 16 prelingually deaf adolescents and 16 age-and gender-matched normal controls, and extracted the grey matter volume as the structural characteristic from 14 regions of interest involved in auditory, language or visual processing to investigate the changes of grey matter connectivity within and between auditory, language and visual systems. Sparse inverse covariance estimation (SICE) was utilized to construct grey matter connectivity between these brain regions. The results show that prelingually deaf adolescents present weaker grey matter connectivity within auditory and visual systems, and connectivity between language and visual systems declined. Notably, significantly increased brain connectivity was found between auditory and visual systems in prelingually deaf adolescents. Our results indicate "cross-modal" plasticity after deprivation of the auditory input in prelingually deaf adolescents, especially between auditory and visual systems. Besides, auditory deprivation and visual deficits might affect the connectivity pattern within language and visual systems in prelingually deaf adolescents.

  13. Differing patterns of brain structural abnormalities between black and white patients with their first episode of psychosis.

    PubMed

    Morgan, K D; Dazzan, P; Morgan, C; Lappin, J; Hutchinson, G; Chitnis, X; Suckling, J; Fearon, P; Jones, P B; Leff, J; Murray, R M

    2010-07-01

    African-Caribbean and black African people living in the UK are reported to have a higher incidence of diagnosed psychosis compared with white British people. It has been argued that this may be a consequence of misdiagnosis. If this is true they might be less likely to show the patterns of structural brain abnormalities reported in white British patients. The aim of this study therefore was to investigate whether there are differences in the prevalence of structural brain abnormalities in white and black first-episode psychosis patients. We obtained dual-echo (proton density/T2-weighted) images from a sample of 75 first-episode psychosis patients and 68 healthy controls. We used high resolution magnetic resonance imaging and voxel-based methods of image analysis. Two separate analyses were conducted: (1) 34 white British patients were compared with 33 white British controls; (2) 41 African-Caribbean and black African patients were compared with 35 African-Caribbean and black African controls. White British patients and African-Caribbean/black African patients had ventricular enlargement and increased lenticular nucleus volume compared with their respective ethnic controls. The African-Caribbean/black African patients also showed reduced global grey matter and increased lingual gyrus grey-matter volume. The white British patients had no regional or global grey-matter loss compared with their normal ethnic counterparts but showed increased grey matter in the left superior temporal lobe and right parahippocampal gyrus. We found no evidence in support of our hypothesis. Indeed, the finding of reduced global grey-matter volume in the African-Caribbean/black African patients but not in the white British patients was contrary to our prediction.

  14. Quantifying cerebellum grey matter and white matter perfusion using pulsed arterial spin labeling.

    PubMed

    Li, Xiufeng; Sarkar, Subhendra N; Purdy, David E; Briggs, Richard W

    2014-01-01

    To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values.

  15. Atrophy of the Parietal Lobe in Preclinical Dementia

    ERIC Educational Resources Information Center

    Jacobs, Heidi I. L.; Van Boxtel, Martin P. J.; Uylings, Harry B. M.; Gronenschild, Ed H. B. M.; Verhey, Frans R.; Jolles, Jelle

    2011-01-01

    Cortical grey matter atrophy patterns have been reported in healthy ageing and Alzheimer disease (AD), but less consistently in the parietal regions of the brain. We investigated cortical grey matter volume patterns in parietal areas. The grey matter of the somatosensory cortex, superior and inferior parietal lobule was measured in 75 older adults…

  16. Very preterm adolescents show gender-dependent alteration of the structural brain correlates of spelling abilities.

    PubMed

    Scott, Fiona E; Mechelli, Andrea; Allin, Matthew P; Walshe, Muriel; Rifkin, Larry; Murray, Robin M; Nosarti, Chiara

    2011-07-01

    Individuals born very preterm (VPT) are at risk of neurodevelopmental damage and of adverse educational outcomes in childhood and adolescence. The present study used voxel-based morphometry to investigate the association between grey matter and white matter volume and measures of language and executive functioning in VPT born adolescents and term-born controls by gender. VPT individuals (N=218) and controls (N=127) underwent neuropsychological assessment and MRI at age 14-15 as part of a longitudinal study. Differential associations were found between spelling scores and frontal regional grey matter volume when group (VPT and control) and gender (males and females) were investigated. A main effect of group demonstrated a weaker association in VPT adolescents relative to controls between grey matter volume in the left medial and right superior frontal gyri and spelling scores. A main effect of gender revealed spelling scores to be correlated with grey matter volume in the right superior frontal gyrus in females to a greater extent than in males. Furthermore, a significant interaction between group and gender was detected in two regions. Spelling scores showed a stronger association with grey matter volume in a cluster with local maxima in the left medial frontal cortex extending to the caudate nucleus in VPT females than in control females and a weaker association in VPT males compared to control males. In addition, spelling scores showed a stronger association with grey matter volume in left middle frontal gyrus in VPT males compared to control males and a weaker association in VPT females than in control females. When group and gender were investigated, there were no statistically different correlations between structural brain volumes and performance on reading and executive function tests. These data demonstrate that the typical structure-function relationship in respect to spelling abilities appears to be altered in individuals born preterm and the processes underpinning this divergence may be subject to gender-specific influences. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. [Analysis of mechanism of transition zones among β, δ and γ dispersions in brain white matter and grey matter].

    PubMed

    Tian, Rui; Lu, Mai

    2017-08-01

    In order to explore the application of the dielectric properties of white matter and grey matter in β, δ and γ dispersion transition zones used in clinical medicine and microwave imaging technology, we calculated the dielectric constant and its increment by using Cole-Cole equation. Based on the mutation of the increment of dielectric constant, the frequency range of three dispersions were evaluated. The dominate dispersion and the corresponding polarization mechanism were analyzed by using Cole-Cole circle. The results showed that there are 3 transition zones in brain white matter, which occur between β and δ dispersion, δ and γ dispersion and β and γ dispersion respectively. In grey matter, there are only 2 transition zones, which are between β and δ dispersion and δ and γ dispersion respectively. By comparing the frequency range of white matter and grey matter, the frequency range in white matter is broader than that in grey matter for the transition zone of β and δ dispersion with the β dispersion occupying dominate position in both tissues, and the corresponding polarization mechanism is interfacial polarization. For the transition zone of δ and γ dispersion, the frequency range in white matter is also broader than that in grey matter with the δ dispersion occupying dominate position in both tissues, and the corresponding polarization mechanism is orientation polarization. This study can provide basic theory and reference for diagnosis of brain diseases and microwave imaging technology.

  18. Assessing the marks of change: how psychotherapy alters the brain structure in women with borderline personality disorder.

    PubMed

    Mancke, Falk; Schmitt, Ruth; Winter, Dorina; Niedtfeld, Inga; Herpertz, Sabine C; Schmahl, Christian

    2017-12-13

    There is increasing evidence that psychotherapy can alter the function of the brain of patients with borderline personality disorder (BPD). However, it is not known whether psychotherapy can also modify the brain structure of patients with BPD. We used structural MRI data of female patients with BPD before and after participation in 12 weeks of residential dialectical behavioural therapy (DBT) and compared them to data from female patients with BPD who received treatment as usual (TAU). We applied voxel-based morphometry to study voxel-wise changes in grey matter volume over time. We included 31 patients in the DBT group and 17 in the TAU group. Patients receiving DBT showed an increase of grey matter volume in the anterior cingulate cortex, inferior frontal gyrus and superior temporal gyrus together with an alteration of grey matter volume in the angular gyrus and supramarginal gyrus compared with patients receiving TAU. Furthermore, therapy response correlated with increase of grey matter volume in the angular gyrus. Only women were investigated, and groups differed in size, medication (controlled for) and intensity of the treatment condition. We found that DBT increased grey matter volume of brain regions that are critically implicated in emotion regulation and higher-order functions, such as mentalizing. The role of the angular gyrus for treatment response may reside in its cross-modal integrative function. These findings enhance our understanding of psychotherapy mechanisms of change and may foster the development of neurobiologically informed therapeutic interventions.

  19. Dissociating Normal Aging from Alzheimer’s Disease: A View from Cognitive Neuroscience

    PubMed Central

    Toepper, Max

    2017-01-01

    Both normal aging and Alzheimer’s disease (AD) are associated with changes in cognition, grey and white matter volume, white matter integrity, neural activation, functional connectivity, and neurotransmission. Obviously, all of these changes are more pronounced in AD and proceed faster providing the basis for an AD diagnosis. Since these differences are quantitative, however, it was hypothesized that AD might simply reflect an accelerated aging process. The present article highlights the different neurocognitive changes associated with normal aging and AD and shows that, next to quantitative differences, there are multiple qualitative differences as well. These differences comprise different neurocognitive dissociations as different cognitive deficit profiles, different weights of grey and white matter atrophy, and different gradients of structural decline. These qualitative differences clearly indicate that AD cannot be simply described as accelerated aging process but on the contrary represents a solid entity. PMID:28269778

  20. Pain sensitivity is inversely related to regional grey matter density in the brain.

    PubMed

    Emerson, Nichole M; Zeidan, Fadel; Lobanov, Oleg V; Hadsel, Morten S; Martucci, Katherine T; Quevedo, Alexandre S; Starr, Christopher J; Nahman-Averbuch, Hadas; Weissman-Fogel, Irit; Granovsky, Yelena; Yarnitsky, David; Coghill, Robert C

    2014-03-01

    Pain is a highly personal experience that varies substantially among individuals. In search of an anatomical correlate of pain sensitivity, we used voxel-based morphometry to investigate the relationship between grey matter density across the whole brain and interindividual differences in pain sensitivity in 116 healthy volunteers (62 women, 54 men). Structural magnetic resonance imaging (MRI) and psychophysical data from 10 previous functional MRI studies were used. Age, sex, unpleasantness ratings, scanner sequence, and sensory testing location were added to the model as covariates. Regression analysis of grey matter density across the whole brain and thermal pain intensity ratings at 49°C revealed a significant inverse relationship between pain sensitivity and grey matter density in bilateral regions of the posterior cingulate cortex, precuneus, intraparietal sulcus, and inferior parietal lobule. Unilateral regions of the left primary somatosensory cortex also exhibited this inverse relationship. No regions showed a positive relationship to pain sensitivity. These structural variations occurred in areas associated with the default mode network, attentional direction and shifting, as well as somatosensory processing. These findings underscore the potential importance of processes related to default mode thought and attention in shaping individual differences in pain sensitivity and indicate that pain sensitivity can potentially be predicted on the basis of brain structure. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  1. Longitudinal patterns of leukoaraiosis and brain atrophy in symptomatic small vessel disease

    PubMed Central

    Benjamin, Philip; Zeestraten, Eva; Lawrence, Andrew J.; Barrick, Thomas R.; Markus, Hugh S.

    2016-01-01

    Abstract Cerebral small vessel disease is a common condition associated with lacunar stroke, cognitive impairment and significant functional morbidity. White matter hyperintensities and brain atrophy, seen on magnetic resonance imaging, are correlated with increasing disease severity. However, how the two are related remains an open question. To better define the relationship between white matter hyperintensity growth and brain atrophy, we applied a semi-automated magnetic resonance imaging segmentation analysis pipeline to a 3-year longitudinal cohort of 99 subjects with symptomatic small vessel disease, who were followed-up for ≥1 years. Using a novel two-stage warping pipeline with tissue repair step, voxel-by-voxel rate of change maps were calculated for each tissue class (grey matter, white matter, white matter hyperintensities and lacunes) for each individual. These maps capture both the distribution of disease and spatial information showing local rates of growth and atrophy. These were analysed to answer three primary questions: first, is there a relationship between whole brain atrophy and magnetic resonance imaging markers of small vessel disease (white matter hyperintensities or lacune volume)? Second, is there regional variation within the cerebral white matter in the rate of white matter hyperintensity progression? Finally, are there regionally specific relationships between the rates of white matter hyperintensity progression and cortical grey matter atrophy? We demonstrate that the rates of white matter hyperintensity expansion and grey matter atrophy are strongly correlated (Pearson’s R = −0.69, P < 1 × 10 −7 ), and significant grey matter loss and whole brain atrophy occurs annually ( P < 0.05). Additionally, the rate of white matter hyperintensity growth was heterogeneous, occurring more rapidly within long association fasciculi. Using voxel-based quantification (family-wise error corrected P < 0.05), we show the rate of white matter hyperintensity progression is associated with increases in cortical grey matter atrophy rates, in the medial-frontal, orbito-frontal, parietal and occipital regions. Conversely, increased rates of global grey matter atrophy are significantly associated with faster white matter hyperintensity growth in the frontal and parietal regions. Together, these results link the progression of white matter hyperintensities with increasing rates of regional grey matter atrophy, and demonstrate that grey matter atrophy is the major contributor to whole brain atrophy in symptomatic cerebral small vessel disease. These measures provide novel insights into the longitudinal pathogenesis of small vessel disease, and imply that therapies aimed at reducing progression of white matter hyperintensities via end-arteriole damage may protect against secondary brain atrophy and consequent functional morbidity. PMID:26936939

  2. Longitudinal patterns of leukoaraiosis and brain atrophy in symptomatic small vessel disease.

    PubMed

    Lambert, Christian; Benjamin, Philip; Zeestraten, Eva; Lawrence, Andrew J; Barrick, Thomas R; Markus, Hugh S

    2016-04-01

    Cerebral small vessel disease is a common condition associated with lacunar stroke, cognitive impairment and significant functional morbidity. White matter hyperintensities and brain atrophy, seen on magnetic resonance imaging, are correlated with increasing disease severity. However, how the two are related remains an open question. To better define the relationship between white matter hyperintensity growth and brain atrophy, we applied a semi-automated magnetic resonance imaging segmentation analysis pipeline to a 3-year longitudinal cohort of 99 subjects with symptomatic small vessel disease, who were followed-up for ≥1 years. Using a novel two-stage warping pipeline with tissue repair step, voxel-by-voxel rate of change maps were calculated for each tissue class (grey matter, white matter, white matter hyperintensities and lacunes) for each individual. These maps capture both the distribution of disease and spatial information showing local rates of growth and atrophy. These were analysed to answer three primary questions: first, is there a relationship between whole brain atrophy and magnetic resonance imaging markers of small vessel disease (white matter hyperintensities or lacune volume)? Second, is there regional variation within the cerebral white matter in the rate of white matter hyperintensity progression? Finally, are there regionally specific relationships between the rates of white matter hyperintensity progression and cortical grey matter atrophy? We demonstrate that the rates of white matter hyperintensity expansion and grey matter atrophy are strongly correlated (Pearson's R = -0.69, P < 1 × 10(-7)), and significant grey matter loss and whole brain atrophy occurs annually (P < 0.05). Additionally, the rate of white matter hyperintensity growth was heterogeneous, occurring more rapidly within long association fasciculi. Using voxel-based quantification (family-wise error corrected P < 0.05), we show the rate of white matter hyperintensity progression is associated with increases in cortical grey matter atrophy rates, in the medial-frontal, orbito-frontal, parietal and occipital regions. Conversely, increased rates of global grey matter atrophy are significantly associated with faster white matter hyperintensity growth in the frontal and parietal regions. Together, these results link the progression of white matter hyperintensities with increasing rates of regional grey matter atrophy, and demonstrate that grey matter atrophy is the major contributor to whole brain atrophy in symptomatic cerebral small vessel disease. These measures provide novel insights into the longitudinal pathogenesis of small vessel disease, and imply that therapies aimed at reducing progression of white matter hyperintensities via end-arteriole damage may protect against secondary brain atrophy and consequent functional morbidity. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  3. Calibrated imaging reveals altered grey matter metabolism related to white matter microstructure and symptom severity in multiple sclerosis.

    PubMed

    Hubbard, Nicholas A; Turner, Monroe P; Ouyang, Minhui; Himes, Lyndahl; Thomas, Binu P; Hutchison, Joanna L; Faghihahmadabadi, Shawheen; Davis, Scott L; Strain, Jeremy F; Spence, Jeffrey; Krawczyk, Daniel C; Huang, Hao; Lu, Hanzhang; Hart, John; Frohman, Teresa C; Frohman, Elliot M; Okuda, Darin T; Rypma, Bart

    2017-11-01

    Multiple sclerosis (MS) involves damage to white matter microstructures. This damage has been related to grey matter function as measured by standard, physiologically-nonspecific neuroimaging indices (i.e., blood-oxygen-level dependent signal [BOLD]). Here, we used calibrated functional magnetic resonance imaging and diffusion tensor imaging to examine the extent to which specific, evoked grey matter physiological processes were associated with white matter diffusion in MS. Evoked changes in BOLD, cerebral blood flow (CBF), and oxygen metabolism (CMRO 2 ) were measured in visual cortex. Individual differences in the diffusion tensor measure, radial diffusivity, within occipital tracts were strongly associated with MS patients' BOLD and CMRO 2 . However, these relationships were in opposite directions, complicating the interpretation of the relationship between BOLD and white matter microstructural damage in MS. CMRO 2 was strongly associated with individual differences in patients' fatigue and neurological disability, suggesting that alterations to evoked oxygen metabolic processes may be taken as a marker for primary symptoms of MS. This work demonstrates the first application of calibrated and diffusion imaging together and details the first application of calibrated functional MRI in a neurological population. Results lend support for neuroenergetic hypotheses of MS pathophysiology and provide an initial demonstration of the utility of evoked oxygen metabolism signals for neurology research. Hum Brain Mapp 38:5375-5390, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. A morphometric signature of depressive symptoms in unmedicated patients with mood disorders.

    PubMed

    Wise, T; Marwood, L; Perkins, A M; Herane-Vives, A; Williams, S C R; Young, A H; Cleare, A J; Arnone, D

    2018-04-22

    A growing literature indicates that unipolar depression and bipolar depression are associated with alterations in grey matter volume. However, it is unclear to what degree these patterns of morphometric change reflect symptom dimensions. Here, we aimed to predict depressive symptoms and hypomanic symptoms based on patterns of grey matter volume using machine learning. We used machine learning methods combined with voxel-based morphometry to predict depressive and self-reported hypomanic symptoms from grey matter volume in a sample of 47 individuals with unmedicated unipolar and bipolar depression. We were able to predict depressive severity from grey matter volume in the anteroventral bilateral insula in both unipolar depression and bipolar depression. Self-reported hypomanic symptoms did not predict grey matter loss with a significant degree of accuracy. The results of this study suggest that patterns of grey matter volume alteration in the insula are associated with depressive symptom severity across unipolar and bipolar depression. Studies using other modalities and exploring other brain regions with a larger sample are warranted to identify other systems that may be associated with depressive and hypomanic symptoms across affective disorders. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Towards a Holistic Cortical Thickness Descriptor: Heat Kernel-Based Grey Matter Morphology Signatures.

    PubMed

    Wang, Gang; Wang, Yalin

    2017-02-15

    In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Grey matter atrophy in mild cognitive impairment / early Alzheimer disease associated with delusions: a voxel-based morphometry study.

    PubMed

    Ting, Windsor Kwan-Chun; Fischer, Corinne E; Millikin, Colleen P; Ismail, Zahinoor; Chow, Tiffany W; Schweizer, Tom A

    2015-01-01

    Grey matter atrophy in the right hemisphere has been shown to be more severe in dementia patients with delusions, suggesting a neuroanatomical localization that may be pertinent to impending neurodegeneration. Delusional symptoms may arise when atrophy in these areas reduces the regulatory functions of the right hemisphere, in tandem with asymmetric neuropathology in the left hemisphere. We hypothesized that delusional patients with either amnestic mild cognitive impairment (MCI) or early Alzheimer Disease (AD) would experience more pronounced grey matter atrophy in the right frontal lobe compared with matched patients without delusions. We used neuroimaging and clinical data obtained from the Alzheimer's Disease Neuroimaging Initiative. A comparison group of twenty-nine nondelusional MCI/early AD participants were compared with twenty-nine delusional participants using voxel-based morphometry, matched at baseline by age, sex, education, and Mini-Mental State Exam score. All included participants were diagnosed with amnestic MCI at study baseline. Fifteen voxel clusters of decreased grey matter in participants with delusions were detected. Prominent grey matter decrease was observed in the right precentral gyrus, right inferior frontal gyrus, right insula, and left middle occipital gyrus, areas that may be involved in control of thought and emotions. Greater right fronto-temporal grey matter atrophy was observed in MCI or early AD participants with delusions compared to matched patients without delusions. Consistent with our predictions, asymmetric grey matter atrophy in the right hemisphere may contribute to development of delusions through loss of executive inhibition.

  7. Automatic Segmentation of the Cortical Grey and White Matter in MRI Using a Region-Growing Approach Based on Anatomical Knowledge

    NASA Astrophysics Data System (ADS)

    Wasserthal, Christian; Engel, Karin; Rink, Karsten; Brechmann, Andr'e.

    We propose an automatic procedure for the correct segmentation of grey and white matter in MR data sets of the human brain. Our method exploits general anatomical knowledge for the initial segmentation and for the subsequent refinement of the estimation of the cortical grey matter. Our results are comparable to manual segmentations.

  8. Quantifying Cerebellum Grey Matter and White Matter Perfusion Using Pulsed Arterial Spin Labeling

    PubMed Central

    Li, Xiufeng; Sarkar, Subhendra N.; Purdy, David E.; Briggs, Richard W.

    2014-01-01

    To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1 mL/100 g/min for GM and 27.6 ± 4.5 mL/100 g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values. PMID:24949416

  9. Assessing the marks of change: how psychotherapy alters the brain structure in women with borderline personality disorder

    PubMed Central

    Schmitt, Ruth; Winter, Dorina; Niedtfeld, Inga; Herpertz, Sabine C.; Schmahl, Christian

    2018-01-01

    Background There is increasing evidence that psychotherapy can alter the function of the brain of patients with borderline personality disorder (BPD). However, it is not known whether psychotherapy can also modify the brain structure of patients with BPD. Methods We used structural MRI data of female patients with BPD before and after participation in 12 weeks of residential dialectical behavioural therapy (DBT) and compared them to data from female patients with BPD who received treatment as usual (TAU). We applied voxel-based morphometry to study voxel-wise changes in grey matter volume over time. Results We included 31 patients in the DBT group and 17 in the TAU group. Patients receiving DBT showed an increase of grey matter volume in the anterior cingulate cortex, inferior frontal gyrus and superior temporal gyrus together with an alteration of grey matter volume in the angular gyrus and supramarginal gyrus compared with patients receiving TAU. Furthermore, therapy response correlated with increase of grey matter volume in the angular gyrus. Limitations Only women were investigated, and groups differed in size, medication (controlled for) and intensity of the treatment condition. Conclusion We found that DBT increased grey matter volume of brain regions that are critically implicated in emotion regulation and higher-order functions, such as mentalizing. The role of the angular gyrus for treatment response may reside in its cross-modal integrative function. These findings enhance our understanding of psychotherapy mechanisms of change and may foster the development of neurobiologically informed therapeutic interventions. PMID:29688873

  10. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis.

    PubMed

    Wise, T; Radua, J; Via, E; Cardoner, N; Abe, O; Adams, T M; Amico, F; Cheng, Y; Cole, J H; de Azevedo Marques Périco, C; Dickstein, D P; Farrow, T F D; Frodl, T; Wagner, G; Gotlib, I H; Gruber, O; Ham, B J; Job, D E; Kempton, M J; Kim, M J; Koolschijn, P C M P; Malhi, G S; Mataix-Cols, D; McIntosh, A M; Nugent, A C; O'Brien, J T; Pezzoli, S; Phillips, M L; Sachdev, P S; Salvadore, G; Selvaraj, S; Stanfield, A C; Thomas, A J; van Tol, M J; van der Wee, N J A; Veltman, D J; Young, A H; Fu, C H; Cleare, A J; Arnone, D

    2017-10-01

    Finding robust brain substrates of mood disorders is an important target for research. The degree to which major depression (MDD) and bipolar disorder (BD) are associated with common and/or distinct patterns of volumetric changes is nevertheless unclear. Furthermore, the extant literature is heterogeneous with respect to the nature of these changes. We report a meta-analysis of voxel-based morphometry (VBM) studies in MDD and BD. We identified studies published up to January 2015 that compared grey matter in MDD (50 data sets including 4101 individuals) and BD (36 data sets including 2407 individuals) using whole-brain VBM. We used statistical maps from the studies included where available and reported peak coordinates otherwise. Group comparisons and conjunction analyses identified regions in which the disorders showed common and distinct patterns of volumetric alteration. Both disorders were associated with lower grey-matter volume relative to healthy individuals in a number of areas. Conjunction analysis showed smaller volumes in both disorders in clusters in the dorsomedial and ventromedial prefrontal cortex, including the anterior cingulate cortex and bilateral insula. Group comparisons indicated that findings of smaller grey-matter volumes relative to controls in the right dorsolateral prefrontal cortex and left hippocampus, along with cerebellar, temporal and parietal regions were more substantial in major depression. These results suggest that MDD and BD are characterised by both common and distinct patterns of grey-matter volume changes. This combination of differences and similarities has the potential to inform the development of diagnostic biomarkers for these conditions.

  11. Different early rearing experiences have long term effects on cortical organization in captive chimpanzees (Pan troglodytes)

    PubMed Central

    Bogart, Stephanie L.; Bennett, Allyson J.; Schapiro, Steven J.; Reamer, Lisa A.; Hopkins, William D.

    2014-01-01

    Consequences of rearing history in chimpanzees (Pan troglodytes) have been explored in relation to behavioral abnormalities and cognition, however, little is known about the effects of rearing conditions on anatomical brain development. Human studies have revealed that experiences of maltreatment and neglect during infancy and childhood can have detrimental effects on brain development and cognition. In this study, we evaluated the effects of early rearing experience on brain morphology in 92 captive chimpanzees (ages 11-43) who were either reared by their mothers (n = 46) or in a nursery (n = 46) with age-group peers. Magnetic resonance brain images were analyzed with a processing program (BrainVISA) that extracts cortical sulci. We obtained various measurements from 11 sulci located throughout the brain, as well as whole brain gyrification and white and grey matter volumes. We found that mother-reared chimpanzees have greater global white-to-grey matter volume, more cortical folding and thinner grey matter within the cortical folds than nursery-reared animals. The findings reported here are the first to demonstrate that differences in early rearing conditions have significant consequences on brain morphology in chimpanzees and suggests potential differences in the development of white matter expansion and myelination. PMID:24206013

  12. Different early rearing experiences have long-term effects on cortical organization in captive chimpanzees (Pan troglodytes).

    PubMed

    Bogart, Stephanie L; Bennett, Allyson J; Schapiro, Steven J; Reamer, Lisa A; Hopkins, William D

    2014-03-01

    Consequences of rearing history in chimpanzees (Pan troglodytes) have been explored in relation to behavioral abnormalities and cognition; however, little is known about the effects of rearing conditions on anatomical brain development. Human studies have revealed that experiences of maltreatment and neglect during infancy and childhood can have detrimental effects on brain development and cognition. In this study, we evaluated the effects of early rearing experience on brain morphology in 92 captive chimpanzees (ages 11-43) who were either reared by their mothers (n = 46) or in a nursery (n = 46) with age-group peers. Magnetic resonance brain images were analyzed with a processing program (BrainVISA) that extracts cortical sulci. We obtained various measurements from 11 sulci located throughout the brain, as well as whole brain gyrification and white and grey matter volumes. We found that mother-reared chimpanzees have greater global white-to-grey matter volume, more cortical folding and thinner grey matter within the cortical folds than nursery-reared animals. The findings reported here are the first to demonstrate that differences in early rearing conditions have significant consequences on brain morphology in chimpanzees and suggests potential differences in the development of white matter expansion and myelination. © 2013 John Wiley & Sons Ltd.

  13. Playing Super Mario 64 increases hippocampal grey matter in older adults.

    PubMed

    West, Greg L; Zendel, Benjamin Rich; Konishi, Kyoko; Benady-Chorney, Jessica; Bohbot, Veronique D; Peretz, Isabelle; Belleville, Sylvie

    2017-01-01

    Maintaining grey matter within the hippocampus is important for healthy cognition. Playing 3D-platform video games has previously been shown to promote grey matter in the hippocampus in younger adults. In the current study, we tested the impact of 3D-platform video game training (i.e., Super Mario 64) on grey matter in the hippocampus, cerebellum, and the dorsolateral prefrontal cortex (DLPFC) of older adults. Older adults who were 55 to 75 years of age were randomized into three groups. The video game experimental group (VID; n = 8) engaged in a 3D-platform video game training over a period of 6 months. Additionally, an active control group took a series of self-directed, computerized music (piano) lessons (MUS; n = 12), while a no-contact control group did not engage in any intervention (CON; n = 13). After training, a within-subject increase in grey matter within the hippocampus was significant only in the VID training group, replicating results observed in younger adults. Active control MUS training did, however, lead to a within-subject increase in the DLPFC, while both the VID and MUS training produced growth in the cerebellum. In contrast, the CON group displayed significant grey matter loss in the hippocampus, cerebellum and the DLPFC.

  14. Playing Super Mario 64 increases hippocampal grey matter in older adults

    PubMed Central

    Konishi, Kyoko; Benady-Chorney, Jessica; Bohbot, Veronique D.; Peretz, Isabelle; Belleville, Sylvie

    2017-01-01

    Maintaining grey matter within the hippocampus is important for healthy cognition. Playing 3D-platform video games has previously been shown to promote grey matter in the hippocampus in younger adults. In the current study, we tested the impact of 3D-platform video game training (i.e., Super Mario 64) on grey matter in the hippocampus, cerebellum, and the dorsolateral prefrontal cortex (DLPFC) of older adults. Older adults who were 55 to 75 years of age were randomized into three groups. The video game experimental group (VID; n = 8) engaged in a 3D-platform video game training over a period of 6 months. Additionally, an active control group took a series of self-directed, computerized music (piano) lessons (MUS; n = 12), while a no-contact control group did not engage in any intervention (CON; n = 13). After training, a within-subject increase in grey matter within the hippocampus was significant only in the VID training group, replicating results observed in younger adults. Active control MUS training did, however, lead to a within-subject increase in the DLPFC, while both the VID and MUS training produced growth in the cerebellum. In contrast, the CON group displayed significant grey matter loss in the hippocampus, cerebellum and the DLPFC. PMID:29211727

  15. Grey matter networks in people at increased familial risk for schizophrenia.

    PubMed

    Tijms, Betty M; Sprooten, Emma; Job, Dominic; Johnstone, Eve C; Owens, David G C; Willshaw, David; Seriès, Peggy; Lawrie, Stephen M

    2015-10-01

    Grey matter brain networks are disrupted in schizophrenia, but it is still unclear at which point during the development of the illness these disruptions arise and whether these can be associated with behavioural predictors of schizophrenia. We investigated if single-subject grey matter networks were disrupted in a sample of people at familial risk of schizophrenia. Single-subject grey matter networks were extracted from structural MRI scans of 144 high risk subjects, 32 recent-onset patients and 36 healthy controls. The following network properties were calculated: size, connectivity density, degree, path length, clustering coefficient, betweenness centrality and small world properties. People at risk of schizophrenia showed decreased path length and clustering in mostly prefrontal and temporal areas. Within the high risk sample, the path length of the posterior cingulate cortex and the betweenness centrality of the left inferior frontal operculum explained 81% of the variance in schizotypal cognitions, which was previously shown to be the strongest behavioural predictor of schizophrenia in the study. In contrast, local grey matter volume measurements explained 48% of variance in schizotypy. The present results suggest that single-subject grey matter networks can quantify behaviourally relevant biological alterations in people at increased risk for schizophrenia before disease onset. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Voxel-based magnetic resonance imaging investigation of poor and preserved clinical insight in people with schizophrenia.

    PubMed

    Sapara, Adegboyega; Ffytche, Dominic H; Cooke, Michael A; Williams, Steven Cr; Kumari, Veena

    2016-09-22

    To define regional grey-matter abnormalities in schizophrenia patients with poor insight (Insight(-)), relative to patients with preserved clinical insight (Insight(+)), and healthy controls. Forty stable schizophrenia outpatients (20 Insight(-) and 20 Insight(+)) and 20 healthy controls underwent whole brain magnetic resonance imaging (MRI). Insight in all patients was assessed using the Birchwood Insight Scale (BIS; a self-report measure). The two patient groups were pre-selected to match on most clinical and demographic parameters but, by design, they had markedly distinct BIS scores. Voxel-based morphometry employed in SPM8 was used to examine group differences in grey matter volumes across the whole brain. The three participant groups were comparable in age [F(2,57) = 0.34, P = 0.71] and the patient groups did not differ in age at illness onset [t(38) = 0.87, P = 0.39]. Insight(-) and Insight(+) patient groups also did not differ in symptoms on the Positive and Negative Syndromes scale (PANSS): Positive symptoms [t(38) = 0.58, P = 0.57], negative symptoms [t(38) = 0.61, P = 0.55], general psychopathology [t(38) = 1.30, P = 0.20] and total PANSS scores [t(38) = 0.21, P = 0.84]. The two patient groups, as expected, varied significantly in the level of BIS-assessed insight [t(38) = 12.11, P < 0.001]. MRI results revealed lower fronto-temporal, parahippocampal, occipital and cerebellar grey matter volumes in Insight(-) patients, relative to Insight(+) patients and healthy controls (for all clusters, family-wise error corrected P < 0.05). Insight(+) patient and healthy controls did not differ significantly (P > 0.20) from each other. Our findings demonstrate a clear association between poor clinical insight and smaller fronto-temporal, occipital and cerebellar grey matter volumes in stable long-term schizophrenia patients.

  17. Grey matter correlates of susceptibility to scams in community-dwelling older adults.

    PubMed

    Duke Han, S; Boyle, Patricia A; Yu, Lei; Arfanakis, Konstantinos; James, Bryan D; Fleischman, Debra A; Bennett, David A

    2016-06-01

    Susceptibility to scams is a significant issue among older adults, even among those with intact cognition. Age-related changes in brain macrostructure may be associated with susceptibility to scams; however, this has yet to be explored. Based on previous work implicating frontal and temporal lobe functioning as important in decision making, we tested the hypothesis that susceptibility to scams is associated with smaller grey matter volume in frontal and temporal lobe regions in a large community-dwelling cohort of non-demented older adults. Participants (N = 327, mean age = 81.55, mean education = 15.30, 78.9 % female) completed a self-report measure used to assess susceptibility to scams and an MRI brain scan. Results indicated an inverse association between overall grey matter and susceptibility to scams in models adjusted for age, education, and sex; and in models further adjusted for cognitive function. No significant associations were observed for white matter, cerebrospinal fluid, or total brain volume. Models adjusted for age, education, and sex revealed seven clusters showing smaller grey matter in the right parahippocampal/hippocampal/fusiform, left middle temporal, left orbitofrontal, right ventromedial prefrontal, right middle temporal, right precuneus, and right dorsolateral prefrontal regions. In models further adjusted for cognitive function, results revealed three significant clusters showing smaller grey matter in the right parahippocampal/hippocampal/fusiform, right hippocampal, and right middle temporal regions. Lower grey matter concentration in specific brain regions may be associated with susceptibility to scams, even after adjusting for cognitive ability. Future research is needed to determine whether grey matter reductions in these regions may be a biomarker for susceptibility to scams in old age.

  18. The Effects of Meditation on Grey Matter Atrophy and Neurodegeneration: A Systematic Review.

    PubMed

    Last, Nicole; Tufts, Emily; Auger, Leslie E

    2017-01-01

    The present systematic review is based on the premise that a variety of neurodegenerative diseases are accompanied by grey matter atrophy in the brain and meditation may impact this. Given that age is a major risk factor for many of these progressive and neurodegenerative diseases and that the percentage of the population over the age of 65 is quickly increasing, there is an obvious need for prompt treatment and prevention advances in research. As there is currently no cure for Alzheimer's disease and other neurodegenerative diseases, many are seeking non-pharmacological treatment options in attempts to offset the disease-related cognitive and functional declines. On the basis of a growing body of research suggesting that meditation is effective in increasing grey matter volume in healthy participants, this paper systematically reviewed the literature regarding the effects of meditation on restoring grey matter volume in healthy individuals and those affected by neurodegeneration. This review searched PubMed, CINAHL, and APA PsycNET to identify original studies that included MRI imaging to measure grey matter volume in meditators and post-mindfulness-based intervention participants compared to controls. Thirteen studies were considered eligible for review and involved a wide variety of meditation techniques and included participants with and without cognitive impairment. All studies reported significant increases in grey matter volume in the meditators/intervention group, albeit in assorted regions of the brain. Limited research exists on the mechanisms through which meditation affects disease-related neurodegeneration, but preliminary evidence suggests that it may offset grey matter atrophy.

  19. The neuroanatomy of psychotic diathesis: a meta-analytic review.

    PubMed

    Palaniyappan, Lena; Balain, Vijender; Liddle, Peter F

    2012-10-01

    Several studies have found widespread structural changes affecting the grey matter at various stages of schizophrenia (the prodrome, first-episode, and the chronic stage). It is unclear which of these neuroanatomical changes are associated with a predisposition or vulnerability to develop schizophrenia rather than the appearance of the clinical features of the illness. 16 voxel-based morphometry (VBM) analyses involving 733 genetically high-risk relatives (HRR) of patients with schizophrenia, 563 healthy controls and 474 patients were meta-analysed using the Signed Differential Mapping (SDM) technique. Two meta-analyses were conducted, with one comparing HRR group with healthy controls and the other comparing HRR group with the patients. A significant grey matter reduction in the lentiform nucleus, amygdala/parahippocampal gyrus and medial prefrontal cortex was seen in association with the genetic diathesis. Grey matter reduction in bilateral insula, inferior frontal gyrus, superior temporal gyrus and the anterior cingulate was seen in association with the disease expression. The neuroanatomical changes associated with the genetic diathesis to develop schizophrenia appear to be different from those that contribute to the clinical expression of the illness. Grey matter abnormalities in multimodal brain regions that have a supervisory function are likely to be central to the expression of the clinical symptoms of schizophrenia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Can Asperger syndrome be distinguished from autism? An anatomic likelihood meta-analysis of MRI studies

    PubMed Central

    Yu, Kevin K.; Cheung, Charlton; Chua, Siew E.; McAlonan, Gráinne M.

    2011-01-01

    Background The question of whether Asperger syndrome can be distinguished from autism has attracted much debate and may even incur delay in diagnosis and intervention. Accordingly, there has been a proposal for Asperger syndrome to be subsumed under autism in the forthcoming Diagnostic and Statistical Manual of Mental Disorders, fifth edition, in 2013. One approach to resolve this question has been to adopt the criterion of absence of clinically significant language or cognitive delay — essentially, the “absence of language delay.” To our knowledge, this is the first meta-analysis of magnetic resonance imaging (MRI) studies of people with autism to compare absence with presence of language delay. It capitalizes on the voxel-based morphometry (VBM) approach to systematically explore the whole brain for anatomic correlates of delay and no delay in language acquisition in people with autism spectrum disorders. Methods We conducted a systematic search for VBM MRI studies of grey matter volume in people with autism. Studies with a majority (at least 70%) of participants with autism diagnoses and a history of language delay were assigned to the autism group (n = 151, control n = 190). Those with a majority (at least 70%) of individuals with autism diagnoses and no language delay were assigned to the Asperger syndrome group (n = 149, control n = 214). We entered study coordinates into anatomic likelihood estimation meta-analysis software with sampling size weighting to compare grey matter summary maps driven by Asperger syndrome or autism. Results The summary autism grey matter map showed lower volumes in the cerebellum, right uncus, dorsal hippocampus and middle temporal gyrus compared with controls; grey matter volumes were greater in the bilateral caudate, prefrontal lobe and ventral temporal lobe. The summary Asperger syndrome map indicated lower grey matter volumes in the bilateral amygdala/hippocampal gyrus and prefrontal lobe, left occipital gyrus, right cerebellum, putamen and precuneus compared with controls; grey matter volumes were greater in more limited regions, including the bilateral inferior parietal lobule and the left fusiform gyrus. Both Asperger syndrome and autism studies reported volume increase in clusters in the ventral temporal lobe of the left hemisphere. Limitations We assigned studies to autism and Asperger syndrome groups for separate analyses of the data and did not carry out a direct statistical group comparison. In addition, studies available for analysis did not capture the entire spectrum, therefore we cannot be certain that our findings apply to a wider population than that sampled. Conclusion Whereas grey matter differences in people with Asperger syndrome compared with controls are sparser than those reported in studies of people with autism, the distribution and direction of differences in each category are distinctive. PMID:21406158

  1. Can Asperger syndrome be distinguished from autism? An anatomic likelihood meta-analysis of MRI studies.

    PubMed

    Yu, Kevin K; Cheung, Charlton; Chua, Siew E; McAlonan, Gráinne M

    2011-11-01

    The question of whether Asperger syndrome can be distinguished from autism has attracted much debate and may even incur delay in diagnosis and intervention. Accordingly, there has been a proposal for Asperger syndrome to be subsumed under autism in the forthcoming Diagnostic and Statistical Manual of Mental Disorders, fifth edition, in 2013. One approach to resolve this question has been to adopt the criterion of absence of clinically significant language or cognitive delay--essentially, the "absence of language delay." To our knowledge, this is the first meta-analysis of magnetic resonance imaging (MRI) studies of people with autism to compare absence with presence of language delay. It capitalizes on the voxel-based morphometry (VBM) approach to systematically explore the whole brain for anatomic correlates of delay and no delay in language acquisition in people with autism spectrum disorders. We conducted a systematic search for VBM MRI studies of grey matter volume in people with autism. Studies with a majority (at least 70%) of participants with autism diagnoses and a history of language delay were assigned to the autism group (n = 151, control n = 190). Those with a majority (at least 70%) of individuals with autism diagnoses and no language delay were assigned to the Asperger syndrome group (n = 149, control n = 214). We entered study coordinates into anatomic likelihood estimation meta-analysis software with sampling size weighting to compare grey matter summary maps driven by Asperger syndrome or autism. The summary autism grey matter map showed lower volumes in the cerebellum, right uncus, dorsal hippocampus and middle temporal gyrus compared with controls; grey matter volumes were greater in the bilateral caudate, prefrontal lobe and ventral temporal lobe. The summary Asperger syndrome map indicated lower grey matter volumes in the bilateral amygdala/hippocampal gyrus and prefrontal lobe, left occipital gyrus, right cerebellum, putamen and precuneus compared with controls; grey matter volumes were greater in more limited regions, including the bilateral inferior parietal lobule and the left fusiform gyrus. Both Asperger syndrome and autism studies reported volume increase in clusters in the ventral temporal lobe of the left hemisphere. We assigned studies to autism and Asperger syndrome groups for separate analyses of the data and did not carry out a direct statistical group comparison. In addition, studies available for analysis did not capture the entire spectrum, therefore we cannot be certain that our findings apply to a wider population than that sampled. Whereas grey matter differences in people with Asperger syndrome compared with controls are sparser than those reported in studies of people with autism, the distribution and direction of differences in each category are distinctive. © 2011 Canadian Medical Association

  2. Stress-induced grey matter loss determined by MRI is primarily due to loss of dendrites and their synapses.

    PubMed

    Kassem, Mustafa S; Lagopoulos, Jim; Stait-Gardner, Tim; Price, William S; Chohan, Tariq W; Arnold, Jonathon C; Hatton, Sean N; Bennett, Maxwell R

    2013-04-01

    Stress, unaccompanied by signs of post-traumatic stress disorder, is known to decrease grey matter volume (GMV) in the anterior cingulate cortex (ACC) and hippocampus but not the amygdala in humans. We sought to determine if this was the case in stressed mice using high-resolution magnetic resonance imaging (MRI) and to identify the cellular constituents of the grey matter that quantitatively give rise to such changes. Stressed mice showed grey matter losses of 10 and 15 % in the ACC and hippocampus, respectively but not in the amygdala or the retrosplenial granular area (RSG). Concurrently, no changes in the number or volumes of the somas of neurons, astrocytes or oligodendrocytes were detected. A loss of synaptic spine density of up to 60 % occurred on different-order dendrites in the ACC and hippocampus (CA1) but not in the amygdala or RSG. The loss of spines was accompanied by decreases in cumulative dendritic length of neurons of over 40 % in the ACC and hippocampus (CA1) giving rise to decreases in volume of dendrites of 2.6 mm(3) for the former and 0.6 mm(3) for the latter, with no change in the amygdala or RSG. These values are similar to the MRI-determined loss of GMV following stress of 3.0 and 0.8 mm(3) in ACC and hippocampus, respectively, with no changes in the amygdala or RSG. This quantitative study is the first to relate GMV changes in the cortex measured with MRI to volume changes in cellular constituents of the grey matter.

  3. Complement is activated in progressive multiple sclerosis cortical grey matter lesions.

    PubMed

    Watkins, Lewis M; Neal, James W; Loveless, Sam; Michailidou, Iliana; Ramaglia, Valeria; Rees, Mark I; Reynolds, Richard; Robertson, Neil P; Morgan, B Paul; Howell, Owain W

    2016-06-22

    The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression. We analysed complement expression and activation by immunocytochemistry and in situ hybridisation in frozen or formalin-fixed paraffin-embedded post-mortem tissue blocks from 22 progressive MS cases and made comparisons to inflammatory central nervous system disease and non-neurological disease controls. Expression of the transcript for C1qA was noted in neurons and the activation fragment and opsonin C3b-labelled neurons and glia in the MS cortical and deep grey matter. The density of immunostained cells positive for the classical complement pathway protein C1q and the alternative complement pathway activation fragment Bb was significantly increased in cortical grey matter lesions in comparison to control grey matter. The number of cells immunostained for the membrane attack complex was elevated in cortical lesions, indicating complement activation to completion. The numbers of classical (C1-inhibitor) and alternative (factor H) pathway regulator-positive cells were unchanged between MS and controls, whilst complement anaphylatoxin receptor-bearing microglia in the MS cortex were found closely apposed to cortical neurons. Complement immunopositive neurons displayed an altered nuclear morphology, indicative of cell stress/damage, supporting our finding of significant neurodegeneration in cortical grey matter lesions. Complement is activated in the MS cortical grey matter lesions in areas of elevated numbers of complement receptor-positive microglia and suggests that complement over-activation may contribute to the worsening pathology that underlies the irreversible progression of MS.

  4. Grey matter volume increase following electroconvulsive therapy in patients with late life depression: a longitudinal MRI study

    PubMed Central

    Bouckaert, Filip; De Winter, François-Laurent; Emsell, Louise; Dols, Annemieke; Rhebergen, Didi; Wampers, Martien; Sunaert, Stefan; Stek, Max; Sienaert, Pascal; Vandenbulcke, Mathieu

    2016-01-01

    Background The evidence on the mechanisms of action of electroconvulsive therapy (ECT) has grown over the past decades. Recent studies show an ECT-related increase in hippocampal, amygdala and subgenual cortex volume. We examined grey matter volume changes following ECT using voxel-based morphometry (VBM) whole brain analysis in patients with severe late life depression (LLD). Methods Elderly patients with unipolar depression were treated twice weekly with right unilateral ECT until remission on the Montgomery–Åsberg Depression Rating Scale (MADRS) was achieved. Cognition (Mini Mental State Examination) and psychomotor changes (CORE Assessment) were monitored at baseline and 1 week after the last session of ECT. We performed 3 T structural MRI at both time points. We used the VBM8 toolbox in SPM8 to study grey matter volume changes. Paired t tests were used to compare pre- and post-ECT grey matter volume (voxel-level family-wise error threshold p < 0.05) and to assess clinical response. Results Twenty-eight patients (mean age 71.9 ± 7.8 yr, 8 men) participated in our study. Patients received a mean of 11.2 ± 4 sessions of ECT. The remission rate was 78.6%. Cognition, psychomotor agitation and psychomotor retardation improved significantly (p < 0.001). Right- hemispheric grey matter volume was increased in the caudate nucleus, medial temporal lobe (including hippocampus and amygdala), insula and posterior superior temporal regions but did not correlate with MADRS score. Grey matter volume increase in the caudate nucleus region correlated significantly with total CORE Assessment score (r = 0.63; p < 0.001). Limitations Not all participants were medication-free. Conclusion Electroconvulsive therapy in patients with LLD is associated with significant grey matter volume increase, which is most pronounced ipsilateral to the stimulation side. PMID:26395813

  5. Cerebellar malformations alter regional cerebral development.

    PubMed

    Bolduc, Marie-Eve; Du Plessis, Adre J; Evans, Alan; Guizard, Nicolas; Zhang, Xun; Robertson, Richard L; Limperopoulos, Catherine

    2011-12-01

    The aim of this study was to compare total and regional cerebral volumes in children with isolated cerebellar malformations (CBMs) with those in typically developing children, and to examine the extent to which cerebellar volumetric reductions are associated with total and regional cerebral volumes. This is a case-control study of children diagnosed with isolated CBMs. Each child was matched on age and sex to two typically developing children. Using advanced three-dimensional volumetric magnetic resonance imaging, the cerebrum was segmented into tissue classes and partitioned into eight regions. Analysis of variance was used to compare cerebral volumes between children with CBMs and control children, and linear regressions to examine the impact of cerebellar volume reduction on cerebral volumes. Magnetic resonance imaging was performed at a mean age of 27 months in 20 children (10 males, 10 females) with CBMs and 40 typically developing children. Children with CBMs showed significantly smaller deep grey matter nuclei (p < 0.001), subgenual white matter (p = 0.03), midtemporal white matter (p = 0.02), and inferior occipital grey matter (p = 0.03) volumes than typically developing children. Greater cerebellar volumetric reduction in children with CBMs was associated with decreased total cerebral volume and deep grey matter nuclei (p = 0.02), subgenual white/grey matter (p = 0.001), midtemporal white (p = 0.02) and grey matter (p = 0.01), and parieto-occipital grey matter (p = 0.004). CBMs are associated with impaired regional cerebral growth, suggesting deactivation of principal cerebello-cerebral pathways. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.

  6. Surface-based brain morphometry and diffusion tensor imaging in schizoaffective disorder.

    PubMed

    Landin-Romero, Ramón; Canales-Rodríguez, Erick J; Kumfor, Fiona; Moreno-Alcázar, Ana; Madre, Mercè; Maristany, Teresa; Pomarol-Clotet, Edith; Amann, Benedikt L

    2017-01-01

    The profile of grey matter abnormalities and related white-matter pathology in schizoaffective disorder has only been studied to a limited extent. The aim of this study was to identify grey- and white-matter abnormalities in patients with schizoaffective disorder using complementary structural imaging techniques. Forty-five patients meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition criteria and Research Diagnostic Criteria for schizoaffective disorder and 45 matched healthy controls underwent structural-T1 and diffusion magnetic resonance imaging to enable surface-based brain morphometry and diffusion tensor imaging analyses. Analyses were conducted to determine group differences in cortical volume, cortical thickness and surface area, as well as in fractional anisotropy and mean diffusivity. At a threshold of p = 0.05 corrected, all measures revealed significant differences between patients and controls at the group level. Spatial overlap of abnormalities was observed across the various structural neuroimaging measures. In grey matter, patients with schizoaffective disorder showed abnormalities in the frontal and temporal lobes, striatum, fusiform, cuneus, precuneus, lingual and limbic regions. White-matter abnormalities were identified in tracts connecting these areas, including the corpus callosum, superior and inferior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus and cingulum bundle. The spatial overlap of abnormalities across the different imaging techniques suggests widespread and consistent brain pathology in schizoaffective disorder. The abnormalities were mainly detected in areas that have commonly been reported to be abnormal in schizophrenia, and to some extent in bipolar disorder, which may explain the clinical and aetiological overlap in these disorders.

  7. Voxel-based morphometry in autopsy proven PSP and CBD.

    PubMed

    Josephs, Keith A; Whitwell, Jennifer L; Dickson, Dennis W; Boeve, Bradley F; Knopman, David S; Petersen, Ronald C; Parisi, Joseph E; Jack, Clifford R

    2008-02-01

    The aim of this study was to compare the patterns of grey and white matter atrophy on MRI in autopsy confirmed progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), and to determine whether the patterns vary depending on the clinical syndrome. Voxel-based morphometry was used to compare patterns of atrophy in 13 PSP and 11 CBD subjects and 24 controls. PSP and CBD subjects were also subdivided into those with a dominant dementia or extrapyramidal syndrome. PSP subjects showed brainstem atrophy with involvement of the cortex and underlying white matter. Frontoparietal grey and subcortical grey matter atrophy occurred in CBD. When subdivided, PSP subjects with an extrapyramidal syndrome had more brainstem atrophy and less cortical atrophy than CBD subjects with an extrapyramidal syndrome. PSP subjects with a dementia syndrome had more subcortical white matter atrophy than CBD subjects with a dementia syndrome. These results show regional differences between PSP and CBD that are useful in predicting the underlying pathology, and help to shed light on the in vivo distribution of regional atrophy in PSP and CBD.

  8. Brain structural correlates of sensory phenomena in patients with obsessive–compulsive disorder

    PubMed Central

    Subirà, Marta; Sato, João R.; Alonso, Pino; do Rosário, Maria C.; Segalàs, Cinto; Batistuzzo, Marcelo C.; Real, Eva; Lopes, Antonio C.; Cerrillo, Ester; Diniz, Juliana B.; Pujol, Jesús; Assis, Rachel O.; Menchón, José M.; Shavitt, Roseli G.; Busatto, Geraldo F.; Cardoner, Narcís; Miguel, Euripedes C.; Hoexter, Marcelo Q.; Soriano-Mas, Carles

    2015-01-01

    Background Sensory phenomena (SP) are uncomfortable feelings, including bodily sensations, sense of inner tension, “just-right” perceptions, feelings of incompleteness, or “urge-only” phenomena, which have been described to precede, trigger or accompany repetitive behaviours in individuals with obsessive–compulsive disorder (OCD). Sensory phenomena are also observed in individuals with tic disorders, and previous research suggests that sensorimotor cortex abnormalities underpin the presence of SP in such patients. However, to our knowledge, no studies have assessed the neural correlates of SP in patients with OCD. Methods We assessed the presence of SP using the University of São Paulo Sensory Phenomena Scale in patients with OCD and healthy controls from specialized units in São Paulo, Brazil, and Barcelona, Spain. All participants underwent a structural magnetic resonance examination, and brain images were examined using DARTEL voxel-based morphometry. We evaluated grey matter volume differences between patients with and without SP and healthy controls within the sensorimotor and premotor cortices. Results We included 106 patients with OCD and 87 controls in our study. Patients with SP (67% of the sample) showed grey matter volume increases in the left sensorimotor cortex in comparison to patients without SP and bilateral sensorimotor cortex grey matter volume increases in comparison to controls. No differences were observed between patients without SP and controls. Limitations Most patients were medicated. Participant recruitment and image acquisition were performed in 2 different centres. Conclusion We have identified a structural correlate of SP in patients with OCD involving grey matter volume increases within the sensorimotor cortex; this finding is in agreement with those of tic disorder studies showing that abnormal activity and volume increases within this region are associated with the urges preceding tic onset. PMID:25652753

  9. Plasticity of white matter connectivity in phonetics experts.

    PubMed

    Vandermosten, Maaike; Price, Cathy J; Golestani, Narly

    2016-09-01

    Phonetics experts are highly trained to analyze and transcribe speech, both with respect to faster changing, phonetic features, and to more slowly changing, prosodic features. Previously we reported that, compared to non-phoneticians, phoneticians had greater local brain volume in bilateral auditory cortices and the left pars opercularis of Broca's area, with training-related differences in the grey-matter volume of the left pars opercularis in the phoneticians group (Golestani et al. 2011). In the present study, we used diffusion MRI to examine white matter microstructure, indexed by fractional anisotropy, in (1) the long segment of arcuate fasciculus (AF_long), which is a well-known language tract that connects Broca's area, including left pars opercularis, to the temporal cortex, and in (2) the fibers arising from the auditory cortices. Most of these auditory fibers belong to three validated language tracts, namely to the AF_long, the posterior segment of the arcuate fasciculus and the middle longitudinal fasciculus. We found training-related differences in phoneticians in left AF_long, as well as group differences relative to non-experts in the auditory fibers (including the auditory fibers belonging to the left AF_long). Taken together, the results of both studies suggest that grey matter structural plasticity arising from phonetic transcription training in Broca's area is accompanied by changes to the white matter fibers connecting this very region to the temporal cortex. Our findings suggest expertise-related changes in white matter fibers connecting fronto-temporal functional hubs that are important for phonetic processing. Further studies can pursue this hypothesis by examining the dynamics of these expertise related grey and white matter changes as they arise during phonetic training.

  10. Neonatal Brain Abnormalities and Memory and Learning Outcomes at 7 Years in Children Born Very Preterm

    PubMed Central

    Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J

    2014-01-01

    Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term born controls. Neonatal brain abnormalities, and in particular deep grey matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children, especially global, white-matter, grey-matter and cerebellar abnormalities. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function. PMID:23805915

  11. The Developmental Course of Sleep Disturbances Across Childhood Relates to Brain Morphology at Age 7: The Generation R Study.

    PubMed

    Kocevska, Desana; Muetzel, Ryan L; Luik, Annemarie I; Luijk, Maartje P C M; Jaddoe, Vincent W; Verhulst, Frank C; White, Tonya; Tiemeier, Henning

    2017-01-01

    Little is known about the impact of sleep disturbances on the structural properties of the developing brain. This study explored associations between childhood sleep disturbances and brain morphology at 7 years. Mothers from the Generation R cohort reported sleep disturbances in 720 children at ages 2 months, 1.5, 2, 3, and 6 years. T1-weighted Magnetic Resonance Imaging (MRI) images were used to assess brain structure at 7 years. Associations of sleep disturbances at each age and of sleep disturbance trajectories with brain volumes (total brain volume, cortical and subcortical grey matter, white matter) were tested with linear regressions. To assess regional differences, sleep disturbance trajectories were tested as determinants for cortical thickness in whole-brain analyses. Sleep disturbances followed a declining trend from toddlerhood onwards. Infant sleep was not associated with brain morphology at age 7. Per SD sleep disturbances (one frequent symptom or two less frequent symptoms) at 2 and 3 years of age, children had -6.3 (-11.7 to -0.8) cm3 and -6.4 (-11.7 to -1.7) cm3 smaller grey matter volumes, respectively. Sleep disturbances at age 6 years were associated with global brain morphology (grey matter: -7.3 (-12.1 to -2.6), p value = .01). Consistently, trajectory analyses showed that more adverse developmental course of childhood sleep disturbances are associated with smaller grey matter volumes and thinner dorsolateral prefrontal cortex. Sleep disturbances from age 2 years onwards are associated with smaller grey matter volumes. Thinner prefrontal cortex in children with adverse sleep disturbance trajectories may reflect effects of sleep disturbances on brain maturation. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  12. White matter injury detection in neonatal MRI

    NASA Astrophysics Data System (ADS)

    Cheng, Irene; Hajari, Nasim; Firouzmanesh, Amirhossein; Shen, Rui; Miller, Steven; Poskitt, Ken; Basu, Anup

    2013-02-01

    Early detection of white matter injury in premature newborns can facilitate timely clinical treatments reducing the potential risk of later developmental deficits. It was reported that there were more than 5% premature newborns in British Columbia, Canada, among which 5-10% exhibited major motor deficits and 25-50% exhibited significant developmental and visual deficits. With the advancement of computer assisted detection systems, it is possible to automatically identify white matter injuries, which are found inside the grey matter region of the brain. Atlas registration has been suggested in the literature to distinguish grey matter from the soft tissues inside the skull. However, our subjects are premature newborns delivered at 24 to 32 weeks of gestation. During this period, the grey matter undergoes rapid changes and differs significantly from one to another. Besides, not all detected white spots represent injuries. Additional neighborhood information and expert input are required for verification. In this paper, we propose a white matter feature identification system for premature newborns, which is composed of several steps: (1) Candidate white matter segmentation; (2) Feature extraction from candidates; (3) Validation with data obtained at a later stage on the children; and (4) Feature confirmation for automated detection. The main challenge of this work lies in segmenting white matter injuries from noisy and low resolution data. Our approach integrates image fusion and contrast enhancement together with a fuzzy segmentation technique to achieve promising results. Other applications, such as brain tumor and intra-ventricular haemorrhage detection can also benefit from our approach.

  13. Localized grey matter damage in early primary progressive multiple sclerosis contributes to disability.

    PubMed

    Khaleeli, Z; Cercignani, M; Audoin, B; Ciccarelli, O; Miller, D H; Thompson, A J

    2007-08-01

    Disability in primary progressive multiple sclerosis (PPMS) has been correlated with damage to the normal appearing brain tissues. Magnetization transfer ratio (MTR) and volume changes indicate that much of this damage occurs in the normal appearing grey matter, but the clinical significance of this remains uncertain. We aimed to localize these changes to distinct grey matter regions, and investigate the clinical impact of the MTR changes. 46 patients with early PPMS and 23 controls underwent MT and high-resolution T1-weighted imaging. Patients were scored on the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite and subtests (Nine-Hole Peg Test, Timed Walk Test, Paced Auditory Serial Addition Test [PASAT]). Grey matter volume and MTR were compared between patients and controls, adjusting for age. Mean MTR for significant regions within the motor network and in areas relevant to PASAT performance were correlated with appropriate clinical scores, adjusting for grey matter volume. Patients showed reduced MTR and atrophy in the right pre- and left post-central gyri, right middle frontal gyrus, left insula, and thalamus bilaterally. Reduced MTR without significant atrophy occurred in the left pre-central gyrus, left superior frontal gyri, bilateral superior temporal gyri, right insula and visual cortex. Higher EDSS correlated with lower MTR in the right primary motor cortex (BA 4). In conclusion, localized grey matter damage occurs in early PPMS, and MTR change is more widespread than atrophy. Damage demonstrated by reduced MTR is clinically eloquent.

  14. Voxel-based magnetic resonance imaging investigation of poor and preserved clinical insight in people with schizophrenia

    PubMed Central

    Sapara, Adegboyega; Ffytche, Dominic H; Cooke, Michael A; Williams, Steven CR; Kumari, Veena

    2016-01-01

    AIM To define regional grey-matter abnormalities in schizophrenia patients with poor insight (Insight-), relative to patients with preserved clinical insight (Insight+), and healthy controls. METHODS Forty stable schizophrenia outpatients (20 Insight- and 20 Insight+) and 20 healthy controls underwent whole brain magnetic resonance imaging (MRI). Insight in all patients was assessed using the Birchwood Insight Scale (BIS; a self-report measure). The two patient groups were pre-selected to match on most clinical and demographic parameters but, by design, they had markedly distinct BIS scores. Voxel-based morphometry employed in SPM8 was used to examine group differences in grey matter volumes across the whole brain. RESULTS The three participant groups were comparable in age [F(2,57) = 0.34, P = 0.71] and the patient groups did not differ in age at illness onset [t(38) = 0.87, P = 0.39]. Insight- and Insight+ patient groups also did not differ in symptoms on the Positive and Negative Syndromes scale (PANSS): Positive symptoms [t(38) = 0.58, P = 0.57], negative symptoms [t(38) = 0.61, P = 0.55], general psychopathology [t(38) = 1.30, P = 0.20] and total PANSS scores [t(38) = 0.21, P = 0.84]. The two patient groups, as expected, varied significantly in the level of BIS-assessed insight [t(38) = 12.11, P < 0.001]. MRI results revealed lower fronto-temporal, parahippocampal, occipital and cerebellar grey matter volumes in Insight- patients, relative to Insight+ patients and healthy controls (for all clusters, family-wise error corrected P < 0.05). Insight+ patient and healthy controls did not differ significantly (P > 0.20) from each other. CONCLUSION Our findings demonstrate a clear association between poor clinical insight and smaller fronto-temporal, occipital and cerebellar grey matter volumes in stable long-term schizophrenia patients. PMID:27679770

  15. The effect of ageing on grey and white matter reductions in schizophrenia.

    PubMed

    Bose, Subrata K; Mackinnon, Toby; Mehta, Mitul A; Turkheimer, Federico E; Howes, Oliver D; Selvaraj, Sudhakar; Kempton, Matthew J; Grasby, Paul M

    2009-07-01

    Total brain volume and, in particular gray matter (GM) volume is reduced in patients with schizophrenia and recent studies suggest there is greater progressive loss of brain volume in the patients with schizophrenia than in normal controls. However, as the longitudinal studies do not include life-long follow-up, it is not clear if this occurs across the lifespan or only in the early phase of the illness. In this study we investigated this by studying the effects of age on brain tissue volumes in schizophrenia (n=34, age range=27-65 years)to test the prediction that there is a progressive loss in grey matter volume with increasing age in patients compared to healthy controls (n=33, age range=18-73 years). The results showed there was diminished relative GM volume loss with age in patients with schizophrenia compared to controls--in contrast to our prediction. However, there was increased relative white matter (WM) loss with age in schizophrenia. The results also replicated previous findings that patients with schizophrenia have significantly lower total (1509 versus 1596 mm(3)) and regional GM volume (755 versus 822 mm(3)) and increased cerebrospinal fluid (CSF) volume when compared to matched healthy volunteers. Overall these findings indicate that the proportion of grey matter in schizophrenia is reduced compared to controls early in the illness, and this difference diminishes with age; the corresponding effect in the proportion of WM is an increase with age compared to controls. This suggests that illness related factors may differentially affect grey and white matter, with implications for understanding the pathophysiology of schizophrenia and related psychotic disorders.

  16. Evidence for neuroinflammation and neuroprotection in HCV infection-associated encephalopathy.

    PubMed

    Bokemeyer, M; Ding, X-Q; Goldbecker, A; Raab, P; Heeren, M; Arvanitis, D; Tillmann, H L; Lanfermann, H; Weissenborn, K

    2011-03-01

    Fatigue, mood disturbances and cognitive dysfunction are frequent in patients infected with hepatitis C virus (HCV) who have mild liver disease. The reason is still unclear. The present study aims to gain more insight into the pathomechanism by combining an extensive neuropsychological examination with magnetic resonance spectroscopy in four different brain regions in a patient group covering the whole spectrum of neuropsychiatric findings in patients afflicted with HCV who have only mild liver disease. 53 HCV-positive patients with only mild liver disease and differing degrees of neuropsychiatric symptoms were studied with single-voxel MRS of the parietal white matter, occipital grey matter, basal ganglia and pons. Brain metabolite concentrations were quantitatively analysed by using LCmodel. MRS data were compared to those of 23 healthy controls adjusted for age, and analysed for relationships with the extent of neuropsychiatric symptoms. Choline (p=0.02), creatine (p=0.047) and N-acetyl-aspartate plus N-acetyl-aspartyl-glutamate (NN, p=0.02) concentrations in the basal ganglia and choline concentrations in the white matter (p=0.045) were significantly higher in the patients than in controls. Interestingly, the difference was most evident for the patients with low fatigue scores (eg, white matter: choline: p=0.001, creatine: p=0.003, NN: p=0.031). Myo-inositol differed significantly between groups in the white (p=0.001) and grey matter (p=0.003). Fatigue correlated negatively with white matter NN, choline and creatine and myo-inositol levels in white and grey matter and basal ganglia (p<0.01). As the increase of choline, creatine and myo-inositol are usually interpreted to indicate glial activation and macrophage infiltration in chronic inflammation and slow virus infections of the brain the present data endorse the hypothesis, that HCV infection may induce neuroinflammation and brain dysfunction. The concomitant increase of NN and the negative correlation to the extent of fatigue suggest a cerebral compensatory process after HCV infection.

  17. Impact of video games on plasticity of the hippocampus.

    PubMed

    West, G L; Konishi, K; Diarra, M; Benady-Chorney, J; Drisdelle, B L; Dahmani, L; Sodums, D J; Lepore, F; Jolicoeur, P; Bohbot, V D

    2017-08-08

    The hippocampus is critical to healthy cognition, yet results in the current study show that action video game players have reduced grey matter within the hippocampus. A subsequent randomised longitudinal training experiment demonstrated that first-person shooting games reduce grey matter within the hippocampus in participants using non-spatial memory strategies. Conversely, participants who use hippocampus-dependent spatial strategies showed increased grey matter in the hippocampus after training. A control group that trained on 3D-platform games displayed growth in either the hippocampus or the functionally connected entorhinal cortex. A third study replicated the effect of action video game training on grey matter in the hippocampus. These results show that video games can be beneficial or detrimental to the hippocampal system depending on the navigation strategy that a person employs and the genre of the game.Molecular Psychiatry advance online publication, 8 August 2017; doi:10.1038/mp.2017.155.

  18. Anterior cingulate grey-matter deficits and cannabis use in first-episode schizophrenia.

    PubMed

    Szeszko, Philip R; Robinson, Delbert G; Sevy, Serge; Kumra, Sanjiv; Rupp, Claudia I; Betensky, Julia D; Lencz, Todd; Ashtari, Manzar; Kane, John M; Malhotra, Anil K; Gunduz-Bruce, Handan; Napolitano, Barbara; Bilder, Robert M

    2007-03-01

    Despite the high prevalence of cannabis use in schizophrenia, few studies have examined the potential relationship between cannabis exposure and brain structural abnormalities in schizophrenia. To investigate prefrontal grey and white matter regions in patients experiencing a first episode of schizophrenia with an additional diagnosis of cannabis use or dependence (n=20) compared with similar patients with no cannabis use (n=31) and healthy volunteers (n=56). Volumes of the superior frontal gyrus, anterior cingulate gyrus and orbital frontal lobe were outlined manually from contiguous magnetic resonance images and automatically segmented into grey and white matter. Patients who used cannabis had less anterior cingulate grey matter compared with both patients who did not use cannabis and healthy volunteers. A defect in the anterior cingulate is associated with a history of cannabis use among patients experiencing a first episode of schizophrenia and could have a role in poor decision-making and in choosing more risky outcomes.

  19. Long-term supratentorial brain structure and cognitive function following cerebellar tumour resections in childhood.

    PubMed

    Moberget, T; Andersson, S; Lundar, T; Due-Tønnessen, B J; Heldal, A; Endestad, T; Westlye, L T

    2015-03-01

    The cerebellum is connected to extensive regions of the cerebrum, and cognitive deficits following cerebellar lesions may thus be related to disrupted cerebello-cerebral connectivity. Moreover, early cerebellar lesions could affect distal brain development, effectively inducing long-term changes in brain structure and cognitive function. Here, we characterize supratentorial brain structure and cognitive function in 20 adult patients treated for cerebellar tumours in childhood (mean age at surgery: 7.1 years) and 26 matched controls. Relative to controls, patients showed reduced cognitive function and increased grey matter density in bilateral cingulum, left orbitofrontal cortex and the left hippocampus. Within the patient group, increased grey matter density in these regions was associated with decreased performance on tests of processing speed and executive function. Further, diffusion tensor imaging revealed widespread alterations in white matter microstructure in patients. While current ventricle volume (an index of previous hydrocephalus severity it patients) was associated with grey matter density and white matter microstructure in patients, this could only partially account for the observed group differences in brain structure and cognitive function. In conclusion, our results show distal effects of cerebellar lesions on cerebral integrity and wiring, likely caused by a combination of neurodegenerative processes and perturbed neurodevelopment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked to inflammation in the subarachnoid space.

    PubMed

    Howell, Owain W; Schulz-Trieglaff, Elena Katharina; Carassiti, Daniele; Gentleman, Steven M; Nicholas, Richard; Roncaroli, Federico; Reynolds, Richard

    2015-10-01

    Multiple sclerosis (MS) is a progressive inflammatory neurological disease affecting myelin, neurons and glia. Demyelination and neurodegeneration of cortical grey matter contribute to a more severe disease, and inflammation of the forebrain meninges associates with pathology of the underlying neocortical grey matter, particularly in deep sulci. We assessed the extent of meningeal inflammation of the cerebellum, another structure with a deeply folded anatomy, to better understand the association between subarachnoid inflammation and grey matter pathology in progressive MS. We examined demyelinating and neuronal pathology in the context of meningeal inflammation in cerebellar tissue blocks from a cohort of 27 progressive MS cases previously characterized on the basis of the absence/presence of lymphoid-like aggregates in the forebrain meninges, in comparison with 11 non-neurological controls. Demyelination and meningeal inflammation of the cerebellum was greatest in those cases previously characterized as harbouring lymphoid-like structures in the forebrain regions. Meningeal inflammation was mild to moderate in cerebellar tissue blocks, and no lymphoid-like structures were seen. Quantification of meningeal macrophages, CD4+, CD8+ T lymphocytes, B cells and plasma cells revealed that the density of meningeal macrophages associated with microglial activation in the grey matter, and the extent of grey matter demyelination correlated with the density of macrophages and plasma cells in the overlying meninges, and activated microglia of the parenchyma. These data suggest that chronic inflammation is widespread throughout the subarachnoid space and contributes to a more severe subpial demyelinating pathology in the cerebellum. © 2014 British Neuropathological Society.

  1. Chronotype differences in cortical thickness: grey matter reflects when you go to bed.

    PubMed

    Rosenberg, Jessica; Jacobs, Heidi I L; Maximov, Ivan I; Reske, Martina; Shah, N J

    2018-06-15

    Based on individual circadian cycles and associated cognitive rhythms, humans can be classified via standardised self-reports as being early (EC), late (LC) and intermediate (IC) chronotypes. Alterations in neural cortical structure underlying these chronotype differences have rarely been investigated and are the scope of this study. 16 healthy male ECs, 16 ICs and 16 LCs were measured with a 3 T MAGNETOM TIM TRIO (Siemens, Erlangen) scanner using a magnetization prepared rapid gradient echo sequence. Data were analysed by applying voxel-based morphometry (VBM) and vertex-wise cortical thickness (CTh) analysis. VBM analysis revealed that ECs showed significantly lower grey matter volumes bilateral in the lateral occipital cortex and the precuneus as compared to LCs, and in the right lingual gyrus, occipital fusiform gyrus and the occipital pole as compared to ICs. CTh findings showed lower grey matter volumes for ECs in the left anterior insula, precuneus, inferior parietal cortex, and right pars triangularis than for LCs, and in the right superior parietal gyrus than for ICs. These findings reveal that chronotype differences are associated with specific neural substrates of cortical thickness, surface areas, and folding. We conclude that this might be the basis for chronotype differences in behaviour and brain function. Furthermore, our results speak for the necessity of considering "chronotype" as a potentially modulating factor in all kinds of structural brain-imaging experiments.

  2. Decreased Central Nervous System Grey Matter Volume (GMV) in Smokers Affects Cognitive Abilities: A Systematic Review.

    PubMed

    Vňuková, Martina; Ptáček, Radek; Raboch, Jiří; Stefano, George B

    2017-04-20

    Although cigarette smoking is a leading cause of preventable mortality, tobacco is consumed by approximately 22% of the adult population worldwide. Smoking is also a risk factor for cardiovascular disease, affects brain processing, and is a recognized risk factor for Alzheimer disease (AD). Tobacco toxins (e.g., nicotine at high levels) inhaled in smoke may cause disorders resulting in preclinical brain changes. Researchers suggest that there are differences in brain volume between smokers and non-smokers. This review examines these differences in brain grey matter volume (GMV). In March/April 2015, MedLine, Embase, and PsycINFO were searched using the terms: "grey matter" AND "voxel-based" AND "smoking" AND "cigarette". The 4 studies analyzed found brain GMV decreases in smokers compared to non-smokers. Furthermore, sex-specific differences were found; while the thalamus and cerebellum were affected in both sexes, decreased GMV in the olfactory gyrus was found only in male smokers. Age-group differences were also found, and these may suggest pre-existing abnormalities that lead to nicotine dependence in younger individuals. Only 1 study found a positive correlation between number of pack-years smoked and GMV. Smoking decreases GMV in most brain areas. This decrease may be responsible for the cognitive impairment and difficulties with emotional regulation found in smokers compared with non-smokers.

  3. Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease.

    PubMed

    von Rhein, Michael; Buchmann, Andreas; Hagmann, Cornelia; Huber, Reto; Klaver, Peter; Knirsch, Walter; Latal, Beatrice

    2014-01-01

    Patients with complex congenital heart disease are at risk for neurodevelopmental impairments. Evidence suggests that brain maturation can be delayed and pre- and postoperative brain injury may occur, and there is limited information on the long-term effect of congenital heart disease on brain development and function in adolescent patients. At a mean age of 13.8 years, 39 adolescent survivors of childhood cardiopulmonary bypass surgery with no structural brain lesions evident through conventional cerebral magnetic resonance imaging and 32 healthy control subjects underwent extensive neurodevelopmental assessment and cerebral magnetic resonance imaging. Cerebral scans were analysed quantitatively using surface-based and voxel-based morphometry. Compared with control subjects, patients had lower total brain (P = 0.003), white matter (P = 0.004) and cortical grey matter (P = 0.005) volumes, whereas cerebrospinal fluid volumes were not different. Regional brain volume reduction ranged from 5.3% (cortical grey matter) to 11% (corpus callosum). Adolescents with cyanotic heart disease showed more brain volume loss than those with acyanotic heart disease, particularly in the white matter, thalami, hippocampi and corpus callosum (all P-values < 0.05). Brain volume reduction correlated significantly with cognitive, motor and executive functions (grey matter: P < 0.05, white matter: P < 0.01). Our findings suggest that there are long-lasting cerebral changes in adolescent survivors of cardiopulmonary bypass surgery for congenital heart disease and that these changes are associated with functional outcome.

  4. Normal variation in fronto-occipital circuitry and cerebellar structure with an autism-associated polymorphism of CNTNAP2

    PubMed Central

    Tan, Geoffrey C.Y.; Doke, Thomas F.; Ashburner, John; Wood, Nicholas W.; Frackowiak, Richard S.J.

    2010-01-01

    Recent genetic studies have implicated a number of candidate genes in the pathogenesis of Autism Spectrum Disorder (ASD). Polymorphisms of CNTNAP2 (contactin-associated like protein-2), a member of the neurexin family, have already been implicated as a susceptibility gene for autism by at least 3 separate studies. We investigated variation in white and grey matter morphology using structural MRI and diffusion tensor imaging. We compared volumetric differences in white and grey matter and fractional anisotropy values in control subjects characterised by genotype at rs7794745, a single nucleotide polymorphism in CNTNAP2. Homozygotes for the risk allele showed significant reductions in grey and white matter volume and fractional anisotropy in several regions that have already been implicated in ASD, including the cerebellum, fusiform gyrus, occipital and frontal cortices. Male homozygotes for the risk alleles showed greater reductions in grey matter in the right frontal pole and in FA in the right rostral fronto-occipital fasciculus compared to their female counterparts who showed greater reductions in FA of the anterior thalamic radiation. Thus a risk allele for autism results in significant cerebral morphological variation, despite the absence of overt symptoms or behavioural abnormalities. The results are consistent with accumulating evidence of CNTNAP2's function in neuronal development. The finding suggests the possibility that the heterogeneous manifestations of ASD can be aetiologically characterised into distinct subtypes through genetic-morphological analysis. PMID:20176116

  5. A negative association between brainstem pontine grey-matter volume, well-being and resilience in healthy twins.

    PubMed

    Gatt, Justine M; Burton, Karen L O; Routledge, Kylie M; Grasby, Katrina L; Korgaonkar, Mayuresh S; Grieve, Stuart M; Schofield, Peter R; Harris, Anthony W F; Clark, C Richard; Williams, Leanne M

    2018-06-20

    Associations between well-being, resilience to trauma and the volume of grey-matter regions involved in affective processing (e.g., threat/reward circuits) are largely unexplored, as are the roles of shared genetic and environmental factors derived from multivariate twin modelling. This study presents, to our knowledge, the first exploration of well-being and volumes of grey-matter regions involved in affective processing using a region-of-interest, voxel-based approach in 263 healthy adult twins (60% monozygotic pairs, 61% females, mean age 39.69 yr). To examine patterns for resilience (i.e., positive adaptation following adversity), we evaluated associations between the same brain regions and well-being in a trauma-exposed subgroup. We found a correlated effect between increased well-being and reduced grey-matter volume of the pontine nuclei. This association was strongest for individuals with higher resilience to trauma. Multivariate twin modelling suggested that the common variance between the pons volume and well-being scores was due to environmental factors. We used a cross-sectional sample; results need to be replicated longitudinally and in a larger sample. Associations with altered grey matter of the pontine nuclei suggest that basic sensory processes, such as arousal, startle, memory consolidation and/or emotional conditioning, may have a role in well-being and resilience.

  6. Early life predictors of brain development at term-equivalent age in infants born across the gestational age spectrum.

    PubMed

    Thompson, Deanne K; Kelly, Claire E; Chen, Jian; Beare, Richard; Alexander, Bonnie; Seal, Marc L; Lee, Katherine; Matthews, Lillian G; Anderson, Peter J; Doyle, Lex W; Spittle, Alicia J; Cheong, Jeanie L Y

    2018-04-13

    It is well established that preterm infants have altered brain development compared with full-term (FT; ≥37 weeks' gestational age [GA]) infants, however the perinatal factors associated with brain development in preterm infants have not been fully elucidated. In particular, perinatal predictors of brain development may differ between very preterm infants (VP; <32 weeks' GA) and infants born moderate (MP; 32-33 weeks' GA) and late (LP; 34-36 weeks' GA) preterm, but this has not been studied. This study aimed to investigate the effects of early life predictors on brain volume and microstructure at term-equivalent age (TEA; 38-44 weeks), and whether these effects differ for GA groups (VP, MP, LP or FT). Structural images from 328 infants (91 VP, 63 MP, 104 LP and 70 FT) were segmented into white matter, cortical grey matter, cerebrospinal fluid, subcortical grey matter, brainstem and cerebellum. Cortical grey matter and white matter images were analysed using voxel-based morphometry. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) images from 361 infants (92 VP, 69 MP, 120 LP and 80 FT) were analysed using Tract-Based Spatial Statistics. Relationships between early life predictors (birthweight standard deviation score [BWSDS], multiple birth, sex, postnatal growth and social risk) and global brain volumes were analysed using linear regressions. Relationships between early life predictors and regional brain volumes and diffusion measures were analysed using voxelwise non-parametric permutation testing. Male sex was associated with higher global volumes of all tissues and higher regional volumes throughout much of the cortical grey matter and white matter, particularly in the FT group. Male sex was also associated with lower FA and higher AD, RD and MD in the optic radiation, external and internal capsules and corona radiata, and these associations were generally similar between GA groups. Higher BWSDS was associated with higher global volumes of all tissues and higher regional volumes in much of the cortical grey matter and white matter in all GA groups, as well as higher FA and lower RD and MD in many major tracts (corpus callosum, optic radiation, internal and external capsules and corona radiata), particularly in the MP and LP groups. Multiple birth and social risk also showed associations with global and regional volumes and regional diffusion values which varied by GA group, but these associations were not independent of the other early life predictors. Postnatal growth was not associated with brain volumes or diffusion values. Early life predictors of brain volumes and microstructure at TEA include sex, BWSDS, multiple birth and social risk, which have different effects based on GA group at birth. This study improves knowledge of the perinatal factors associated with brain abnormalities in infants born across the prematurity spectrum. Copyright © 2018. Published by Elsevier Inc.

  7. Structural magnetic resonance imaging in patients with first-episode schizophrenia, psychotic and severe non-psychotic depression and healthy controls. Results of the schizophrenia and affective psychoses (SAP) project.

    PubMed

    Salokangas, R K R; Cannon, T; Van Erp, T; Ilonen, T; Taiminen, T; Karlsson, H; Lauerma, H; Leinonen, K M; Wallenius, E; Kaljonen, A; Syvälahti, E; Vilkman, H; Alanen, A; Hietala, J

    2002-09-01

    Structural brain abnormalities are prevalent in patients with schizophrenia and affective disorders. To study how regional brain volumes and their ratios differ between patients with schizophrenia, psychotic depression, severe non-psychotic depression and healthy controls. Magnetic resonance imaging scans of the brain on first-episode patients and on healthy controls. Patients with schizophrenia had a smaller left frontal grey matter volume than the other three groups. Patients with psychotic depression had larger ventricular and posterior sulcal cerebrospinal fluid (CSF) volumes than controls. Patients with depression had larger white matter volumes than the other patients. Left frontal lobe, especially its grey matter volume, seems to be specifically reduced in first-episode schizophrenia. Enlarged cerebral ventricles and sulcal CSF volumes are prevalent in psychotic depression. Preserved or expanded white matter is typical of non-psychotic depression.

  8. Cortical grey matter volume reduction in people with schizophrenia is associated with neuro-inflammation

    PubMed Central

    Zhang, Y; Catts, V S; Sheedy, D; McCrossin, T; Kril, J J; Shannon Weickert, C

    2016-01-01

    Cortical grey matter volume deficits and neuro-inflammation exist in patients with schizophrenia, although it is not clear whether elevated cytokines contribute to the cortical volume reduction. We quantified cortical and regional brain volumes in fixed postmortem brains from people with schizophrenia and matched controls using stereology. Interleukin (IL)-6, IL-1β, IL-8 and SERPINA3 messenger RNAs (mRNAs) were quantified in the contralateral fresh frozen orbitofrontal cortex. We found a small, but significant reduction in cortical grey matter (1.3% F(1,85)=4.478, P=0.037) and superior frontal gyrus (6.5% F(1,80)=5.700, P=0.019) volumes in individuals with schizophrenia compared with controls. Significantly reduced cortical grey matter (9.2% F(1,24)=8.272, P=0.008) and superior frontal gyrus (13.9% F(1,20)=5.374, P=0.031) volumes were found in cases with schizophrenia and ‘high inflammation' status relative to schizophrenia cases with ‘low inflammation' status in the prefrontal cortex. The expression of inflammatory mRNAs in the orbitofrontal cortex was significantly correlated with those in dorsolateral prefrontal cortex (all r>0.417, all P<0.022), except for IL-8. Moreover, average daily and lifetime antipsychotic intake negatively correlated with cortical grey matter and superior frontal gyrus volumes (all r<−0.362, all P<0.05). The results suggest that the reduction in cortical grey matter volume in people with schizophrenia is exaggerated in those who have high expression of inflammatory cytokines. Further, antipsychotic medication intake does not appear to ameliorate the reduction in brain volume. PMID:27959331

  9. Processing demands upon cognitive, linguistic, and articulatory functions promote grey matter plasticity in the adult multilingual brain: Insights from simultaneous interpreters.

    PubMed

    Elmer, Stefan; Hänggi, Jürgen; Jäncke, Lutz

    2014-05-01

    Until now, considerable effort has been made to determine structural brain characteristics related to exceptional multilingual skills. However, at least one important question has not yet been satisfactorily addressed in the previous literature, namely whether and to which extent the processing demands upon cognitive, linguistic, and articulatory functions may promote grey matter plasticity in the adult multilingual brain. Based on the premise that simultaneous interpretation is a highly demanding linguistic task that places strong demands on executive and articulatory functions, here we compared grey matter volumes between professional simultaneous interpreters (SI) and multilingual control subjects. Thereby, we focused on a specific set of a-priori defined bilateral brain regions that have previously been shown to support neurocognitional aspects of language control and linguistic functions in the multilingual brain. These regions are the cingulate gyrus, caudate nucleus, frontal operculum (pars triangularis and opercularis), inferior parietal lobe (IPL) (supramarginal and angular gyrus), and the insula. As a main result, we found reduced grey matter volumes in professional SI, compared to multilingual controls, in the left middle-anterior cingulate gyrus, bilateral pars triangularis, left pars opercularis, bilateral middle part of the insula, and in the left supramarginal gyrus (SMG). Interestingly, grey matter volume in left pars triangularis, right pars opercularis, middle-anterior cingulate gyrus, and in the bilateral caudate nucleus was negatively correlated with the cumulative number of interpreting hours. Hence, we provide first evidence for an expertise-related grey matter architecture that may reflect a composite of brain characteristics that were still present before interpreting training and training-related changes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. MRI criteria differentiating asymptomatic PML from new MS lesions during natalizumab pharmacovigilance.

    PubMed

    Wijburg, Martijn T; Witte, Birgit I; Vennegoor, Anke; Roosendaal, Stefan D; Sanchez, Esther; Liu, Yaou; Martins Jarnalo, Carine O; Uitdehaag, Bernard Mj; Barkhof, Frederik; Killestein, Joep; Wattjes, Mike P

    2016-10-01

    Differentiation between progressive multifocal leukoencephalopathy (PML) and new multiple sclerosis (MS) lesions on brain MRI during natalizumab pharmacovigilance in the absence of clinical signs and symptoms is challenging but is of substantial clinical relevance. We aim to define MRI characteristics that can aid in this differentiation. Reference and follow-up brain MRIs of natalizumab-treated patients with MS with asymptomatic PML (n=21), or asymptomatic new MS lesions (n=20) were evaluated with respect to characteristics of newly detected lesions by four blinded raters. We tested the association with PML for each characteristic and constructed a multivariable prediction model which we analysed using a receiver operating characteristic (ROC) curve. Presence of punctate T2 lesions, cortical grey matter involvement, juxtacortical white matter involvement, ill-defined and mixed lesion borders towards both grey and white matter, lesion size of >3 cm, and contrast enhancement were all associated with PML. Focal lesion appearance and periventricular localisation were associated with new MS lesions. In the multivariable model, punctate T2 lesions and cortical grey matter involvement predict for PML, while focal lesion appearance and periventricular localisation predict for new MS lesions (area under the curve: 0.988, 95% CI 0.977 to 1.0, sensitivity: 100%, specificity: 80.6%). The MRI characteristics of asymptomatic natalizumab-associated PML lesions proved to differ from new MS lesions. This led to a prediction model with a high discriminating power. Careful assessment of the presence of punctate T2 lesions, cortical grey matter involvement, focal lesion appearance and periventricular localisation allows for an early diagnosis of PML. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Grey Matter Microstructural Integrity Alterations in Blepharospasm Are Partially Reversed by Botulinum Neurotoxin Therapy

    PubMed Central

    Chirumamilla, Venkata Chaitanya; Koirala, Nabin; Paktas, Burcu; Deuschl, Günther; Zeuner, Kirsten E.; Groppa, Sergiu

    2016-01-01

    Objective Benign Essential Blepharospasm (BEB) and hemifacial spasm (HFS) are the most common hyperkinetic movement disorders of facial muscles. Although similar in clinical presentation different pathophysiological mechanisms are assumed. Botulinum Neurotoxin (BoNT) is a standard evidence-based treatment for both conditions. In this study we aimed to assess grey matter microstructural differences between these two groups of patients and compared them with healthy controls. In patients we furthermore tracked the longitudinal morphometric changes associated with BoNT therapy. We hypothesized microstructural differences between the groups at the time point of maximum symptoms representation and distinct longitudinal grey matter dynamics with symptom improvement. Methods Cross-sectional and longitudinal analyses of 3T 3D-T1 MRI images from BEB, HFS patients prior to and one month after BoNT therapy and from a group of age and sex matched healthy controls. Cortical thickness as extracted from Freesurfer was assessed as parameter of microstructural integrity. Results BoNT therapy markedly improved motor symptoms in patients with BEB and HFS. Significant differences of grey matter integrity have been found between the two patients groups. The BEB group showed lower cortical thickness at baseline in the frontal-rostral, supramarginal and temporal regions compared to patients with HFS. In this group BoNT treatment was associated with a cortical thinning in the primary motor cortex and the pre-supplementary motor area (pre-SMA). Contrary patients with HFS showed no longitudinal CT changes. A decreased cortical thickness was attested bilaterally in the temporal poles and in the right superior frontal region in BEB patients in comparison to HC. Patients in the HFS group presented a decreased CT in the left lingual gyrus and temporal pole. Conclusions Although patients with BEB and HFS present clinically with involuntary movements of facial muscles, they exhibited differences in cortical thickness. While BoNT therapy was equally effective in both groups, widespread changes of cortical morphology occurred only in BEB patients. We demonstrated specific disease- and therapy-dependent structural changes induced by BoNT in the studied hyperkinetic conditions. PMID:27992533

  12. Electrophysiological analysis of pathways connecting the medial preoptic area with the mesencephalic central grey matter in rats.

    PubMed

    MacLeod, N K; Mayer, M L

    1980-01-01

    1. An electrophysiological study of ascending and descending connexions between the dorsal raphe region of the mesencephalic periaqueductal grey matter and the medial preoptic area has been performed in dioestrous female rats anaesthetized with urethane. 2. Extracellular action potentials recorded from 208 neurones in the medial preoptic area were analysed for a change in excitability following stimulation of the periaqueductal grey matter. 174 neurones were also tested for changes in excitability following stimulation of the mediobasal hypothalamus. 3. Stimulation of the periaqueductal grey matter at 1 Hz was rarely effective, but short trains of pulses (three at 100 Hz) usually caused an initial inhibition (62.5% of 208) of both projection identified and adjacent neurones of the medial preoptic area, at latencies of 5--90 msec (mean 34.1 +/- 1.4 msec). Inhibition following stimulation of the mediobasal hypothalamus occurred less frequently (34%) and at shorter latency (mean 12.0 +/- 1.8 msec; n = 48). 4. Less frequently (10.6%) periaqueductal grey matter stimulation caused an initial excitation of preoptic neurones at latencies of 15--180 msec, (mean 35.3 +/- 7.2). Initial excitation following mediobasal hypothalamus stimulation was stronger, occurred more frequently (29%) and at shorter latencies (range 3--60 msec, mean 13.1 +/- 1.5). Following such initial excitation, inhibition of spontaneous or ionophoretically evoked activity occurred more frequently following mediobasal hypothalamic stimulation, than after periaqueductal grey matter stimulation. 5. Twenty-four neurones displayed antidromic invasion following periaqueductal grey matter stimulation. Latencies for invasion ranged from 13 to 50 msec (mean 25.5 +/- 2.0 msec) and are suggestive of an unmyelinated projection. Occasionally an abrupt decrease in latency followed an increase in stimulus intensity. Antidromic invasion from mediobasal hypothalamus was characterized by a shorter latency (mean 12.5 +/- 0.7 msec; n = 43). A period of reduced excitability lasting 40--100 msec followed antidromic invasion from either site. 6. Antidromic responses to paired mediobasal hypothalamic or periaqueductal grey matter stimuli at 5 msec intervals revealed an increased latency of invasion of the second response, due to the partial refractory period of the neurone. Five cells showed a decreased latency of invasion at stimulus separations of 10--150 msec, interpreted as evidence of a supranormal period. Changes in conduction velocity during the supranormal period may give rise to a variable latency of invasion of spontaneously active cells. 7. These results provide evidence for direct, reciprocal connexions between the midbrain central grey and the medial preoptic area. These circuits may play a role in controlling neuroendocrine and behavioural aspects of reproductive functions.

  13. Alzheimer's disease: neuritic plaques and neurofibrillary tangles in human brain identified by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Choo, Lin-P'ing; Jackson, Michael; Halliday, William C.; Mantsch, Henry H.

    1994-01-01

    The abnormal abundance of (beta) -amyloid plaques and neurofibrillary tangles are the hallmark of Alzheimer's disease (AD). Human central nervous system (CNS) grey matter was probed for characteristics arising from these pathological features. In AD but not normal grey matter, an IR band at 1615 cm-1 is seen, characteristic of a protein in an aggregated state. We speculate that this band arises from (beta) A4-amyloid protein. AD, and 18q- grey matter spectra show increased intensity of phosphate bands in accordance with known hyperphosphorylation of proteins found in neurofibrillary tangles. These spectral features may be useful in the diagnosis of AD.

  14. Cognitive reserve and TMEM106B genotype modulate brain damage in presymptomatic frontotemporal dementia: a GENFI study

    PubMed Central

    Premi, Enrico; Grassi, Mario; van Swieten, John; Galimberti, Daniela; Graff, Caroline; Masellis, Mario; Tartaglia, Carmela; Tagliavini, Fabrizio; Rowe, James B.; Laforce Jr, Robert; Finger, Elizabeth; Frisoni, Giovanni B.; de Mendonça, Alexandre; Sorbi, Sandro; Gazzina, Stefano; Cosseddu, Maura; Archetti, Silvana; Gasparotti, Roberto; Manes, Marta; Alberici, Antonella; Cardoso, Manuel J.; Bocchetta, Martina; Cash, David M.; Ourselin, Sebastian; Padovani, Alessandro; Rohrer, Jonathan D.

    2017-01-01

    Abstract Frontotemporal dementia is a heterogeneous neurodegenerative disorder with around a third of cases having autosomal dominant inheritance. There is wide variability in phenotype even within affected families, raising questions about the determinants of the progression of disease and age at onset. It has been recently demonstrated that cognitive reserve, as measured by years of formal schooling, can counteract the ongoing pathological process. The TMEM106B genotype has also been found to be a modifier of the age at disease onset in frontotemporal dementia patients with TDP-43 pathology. This study therefore aimed to elucidate the modulating effect of environment (i.e. cognitive reserve as measured by educational attainment) and genetic background (i.e. TMEM106B polymorphism, rs1990622 T/C) on grey matter volume in a large cohort of presymptomatic subjects bearing frontotemporal dementia-related pathogenic mutations. Two hundred and thirty-one participants from the GENFI study were included: 108 presymptomatic MAPT, GRN, and C9orf72 mutation carriers and 123 non-carriers. For each subject, cortical and subcortical grey matter volumes were generated using a parcellation of the volumetric T1-weighted magnetic resonance imaging brain scan. TMEM106B genotyping was carried out, and years of education recorded. First, we obtained a composite measure of grey matter volume by graph-Laplacian principal component analysis, and then fitted a linear mixed-effect interaction model, considering the role of (i) genetic status; (ii) educational attainment; and (iii) TMEM106B genotype on grey matter volume. The presence of a mutation was associated with a lower grey matter volume (P = 0.002), even in presymptomatic subjects. Education directly affected grey matter volume in all the samples (P = 0.02) with lower education attainment being associated with lower volumes. TMEM106B genotype did not influence grey matter volume directly on its own but in mutation carriers it modulated the slope of the correlation between education and grey matter volume (P = 0.007). Together, these results indicate that brain atrophy in presymptomatic carriers of common frontotemporal dementia mutations is affected by both genetic and environmental factors such that TMEM106B enhances the benefit of cognitive reserve on brain structure. These findings should be considered in evaluating outcomes in future disease-modifying trials, and support the search for protective mechanisms in people at risk of dementia that might facilitate new therapeutic strategies. PMID:28460069

  15. Neuregulin-1 genotype is associated with structural differences in the normal human brain.

    PubMed

    Barnes, Anna; Isohanni, Matti; Barnett, Jennifer H; Pietiläinen, Olli; Veijola, Juha; Miettunen, Jouko; Paunio, Tiina; Tanskanen, Päivikki; Ridler, Khanum; Suckling, John; Bullmore, Edward T; Jones, Peter B; Murray, Graham K

    2012-02-01

    The human neuregulin-1 (NRG-1) gene is highly expressed in the brain, is implicated in numerous functions associated with neuronal development, and is a leading candidate gene for schizophrenia. The T allele of SNP8NRG243177, part of a risk haplotype for schizophrenia, has been previously associated with decreases in white matter in the right anterior internal capsule and the left anterior thalamic radiation. To our knowledge no studies have described the effects of SNP8NRG243177 on grey matter volume at a voxelwise level. We assessed associations between this SNP and brain structure in 79 general population volunteers from the Northern Finland 1966 Birth Cohort (NFBC 1966). We show, for the first time, that genetic variation in SNP8NRG243177 is associated with variation in frontal brain structure in both grey and white matter. T allele carriers showed decreased grey matter volume in several frontal gyri, including inferior, middle and superior frontal gyri and the anterior cingulate gyrus, as well as decreased white matter volume in the regions of the genu and body of the corpus callosum, anterior and superior corona radiata, anterior limb of the internal capsule and external capsule regions traversed by major white matter tracts of the anterior thalamic radiation, and the inferior fronto-occipital fasciculus. These results suggest that this genetic variant may mediate risk for schizophrenia, in part, through its effect on brain structure in these regions. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Childhood neglect predicts disorganization in schizophrenia through grey matter decrease in dorsolateral prefrontal cortex.

    PubMed

    Cancel, A; Comte, M; Truillet, R; Boukezzi, S; Rousseau, P-F; Zendjidjian, X Y; Sage, T; Lazerges, P-E; Guedj, E; Khalfa, S; Azorin, J-M; Blin, O; Fakra, E

    2015-10-01

    Psychosocial trauma during childhood is associated with schizophrenia vulnerability. The pattern of grey matter decrease is similar to brain alterations seen in schizophrenia. Our objective was to explore the links between childhood trauma, brain morphology and schizophrenia symptoms. Twenty-one patients with schizophrenia stabilized with atypical antipsychotic monotherapy and 30 healthy control subjects completed the study. Anatomical MRI images were analysed using optimized voxel-based morphometry (VBM). Childhood trauma was assessed with the Childhood Trauma Questionnaire, and symptoms were rated on the Scale for the Assessment of Negative Symptoms (SANS) and Scale for the Assessment of Positive Symptoms (SAPS) (disorganization, positive and negative symptoms). In the schizophrenia group, we used structural equation modelling in a path analysis. Total grey matter volume was negatively associated with emotional neglect (EN) in patients with schizophrenia. Whole-brain VBM analyses of grey matter in the schizophrenia group revealed a specific inversed association between EN and the right dorsolateral prefrontal cortex (DLPFC). Path analyses identified a well-fitted model in which EN predicted grey matter density in DLPFC, which in turn predicted the disorganization score. Our findings suggest that EN during childhood could have an impact on psychopathology in schizophrenia, which would be mediated by developmental effects on brain regions such as the DLPFC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Drawing on the right side of the brain: a voxel-based morphometry analysis of observational drawing.

    PubMed

    Chamberlain, Rebecca; McManus, I Chris; Brunswick, Nicola; Rankin, Qona; Riley, Howard; Kanai, Ryota

    2014-08-01

    Structural brain differences in relation to expertise have been demonstrated in a number of domains including visual perception, spatial navigation, complex motor skills and musical ability. However no studies have assessed the structural differences associated with representational skills in visual art. As training artists are inclined to be a heterogeneous group in terms of their subject matter and chosen media, it was of interest to investigate whether there would be any consistent changes in neural structure in response to increasing representational drawing skill. In the current study a cohort of 44 graduate and post-graduate art students and non-art students completed drawing tasks. Scores on these tasks were then correlated with the regional grey and white matter volume in cortical and subcortical structures. An increase in grey matter density in the left anterior cerebellum and the right medial frontal gyrus was observed in relation to observational drawing ability, whereas artistic training (art students vs. non-art students) was correlated with increased grey matter density in the right precuneus. This suggests that observational drawing ability relates to changes in structures pertaining to fine motor control and procedural memory, and that artistic training in addition is associated with enhancement of structures pertaining to visual imagery. The findings corroborate the findings of small-scale fMRI studies and provide insights into the properties of the developing artistic brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Explaining the heterogeneity of functional connectivity findings in multiple sclerosis: An empirically informed modeling study.

    PubMed

    Tewarie, Prejaas; Steenwijk, Martijn D; Brookes, Matthew J; Uitdehaag, Bernard M J; Geurts, Jeroen J G; Stam, Cornelis J; Schoonheim, Menno M

    2018-06-01

    To understand the heterogeneity of functional connectivity results reported in the literature, we analyzed the separate effects of grey and white matter damage on functional connectivity and networks in multiple sclerosis. For this, we employed a biophysical thalamo-cortical model consisting of interconnected cortical and thalamic neuronal populations, informed and amended by empirical diffusion MRI tractography data, to simulate functional data that mimic neurophysiological signals. Grey matter degeneration was simulated by decreasing within population connections and white matter degeneration by lowering between population connections, based on lesion predilection sites in multiple sclerosis. For all simulations, functional connectivity and functional network organization are quantified by phase synchronization and network integration, respectively. Modeling results showed that both cortical and thalamic grey matter damage induced a global increase in functional connectivity, whereas white matter damage induced an initially increased connectivity followed by a global decrease. Both white and especially grey matter damage, however, induced a decrease in network integration. These empirically informed simulations show that specific topology and timing of structural damage are nontrivial aspects in explaining functional abnormalities in MS. Insufficient attention to these aspects likely explains contradictory findings in multiple sclerosis functional imaging studies so far. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  19. Neuroanatomical Predictors of Functional Outcome in Individuals at Ultra-High Risk for Psychosis

    PubMed Central

    Lin, Ashleigh; Yung, Alison R.; Koutsouleris, Nikolaos; Nelson, Barnaby; Cropley, Vanessa L.; Velakoulis, Dennis; McGorry, Patrick D.; Pantelis, Christos; Wood, Stephen J.

    2017-01-01

    Abstract Most individuals at ultra-high risk (UHR) for psychosis do not transition to frank illness. Nevertheless, many have poor clinical outcomes and impaired psychosocial functioning. This study used voxel-based morphometry to investigate if baseline grey and white matter brain densities at identification as UHR were associated with functional outcome at medium- to long-term follow-up. Participants were help-seeking UHR individuals (n = 109, 54M:55F) who underwent magnetic resonance imaging at baseline; functional outcome was assessed an average of 9.2 years later. Primary analysis showed that lower baseline grey matter density, but not white matter density, in bilateral frontal and limbic areas, and left cerebellar declive were associated with poorer functional outcome (Social and Occupational Functioning Assessment Scale [SOFAS]). These findings were independent of transition to psychosis or persistence of the at-risk mental state. Similar regions were significantly associated with lower self-reported levels of social functioning and increased negative symptoms at follow-up. Exploratory analyses showed that lower baseline grey matter densities in middle and inferior frontal gyri were significantly associated with decline in Global Assessment of Functioning (GAF) score over follow-up. There was no association between baseline grey matter density and IQ or positive symptoms at follow-up. The current findings provide novel evidence that those with the poorest functional outcomes have the lowest grey matter densities at identification as UHR, regardless of transition status or persistence of the at-risk mental state. Replication and validation of these findings may allow for early identification of poor functional outcome and targeted interventions. PMID:27369472

  20. Problematic internet use is associated with structural alterations in the brain reward system in females.

    PubMed

    Altbäcker, Anna; Plózer, Enikő; Darnai, Gergely; Perlaki, Gábor; Horváth, Réka; Orsi, Gergely; Nagy, Szilvia Anett; Bogner, Péter; Schwarcz, Attila; Kovács, Norbert; Komoly, Sámuel; Clemens, Zsófia; Janszky, József

    2016-12-01

    Neuroimaging findings suggest that excessive Internet use shows functional and structural brain changes similar to substance addiction. Even though it is still under debate whether there are gender differences in case of problematic use, previous studies by-passed this question by focusing on males only or by using gender matched approach without controlling for potential gender effects. We designed our study to find out whether there are structural correlates in the brain reward system of problematic Internet use in habitual Internet user females. T1-weighted Magnetic Resonance (MR) images were collected in 82 healthy habitual Internet user females. Structural brain measures were investigated using both automated MR volumetry and voxel based morphometry (VBM). Self-reported measures of problematic Internet use and hours spent online were also assessed. According to MR volumetry, problematic Internet use was associated with increased grey matter volume of bilateral putamen and right nucleus accumbens while decreased grey matter volume of orbitofrontal cortex (OFC). Similarly, VBM analysis revealed a significant negative association between the absolute amount of grey matter OFC and problematic Internet use. Our findings suggest structural brain alterations in the reward system usually related to addictions are present in problematic Internet use.

  1. Tai Chi Chuan and Baduanjin increase grey matter volume in older adults: a brain imaging study

    PubMed Central

    Tao, Jing; Liu, Jiao; Liu, Weilin; Huang, Jia; Xue, Xiehua; Chen, Xiangli; Wu, Jinsong; Zheng, Guohua; Chen, Bai; Li, Ming; Sun, Sharon; Jorgenson, Kristen; Lang, Courtney; Hu, Kun; Chen, Shanjia; Chen, Lidian; Kong, Jian

    2017-01-01

    The aim of this study is to investigate and compare how 12-weeks of Tai Chi Chuan and Baduanjin exercise can modulate brain structure and memory function in older adults. Magnetic Resonance Imaging(MRI) and memory function measurements (Wechsler Memory Scale-Chinese revised, WMS-CR)were applied at both the beginning and end of the study. Results showed that both Tai Chi Chuan and Baduanjin could significantly increase grey matter volume (GMV) in the insula, medial temporal lobe (MTL), and putamen after 12-weeks of exercise. No significant differences were observed in grey matter volume (GMV) between the Tai Chi Chuan and Baduanjin groups. We also found that compared to healthy controls, Tai Chi Chuan and Baduanjin significantly improved visual reproduction subscores on the WMS-CR. Baduanjin also improved mental control, recognition, touch and comprehension memory subscores of the WMS-CR compared to the control group. Memory quotient (MQ)and visual reproduction subscores were both associated with GMV increases in the putamen and hippocampus. Our results demonstrate the potential of Tai Chi Chuan and Baduanjin exercise for the prevention of memory deficits in older adults. PMID:28869478

  2. Spatial patterns of whole brain grey and white matter injury in patients with occult spastic diplegic cerebral palsy.

    PubMed

    Mu, Xuetao; Nie, Binbin; Wang, Hong; Duan, Shaofeng; Zhang, Zan; Dai, Guanghui; Ma, Qiaozhi; Shan, Baoci; Ma, Lin

    2014-01-01

    Spastic diplegic cerebral palsy (SDCP) is a common type of cerebral palsy (CP), which presents as a group of motor-impairment syndromes. Previous conventional MRI studies have reported abnormal structural changes in SDCP, such as periventricular leucomalacia. However, there are roughly 27.8% SDCP patients presenting normal appearance in conventional MRI, which were considered as occult SDCP. In this study, sixteen patients with occult SDCP and 16 age- and sex-matched healthy control subjects were collected and the data were acquired on a 3T MR system. We applied voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis to investigate whole brain grey and white matter injury in occult SDCP. By using VBM method, the grey matter volume reduction was revealed in the bilateral basal ganglia regions, thalamus, insula, and left cerebral peduncle, whereas the white matter atrophy was found to be located in the posterior part of corpus callosum and right posterior corona radiata in the occult SDCP patients. By using TBSS, reduced fractional anisotropy (FA) values were detected in multiple white matter regions, including bilateral white matter tracts in prefrontal lobe, temporal lobe, internal and external capsule, corpus callosum, cingulum, thalamus, brainstem and cerebellum. Additionally, several regions of white matter tracts injury were found to be significantly correlated with motor dysfunction. These results collectively revealed the spatial patterns of whole brain grey and white matter injury in occult SDCP.

  3. Grey matter correlates of autistic traits in women with anorexia nervosa.

    PubMed

    Björnsdotter, Malin; Davidovic, Monika; Karjalainen, Louise; Starck, Göran; Olausson, Håkan; Wentz, Elisabet

    2018-03-01

    Patients with anorexia nervosa exhibit higher levels of behaviours typically associated with autism-spectrum disorder (ASD), but the neural basis is unclear. We sought to determine whether elevated autistic traits in women with anorexia nervosa may be reflected in cortical morphology. We used voxel-based morphometry (VBM) to examine regional grey matter volumes in high-resolution MRI structural brain scans in women with anorexia nervosa and matched healthy controls. The Autism-spectrum Quotient (AQ) scale was used to assess autistic traits. Women with anorexia nervosa ( n = 25) had higher AQ scores and lower bilateral superior temporal sulcus (STS) grey matter volumes than the control group ( n = 25). The AQ scores correlated negatively with average left STS grey matter volume in women with anorexia nervosa. We did not control for cognitive ability and examined only women with ongoing anorexia nervosa. Elevated autistic traits in women with anorexia nervosa are associated with morphometric alterations of brain areas linked to social cognition. This finding provides neurobiological support for the behavioural link between anorexia nervosa and ASD and emphasizes the importance of recognizing autistic traits in preventing and treating anorexia nervosa.

  4. Atrophy of spared grey matter tissue predicts poorer motor recovery and rehabilitation response in chronic stroke

    PubMed Central

    Gauthier, Lynne V.; Taub, Edward; Mark, Victor W.; Barghi, Ameen; Uswatte, Gitendra

    2011-01-01

    Background and Purpose Although the motor deficit following stroke is clearly due to the structural brain damage that has been sustained, this relationship is attenuated from the acute to chronic phases. We investigated the possibility that motor impairment and response to Constraint-Induced Movement therapy (CI therapy) in chronic stroke patients may relate more strongly to the structural integrity of brain structures remote from the lesion than to measures of overt tissue damage. Methods Voxel-based morphometry (VBM) analysis was performed on MRI scans from 80 chronic stroke patients to investigate whether variations in grey matter density were correlated with extent of residual motor impairment or with CI therapy-induced motor recovery. Results Decreased grey matter density in non-infarcted motor regions was significantly correlated with magnitude of residual motor deficit. In addition, reduced grey matter density in multiple remote brain regions predicted a lesser extent of motor improvement from CI therapy. Conclusions Atrophy in seemingly healthy parts of the brain that are distant from the infarct accounts for at least a portion of the sustained motor deficit in chronic stroke. PMID:22096036

  5. Brain correlates of pro-social personality traits: a voxel-based morphometry study.

    PubMed

    Coutinho, Joana F; Sampaio, Adriana; Ferreira, Miguel; Soares, José M; Gonçalves, Oscar F

    2013-09-01

    Of the five personality dimensions described by the Big Five Personality Model (Costa and McCrae 1992), Extraversion and Agreeableness are the traits most commonly associated with a pro-social orientation. In this study we tested whether a pro-social orientation, as expressed in terms of Extraversion and Agreeableness, is associated with a specific grey matter phenotype. Fifty-two healthy participants underwent magnetic resonance imaging (MRI) and completed the NEO-Five Factor Inventory (NEO-FFI), a self-report measure of the Big Five personality traits. Voxel-based morphometry (VBM) was used to investigate the correlation between brain structure and the personality traits of Agreeableness and Extraversion. We found that Extraversion was negatively correlated with grey matter density in the middle frontal and orbitofrontal gyri while Agreeableness was negatively correlated with grey matter density in the inferior parietal, middle occipital and posterior cingulate gyri. No positive correlations were found. These results suggest that pro-social personality traits seem to be associated with decreases in grey matter density in more frontal regions for Extraversion, and more posterior regions for Agreeableness.

  6. Habitual action video game playing is associated with caudate nucleus-dependent navigational strategies.

    PubMed

    West, Greg L; Drisdelle, Brandi Lee; Konishi, Kyoko; Jackson, Jonathan; Jolicoeur, Pierre; Bohbot, Veronique D

    2015-06-07

    The habitual playing of video games is associated with increased grey matter and activity in the striatum. Studies in humans and rodents have shown an inverse relationship between grey matter in the striatum and hippocampus. We investigated whether action video game playing is also associated with increased use of response learning strategies during navigation, known to be dependent on the caudate nucleus of the striatum, when presented in a dual solution task. We tested 26 action video game players (actionVGPs) and 33 non-action video game players (nonVGPs) on the 4-on-8 virtual maze and a visual attention event-related potential (ERP) task, which elicits a robust N-2-posterior-controlateral (N2pc) component. We found that actionVGPs had a significantly higher likelihood of using a response learning strategy (80.76%) compared to nonVGPs (42.42%). Consistent with previous evidence, actionVGPs and nonVGPs differed in the way they deployed visual attention to central and peripheral targets as observed in the elicited N2pc component during an ERP visual attention task. Increased use of the response strategy in actionVGPs is consistent with previously observed increases in striatal volume in video game players (VGPs). Using response strategies is associated with decreased grey matter in the hippocampus. Previous studies have shown that decreased volume in the hippocampus precedes the onset of many neurological and psychiatric disorders. If actionVGPs have lower grey matter in the hippocampus, as response learners normally do, then these individuals could be at increased risk of developing neurological and psychiatric disorders during their lifetime. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Does neuroanatomy account for superior temporal dysfunction in early psychosis? A multimodal MRI investigation

    PubMed Central

    Pettersson-Yeo, William; Benetti, Stefania; Frisciata, Silvia; Catani, Marco; Williams, Steve C.R.; Allen, Paul; McGuire, Philip; Mechelli, Andrea

    2015-01-01

    Background Neuroimaging studies of ultra-high risk (UHR) and first-episode psychosis (FEP) have revealed widespread alterations in brain structure and function. Recent evidence suggests there is an intrinsic relationship between these 2 types of alterations; however, there is very little research linking these 2 modalities in the early stages of psychosis. Methods To test the hypothesis that functional alteration in UHR and FEP participants would be associated with corresponding structural alteration, we examined brain function and structure in these participants as well as in a group of healthy controls using multimodal MRI. The data were analyzed using statistical parametric mapping. Results We included 24 participants in the FEP group, 18 in the UHR group and 21 in the control group. Patients in the FEP group showed a reduction in functional activation in the left superior temporal gyrus relative to controls, and the UHR group showed intermediate values. The same region showed a corresponding reduction in grey matter volume in the FEP group relative to controls. However, while the difference in grey matter volume remained significant after including functional activation as a covariate of no interest, the reduction in functional activation was no longer evident after including grey matter volume as a covariate of no interest. Limitations Our sample size was relatively small. All participants in the FEP group and 2 in the UHR group had received antipsychotic medication, which may have impacted neurofunction and/or neuroanatomy. Conclusion Our results suggest that superior temporal dysfunction in early psychosis is accounted for by a corresponding alteration in grey matter volume. This finding has important implications for the interpretation of functional alteration in early psychosis. PMID:25338016

  8. Habitual action video game playing is associated with caudate nucleus-dependent navigational strategies

    PubMed Central

    West, Greg L.; Drisdelle, Brandi Lee; Konishi, Kyoko; Jackson, Jonathan; Jolicoeur, Pierre; Bohbot, Veronique D.

    2015-01-01

    The habitual playing of video games is associated with increased grey matter and activity in the striatum. Studies in humans and rodents have shown an inverse relationship between grey matter in the striatum and hippocampus. We investigated whether action video game playing is also associated with increased use of response learning strategies during navigation, known to be dependent on the caudate nucleus of the striatum, when presented in a dual solution task. We tested 26 action video game players (actionVGPs) and 33 non-action video game players (nonVGPs) on the 4-on-8 virtual maze and a visual attention event-related potential (ERP) task, which elicits a robust N-2-posterior-controlateral (N2pc) component. We found that actionVGPs had a significantly higher likelihood of using a response learning strategy (80.76%) compared to nonVGPs (42.42%). Consistent with previous evidence, actionVGPs and nonVGPs differed in the way they deployed visual attention to central and peripheral targets as observed in the elicited N2pc component during an ERP visual attention task. Increased use of the response strategy in actionVGPs is consistent with previously observed increases in striatal volume in video game players (VGPs). Using response strategies is associated with decreased grey matter in the hippocampus. Previous studies have shown that decreased volume in the hippocampus precedes the onset of many neurological and psychiatric disorders. If actionVGPs have lower grey matter in the hippocampus, as response learners normally do, then these individuals could be at increased risk of developing neurological and psychiatric disorders during their lifetime. PMID:25994669

  9. Assessment of the effects of different sample perfusion procedures on phase-contrast tomographic images of mouse spinal cord

    NASA Astrophysics Data System (ADS)

    Stefanutti, E.; Sierra, A.; Miocchi, P.; Massimi, L.; Brun, F.; Maugeri, L.; Bukreeva, I.; Nurmi, A.; Begani Provinciali, G.; Tromba, G.; Gröhn, O.; Giove, F.; Cedola, A.; Fratini, M.

    2018-03-01

    Synchrotron X-ray Phase Contrast micro-Tomography (SXrPCμT) is a powerful tool in the investigation of biological tissues, including the central nervous system (CNS), and it allows to simultaneously detect the vascular and neuronal network avoiding contrast agents or destructive sample preparations. However, specific sample preparation procedures aimed to optimize the achievable contrast- and signal-to-noise ratio (CNR and SNR, respectively) are required. Here we report and discuss the effects of perfusion with two different fixative agents (ethanol and paraformaldehyde) and with a widely used contrast medium (MICROFIL®) on mouse spinal cord. As a main result, we found that ethanol enhances contrast at the grey/white matter interface and increases the contrast in correspondence of vascular features and fibres, thus providing an adequate spatial resolution to visualise the vascular network at the microscale. On the other hand, ethanol is known to induce tissue dehydration, likely reducing cell dimensions below the spatial resolution limit imposed by the experimental technique. Nonetheless, neurons remain well visible using either perfused paraformaldehyde or MICROFIL® compound, as these latter media do not affect tissues with dehydration effects. Paraformaldehyde appears as the best compromise: it is not a contrast agent, like MICROFIL®, but it is less invasive than ethanol and permits to visualise well both cells and blood vessels. However, a quantitative estimation of the relative grey matter volume of each sample has led us to conclude that no significant alterations in the grey matter extension compared to the white matter occur as a consequence of the perfusion procedures tested in this study.

  10. The grey matter correlates of impaired decision-making in multiple sclerosis

    PubMed Central

    Muhlert, Nils; Sethi, Varun; Cipolotti, Lisa; Haroon, Hamied; Parker, Geoff J M; Yousry, Tarek; Wheeler-Kingshott, Claudia; Miller, David; Ron, Maria; Chard, Declan

    2015-01-01

    Objective People with multiple sclerosis (MS) have difficulties with decision-making but it is unclear if this is due to changes in impulsivity, risk taking, deliberation or risk adjustment, and how this relates to brain pathology. Methods We assessed these aspects of decision-making in 105 people with MS and 43 healthy controls. We used a novel diffusion MRI method, diffusion orientational complexity (DOC), as an index of grey matter pathology in regions associated with decision-making and also measured grey matter tissue volumes and white matter lesion volumes. Results People with MS showed less adjustment to risk and slower decision-making than controls. Moreover, impaired decision-making correlated with reduced executive function, memory and processing speed. Decision-making impairments were most prevalent in people with secondary progressive MS. They were seen in patients with cognitive impairment and those without cognitive impairment. On diffusion MRI, people with MS showed DOC changes in all regions except the occipital cortex, relative to controls. Risk adjustment correlated with DOC in the hippocampi and deliberation time with DOC in the medial prefrontal, middle frontal gyrus, anterior cingulate and caudate parcellations and with white matter lesion volumes. Conclusions These data clarify the features of decision-making deficits in MS, and provide the first evidence that they relate to grey and white matter abnormalities seen using MRI. PMID:25006208

  11. Neuroanatomical Predictors of Functional Outcome in Individuals at Ultra-High Risk for Psychosis.

    PubMed

    Reniers, Renate L E P; Lin, Ashleigh; Yung, Alison R; Koutsouleris, Nikolaos; Nelson, Barnaby; Cropley, Vanessa L; Velakoulis, Dennis; McGorry, Patrick D; Pantelis, Christos; Wood, Stephen J

    2017-03-01

    Most individuals at ultra-high risk (UHR) for psychosis do not transition to frank illness. Nevertheless, many have poor clinical outcomes and impaired psychosocial functioning. This study used voxel-based morphometry to investigate if baseline grey and white matter brain densities at identification as UHR were associated with functional outcome at medium- to long-term follow-up. Participants were help-seeking UHR individuals (n = 109, 54M:55F) who underwent magnetic resonance imaging at baseline; functional outcome was assessed an average of 9.2 years later. Primary analysis showed that lower baseline grey matter density, but not white matter density, in bilateral frontal and limbic areas, and left cerebellar declive were associated with poorer functional outcome (Social and Occupational Functioning Assessment Scale [SOFAS]). These findings were independent of transition to psychosis or persistence of the at-risk mental state. Similar regions were significantly associated with lower self-reported levels of social functioning and increased negative symptoms at follow-up. Exploratory analyses showed that lower baseline grey matter densities in middle and inferior frontal gyri were significantly associated with decline in Global Assessment of Functioning (GAF) score over follow-up. There was no association between baseline grey matter density and IQ or positive symptoms at follow-up. The current findings provide novel evidence that those with the poorest functional outcomes have the lowest grey matter densities at identification as UHR, regardless of transition status or persistence of the at-risk mental state. Replication and validation of these findings may allow for early identification of poor functional outcome and targeted interventions. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Decreased frontal white-matter volume in chronic substance abuse.

    PubMed

    Schlaepfer, Thomas E; Lancaster, Eric; Heidbreder, Rebecca; Strain, Eric C; Kosel, Markus; Fisch, Hans-Ulrich; Pearlson, Godfrey D

    2006-04-01

    There is quite a body of work assessing functional brain changes in chronic substance abuse, much less is known about structural brain abnormalities in this patient population. In this study we used magnetic resonance imaging (MRI) to determine if structural brain differences exist in patients abusing illicit drugs compared to healthy controls. Sixteen substance abusers who abused heroin, cocaine and cannabis but not alcohol and 16 age-, sex- and race-matched controls were imaged on a MRI scanner. Contiguous, 5-mm-thick axial slices were acquired with simultaneous T2 and proton density sequences. Volumes were estimated for total grey and white matter, frontal grey and white matter, ventricles, and CSF using two different methods: a conventional segmentation and a stereological method based on the Cavalieri principle. Overall brain volume differences were corrected for by expressing the volumes of interest as a percentage of total brain volume. Volume measures obtained with the two methods were highly correlated (r=0.65, p<0.001). Substance abusers had significantly less frontal white-matter volume percentage than controls. There were no significant differences in any of the other brain volumes measured. This difference in frontal lobe white matter might be explained by a direct neurotoxic effect of drug use on white matter, a pre-existing abnormality in the development of the frontal lobe or a combination of both effects. This last explanation might be compelling based on the fact that newer concepts on shared aspects of some neuropsychiatric disorders focus on the promotion and inhibition of the process of myelination throughout brain development and subsequent degeneration.

  13. Progressive Assessment of Ischemic Injury to White Matter Using Diffusion Tensor Imaging: A Preliminary Study of a Macaque Model of Stroke.

    PubMed

    Zhang, Xiaodong; Yan, Yumei; Tong, Frank; Li, Chun-Xia; Jones, Benjamin; Wang, Silun; Meng, Yuguang; Muly, E Chris; Kempf, Doty; Howell, Leonard

    2018-01-01

    Previous Diffusion Tensor Imaging (DTI) studies have demonstrated the temporal evolution of stroke injury in grey matter and white matter can be characterized by DTI indices. However, it still remains not fully understood how the DTI indices of white matter are altered progressively during the hyperacute (first 6 hours) and acute stage of stroke (≤ 1 week). In the present study, DTI was employed to characterize the temporal evolution of infarction and white matter injury after stroke insult using a macaque model with permanent ischemic occlusion. Permanent middle cerebral artery (MCA) occlusion was induced in rhesus monkeys (n=4, 10-21 years old). The brain lesion was examined longitudinally with DTI during the hyperacute phase (2-6 hours, n=4), 48 hours (n=4) and 96 hours (n=3) post-occlusion. Cortical infarction was seen in all animals. The Mean Diffusivity (MD) in lesion regions decreased substantially at the first time point (2 hours post stroke) (35%, p <0.05, compared to the contralateral side) and became pseudo-normalized at 96 hours. In contrast, evident FA reduction was seen at 48 hours (39%, p <0.10) post-stroke. MD reduction in white matter bundles of the lesion area was much less than that in the grey matter during the hyper-acute phase but significant change was observed 4 hours (4.2%, p < 0.05) post stroke . Also, MD pseudonormalisation was seen at 96 hours post stroke. There was a significant correlation between the temporal changes of MD in white matter bundles and those in whole lesion areas during the entire study period. Meanwhile, no obvious fractional anisotropy (FA) changes were seen during the hyper-acute phase in either the entire infarct region or white matter bundles. Significant FA alteration was observed in entire lesion areas and injured white matter bundles 48 and 96 hours post stroke. The stroke lesion in grey matter and white matter was validated by pathological findings. The temporal evolution of ischemic injury to the grey matter and white matter from 2 to 96 hours after stroke onset was characterized using a macaque model and DTI. Progressive MD changes in white matter bundles are seen from hyperacute phase to acute phase after permanent MCA occlusion and temporally correlated with the MD changes in entire infarction regions. MD reduction in white matter bundles is mild in comparison with that in the grey matter but significant and progressive, indicating it may be useful to detect early white matter degeneration after stroke.

  14. The energetics of central nervous system white matter

    PubMed Central

    Harris, Julia J.; Attwell, David

    2012-01-01

    The energetics of CNS white matter are poorly understood. We derive a signalling energy budget for rodent white matter (based on data from the optic nerve and corpus callosum) which can be compared to previous energy budgets for the grey matter regions of the brain, perform a cost-benefit analysis of the energetics of myelination, and assess mechanisms for energy production and glucose supply in myelinated axons. We show that white matter synapses consume ≤0.5% of the energy of grey matter synapses and that this, rather than more energy-efficient action potentials, is the main reason why CNS white matter uses less energy than grey matter. Surprisingly, while the energetic cost of building myelin could be repaid within months by the reduced ATP cost of neuronal action potentials, the energetic cost of maintaining the oligodendrocyte resting potential usually outweighs the saving on action potentials. Thus, although it dramatically speeds action potential propagation, myelination need not save energy. Finally, we show that mitochondria in optic nerve axons could sustain measured firing rates with a plausible density of glucose transporters in the nodal membrane, without the need for energy transfer from oligodendrocytes. PMID:22219296

  15. Neonatal brain abnormalities and memory and learning outcomes at 7 years in children born very preterm.

    PubMed

    Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J

    2014-01-01

    Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term-born controls. Neonatal brain abnormalities, and in particular deep grey-matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function.

  16. The neural determinants of age-related changes in fluid intelligence: a pre-registered, longitudinal analysis in UK Biobank

    PubMed Central

    Kievit, Rogier A.; Fuhrmann, Delia; Henson, Richard N. A.

    2018-01-01

    Background: Fluid intelligence declines with advancing age, starting in early adulthood. Within-subject declines in fluid intelligence are highly correlated with contemporaneous declines in the ability to live and function independently. To support healthy aging, the mechanisms underlying these declines need to be better understood. Methods: In this pre-registered analysis, we applied latent growth curve modelling to investigate the neural determinants of longitudinal changes in fluid intelligence across three time points in 185,317 individuals (N=9,719 two waves, N=870 three waves) from the UK Biobank (age range: 39-73 years). Results: We found a weak but significant effect of cross-sectional age on the mean fluid intelligence score, such that older individuals scored slightly lower. However, the mean longitudinal slope was positive, rather than negative, suggesting improvement across testing occasions. Despite the considerable sample size, the slope variance was non-significant, suggesting no reliable individual differences in change over time. This null-result is likely due to the nature of the cognitive test used. In a subset of individuals, we found that white matter microstructure (N=8839, as indexed by fractional anisotropy) and grey-matter volume (N=9931) in pre-defined regions-of-interest accounted for complementary and unique variance in mean fluid intelligence scores. The strongest effects were such that higher grey matter volume in the frontal pole and greater white matter microstructure in the posterior thalamic radiations were associated with higher fluid intelligence scores. Conclusions: In a large preregistered analysis, we demonstrate a weak but significant negative association between age and fluid intelligence. However, we did not observe plausible longitudinal patterns, instead observing a weak increase across testing occasions, and no significant individual differences in rates of change, likely due to the suboptimal task design. Finally, we find support for our preregistered expectation that white- and grey matter make separate contributions to individual differences in fluid intelligence beyond age. PMID:29707655

  17. Voxel-based morphometry and fMRI revealed differences in brain gray matter in breastfed and milk formula–fed children

    USDA-ARS?s Scientific Manuscript database

    Background and Purpose: Infant diets may have significant impact on brain development in children. The aim of this study was to evaluate brain grey matter structure and function in 8-year-old children who were predominantly breastfed (BF) or fed cow’s milk formula (MF) as infants. Materials and Me...

  18. Immunological biomarkers associated with brain structure and executive function in late-life depression: exploratory pilot study.

    PubMed

    Smagula, Stephen F; Lotrich, Francis E; Aizenstein, Howard J; Diniz, Breno S; Krystek, Jeffrey; Wu, Gregory F; Mulsant, Benoit H; Butters, Meryl A; Reynolds, Charles F; Lenze, Eric J

    2017-06-01

    Several immunological biomarkers are altered in late-life major depressive disorder (LLD). Immunological alterations could contribute to LLD's consequences, but little is known about the relations between specific immunological biomarkers and brain health in LLD. We performed an exploratory pilot study to identify, from several candidates, the specific immunological biomarkers related to important aspects of brain health that are altered in LLD (brain structure and executive function). Adults (n = 31) were at least 60 years old and had major depressive disorder. A multiplex immunoassay assessed 13 immunological biomarkers, and we examined their associations with structural MRI (grey matter volume and white matter hyperintensity volume (WMH)) and executive function (Color-Word Interference and Trail-Making tests) measures. Vascular endothelial growth factor (VEGF) and the chemokine eotaxin had significant negative associations with grey matter volume (VEGF: n = 31, r = -0.65; eotaxin: n = 29, r = -0.44). Tumor necrosis factor alpha (TNF-α) had a significant positive relationship with WMHs (n = 30, r = 0.52); interferon-γ (IFN-γ) and macrophage inflammatory protein-1α (MIP-1α) were also significantly associated with WMHs (IFN-γ: n = 31, r = 0.48; MIP-1α: n = 29, r = 0.45). Only eotaxin was associated with executive function (set-shifting performance as measured with the Trail-making test: n = 33, r = -0.43). Immunological markers are associated with brain structure in LLD. We found the immunological correlates of grey and white matter differ. Prospective studies are needed to evaluate whether these immunological correlates of brain health increase the risk of LLD's consequences. Eotaxin, which correlated with both grey matter volume and set-shifting performance, may be particularly relevant to neurodegeneration and cognition in LLD. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Co-localisation of abnormal brain structure and function in specific language impairment

    PubMed Central

    Badcock, Nicholas A.; Bishop, Dorothy V.M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior frontal cortex and decreased in the right caudate nucleus and superior temporal cortex bilaterally. The unaffected siblings also showed reduced grey matter in the caudate nucleus relative to controls. In an auditory covert naming task, the SLI group showed reduced activation in the left inferior frontal cortex, right putamen, and in the superior temporal cortex bilaterally. Despite spatially coincident structural and functional abnormalities in frontal and temporal areas, the relationships between structure and function in these regions were different. These findings suggest multiple structural and functional abnormalities in SLI that are differently associated with receptive and expressive language processing. PMID:22137677

  20. The Relationship between Grey-Matter and ASD and ADHD Traits in Typical Adults

    ERIC Educational Resources Information Center

    Geurts, Hilde M.; Ridderinkhof, K. Richard; Scholte, H. Steven

    2013-01-01

    We tested whether in 85 healthy adults (18-29 years) there is a relationship between grey-matter (GM) volume and autism and ADHD symptom severity. The structural MRI findings and autism and ADHD self-reports revealed that autism and ADHD symptom severity was correlated with GM volume in the left inferior frontal gyrus. Autism symptom-severity was…

  1. Understanding heterogeneity in grey matter research of adults with childhood maltreatment-A meta-analysis and review.

    PubMed

    Paquola, Casey; Bennett, Maxwell R; Lagopoulos, Jim

    2016-10-01

    Childhood trauma has been associated with long term effects on prefrontal-limbic grey matter. A literature search was conducted to identify structural magnetic resonance imaging studies of adults with a history of childhood trauma. We performed three meta-analyses. Hedges' g effect sizes were calculated for each study providing hippocampal or amygdala volumes of trauma and non-trauma groups. Seed based differential mapping was utilised to synthesise whole brain voxel based morphometry (VBM) studies. A total of 38 articles (17 hippocampus, 13 amygdala, 19 whole brain VBM) were included in the meta-analyses. Trauma cohorts exhibited smaller hippocampus and amygdala volumes bilaterally. The most robust findings of the whole brain VBM meta-analysis were reduced grey matter in the right dorsolateral prefrontal cortex and right hippocampus amongst adults with a history of childhood trauma. Subgroup analyses and meta-regressions showed results were moderated by age, gender, the cohort's psychiatric health and the study's definition of childhood trauma. We provide evidence of abnormal grey matter in prefrontal-limbic brain regions of adults with a history of childhood maltreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Voxel-based morphometry of auditory and speech-related cortex in stutterers.

    PubMed

    Beal, Deryk S; Gracco, Vincent L; Lafaille, Sophie J; De Nil, Luc F

    2007-08-06

    Stutterers demonstrate unique functional neural activation patterns during speech production, including reduced auditory activation, relative to nonstutterers. The extent to which these functional differences are accompanied by abnormal morphology of the brain in stutterers is unclear. This study examined the neuroanatomical differences in speech-related cortex between stutterers and nonstutterers using voxel-based morphometry. Results revealed significant differences in localized grey matter and white matter densities of left and right hemisphere regions involved in auditory processing and speech production.

  3. Grey matter correlates of autistic traits in women with anorexia nervosa

    PubMed Central

    Davidovic, Monika; Karjalainen, Louise; Starck, Göran; Olausson, Håkan; Wentz, Elisabet

    2018-01-01

    Background Patients with anorexia nervosa exhibit higher levels of behaviours typically associated with autism-spectrum disorder (ASD), but the neural basis is unclear. We sought to determine whether elevated autistic traits in women with anorexia nervosa may be reflected in cortical morphology. Methods We used voxel-based morphometry (VBM) to examine regional grey matter volumes in high-resolution MRI structural brain scans in women with anorexia nervosa and matched healthy controls. The Autism-spectrum Quotient (AQ) scale was used to assess autistic traits. Results Women with anorexia nervosa (n = 25) had higher AQ scores and lower bilateral superior temporal sulcus (STS) grey matter volumes than the control group (n = 25). The AQ scores correlated negatively with average left STS grey matter volume in women with anorexia nervosa. Limitations We did not control for cognitive ability and examined only women with ongoing anorexia nervosa. Conclusion Elevated autistic traits in women with anorexia nervosa are associated with morphometric alterations of brain areas linked to social cognition. This finding provides neurobiological support for the behavioural link between anorexia nervosa and ASD and emphasizes the importance of recognizing autistic traits in preventing and treating anorexia nervosa. PMID:29481315

  4. Grey matter correlates of autistic traits in women with anorexia nervosa

    PubMed

    Björnsdotter, Malin; Davidovic, Monika; Karjalainen, Louise; Starck, Göran; Olausson, Håkan; Wentz, Elisabet

    2017-12-07

    Patients with anorexia nervosa exhibit higher levels of behaviours typically associated with autism-spectrum disorder (ASD), but the neural basis is unclear. We sought to determine whether elevated autistic traits in women with anorexia nervosa may be reflected in cortical morphology. We used voxel-based morphometry (VBM) to examine regional grey matter volumes in high-resolution MRI structural brain scans in women with anorexia nervosa and matched healthy controls. The Autism-spectrum Quotient (AQ) scale was used to assess autistic traits. Women with anorexia nervosa (n = 25) had higher AQ scores and lower bilateral superior temporal sulcus (STS) grey matter volumes than the control group (n = 25). The AQ scores correlated negatively with average left STS grey matter volume in women with anorexia nervosa. We did not control for cognitive ability and examined only women with ongoing anorexia nervosa. Elevated autistic traits in women with anorexia nervosa are associated with morphometric alterations of brain areas linked to social cognition. This finding provides neurobiological support for the behavioural link between anorexia nervosa and ASD and emphasizes the importance of recognizing autistic traits in preventing and treating ­anorexia nervosa. 2017 Joule Inc., or its licensors

  5. Memory in multiple sclerosis is linked to glutamate concentration in grey matter regions

    PubMed Central

    Muhlert, Nils; Atzori, Matteo; De Vita, Enrico; Thomas, David L; Samson, Rebecca S; Wheeler-Kingshott, Claudia A M; Geurts, Jeroen J G; Miller, David H; Thompson, Alan J; Ciccarelli, Olga

    2014-01-01

    Objective Glutamate is the principal excitatory neurotransmitter and is involved in normal brain function. Cognitive impairment is common in multiple sclerosis (MS), and understanding its mechanisms is crucial for developing effective treatments. We used structural and metabolic brain imaging to test two hypotheses: (i) glutamate levels in grey matter regions are abnormal in MS, and (ii) patients show a relationship between glutamate concentration and memory performance. Methods Eighteen patients with relapsing-remitting MS and 17 healthy controls were cognitively assessed and underwent 1H-magnetic resonance spectroscopy at 3 T to assess glutamate levels in the hippocampus, thalamus, cingulate and parietal cortices. Regression models investigated the association between glutamate concentration and memory performance independently of magnetisation transfer ratio values and grey matter lesions withint he same regions, and whole-brain grey matter volume. Results Patients had worse visual and verbal memory than controls. A positive relationship between glutamate levels in the hippocampal, thalamic and cingulate regions and visuospatial memory was detected in patients, but not in healthy controls. Conclusions The relationship between memory and glutamate concentration, which is unique to MS patients, suggests the reliance of memory on glutamatergic systems in MS. PMID:24431465

  6. Grey matter volume loss is associated with specific clinical motor signs in Huntington's disease.

    PubMed

    Coppen, Emma M; Jacobs, Milou; van den Berg-Huysmans, Annette A; van der Grond, Jeroen; Roos, Raymund A C

    2018-01-01

    Motor disturbances are clinical hallmarks of Huntington's disease (HD) and involve chorea, dystonia, hypokinesia and visuomotor dysfunction. Investigating the association between specific motor signs and different regional volumes is important to understand the heterogeneity of HD. To investigate the motor phenotype of HD and associations with subcortical and cortical grey matter volume loss. Structural T1-weighted MRI scans of 79 HD patients and 30 healthy controls were used to calculate volumes of seven subcortical structures including the nucleus accumbens, hippocampus, thalamus, caudate nucleus, putamen, pallidum and amygdala. Multiple linear regression analyses, corrected for age, gender, CAG, MRI scan protocol and normalized brain volume, were performed to assess the relationship between subcortical volumes and different motor subdomains (i.e. eye movements, chorea, dystonia, hypokinesia/rigidity and gait/balance). Voxel-based morphometry analysis was used to investigate the relationship between cortical volume changes and motor signs. Subcortical volume loss of the accumbens nucleus, caudate nucleus, putamen, and pallidum were associated with higher chorea scores. No other subcortical region was significantly associated with motor symptoms after correction for multiple comparisons. Voxel-based cortical grey matter volume reductions in occipital regions were related with an increase in eye movement scores. In HD, chorea is mainly associated with subcortical volume loss, while eye movements are more related to cortical volume loss. Both subcortical and cortical degeneration has an impact on motor impairment in HD. This implies that there is a widespread contribution of different brain regions resulting in the clinical motor presentation seen in HD patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Subcortical grey matter alterations in cocaine dependent individuals with substance-induced psychosis compared to non-psychotic cocaine users.

    PubMed

    Willi, Taylor S; Lang, Donna J; Honer, William G; Smith, Geoff N; Thornton, Allen E; Panenka, William J; Procyshyn, Ric M; Vila-Rodriguez, Fidel; Su, Wayne; Vertinsky, A Talia; Leonova, Olga; Rauscher, Alexander; MacEwan, G William; Barr, Alasdair M

    2016-10-01

    After prolonged psychostimulant abuse, transient psychotic symptoms referred to as "substance-induced psychosis" (SIP) can develop - closely resembling symptoms observed in schizophrenia spectrum disorders. The comparability in psychotic presentation between SIP and schizophrenias suggests that similar underlying neural deficits may contribute to the expression of psychosis across these disorders. To date, neuroanatomical characterization of grey matter structural alterations in SIP has been limited to methamphetamine associated psychosis, with no studies controlling for potential neurotoxic effects of the psychostimulant that precipitates psychosis. To investigate grey matter subcortical alterations in SIP, a voxel-based analysis of magnetic resonance images (MRI) was performed between a group of 74 cocaine dependent nonpsychotic individuals and a group of 29 individuals with cocaine-associated psychosis. The cocaine-associated psychosis group had significantly smaller volumes of the thalamus and left hippocampus, controlling for age, total brain volume, current methamphetamine dependence, and current marijuana dependence. No differences were present in bilateral caudate structures. The findings of reduced thalamic and hippocampal volumes agree with previous reports in the schizophrenia literature, suggesting alterations of these structures are not specific to schizophrenia, but may be common to multiple forms of psychosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Decreased Central Nervous System Grey Matter Volume (GMV) in Smokers Affects Cognitive Abilities: A Systematic Review

    PubMed Central

    Vňuková, Martina; Ptáček, Radek; Raboch, Jiří; Stefano, George B.

    2017-01-01

    Although cigarette smoking is a leading cause of preventable mortality, tobacco is consumed by approximately 22% of the adult population worldwide. Smoking is also a risk factor for cardiovascular disease, affects brain processing, and is a recognized risk factor for Alzheimer disease (AD). Tobacco toxins (e.g., nicotine at high levels) inhaled in smoke may cause disorders resulting in preclinical brain changes. Researchers suggest that there are differences in brain volume between smokers and non-smokers. This review examines these differences in brain grey matter volume (GMV). In March/April 2015, MedLine, Embase, and PsycINFO were searched using the terms: “grey matter” AND “voxel-based” AND “smoking” AND “cigarette”. The 4 studies analyzed found brain GMV decreases in smokers compared to non-smokers. Furthermore, sex-specific differences were found; while the thalamus and cerebellum were affected in both sexes, decreased GMV in the olfactory gyrus was found only in male smokers. Age-group differences were also found, and these may suggest pre-existing abnormalities that lead to nicotine dependence in younger individuals. Only 1 study found a positive correlation between number of pack-years smoked and GMV. Smoking decreases GMV in most brain areas. This decrease may be responsible for the cognitive impairment and difficulties with emotional regulation found in smokers compared with non-smokers. PMID:28426638

  9. Identification of regions of normal grey matter and white matter from pathologic glioblastoma and necrosis in frozen sections using Raman imaging.

    PubMed

    Kast, Rachel; Auner, Gregory; Yurgelevic, Sally; Broadbent, Brandy; Raghunathan, Aditya; Poisson, Laila M; Mikkelsen, Tom; Rosenblum, Mark L; Kalkanis, Steven N

    2015-11-01

    In neurosurgical applications, a tool capable of distinguishing grey matter, white matter, and areas of tumor and/or necrosis in near-real time could greatly aid in tumor resection decision making. Raman spectroscopy is a non-destructive spectroscopic technique which provides molecular information about the tissue under examination based on the vibrational properties of the constituent molecules. With careful measurement and data processing, a spatial step and repeat acquisition of Raman spectra can be used to create Raman images. Forty frozen brain tissue sections were imaged in their entirety using a 300-µm-square measurement grid, and two or more regions of interest within each tissue were also imaged using a 25 µm-square step size. Molecular correlates for histologic features of interest were identified within the Raman spectra, and novel imaging algorithms were developed to compare molecular features across multiple tissues. In previous work, the relative concentration of individual biomolecules was imaged. Here, the relative concentrations of 1004, 1300:1344, and 1660 cm(-1), which correspond primarily to protein and lipid content, were simultaneously imaged across all tissues. This provided simple interpretation of boundaries between grey matter, white matter, and diseased tissue, and corresponded with findings from adjacent hematoxylin and eosin-stained sections. This novel, yet simple, multi-channel imaging technique allows clinically-relevant resolution with straightforward molecular interpretation of Raman images not possible by imaging any single peak. This method can be applied to either surgical or laboratory tools for rapid, non-destructive imaging of grey and white matter.

  10. The effect of lifelong bilingualism on regional grey and white matter volume.

    PubMed

    Olsen, Rosanna K; Pangelinan, Melissa M; Bogulski, Cari; Chakravarty, M Mallar; Luk, Gigi; Grady, Cheryl L; Bialystok, Ellen

    2015-07-01

    Lifelong bilingualism is associated with the delayed diagnosis of dementia, suggesting bilingual experience is relevant to brain health in aging. While the effects of bilingualism on cognitive functions across the lifespan are well documented, less is known about the neural substrates underlying differential behaviour. It is clear that bilingualism affects brain regions that mediate language abilities and that these regions are at least partially overlapping with those that exhibit age-related decline. Moreover, the behavioural advantages observed in bilingualism are generally found in executive function performance, suggesting that the frontal lobes may also be sensitive to bilingualism, which exhibit volume reductions with age. The current study investigated structural differences in the brain of lifelong bilingual older adults (n=14, mean age=70.4) compared with older monolinguals (n=14, mean age=70.6). We employed two analytic approaches: 1) we examined global differences in grey and white matter volumes; and, 2) we examined local differences in volume and cortical thickness of specific regions of interest previously implicated in bilingual/monolingual comparisons (temporal pole) or in aging (entorhinal cortex and hippocampus). We expected bilinguals would exhibit greater volume of the frontal lobe and temporal lobe (grey and white matter), given the importance of these regions in executive and language functions, respectively. We further hypothesized that regions in the medial temporal lobe, which demonstrate early changes in aging and exhibit neural pathology in dementia, would be more preserved in the bilingual group. As predicted, bilinguals exhibit greater frontal lobe white matter compared with monolinguals. Moreover, increasing age was related to decreasing temporal pole cortical thickness in the monolingual group, but no such relationship was observed for bilinguals. Finally, Stroop task performance was positively correlated with frontal lobe white matter, emphasizing the importance of preserved white matter in maintaining executive function in aging. These results underscore previous findings implicating an association between bilingualism and preserved frontal and temporal lobe function in aging. This article is part of a Special Issue entitled SI: Memory Å. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Neuroprotection after a first episode of mania: a randomized controlled maintenance trial comparing the effects of lithium and quetiapine on grey and white matter volume

    PubMed Central

    Berk, M; Dandash, O; Daglas, R; Cotton, S M; Allott, K; Fornito, A; Suo, C; Klauser, P; Liberg, B; Henry, L; Macneil, C; Hasty, M; McGorry, P; Pantelis, Cs; Yücel, M

    2017-01-01

    Lithium and quetiapine are effective treatments for bipolar disorder, but their potential neuroprotective effects in humans remain unclear. A single blinded equivalence randomized controlled maintenance trial was conducted in a prospective cohort of first-episode mania (FEM) patients (n=26) to longitudinally compare the putative protective effects of lithium and quetapine on grey and white matter volume. A healthy control sample was also collected (n=20). Using structural MRI scans, voxel-wise grey and white matter volumes at baseline and changes over time in response to treatment were investigated. Patients were assessed at three time points (baseline, 3 and 12-month follow-up), whereas healthy controls were assessed at two time points (baseline and 12-month follow-up). Patients were randomized to lithium (serum level 0.6 mmol l−1, n=20) or quetiapine (flexibly dosed up to 800 mg per day, n=19) monotherapy. At baseline, compared with healthy control subjects, patients with FEM showed reduced grey matter in the orbitofrontal cortex, anterior cingulate, inferior frontal gyrus and cerebellum. In addition, patients had reduced internal capsule white matter volume bilaterally (t1,66>3.20, P<0.01). Longitudinally, there was a significant treatment × time effect only in the white matter of the left internal capsule (F2,112=8.54, P<0.01). Post hoc testing showed that, compared with baseline, lithium was more effective than quetiapine in slowing the progression of white matter volume reduction after 12 months (t1,24=3.76, P<0.01). Our data support the role of lithium but not quetiapine therapy in limiting white matter reduction early in the illness course after FEM. PMID:28117843

  12. Amphetamine Dependence and Co-Morbid Alcohol Abuse: Associations to Brain Cortical Thickness

    PubMed Central

    2010-01-01

    Background Long-term amphetamine and methamphetamine dependence has been linked to cerebral blood perfusion, metabolic, and white matter abnormalities. Several studies have linked methamphetamine abuse to cortical grey matter reduction, though with divergent findings. Few publications investigate unmethylated amphetamine's potential effects on cortical grey matter. This work investigated if amphetamine dependent patients showed reduced cortical grey matter thickness. Subjects were 40 amphetamine dependent subjects and 40 healthy controls. While all subjects were recruited to be free of alcohol dependence, structured clinical interviews revealed significant patterns of alcohol use in the patients. Structural magnetic resonance brain images were obtained from the subjects using a 1.5 Tesla GE Signa machine. Brain cortical thickness was measured with submillimeter precision at multiple finely spaced cortical locations using semi-automated post-processing (FreeSurfer). Contrast analysis of a general linear model was used to test for differences between the two groups at each cortical location. In addition to contrasting patients with controls, a number of analyses sought to identify possible confounding effects from alcohol. Results No significant cortical thickness differences were observed between the full patient group and controls, nor between non-drinking patients and controls. Patients with a history of co-morbid heavy alcohol use (n = 29) showed reductions in the superior-frontal right hemisphere and pre-central left hemisphere when compared to healthy controls (n = 40). Conclusions Amphetamine usage was associated with reduced cortical thickness only in patients co-morbid for heavy alcohol use. Since cortical thickness is but one measure of brain structure and does not capture brain function, further studies of brain structure and function in amphetamine dependence are warranted. PMID:20487539

  13. Apparent CBF decrease with normal aging due to partial volume effects: MR-based partial volume correction on CBF SPECT.

    PubMed

    Inoue, Kentaro; Ito, Hiroshi; Goto, Ryoi; Nakagawa, Manabu; Kinomura, Shigeo; Sato, Tachio; Sato, Kazunori; Fukuda, Hiroshi

    2005-06-01

    Several studies using single photon emission tomography (SPECT) have shown changes in cerebral blood flow (CBF) with age, which were associated with partial volume effects by some authors. Some studies have also demonstrated gender-related differences in CBF. The present study aimed to examine age and gender effects on CBF SPECT images obtained using the 99mTc-ethyl cysteinate dimer and a SPECT scanner, before and after partial volume correction (PVC) using magnetic resonance (MR) imaging. Forty-four healthy subjects (29 males and 15 females; age range, 27-64 y; mean age, 50.0 +/- 9.8 y) participated. Each MR image was segmented to yield grey and white matter images and coregistered to a corresponding SPECT image, followed by convolution to approximate the SPECT spatial resolution. PVC-SPECT images were produced using the convoluted grey matter MR (GM-MR) and white matter MR images. The age and gender effects were assessed using SPM99. Decreases with age were detected in the anterolateral prefrontal cortex and in areas along the lateral sulcus and the lateral ventricle, bilaterally, in the GM-MR images and the SPECT images. In the PVC-SPECT images, decreases in CBF in the lateral prefrontal cortex lost their statistical significance. Decreases in CBF with age found along the lateral sulcus and the lateral ventricle, on the other hand, remained statistically significant, but observation of the spatially normalized MR images suggests that these findings are associated with the dilatation of the lateral sulcus and lateral ventricle, which was not completely compensated for by the spatial normalization procedure. Our present study demonstrated that age effects on CBF in healthy subjects could reflect morphological differences with age in grey matter.

  14. Alcohol consumption during adolescence is associated with reduced grey matter volumes.

    PubMed

    Heikkinen, Noora; Niskanen, Eini; Könönen, Mervi; Tolmunen, Tommi; Kekkonen, Virve; Kivimäki, Petri; Tanila, Heikki; Laukkanen, Eila; Vanninen, Ritva

    2017-04-01

    Cognitive impairment has been associated with excessive alcohol use, but its neural basis is poorly understood. Chronic excessive alcohol use in adolescence may lead to neuronal loss and volumetric changes in the brain. Our objective was to compare the grey matter volumes of heavy- and light-drinking adolescents. This was a longitudinal study: heavy-drinking adolescents without an alcohol use disorder and their light-drinking controls were followed-up for 10 years using questionnaires at three time-points. Magnetic resonance imaging was conducted at the last time-point. The area near Kuopio University Hospital, Finland. The 62 participants were aged 22-28 years and included 35 alcohol users and 27 controls who had been followed-up for approximately 10 years. Alcohol use was measured by the Alcohol Use Disorders Identification Test (AUDIT)-C at three time-points during 10 years. Participants were selected based on their AUDIT-C score. Magnetic resonance imaging was conducted at the last time-point. Grey matter volume was determined and compared between heavy- and light-drinking groups using voxel-based morphometry on three-dimensional T1-weighted magnetic resonance images using predefined regions of interest and a threshold of P < 0.05, with small volume correction applied on cluster level. Grey matter volumes were significantly smaller among heavy-drinking participants in the bilateral anterior cingulate cortex, right orbitofrontal and frontopolar cortex, right superior temporal gyrus and right insular cortex compared to the control group (P < 0.05, family-wise error-corrected cluster level). Excessive alcohol use during adolescence appears to be associated with an abnormal development of the brain grey matter. Moreover, the structural changes detected in the insula of alcohol users may reflect a reduced sensitivity to alcohol's negative subjective effects. © 2016 Society for the Study of Addiction.

  15. A prospective study of grey matter and cognitive function alterations in chemotherapy-treated breast cancer patients.

    PubMed

    Lepage, Chris; Smith, Andra M; Moreau, Jeremy; Barlow-Krelina, Emily; Wallis, Nancy; Collins, Barbara; MacKenzie, Joyce; Scherling, Carole

    2014-01-01

    Subsequent to chemotherapy treatment, breast cancer patients often report a decline in cognitive functioning that can adversely impact many aspects of their lives. Evidence has mounted in recent years indicating that a portion of breast cancer survivors who have undergone chemotherapy display reduced performance on objective measures of cognitive functioning relative to comparison groups. Neurophysiological support for chemotherapy-related cognitive impairment has been accumulating due to an increase in neuroimaging studies in this field; however, longitudinal studies are limited and have not examined the relationship between structural grey matter alterations and neuropsychological performance. The aim of this study was to extend the cancer-cognition literature by investigating the association between grey matter attenuation and objectively measured cognitive functioning in chemotherapy-treated breast cancer patients. Female breast cancer patients (n = 19) underwent magnetic resonance imaging after surgery but before commencing chemotherapy, one month following treatment, and one year after treatment completion. Individually matched controls (n = 19) underwent imaging at similar intervals. All participants underwent a comprehensive neuropsychological battery comprising four cognitive domains at these same time points. Longitudinal grey matter changes were investigated using voxel-based morphometry. One month following chemotherapy, patients had distributed grey matter volume reductions. One year after treatment, a partial recovery was observed with alterations persisting predominantly in frontal and temporal regions. This course was not observed in the healthy comparison group. Processing speed followed a similar trajectory within the patient group, with poorest scores obtained one month following treatment and some improvement evident one year post-treatment. This study provides further credence to patient claims of altered cognitive functioning subsequent to chemotherapy treatment.

  16. Neuroanatomical correlates of personality in chimpanzees (Pan troglodytes): Associations between personality and frontal cortex.

    PubMed

    Latzman, Robert D; Hecht, Lisa K; Freeman, Hani D; Schapiro, Steven J; Hopkins, William D

    2015-12-01

    Converging empirical data suggests that a set of largely consistent personality traits exist in both human and nonhuman primates; despite these similarities, almost nothing is known concerning the neurobiological basis of these traits in nonhuman primates. The current study examined associations between chimpanzee personality traits and the grey matter volume and asymmetry of various frontal cortex regions in 107 captive chimpanzees. Chimpanzees rated as higher on Openness and Extraversion had greater bilateral grey matter volumes in the anterior cingulate cortex. Further, chimpanzee rated as higher on Dominance had larger grey volumes in the left anterior cingulate cortex and right Prefrontal Cortex (PFC). Finally, apes rated higher on Reactivity/Unpredictability had higher grey matter volumes in the right mesial PFC. All associations survived after applying False Discovery Rate (FDR) thresholds. Results are discussed in terms of current neuroscientific models of personality which suggest that the frontal cortex, and asymmetries in this region, play an important role in the neurobiological foundation of broad dispositional traits. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Computer-aided diagnosis of HIE based on segmentation of MRI

    NASA Astrophysics Data System (ADS)

    Sun, Ziguang; Li, Chungui; Wang, Qin

    2009-10-01

    Computer-aided diagnosis has become one of the major research subjects in medical imaging and diagnostic radiology. Hypoxic-ischemic encephalopathy (HIE), remains a serious condition that causes significant mortality and long-term morbidity to neonates. We adopt self-organizing feature maps to segment the tissues, such as white matter and grey matter in the magnetic resonance images. The borderline between white matter and grey matter can be found and the doubtful regions along with the borderline can be localized, then the feature in doubtful regions can be quantified. The method can assist doctors to easily diagnose whether a neonate is ill with mild HIE.

  18. Use of oleaginous plants in phytotreatment of grey water and yellow water from source separation of sewage.

    PubMed

    Lavagnolo, Maria Cristina; Malagoli, Mario; Alibardi, Luca; Garbo, Francesco; Pivato, Alberto; Cossu, Raffaello

    2017-05-01

    Efficient and economic reuse of waste is one of the pillars of modern environmental engineering. In the field of domestic sewage management, source separation of yellow (urine), brown (faecal matter) and grey waters aims to recover the organic substances concentrated in brown water, the nutrients (nitrogen and phosphorous) in the urine and to ensure an easier treatment and recycling of grey waters. With the objective of emphasizing the potential of recovery of resources from sewage management, a lab-scale research study was carried out at the University of Padova in order to evaluate the performances of oleaginous plants (suitable for biodiesel production) in the phytotreatment of source separated yellow and grey waters. The plant species used were Brassica napus (rapeseed), Glycine max (soybean) and Helianthus annuus (sunflower). Phytotreatment tests were carried out using 20L pots. Different testing runs were performed at an increasing nitrogen concentration in the feedstock. The results proved that oleaginous species can conveniently be used for the phytotreatment of grey and yellow waters from source separation of domestic sewage, displaying high removal efficiencies of nutrients and organic substances (nitrogen>80%; phosphorous >90%; COD nearly 90%). No inhibition was registered in the growth of plants irrigated with different mixtures of yellow and grey waters, where the characteristics of the two streams were reciprocally and beneficially integrated. Copyright © 2016. Published by Elsevier B.V.

  19. Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome

    PubMed Central

    Politis, Marios; Su, Paul; Turkheimer, Federico E.; Malik, Omar; Keihaninejad, Shiva; Wu, Kit; Waldman, Adam; Reynolds, Richard; Nicholas, Richard; Piccini, Paola

    2015-01-01

    The most accurate predictor of the subsequent development of multiple sclerosis in clinically isolated syndrome is the presence of lesions at magnetic resonance imaging. We used in vivo positron emission tomography with 11C-(R)-PK11195, a biomarker of activated microglia, to investigate the normal-appearing white matter and grey matter of subjects with clinically isolated syndrome to explore its role in the development of multiple sclerosis. Eighteen clinically isolated syndrome and eight healthy control subjects were recruited. Baseline assessment included: history, neurological examination, expanded disability status scale, magnetic resonance imaging and PK11195-positron emission tomography scans. All assessments except the PK11195-positron emission tomography scan were repeated over 2 years. SUPERPK methodology was used to measure the binding potential relative to the non-specific volume, BPND. We show a global increase of normal-appearing white matter PK11195 BPND in clinically isolated syndrome subjects compared with healthy controls (P = 0.014). Clinically isolated syndrome subjects with T2 magnetic resonance imaging lesions had higher PK11195 BPND in normal-appearing white matter (P = 0.009) and their normal-appearing white matter PK11195 BPND correlated with the Expanded Disability Status Scale (P = 0.007; r = 0.672). At 2 years those who developed dissemination in space or multiple sclerosis, had higher PK11195 BPND in normal-appearing white matter at baseline (P = 0.007 and P = 0.048, respectively). Central grey matter PK11195 BPND was increased in subjects with clinically isolated syndrome compared to healthy controls but no difference was found in cortical grey matter PK11195 BPND. Microglial activation in clinically isolated syndrome normal-appearing white matter is diffusely increased compared with healthy control subjects and is further increased in those who have magnetic resonance imaging lesions. Furthermore microglial activation in clinically isolated syndrome normal-appearing white matter is also higher in those subjects who developed multiple sclerosis at 2 years. Our finding, if replicated in a larger study, could be of prognostic value and aid early treatment decisions in clinically isolated syndrome. PMID:25416179

  20. Grey matter changes associated with medication-overuse headache: correlations with disease related disability and anxiety.

    PubMed

    Riederer, Franz; Marti, Marvin; Luechinger, Roger; Lanzenberger, Rupert; von Meyenburg, Jan; Gantenbein, Andreas R; Pirrotta, Roberto; Gaul, Charly; Kollias, Spyridon; Sándor, Peter S

    2012-10-01

    Medication-overuse headache (MOH) is associated with psychiatric comorbidities. Neurobiological similarities to substance dependence have been suggested. This study investigated grey matter changes, focussing on pain and reward systems. Using voxel-based morphometry, structural MRIs were compared between 29 patients with both, MOH and migraine, according to International Headache Society criteria, and healthy controls. The Migraine Disability Assessment (MIDAS) score was used. Anxiety and depression were screened for with the Hospital Anxiety and Depression Scale (HADS) and confirmed by a psychiatrist, using the Mini International Neuropsychiatric Interview. Nineteen patients (66%) had a present or past psychiatric disorder, mainly affective (N = 11) and anxiety disorders (N = 8). In all patients a significant increase of grey matter volume (GMV) was found in the periaqueductal grey matter of the midbrain, which correlated positively with the MIDAS and the HADS-anxiety subscale. A GMV increase was found bilaterally in the thalamus, and the ventral striatum. A significant GMV decrease was detected in frontal regions including orbitofrontal cortex, anterior cingulate cortex, the left and right insula, and the precuneus. These findings are consistent with dysfunction of antinociceptive systems in MOH, which is influenced by anxiety. Dysfunction of the reward system may be a neurobiological basis for dependence in a subgroup of MOH patients.

  1. Self-efficacy is independently associated with brain volume in older women.

    PubMed

    Davis, Jennifer C; Nagamatsu, Lindsay S; Hsu, Chun Liang; Beattie, B Lynn; Liu-Ambrose, Teresa

    2012-07-01

    ageing is highly associated with neurodegeneration and atrophy of the brain. Evidence suggests that personality variables are risk factors for reduced brain volume. We examine whether falls-related self-efficacy is independently associated with brain volume. a cross-sectional analysis of whether falls-related self-efficacy is independently associated with brain volumes (total, grey and white matter). Three multivariate regression models were constructed. Covariates included in the models were age, global cognition, systolic blood pressure, functional comorbidity index and current physical activity level. MRI scans were acquired from 79 community-dwelling senior women aged 65-75 years old. Falls-related self-efficacy was assessed by the activities-specific balance confidence (ABC) scale. after accounting for covariates, falls-related self-efficacy was independently associated with both total brain volume and total grey matter volume. The final model for total brain volume accounted for 17% of the variance, with the ABC score accounting for 8%. For total grey matter volume, the final model accounted for 24% of the variance, with the ABC score accounting for 10%. we provide novel evidence that falls-related self-efficacy, a modifiable risk factor for healthy ageing, is positively associated with total brain volume and total grey matter volume. ClinicalTrials.gov Identifier: NCT00426881.

  2. Self-efficacy is independently associated with brain volume in older women

    PubMed Central

    Davis, Jennifer C.; Nagamatsu, Lindsay S.; Hsu, Chun Liang; Beattie, B. Lynn; Liu-Ambrose, Teresa

    2015-01-01

    Background Aging is highly associated with neurodegeneration and atrophy of the brain. Evidence suggests that personality variables are risk factors for reduced brain volume. We examine whether falls-related self-efficacy is independently associated with brain volume. Method A cross-sectional analysis of whether falls-related self-efficacy is independently associated with brain volumes (total, grey, and white matter). Three multivariate regression models were constructed. Covariates included in the models were age, global cognition, systolic blood pressure, functional comorbidity index, and current physical activity level. MRI scans were acquired from 79 community-dwelling senior women aged 65 to 75 years old. Falls-related self-efficacy was assessed by the Activities Specific Balance Confidence (ABC) Scale. Results After accounting for covariates, falls-related self-efficacy was independently associated with both total brain volume and total grey matter volume. The final model for total brain volume accounted for 17% of the variance, with the ABC score accounting for 8%. For total grey matter volume, the final model accounted for 24% of the variance, with the ABC score accounting for 10%. Conclusion We provide novel evidence that falls-related self-efficacy, a modifiable risk factor for healthy aging, is positively associated with total brain volume and total grey matter volume. Trial Registration ClinicalTrials.gov Identifier: NCT00426881. PMID:22436405

  3. Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood-brain barrier models.

    PubMed

    Noumbissi, Midrelle E; Galasso, Bianca; Stins, Monique F

    2018-04-23

    The vertebrate blood-brain barrier (BBB) is composed of cerebral microvascular endothelial cells (CEC). The BBB acts as a semi-permeable cellular interface that tightly regulates bidirectional molecular transport between blood and the brain parenchyma in order to maintain cerebral homeostasis. The CEC phenotype is regulated by a variety of factors, including cells in its immediate environment and within functional neurovascular units. The cellular composition of the brain parenchyma surrounding the CEC varies between different brain regions; this difference is clearly visible in grey versus white matter. In this review, we discuss evidence for the existence of brain vascular heterogeneity, focusing on differences between the vessels of the grey and white matter. The region-specific differences in the vasculature of the brain are reflective of specific functions of those particular brain areas. This BBB-endothelial heterogeneity may have implications for the course of pathogenesis of cerebrovascular diseases and neurological disorders involving vascular activation and dysfunction. This heterogeneity should be taken into account when developing BBB-neuro-disease models representative of specific brain areas.

  4. Biochemically-defined pools of amyloid-β in sporadic Alzheimer's disease: correlation with amyloid PET.

    PubMed

    Roberts, Blaine R; Lind, Monica; Wagen, Aaron Z; Rembach, Alan; Frugier, Tony; Li, Qiao-Xin; Ryan, Timothy M; McLean, Catriona A; Doecke, James D; Rowe, Christopher C; Villemagne, Victor L; Masters, Colin L

    2017-05-01

    We fractionated frontal cortical grey matter from human Alzheimer's disease and control subjects into four biochemically defined pools that represent four distinct compartments: soluble/cytosolic, peripheral membrane/vesicular cargo, integral lipid/membranous pools and aggregated/insoluble debris. Most of the readily extractable amyloid-β remains associated with a lipid/membranous compartment. There is an exchange of amyloid-β between the biochemical pools that was lost for the amyloid-β42 species in Alzheimer's disease, consistent with the peptide being irreversibly trapped in extracellular deposits. The quantitative amyloid-β data, combined with magnetic resonance imaging volumetric analysis of the amount of cortical grey matter in brain, allowed us to estimate the total mass of amyloid-β in Alzheimer's disease (6.5 mg) and control (1.7 mg) brains. The threshold positron emission tomography standard uptake value ratio of 1.4 equates to 5.0 μg amyloid-β/g of grey matter and the mean Alzheimer's disease dementia standard uptake value ratio level of 2.3 equates to 11.20 μg amyloid-β/g of grey matter. It takes 19 years to accumulate amyloid from the threshold positron emission tomography standard uptake value ratio to the mean value observed for Alzheimer's disease dementia. This accumulation time window combined with the difference of 4.8 mg of amyloid-β between Alzheimer's disease and control brain allows for a first approximation of amyloid-β accumulation of 28 ng/h. This equates to an estimated 2-5% of the total amyloid-β production being deposited as insoluble plaques. Understanding these rates of amyloid-β accumulation allows for a more quantitative approach in targeting the failure of amyloid-β clearance in sporadic Alzheimer's disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Brain structural plasticity in survivors of a major earthquake

    PubMed Central

    Lui, Su; Chen, Long; Yao, Li; Xiao, Yuan; Wu, Qi-Zhu; Zhang, Jun-Ran; Huang, Xiao-Qi; Zhang, Wei; Wang, Yu-Qin; Chen, Hua-Fu; Chan, Raymond C.K.; Sweeney, John A.; Gong, Qi-Yong

    2013-01-01

    Background Stress responses have been studied extensively in animal models, but effects of major life stress on the human brain remain poorly understood. The aim of this study was to determine whether survivors of a major earthquake, who were presumed to have experienced extreme emotional stress during the disaster, demonstrate differences in brain anatomy relative to individuals who have not experienced such stressors. Methods Healthy survivors living in an area devastated by a major earthquake and matched healthy controls underwent 3-dimentional high-resolution magnetic resonance imaging (MRI). Survivors were scanned 13–25 days after the earthquake; controls had undergone MRI for other studies not long before the earthquake. We used optimized voxel-based morphometry analysis to identify regional differences of grey matter volume between the survivors and controls. Results We included 44 survivors (17 female, mean age 37 [standard deviation (SD) 10.6] yr) and 38 controls (14 female, mean age 35.3 [SD 11.2] yr) in our analysis. Compared with controls, the survivors showed significantly lower grey matter volume in the bilateral insula, hippocampus, left caudate and putamen, and greater grey matter volume in the bilateral orbitofrontal cortex and the parietal lobe (all p < 0.05, corrected for multiple comparison). Limitations Differences in the variance of survivor and control data could impact study findings. Conclusion Acute anatomic alterations could be observed in earthquake survivors in brain regions where functional alterations after stress have been described. Anatomic changes in the present study were observed earlier than previously reported and were seen in prefrontal–limbic, parietal and striatal brain systems. Together with the results of previous functional imaging studies, our observations suggest a complex pattern of human brain response to major life stress affecting brain systems that modulate and respond to heightened affective arousal. PMID:23710694

  6. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer's disease.

    PubMed

    Bejanin, Alexandre; Schonhaut, Daniel R; La Joie, Renaud; Kramer, Joel H; Baker, Suzanne L; Sosa, Natasha; Ayakta, Nagehan; Cantwell, Averill; Janabi, Mustafa; Lauriola, Mariella; O'Neil, James P; Gorno-Tempini, Maria L; Miller, Zachary A; Rosen, Howard J; Miller, Bruce L; Jagust, William J; Rabinovici, Gil D

    2017-12-01

    Neuropathological and in vivo studies have revealed a tight relationship between tau pathology and cognitive impairment across the Alzheimer's disease spectrum. However, tau pathology is also intimately associated with neurodegeneration and amyloid pathology. The aim of the present study was therefore to assess whether grey matter atrophy and amyloid pathology contribute to the relationship between tau pathology, as measured with 18F-AV-1451-PET imaging, and cognitive deficits in Alzheimer's disease. We included 40 amyloid-positive patients meeting criteria for mild cognitive impairment due to Alzheimer's disease (n = 5) or probable Alzheimer's disease dementia (n = 35). Twelve patients additionally fulfilled the diagnostic criteria for posterior cortical atrophy and eight for logopenic variant primary progressive aphasia. All participants underwent 3 T magnetic resonance imaging, amyloid (11C-PiB) positron emission tomography and tau (18F-AV-1451) positron emission tomography, and episodic and semantic memory, language, executive and visuospatial functions assessment. Raw cognitive scores were converted to age-adjusted Z-scores (W-scores) and averaged to compute composite scores for each cognitive domain. Independent regressions were performed between 18F-AV-1451 binding and each cognitive domain, and we used the Biological Parametric Mapping toolbox to further control for local grey matter volumes, 11C-PiB uptake, or both. Partial correlations and causal mediation analyses (mediation R package) were then performed in brain regions showing an association between cognition and both 18F-AV-1451 uptake and grey matter volume. Our results showed that decreased cognitive performance in each domain was related to increased 18F-AV-1451 binding in specific brain regions conforming to established brain-behaviour relationships (i.e. episodic memory: medial temporal lobe and angular gyrus; semantic memory: left anterior temporal regions; language: left posterior superior temporal lobe and supramarginal gyrus; executive functions: bilateral frontoparietal regions; visuospatial functions: right more than left occipitotemporal regions). This pattern of regional associations remained essentially unchanged-although less spatially extended-when grey matter volume or 11C-PiB uptake maps were added as covariates. Mediation analyses revealed both direct and grey matter-mediated effects of 18F-AV-1451 uptake on cognitive performance. Together, these results show that tau pathology is related in a region-specific manner to cognitive impairment in Alzheimer's disease. These regional relationships are weakly related to amyloid burden, but are in part mediated by grey matter volumes. This suggests that tau pathology may lead to cognitive deficits through a variety of mechanisms, including, but not restricted to, grey matter loss. These results might have implications for future therapeutic trials targeting tau pathology. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Direct voxel-based comparisons between grey matter shrinkage and glucose hypometabolism in chronic alcoholism.

    PubMed

    Ritz, Ludivine; Segobin, Shailendra; Lannuzel, Coralie; Boudehent, Céline; Vabret, François; Eustache, Francis; Beaunieux, Hélène; Pitel, Anne L

    2016-09-01

    Alcoholism is associated with widespread brain structural abnormalities affecting mainly the frontocerebellar and the Papez's circuits. Brain glucose metabolism has received limited attention, and few studies used regions of interest approach and showed reduced global brain metabolism predominantly in the frontal and parietal lobes. Even though these studies have examined the relationship between grey matter shrinkage and hypometabolism, none has performed a direct voxel-by-voxel comparison between the degrees of structural and metabolic abnormalities. Seventeen alcoholic patients and 16 control subjects underwent both structural magnetic resonance imaging and (18)F-2-fluoro-deoxy-glucose-positron emission tomography examinations. Structural abnormalities and hypometabolism were examined in alcoholic patients compared with control subjects using two-sample t-tests. Then, these two patterns of brain damage were directly compared with a paired t-test. Compared to controls, alcoholic patients had grey matter shrinkage and hypometabolism in the fronto-cerebellar circuit and several nodes of Papez's circuit. The direct comparison revealed greater shrinkage than hypometabolism in the cerebellum, cingulate cortex, thalamus and hippocampus and parahippocampal gyrus. Conversely, hypometabolism was more severe than shrinkage in the dorsolateral, premotor and parietal cortices. The distinct profiles of abnormalities found within the Papez's circuit, the fronto-cerebellar circuit and the parietal gyrus in chronic alcoholism suggest the involvement of different pathological mechanisms. © The Author(s) 2015.

  8. Direct voxel-based comparisons between grey matter shrinkage and glucose hypometabolism in chronic alcoholism

    PubMed Central

    Ritz, Ludivine; Segobin, Shailendra; Lannuzel, Coralie; Boudehent, Céline; Vabret, François; Eustache, Francis; Beaunieux, Hélène

    2015-01-01

    Alcoholism is associated with widespread brain structural abnormalities affecting mainly the frontocerebellar and the Papez’s circuits. Brain glucose metabolism has received limited attention, and few studies used regions of interest approach and showed reduced global brain metabolism predominantly in the frontal and parietal lobes. Even though these studies have examined the relationship between grey matter shrinkage and hypometabolism, none has performed a direct voxel-by-voxel comparison between the degrees of structural and metabolic abnormalities. Seventeen alcoholic patients and 16 control subjects underwent both structural magnetic resonance imaging and 18F-2-fluoro-deoxy-glucose-positron emission tomography examinations. Structural abnormalities and hypometabolism were examined in alcoholic patients compared with control subjects using two-sample t-tests. Then, these two patterns of brain damage were directly compared with a paired t-test. Compared to controls, alcoholic patients had grey matter shrinkage and hypometabolism in the fronto-cerebellar circuit and several nodes of Papez’s circuit. The direct comparison revealed greater shrinkage than hypometabolism in the cerebellum, cingulate cortex, thalamus and hippocampus and parahippocampal gyrus. Conversely, hypometabolism was more severe than shrinkage in the dorsolateral, premotor and parietal cortices. The distinct profiles of abnormalities found within the Papez’s circuit, the fronto-cerebellar circuit and the parietal gyrus in chronic alcoholism suggest the involvement of different pathological mechanisms. PMID:26661206

  9. A family affair: brain abnormalities in siblings of patients with schizophrenia.

    PubMed

    Moran, Marcel E; Hulshoff Pol, Hilleke; Gogtay, Nitin

    2013-11-01

    Schizophrenia is a severe mental disorder that has a strong genetic basis. Converging evidence suggests that schizophrenia is a progressive neurodevelopmental disorder, with earlier onset cases resulting in more profound brain abnormalities. Siblings of patients with schizophrenia provide an invaluable resource for differentiating between trait and state markers, thus highlighting possible endophenotypes for ongoing research. However, findings from sibling studies have not been systematically put together in a coherent story across the broader age span. We review here the cortical grey matter abnormalities in siblings of patients with schizophrenia from childhood to adulthood, by reviewing sibling studies from both childhood-onset schizophrenia, and the more common adult-onset schizophrenia. When reviewed together, studies suggest that siblings of patients with schizophrenia display significant brain abnormalities that highlight both similarities and differences between the adult and childhood populations, with shared developmental risk patterns, and segregating trajectories. Based on current research it appears that the cortical grey matter abnormalities in siblings are likely to be an age-dependent endophenotype, which normalize by the typical age of onset of schizophrenia unless there has been more genetic or symptom burdening. With increased genetic burdening (e.g. discordant twins of patients) the grey matter abnormalities in (twin) siblings are progressive in adulthood. This synthesis of the literature clarifies the importance of brain plasticity in the pathophysiology of the illness, indicating that probands may lack protective factors critical for healthy development.

  10. A family affair: brain abnormalities in siblings of patients with schizophrenia

    PubMed Central

    Hulshoff Pol, Hilleke; Gogtay, Nitin

    2013-01-01

    Schizophrenia is a severe mental disorder that has a strong genetic basis. Converging evidence suggests that schizophrenia is a progressive neurodevelopmental disorder, with earlier onset cases resulting in more profound brain abnormalities. Siblings of patients with schizophrenia provide an invaluable resource for differentiating between trait and state markers, thus highlighting possible endophenotypes for ongoing research. However, findings from sibling studies have not been systematically put together in a coherent story across the broader age span. We review here the cortical grey matter abnormalities in siblings of patients with schizophrenia from childhood to adulthood, by reviewing sibling studies from both childhood-onset schizophrenia, and the more common adult-onset schizophrenia. When reviewed together, studies suggest that siblings of patients with schizophrenia display significant brain abnormalities that highlight both similarities and differences between the adult and childhood populations, with shared developmental risk patterns, and segregating trajectories. Based on current research it appears that the cortical grey matter abnormalities in siblings are likely to be an age-dependent endophenotype, which normalize by the typical age of onset of schizophrenia unless there has been more genetic or symptom burdening. With increased genetic burdening (e.g. discordant twins of patients) the grey matter abnormalities in (twin) siblings are progressive in adulthood. This synthesis of the literature clarifies the importance of brain plasticity in the pathophysiology of the illness, indicating that probands may lack protective factors critical for healthy development. PMID:23698280

  11. Face shape and face identity processing in behavioral variant fronto-temporal dementia: A specific deficit for familiarity and name recognition of famous faces.

    PubMed

    De Winter, François-Laurent; Timmers, Dorien; de Gelder, Beatrice; Van Orshoven, Marc; Vieren, Marleen; Bouckaert, Miriam; Cypers, Gert; Caekebeke, Jo; Van de Vliet, Laura; Goffin, Karolien; Van Laere, Koen; Sunaert, Stefan; Vandenberghe, Rik; Vandenbulcke, Mathieu; Van den Stock, Jan

    2016-01-01

    Deficits in face processing have been described in the behavioral variant of fronto-temporal dementia (bvFTD), primarily regarding the recognition of facial expressions. Less is known about face shape and face identity processing. Here we used a hierarchical strategy targeting face shape and face identity recognition in bvFTD and matched healthy controls. Participants performed 3 psychophysical experiments targeting face shape detection (Experiment 1), unfamiliar face identity matching (Experiment 2), familiarity categorization and famous face-name matching (Experiment 3). The results revealed group differences only in Experiment 3, with a deficit in the bvFTD group for both familiarity categorization and famous face-name matching. Voxel-based morphometry regression analyses in the bvFTD group revealed an association between grey matter volume of the left ventral anterior temporal lobe and familiarity recognition, while face-name matching correlated with grey matter volume of the bilateral ventral anterior temporal lobes. Subsequently, we quantified familiarity-specific and name-specific recognition deficits as the sum of the celebrities of which respectively only the name or only the familiarity was accurately recognized. Both indices were associated with grey matter volume of the bilateral anterior temporal cortices. These findings extent previous results by documenting the involvement of the left anterior temporal lobe (ATL) in familiarity detection and the right ATL in name recognition deficits in fronto-temporal lobar degeneration.

  12. Flavour identification in frontotemporal lobar degeneration.

    PubMed

    Omar, Rohani; Mahoney, Colin J; Buckley, Aisling H; Warren, Jason D

    2013-01-01

    Deficits of flavour processing may be clinically important in frontotemporal lobar degeneration (FTLD). To examine flavour processing in FTLD. We studied flavour identification prospectively in 25 patients with FTLD (12 with behavioural variant frontotemporal dementia (bvFTD), eight with semantic variant primary progressive aphasia (svPPA), five with non-fluent variant primary progressive aphasia (nfvPPA)) and 17 healthy control subjects, using a new test based on cross-modal matching of flavours to words and pictures. All subjects completed a general neuropsychological assessment, and odour identification was also assessed using a modified University of Pennsylvania Smell Identification Test. Brain MRI volumes from the patient cohort were analysed using voxel-based morphometry to identify regional grey matter associations of flavour identification. Relative to the healthy control group, the bvFTD and svPPA subgroups showed significant (p<0.05) deficits of flavour identification and all three FTLD subgroups showed deficits of odour identification. Flavour identification performance did not differ significantly between the FTLD syndromic subgroups. Flavour identification performance in the combined FTLD cohort was significantly (p<0.05 after multiple comparisons correction) associated with grey matter volume in the left entorhinal cortex, hippocampus, parahippocampal gyrus and temporal pole. Certain FTLD syndromes are associated with impaired flavour identification and this is underpinned by grey matter atrophy in an anteromedial temporal lobe network. These findings may have implications for our understanding of abnormal eating behaviour in these diseases.

  13. White matter damage is related to ataxia severity in SCA3.

    PubMed

    Kang, J-S; Klein, J C; Baudrexel, S; Deichmann, R; Nolte, D; Hilker, R

    2014-02-01

    Spinocerebellar ataxia type 3 (SCA3) is the most frequent inherited cerebellar ataxia in Europe, the US and Japan, leading to disability and death through motor complications. Although the affected protein ataxin-3 is found ubiquitously in the brain, grey matter atrophy is predominant in the cerebellum and the brainstem. White matter pathology is generally less severe and thought to occur in the brainstem, spinal cord, and cerebellar white matter. Here, we investigated both grey and white matter pathology in a group of 12 SCA3 patients and matched controls. We used voxel-based morphometry for analysis of tissue loss, and tract-based spatial statistics (TBSS) on diffusion magnetic resonance imaging to investigate microstructural pathology. We analysed correlations between microstructural properties of the brain and ataxia severity, as measured by the Scale for the Assessment and Rating of Ataxia (SARA) score. SCA3 patients exhibited significant loss of both grey and white matter in the cerebellar hemispheres, brainstem including pons and in lateral thalamus. On between-group analysis, TBSS detected widespread microstructural white matter pathology in the cerebellum, brainstem, and bilaterally in thalamus and the cerebral hemispheres. Furthermore, fractional anisotropy in a white matter network comprising frontal, thalamic, brainstem and left cerebellar white matter strongly and negatively correlated with SARA ataxia scores. Tractography identified the thalamic white matter thus implicated as belonging to ventrolateral thalamus. Disruption of white matter integrity in patients suffering from SCA3 is more widespread than previously thought. Moreover, our data provide evidence that microstructural white matter changes in SCA3 are strongly related to the clinical severity of ataxia symptoms.

  14. Comparison of brain volume abnormalities between ADHD and conduct disorder in adolescence

    PubMed Central

    Stevens, Michael C.; Haney-Caron, Emily

    2012-01-01

    Background Previous studies of brain structure abnormalities in conduct disorder and attention-deficit/hyperactivity disorder (ADHD) samples have been limited owing to cross-comorbidity, preventing clear understanding of which structural brain abnormalities might be specific to or shared by each disorder. To our knowledge, this study was the first direct comparison of grey and white matter volumes in diagnostically “pure” (i.e., no comorbidities) conduct disorder and ADHD samples. Methods Groups of adolescents with noncormobid conduct disorder and with noncomorbid, combined-subtype ADHD were compared with age- and sex-matched controls using DARTEL voxel-based analysis of T1-weighted brain structure images. Analysis of variance with post hoc analyses compared whole brain grey and white matter volumes among the groups. Results We included 24 adolescents in each study group. There was an overall 13% reduction in grey matter volume in adolescents with conduct disorder, reflecting numerous frontal, temporal, parietal and subcortical deficits. The same grey matter regions typically were not abnormal in those with ADHD. Deficits in frontal lobe regions previously identified in studies of patients with ADHD either were not detected, or group differences from controls were not as strong as those between the conduct disorder and control groups. White matter volume measurements did not differentiate conduct disorder and ADHD. Limitations Our modest sample sizes prevented meaningful examination of individual features of ADHD or conduct disorder, such as aggression, callousness, or hyperactive versus inattentive symptom subtypes. Conclusion The evidence supports theories of frontotemporal abnormalities in adolescents with conduct disorder, but raises questions about the prominence of frontal lobe and striatal structural abnormalities in those with noncomorbid, combined-subtype ADHD. The latter point is clinically important, given the widely held belief that ADHD is associated with numerous frontal lobe structural deficits, a conclusion that is not strongly supported following direct comparison of diagnostically pure groups. The results are important for future etiological studies, particularly those seeking to identify how early expression of specific brain structure abnormalities could potentiate the risk for antisocial behaviour. PMID:22663946

  15. Co-localisation of abnormal brain structure and function in specific language impairment.

    PubMed

    Badcock, Nicholas A; Bishop, Dorothy V M; Hardiman, Mervyn J; Barry, Johanna G; Watkins, Kate E

    2012-03-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior frontal cortex and decreased in the right caudate nucleus and superior temporal cortex bilaterally. The unaffected siblings also showed reduced grey matter in the caudate nucleus relative to controls. In an auditory covert naming task, the SLI group showed reduced activation in the left inferior frontal cortex, right putamen, and in the superior temporal cortex bilaterally. Despite spatially coincident structural and functional abnormalities in frontal and temporal areas, the relationships between structure and function in these regions were different. These findings suggest multiple structural and functional abnormalities in SLI that are differently associated with receptive and expressive language processing. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Cognitive subtypes of dyslexia are characterized by distinct patterns of grey matter volume.

    PubMed

    Jednoróg, Katarzyna; Gawron, Natalia; Marchewka, Artur; Heim, Stefan; Grabowska, Anna

    2014-09-01

    The variety of different causal theories together with inconsistencies about the anatomical brain markers emphasize the heterogeneity of developmental dyslexia. Attempts were made to test on a behavioral level the existence of subtypes of dyslexia showing distinguishable cognitive deficits. Importantly, no research was directly devoted to the investigation of structural brain correlates of these subtypes. Here, for the first time, we applied voxel-based morphometry (VBM) to study grey matter volume (GMV) differences in a relatively large sample (n = 46) of dyslexic children split into three subtypes based on the cognitive deficits: phonological, rapid naming, magnocellular/dorsal, and auditory attention shifting. VBM revealed GMV clusters specific for each studied group including areas of left inferior frontal gyrus, cerebellum, right putamen, and bilateral parietal cortex. In addition, using discriminant analysis on these clusters 79% of cross-validated cases were correctly re-classified into four groups (controls vs. three subtypes). Current results indicate that dyslexia may result from distinct cognitive impairments characterized by distinguishable anatomical markers.

  17. Voxel-based morphometric analysis in hypothyroidism using diffeomorphic anatomic registration via an exponentiated lie algebra algorithm approach.

    PubMed

    Singh, S; Modi, S; Bagga, D; Kaur, P; Shankar, L R; Khushu, S

    2013-03-01

    The present study aimed to investigate whether brain morphological differences exist between adult hypothyroid subjects and age-matched controls using voxel-based morphometry (VBM) with diffeomorphic anatomic registration via an exponentiated lie algebra algorithm (DARTEL) approach. High-resolution structural magnetic resonance images were taken in ten healthy controls and ten hypothyroid subjects. The analysis was conducted using statistical parametric mapping. The VBM study revealed a reduction in grey matter volume in the left postcentral gyrus and cerebellum of hypothyroid subjects compared to controls. A significant reduction in white matter volume was also found in the cerebellum, right inferior and middle frontal gyrus, right precentral gyrus, right inferior occipital gyrus and right temporal gyrus of hypothyroid patients compared to healthy controls. Moreover, no meaningful cluster for greater grey or white matter volume was obtained in hypothyroid subjects compared to controls. Our study is the first VBM study of hypothyroidism in an adult population and suggests that, compared to controls, this disorder is associated with differences in brain morphology in areas corresponding to known functional deficits in attention, language, motor speed, visuospatial processing and memory in hypothyroidism. © 2012 British Society for Neuroendocrinology.

  18. Effects of total saponins from Trillium tschonoskii rhizome on grey and white matter injury evaluated by quantitative multiparametric MRI in a rat model of ischemic stroke.

    PubMed

    Li, Manzhong; Ouyang, Junyao; Zhang, Yi; Cheng, Brian Chi Yan; Zhan, Yu; Yang, Le; Zou, Haiyan; Zhao, Hui

    2018-04-06

    Trillium tschonoskii rhizome (TTR), a medicinal herb, has been traditionally used to treat traumatic brain injury and headache in China. Although the potential neuroprotective efficacy of TTR has gained increasing interest, the pharmacological mechanism remains unclear. Steroid saponins are the main bioactive components of the herb. To investigate the protective and repair-promoting effects of the total saponins from TTR (TSTT) on grey and white matter damages in a rat model of middle cerebral artery occlusion (MCAO) using magnetic resonance imaging (MRI) assay. Ischemic stroke was induced by MCAO. TSTT and Ginaton (positive control) were administered orally to rats 6h after stroke and daily thereafter. After 15 days of treatment, the survival rate of each group was calculated. We then conducted neurological deficit scores and beam walking test to access the neurological function after ischemic stroke. Subsequently, T2-weighted imaging (T2WI) and T2 relaxometry mapping were performed to measure infarct volume and grey and white matter integrity, respectively. Moreover, diffusion tensor imaging (DTI) was carried out to evaluate the grey and white matter microstructural damage. Additionally, arterial spin labelling (ASL) - cerebral blood flow (CBF) and magnetic resonance angiography (MRA) images provided dynamic information about vascular hemodynamic dysfunction after ischemic stroke. Finally, haematoxylin and eosin (HE) staining was carried out to evaluate the stroke-induced pathological changes in the brain. The survival rate and neurological behavioural outcomes (Bederson scores and beam walking tests) were markedly ameliorated by TSTT (65mg/kg) treatment within 15 days after ischemic stroke. Moreover, T2WI and T2 relaxometry mapping showed that TSTT (65mg/kg) significantly reduced infarct volume and attenuated grey and white matter injury, respectively, which was confirmed by histopathological evaluation of brain tissue. The results obtained from DTI showed that TSTT (65mg/kg) not only significantly alleviated axonal damage and demyelination, but also promoted axonal remodelling and re-myelination. In addition, TSTT treatment also enhanced vascular signal density and increased CBF in rats after MCAO. Our results suggested the potential protective and repair-promoting effects of TSTT on grey and white matter from damage induced by ischemia. This study provides a modern pharmacological basis for the application of TSTT in managing ischemic stroke. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. MR Spectroscopy Findings in Retired Professional Rugby League Players.

    PubMed

    Gardner, Andrew J; Iverson, Grant L; Wojtowicz, Magdalena; Levi, Christopher R; Kay-Lambkin, Frances; Schofield, Peter W; Zafonte, Ross; Shultz, Sandy R; Lin, Alexander P; Stanwell, Peter

    2017-03-01

    The aim of this study was to examine brain neurometabolite concentrations in retired rugby league players who had a history of numerous self-reported concussions. Participants were 16 retired professional rugby league players (ages 30-45 years) with an extensive history of concussion and participation in contact sports, and 16 age- and education-matched controls who had no history of neurotrauma or participation in contact sports. All completed a clinical interview, psychological and cognitive testing, and magnetic resonance spectroscopy (MRS) investigation. MRS voxels were placed in posterior cingulate grey matter and parietal white matter. Neurometabolite concentrations were quantified using LCModel. It was hypothesized that retired athletes would differ on N-acetyl aspartate, myo-inositol, choline, glutamate, and glutathione. Retired players had significantly lower concentrations of grey matter glutathione (p=0.02, d=0.91). They did not significantly differ in concentrations of other neurometabolites. There were no significant differences between groups on measures of depression, anxiety, or cognitive functioning. The retired athletes reported significantly greater alcohol use (p<0.01; Cohen's d=1.49), and they had worse manual dexterity using their non-dominant hand (p=0.03; d=1.08). These preliminary findings suggest that MRS might be modestly sensitive to biochemical differences in athletes after their athletic careers have ended in the absence of clinical differences in cognitive performance and self-reported psychological functioning. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Neuroanatomical profiles of personality change in frontotemporal lobar degeneration.

    PubMed

    Mahoney, Colin J; Rohrer, Jonathan D; Omar, Rohani; Rossor, Martin N; Warren, Jason D

    2011-05-01

    The neurobiological basis of personality is poorly understood. Frontotemporal lobar degeneration (FTLD) frequently presents with complex behavioural changes, and therefore potentially provides a disease model in which to investigate brain substrates of personality. To assess neuroanatomical correlates of personality change in a cohort of individuals with FTLD using voxel-based morphometry (VBM). Thirty consecutive individuals fulfilling consensus criteria for FTLD were assessed. Each participant's carer completed a Big Five Inventory (BFI) questionnaire on five key personality traits; for each trait, a change score was derived based on current compared with estimated premorbid characteristics. All participants underwent volumetric brain magnetic resonance imaging. A VBM analysis was implemented regressing change score for each trait against regional grey matter volume across the FTLD group. The FTLD group showed a significant decline in extraversion, agreeableness, conscientiousness and openness and an increase in neuroticism. Change in particular personality traits was associated with overlapping profiles of grey matter loss in more anterior cortical areas and relative preservation of grey matter in more posterior areas; the most robust neuroanatomical correlate was identified for reduced conscientiousness in the region of the posterior superior temporal gyrus. Quantitative measures of personality change in FTLD can be correlated with changes in regional grey matter. The neuroanatomical profiles for particular personality traits overlap brain circuits previously implicated in aspects of social cognition and suggest that dysfunction at the level of distributed cortical networks underpins personality change in FTLD.

  1. Longitudinal development of hormone levels and grey matter density in 9 and 12-year-old twins.

    PubMed

    Brouwer, Rachel M; Koenis, M M G; Schnack, Hugo G; van Baal, G Caroline; van Soelen, Inge L C; Boomsma, Dorret I; Hulshoff Pol, Hilleke E

    2015-05-01

    Puberty is characterized by major changes in hormone levels and structural changes in the brain. To what extent these changes are associated and to what extent genes or environmental influences drive such an association is not clear. We acquired circulating levels of luteinizing hormone, follicle stimulating hormone (FSH), estradiol and testosterone and magnetic resonance images of the brain from 190 twins at age 9 [9.2 (0.11) years; 99 females/91 males]. This protocol was repeated at age 12 [12.1 (0.26) years] in 125 of these children (59 females/66 males). Using voxel-based morphometry, we tested whether circulating hormone levels are associated with grey matter density in boys and girls in a longitudinal, genetically informative design. In girls, changes in FSH level between the age of 9 and 12 positively associated with changes in grey matter density in areas covering the left hippocampus, left (pre)frontal areas, right cerebellum, and left anterior cingulate and precuneus. This association was mainly driven by environmental factors unique to the individual (i.e. the non-shared environment). In 12-year-old girls, a higher level of circulating estradiol levels was associated with lower grey matter density in frontal and parietal areas. This association was driven by environmental factors shared among the members of a twin pair. These findings show a pattern of physical and brain development going hand in hand.

  2. Grey Matter Alterations Co-Localize with Functional Abnormalities in Developmental Dyslexia: An ALE Meta-Analysis

    PubMed Central

    Linkersdörfer, Janosch; Lonnemann, Jan; Lindberg, Sven; Hasselhorn, Marcus; Fiebach, Christian J.

    2012-01-01

    The neural correlates of developmental dyslexia have been investigated intensively over the last two decades and reliable evidence for a dysfunction of left-hemispheric reading systems in dyslexic readers has been found in functional neuroimaging studies. In addition, structural imaging studies using voxel-based morphometry (VBM) demonstrated grey matter reductions in dyslexics in several brain regions. To objectively assess the consistency of these findings, we performed activation likelihood estimation (ALE) meta-analysis on nine published VBM studies reporting 62 foci of grey matter reduction in dyslexic readers. We found six significant clusters of convergence in bilateral temporo-parietal and left occipito-temporal cortical regions and in the cerebellum bilaterally. To identify possible overlaps between structural and functional deviations in dyslexic readers, we conducted additional ALE meta-analyses of imaging studies reporting functional underactivations (125 foci from 24 studies) or overactivations (95 foci from 11 studies ) in dyslexics. Subsequent conjunction analyses revealed overlaps between the results of the VBM meta-analysis and the meta-analysis of functional underactivations in the fusiform and supramarginal gyri of the left hemisphere. An overlap between VBM results and the meta-analysis of functional overactivations was found in the left cerebellum. The results of our study provide evidence for consistent grey matter variations bilaterally in the dyslexic brain and substantial overlap of these structural variations with functional abnormalities in left hemispheric regions. PMID:22916214

  3. Differential Lipid Profiles of Normal Human Brain Matter and Gliomas by Positive and Negative Mode Desorption Electrospray Ionization – Mass Spectrometry Imaging

    PubMed Central

    Pirro, Valentina; Hattab, Eyas M.; Cohen-Gadol, Aaron A.; Cooks, R. Graham

    2016-01-01

    Desorption electrospray ionization—mass spectrometry (DESI-MS) imaging was used to analyze unmodified human brain tissue sections from 39 subjects sequentially in the positive and negative ionization modes. Acquisition of both MS polarities allowed more complete analysis of the human brain tumor lipidome as some phospholipids ionize preferentially in the positive and others in the negative ion mode. Normal brain parenchyma, comprised of grey matter and white matter, was differentiated from glioma using positive and negative ion mode DESI-MS lipid profiles with the aid of principal component analysis along with linear discriminant analysis. Principal component–linear discriminant analyses of the positive mode lipid profiles was able to distinguish grey matter, white matter, and glioma with an average sensitivity of 93.2% and specificity of 96.6%, while the negative mode lipid profiles had an average sensitivity of 94.1% and specificity of 97.4%. The positive and negative mode lipid profiles provided complementary information. Principal component–linear discriminant analysis of the combined positive and negative mode lipid profiles, via data fusion, resulted in approximately the same average sensitivity (94.7%) and specificity (97.6%) of the positive and negative modes when used individually. However, they complemented each other by improving the sensitivity and specificity of all classes (grey matter, white matter, and glioma) beyond 90% when used in combination. Further principal component analysis using the fused data resulted in the subgrouping of glioma into two groups associated with grey and white matter, respectively, a separation not apparent in the principal component analysis scores plots of the separate positive and negative mode data. The interrelationship of tumor cell percentage and the lipid profiles is discussed, and how such a measure could be used to measure residual tumor at surgical margins. PMID:27658243

  4. Cerebral grey, white matter and csf in never-medicated, first-episode schizophrenia.

    PubMed

    Chua, Siew E; Cheung, Charlton; Cheung, Vinci; Tsang, Jack T K; Chen, Eric Y H; Wong, Jason C H; Cheung, Jason P Y; Yip, Lawrance; Tai, Kin-Shing; Suckling, John; McAlonan, Gráinne M

    2007-01-01

    We report the first voxel-based morphometric (VBM) study to examine cerebral grey and white matter and cerebrospinal fluid (CSF) using computational morphometry in never-medicated, first-episode psychosis (FEP). Region-of-interest (ROI) analysis was also performed blind to group membership. 26 never-medicated individuals with FEP (23 with DSM-IV schizophrenia) and 38 healthy controls had MRI brain scans. Groups were balanced for age, sex, handedness, ethnicity, paternal socio-economic status, and height. Healthy controls were recruited from the local community by advertisement. Grey matter, white matter, and CSF: global brain volume ratios were significantly smaller in patients. Patients had significantly less grey matter volume in L and R caudate nuclei, cingulate gyri, parahippocampal gyri, superior temporal gyri, cerebellum and R thalamus, prefrontal cortex. They also had significantly less white matter volume in the R anterior limb of the internal capsule fronto-occipital fasciculus and L and R fornices, and significantly greater CSF volume especially in the R lateral ventricle. Excluding the 3 subjects with brief psychotic disorder did not alter our results. Our data suggest that fronto-temporal and subcortical-limbic circuits are morphologically abnormal in never-medicated, schizophrenia. ROI analysis comparing the schizophrenia group (n=23) with the healthy controls (n=38) confirmed caudate volumes were significantly smaller bilaterally by 11%, and lateral ventricular volume was significantly larger on the right by 26% in the patients. Caudate nuclei and lateral ventricular volume measurements were uncorrelated (Pearson correlation coefficient 0.30, p=0.10), ruling out the possibility of segmentation artefact. Ratio of lateral ventricle to caudate volume was bilaterally significantly increased (p<0.005, 2-tailed), which could represent an early biomarker in first-episode, never-medicated schizophrenia.

  5. Unique Transcriptome Patterns of the White and Grey Matter Corroborate Structural and Functional Heterogeneity in the Human Frontal Lobe

    PubMed Central

    Mills, James D.; Kavanagh, Tomas; Kim, Woojin S.; Chen, Bei Jun; Kawahara, Yoshihiro; Halliday, Glenda M.; Janitz, Michael

    2013-01-01

    The human frontal lobe has undergone accelerated evolution, leading to the development of unique human features such as language and self-reflection. Cortical grey matter and underlying white matter reflect distinct cellular compositions in the frontal lobe. Surprisingly little is known about the transcriptomal landscape of these distinct regions. Here, for the first time, we report a detailed transcriptomal profile of the frontal grey (GM) and white matter (WM) with resolution to alternatively spliced isoforms obtained using the RNA-Seq approach. We observed more vigorous transcriptome activity in GM compared to WM, presumably because of the presence of cellular bodies of neurons in the GM and RNA associated with the nucleus and perinuclear space. Among the top differentially expressed genes, we also identified a number of long intergenic non-coding RNAs (lincRNAs), specifically expressed in white matter, such as LINC00162. Furthermore, along with confirmation of expression of known markers for neurons and oligodendrocytes, we identified a number of genes and splicing isoforms that are exclusively expressed in GM or WM with examples of GABRB2 and PAK2 transcripts, respectively. Pathway analysis identified distinct physiological and biochemical processes specific to grey and white matter samples with a prevalence of synaptic processes in GM and myelination regulation and axonogenesis in the WM. Our study also revealed that expression of many genes, for example, the GPR123, is characterized by isoform switching, depending in which structure the gene is expressed. Our report clearly shows that GM and WM have perhaps surprisingly divergent transcriptome profiles, reflecting distinct roles in brain physiology. Further, this study provides the first reference data set for a normal human frontal lobe, which will be useful in comparative transcriptome studies of cerebral disorders, in particular, neurodegenerative diseases. PMID:24194939

  6. Cortical grey matter and subcortical white matter brain microstructural changes in schizophrenia are localised and age independent: a case-control diffusion tensor imaging study.

    PubMed

    Chiapponi, Chiara; Piras, Fabrizio; Piras, Federica; Fagioli, Sabrina; Caltagirone, Carlo; Spalletta, Gianfranco

    2013-01-01

    It is still unknown whether the structural brain impairments that characterize schizophrenia (SZ) worsen during the lifetime. Here, we aimed to describe age-related microstructural brain changes in cortical grey matter and subcortical white matter of patients affected by SZ. In this diffusion tensor imaging study, we included 69 patients diagnosed with SZ and 69 healthy control (HC) subjects, age and gender matched. We carried out analyses of covariance, with diagnosis as fixed factor and brain diffusion-related parameters as dependent variables, and controlled for the effect of education. White matter fractional anisotropy decreased in the entire age range spanned (18-65 years) in both SZ and HC and was significantly lower in younger patients with SZ, with no interaction (age by diagnosis) effect in fiber tracts including corpus callosum, corona radiata, thalamic radiations and external capsule. Also, grey matter mean diffusivity increased in the entire age range in both SZ and HC and was significantly higher in younger patients, with no age by diagnosis interaction in the left frontal operculum cortex, left insula and left planum polare and in the right temporal pole and right intracalcarine cortex. In individuals with SZ we found that localized brain cortical and white matter subcortical microstructural impairments appear early in life but do not worsen in the 18-65 year age range.

  7. Focal atrophy in Dementia with Lewy Bodies on MRI: a distinct pattern from Alzheimer's disease

    PubMed Central

    Whitwell, Jennifer L; Weigand, Stephen D; Shiung, Maria M; Boeve, Bradley F; Ferman, Tanis J; Smith, Glenn E; Knopman, David S; Petersen, Ronald C; Benarroch, Eduardo E; Josephs, Keith A; Jack, Clifford R

    2009-01-01

    SUMMARY Dementia with Lewy Bodies (DLB) is the second most common cause of degenerative dementia after Alzheimer's disease (AD). However, unlike in AD the patterns of cerebral atrophy associated with DLB have not been well established. The aim of this study was to identify a signature pattern of cerebral atrophy in DLB and to compare it to the pattern found in AD. Seventy-two patients that fulfilled clinical criteria for probable DLB were age and gender-matched to 72 patients with probable AD and 72 controls. Voxel-based morphometry (VBM) was used to assess patterns of grey matter atrophy in the DLB and AD groups, relative to controls, after correction for multiple comparisons (p<0.05). Study specific templates and prior probability maps were used to avoid normalization and segmentation bias. Region-of-interest (ROI) analyses were also performed comparing loss of the midbrain, substantia innominata (SI), temporoparietal cortex and hippocampus between the groups. The DLB group showed very little cortical involvement on VBM with regional grey matter loss observed primarily in the dorsal midbrain, SI and hypothalamus. In comparison, the AD group showed a widespread pattern of grey matter loss involving the temporoparietal association cortices and the medial temporal lobes. The SI and dorsal midbrain were involved in AD however they were not identified as a cluster of loss discrete from uninvolved surrounding areas, as observed in the DLB group. On direct comparison between the two groups, the AD group showed greater loss in the medial temporal lobe and inferior temporal regions than the DLB group. The ROI analysis showed reduced SI and midbrain grey matter in both the AD and DLB groups. The SI grey matter was reduced more in AD than DLB, yet the midbrain was reduced more in DLB than AD. The hippocampus and temporoparietal cortex showed significantly greater loss in the AD group compared to the DLB group. A pattern of relatively focused atrophy of the midbrain, hypothalamus and SI, with a relative sparing of the hippocampus and temporoparietal cortex, is therefore suggestive of DLB and may aid in the differentiation of DLB from AD. These findings support recent pathological studies showing an ascending pattern of Lewy Body progression from brainstem to basal areas of the brain. Damage to this network of structures in DLB may affect a number of different neurotransmitter systems which in turn may contribute to a number of the core clinical features of DLB. PMID:17267521

  8. FDG-PET findings in the Wernicke-Korsakoff syndrome.

    PubMed

    Reed, Laurence J; Lasserson, Dan; Marsden, Paul; Stanhope, Nicola; Stevens, Tom; Bello, Fernando; Kingsley, Derek; Colchester, Alan; Kopelman, Michael D

    2003-01-01

    This study reports FDG-PET findings in Wernicke-Korsakoff patients. Twelve patients suffering amnesia arising from the Korsakoff syndrome were compared with 10 control subjects without alcohol-related disability. Subjects received [18F]-fluorodeoxyglucose (FDG-PET) imaging as well as neuropsychological assessment and high-resolution MR imaging with volumetric analysis. Volumetric MRI analysis had revealed thalamic and mamillary body atrophy in the patient group as well as frontal lobe atrophy with relative sparing of medial temporal lobe structures. Differences in regional metabolism were identified using complementary region of interest (ROI) and statistical parametric mapping (SPM) approaches employing either absolute methods or a reference region approach to increase statistical power. In general, we found relative hypermetabolism in white matter and hypometabolism in subcortical grey matter in Korsakoff patients. When FDG uptake ratios were examined with occipital lobe metabolism as covariate reference region, Korsakoff patients showed widespread bilateral white matter hypermetabolism on both SPM and ROI analysis. When white matter metabolism was the reference covariate; Korsakoff patients showed relative hypometabolism in the diencephalic grey matter, consistent with their known underlying neuropathology, and medial temporal and retrosplenial hypometabolism, interpreted as secondary metabolic effects within the diencephalic-limbic memory circuits. There was also evidence of a variable degree of more general frontotemporal neocortical hypometabolism on some, but not all, analyses.

  9. Beneficial effects of minocycline on cuprizone induced cortical demyelination.

    PubMed

    Skripuletz, Thomas; Miller, Elvira; Moharregh-Khiabani, Darius; Blank, Alexander; Pul, Refik; Gudi, Viktoria; Trebst, Corinna; Stangel, Martin

    2010-09-01

    In this study, we investigated the potential of minocycline to influence cuprizone induced demyelination in the grey and white matter. To induce demyelination C57BL/6 mice were fed with cuprizone for up to 6 weeks and were analysed at different timepoints (week 0, 4, 5, 6). Mice treated with minocycline had less demyelination of the cortex and corpus callosum compared with sham treated animals. In the cortex decreased numbers of activated and proliferating microglia were found after 6 weeks of cuprizone feeding, while there were no significant effects for microglial infiltration of the corpus callosum. In addition to the beneficial effects on demyelination, minocycline prevented from motor coordination disturbance as shown in the beam walking test. For astrogliosis and the numbers of OPC and oligodendrocytes no treatment effects were found. In summary, minocycline treatment diminished the course of demyelination in the grey and white matter and prevented disturbances in motor coordination.

  10. Impaired recognition and regulation of disgust is associated with distinct but partially overlapping patterns of decreased gray matter volume in the ventroanterior insula

    PubMed Central

    Woolley, Joshua; Strobl, Eric V; Sturm, Virginia E; Shany-Ur, Tal; Poorzand, Pardis; Grossman, Scott; Nguyen, Lauren; Eckart, Janet A; Levenson, Robert W; Seeley, William W; Miller, Bruce L; Rankin, Katherine P

    2015-01-01

    Background The ventroanterior insula is implicated in the experience, expression, and recognition of disgust; however, whether this brain region is required for recognizing disgust or regulating disgusting behaviors remains unknown. Methods We examined the brain correlates of the presence of disgusting behavior and impaired recognition of disgust using voxel-based morphometry in a sample of 305 patients with heterogeneous patterns of neurodegeneration. Permutation-based analyses were used to determine regions of decreased grey matter volume at a significance level p<0.05 corrected for family-wise error across the whole brain and within the insula. Results Patients with behavioral variant frontotemporal dementia (bvFTD) and semantic variant primary progressive aphasia (svPPA) were most likely to exhibit disgusting behaviors and were, on average, the most impaired at recognizing disgust in others. Imaging analysis revealed that patients who exhibited disgusting behaviors had significantly less grey matter volume bilaterally in the ventral anterior insula. A region of interest analysis restricted to bvFTD and svPPA patients alone confirmed this result. Moreover, impaired recognition of disgust was associated with decreased grey matter volume in the bilateral ventroanterior and ventral middle regions of the insula. There was an area of overlap in the bilateral anterior insula where decreased grey matter volume was associated with both the presence of disgusting behavior and impairments in recognizing disgust. Conclusion These findings suggest that regulating disgusting behaviors and recognizing disgust in others involve two partially overlapping neural systems within the insula. Moreover, the ventral anterior insula is required for both processes. PMID:25890642

  11. Region-specific tritium enrichment, and not differential beta-absorption, is the major cause of 'quenching' in film autoradiography.

    PubMed

    McEachron, D L; Nissanov, J; Tretiak, O J

    1997-06-01

    Tritium quenching refers to the situation in which estimates of tritium content generated by film autoradiography depend on the chemical composition of the tissue as well as on the concentration of the radioisotope. When analysing thin brain sections, for example, regions rich in lipid content generate reduced optical densities on x-ray film compared with lipid-poor regions even when the total tissue concentration of tritium in those regions is identical. We hypothesize that the dried thickness of regions within sections depends upon the relative concentrations and types of lipid within the regions. Areas low in white matter dry thinner than areas high in white matter, leading to a relative enrichment of tritium in the thinner regions. To test this model, a series of brain pastes were made with different concentrations of grey and white matter and impregnated with equal amounts of tritium. The thickness of dried sections was compared with percentage of white matter and apparent radioactive content as determined by autoradiogram analysis. The results demonstrated that thickness increased, and apparent radioactivity decreased, with higher percentages of white matter. In the second experiment, thickness measurements from dried sections were successfully used to correct the apparent radioisotope content of autoradiograms created from tritium containing white- and grey-matter tissue slices. We conclude that within-section thickness variation is the major physical cause for 'tritium quenching'.

  12. Longitudinal changes in microstructural white matter metrics in Alzheimer's disease.

    PubMed

    Mayo, Chantel D; Mazerolle, Erin L; Ritchie, Lesley; Fisk, John D; Gawryluk, Jodie R

    2017-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Current avenues of AD research focus on pre-symptomatic biomarkers that will assist with early diagnosis of AD. The majority of magnetic resonance imaging (MRI) based biomarker research to date has focused on neuronal loss in grey matter and there is a paucity of research on white matter. Longitudinal DTI data from the Alzheimer's Disease Neuroimaging Initiative 2 database were used to examine 1) the within-group microstructural white matter changes in individuals with AD and healthy controls at baseline and year one; and 2) the between-group microstructural differences in individuals with AD and healthy controls at both time points. 1) Within-group: longitudinal Tract-Based Spatial Statistics revealed that individuals with AD and healthy controls both had widespread reduced fractional anisotropy (FA) and increased mean diffusivity (MD) with changes in the hippocampal cingulum exclusive to the AD group. 2) Between-group: relative to healthy controls, individuals with AD had lower FA and higher MD in the hippocampal cingulum, as well as the corpus callosum, internal and external capsule; corona radiata; posterior thalamic radiation; superior and inferior longitudinal fasciculus; fronto-occipital fasciculus; cingulate gyri; fornix; uncinate fasciculus; and tapetum. The current results indicate that sensitivity to white matter microstructure is a promising avenue for AD biomarker research. Additional longitudinal studies on both white and grey matter are warranted to further evaluate potential clinical utility.

  13. Reduced Orbitofrontal and Temporal Grey Matter in a Community Sample of Maltreated Children

    ERIC Educational Resources Information Center

    De Brito, Stephane A.; Viding, Essi; Sebastian, Catherine L.; Kelly, Philip A.; Mechelli, Andrea; Maris, Helen; McCrory, Eamon J.

    2013-01-01

    Background: Childhood maltreatment is strongly associated with increased risk of psychiatric disorder. Previous neuroimaging studies have reported atypical neural structure in the orbitofrontal cortex, temporal lobe, amygdala, hippocampus and cerebellum in maltreated samples. It has been hypothesised that these structural differences may relate to…

  14. Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome.

    PubMed

    Giannetti, Paolo; Politis, Marios; Su, Paul; Turkheimer, Federico E; Malik, Omar; Keihaninejad, Shiva; Wu, Kit; Waldman, Adam; Reynolds, Richard; Nicholas, Richard; Piccini, Paola

    2015-01-01

    The most accurate predictor of the subsequent development of multiple sclerosis in clinically isolated syndrome is the presence of lesions at magnetic resonance imaging. We used in vivo positron emission tomography with (11)C-(R)-PK11195, a biomarker of activated microglia, to investigate the normal-appearing white matter and grey matter of subjects with clinically isolated syndrome to explore its role in the development of multiple sclerosis. Eighteen clinically isolated syndrome and eight healthy control subjects were recruited. Baseline assessment included: history, neurological examination, expanded disability status scale, magnetic resonance imaging and PK11195-positron emission tomography scans. All assessments except the PK11195-positron emission tomography scan were repeated over 2 years. SUPERPK methodology was used to measure the binding potential relative to the non-specific volume, BPND. We show a global increase of normal-appearing white matter PK11195 BPND in clinically isolated syndrome subjects compared with healthy controls (P = 0.014). Clinically isolated syndrome subjects with T2 magnetic resonance imaging lesions had higher PK11195 BPND in normal-appearing white matter (P = 0.009) and their normal-appearing white matter PK11195 BPND correlated with the Expanded Disability Status Scale (P = 0.007; r = 0.672). At 2 years those who developed dissemination in space or multiple sclerosis, had higher PK11195 BPND in normal-appearing white matter at baseline (P = 0.007 and P = 0.048, respectively). Central grey matter PK11195 BPND was increased in subjects with clinically isolated syndrome compared to healthy controls but no difference was found in cortical grey matter PK11195 BPND. Microglial activation in clinically isolated syndrome normal-appearing white matter is diffusely increased compared with healthy control subjects and is further increased in those who have magnetic resonance imaging lesions. Furthermore microglial activation in clinically isolated syndrome normal-appearing white matter is also higher in those subjects who developed multiple sclerosis at 2 years. Our finding, if replicated in a larger study, could be of prognostic value and aid early treatment decisions in clinically isolated syndrome. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Cannabis and alcohol use, and the developing brain.

    PubMed

    Meruelo, A D; Castro, N; Cota, C I; Tapert, S F

    2017-05-15

    Sex hormones and white (and grey) matter in the limbic system, cortex and other brain regions undergo changes during adolescence. Some of these changes include ongoing white matter myelination and sexually dimorphic features in grey and white matter. Adolescence is also a period of vulnerability when many are first exposed to alcohol and cannabis, which appear to influence the developing brain. Neuropsychological studies have provided considerable understanding of the effects of alcohol and cannabis on the brain. Advances in neuroimaging have allowed examination of neuroanatomic changes, metabolic and neurotransmitter activity, and neuronal activation during adolescent brain development and substance use. In this review, we examine major differences in brain development between users and non-users, and recent findings on the influence of cannabis and alcohol on the adolescent brain. We also discuss associations that appear to resolve following short-term abstinence, and attentional deficits that appear to persist. These findings can be useful in guiding earlier educational interventions for adolescents, and clarifying the neural sequelae of early alcohol and cannabis use to the general public. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Cannabis and Alcohol Use, and the Developing Brain

    PubMed Central

    Meruelo, AD; Castro, N; Cota, CI; Tapert, SF

    2017-01-01

    Sex hormones and white (and grey) matter in the limbic system, cortex and other brain regions undergo changes during adolescence. Some of these changes include ongoing white matter myelination and sexually dimorphic features in grey and white matter. Adolescence is also a period of vulnerability when many are first exposed to alcohol and cannabis, which appear to influence the developing brain. Neuropsychological studies have provided considerable understanding of the effects of alcohol and cannabis on the brain. Advances in neuroimaging have allowed examination of neuroanatomic changes, metabolic and neurotransmitter activity, and neuronal activation during adolescent brain development and substance use. In this review, we examine major differences in brain development between users and non-users, and recent findings on the influence of cannabis and alcohol on the adolescent brain. We also discuss associations that appear to resolve following short-term abstinence, and attentional deficits that appear to persist. These findings can be useful in guiding earlier educational interventions for adolescents, and clarifying the neural sequelae of early alcohol and cannabis use to the general public. PMID:28223098

  17. Differences in the neural correlates of frontal lobe tests.

    PubMed

    Matsuoka, Teruyuki; Kato, Yuka; Imai, Ayu; Fujimoto, Hiroshi; Shibata, Keisuke; Nakamura, Kaeko; Yamada, Kei; Narumoto, Jin

    2018-01-01

    The Executive Interview (EXIT25), the executive clock-drawing task (CLOX1), and the Frontal Assessment Battery (FAB) are used to assess executive function at the bedside. These tests assess distinct psychometric properties. The aim of this study was to examine differences in the neural correlates of the EXIT25, CLOX1, and FAB based on magnetic resonance imaging. Fifty-eight subjects (30 with Alzheimer's disease, 10 with mild cognitive impairment, and 18 healthy controls) participated in this study. Multiple regression analyses were performed to examine the brain regions correlated with the EXIT25, CLOX1, and FAB scores. Age, gender, and years of education were included as covariates. Statistical thresholds were set to uncorrected P-values of 0.001 at the voxel level and 0.05 at the cluster level. The EXIT25 score correlated inversely with the regional grey matter volume in the left lateral frontal lobe (Brodmann areas 6, 9, 44, and 45). The CLOX1 score correlated positively with the regional grey matter volume in the right orbitofrontal cortex (Brodmann area 11) and the left supramarginal gyrus (Brodmann area 40). The FAB score correlated positively with the regional grey matter volume in the right precentral gyrus (Brodmann area 6). The left lateral frontal lobe (Brodmann area 9) and the right lateral frontal lobe (Brodmann area 46) were identified as common brain regions that showed association with EXIT25, CLOX1, and FAB based only a voxel-level threshold. The results of this study suggest that the EXIT25, CLOX1, and FAB may be associated with the distinct neural correlates of the frontal cortex. © 2018 Japanese Psychogeriatric Society.

  18. Cannabis use and progressive cortical thickness loss in areas rich in CB1 receptors during the first five years of schizophrenia.

    PubMed

    Rais, Monica; van Haren, Neeltje E M; Cahn, Wiepke; Schnack, Hugo G; Lepage, Claude; Collins, Louis; Evans, Alan C; Hulshoff Pol, Hilleke E; Kahn, René S

    2010-12-01

    Cerebral grey matter volume reductions are progressive in schizophrenia, with larger grey matter volume decreases associated with cannabis use. It is unknown whether this grey matter loss is globally distributed over the entire brain or more pronounced in specific cortical brain regions. Fifty-one patients with recent-onset schizophrenia and 31 matched healthy subjects were included. For all subjects, magnetic resonance imaging scans were obtained at inclusion and at 5-year follow-up. Nineteen patients (ab-)used cannabis but no other illicit drugs; 32 patients and the healthy comparison subjects did not use any drugs during the 5-year follow-up. At follow-up, clinical outcome was measured. To evaluate the local differences in cortical thickness change over five years between the two groups regression analysis was carried out over the cortical surface. At inclusion cortical thickness did not differ between patients and controls and between cannabis-using and non-using patients. Over the follow-up period we found excessive thinning of the right supplementary motor cortex, inferior frontal cortex, superior temporal gyrus, angular gyrus, occipital and parietal lobe in patients relative to controls after controlling for cannabis use. Patients who used cannabis showed additional thinning in the left dorsolateral prefrontal cortex (DLPFC), left anterior cingulate cortex (ACC) and left occipital lobe as compared to those patients that did not use cannabis during the scan interval. First-episode schizophrenia patients who use cannabis show a more pronounced cortical thinning than non-using patients in areas known for their high density of CB1 receptors, such as the ACC and the DLPFC. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Grey matter abnormalities in methcathinone abusers with a Parkinsonian syndrome.

    PubMed

    Juurmaa, Julius; Menke, Ricarda A L; Vila, Pierre; Müürsepp, Andreas; Tomberg, Tiiu; Ilves, Pilvi; Nigul, Mait; Johansen-Berg, Heidi; Donaghy, Michael; Stagg, Charlotte J; Stepens, Ainārs; Taba, Pille

    2016-11-01

    A permanent Parkinsonian syndrome occurs in intravenous abusers of the designer psychostimulant methcathinone (ephedrone). It is attributed to deposition of contaminant manganese, as reflected by characteristic globus pallidus hyperintensity on T1-weighted MRI. We have investigated brain structure and function in methcathinone abusers ( n  = 12) compared to matched control subjects ( n  = 12) using T1-weighted structural and resting-state functional MRI. Segmentation analysis revealed significant ( p  < .05) subcortical grey matter atrophy in methcathinone abusers within putamen and thalamus bilaterally, and the left caudate nucleus. The volume of the caudate nuclei correlated inversely with duration of methcathinone abuse. Voxel-based morphometry showed patients to have significant grey matter loss ( p  < .05) bilaterally in the putamina and caudate nucleus. Surface-based analysis demonstrated nine clusters of cerebral cortical thinning in methcathinone abusers, with relative sparing of prefrontal, parieto-occipital, and temporal regions. Resting-state functional MRI analysis showed increased functional connectivity within the motor network of patients ( p  < .05), particularly within the right primary motor cortex. Taken together, these results suggest that the manganese exposure associated with prolonged methcathinone abuse results in widespread structural and functional changes affecting both subcortical and cortical grey matter and their connections. Underlying the distinctive movement disorder caused by methcathinone abuse, there is a more widespread pattern of brain involvement than is evident from the hyperintensity restricted to the basal ganglia as shown by T1-weighted structural MRI.

  20. Relationships between years of education, regional grey matter volumes, and working memory-related brain activity in healthy older adults.

    PubMed

    Boller, Benjamin; Mellah, Samira; Ducharme-Laliberté, Gabriel; Belleville, Sylvie

    2017-04-01

    The aim of this study was to examine the relationships between educational attainment, regional grey matter volume, and functional working memory-related brain activation in older adults. The final sample included 32 healthy older adults with 8 to 22 years of education. Structural magnetic resonance imaging (MRI) was used to measure regional volume and functional MRI was used to measure activation associated with performing an n-back task. A positive correlation was found between years of education and cortical grey matter volume in the right medial and middle frontal gyri, in the middle and posterior cingulate gyri, and in the right inferior parietal lobule. The education by age interaction was significant for cortical grey matter volume in the left middle frontal gyrus and in the right medial cingulate gyrus. In this region, the volume loss related to age was larger in the low than high-education group. The education by age interaction was also significant for task-related activity in the left superior, middle and medial frontal gyri due to the fact that activation increased with age in those with higher education. No correlation was found between regions that are structurally related with education and those that are functionally related with education and age. The data suggest a protective effect of education on cortical volume. Furthermore, the brain regions involved in the working memory network are getting more activated with age in those with higher educational attainment.

  1. Similar white matter but opposite grey matter changes in schizophrenia and high-functioning autism.

    PubMed

    Katz, J; d'Albis, M-A; Boisgontier, J; Poupon, C; Mangin, J-F; Guevara, P; Duclap, D; Hamdani, N; Petit, J; Monnet, D; Le Corvoisier, P; Leboyer, M; Delorme, R; Houenou, J

    2016-07-01

    High-functioning autism (HFA) and schizophrenia (SZ) are two of the main neurodevelopmental disorders, sharing several clinical dimensions and risk factors. Their exact relationship is poorly understood, and few studies have directly compared both disorders. Our aim was thus to directly compare neuroanatomy of HFA and SZ using a multimodal MRI design. We scanned 79 male adult subjects with 3T MRI (23 with HFA, 24 with SZ and 32 healthy controls, with similar non-verbal IQ). We compared them using both diffusion-based whole-brain tractography and T1 voxel-based morphometry. HFA and SZ groups exhibited similar white matter alterations in the left fronto-occipital inferior fasciculus with a decrease in generalized fractional anisotropy compared with controls. In grey matter, the HFA group demonstrated bilateral prefrontal and anterior cingulate increases in contrast with prefrontal and left temporal reductions in SZ. HFA and SZ may share common white matter deficits in long-range connections involved in social functions, but opposite grey matter abnormalities in frontal regions that subserve complex cognitive functions. Our results are consistent with the fronto-occipital underconnectivity theory of HFA and the altered connectivity hypothesis of SZ and suggest the existence of both associated and diametrical liabilities to these two conditions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Reproducibility over a 1-month period of 1H-MR spectroscopic imaging NAA/Cr ratios in clinically stable multiple sclerosis patients.

    PubMed

    Mostert, J P; Blaauw, Y; Koch, M W; Kuiper, A J; Hoogduin, J M; De Keyser, J

    2008-08-01

    N-acetylaspartate/creatine (NAA/Cr) ratios, assessed with proton magnetic resonance spectroscopy, are increasingly used as a surrogate marker for axonal dysfunction and degeneration in multiple sclerosis (MS). The purpose of this study was to test short-time reproducibility of NAA/Cr ratios in patients with clinically stable MS. In 35 MS patients we analysed NAA/Cr ratios obtained with (1)H-MR spectroscopic imaging at the centrum semiovale either with lateral ventricles partially included (group 1; n=15) or more cranially with no ventricles included (group 2; n=20). To test short-term reproducibility of the NAA/Cr measurements, patients were scanned twice 4 weeks apart. We determined mean NAA/Cr and Cho/Cr ratios of 12 grey matter and 24 white matter voxels. Mean NAA/Cr ratios of both the white and grey matter did not change after 4 weeks. Overall 4-week reproducibility of the NAA/Cr ratio, expressed as coefficient of variation, was 4.8% for grey matter and 3.5% for white matter. Reproducibility of cranial scanning of the ventricles was slightly better than with cerebrospinal fluid included. Our study shows good short-term reproducibility of NAA/Cr ratio measurements in the centrum semiovale, which supports the reliability of this technique for longitudinal studies.

  3. Strategic Lesions in the Anterior Thalamic Radiation and Apathy in Early Alzheimer's Disease

    PubMed Central

    Torso, Mario; Serra, Laura; Giulietti, Giovanni; Spanò, Barbara; Tuzzi, Elisa; Koch, Giacomo; Caltagirone, Carlo; Cercignani, Mara; Bozzali, Marco

    2015-01-01

    Background Behavioural disorders and psychological symptoms of Dementia (BPSD) are commonly observed in Alzheimer’s disease (AD), and strongly contribute to increasing patients' disability. Using voxel-lesion-symptom mapping (VLSM), we investigated the impact of white matter lesions (WMLs) on the severity of BPSD in patients with amnestic mild cognitive impairment (a-MCI). Methods Thirty-one a-MCI patients (with a conversion rate to AD of 32% at 2 year follow-up) and 26 healthy controls underwent magnetic resonance imaging (MRI) examination at 3T, including T2-weighted and fluid-attenuated-inversion-recovery images, and T1-weighted volumes. In the patient group, BPSD was assessed using the Neuropsychiatric Inventory-12. After quantitative definition of WMLs, their distribution was investigated, without an a priori anatomical hypothesis, against patients’ behavioural symptoms. Unbiased regional grey matter volumetrics was also used to assess the contribution of grey matter atrophy to BPSD. Results Apathy, irritability, depression/dysphoria, anxiety and agitation were shown to be the most common symptoms in the patient sample. Despite a more widespread anatomical distribution, a-MCI patients did not differ from controls in WML volumes. VLSM revealed a strict association between the presence of lesions in the anterior thalamic radiations (ATRs) and the severity of apathy. Regional grey matter atrophy did not account for any BPSD. Conclusions This study indicates that damage to the ATRs is strategic for the occurrence of apathy in patients with a-MCI. Disconnection between the prefrontal cortex and the mediodorsal and anterior thalamic nuclei might represent the pathophysiological substrate for apathy, which is one of the most common psychopathological symptoms observed in dementia. PMID:25932637

  4. Grey matter brain injuries are common in Ugandan children with cerebral palsy suggesting a perinatal aetiology in full-term infants.

    PubMed

    Kakooza-Mwesige, Angelina; Byanyima, Rosemary K; Tumwine, James K; Eliasson, Ann-Christin; Forssberg, Hans; Flodmark, Olof

    2016-06-01

    There is limited literature on brain imaging studies of children with cerebral palsy (CP) in low and middle income countries. We investigated neuroimaging patterns of children with CP attending a tertiary referral centre in Uganda to determine how they differed from studies reported from high income countries and their relationship with prenatal and postnatal factors. Precontrast and postcontrast computed tomography (CT) scans of 78 CP children aged 2-12 years were conducted using a Philips MX 16-slice CT scanner. Two radiologists, blinded to the patient's clinical status, independently reviewed the scans. Abnormal CT scans were detected in 69% of the children sampled, with very few having primary white matter injuries (4%). Primary grey matter injuries (PGMI) (44%) and normal scans (31%) were most frequent. Children with a history of hospital admission following birth were three times more likely to have PGMI (odds ratio [OR] 2.8; 95% CI 1.1-7.1), suggesting a perinatal period with medical complications. Brain imaging patterns in this group of CP children differed markedly from imaging studies reported from high income countries, suggesting a perinatal aetiology in full-term infants and reduced survival in preterm infants. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  5. Cognitive and psychopathology correlates of brain white/grey matter structure in severely psychotic schizophrenic inpatients.

    PubMed

    Banaj, Nerisa; Piras, Federica; Piras, Fabrizio; Ciullo, Valentina; Iorio, Mariangela; Battaglia, Claudia; Pantoli, Donatella; Ducci, Giuseppe; Spalletta, Gianfranco

    2018-06-01

    The brain structural correlates of cognitive and psychopathological symptoms within the active phase in severely psychotic schizophrenic inpatients have been rarely investigated. Twenty-eight inpatients with a DSM-5 diagnosis of Schizophrenia (SZ), admitted for acute psychotic decompensation, were assessed through a comprehensive neuropsychological and psychopathological battery. All patients underwent a high-resolution T1-weighted magnetic resonance imaging investigation. Increased psychotic severity was related to reduced grey matter volumes in the medial portion of the right superior frontal cortex, the superior orbitofrontal cortex bilaterally and to white matter volume reduction in the medial portion of the left superior frontal area. Immediate verbal memory performance was related to left insula and inferior parietal cortex volume, while long-term visuo-spatial memory was related to grey matter volume of the right middle temporal cortex, and the right (lobule VII, CRUS1) and left (lobule VI) cerebellum. Moreover, psychotic severity correlated with cognitive inflexibility and negative symptom severity was related to visuo-spatial processing and reasoning disturbances. These findings indicate that a disruption of the cortical-subcortical-cerebellar circuit, and distorted memory function contribute to the development and maintenance of psychotic exacerbation.

  6. AGE-INDEPENDENT, GREY-MATTER-LOCALIZED, BRAIN ENHANCED OXIDATIVE STRESS IN MALE FISCHER 344 RATS,1,2

    EPA Science Inventory

    While studies showed that aging is accompanied by increased exposure of the brain to oxidative stress, others have not detected any age-correlated differences in levels of markers of oxidative stress. Use of conventional markers of oxidative damage in vivo, which may be formed ex...

  7. White matter damage in primary progressive aphasias: a diffusion tensor tractography study.

    PubMed

    Galantucci, Sebastiano; Tartaglia, Maria Carmela; Wilson, Stephen M; Henry, Maya L; Filippi, Massimo; Agosta, Federica; Dronkers, Nina F; Henry, Roland G; Ogar, Jennifer M; Miller, Bruce L; Gorno-Tempini, Maria Luisa

    2011-10-01

    Primary progressive aphasia is a clinical syndrome that encompasses three major phenotypes: non-fluent/agrammatic, semantic and logopenic. These clinical entities have been associated with characteristic patterns of focal grey matter atrophy in left posterior frontoinsular, anterior temporal and left temporoparietal regions, respectively. Recently, network-level dysfunction has been hypothesized but research to date has focused largely on studying grey matter damage. The aim of this study was to assess the integrity of white matter tracts in the different primary progressive aphasia subtypes. We used diffusion tensor imaging in 48 individuals: nine non-fluent, nine semantic, nine logopenic and 21 age-matched controls. Probabilistic tractography was used to identify bilateral inferior longitudinal (anterior, middle, posterior) and uncinate fasciculi (referred to as the ventral pathway); and the superior longitudinal fasciculus segmented into its frontosupramarginal, frontoangular, frontotemporal and temporoparietal components, (referred to as the dorsal pathway). We compared the tracts' mean fractional anisotropy, axial, radial and mean diffusivities for each tract in the different diagnostic categories. The most prominent white matter changes were found in the dorsal pathways in non-fluent patients, in the two ventral pathways and the temporal components of the dorsal pathways in semantic variant, and in the temporoparietal component of the dorsal bundles in logopenic patients. Each of the primary progressive aphasia variants showed different patterns of diffusion tensor metrics alterations: non-fluent patients showed the greatest changes in fractional anisotropy and radial and mean diffusivities; semantic variant patients had severe changes in all metrics; and logopenic patients had the least white matter damage, mainly involving diffusivity, with fractional anisotropy altered only in the temporoparietal component of the dorsal pathway. This study demonstrates that both careful dissection of the main language tracts and consideration of all diffusion tensor metrics are necessary to characterize the white matter changes that occur in the variants of primary progressive aphasia. These results highlight the potential value of diffusion tensor imaging as a new tool in the multimodal diagnostic evaluation of primary progressive aphasia.

  8. Association between structural and functional brain alterations in drug-free patients with schizophrenia: a multimodal meta-analysis

    PubMed

    Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John; Lui, Su

    2017-12-05

    Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta­-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular ­gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia. 2017 Joule Inc., or its licensors

  9. Association between structural and functional brain alterations in drug-free patients with schizophrenia: a multimodal meta-analysis.

    PubMed

    Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John A; Lui, Su

    2018-03-01

    Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia.

  10. Association between structural and functional brain alterations in drug-free patients with schizophrenia: a multimodal meta-analysis.

    PubMed

    Gao, Xin; Zhang, Wenjing; Yao, Li; Xiao, Yuan; Liu, Lu; Liu, Jieke; Li, Siyi; Tao, Bo; Shah, Chandan; Gong, Qiyong; Sweeney, John A; Lui, Su

    2017-12-15

    Neuroimaging studies have shown both structural and functional abnormalities in patients with schizophrenia. Recently, studies have begun to explore the association between structural and functional grey matter abnormalities. By conducting a meta-analysis on morphometric and functional imaging studies of grey matter alterations in drug-free patients, the present study aims to examine the degree of overlap between brain regions with anatomic and functional changes in patients with schizophrenia. We performed a systematic search of PubMed, Embase, Web of Science and the Cochrane Library to identify relevant publications. A multimodal analysis was then conducted using Seed-based d Mapping software. Exploratory analyses included jackknife, subgroup and meta-regression analyses. We included 15 structural MRI studies comprising 486 drug-free patients and 485 healthy controls, and 16 functional MRI studies comprising 403 drug-free patients and 428 controls in our meta-analysis. Drug-free patients were examined to reduce pharmacological effects on the imaging data. Multimodal analysis showed considerable overlap between anatomic and functional changes, mainly in frontotemporal regions, bilateral medial posterior cingulate/paracingulate gyrus, bilateral insula, basal ganglia and left cerebellum. There were also brain regions showing only anatomic changes in the right superior frontal gyrus, left supramarginal gyrus, right lingual gyrus and functional alternations involving the right angular gyrus. The methodological aspects, patient characteristics and clinical variables of the included studies were heterogeneous, and we cannot exclude medication effects. The present study showed overlapping anatomic and functional brain abnormalities mainly in the default mode (DMN) and auditory networks (AN) in drug-free patients with schizophrenia. However, the pattern of changes differed in these networks. Decreased grey matter was associated with decreased activation within the DMN, whereas it was associated with increased activation within the AN. These discrete patterns suggest different pathophysiological changes impacting structural and functional associations within different neural networks in patients with schizophrenia.

  11. Investigating Neuroanatomical Features in Top Athletes at the Single Subject Level.

    PubMed

    Taubert, Marco; Wenzel, Uwe; Draganski, Bogdan; Kiebel, Stefan J; Ragert, Patrick; Krug, Jürgen; Villringer, Arno

    2015-01-01

    In sport events like Olympic Games or World Championships competitive athletes keep pushing the boundaries of human performance. Compared to team sports, high achievements in many athletic disciplines depend solely on the individual's performance. Contrasting previous research looking for expertise-related differences in brain anatomy at the group level, we aim to demonstrate changes in individual top athlete's brain, which would be averaged out in a group analysis. We compared structural magnetic resonance images (MRI) of three professional track-and-field athletes to age-, gender- and education-matched control subjects. To determine brain features specific to these top athletes, we tested for significant deviations in structural grey matter density between each of the three top athletes and a carefully matched control sample. While total brain volumes were comparable between athletes and controls, we show regional grey matter differences in striatum and thalamus. The demonstrated brain anatomy patterns remained stable and were detected after 2 years with Olympic Games in between. We also found differences in the fusiform gyrus in two top long jumpers. We interpret our findings in reward-related areas as correlates of top athletes' persistency to reach top-level skill performance over years.

  12. Investigating Neuroanatomical Features in Top Athletes at the Single Subject Level

    PubMed Central

    Taubert, Marco; Wenzel, Uwe; Draganski, Bogdan; Kiebel, Stefan J.; Ragert, Patrick; Krug, Jürgen; Villringer, Arno

    2015-01-01

    In sport events like Olympic Games or World Championships competitive athletes keep pushing the boundaries of human performance. Compared to team sports, high achievements in many athletic disciplines depend solely on the individual’s performance. Contrasting previous research looking for expertise-related differences in brain anatomy at the group level, we aim to demonstrate changes in individual top athlete’s brain, which would be averaged out in a group analysis. We compared structural magnetic resonance images (MRI) of three professional track-and-field athletes to age-, gender- and education-matched control subjects. To determine brain features specific to these top athletes, we tested for significant deviations in structural grey matter density between each of the three top athletes and a carefully matched control sample. While total brain volumes were comparable between athletes and controls, we show regional grey matter differences in striatum and thalamus. The demonstrated brain anatomy patterns remained stable and were detected after 2 years with Olympic Games in between. We also found differences in the fusiform gyrus in two top long jumpers. We interpret our findings in reward-related areas as correlates of top athletes’ persistency to reach top-level skill performance over years. PMID:26079870

  13. Acute caffeine administration effect on brain activation patterns in mild cognitive impairment.

    PubMed

    Haller, Sven; Montandon, Marie-Louise; Rodriguez, Cristelle; Moser, Dominik; Toma, Simona; Hofmeister, Jeremy; Sinanaj, Indrit; Lovblad, Karl-Olof; Giannakopoulos, Panteleimon

    2014-01-01

    Previous studies showed that acute caffeine administration enhances task-related brain activation in elderly individuals with preserved cognition. To explore the effects of this widely used agent on cognition and brain activation in early phases of cognitive decline, we performed a double-blinded, placebo-controlled functional magnetic resonance imaging (fMRI) study during an n-back working memory task in 17 individuals with mild cognitive impairment (MCI) compared to 17 age-matched healthy controls (HC). All individuals were regular caffeine consumers with an overnight abstinence and given 200 mg caffeine versus placebo tablets 30 minutes before testing. Analyses included assessment of task-related activation (general linear model), functional connectivity (tensorial-independent component analysis, TICA), baseline perfusion (arterial spin labeling, ASL), grey matter density (voxel-based morphometry, VBM), and white matter microstructure (tract-based spatial statistics, TBSS). Acute caffeine administration induced a focal activation of the prefrontal areas in HC with a more diffuse and posteromedial activation pattern in MCI individuals. In MCI, TICA documented a significant caffeine-related enhancement in the prefrontal cortex, supplementary motor area, ventral premotor and parietal cortex as well as the basal ganglia and cerebellum. The absence of significant group differences in baseline ASL perfusion patterns supports a neuronal rather than a purely vascular origin of these differences. The VBM and TBSS analyses excluded potentially confounding differences in grey matter density and white matter microstructure between MCI and HC. The present findings suggest a posterior displacement of working memory-related brain activation patterns after caffeine administration in MCI that may represent a compensatory mechanism to counterbalance a frontal lobe dysfunction.

  14. Increased microglial catalase activity in multiple sclerosis grey matter.

    PubMed

    Gray, Elizabeth; Kemp, Kevin; Hares, Kelly; Redondo, Julianna; Rice, Claire; Scolding, Neil; Wilkins, Alastair

    2014-04-22

    Chronic demyelination, on-going inflammation, axonal loss and grey matter neuronal injury are likely pathological processes that contribute to disease progression in multiple sclerosis (MS). Although the precise contribution of each process and their aetiological substrates is not fully known, recent evidence has implicated oxidative damage as a major cause of tissue injury in MS. The degree of tissue injury caused by oxidative molecules, such as reactive oxygen species (ROS), is balanced by endogenous anti-oxidant enzymes which detoxify ROS. Understanding endogenous mechanisms which protect the brain against oxidative injury in MS is important, since enhancing anti-oxidant responses is a major therapeutic strategy for preventing irreversible tissue injury in the disease. Our aims were to determine expression and activity levels of the hydrogen peroxide-reducing enzyme catalase in MS grey matter (GM). In MS GM, a catalase enzyme activity was elevated compared to control GM. We measured catalase protein expression by immune dot-blotting and catalase mRNA by a real-time polymerase chain reaction (RT-PCR). Protein analysis studies showed a strong positive correlation between catalase and microglial marker IBA-1 in MS GM. In addition, calibration of catalase mRNA level with reference to the microglial-specific transcript AIF-1 revealed an increase in this transcript in MS. This was reflected by the extent of HLA-DR immunolabeling in MS GM which was significantly elevated compared to control GM. Collectively, these observations provide evidence that microglial catalase activity is elevated in MS grey matter and may be an important endogenous anti-oxidant defence mechanism in MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Mapping the parameter space of a T2-dependent model of water diffusion MR in brain tissue.

    PubMed

    Hansen, Brian; Vestergaard-Poulsen, Peter

    2006-10-01

    We present a new model for describing the diffusion-weighted (DW) proton nuclear magnetic resonance signal obtained from normal grey matter. Our model is analytical and, in some respects, is an extension of earlier model schemes. We model tissue as composed of three separate compartments with individual properties of diffusion and transverse relaxation. Our study assumes slow exchange between compartments. We attempt to take cell morphology into account, along with its effect on water diffusion in tissues. Using this model, we simulate diffusion-sensitive MR signals and compare model output to experimental data from human grey matter. In doing this comparison, we perform a global search for good fits in the parameter space of the model. The characteristic nonmonoexponential behavior of the signal as a function of experimental b value is reproduced quite well, along with established values for tissue-specific parameters such as volume fraction, tortuosity and apparent diffusion coefficient. We believe that the presented approach to modeling diffusion in grey matter adds new aspects to the treatment of a longstanding problem.

  16. Mapping Transient Hyperventilation Induced Alterations with Estimates of the Multi-Scale Dynamics of BOLD Signal.

    PubMed

    Kiviniemi, Vesa; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Haapea, Marianne; Silven, Olli; Tervonen, Osmo

    2009-01-01

    Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD) trends of the form 1/f(alpha). Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF) after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant alpha, fractal dimension D(f), and, Hurst exponent H) characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The alpha was able to differentiate also blood vessels from grey matter changes. D(f) was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow.

  17. Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu.

    PubMed

    Shaw, Daniel Joel; Mareček, Radek; Brázdil, Milan

    2016-12-01

    Déjà vu (DV) is an eerie phenomenon experienced frequently as an aura of temporal lobe epilepsy, but also reported commonly by healthy individuals. The former pathological manifestation appears to result from aberrant neural activity among brain structures within the medial temporal lobes. Recent studies also implicate medial temporal brain structures in the non-pathological experience of DV, but as one element of a diffuse neuroanatomical correlate; it remains to be seen if neural activity among the medial temporal lobes also underlies this benign manifestation. The present study set out to investigate this. Due to its unpredictable and infrequent occurrence, however, non-pathological DV does not lend itself easily to functional neuroimaging. Instead, we draw on research showing that brain structure covaries among regions that interact frequently as nodes of functional networks. Specifically, we assessed whether grey-matter covariance among structures implicated in non-pathological DV differs according to the frequency with which the phenomenon is experienced. This revealed two diverging patterns of structural covariation: Among the first, comprised primarily of medial temporal structures and the caudate, grey-matter volume becomes more positively correlated with higher frequency of DV experience. The second pattern encompasses medial and lateral temporal structures, among which greater DV frequency is associated with more negatively correlated grey matter. Using a meta-analytic method of co-activation mapping, we demonstrate a higher probability of functional interactions among brain structures constituting the former pattern, particularly during memory-related processes. Our findings suggest that altered neural signalling within memory-related medial temporal brain structures underlies both pathological and non-pathological DV.

  18. Brain-behaviour relationships in people at high genetic risk of schizophrenia.

    PubMed

    Lymer, G Katherine S; Job, Dominic E; William, T; Moorhead, J; McIntosh, Andrew M; Owens, David G C; Johnstone, Eve C; Lawrie, Stephen M

    2006-10-15

    The brain is known to be structurally abnormal in schizophrenia, with replicated findings between anatomical deficits and some dysfunctions. These structure-function associations have, however, only very rarely been studied in relatives at risk of schizophrenia. We studied the relationships between structure and schizotypal features (assessed using RISC and SIS) and verbal learning and memory (measured using RAVLT) in relatives at high risk of developing schizophrenia and normal controls. Since these behavioural test scores are strong predictors of schizophrenia in the Edinburgh High Risk Study, we hypothesised that these relationships would differ between those high-risk subjects who will develop schizophrenia from those who will not. We performed multiple regressions of the grey matter segments of the subjects and controls, produced using grey matter optimised, voxel-based morphometry, with their RAVLT, SIS and RISC scores in SPM. Where significant relationships were found, we used SPSS to test for subject group by behavioural score interactions. In those high-risk subjects who became ill, grey matter density (GMD) was significantly correlated with RISC in the left superior temporal gyrus. In subjects who remained well, SIS was significantly correlated with GMD in the right pulvinar. Across the whole HR group, GMD in the right medial dorsal thalamic nucleus was significantly correlated with RAVLT. In those subjects who developed symptoms, RAVLT significantly correlated with GMD in right parahippocampal gyrus whereas in those who became ill, significant correlations existed bilaterally in the pulvinar. These results suggest complex and changing patterns of structural-functional relationships in those subjects at high-risk of schizophrenia.

  19. Bilateral Periventricular Nodular Heterotopia and Lissencephaly in an Infant with Unbalanced t(12;17)(q24.31; p13.3) Translocation

    ERIC Educational Resources Information Center

    Grosso, Salvatore; Fichera, Marco; Galesi, Ornella; Luciano, Daniela; Pucci, Lucia; Giardini, Francesca; Berardi, Rosario; Balestri, Paolo

    2008-01-01

    Periventricular nodular heterotopia and Miller-Dieker syndrome are two different disorders of brain development. Miller-Dieker syndrome exhibits classical lissencephaly and is related to defects in the lissencephaly gene ("LIS1"). Periventricular nodular heterotopia is characterized by aggregates of grey matter adjacent to the lateral ventricle…

  20. Brain and spinal cord metabolic activity during propofol anaesthesia.

    PubMed

    Cavazzuti, M; Porro, C A; Barbieri, A; Galetti, A

    1991-04-01

    We have investigated the effects of propofol anaesthesia on the metabolic activity pattern of 35 regions of the rat brain and cervical spinal cord using the 14C-2-deoxyglucose technique. Anaesthesia was produced by an i.v. bolus of the commercial preparation of the drug (8 mg kg-1) and maintained with successive bolus administrations of 6 mg kg-1. Functional activity values (expressed as rates of local utilization of glucose) were reduced in 31 grey matter and two white matter structures in a propofol group relative both to saline-injected and vehicle-injected (aqueous emulsion containing 10% soya bean oil, 1.2% egg phosphatide and 2.25% glycerol) controls. Values from the two control groups did not differ significantly. Propofol-induced depression of metabolic activity was present in central nervous system regions belonging to sensory (auditory, visual and somatosensory), motor and limbic systems, including spinal cord grey matter. Mean percentage decreases ranged from 40% (vestibular nuclei) to 76% (cingulate cortex). Although these values may be slightly overestimated because of the modest increase in PaCo2 in the anaesthetized group, propofol appeared to elicit generalized reduction of central nervous system functional activity.

  1. The Neurocognitive Architecture of Individual Differences in Math Anxiety in Typical Children.

    PubMed

    Hartwright, Charlotte E; Looi, Chung Yen; Sella, Francesco; Inuggi, Alberto; Santos, Flávia Heloísa; González-Salinas, Carmen; Santos, Jose M García; Kadosh, Roi Cohen; Fuentes, Luis J

    2018-05-31

    Math Anxiety (MA) is characterized by a negative emotional response when facing math-related situations. MA is distinct from general anxiety and can emerge during primary education. Prior studies typically comprise adults and comparisons between high- versus low-MA, where neuroimaging work has focused on differences in network activation between groups when completing numerical tasks. The present study used voxel-based morphometry (VBM) to identify the structural brain correlates of MA in a sample of 79 healthy children aged 7-12 years. Given that MA is thought to develop in later primary education, the study focused on the level of MA, rather than categorically defining its presence. Using a battery of cognitive- and numerical-function tasks, we identified that increased MA was associated with reduced attention, working memory and math achievement. VBM highlighted that increased MA was associated with reduced grey matter in the left anterior intraparietal sulcus. This region was also associated with attention, suggesting that baseline differences in morphology may underpin attentional differences. Future studies should clarify whether poorer attentional capacity due to reduced grey matter density results in the later emergence of MA. Further, our data highlight the role of working memory in propagating reduced math achievement in children with higher MA.

  2. Adolescents who were born very preterm have decreased brain volumes.

    PubMed

    Nosarti, Chiara; Al-Asady, Mazin H S; Frangou, Sophia; Stewart, Ann L; Rifkin, Larry; Murray, Robin M

    2002-07-01

    Infants born very preterm have an increased risk of brain injury. Given the great increase in the number of such infants that are surviving, it is important to establish whether any resultant brain abnormalities persist into adolescence and adult life. We therefore examined in vivo whole brain, grey matter, white matter and hippocampal volumes, ventricular size and grey/white matter ratios in a series of adolescents who had been born very preterm, and an age-matched full-term control group. Structural MRI was carried out on a cohort of 72 adolescents (mean age 15 years) who were born before 33 weeks, and 48 age-matched full-term controls. Brain measurements were made blind to group affiliation using stereological principles. After controlling for gender and height, the very preterm subjects showed a 6.0% decrease in whole brain volume, and an 11.8% decrease in cortical grey matter volume, as well as a 15.6% decrease in right and a 12.1% decrease in left hippocampal volumes; they also had a 42.0% increase in the size of the lateral ventricles. Therefore, individuals who were born very preterm continue to show noticeable decrements in brain volumes and striking increases in lateral ventricular volume into adolescence. The functional significance of these abnormalities merits further investigation.

  3. Regional brain volumes and cognition in childhood epilepsy: does size really matter?

    PubMed

    Zelko, Frank A; Pardoe, Heath R; Blackstone, Sarah R; Jackson, Graeme D; Berg, Anne T

    2014-05-01

    Recent studies have correlated neurocognitive function and regional brain volumes in children with epilepsy. We tested whether brain volume differences between children with and without epilepsy explained differences in neurocognitive function. The study sample included 108 individuals with uncomplicated non-syndromic epilepsy (NSE) and 36 healthy age- and gender-matched controls. Participants received a standardized cognitive battery. Whole brain T1-weighted MRI was obtained and volumes analyzed with FreeSurfer (TM). Total brain volume (TBV) was significantly smaller in cases. After adjustment for TBV, cases had significantly larger regional grey matter volumes for total, frontal, parietal, and precentral cortex. Cases had poorer performance on neurocognitive indices of intelligence and variability of sustained attention. In cases, TBV showed small associations with intellectual indices of verbal and perceptual ability, working memory, and overall IQ. In controls, TBV showed medium associations with working memory and variability of sustained attention. In both groups, small associations were seen between some TBV-adjusted regional brain volumes and neurocognitive indices, but not in a consistent pattern. Brain volume differences did not account for cognitive differences between the groups. Patients with uncomplicated NSE have smaller brains than controls but areas of relative grey matter enlargement. That this relative regional enlargement occurs in the context of poorer overall neurocognitive functioning suggests that it is not adaptive. However, the lack of consistent associations between case-control differences in brain volumes and cognitive functioning suggests that brain volumes have limited explanatory value for cognitive functioning in childhood epilepsy. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. [Gray matter abnormalities in developmental stuttering determined with voxel-based morphometry].

    PubMed

    Song, Lu-ping; Peng, Dan-ling; Jin, Zhen; Yao, Li; Ning, Ning; Guo, Xiao-juan; Zhang, Tong

    2007-11-06

    To investigate the differences of regional grey matter volume between adults with persistent developmental stuttering and fluent speaking adults, and to determine whether stutterers have anomalous anatomy of speech-relevant brain areas that possibly affect speech fluency. High-resolution magnetic resonance imaging (MRI) scanning was performed on 10 adults with developmental stuttering, aged 26 (21 - 35) with the onset age of 4 (3 - 7) and 12 age, sex, hand preference, and education-matched controls. The customized brain templates were created in order to improve spatial normalization and segmentation. Then automated preprocessing of MRI data was conducted using an optimized version of VBM, a fully automated unbiased and objective whole-brain MRI analysis technique. VBM analysis revealed that compared with the controls, the stuttering adults had significant clusters of locally gray matter volume increased in the superior temporal, middle temporal, precentral and postcentral gyrus, and inferior parietal lobule of the bilateral hemisphere (P < 0.001), the numbers of increased gray matter volume in the right and left hemispheres were 60,247 and 48,782 voxels respectively. The, Grey matter decrease was shown with an overall decreased gray matter volume of 32 394 voxels, mainly in the bilateral cerebella posterior lobe and dorsal part of medulla, especially inferior semi-lunar lobule, followed by cerebellar tonsil and bilateral medulla in comparison with the controls (P < 0.001). The reduction of the regional gray matter volume of bilateral cerebella and medulla is related to the neural mechanism of the controlling disorder of speech production and may be the essential cause of stuttering. Some areas with increased gray matter volume in temporal lobe, parietal lobe, and frontal lobe, may be the result of long term functional compensation for the cerebella and medulla function deficiency.

  5. Mapping the pharmacological modulation of brain oxygen metabolism: The effects of caffeine on absolute CMRO2 measured using dual calibrated fMRI.

    PubMed

    Merola, Alberto; Germuska, Michael A; Warnert, Esther Ah; Richmond, Lewys; Helme, Daniel; Khot, Sharmila; Murphy, Kevin; Rogers, Peter J; Hall, Judith E; Wise, Richard G

    2017-07-15

    This study aims to map the acute effects of caffeine ingestion on grey matter oxygen metabolism and haemodynamics with a novel MRI method. Sixteen healthy caffeine consumers (8 males, age=24.7±5.1) were recruited to this randomised, double-blind, placebo-controlled study. Each participant was scanned on two days before and after the delivery of an oral caffeine (250mg) or placebo capsule. Our measurements were obtained with a newly proposed estimation approach applied to data from a dual calibration fMRI experiment that uses hypercapnia and hyperoxia to modulate brain blood flow and oxygenation. Estimates were based on a forward model that describes analytically the contributions of cerebral blood flow (CBF) and of the measured end-tidal partial pressures of CO 2 and O 2 to the acquired dual-echo GRE signal. The method allows the estimation of grey matter maps of: oxygen extraction fraction (OEF), CBF, CBF-related cerebrovascular reactivity (CVR) and cerebral metabolic rate of oxygen consumption (CMRO 2 ). Other estimates from a multi inversion time ASL acquisition (mTI-ASL), salivary samples of the caffeine concentration and behavioural measurements are also reported. We observed significant differences between caffeine and placebo on average across grey matter, with OEF showing an increase of 15.6% (SEM±4.9%, p<0.05) with caffeine, while CBF and CMRO 2 showed differences of -30.4% (SEM±1.6%, p<0.01) and -18.6% (SEM±2.9%, p<0.01) respectively with caffeine administration. The reduction in oxygen metabolism found is somehow unexpected, but consistent with a hypothesis of decreased energetic demand, supported by previous electrophysiological studies reporting reductions in spectral power with EEG. Moreover the maps of the physiological parameters estimated illustrate the spatial distribution of changes across grey matter enabling us to localise the effects of caffeine with voxel-wise resolution. CBF changes were widespread as reported by previous findings, while changes in OEF were found to be more restricted, leading to unprecedented mapping of significant CMRO 2 reductions mainly in frontal gyrus, parietal and occipital lobes. In conclusion, we propose the estimation framework based on our novel forward model with a dual calibrated fMRI experiment as a viable MRI method to map the effects of drugs on brain oxygen metabolism and haemodynamics with voxel-wise resolution. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Neuroanatomical correlates of negative emotionality-related traits: A systematic review and meta-analysis.

    PubMed

    Mincic, Adina M

    2015-10-01

    Two central traits present in the most influential models of personality characterize the response to positive and, respectively, negative emotional events. Negative emotionality (NE)-related traits are linked to vulnerability to mood and anxiety disorders; this has fuelled a special interest in examining stable differences in brain morphology associated to these traits. Structural imaging methods including voxel-based morphometry, cortical thickness analysis and diffusion tensor imaging (DTI) have yielded inconclusive and sometimes contradictory results. This review summarizes the findings reported to date through these methods and discusses them in relation to the functional imaging results. To detect topographic convergence between studies showing positive and, respectively, negative grey matter associations with NE-traits, activation likelihood estimation (ALE) meta-analyses of VBM studies were performed. Individuals scoring high on NE-related traits show consistent morphological differences in a left-lateralized circuit: higher grey matter volume (GMV) in amygdala and anterior parahippocampal gyrus and lower GMV in the orbitofrontal cortex extending into perigenual anterior cingulate cortex. Most DTI studies indicate reduced white matter integrity in various brain regions and tracts, particularly in the uncinate fasciculus and in cingulum bundle. These results show that the behavioural phenotype associated to NE traits is reflected in structural differences within the cortico-limbic system, suggesting alterations in information processing and transmission. The results are discussed from the perspective of neuron-glia interactions. Future directions are outlined based on recent developments in structural imaging techniques. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Neuroanatomical Correlates of Theory of Mind Deficit in Parkinson’s Disease: A Multimodal Imaging Study

    PubMed Central

    Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Gómez-Beldarrain, María Ángeles; Gómez-Esteban, Juan Carlos; Ibarretxe-Bilbao, Naroa

    2015-01-01

    Background Parkinson’s disease (PD) patients show theory of mind (ToM) deficit since the early stages of the disease, and this deficit has been associated with working memory, executive functions and quality of life impairment. To date, neuroanatomical correlates of ToM have not been assessed with magnetic resonance imaging in PD. The main objective of this study was to assess cerebral correlates of ToM deficit in PD. The second objective was to explore the relationships between ToM, working memory and executive functions, and to analyse the neural correlates of ToM, controlling for both working memory and executive functions. Methods Thirty-seven PD patients (Hoehn and Yahr median = 2.0) and 15 healthy controls underwent a neuropsychological assessment and magnetic resonance images in a 3T-scanner were acquired. T1-weighted images were analysed with voxel-based morphometry, and white matter integrity and diffusivity measures were obtained from diffusion weighted images and analysed using tract-based spatial statistics. Results PD patients showed impairments in ToM, working memory and executive functions; grey matter loss and white matter reduction compared to healthy controls. Grey matter volume decrease in the precentral and postcentral gyrus, middle and inferior frontal gyrus correlated with ToM deficit in PD. White matter in the superior longitudinal fasciculus (adjacent to the parietal lobe) and white matter adjacent to the frontal lobe correlated with ToM impairment in PD. After controlling for executive functions, the relationship between ToM deficit and white matter remained significant for white matter areas adjacent to the precuneus and the parietal lobe. Conclusions Findings reinforce the existence of ToM impairment from the early Hoehn and Yahr stages in PD, and the findings suggest associations with white matter and grey matter volume decrease. This study contributes to better understand ToM deficit and its neural correlates in PD, which is a basic skill for development of healthy social relationships. PMID:26559669

  8. Neuroanatomical Correlates of Theory of Mind Deficit in Parkinson's Disease: A Multimodal Imaging Study.

    PubMed

    Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Gómez-Beldarrain, María Ángeles; Gómez-Esteban, Juan Carlos; Ibarretxe-Bilbao, Naroa

    2015-01-01

    Parkinson's disease (PD) patients show theory of mind (ToM) deficit since the early stages of the disease, and this deficit has been associated with working memory, executive functions and quality of life impairment. To date, neuroanatomical correlates of ToM have not been assessed with magnetic resonance imaging in PD. The main objective of this study was to assess cerebral correlates of ToM deficit in PD. The second objective was to explore the relationships between ToM, working memory and executive functions, and to analyse the neural correlates of ToM, controlling for both working memory and executive functions. Thirty-seven PD patients (Hoehn and Yahr median = 2.0) and 15 healthy controls underwent a neuropsychological assessment and magnetic resonance images in a 3T-scanner were acquired. T1-weighted images were analysed with voxel-based morphometry, and white matter integrity and diffusivity measures were obtained from diffusion weighted images and analysed using tract-based spatial statistics. PD patients showed impairments in ToM, working memory and executive functions; grey matter loss and white matter reduction compared to healthy controls. Grey matter volume decrease in the precentral and postcentral gyrus, middle and inferior frontal gyrus correlated with ToM deficit in PD. White matter in the superior longitudinal fasciculus (adjacent to the parietal lobe) and white matter adjacent to the frontal lobe correlated with ToM impairment in PD. After controlling for executive functions, the relationship between ToM deficit and white matter remained significant for white matter areas adjacent to the precuneus and the parietal lobe. Findings reinforce the existence of ToM impairment from the early Hoehn and Yahr stages in PD, and the findings suggest associations with white matter and grey matter volume decrease. This study contributes to better understand ToM deficit and its neural correlates in PD, which is a basic skill for development of healthy social relationships.

  9. Habitual 'sleep credit' is associated with greater grey matter volume of the medial prefrontal cortex, higher emotional intelligence and better mental health.

    PubMed

    Weber, Mareen; Webb, Christian A; Deldonno, Sophie R; Kipman, Maia; Schwab, Zachary J; Weiner, Melissa R; Killgore, William D S

    2013-10-01

    In modern society, people often fail to obtain the amount of sleep that experts recommend for good health and performance. Insufficient sleep can lead to degraded cognitive performance and alterations in emotional functioning. However, most people also acknowledge that on a regular basis they obtain more sleep than they subjectively perceive they need at a minimum to stave off performance decrements, a construct we describe as subjective 'sleep credit'. Few people would contest the notion that getting more sleep is better, but data on both behavioural and neuroanatomical correlates of 'sleep credit' are surprisingly limited. We conducted a voxel-based morphometric study to assess cerebral grey matter correlates of habitually sleeping more than one's subjective requirements. We further tested whether these structural correlates are associated with perceived emotional intelligence and indices of psychopathology while controlling for age, gender, and total intracranial volume. In a sample of 55 healthy adults aged 18-45 years (28 males, 27 females), whole-brain multiple regression showed that habitual subjective 'sleep credit' was correlated positively with grey matter volume within regions of the left medial prefrontal cortex and right orbitofrontal gyrus. Volumes were extracted and regressed against self-report emotion and psychopathology indices. Only grey matter volume of the medial prefrontal cortex cluster correlated with greater emotional intelligence and lower scores on several indices of psychopathology. Findings converge with previous evidence of the role of the medial prefrontal cortex in the relationship between sleep and emotional functioning, and suggest that behaviour and brain structure vary with habitual 'sleep credit'. © 2013 European Sleep Research Society.

  10. Structural imaging biomarkers of sudden unexpected death in epilepsy

    PubMed Central

    Wandschneider, Britta; Koepp, Matthias; Scott, Catherine; Micallef, Caroline; Balestrini, Simona; Sisodiya, Sanjay M.; Thom, Maria; Harper, Ronald M.; Sander, Josemir W.; Vos, Sjoerd B.; Duncan, John S.; Lhatoo, Samden

    2015-01-01

    Sudden unexpected death in epilepsy is a major cause of premature death in people with epilepsy. We aimed to assess whether structural changes potentially attributable to sudden death pathogenesis were present on magnetic resonance imaging in people who subsequently died of sudden unexpected death in epilepsy. In a retrospective, voxel-based analysis of T1 volume scans, we compared grey matter volumes in 12 cases of sudden unexpected death in epilepsy (two definite, 10 probable; eight males), acquired 2 years [median, interquartile range (IQR) 2.8] before death [median (IQR) age at scanning 33.5 (22) years], with 34 people at high risk [age 30.5 (12); 19 males], 19 at low risk [age 30 (7.5); 12 males] of sudden death, and 15 healthy controls [age 37 (16); seven males]. At-risk subjects were defined based on risk factors of sudden unexpected death in epilepsy identified in a recent combined risk factor analysis. We identified increased grey matter volume in the right anterior hippocampus/amygdala and parahippocampus in sudden death cases and people at high risk, when compared to those at low risk and controls. Compared to controls, posterior thalamic grey matter volume, an area mediating oxygen regulation, was reduced in cases of sudden unexpected death in epilepsy and subjects at high risk. The extent of reduction correlated with disease duration in all subjects with epilepsy. Increased amygdalo-hippocampal grey matter volume with right-sided changes is consistent with histo-pathological findings reported in sudden infant death syndrome. We speculate that the right-sided predominance reflects asymmetric central influences on autonomic outflow, contributing to cardiac arrhythmia. Pulvinar damage may impair hypoxia regulation. The imaging findings in sudden unexpected death in epilepsy and people at high risk may be useful as a biomarker for risk-stratification in future studies. PMID:26264515

  11. Clinical correlations of grey matter reductions in the caudate nucleus of adults with attention deficit hyperactivity disorder

    PubMed Central

    Montes, Luis Guillermo Almeida; Ricardo-Garcell, Josefina; De La Torre, Lázaro Barajas; Alcántara, Hugo Prado; García, Reyna Beatriz Martínez; Fernández-Bouzas, Antonio; Acosta, David Ávila

    2010-01-01

    Background Magnetic resonance imaging (MRI) studies have shown decreased caudate volumes in individuals with attention deficit hyperactivity disorder (ADHD). However, most of these studies have been carried out in male children. Very little research has been done in adults, and the results obtained in children are difficult to extrapolate to adults. We sought to compare the volume of the caudate of adults with ADHD with that of healthy controls; we also compared these volumes between men and women. Methods We performed an MRI scan on 20 adults with ADHD (10 men and 10 women) aged 25–35 years and 20 healthy controls matched by age and sex. We used voxel-based morphometry with the DARTEL algorithm for image analyses. We used the specifically designed Friederichsen, Almeida, Serrano, Cortes Test (FASCT) to measure the severity of ADHD; both the self-reported (FASCT-SR) and the observer (FASCT-O) versions were used. Results The statistical parametric map showed a smaller region with low grey matter volume and a smaller concentration of grey matter in this region of the right caudate in ADHD patients than in health controls, both in the entire sample and within each sex. There was a significant correlation between the volume of this region of the caudate with the number of DSM IV-TR criteria, as well as with the total scores and most of the factors of the FASCT-SR and FASCT-O scales. A separate correlation analysis by sex gave similar results. Limitations The study design was cross-sectional. Conclusion The region of the right caudate with low grey matter volume was smaller in adults with ADHD in both sexes and was correlated with ADHD severity. PMID:20569650

  12. Alterations in Brain Structure and Functional Connectivity in Alcohol Dependent Patients and Possible Association with Impulsivity.

    PubMed

    Wang, Junkai; Fan, Yunli; Dong, Yue; Ma, Mengying; Ma, Yi; Dong, Yuru; Niu, Yajuan; Jiang, Yin; Wang, Hong; Wang, Zhiyan; Wu, Liuzhen; Sun, Hongqiang; Cui, Cailian

    2016-01-01

    Previous studies have documented that heightened impulsivity likely contributes to the development and maintenance of alcohol use disorders. However, there is still a lack of studies that comprehensively detected the brain changes associated with abnormal impulsivity in alcohol addicts. This study was designed to investigate the alterations in brain structure and functional connectivity associated with abnormal impulsivity in alcohol dependent patients. Brain structural and functional magnetic resonance imaging data as well as impulsive behavior data were collected from 20 alcohol dependent patients and 20 age- and sex-matched healthy controls respectively. Voxel-based morphometry was used to investigate the differences of grey matter volume, and tract-based spatial statistics was used to detect abnormal white matter regions between alcohol dependent patients and healthy controls. The alterations in resting-state functional connectivity in alcohol dependent patients were examined using selected brain areas with gray matter deficits as seed regions. Compared with healthy controls, alcohol dependent patients had significantly reduced gray matter volume in the mesocorticolimbic system including the dorsal posterior cingulate cortex, the dorsal anterior cingulate cortex, the medial prefrontal cortex, the orbitofrontal cortex and the putamen, decreased fractional anisotropy in the regions connecting the damaged grey matter areas driven by higher radial diffusivity value in the same areas and decreased resting-state functional connectivity within the reward network. Moreover, the gray matter volume of the left medial prefrontal cortex exhibited negative correlations with various impulse indices. These findings suggest that chronic alcohol dependence could cause a complex neural changes linked to abnormal impulsivity.

  13. Apoptosis in the cerebellum of dogs with distemper.

    PubMed

    Moro, L; Martins, A S; Alves, C M; Santos, F G A; Del Puerto, H L; Vasconcelos, A C

    2003-06-01

    Canine distemper virus (CDV) may induce multifocal demyelination in the central nervous system of infected dogs. The pathogenesis of this process is not clear. The present work identifies the presence of apoptotic cells in white and grey matter of dogs'cerebellum, naturally infected with CDV. Fifteen dogs with clinical signs of canine distemper that tested positive for CDV nucleoprotein were used. Brain specimens were processed and embedded in paraffin. Sections 5 microm thick were stained with hematoxylin-eosin and Shorr. Other sections were submitted to TUNEL reaction and to immunohistochemistry for CDV nucleoprotein detection. Acute and chronic demyelinated plaques were observed in the white matter, while apoptosis occurred particularly in the granular layer of grey matter. Apoptosis seems to play an important role in the pathogenesis of canine distemper demyelination.

  14. Multispectral brain morphometry in Tourette syndrome persisting into adulthood

    PubMed Central

    Martino, Davide; Cavanna, Andrea E.; Hutton, Chloe; Orth, Michael; Robertson, Mary M.; Critchley, Hugo D.; Frackowiak, Richard S.

    2010-01-01

    Tourette syndrome is a childhood-onset neuropsychiatric disorder with a high prevalence of attention deficit hyperactivity and obsessive-compulsive disorder co-morbidities. Structural changes have been found in frontal cortex and striatum in children and adolescents. A limited number of morphometric studies in Tourette syndrome persisting into adulthood suggest ongoing structural alterations affecting frontostriatal circuits. Using cortical thickness estimation and voxel-based analysis of T1- and diffusion-weighted structural magnetic resonance images, we examined 40 adults with Tourette syndrome in comparison with 40 age- and gender-matched healthy controls. Patients with Tourette syndrome showed relative grey matter volume reduction in orbitofrontal, anterior cingulate and ventrolateral prefrontal cortices bilaterally. Cortical thinning extended into the limbic mesial temporal lobe. The grey matter changes were modulated additionally by the presence of co-morbidities and symptom severity. Prefrontal cortical thickness reduction correlated negatively with tic severity, while volume increase in primary somatosensory cortex depended on the intensity of premonitory sensations. Orbitofrontal cortex volume changes were further associated with abnormal water diffusivity within grey matter. White matter analysis revealed changes in fibre coherence in patients with Tourette syndrome within anterior parts of the corpus callosum. The severity of motor tics and premonitory urges had an impact on the integrity of tracts corresponding to cortico-cortical and cortico-subcortical connections. Our results provide empirical support for a patho-aetiological model of Tourette syndrome based on developmental abnormalities, with perturbation of compensatory systems marking persistence of symptoms into adulthood. We interpret the symptom severity related grey matter volume increase in distinct functional brain areas as evidence of ongoing structural plasticity. The convergence of evidence from volume and water diffusivity imaging strengthens the validity of our findings and attests to the value of a novel multimodal combination of volume and cortical thickness estimations that provides unique and complementary information by exploiting their differential sensitivity to structural change. PMID:21071387

  15. Measures of Cortical Grey Matter Structure and Development in Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Mak-Fan, Kathleen M.; Taylor, Margot J.; Roberts, Wendy; Lerch, Jason P.

    2012-01-01

    The current study examined group differences in cortical volume, surface area, and thickness with age, in a group of typically developing children and a group of children with ASD aged 6-15 years. Results showed evidence of age by group interactions, suggesting atypicalities in the relation between these measures and age in the ASD group.…

  16. Characterising the grey matter correlates of leukoaraiosis in cerebral small vessel disease.

    PubMed

    Lambert, Christian; Sam Narean, Janakan; Benjamin, Philip; Zeestraten, Eva; Barrick, Thomas R; Markus, Hugh S

    2015-01-01

    Cerebral small vessel disease (SVD) is a heterogeneous group of pathological disorders that affect the small vessels of the brain and are an important cause of cognitive impairment. The ischaemic consequences of this disease can be detected using MRI, and include white matter hyperintensities (WMH), lacunar infarcts and microhaemorrhages. The relationship between SVD disease severity, as defined by WMH volume, in sporadic age-related SVD and cortical thickness has not been well defined. However, regional cortical thickness change would be expected due to associated phenomena such as underlying ischaemic white matter damage, and the observation that widespread cortical thinning is observed in the related genetic condition CADASIL (Righart et al., 2013). Using MRI data, we have developed a semi-automated processing pipeline for the anatomical analysis of individuals with cerebral small vessel disease and applied it cross-sectionally to 121 subjects diagnosed with this condition. Using a novel combined automated white matter lesion segmentation algorithm and lesion repair step, highly accurate warping to a group average template was achieved. The volume of white matter affected by WMH was calculated, and used as a covariate of interest in a voxel-based morphometry and voxel-based cortical thickness analysis. Additionally, Gaussian Process Regression (GPR) was used to assess if the severity of SVD, measured by WMH volume, could be predicted from the morphometry and cortical thickness measures. We found significant (Family Wise Error corrected p < 0.05) volumetric decline with increasing lesion load predominately in the parietal lobes, anterior insula and caudate nuclei bilaterally. Widespread significant cortical thinning was found bilaterally in the dorsolateral prefrontal, parietal and posterio-superior temporal cortices. These represent distinctive patterns of cortical thinning and volumetric reduction compared to ageing effects in the same cohort, which exhibited greater changes in the occipital and sensorimotor cortices. Using GPR, the absolute WMH volume could be significantly estimated from the grey matter density and cortical thickness maps (Pearson's coefficients 0.80 and 0.75 respectively). We demonstrate that SVD severity is associated with regional cortical thinning. Furthermore a quantitative measure of SVD severity (WMH volume) can be predicted from grey matter measures, supporting an association between white and grey matter damage. The pattern of cortical thinning and volumetric decline is distinctive for SVD severity compared to ageing. These results, taken together, suggest that there is a phenotypic pattern of atrophy associated with SVD severity.

  17. Baseline grey matter volume of non-transitioned "ultra high risk" for psychosis individuals with and without attenuated psychotic symptoms at long-term follow-up.

    PubMed

    Cropley, Vanessa L; Lin, Ashleigh; Nelson, Barnaby; Reniers, Renate L E P; Yung, Alison R; Bartholomeusz, Cali F; Klauser, Paul; Velakoulis, Dennis; McGorry, Patrick; Wood, Stephen J; Pantelis, Christos

    2016-06-01

    Two thirds of individuals identified as ultra-high risk (UHR) for psychosis do not transition to psychosis over the medium to long-term (non-transition; UHR-NT). Nevertheless, many of these individuals have persistent attenuated psychotic symptoms (APS). The current study examined whether there were differences in baseline grey matter volume (i.e. at initial identification as UHR) in UHR-NT individuals whom had APS compared to those without APS (No-APS) at medium to long-term follow-up. Participants were help-seeking individuals who were identified as being at UHR for psychosis between 2 and 12years previously (mean=7.5). The sample consisted of 109 participants who underwent a Magnetic Resonance Imaging scan at baseline and who had not been observed to develop a psychotic disorder over the follow-up period (UHR-NT). Using voxel-based morphometry, baseline grey matter volume (GMV) was compared between participants with (N=30) and without (N=79) APS at follow-up. At baseline, the APS and No-APS groups were clinically indistinguishable. At follow-up, the APS group had significantly worse symptoms and impaired functioning. Individuals with APS had reduced baseline GMV in frontal, temporal, posterior and cingulate regions compared to those without APS at follow-up. Reduced GMV was associated with more severe positive, negative and depressive symptoms and lower global functioning in the combined UHR-NT cohort. These associations were independent of later APS outcome. This study found that differences in regional GMV are discernible at an early stage of UHR and may be specific to individuals who have APS and psychopathology at follow-up. Our findings suggest that lower GMV at baseline may confer neurobiological risk for later APS and/or increased psychopathology while the absence of these structural abnormalities might be protective. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Fractal dimension brain morphometry: a novel approach to quantify white matter in traumatic brain injury.

    PubMed

    Rajagopalan, Venkateswaran; Das, Abhijit; Zhang, Luduan; Hillary, Frank; Wylie, Glenn R; Yue, Guang H

    2018-06-16

    Traumatic brain injury (TBI) is the main cause of disability in people younger than 35 in the United States. The mechanisms of TBI are complex resulting in both focal and diffuse brain damage. Fractal dimension (FD) is a measure that can characterize morphometric complexity and variability of brain structure especially white matter (WM) structure and may provide novel insights into the injuries evident following TBI. FD-based brain morphometry may provide information on WM structural changes after TBI that is more sensitive to subtle structural changes post injury compared to conventional MRI measurements. Anatomical and diffusion tensor imaging (DTI) data were obtained using a 3 T MRI scanner in subjects with moderate to severe TBI and in healthy controls (HC). Whole brain WM volume, grey matter volume, cortical thickness, cortical area, FD and DTI metrics were evaluated globally and for the left and right hemispheres separately. A neuropsychological test battery sensitive to cognitive impairment associated with traumatic brain injury was performed. TBI group showed lower structural complexity (FD) bilaterally (p < 0.05). No significant difference in either grey matter volume, cortical thickness or cortical area was observed in any of the brain regions between TBI and healthy controls. No significant differences in whole brain WM volume or DTI metrics between TBI and HC groups were observed. Behavioral data analysis revealed that WM FD accounted for a significant amount of variance in executive functioning and processing speed beyond demographic and DTI variables. FD therefore, may serve as a sensitive marker of injury and may play a role in outcome prediction in TBI.

  19. Brain intracellular metabolites are freely diffusing along cell fibers in grey and white matter, as measured by diffusion-weighted MR spectroscopy in the human brain at 7 T.

    PubMed

    Najac, Chloé; Branzoli, Francesca; Ronen, Itamar; Valette, Julien

    2016-04-01

    Due to the specific compartmentation of brain metabolites, diffusion-weighted magnetic resonance spectroscopy opens unique insight into neuronal and astrocytic microstructures. The apparent diffusion coefficient (ADC) of brain metabolites depends on various intracellular parameters including cytosol viscosity and molecular crowding. When diffusion time (t d) is long enough, the size and geometry of the compartment in which the metabolites diffuse strongly influence metabolites ADC. In a previous study, performed in the macaque brain, we measured neuronal and astrocytic metabolites ADC at long t d (from 86 to 1,011 ms) in a large voxel enclosing an equal proportion of white and grey matter. We showed that metabolites apparently diffuse freely along the axis of dendrites, axons and astrocytic processes. To assess potential differences between these two tissue types, here we measured for the first time in the Human brain the t d-dependency of metabolites trace/3 ADC at 7 teslas using a localized diffusion-weighted STEAM sequence, in parietal and occipital voxels, respectively, containing mainly white and grey matter. We show that, in both tissues and over the observed timescale (t d varying from 92 to 712 ms) metabolite ADC reaches a non-zero plateau, suggesting that metabolites are not confined inside subcellular regions such as cell bodies, or inside subcellular compartments such as organelles, but are rather free to diffuse in the whole fiber-like structure of neurons and astrocytes. Beyond the fundamental insights into intracellular compartmentation of metabolites, this work also provides a new framework for interpreting results of neuroimaging techniques based on molecular diffusion, such as diffusion-weighted magnetic resonance spectroscopy and imaging.

  20. Clinical Response to tDCS Depends on Residual Brain Metabolism and Grey Matter Integrity in Patients With Minimally Conscious State.

    PubMed

    Thibaut, Aurore; Di Perri, Carol; Chatelle, Camille; Bruno, Marie-Aurélie; Bahri, Mohamed Ali; Wannez, Sarah; Piarulli, Andrea; Bernard, Claire; Martial, Charlotte; Heine, Lizette; Hustinx, Roland; Laureys, Steven

    2015-01-01

    Transcranial direct current stimulation (tDCS) was recently shown to promote recovery of voluntary signs of consciousness in some patients in minimally conscious state (MCS). However, it remains unclear why clinical improvement is only observed in a subgroup of patients. In this retrospective study, we investigated the relationship between tDCS responsiveness and neuroimaging data from MCS patients. Structural Magnetic Resonance Imaging (MRI), Fluorodeoxyglucose Positron emission tomography (FDG-PET) and clinical electroencephalography (EEG) were acquired in 21 sub-acute and chronic MCS patients (8 tDCS responders) who subsequently (<48 h) received left dorsolateral prefrontal (DLPF) tDCS in a double-blind randomized cross-over trial. The behavioral data have been published elsewhere (Thibaut et al., Neurology, 2014). Grey matter atrophy was observed in non-responders as compared with responders in the left DLPF cortex, the medial-prefrontal cortex, the cingulate cortex, the hippocampi, part of the rolandic regions, and the left thalamus. FDG-PET showed hypometabolism in non-responders as compared with responders in the left DLPF cortex, the medial-prefrontal cortex, the precuneus, and the thalamus. EEG did not show any difference between the two groups. Our findings suggest that the transient increase of signs of consciousness following left DLPF tDCS in patients in MCS require grey matter preservation and residual metabolic activity in cortical and subcortical brain areas known to be involved in attention and working memory. These results further underline the critical role of long-range cortico-thalamic connections in consciousness recovery, providing important information for guidelines on the use of tDCS in disorders of consciousness. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Brain intracellular metabolites are freely diffusing along cell fibers in grey and white matter, as measured by diffusion-weighted MR spectroscopy in the human brain at 7 T

    PubMed Central

    Najac, Chloé; Branzoli, Francesca; Ronen, Itamar; Valette, Julien

    2016-01-01

    Due to the specific compartmentation of brain metabolites, diffusion-weighted magnetic resonance spectroscopy opens unique insight into neuronal and astrocytic microstructures. The apparent diffusion coefficient (ADC) of brain metabolites depends on various intracellular parameters including cytosol viscosity and molecular crowding. When diffusion time (td) is long enough, the size and geometry of the compartment in which the metabolites diffuse strongly influence metabolites ADC. In a previous study, performed in the macaque brain, we measured neuronal and astrocytic metabolites ADC at long td (from 86 ms to 1011 ms) in a large voxel enclosing an equal proportion of white and grey matter. We showed that metabolites apparently diffuse freely along the axis of dendrites, axons and astrocytic processes. To assess potential differences between these two tissue types, here we measured for the first time in the Human brain the td-dependency of metabolites trace/3 ADC at 7 teslas using a localized diffusion-weighted STEAM sequence, in parietal and occipital voxels respectively containing mainly white and grey matter. We show that, in both tissues and over the observed timescale (td varying from 92 to 712 ms) metabolite ADC reaches a non-zero plateau, suggesting that metabolites are not confined inside subcellular regions such as cell bodies, or inside subcellular compartments such as organelles, but are rather free to diffuse in the whole fiber-like structure of neurons and astrocytes. Beyond the fundamental insights into intracellular compartmentation of metabolites, this work also provides a new framework for interpreting results of neuroimaging techniques based on molecular diffusion, such as diffusion-weighted magnetic resonance spectroscopy and imaging. PMID:25520054

  2. Fire severity effects on ash extractable Total Phosphorous

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Úbeda, Xavier; Martin, Deborah

    2010-05-01

    Phosphorous (P) is a crucial element to plant nutrition and limits vegetal production. The amounts of P in soil are lower and great part of this nutrient is absorbed or precipitated. It is well known that fire has important implications on P cycle, that can be lost throughout volatilization, evacuated with the smoke, but also more available to transport after organic matter mineralization imposed by the fire. The release of P depends on ash pH and their chemical and physical characteristics. Fire temperatures impose different severities, according to the specie affected and contact time. Fire severity is often evaluated by ash colour and this is a low-cost and excellent methodology to assess the fire effects on ecosystems. The aim of this work is study the ash properties physical and chemical properties on ash extractable Total Phosphorous (TP), collected in three wildfires, occured in Portugal, (named, (1) Quinta do Conde, (2) Quinta da Areia and (3) Casal do Sapo) composed mainly by Quercus suber and Pinus pinaster trees. The ash colour was assessed using the Munsell color chart. From all three plots we analyzed a total of 102 ash samples and we identified 5 different ash colours, ordered in an increasing order of severity, Very Dark Brown, Black, Dark Grey, Very Dark Grey and Light Grey. In order to observe significant differences between extractable TP and ash colours, we applied an ANOVA One Way test, and considered the differences significant at a p<0.05. The results showed that significant differences in the extractable TP among the different ash colours. Hence, to identify specific differences between each ash colour, we applied a post-hoc Fisher LSD test, significant at a p<0.05. The results obtained showed significant differences between the extractable TP from Very dark Brown and Black ash, produced at lower severities, in relation to Dark Grey, Very Dark Grey and Light Grey ash, generated at higher severities. The means of the first group were higher than the observed in the second one. This indicates that ash produced lower temperatures release in solution higher amounts of TP. These divergences occur due temperature of combustion, affected specie, ash pH values and CaCO3 content, which affects the quantity of this element in solution. Discussions about these effects will be accurate in the communication.

  3. White matter damage in primary progressive aphasias: a diffusion tensor tractography study

    PubMed Central

    Galantucci, Sebastiano; Tartaglia, Maria Carmela; Wilson, Stephen M.; Henry, Maya L.; Filippi, Massimo; Agosta, Federica; Dronkers, Nina F.; Henry, Roland G.; Ogar, Jennifer M.; Miller, Bruce L.

    2011-01-01

    Primary progressive aphasia is a clinical syndrome that encompasses three major phenotypes: non-fluent/agrammatic, semantic and logopenic. These clinical entities have been associated with characteristic patterns of focal grey matter atrophy in left posterior frontoinsular, anterior temporal and left temporoparietal regions, respectively. Recently, network-level dysfunction has been hypothesized but research to date has focused largely on studying grey matter damage. The aim of this study was to assess the integrity of white matter tracts in the different primary progressive aphasia subtypes. We used diffusion tensor imaging in 48 individuals: nine non-fluent, nine semantic, nine logopenic and 21 age-matched controls. Probabilistic tractography was used to identify bilateral inferior longitudinal (anterior, middle, posterior) and uncinate fasciculi (referred to as the ventral pathway); and the superior longitudinal fasciculus segmented into its frontosupramarginal, frontoangular, frontotemporal and temporoparietal components, (referred to as the dorsal pathway). We compared the tracts’ mean fractional anisotropy, axial, radial and mean diffusivities for each tract in the different diagnostic categories. The most prominent white matter changes were found in the dorsal pathways in non-fluent patients, in the two ventral pathways and the temporal components of the dorsal pathways in semantic variant, and in the temporoparietal component of the dorsal bundles in logopenic patients. Each of the primary progressive aphasia variants showed different patterns of diffusion tensor metrics alterations: non-fluent patients showed the greatest changes in fractional anisotropy and radial and mean diffusivities; semantic variant patients had severe changes in all metrics; and logopenic patients had the least white matter damage, mainly involving diffusivity, with fractional anisotropy altered only in the temporoparietal component of the dorsal pathway. This study demonstrates that both careful dissection of the main language tracts and consideration of all diffusion tensor metrics are necessary to characterize the white matter changes that occur in the variants of primary progressive aphasia. These results highlight the potential value of diffusion tensor imaging as a new tool in the multimodal diagnostic evaluation of primary progressive aphasia. PMID:21666264

  4. A novel perspective to calibrate temporal delays in cerebrovascular reactivity using hypercapnic and hyperoxic respiratory challenges.

    PubMed

    Champagne, Allen A; Bhogal, Alex A; Coverdale, Nicole S; Mark, Clarisse I; Cook, Douglas J

    2017-12-05

    Redistribution of blood flow across different brain regions, arising from the vasoactive nature of hypercapnia, can introduce errors when examining cerebrovascular reactivity (CVR) response delays. In this study, we propose a novel analysis method to characterize hemodynamic delays in the blood oxygen level dependent (BOLD) response to hypercapnia, and hyperoxia, as a way to provide insight into transient differences in vascular reactivity between cortical regions, and across tissue depths. A pseudo-continuous arterial spin labeling sequence was used to acquire BOLD and cerebral blood flow simultaneously in 19 healthy adults (12 F; 20 ± 2 years) during boxcar CO 2 and O 2 gas inhalation paradigms. Despite showing distinct differences in hypercapnia-induced response delay times (P < 0.05; Bonferroni corrected), grey matter regions showed homogenous hemodynamic latencies (P > 0.05) once calibrated for bolus arrival time derived using non-vasoactive hyperoxic gas challenges. Longer hypercapnic temporal delays were observed as the depth of the white matter tissue increased, although no significant differences in response lag were found during hyperoxia across tissue depth, or between grey and white matter. Furthermore, calibration of hypercapnic delays using hyperoxia revealed that deeper white matter layers may be more prone to dynamic redistribution of blood flow, which introduces response lag times ranging between 1 and 3 s in healthy subjects. These findings suggest that the combination of hypercapnic and hyperoxic gas-inhalation MRI can be used to distinguish between differences in CVR that arise as a result of delayed stimulus arrival time (due to the local architecture of the cerebrovasculature), or preferential blood flow distribution. Calibrated response delays to hypercapnia provide important insights into cerebrovascular physiology, and may be used to correct response delays associated with vascular impairment. Copyright © 2017. Published by Elsevier Inc.

  5. The effects of lithium and anticonvulsants on brain structure in bipolar disorder.

    PubMed

    Germaná, C; Kempton, M J; Sarnicola, A; Christodoulou, T; Haldane, M; Hadjulis, M; Girardi, P; Tatarelli, R; Frangou, S

    2010-12-01

    To investigate the effect of lithium, anticonvulsants and antipsychotics on brain structure in bipolar disorder (BD). A cross-sectional structural brain magnetic resonance imaging study of 74 remitted patients with BD, aged 18-65, who were receiving long-term prophylactic treatment with lithium or anticonvulsants or antipsychotics. Global and regional grey matter, white matter, and cerebrospinal fluid volumes were compared between treatment groups. Grey matter in the subgenual anterior cingulate gyrus on the right (extending into the hypothalamus) and in the postcentral gyrus, the hippocampus/amygdale complex and the insula on the left was greater in BD patients on lithium treatment compared to all other treatment groups. Lithium treatment in BD has a significant effect on brain structure particularly in limbic/paralimbic regions associated with emotional processing. © 2010 John Wiley & Sons A/S.

  6. Regional growth and atlasing of the developing human brain

    PubMed Central

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V.; Edwards, A. David; Counsell, Serena J.; Rueckert, Daniel

    2016-01-01

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45 weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. PMID:26499811

  7. Regional growth and atlasing of the developing human brain.

    PubMed

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel

    2016-01-15

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Tai Chi Chuan and Baduanjin Increase Grey Matter Volume in Older Adults: A Brain Imaging Study.

    PubMed

    Tao, Jing; Liu, Jiao; Liu, Weilin; Huang, Jia; Xue, Xiehua; Chen, Xiangli; Wu, Jinsong; Zheng, Guohua; Chen, Bai; Li, Ming; Sun, Sharon; Jorgenson, Kristen; Lang, Courtney; Hu, Kun; Chen, Shanjia; Chen, Lidian; Kong, Jian

    2017-01-01

    The aim of this study is to investigate and compare how 12-weeks of Tai Chi Chuan and Baduanjin exercise can modulate brain structure and memory function in older adults. Magnetic resonance imaging and memory function measurements (Wechsler Memory Scale-Chinese revised, WMS-CR) were applied at both the beginning and end of the study. Results showed that both Tai Chi Chuan and Baduanjin could significantly increase grey matter volume (GMV) in the insula, medial temporal lobe, and putamen after 12-weeks of exercise. No significant differences were observed in GMV between the Tai Chi Chuan and Baduanjin groups. We also found that compared to healthy controls, Tai Chi Chuan and Baduanjin significantly improved visual reproduction subscores on the WMS-CR. Baduanjin also improved mental control, recognition, touch, and comprehension memory subscores of the WMS-CR compared to the control group. Memory quotient and visual reproduction subscores were both associated with GMV increases in the putamen and hippocampus. Our results demonstrate the potential of Tai Chi Chuan and Baduanjin exercise for the prevention of memory deficits in older adults.

  9. Investigation of shape, position, and permeability of shielding material in quadruple butterfly coil for focused transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Rastogi, Priyam; Zhang, Bowen; Tang, Yalun; Lee, Erik G.; Hadimani, Ravi L.; Jiles, David C.

    2018-05-01

    Transcranial magnetic stimulation has been gaining popularity in the therapy for several neurological disorders. A time-varying magnetic field is used to generate electric field in the brain. As the development of TMS methods takes place, emphasis on the coil design increases in order to improve focal stimulation. Ideally reduction of stimulation of neighboring regions of the target area is desired. This study, focused on the improvement of the focality of the Quadruple Butterfly Coil (QBC) with supplemental use of different passive shields. Parameters such as shape, position and permeability of the shields have been explored to improve the focus of stimulation. Results have been obtained with the help of computer modelling of a MRI derived heterogeneous head model over the vertex position and the dorsolateral prefrontal cortex position using a finite element tool. Variables such as maximum electric field induced on the grey matter and scalp, volume and area of stimulation above half of the maximum value of electric field on the grey matter, and ratio of the maximum electric field in the brain versus the scalp have been investigated.

  10. Aetiological differences in neuroanatomy of the vegetative state: insights from diffusion tensor imaging and functional implications.

    PubMed

    Newcombe, Virginia F J; Williams, Guy B; Scoffings, Daniel; Cross, Justin; Carpenter, T Adrian; Pickard, John D; Menon, David K

    2010-05-01

    An improved in vivo understanding of variations in neuropathology in the vegetative state (VS) may aid diagnosis, improve prognostication and help refine the selection of patients for particular treatment regimes. The authors have used diffusion tensor imaging (DTI) to characterise the extent and location of white matter loss in VS secondary to traumatic brain injury (TBI) and ischaemic-hypoxic injury. Twelve patients with VS (seven TBI, five ischaemic/hypoxic injuries) underwent MRI including DTI at a minimum of 3 months postinjury. Mean apparent diffusion coefficient, fractional anisotropy and eigenvalues were obtained for whole-brain grey and white matter, the pons, thalamus, ventral midbrain, dorsal midbrain and the corpus callosum. DTI measures of supratentorial damage were compared with a summed measure from the JFK modified Coma Recovery Scale (CRS-R) and with a three-point scale of functional magnetic resonance imaging (fMRI) response to an auditory paradigm to assess whether residual integrity of supratentorial white matter connectivity correlated with cortical processing. Conventional radiological approaches did not detect lesions in regions where quantitative DTI demonstrated abnormalities. There was evidence of marked, broadly similar, abnormalities in the supratentorial grey- and white-matter compartments from both aetiologies. In contrast, discordant findings were found in the infratentorial compartment, with DTI abnormalities in the brainstem confined to the TBI group. Supratentorial DTI abnormalities correlated with the CRS-R as well as responses to an fMRI paradigm that detected convert cognitive processing. DTI may help to characterise differences in patients in VS. These findings may have implications for response to therapies, and should be taken into account in trials of interventions aimed at arousal in VS.

  11. [The child's brain: normal (unaltered) development and development altered by perinatal injury].

    PubMed

    Marín-Padilla, Miguel

    2013-09-06

    In this study we analyse some of the morphological and functional aspects of normal and altered development (the latter due to perinatal injury) in the child's brain. Both normal and altered development are developmental processes that progressively interconnect the different regions. The neuropathological development of subpial and periventricular haemorrhages, as well as that of white matter infarct, are analysed in detail. Any kind of brain damage causes a local lesion with possible remote repercussions. All the components (neurons, fibres, blood capillaries and neuroglias) of the affected region undergo alterations. Those that are destroyed are eliminated by the inflammatory process and those that survive are transformed. The pyramidal neurons with amputated apical dendrites are transformed and become stellate cells, the axonal terminals and those of the radial glial cells are regenerated and the region involved is reinnervated and revascularised with an altered morphology and function (altered local corticogenesis). The specific microvascular system of the grey matter protects its neurons from infarction of the white matter. Although it survives, the grey matter is left disconnected from the afferent and efferent fibres, amputated by the infarct with alterations affecting its morphology and possibly its functioning (altered local corticogenesis). Any local lesion can modify the morphological and functional development of remote regions that are functionally interconnected with it (altered remote corticogenesis). We suggest that any local brain injury can alter the morphology and functioning of the regions that are morphologically and functionally interconnected with it and thus end up affecting the child's neurological and psychological development. These changes can cross different regions of the brain (epileptic auras) and, if they eventually reach the motor region, will give rise to the motor storm that characterises epilepsy.

  12. Developmental changes in the structure of the social brain in late childhood and adolescence.

    PubMed

    Mills, Kathryn L; Lalonde, François; Clasen, Liv S; Giedd, Jay N; Blakemore, Sarah-Jayne

    2014-01-01

    Social cognition provides humans with the necessary skills to understand and interact with one another. One aspect of social cognition, mentalizing, is associated with a network of brain regions often referred to as the 'social brain.' These consist of medial prefrontal cortex [medial Brodmann Area 10 (mBA10)], temporoparietal junction (TPJ), posterior superior temporal sulcus (pSTS) and anterior temporal cortex (ATC). How these specific regions develop structurally across late childhood and adolescence is not well established. This study examined the structural developmental trajectories of social brain regions in the longest ongoing longitudinal neuroimaging study of human brain maturation. Structural trajectories of grey matter volume, cortical thickness and surface area were analyzed using surface-based cortical reconstruction software and mixed modeling in a longitudinal sample of 288 participants (ages 7-30 years, 857 total scans). Grey matter volume and cortical thickness in mBA10, TPJ and pSTS decreased from childhood into the early twenties. The ATC increased in grey matter volume until adolescence and in cortical thickness until early adulthood. Surface area for each region followed a cubic trajectory, peaking in early or pre-adolescence before decreasing into the early twenties. These results are discussed in the context of developmental changes in social cognition across adolescence.

  13. Regional grey matter volume abnormalities in bulimia nervosa and binge-eating disorder.

    PubMed

    Schäfer, Axel; Vaitl, Dieter; Schienle, Anne

    2010-04-01

    This study investigated whether bulimia nervosa (BN) and binge-eating disorder (BED) are associated with structural brain abnormalities. Both disorders share the main symptom binge-eating, but are considered differential diagnoses. We attempted to identify alterations in grey matter volume (GMV) that are present in both psychopathologies as well as disorder-specific GMV characteristics. Such information can help to improve neurobiological models of eating disorders and their classification. A total of 50 participants (patients suffering from BN (purge type), BED, and normal-weight controls) underwent structural MRI scanning. GMV for specific brain regions involved in food/reinforcement processing was analyzed by means of voxel-based morphometry. Both patient groups were characterized by greater volumes of the medial orbitofrontal cortex (OFC) compared to healthy controls. In BN patients, who had increased ventral striatum volumes, body mass index and purging severity were correlated with striatal grey matter volume. Altogether, our data implicate a crucial role of the medial OFC in the studied eating disorders. The structural abnormality might be associated with dysfunctions in food reward processing and/or self-regulation. The bulimia-specific volume enlargement of the ventral striatum is discussed in the framework of negative reinforcement through purging and associated weight regulation. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Significant grey matter changes in a region of the orbitofrontal cortex in healthy participants predicts emotional dysregulation

    PubMed Central

    Ekman, Carl Johan; Klahr, Johanna; Tigerström, Lars; Rydén, Göran; Johansson, Anette G. M.; Sellgren, Carl; Golkar, Armita; Olsson, Andreas; Öhman, Arne; Ingvar, Martin; Landén, Mikael

    2016-01-01

    The traditional concept of ‘categorical’ psychiatric disorders has been challenged as many of the symptoms display a continuous distribution in the general population. We suggest that this is the case for emotional dysregulation, a key component in several categorical psychiatric disorder constructs. We used voxel-based magnetic resonance imaging morphometry in healthy human subjects (n = 87) to study how self-reported subclinical symptoms associated with emotional dysregulation relate to brain regions assumed to be critical for emotion regulation. To measure a pure emotional dysregulation, we also corrected for subclinical symptoms of non-emotional attentional dysregulation. We show that such subclinical emotional symptoms correlate negatively with the grey matter volume of lateral orbitofrontal cortex bilaterally—a region assumed to be critical for emotion regulation and dysfunctional in psychiatric disorders involving emotional dysregulation. Importantly, this effect is mediated both by a decrease in volume associated with emotional dysregulation and an increase in volume due to non-emotional attentional dysregulation. Exploratory analysis suggests that other regions involved in emotional processing such as insula and ventral striatum also show a similar reduction in grey matter volume mirroring clinical disorders associated with emotional dysregulation. Our findings support the concept of continuous properties in psychiatric symptomatology. PMID:26078386

  15. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy

    PubMed Central

    Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy. PMID:27579318

  16. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy.

    PubMed

    Kułak, Piotr; Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy.

  17. Regional grey matter volume and concentration in at-risk adolescents: Untangling associations with callous-unemotional traits and conduct disorder symptoms.

    PubMed

    Cohn, Moran D; Viding, Essi; McCrory, Eamon; Pape, Louise; van den Brink, Wim; Doreleijers, Theo A H; Veltman, Dick J; Popma, Arne

    2016-08-30

    Structural Magnetic Resonance Imaging studies have reported volume reductions in several brain regions implicated in social cognition and emotion recognition in juvenile antisocial populations. However, it is unclear whether these structural abnormalities are specifically related to antisocial features, or to co-occurring callous-unemotional (CU) traits. The present study employed voxel-based morphometry to assess both grey matter volume (GMV) and grey matter concentration (GMC) in a large representative at-risk sample of adolescents (n=134; mean age 17.7yr), characterized by a broad range of CU trait and conduct disorder (CD) symptom scores. There was a significant interaction between CD symptom and CU trait scores in the prediction of GMV in the anterior insula, with a significant positive association between CU traits and GMV in youth low on CD symptoms only. In addition, we found a significant unique positive association between CD symptoms and GMC in the amygdala, and unique negative associations between CU traits and GMC in the amygdala and insula. These findings are in line with accumulating evidence of distinct associations of CD symptoms and CU traits with amygdala and insula GMC in juvenile antisocial populations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Grey matter atrophy is associated with disability increase in natalizumab-treated patients.

    PubMed

    Ciampi, Ethel; Pareto, Deborah; Sastre-Garriga, Jaume; Vidal-Jordana, Angela; Tur, Carmen; Río, Jordi; Tintoré, Mar; Auger, Cristina; Rovira, Alex; Montalban, Xavier

    2017-04-01

    Brain volume loss (BVL) is a key outcome in multiple sclerosis (MS) trials. Natalizumab is highly effective on inflammation with moderate impact on atrophy. To explore BVL in patients receiving natalizumab with an emphasis on grey matter (GM). We performed a retrospective post hoc analysis of BVL in 38 patients receiving natalizumab for 3 years using longitudinal voxel-based morphometry (VBM) and FreeSurfer. Significant BVL was observed during first year: brain parenchymal fraction (BPF): -1.12% ( p < 0.001); white matter fraction (WMF): -0.9% ( p = 0.001); grey matter fraction (GMF): -1.28% ( p = 0.002). GM loss was found using VBM in bilateral cerebellum, cingulum, left > right fronto-parietal cortex, right > left hippocampus and left caudate. FreeSurfer showed significant volume losses in subcortical GM, brainstem and cerebellum, and cortical thinning in the left insula. In the second year, only WMF decrease (-0.6%; p = 0.015) was observed with no VBM changes, although FreeSurfer detected significant volume loss in thalamus, hippocampus and cerebellum. Baseline gadolinium enhancement influenced WMF and BPF changes during the first year, but not GMF. Patients with confirmed Expanded Disability Status Scale (EDSS) worsening at 3 years had lower baseline GMF and left thalamus volume and greater BVL over follow-up. BVL develops mainly during the first year of natalizumab therapy. GM changes are independent of baseline inflammation and correlate with disability.

  19. Advances in research on the neurological and neuropsychiatric phenotype of Klinefelter syndrome.

    PubMed

    Savic, Ivanka

    2012-04-01

    Klinefelter syndrome, 47,XXY is the most common chromosomal aberration among men. It represents a naturally occurring human model for studies of both X-chromosome gene expression and potential androgen effects on brain development and function. The aim of this review is to combine available brain imaging and behavioral data to provide an overview of what we have learned about the neural underpinnings of cognitive, emotional and behavioral dysunctions in Klinefelter syndrome. The behavioral phenotype of 47,XXY is characterized by language, executive and psychomotor dysfunction, as well as socioemotional impairment. The prevalence of schizophrenia, attention deficit hyperactivity disorder, autism spectrum disorders and affective regulation problems is increased. Neuroimaging studies of children and adults with Klinefelter syndrome syndrome show characteristic structural changes from typical individuals. There are increases in the grey matter volume of the sensorimotor and parietooccipital regions, as well as significant reductions in amygdala, hippocampal, insular, temporal and inferior-frontal grey matter volumes. Widespread white matter abnormalities have been revealed, with reductions in some areas (including anterior cingulate, bilaterally) but increases in others (such as left parietal lobe). Mechanisms underlying these developmental anomalies could include imbalance in gene dosage relative to typical men or women, as well as the potential consequence of endocrinological deficits. Studies of Klinefelter syndrome could generate important information about the impact of anomalies in sex chromosome gene regulation on the development of cerebral grey and white matter and, ultimately, on human behavior.

  20. A more randomly organized grey matter network is associated with deteriorating language and global cognition in individuals with subjective cognitive decline.

    PubMed

    Verfaillie, Sander C J; Slot, Rosalinde E R; Dicks, Ellen; Prins, Niels D; Overbeek, Jozefien M; Teunissen, Charlotte E; Scheltens, Philip; Barkhof, Frederik; van der Flier, Wiesje M; Tijms, Betty M

    2018-03-30

    Grey matter network disruptions in Alzheimer's disease (AD) are associated with worse cognitive impairment cross-sectionally. Our aim was to investigate whether indications of a more random network organization are associated with longitudinal decline in specific cognitive functions in individuals with subjective cognitive decline (SCD). We included 231 individuals with SCD who had annually repeated neuropsychological assessment (3 ± 1 years; n = 646 neuropsychological investigations) available from the Amsterdam Dementia Cohort (54% male, age: 63 ± 9, MMSE: 28 ± 2). Single-subject grey matter networks were extracted from baseline 3D-T1 MRI scans and we computed basic network (size, degree, connectivity density) and higher-order (path length, clustering, betweenness centrality, normalized path length [lambda] and normalized clustering [gamma]) parameters at whole brain and/or regional levels. We tested associations of network parameters with baseline and annual cognition (memory, attention, executive functioning, language composite scores, and global cognition [all domains with MMSE]) using linear mixed models, adjusted for age, sex, education, scanner and total gray matter volume. Lower network size was associated with steeper decline in language (β ± SE = 0.12 ± 0.05, p < 0.05FDR). Higher-order network parameters showed no cross-sectional associations. Lower gamma and lambda values were associated with steeper decline in global cognition (gamma: β ± SE = 0.06 ± 0.02); lambda: β ± SE = 0.06 ± 0.02), language (gamma: β ± SE = 0.11 ± 0.04; lambda: β ± SE = 0.12 ± 0.05; all p < 0.05FDR). Lower path length values in precuneus and fronto-temporo-occipital cortices were associated with a steeper decline in global cognition. A more randomly organized grey matter network was associated with a steeper decline of cognitive functioning, possibly indicating the start of cognitive impairment. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  1. Grey water treatment at a sports centre for reuse in irrigation: a case study.

    PubMed

    Gabarró, J; Batchelli, L; Balaguer, M D; Puig, S; Colprim, J

    2013-01-01

    Grey water has long been considered a promising option for dealing with water scarcity and reuse. However, factors such as lack of macronutrients and low carbon content make its treatment challenging. The aim of this paper was to investigate the applicability of sequencing batch reactor (SBR) technology to on-site grey water treatment at a sports centre for reuse in irrigation. The results demonstrated that the regenerated water complied with microbiological parameters concerning restriction of solids and organic matter removal. Denitrification was not fully accomplished, but ammonium was totally oxidised and low concentrations of nitrates were achieved. Effluent with good appearance and no odour was used in an experimental study to irrigate a grid system containing natural and artificial grass sections. The conclusion is that SBR technology offers a promising treatment for grey water.

  2. Accurate GM atrophy quantification in MS using lesion-filling with co-registered 2D lesion masks☆

    PubMed Central

    Popescu, V.; Ran, N.C.G.; Barkhof, F.; Chard, D.T.; Wheeler-Kingshott, C.A.; Vrenken, H.

    2014-01-01

    Background In multiple sclerosis (MS), brain atrophy quantification is affected by white matter lesions. LEAP and FSL-lesion_filling, replace lesion voxels with white matter intensities; however, they require precise lesion identification on 3DT1-images. Aim To determine whether 2DT2 lesion masks co-registered to 3DT1 images, yield grey and white matter volumes comparable to precise lesion masks. Methods 2DT2 lesion masks were linearly co-registered to 20 3DT1-images of MS patients, with nearest-neighbor (NNI), and tri-linear interpolation. As gold-standard, lesion masks were manually outlined on 3DT1-images. LEAP and FSL-lesion_filling were applied with each lesion mask. Grey (GM) and white matter (WM) volumes were quantified with FSL-FAST, and deep gray matter (DGM) volumes using FSL-FIRST. Volumes were compared between lesion mask types using paired Wilcoxon tests. Results Lesion-filling with gold-standard lesion masks compared to native images reduced GM overestimation by 1.93 mL (p < .001) for LEAP, and 1.21 mL (p = .002) for FSL-lesion_filling. Similar effects were achieved with NNI lesion masks from 2DT2. Global WM underestimation was not significantly influenced. GM and WM volumes from NNI, did not differ significantly from gold-standard. GM segmentation differed between lesion masks in the lesion area, and also elsewhere. Using the gold-standard, FSL-FAST quantified as GM on average 0.4% of the lesion area with LEAP and 24.5% with FSL-lesion_filling. Lesion-filling did not influence DGM volumes from FSL-FIRST. Discussion These results demonstrate that for global GM volumetry, precise lesion masks on 3DT1 images can be replaced by co-registered 2DT2 lesion masks. This makes lesion-filling a feasible method for GM atrophy measurements in MS. PMID:24567908

  3. A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter.

    PubMed

    Beal, Deryk S; Gracco, Vincent L; Brettschneider, Jane; Kroll, Robert M; De Nil, Luc F

    2013-09-01

    It is well documented that neuroanatomical differences exist between adults who stutter and their fluently speaking peers. Specifically, adults who stutter have been found to have more grey matter volume (GMV) in speech relevant regions including inferior frontal gyrus, insula and superior temporal gyrus (Beal et al., 2007; Song et al., 2007). Despite stuttering having its onset in childhood only one study has investigated the neuroanatomical differences between children who do and do not stutter. Chang et al. (2008) reported children who stutter had less GMV in the bilateral inferior frontal gyri and middle temporal gyrus relative to fluently speaking children. Thus it appears that children who stutter present with unique neuroanatomical abnormalities as compared to those of adults who stutter. In order to better understand the neuroanatomical correlates of stuttering earlier in its development, near the time of onset, we used voxel-based morphometry to examine volumetric differences between 11 children who stutter and 11 fluent children. Children who stutter had less GMV in the bilateral inferior frontal gyri and left putamen but more GMV in right Rolandic operculum and superior temporal gyrus relative to fluent children. Children who stutter also had less white matter volume bilaterally in the forceps minor of the corpus callosum. We discuss our findings of widespread anatomic abnormalities throughout the cortical network for speech motor control within the context of the speech motor skill limitations identified in people who stutter (Namasivayam and van Lieshout, 2008; Smits-Bandstra et al., 2006). Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Brain networks of temporal preparation: A multiple regression analysis of neuropsychological data.

    PubMed

    Triviño, Mónica; Correa, Ángel; Lupiáñez, Juan; Funes, María Jesús; Catena, Andrés; He, Xun; Humphreys, Glyn W

    2016-11-15

    There are only a few studies on the brain networks involved in the ability to prepare in time, and most of them followed a correlational rather than a neuropsychological approach. The present neuropsychological study performed multiple regression analysis to address the relationship between both grey and white matter (measured by magnetic resonance imaging in patients with brain lesion) and different effects in temporal preparation (Temporal orienting, Foreperiod and Sequential effects). Two versions of a temporal preparation task were administered to a group of 23 patients with acquired brain injury. In one task, the cue presented (a red versus green square) to inform participants about the time of appearance (early versus late) of a target stimulus was blocked, while in the other task the cue was manipulated on a trial-by-trial basis. The duration of the cue-target time intervals (400 versus 1400ms) was always manipulated within blocks in both tasks. Regression analysis were conducted between either the grey matter lesion size or the white matter tracts disconnection and the three temporal preparation effects separately. The main finding was that each temporal preparation effect was predicted by a different network of structures, depending on cue expectancy. Specifically, the Temporal orienting effect was related to both prefrontal and temporal brain areas. The Foreperiod effect was related to right and left prefrontal structures. Sequential effects were predicted by both parietal cortex and left subcortical structures. These findings show a clear dissociation of brain circuits involved in the different ways to prepare in time, showing for the first time the involvement of temporal areas in the Temporal orienting effect, as well as the parietal cortex in the Sequential effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Functional and Structural Correlates of Motor Speed in the Cerebellar Anterior Lobe

    PubMed Central

    Wenzel, Uwe; Taubert, Marco; Ragert, Patrick; Krug, Jürgen; Villringer, Arno

    2014-01-01

    In athletics, motor performance is determined by different abilities such as technique, endurance, strength and speed. Based on animal studies, motor speed is thought to be encoded in the basal ganglia, sensorimotor cortex and the cerebellum. The question arises whether there is a unique structural feature in the human brain, which allows “power athletes” to perform a simple foot movement significantly faster than “endurance athletes”. We acquired structural and functional brain imaging data from 32 track-and-field athletes. The study comprised of 16 “power athletes” requiring high speed foot movements (sprinters, jumpers, throwers) and 16 endurance athletes (distance runners) which in contrast do not require as high speed foot movements. Functional magnetic resonance imaging (fMRI) was used to identify speed specific regions of interest in the brain during fast and slow foot movements. Anatomical MRI scans were performed to assess structural grey matter volume differences between athletes groups (voxel based morphometry). We tested maximum movement velocity of plantarflexion (PF-Vmax) and acquired electromyographical activity of the lateral and medial gastrocnemius muscle. Behaviourally, a significant difference between the two groups of athletes was noted in PF-Vmax and fMRI indicates that fast plantarflexions are accompanied by increased activity in the cerebellar anterior lobe. The same region indicates increased grey matter volume for the power athletes compared to the endurance counterparts. Our results suggest that speed-specific neuro-functional and -structural differences exist between power and endurance athletes in the peripheral and central nervous system. PMID:24800742

  6. Radiation Diffusion:. AN Overview of Physical and Numerical Concepts

    NASA Astrophysics Data System (ADS)

    Graziani, Frank

    2005-12-01

    An overview of the physical and mathematical foundations of radiation transport is given. Emphasis is placed on how the diffusion approximation and its transport corrections arise. An overview of the numerical handling of radiation diffusion coupled to matter is also given. Discussions center on partial temperature and grey methods with comments concerning fully implicit methods. In addition finite difference, finite element and Pert representations of the div-grad operator is also discussed

  7. Size Matters: Increased Grey Matter in Boys with Conduct Problems and Callous-Unemotional Traits

    ERIC Educational Resources Information Center

    De Brito, Stephane A.; Mechelli, Andrea; Wilke, Marko; Laurens, Kristin R.; Jones, Alice P.; Barker, Gareth J.; Hodgins, Sheilagh; Viding, Essi

    2009-01-01

    Brain imaging studies of adults with psychopathy have identified structural and functional abnormalities in limbic and prefrontal regions that are involved in emotion recognition, decision-making, morality and empathy. Among children with conduct problems, a small subgroup presents callous-unemotional traits thought to be antecedents of…

  8. Direct and Indirect Effects of Brain Volume, Socioeconomic Status and Family Stress on Child IQ

    PubMed Central

    Marcus Jenkins, Jade V; Woolley, Donald P; Hooper, Stephen R; De Bellis, Michael D

    2013-01-01

    1.1. Background A large literature documents the detrimental effects of socioeconomic disparities on intelligence and neuropsychological development. Researchers typically measure environmental factors such as socioeconomic status (SES), using income, parent's occupation and education. However, SES is more complex, and this complexity may influence neuropsychological outcomes. 1.2. Methods This studyused principal components analysis to reduce 14 SES and 28 family stress indicators into their core dimensions (e.g. community and educational capital, financial resources, marital conflict). Core dimensions were used in path analyses to examine their relationships with parent IQ and cerebral volume (white matter, grey matter and total brain volume), to predict child IQ in a sample of typically developing children. 1.3. Results Parent IQ affected child IQ directly and indirectly through community and educational capital, demonstrating how environmental factors interact with familial factors in neuro-development. There were no intervening effects of cerebral white matter, grey matter, or total brain volume. 1.4. Conclusions Findings may suggest that improving community resources can foster the intellectual development of children. PMID:24533427

  9. Neural correlates of visuospatial bias in patients with left hemisphere stroke: a causal functional contribution analysis based on game theory.

    PubMed

    Malherbe, C; Umarova, R M; Zavaglia, M; Kaller, C P; Beume, L; Thomalla, G; Weiller, C; Hilgetag, C C

    2017-10-12

    Stroke patients frequently display spatial neglect, an inability to report, or respond to, relevant stimuli in the contralesional space. Although this syndrome is widely considered to result from the dysfunction of a large-scale attention network, the individual contributions of damaged grey and white matter regions to neglect are still being disputed. Moreover, while the neuroanatomy of neglect in right hemispheric lesions is well studied, the contributions of left hemispheric brain regions to visuospatial processing are less well understood. To address this question, 128 left hemisphere acute stroke patients were investigated with respect to left- and rightward spatial biases measured as severity of deviation in the line bisection test and as Center of Cancellation (CoC) in the Bells Test. Causal functional contributions and interactions of nine predefined grey and white matter regions of interest in visuospatial processing were assessed using Multi-perturbation Shapley value Analysis (MSA). MSA, an inference approach based on game theory, constitutes a robust and exact multivariate mathematical method for inferring functional contributions from multi-lesion patterns. According to the analysis of performance in the Bells test, leftward attentional bias (contralesional deficit) was associated with contributions of the left superior temporal gyrus and rightward attentional bias with contributions of the left inferior parietal lobe, whereas the arcuate fascicle was contributed to both contra- and ipsilesional bias. Leftward and rightward deviations in the line bisection test were related to contributions of the superior longitudinal fascicle and the inferior parietal lobe, correspondingly. Thus, Bells test and line bisection tests, as well as ipsi- and contralesional attentional biases in these tests, have distinct neural correlates. Our findings demonstrate the contribution of different grey and white matter structures to contra- and ipsilesional spatial biases as revealed by left hemisphere stroke. The results provide new insights into the role of the left hemisphere in visuospatial processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Automated, quantitative measures of grey and white matter lesion burden correlates with motor and cognitive function in children with unilateral cerebral palsy.

    PubMed

    Pagnozzi, Alex M; Dowson, Nicholas; Doecke, James; Fiori, Simona; Bradley, Andrew P; Boyd, Roslyn N; Rose, Stephen

    2016-01-01

    White and grey matter lesions are the most prevalent type of injury observable in the Magnetic Resonance Images (MRIs) of children with cerebral palsy (CP). Previous studies investigating the impact of lesions in children with CP have been qualitative, limited by the lack of automated segmentation approaches in this setting. As a result, the quantitative relationship between lesion burden has yet to be established. In this study, we perform automatic lesion segmentation on a large cohort of data (107 children with unilateral CP and 18 healthy children) with a new, validated method for segmenting both white matter (WM) and grey matter (GM) lesions. The method has better accuracy (94%) than the best current methods (73%), and only requires standard structural MRI sequences. Anatomical lesion burdens most predictive of clinical scores of motor, cognitive, visual and communicative function were identified using the Least Absolute Shrinkage and Selection operator (LASSO). The improved segmentations enabled identification of significant correlations between regional lesion burden and clinical performance, which conform to known structure-function relationships. Model performance was validated in an independent test set, with significant correlations observed for both WM and GM regional lesion burden with motor function (p < 0.008), and between WM and GM lesions alone with cognitive and visual function respectively (p < 0.008). The significant correlation of GM lesions with functional outcome highlights the serious implications GM lesions, in addition to WM lesions, have for prognosis, and the utility of structural MRI alone for quantifying lesion burden and planning therapy interventions.

  11. Functional and structural brain correlates of theory of mind and empathy deficits in schizophrenia.

    PubMed

    Benedetti, Francesco; Bernasconi, Alessandro; Bosia, Marta; Cavallaro, Roberto; Dallaspezia, Sara; Falini, Andrea; Poletti, Sara; Radaelli, Daniele; Riccaboni, Roberta; Scotti, Giuseppe; Smeraldi, Enrico

    2009-10-01

    Patients affected by schizophrenia show deficits in social cognition, with abnormal performance on tasks targeting theory of mind (ToM) and empathy (Emp). Brain imaging studies suggested that ToM and Emp depend on the activation of brain networks mainly localized at the superior temporal lobe and temporo-parietal junction. Participants included 24 schizophrenia patients and 20 control subjects. We used brain blood oxygen level dependent fMRI to study the neural responses to tasks targeting ToM and Emp. We then studied voxel-based morphometry of grey matter in areas where diagnosis influenced functional activation to both tasks. Outcomes were analyzed in the context of the general linear model, with global grey matter volume as nuisance covariate for structural MRI. Patients showed worse performance on both tasks. We found significant effects of diagnosis on neural responses to the tasks in a wide cluster in right posterior superior temporal lobe (encompassing BA 22-42), in smaller clusters in left temporo-parietal junction and temporal pole (BA 38 and 39), and in a white matter region adjacent to medial prefrontal cortex (BA 10). A pattern of double dissociation of the effects of diagnosis and task on neural responses emerged. Among these areas, grey matter volume was found to be reduced in right superior temporal lobe regions of patients. Functional and structural abnormalities were observed in areas affected by the schizophrenic process early in the illness course, and known to be crucial for social cognition, suggesting a biological basis for social cognition deficits in schizophrenia.

  12. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease

    PubMed Central

    Weber, Bernd; Schoene-Bake, Jan-Christoph; Roeske, Sandra; Mirbach, Sandra; Anspach, Christian; Schneider-Gold, Christiane; Betz, Regina C.; Helmstaedter, Christoph; Tittgemeyer, Marc; Klockgether, Thomas; Kornblum, Cornelia

    2011-01-01

    Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T1/T2/diffusion-weighted). Voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics were applied for voxel-wise analysis of cerebral grey and white matter affection (Pcorrected < 0.05). We further examined the association of structural brain changes with clinical and neuropsychological data. White matter lesions rated visually were more prevalent and severe in myotonic dystrophy type 1 compared with controls, with frontal white matter most prominently affected in both disorders, and temporal lesions restricted to myotonic dystrophy type 1. Voxel-based morphometry analyses demonstrated extensive white matter involvement in all cerebral lobes, brainstem and corpus callosum in myotonic dystrophy types 1 and 2, while grey matter decrease (cortical areas, thalamus, putamen) was restricted to myotonic dystrophy type 1. Accordingly, we found more prominent white matter affection in myotonic dystrophy type 1 than myotonic dystrophy type 2 by diffusion tensor imaging. Association fibres throughout the whole brain, limbic system fibre tracts, the callosal body and projection fibres (e.g. internal/external capsules) were affected in myotonic dystrophy types 1 and 2. Central motor pathways were exclusively impaired in myotonic dystrophy type 1. We found mild executive and attentional deficits in our patients when neuropsychological tests were corrected for manual motor dysfunctioning. Regression analyses revealed associations of white matter affection with several clinical parameters in both disease entities, but not with neuropsychological performance. We showed that depressed mood and fatigue were more prominent in patients with myotonic dystrophy type 1 with less white matter affection (early disease stages), contrary to patients with myotonic dystrophy type 2. Thus, depression in myotonic dystrophies might be a reactive adjustment disorder rather than a direct consequence of structural brain damage. Associations of white matter affection with age/disease duration as well as patterns of cerebral water diffusion parameters pointed towards an ongoing process of myelin destruction and/or axonal loss in our cross-sectional study design. Our data suggest that both myotonic dystrophy types 1 and 2 are serious white matter diseases with prominent callosal body and limbic system affection. White matter changes dominated the extent of grey matter changes, which might argue against Wallerian degeneration as the major cause of white matter affection in myotonic dystrophies. PMID:22131273

  13. Structural covariance and cortical reorganisation in schizophrenia: a MRI-based morphometric study.

    PubMed

    Palaniyappan, Lena; Hodgson, Olha; Balain, Vijender; Iwabuchi, Sarina; Gowland, Penny; Liddle, Peter

    2018-05-06

    In patients with schizophrenia, distributed abnormalities are observed in grey matter volume. A recent hypothesis posits that these distributed changes are indicative of a plastic reorganisation process occurring in response to a functional defect in neuronal information transmission. We investigated the structural covariance across various brain regions in early-stage schizophrenia to determine if indeed the observed patterns of volumetric loss conform to a coordinated pattern of structural reorganisation. Structural magnetic resonance imaging scans were obtained from 40 healthy adults and 41 age, gender and parental socioeconomic status matched patients with schizophrenia. Volumes of grey matter tissue were estimated at the regional level across 90 atlas-based parcellations. Group-level structural covariance was studied using a graph theoretical framework. Patients had distributed reduction in grey matter volume, with high degree of localised covariance (clustering) compared with controls. Patients with schizophrenia had reduced centrality of anterior cingulate and insula but increased centrality of the fusiform cortex, compared with controls. Simulating targeted removal of highly central nodes resulted in significant loss of the overall covariance patterns in patients compared with controls. Regional volumetric deficits in schizophrenia are not a result of random, mutually independent processes. Our observations support the occurrence of a spatially interconnected reorganisation with the systematic de-escalation of conventional 'hub' regions. This raises the question of whether the morphological architecture in schizophrenia is primed for compensatory functions, albeit with a high risk of inefficiency.

  14. Grey matter volume in the cerebellum is related to the processing of grammatical rules in a second language: a structural voxel-based morphometry study.

    PubMed

    Pliatsikas, Christos; Johnstone, Tom; Marinis, Theodoros

    2014-02-01

    The experience of learning and using a second language (L2) has been shown to affect the grey matter (GM) structure of the brain. Importantly, GM density in several cortical and subcortical areas has been shown to be related to performance in L2 tasks. Here, we show that bilingualism can lead to increased GM volume in the cerebellum, a structure that has been related to the processing of grammatical rules. Additionally, the cerebellar GM volume of highly proficient L2 speakers is correlated to their performance in a task tapping on grammatical processing in an L2, demonstrating the importance of the cerebellum for the establishment and use of grammatical rules in an L2.

  15. Structural and Functional Bases for Individual Differences in Motor Learning

    PubMed Central

    Tomassini, Valentina; Jbabdi, Saad; Kincses, Zsigmond T.; Bosnell, Rose; Douaud, Gwenaelle; Pozzilli, Carlo; Matthews, Paul M.; Johansen-Berg, Heidi

    2013-01-01

    People vary in their ability to learn new motor skills. We hypothesize that between-subject variability in brain structure and function can explain differences in learning. We use brain functional and structural MRI methods to characterize such neural correlates of individual variations in motor learning. Healthy subjects applied isometric grip force of varying magnitudes with their right hands cued visually to generate smoothly-varying pressures following a regular pattern. We tested whether individual variations in motor learning were associated with anatomically colocalized variations in magnitude of functional MRI (fMRI) signal or in MRI differences related to white and grey matter microstructure. We found that individual motor learning was correlated with greater functional activation in the prefrontal, premotor, and parietal cortices, as well as in the basal ganglia and cerebellum. Structural MRI correlates were found in the premotor cortex [for fractional anisotropy (FA)] and in the cerebellum [for both grey matter density and FA]. The cerebellar microstructural differences were anatomically colocalized with fMRI correlates of learning. This study thus suggests that variations across the population in the function and structure of specific brain regions for motor control explain some of the individual differences in skill learning. This strengthens the notion that brain structure determines some limits to cognitive function even in a healthy population. Along with evidence from pathology suggesting a role for these regions in spontaneous motor recovery, our results also highlight potential targets for therapeutic interventions designed to maximize plasticity for recovery of similar visuomotor skills after brain injury. PMID:20533562

  16. Progression in disability and regional grey matter atrophy in relapsing-remitting multiple sclerosis.

    PubMed

    Hofstetter, Louis; Naegelin, Yvonne; Filli, Lukas; Kuster, Pascal; Traud, Stefan; Smieskova, Renata; Mueller-Lenke, Nicole; Kappos, Ludwig; Gass, Achim; Sprenger, Till; Penner, Iris-Katharina; Nichols, Thomas E; Vrenken, Hugo; Barkhof, Frederik; Polman, Chris; Radue, Ernst-Wilhelm; Borgwardt, Stefan J; Bendfeldt, Kerstin

    2014-02-01

    In multiple sclerosis (MS) regional grey matter (GM) atrophy has been associated with disability progression. The aim of this study was to compare regional GM volume changes in relapsing-remitting MS (RRMS) patients with progressive and stable disability, using voxel-based morphometry (VBM). We acquired baseline and 1-year follow-up 3-dimensional (3D) T1-weighted magnetic resonance imaging (MRI) data of RRMS patients, using two 1.5-Tesla scanners. Patients were matched pair-wise with respect to age, gender, disease duration, medication, scanner and baseline Expanded Disability Status Scale (EDSS) into 13 pairs, with either progressive EDSS (≥ 1 point change y(-1)) or stable EDSS, as well as into 29 pairs with either progressive Multiple Sclerosis Functional Composite (MSFC) at ≥ 0.25% decrease in y(-1) in any component, or stable MSFC. We analysed longitudinal regional differences in GM volumes in the progressive and stable EDSS and MSFC groups, respectively, using VBM. Significant GM volume reductions occurred in the right precuneus, in the progressive EDSS group. Differential between-group effects occurred in the right precuneus and in the postcentral gyrus. Further longitudinal GM volume reductions occurred in the right orbicular gyrus, in the progressive MSFC group, but no between-group differences were observed (non-stationary cluster-wise inference, all P(corrected) < 0.05). These results suggested a direct association of disability progression and regional GM atrophy in RRMS.

  17. Very Preterm Adolescents Show Gender-Dependent Alteration of the Structural Brain Correlates of Spelling Abilities

    ERIC Educational Resources Information Center

    Scott, Fiona E.; Mechelli, Andrea; Allin, Matthew P.; Walshe, Muriel; Rifkin, Larry; Murray, Robin M.; Nosarti, Chiara

    2011-01-01

    Individuals born very preterm (VPT) are at risk of neurodevelopmental damage and of adverse educational outcomes in childhood and adolescence. The present study used voxel-based morphometry to investigate the association between grey matter and white matter volume and measures of language and executive functioning in VPT born adolescents and…

  18. Profiles of White Matter Tract Pathology in Frontotemporal Dementia

    PubMed Central

    Mahoney, Colin J; Ridgway, Gerard R; Malone, Ian B; Downey, Laura E; Beck, Jonathan; Kinnunen, Kirsi M; Schmitz, Nicole; Golden, Hannah L; Rohrer, Jonathan D; Schott, Jonathan M; Rossor, Martin N; Ourselin, Sebastien; Mead, Simon; Fox, Nick C; Warren, Jason D

    2014-01-01

    Despite considerable interest in improving clinical and neurobiological characterisation of frontotemporal dementia and in defining the role of brain network disintegration in its pathogenesis, information about white matter pathway alterations in frontotemporal dementia remains limited. Here we investigated white matter tract damage using an unbiased, template-based diffusion tensor imaging (DTI) protocol in a cohort of 27 patients with the behavioral variant of frontotemporal dementia (bvFTD) representing both major genetic and sporadic forms, in relation both to healthy individuals and to patients with Alzheimer's disease. Widespread white matter tract pathology was identified in the bvFTD group compared with both healthy controls and Alzheimer's disease group, with prominent involvement of uncinate fasciculus, cingulum bundle and corpus callosum. Relatively discrete and distinctive white matter profiles were associated with genetic subgroups of bvFTD associated with MAPT and C9ORF72 mutations. Comparing diffusivity metrics, optimal overall separation of the bvFTD group from the healthy control group was signalled using radial diffusivity, whereas optimal overall separation of the bvFTD group from the Alzheimer's disease group was signalled using fractional anisotropy. Comparing white matter changes with regional grey matter atrophy (delineated using voxel based morphometry) in the bvFTD cohort revealed co-localisation between modalities particularly in the anterior temporal lobe, however white matter changes extended widely beyond the zones of grey matter atrophy. Our findings demonstrate a distributed signature of white matter alterations that is likely to be core to the pathophysiology of bvFTD and further suggest that this signature is modulated by underlying molecular pathologies. PMID:24510641

  19. Grey matter volume and cortical structure in Prader-Willi syndrome compared to typically developing young adults.

    PubMed

    Manning, Katherine E; Tait, Roger; Suckling, John; Holland, Anthony J

    2018-01-01

    Prader-Willi syndrome (PWS) is a neurodevelopmental disorder of genomic imprinting, presenting with a characteristic overeating disorder, mild to moderate intellectual disability, and a variable range of social and behavioral difficulties. Consequently, widespread alterations in neural structure and developmental and maturational trajectory would be expected. To date, there have been few quantitative and systematic studies of brain morphology in PWS, although alterations of volume and of cortical organisation have been reported. This study aimed to investigate, in detail, the structure of grey matter and cortex in the brain in a sample of young adults with PWS in a well-matched case-controlled analysis. 20 young adults with PWS, aged 19-27 years, underwent multiparameter mapping magnetic resonance imaging sequences, from which measures of grey matter volume, cortical thickness and magnetisation transfer saturation, as a proxy measure of myelination, were examined. These variables were investigated in comparison to a control group of 40 typically developing young adults, matched for age and sex. A voxel-based morphometry analysis identified large and widespread bilateral clusters of both increased and decreased grey matter volume in the brain in PWS. In particular, widespread areas of increased volume encompassed parts of the prefrontal cortex, especially medially, the majority of the cingulate cortices, from anterior to posterior aspects, insula cortices, and areas of the parietal and temporal cortices. Increased volume was also reported in the caudate, putamen and thalamus. The most ventromedial prefrontal areas, in contrast, showed reduced volume, as did the parts of the medial temporal lobe, bilateral temporal poles, and a small cluster in the right lateral prefrontal cortex. Analysis of cortical structure revealed that areas of increased volume in the PWS group were largely driven by greater cortical thickness. Conversely, analysis of myelin content using magnetisation transfer saturation indicated that myelination of the cortex was broadly similar in the PWS and control groups, with the exception of highly localised areas, including the insula. The bilateral nature of these abnormalities suggests a systemic biological cause, with possible developmental and maturational mechanisms discussed, and may offer insight into the contribution of imprinted genes to neural development.

  20. Combining anatomical, diffusion, and resting state functional magnetic resonance imaging for individual classification of mild and moderate Alzheimer's disease.

    PubMed

    Schouten, Tijn M; Koini, Marisa; de Vos, Frank; Seiler, Stephan; van der Grond, Jeroen; Lechner, Anita; Hafkemeijer, Anne; Möller, Christiane; Schmidt, Reinhold; de Rooij, Mark; Rombouts, Serge A R B

    2016-01-01

    Magnetic resonance imaging (MRI) is sensitive to structural and functional changes in the brain caused by Alzheimer's disease (AD), and can therefore be used to help in diagnosing the disease. Improving classification of AD patients based on MRI scans might help to identify AD earlier in the disease's progress, which may be key in developing treatments for AD. In this study we used an elastic net classifier based on several measures derived from the MRI scans of mild to moderate AD patients (N = 77) from the prospective registry on dementia study and controls (N = 173) from the Austrian Stroke Prevention Family Study. We based our classification on measures from anatomical MRI, diffusion weighted MRI and resting state functional MRI. Our unimodal classification performance ranged from an area under the curve (AUC) of 0.760 (full correlations between functional networks) to 0.909 (grey matter density). When combining measures from multiple modalities in a stepwise manner, the classification performance improved to an AUC of 0.952. This optimal combination consisted of grey matter density, white matter density, fractional anisotropy, mean diffusivity, and sparse partial correlations between functional networks. Classification performance for mild AD as well as moderate AD also improved when using this multimodal combination. We conclude that different MRI modalities provide complementary information for classifying AD. Moreover, combining multiple modalities can substantially improve classification performance over unimodal classification.

  1. Prominent microglial activation in cortical white matter is selectively associated with cortical atrophy in primary progressive aphasia.

    PubMed

    Ohm, D T; Kim, G; Gefen, T; Rademaker, A; Weintraub, S; Bigio, E H; Mesulam, M-M; Rogalski, E; Geula, C

    2018-04-21

    Primary progressive aphasia (PPA) is a clinical syndrome characterized by selective language impairments associated with focal cortical atrophy favouring the language dominant hemisphere. PPA is associated with Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD) and significant accumulation of activated microglia. Activated microglia can initiate an inflammatory cascade that may contribute to neurodegeneration, but their quantitative distribution in cortical white matter and their relationship with cortical atrophy remain unknown. We investigated white matter activated microglia and their association with grey matter atrophy in 10 PPA cases with either AD or FTLD-TDP pathology. Activated microglia were quantified with optical density measures of HLA-DR immunoreactivity in two regions with peak cortical atrophy, and one nonatrophied region within the language dominant hemisphere of each PPA case. Nonatrophied contralateral homologues of the language dominant regions were examined for hemispheric asymmetry. Qualitatively, greater densities of activated microglia were observed in cortical white matter when compared to grey matter. Quantitative analyses revealed significantly greater densities of activated microglia in the white matter of atrophied regions compared to nonatrophied regions in the language dominant hemisphere (P < 0.05). Atrophied regions of the language dominant hemisphere also showed significantly more activated microglia compared to contralateral homologues (P < 0.05). White matter activated microglia accumulate more in atrophied regions in the language dominant hemisphere of PPA. While microglial activation may constitute a response to neurodegenerative processes in white matter, the resultant inflammatory processes may also exacerbate disease progression and contribute to cortical atrophy. © 2018 British Neuropathological Society.

  2. Deep grey matter growth predicts neurodevelopmental outcomes in very preterm children.

    PubMed

    Young, Julia M; Powell, Tamara L; Morgan, Benjamin R; Card, Dallas; Lee, Wayne; Smith, Mary Lou; Sled, John G; Taylor, Margot J

    2015-05-01

    We evaluated whether the volume and growth rate of critical brain structures measured by MRI in the first weeks of life following very preterm (<32/40 weeks) birth could predict subsequent neurodevelopmental outcomes at 4 years of age. A significant proportion of children born very prematurely have cognitive deficits, but these problems are often only detected at early school age. Structural T2-weighted magnetic resonance images were acquired in 96 very preterm neonates scanned within 2 weeks of birth and 70 of these at term-equivalent age. An automated 3D image analysis procedure was used to measure the volume of selected brain structures across all scans and time points. At 4 years of age, 53 children returned for neuropsychological assessments evaluating IQ, language and visual motor integration. Associations with maternal education and perinatal measures were also explored. Multiple regression analyses revealed that growth of the caudate and globus pallidus between preterm birth and term-equivalent age predicted visual motor integration scores after controlling for sex and gestational age. Further associations were found between caudate and putamen growth with IQ and language scores. Analyses at either preterm or term-equivalent age only found associations between normalized deep grey matter growth and visual motor integration scores at term-equivalent age. Maternal education levels were associated with measures of IQ and language, but not visual motor integration. Thalamic growth was additionally linked with perinatal measures and presence of white matter lesions. These results highlight deep grey matter growth rates as promising biomarkers of long-term outcomes following very preterm birth, and contribute to our understanding of the brain-behaviour relations in these children. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. 78 FR 24701 - Endangered and Threatened Wildlife; 90-Day Finding on Petitions To List the Great Hammerhead...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... ``may be'' warranted. As a general matter, these decisions hold that a petition need not establish a... dorsal side colored dark brown to light grey or olive that shades to white on the ventral side (Compagno... this region lack the resources to provide effective or, for that matter, any enforcement, with some...

  4. Visuoperceptive region atrophy independent of cognitive status in patients with Parkinson's disease with hallucinations.

    PubMed

    Goldman, Jennifer G; Stebbins, Glenn T; Dinh, Vy; Bernard, Bryan; Merkitch, Doug; deToledo-Morrell, Leyla; Goetz, Christopher G

    2014-03-01

    Visual hallucinations are frequent, disabling complications of advanced Parkinson's disease, but their neuroanatomical basis is incompletely understood. Previous structural brain magnetic resonance imaging studies suggest volume loss in the mesial temporal lobe and limbic regions in subjects with Parkinson's disease with visual hallucinations, relative to those without visual hallucinations. However, these studies have not always controlled for the presence of cognitive impairment or dementia, which are common co-morbidities of hallucinations in Parkinson's disease and whose neuroanatomical substrates may involve mesial temporal lobe and limbic regions. Therefore, we used structural magnetic resonance imaging to examine grey matter atrophy patterns associated with visual hallucinations, comparing Parkinson's disease hallucinators to Parkinson's disease non-hallucinators of comparable cognitive function. We studied 50 subjects with Parkinson's disease: 25 classified as current and chronic visual hallucinators and 25 as non-hallucinators, who were matched for cognitive status (demented or non-demented) and age (± 3 years). Subjects underwent (i) clinical evaluations; and (ii) brain MRI scans analysed using whole-brain voxel-based morphometry techniques. Clinically, the Parkinson's disease hallucinators did not differ in their cognitive classification or performance in any of the five assessed cognitive domains, compared with the non-hallucinators. The Parkinson's disease groups also did not differ significantly in age, motor severity, medication use or duration of disease. On imaging analyses, the hallucinators, all of whom experienced visual hallucinations, exhibited grey matter atrophy with significant voxel-wise differences in the cuneus, lingual and fusiform gyri, middle occipital lobe, inferior parietal lobule, and also cingulate, paracentral, and precentral gyri, compared with the non-hallucinators. Grey matter atrophy in the hallucinators occurred predominantly in brain regions responsible for processing visuoperceptual information including the ventral 'what' and dorsal 'where' pathways, which are important in object and facial recognition and identification of spatial locations of objects, respectively. Furthermore, the structural brain changes seen on magnetic resonance imaging occurred independently of cognitive function and age. Our findings suggest that when hallucinators and non-hallucinators are similar in their cognitive performance, the neural networks involving visuoperceptual pathways, rather than the mesial temporal lobe regions, distinctively contribute to the pathophysiology of visual hallucinations and may explain their predominantly visual nature in Parkinson's disease. Identification of distinct structural MRI differences associated with hallucinations in Parkinson's disease may permit earlier detection of at-risk patients and ultimately, development of therapies specifically targeting hallucinations and visuoperceptive functions.

  5. Visuoperceptive region atrophy independent of cognitive status in patients with Parkinson’s disease with hallucinations

    PubMed Central

    Stebbins, Glenn T.; Dinh, Vy; Bernard, Bryan; Merkitch, Doug; deToledo-Morrell, Leyla; Goetz, Christopher G.

    2014-01-01

    Visual hallucinations are frequent, disabling complications of advanced Parkinson’s disease, but their neuroanatomical basis is incompletely understood. Previous structural brain magnetic resonance imaging studies suggest volume loss in the mesial temporal lobe and limbic regions in subjects with Parkinson’s disease with visual hallucinations, relative to those without visual hallucinations. However, these studies have not always controlled for the presence of cognitive impairment or dementia, which are common co-morbidities of hallucinations in Parkinson’s disease and whose neuroanatomical substrates may involve mesial temporal lobe and limbic regions. Therefore, we used structural magnetic resonance imaging to examine grey matter atrophy patterns associated with visual hallucinations, comparing Parkinson’s disease hallucinators to Parkinson’s disease non-hallucinators of comparable cognitive function. We studied 50 subjects with Parkinson’s disease: 25 classified as current and chronic visual hallucinators and 25 as non-hallucinators, who were matched for cognitive status (demented or non-demented) and age (±3 years). Subjects underwent (i) clinical evaluations; and (ii) brain MRI scans analysed using whole-brain voxel-based morphometry techniques. Clinically, the Parkinson’s disease hallucinators did not differ in their cognitive classification or performance in any of the five assessed cognitive domains, compared with the non-hallucinators. The Parkinson’s disease groups also did not differ significantly in age, motor severity, medication use or duration of disease. On imaging analyses, the hallucinators, all of whom experienced visual hallucinations, exhibited grey matter atrophy with significant voxel-wise differences in the cuneus, lingual and fusiform gyri, middle occipital lobe, inferior parietal lobule, and also cingulate, paracentral, and precentral gyri, compared with the non-hallucinators. Grey matter atrophy in the hallucinators occurred predominantly in brain regions responsible for processing visuoperceptual information including the ventral ‘what’ and dorsal ‘where’ pathways, which are important in object and facial recognition and identification of spatial locations of objects, respectively. Furthermore, the structural brain changes seen on magnetic resonance imaging occurred independently of cognitive function and age. Our findings suggest that when hallucinators and non-hallucinators are similar in their cognitive performance, the neural networks involving visuoperceptual pathways, rather than the mesial temporal lobe regions, distinctively contribute to the pathophysiology of visual hallucinations and may explain their predominantly visual nature in Parkinson’s disease. Identification of distinct structural MRI differences associated with hallucinations in Parkinson’s disease may permit earlier detection of at-risk patients and ultimately, development of therapies specifically targeting hallucinations and visuoperceptive functions. PMID:24480486

  6. Regional grey matter structure differences between transsexuals and healthy controls--a voxel based morphometry study.

    PubMed

    Simon, Lajos; Kozák, Lajos R; Simon, Viktória; Czobor, Pál; Unoka, Zsolt; Szabó, Ádám; Csukly, Gábor

    2013-01-01

    Gender identity disorder (GID) refers to transsexual individuals who feel that their assigned biological gender is incongruent with their gender identity and this cannot be explained by any physical intersex condition. There is growing scientific interest in the last decades in studying the neuroanatomy and brain functions of transsexual individuals to better understand both the neuroanatomical features of transsexualism and the background of gender identity. So far, results are inconclusive but in general, transsexualism has been associated with a distinct neuroanatomical pattern. Studies mainly focused on male to female (MTF) transsexuals and there is scarcity of data acquired on female to male (FTM) transsexuals. Thus, our aim was to analyze structural MRI data with voxel based morphometry (VBM) obtained from both FTM and MTF transsexuals (n = 17) and compare them to the data of 18 age matched healthy control subjects (both males and females). We found differences in the regional grey matter (GM) structure of transsexual compared with control subjects, independent from their biological gender, in the cerebellum, the left angular gyrus and in the left inferior parietal lobule. Additionally, our findings showed that in several brain areas, regarding their GM volume, transsexual subjects did not differ significantly from controls sharing their gender identity but were different from those sharing their biological gender (areas in the left and right precentral gyri, the left postcentral gyrus, the left posterior cingulate, precuneus and calcarinus, the right cuneus, the right fusiform, lingual, middle and inferior occipital, and inferior temporal gyri). These results support the notion that structural brain differences exist between transsexual and healthy control subjects and that majority of these structural differences are dependent on the biological gender.

  7. Regional Grey Matter Structure Differences between Transsexuals and Healthy Controls—A Voxel Based Morphometry Study

    PubMed Central

    Simon, Lajos; Kozák, Lajos R.; Simon, Viktória; Czobor, Pál; Unoka, Zsolt; Szabó, Ádám; Csukly, Gábor

    2013-01-01

    Gender identity disorder (GID) refers to transsexual individuals who feel that their assigned biological gender is incongruent with their gender identity and this cannot be explained by any physical intersex condition. There is growing scientific interest in the last decades in studying the neuroanatomy and brain functions of transsexual individuals to better understand both the neuroanatomical features of transsexualism and the background of gender identity. So far, results are inconclusive but in general, transsexualism has been associated with a distinct neuroanatomical pattern. Studies mainly focused on male to female (MTF) transsexuals and there is scarcity of data acquired on female to male (FTM) transsexuals. Thus, our aim was to analyze structural MRI data with voxel based morphometry (VBM) obtained from both FTM and MTF transsexuals (n = 17) and compare them to the data of 18 age matched healthy control subjects (both males and females). We found differences in the regional grey matter (GM) structure of transsexual compared with control subjects, independent from their biological gender, in the cerebellum, the left angular gyrus and in the left inferior parietal lobule. Additionally, our findings showed that in several brain areas, regarding their GM volume, transsexual subjects did not differ significantly from controls sharing their gender identity but were different from those sharing their biological gender (areas in the left and right precentral gyri, the left postcentral gyrus, the left posterior cingulate, precuneus and calcarinus, the right cuneus, the right fusiform, lingual, middle and inferior occipital, and inferior temporal gyri). These results support the notion that structural brain differences exist between transsexual and healthy control subjects and that majority of these structural differences are dependent on the biological gender. PMID:24391851

  8. Causes, effects and connectivity changes in MS-related cognitive decline.

    PubMed

    Rimkus, Carolina de Medeiros; Steenwijk, Martijn D; Barkhof, Frederik

    2016-01-01

    Cognitive decline is a frequent but undervalued aspect of multiple sclerosis (MS). Currently, it remains unclear what the strongest determinants of cognitive dysfunction are, with grey matter damage most directly related to cognitive impairment. Multi-parametric studies seem to indicate that individual factors of MS-pathology are highly interdependent causes of grey matter atrophy and permanent brain damage. They are associated with intermediate functional effects (e.g. in functional MRI) representing a balance between disconnection and (mal) adaptive connectivity changes. Therefore, a more comprehensive MRI approach is warranted, aiming to link structural changes with functional brain organization. To better understand the disconnection syndromes and cognitive decline in MS, this paper reviews the associations between MRI metrics and cognitive performance, by discussing the interactions between multiple facets of MS pathology as determinants of brain damage and how they affect network efficiency.

  9. Episodic Memory in Detoxified Alcoholics: Contribution of Grey Matter Microstructure Alteration

    PubMed Central

    Chanraud, Sandra; Leroy, Claire; Martelli, Catherine; Kostogianni, Nikoleta; Delain, Françoise; Aubin, Henri-Jean; Reynaud, Michel; Martinot, Jean-Luc

    2009-01-01

    Even though uncomplicated alcoholics may likely have episodic memory deficits, discrepancies exist regarding to the integrity of brain regions that underlie this function in healthy subjects. Possible relationships between episodic memory and 1) brain microstructure assessed by magnetic resonance diffusion tensor imaging (DTI), 2) brain volumes assessed by voxel-based morphometry (VBM) were investigated in uncomplicated, detoxified alcoholics. Diffusion and morphometric analyses were performed in 24 alcohol dependent men without neurological or somatic complications and in 24 healthy men. The mean apparent coefficient of diffusion (ADC) and grey matter volumes were measured in the whole brain. Episodic memory performance was assessed using a French version of the Free and Cued Selective Reminding Test (FCSRT). Correlation analyses between verbal episodic memory, brain microstructure, and brain volumes were carried out using SPM2 software. In those with alcohol dependence, higher ADC was detected mainly in frontal, temporal and parahippocampal regions, and in the cerebellum. In alcoholics, regions with higher ADC typically also had lower grey matter volume. Low verbal episodic memory performance in alcoholism was associated with higher mean ADC in parahippocampal areas, in frontal cortex and in the left temporal cortex; no correlation was found between regional volumes and episodic memory scores. Regression analyses for the control group were not significant. These findings support the hypothesis that regional microstructural but no macrostructural alteration of the brain might be responsible, at least in part, for episodic memory deficits in alcohol dependence. PMID:19707568

  10. Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson's disease.

    PubMed

    Schulz, Jonathan; Pagano, Gennaro; Fernández Bonfante, Juan Alberto; Wilson, Heather; Politis, Marios

    2018-05-01

    Currently, no reliable predictors of cognitive impairment in Parkinson's disease exist. We hypothesized that microstructural changes at grey matter T1-weighted MRI and diffusion tensor imaging in the cholinergic system nuclei and associated limbic pathways underlie cognitive impairment in Parkinson's disease. We performed a cross-sectional comparison between patients with Parkinson's disease with and without cognitive impairment. We also performed a longitudinal 36-month follow-up study of cognitively intact Parkinson's disease patients, comparing patients who remained cognitively intact to those who developed cognitive impairment. Patients with Parkinson's disease with cognitive impairment showed lower grey matter volume and increased mean diffusivity in the nucleus basalis of Meynert, compared to patients with Parkinson's disease without cognitive impairment. These results were confirmed both with region of interest and voxel-based analyses, and after partial volume correction. Lower grey matter volume and increased mean diffusivity in the nucleus basalis of Meynert was predictive for developing cognitive impairment in cognitively intact patients with Parkinson's disease, independent of other clinical and non-clinical markers of the disease. Structural and microstructural alterations in entorhinal cortex, amygdala, hippocampus, insula, and thalamus were not predictive for developing cognitive impairment in Parkinson's disease. Our findings provide evidence that degeneration of the nucleus basalis of Meynert precedes and predicts the onset of cognitive impairment, and might be used in a clinical setting as a reliable biomarker to stratify patients at higher risk of cognitive decline.

  11. Relationship of grey and white matter abnormalities with distance from the surface of the brain in multiple sclerosis.

    PubMed

    Pardini, Matteo; Sudre, Carole H; Prados, Ferran; Yaldizli, Özgür; Sethi, Varun; Muhlert, Nils; Samson, Rebecca S; van de Pavert, Steven H; Cardoso, M Jorge; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A M; Miller, David H; Chard, Declan T

    2016-11-01

    To assess the association between proximity to the inner (ventricular and aqueductal) and outer (pial) surfaces of the brain and the distribution of normal appearing white matter (NAWM) and grey matter (GM) abnormalities, and white matter (WM) lesions, in multiple sclerosis (MS). 67 people with relapse-onset MS and 30 healthy controls were included in the study. Volumetric T1 images and high-resolution (1 mm 3 ) magnetisation transfer ratio (MTR) images were acquired and segmented into 12 bands between the inner and outer surfaces of the brain. The first and last bands were discarded to limit partial volume effects with cerebrospinal fluid. MTR values were computed for all bands in supratentorial NAWM, cerebellar NAWM and brainstem NA tissue, and deep and cortical GM. Band WM lesion volumes were also measured. Proximity to the ventricular surfaces was associated with progressively lower MTR values in the MS group but not in controls in supratentorial and cerebellar NAWM, brainstem NA and in deep and cortical GM. The density of WM lesions was associated with proximity to the ventricles only in the supratentorial compartment, and no link was found with distance from the pial surfaces. In MS, MTR abnormalities in NAWM and GM are related to distance from the inner and outer surfaces of the brain, and this suggests that there is a common factor underlying their spatial distribution. A similar pattern was not found for WM lesions, raising the possibility that different factors promote their formation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Cerebrovascular reactivity measurement in cerebral small vessel disease: Rationale and reproducibility of a protocol for MRI acquisition and image processing.

    PubMed

    Thrippleton, Michael J; Shi, Yulu; Blair, Gordon; Hamilton, Iona; Waiter, Gordon; Schwarzbauer, Christian; Pernet, Cyril; Andrews, Peter Jd; Marshall, Ian; Doubal, Fergus; Wardlaw, Joanna M

    2018-02-01

    Background Impaired autoregulation may contribute to the pathogenesis of cerebral small vessel disease. Reliable protocols for measuring microvascular reactivity are required to test this hypothesis and for providing secondary endpoints in clinical trials. Aims To develop and assess a protocol for acquisition and processing of cerebrovascular reactivity by MRI, in subcortical tissue of patients with small vessel disease and minor stroke. Methods We recruited 15 healthy volunteers, testing paradigms using 1- and 3-min 6% CO 2 challenges with repeat scanning, and 15 patients with history of minor stroke. We developed a protocol to measure cerebrovascular reactivity and delay times, assessing tolerability and reproducibility in grey and white matter areas. Results The 3-min paradigm yielded more reproducible data than the 1-min paradigm (CV respectively: 7.9-15.4% and 11.7-70.2% for cerebrovascular reactivity in grey matter), and was less reproducible in white matter (16.1-24.4% and 27.5-141.0%). Tolerability was similar for the two paradigms, but mean cerebrovascular reactivity and cerebrovascular reactivity delay were significantly higher for the 3-min paradigm in most regions. Patient tolerability was high with no evidence of greater failure rate (1/15 patients vs. 2/15 volunteers withdrew at the first visit). Grey matter cerebrovascular reactivity was lower in patients than in volunteers (0.110-0.234 vs. 0.172-0.313%/mmHg; p < 0.05 in 6/8 regions), as was the white matter cerebrovascular reactivity delay (16.2-43.9 vs. 31.1-47.9 s; p < 0.05 in 4/8 regions). Conclusions An effective and well-tolerated protocol for measurement of cerebrovascular reactivity was developed for use in ongoing and future trials to investigate small vessel disease pathophysiology and to measure treatment effects.

  13. Bayesian automated cortical segmentation for neonatal MRI

    NASA Astrophysics Data System (ADS)

    Chou, Zane; Paquette, Natacha; Ganesh, Bhavana; Wang, Yalin; Ceschin, Rafael; Nelson, Marvin D.; Macyszyn, Luke; Gaonkar, Bilwaj; Panigrahy, Ashok; Lepore, Natasha

    2017-11-01

    Several attempts have been made in the past few years to develop and implement an automated segmentation of neonatal brain structural MRI. However, accurate automated MRI segmentation remains challenging in this population because of the low signal-to-noise ratio, large partial volume effects and inter-individual anatomical variability of the neonatal brain. In this paper, we propose a learning method for segmenting the whole brain cortical grey matter on neonatal T2-weighted images. We trained our algorithm using a neonatal dataset composed of 3 fullterm and 4 preterm infants scanned at term equivalent age. Our segmentation pipeline combines the FAST algorithm from the FSL library software and a Bayesian segmentation approach to create a threshold matrix that minimizes the error of mislabeling brain tissue types. Our method shows promising results with our pilot training set. In both preterm and full-term neonates, automated Bayesian segmentation generates a smoother and more consistent parcellation compared to FAST, while successfully removing the subcortical structure and cleaning the edges of the cortical grey matter. This method show promising refinement of the FAST segmentation by considerably reducing manual input and editing required from the user, and further improving reliability and processing time of neonatal MR images. Further improvement will include a larger dataset of training images acquired from different manufacturers.

  14. Brain function during probabilistic learning in relation to IQ and level of education.

    PubMed

    van den Bos, Wouter; Crone, Eveline A; Güroğlu, Berna

    2012-02-15

    Knowing how to adapt your behavior based on feedback lies at the core of successful learning. We investigated the relation between brain function, grey matter volume, educational level and IQ in a Dutch adolescent sample. In total 45 healthy volunteers between ages 13 and 16 were recruited from schools for pre-vocational and pre-university education. For each individual, IQ was estimated using two subtests from the WISC-III-R (similarities and block design). While in the magnetic resonance imaging (MRI) scanner, participants performed a probabilistic learning task. Behavioral comparisons showed that participants with higher IQ used a more adaptive learning strategy after receiving positive feedback. Analysis of neural activation revealed that higher IQ was associated with increased activation in DLPFC and dACC when receiving positive feedback, specifically for rules with low reward probability (i.e., unexpected positive feedback). Furthermore, VBM analyses revealed that IQ correlated positively with grey matter volume within these regions. These results provide support for IQ-related individual differences in the developmental time courses of neural circuitry supporting feedback-based learning. Current findings are interpreted in terms of a prolonged window of flexibility and opportunity for adolescents with higher IQ scores. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Modeling magnetization transfer effects of Q2TIPS bolus saturation in multi-TI pulsed arterial spin labeling.

    PubMed

    Petr, Jan; Schramm, Georg; Hofheinz, Frank; Langner, Jens; van den Hoff, Jörg

    2014-10-01

    To estimate the relaxation time changes during Q2TIPS bolus saturation caused by magnetization transfer effects and to propose and evaluate an extended model for perfusion quantification which takes this into account. Three multi inversion-time pulsed arterial spin labeling sequences with different bolus saturation duration were acquired for five healthy volunteers. Magnetization transfer exchange rates in tissue and blood were obtained from control image saturation recovery. Cerebral blood flow (CBF) obtained using the extended model and the standard model was compared. A decrease of obtained CBF of 6% (10%) was observed in grey matter when the duration of bolus saturation increased from 600 to 900 ms (1200 ms). This decrease was reduced to 1.6% (2.8%) when the extended quantification model was used. Compared with the extended model, the standard model underestimated CBF in grey matter by 9.7, 15.0, and 18.7% for saturation durations 600, 900, and 1200 ms, respectively. Results for simulated single inversion-time data showed 5-16% CBF underestimation depending on blood arrival time and bolus saturation duration. Magnetization transfer effects caused by bolus saturation pulses should not be ignored when performing quantification as they can cause appreciable underestimation of the CBF. Copyright © 2013 Wiley Periodicals, Inc.

  16. Healthy versus Entorhinal Cortical Atrophy Identification in Asymptomatic APOE4 Carriers at Risk for Alzheimer’s Disease

    PubMed Central

    Konishi, Kyoko; Joober, Ridha; Poirier, Judes; MacDonald, Kathleen; Chakravarty, Mallar; Patel, Raihaan; Breitner, John; Bohbot, Véronique D.

    2018-01-01

    Early detection of Alzheimer’s disease (AD) has been challenging as current biomarkers are invasive and costly. Strong predictors of future AD diagnosis include lower volume of the hippocampus and entorhinal cortex, as well as the ɛ4 allele of the Apolipoprotein E gene (APOE) gene. Therefore, studying functions that are critically mediated by the hippocampus and entorhinal cortex, such as spatial memory, in APOE ɛ4 allele carriers, may be key to the identification of individuals at risk of AD, prior to the manifestation of cognitive impairments. Using a virtual navigation task developed in-house, specifically designed to assess spatial versus non-spatial strategies, the current study is the first to differentiate functional and structural differences within APOE ɛ4 allele carriers. APOE ɛ4 allele carriers that predominantly use non-spatial strategies have decreased fMRI activity in the hippocampus and increased atrophy in the hippocampus, entorhinal cortex, and fimbria compared to APOE ɛ4 allele carriers who use spatial strategies. In contrast, APOE ɛ4 allele carriers who use spatial strategies have grey matter levels comparable to non-APOE ɛ4 allele carriers. Furthermore, in a leave-one-out analysis, grey matter in the entorhinal cortex could predict navigational strategy with 92% accuracy. PMID:29278888

  17. Alterations of grey matter asymmetries in adolescents with prelingual deafness: a combined VBM and cortical thickness analysis.

    PubMed

    Li, Wenjing; Li, Jianhong; Xian, Junfang; Lv, Bin; Li, Meng; Wang, Chunheng; Li, Yong; Liu, Zhaohui; Liu, Sha; Wang, Zhenchang; He, Huiguang; Sabel, Bernhard A

    2013-01-01

    Prelingual deafness has been shown to lead to brain reorganization as demonstrated by functional parameters, but anatomical evidences still remain controversial. The present study investigated hemispheric asymmetry changes in deaf subjects using MRI, hypothesizing auditory-, language- or visual-related regions after early deafness. Prelingually deaf adolescents (n = 16) and age- and gender-matched normal controls (n = 16) were recruited and hemispheric asymmetry was evaluated with voxel-based morphometry (VBM) from MRI combined with analysis of cortical thickness (CTh). Deaf adolescents showed more rightward asymmetries (L < R) of grey matter volume (GMV) in the cerebellum and more leftward CTh asymmetries (L > R) in the posterior cingulate gyrus and gyrus rectus. More rightward CTh asymmetries were observed in the precuneus, middle and superior frontal gyri, and middle occipital gyrus. The duration of hearing aid use was correlated with asymmetry of GMV in the cerebellum and CTh in the gyrus rectus. Interestingly, the asymmetry of the auditory cortex was preserved in deaf subjects. When the brain is deprived of auditory input early in life there are signs of both irreversible morphological asymmetry changes in different brain regions but also signs of reorganization and plasticity which are dependent on hearing aid use, i.e. use-dependent.

  18. Psychopathic traits are associated with cortical and subcortical volume alterations in healthy individuals

    PubMed Central

    Ferreira-Santos, Fernando; Almeida, Pedro R.; Barbosa, Fernando; Marques-Teixeira, João; Marsh, Abigail A.

    2015-01-01

    Research suggests psychopathy is associated with structural brain alterations that may contribute to the affective and interpersonal deficits frequently observed in individuals with high psychopathic traits. However, the regional alterations related to different components of psychopathy are still unclear. We used voxel-based morphometry to characterize the structural correlates of psychopathy in a sample of 35 healthy adults assessed with the Triarchic Psychopathy Measure. Furthermore, we examined the regional grey matter alterations associated with the components described by the triarchic model. Our results showed that, after accounting for variation in total intracranial volume, age and IQ, overall psychopathy was negatively associated with grey matter volume in the left putamen and amygdala. Additional regression analysis with anatomical regions of interests revealed total triPM score was also associated with increased lateral orbitofrontal cortex (OFC) and caudate volume. Boldness was positively associated with volume in the right insula. Meanness was positively associated with lateral OFC and striatum volume, and negatively associated with amygdala volume. Finally, disinhibition was negatively associated with amygdala volume. Results highlight the contribution of both subcortical and cortical brain alterations for subclinical psychopathy and are discussed in light of prior research and theoretical accounts about the neurobiological bases of psychopathic traits. PMID:25971600

  19. Healthy versus Entorhinal Cortical Atrophy Identification in Asymptomatic APOE4 Carriers at Risk for Alzheimer's Disease.

    PubMed

    Konishi, Kyoko; Joober, Ridha; Poirier, Judes; MacDonald, Kathleen; Chakravarty, Mallar; Patel, Raihaan; Breitner, John; Bohbot, Véronique D

    2018-01-01

    Early detection of Alzheimer's disease (AD) has been challenging as current biomarkers are invasive and costly. Strong predictors of future AD diagnosis include lower volume of the hippocampus and entorhinal cortex, as well as the ɛ4 allele of the Apolipoprotein E gene (APOE) gene. Therefore, studying functions that are critically mediated by the hippocampus and entorhinal cortex, such as spatial memory, in APOE ɛ4 allele carriers, may be key to the identification of individuals at risk of AD, prior to the manifestation of cognitive impairments. Using a virtual navigation task developed in-house, specifically designed to assess spatial versus non-spatial strategies, the current study is the first to differentiate functional and structural differences within APOE ɛ4 allele carriers. APOE ɛ4 allele carriers that predominantly use non-spatial strategies have decreased fMRI activity in the hippocampus and increased atrophy in the hippocampus, entorhinal cortex, and fimbria compared to APOE ɛ4 allele carriers who use spatial strategies. In contrast, APOE ɛ4 allele carriers who use spatial strategies have grey matter levels comparable to non-APOE ɛ4 allele carriers. Furthermore, in a leave-one-out analysis, grey matter in the entorhinal cortex could predict navigational strategy with 92% accuracy.

  20. Risk and protective factors for structural brain ageing in the eighth decade of life.

    PubMed

    Ritchie, Stuart J; Tucker-Drob, Elliot M; Cox, Simon R; Dickie, David Alexander; Del C Valdés Hernández, Maria; Corley, Janie; Royle, Natalie A; Redmond, Paul; Muñoz Maniega, Susana; Pattie, Alison; Aribisala, Benjamin S; Taylor, Adele M; Clarke, Toni-Kim; Gow, Alan J; Starr, John M; Bastin, Mark E; Wardlaw, Joanna M; Deary, Ian J

    2017-11-01

    Individuals differ markedly in brain structure, and in how this structure degenerates during ageing. In a large sample of human participants (baseline n = 731 at age 73 years; follow-up n = 488 at age 76 years), we estimated the magnitude of mean change and variability in changes in MRI measures of brain macrostructure (grey matter, white matter, and white matter hyperintensity volumes) and microstructure (fractional anisotropy and mean diffusivity from diffusion tensor MRI). All indices showed significant average change with age, with considerable heterogeneity in those changes. We then tested eleven socioeconomic, physical, health, cognitive, allostatic (inflammatory and metabolic), and genetic variables for their value in predicting these differences in changes. Many of these variables were significantly correlated with baseline brain structure, but few could account for significant portions of the heterogeneity in subsequent brain change. Physical fitness was an exception, being correlated both with brain level and changes. The results suggest that only a subset of correlates of brain structure are also predictive of differences in brain ageing.

  1. White matter integrity as a predictor of response to treatment in first episode psychosis.

    PubMed

    Reis Marques, Tiago; Taylor, Heather; Chaddock, Chris; Dell'acqua, Flavio; Handley, Rowena; Reinders, A A T Simone; Mondelli, Valeria; Bonaccorso, Stefania; Diforti, Marta; Simmons, Andrew; David, Anthony S; Murray, Robin M; Pariante, Carmine M; Kapur, Shitij; Dazzan, Paola

    2014-01-01

    The integrity of brain white matter connections is central to a patient's ability to respond to pharmacological interventions. This study tested this hypothesis using a specific measure of white matter integrity, and examining its relationship to treatment response using a prospective design in patients within their first episode of psychosis. Diffusion tensor imaging data were acquired in 63 patients with first episode psychosis and 52 healthy control subjects (baseline). Response was assessed after 12 weeks and patients were classified as responders or non-responders according to treatment outcome. At this second time-point, they also underwent a second diffusion tensor imaging scan. Tract-based spatial statistics were used to assess fractional anisotropy as a marker of white matter integrity. At baseline, non-responders showed lower fractional anisotropy than both responders and healthy control subjects (P < 0.05; family-wise error-corrected), mainly in the uncinate, cingulum and corpus callosum, whereas responders were indistinguishable from healthy control subjects. After 12 weeks, there was an increase in fractional anisotropy in both responders and non-responders, positively correlated with antipsychotic exposure. This represents one of the largest, controlled investigations of white matter integrity and response to antipsychotic treatment early in psychosis. These data, together with earlier findings on cortical grey matter, suggest that grey and white matter integrity at the start of treatment is an important moderator of response to antipsychotics. These findings can inform patient stratification to anticipate care needs, and raise the possibility that antipsychotics may restore white matter integrity as part of the therapeutic response.

  2. White matter tract signatures of impaired social cognition in frontotemporal lobar degeneration

    PubMed Central

    Downey, Laura E.; Mahoney, Colin J.; Buckley, Aisling H.; Golden, Hannah L.; Henley, Susie M.; Schmitz, Nicole; Schott, Jonathan M.; Simpson, Ivor J.; Ourselin, Sebastien; Fox, Nick C.; Crutch, Sebastian J.; Warren, Jason D.

    2015-01-01

    Impairments of social cognition are often leading features in frontotemporal lobar degeneration (FTLD) and likely to reflect large-scale brain network disintegration. However, the neuroanatomical basis of impaired social cognition in FTLD and the role of white matter connections have not been defined. Here we assessed social cognition in a cohort of patients representing two core syndromes of FTLD, behavioural variant frontotemporal dementia (bvFTD; n = 29) and semantic variant primary progressive aphasia (svPPA; n = 15), relative to healthy older individuals (n = 37) using two components of the Awareness of Social Inference Test, canonical emotion identification and sarcasm identification. Diffusion tensor imaging (DTI) was used to derive white matter tract correlates of social cognition performance and compared with the distribution of grey matter atrophy on voxel-based morphometry. The bvFTD and svPPA groups showed comparably severe deficits for identification of canonical emotions and sarcasm, and these deficits were correlated with distributed and overlapping white matter tract alterations particularly affecting frontotemporal connections in the right cerebral hemisphere. The most robust DTI associations were identified in white matter tracts linking cognitive and evaluative processing with emotional responses: anterior thalamic radiation, fornix (emotion identification) and uncinate fasciculus (sarcasm identification). DTI associations of impaired social cognition were more consistent than corresponding grey matter associations. These findings delineate a brain network substrate for the social impairment that characterises FTLD syndromes. The findings further suggest that DTI can generate sensitive and functionally relevant indexes of white matter damage in FTLD, with potential to transcend conventional syndrome boundaries. PMID:26236629

  3. Correlation between white matter microstructure and executive functions suggests early developmental influence on long fibre tracts in preterm born adolescents.

    PubMed

    Vollmer, Brigitte; Lundequist, Aiko; Mårtensson, Gustaf; Nagy, Zoltan; Lagercrantz, Hugo; Smedler, Ann-Charlotte; Forssberg, Hans

    2017-01-01

    Executive functions are frequently a weakness in children born preterm. We examined associations of executive functions and general cognitive abilities with brain structure in preterm born adolescents who were born with appropriate weight for gestational age and who have no radiological signs of preterm brain injury on neuroimaging. The Stockholm Neonatal Project (SNP) is a longitudinal, population-based study of children born preterm (<36 weeks of gestation) with very low birth weight (<1501g) between 1988-1993. At age 18 years (mean 18 years, SD 2 weeks) 134 preterm born and 94 full term participants underwent psychological assessment (general intelligence, executive function measures). Of these, 71 preterm and 63 full term participants underwent Magnetic Resonance Imaging (MRI) at mean 15.2 years (range 12-18 years), including 3D T1-weighted images for volumetric analyses and Diffusion Tensor Imaging (DTI) for assessment of white matter microstructure. Group comparisons of regional grey and white matter volumes and fractional anisotropy (FA, as a measure of white matter microstructure) and, within each group, correlation analyses of cognitive measures with MRI metrics were carried out. Significant differences in grey and white matter regional volumes and widespread differences in FA were seen between the two groups. No significant correlations were found between cognitive measures and brain volumes in any group after correction for multiple comparisons. However, there were significant correlations between FA in projection fibres and long association fibres, linking frontal, temporal, parietal, and occipital lobes, and measures of executive function and general cognitive abilities in the preterm born adolescents, but not in the term born adolescents. In persons born preterm, in the absence of perinatal brain injury on visual inspection of MRI, widespread alterations in regional brain tissue volumes and microstructure are present in adolescence/young adulthood. Importantly, these alterations in WM tracts are correlated with measures of executive function and general cognitive abilities. Our findings suggest that disturbance of neural pathways, rather than changes in regional brain volumes, are involved in the impaired cognitive functions.

  4. The architecture of the chess player's brain.

    PubMed

    Hänggi, Jürgen; Brütsch, Karin; Siegel, Adrian M; Jäncke, Lutz

    2014-09-01

    The game of chess can be seen as a typical example for an expertise task requiring domain-specific training and experience. Despite intensive behavioural studies the neural underpinnings of chess performance and expertise are not entirely understood. A few functional neuroimaging studies have shown that expert chess players recruit different psychological functions and activate different brain areas while they are engaged in chess-related activities. Based on this functional literature, we predicted to find morphological differences in a network comprised by parietal and frontal areas and especially the occipito-temporal junction (OTJ), fusiform gyrus, and caudate nucleus. Twenty expert chess players and 20 control subjects were investigated using voxel-based and surface-based morphometry as well as diffusion tensor imaging. Grey matter volume and cortical thickness were reduced in chess players compared with those of control men in the OTJ and precunei. The volumes of both caudate nuclei were not different between groups, but correlated inversely with the years of chess playing experience. Mean diffusivity was increased in chess players compared with that of controls in the left superior longitudinal fasciculus and the Elo score (a chess tournament ranking) was inversely related to mean diffusivity within the right superior longitudinal fasciculus. To the best of our knowledge we showed for the first time that there are specific differences in grey and white matter morphology between chess players and control subjects in brain regions associated with cognitive functions important for playing chess. Whether these anatomical alterations are the cause or consequence of the intensive and long-term chess training and practice remains to be shown in future studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Functional magnetic resonance imaging of chronic dysarthric speech after childhood brain injury: reliance on a left-hemisphere compensatory network.

    PubMed

    Morgan, Angela T; Masterton, Richard; Pigdon, Lauren; Connelly, Alan; Liégeois, Frédérique J

    2013-02-01

    Severe and persistent speech disorder, dysarthria, may be present for life after brain injury in childhood, yet the neural correlates of this chronic disorder remain elusive. Although abundant literature is available on language reorganization after lesions in childhood, little is known about the capacity of motor speech networks to reorganize after injury. Here, we examine the structural and functional neural correlates associated with chronic dysarthria after childhood-onset traumatic brain injury. Forty-nine participants aged 12 years 3 months to 24 years 11 months were recruited to the study: (i) a group with chronic dysarthria (n = 17); matched for age and sex with two control groups of (ii) healthy control subjects (n = 17); and (iii) individuals without dysarthria after traumatic brain injury (n = 15). A high-resolution 3D T(1)-weighted whole-brain data set was acquired for voxel-based morphometry analyses of group differences in grey matter. Functional magnetic resonance imaging was used to localize activation associated with speaking single words (baseline: listening to words). Group differences on voxel-based morphometry revealed widespread grey matter reductions in the dysarthric group compared with healthy control subjects, including in numerous speech motor regions bilaterally, such as the cerebellum, the basal ganglia and primary motor cortex representation of the articulators. Relative to the non-dysarthric traumatic brain injury group, individuals with dysarthria showed reduced grey matter bilaterally in the ventral sensorimotor cortex, but this reduction was concomitant with increased functional activation only in the left-hemisphere cluster during speech. Finally, increased recruitment of Broca's area (Brodmann area 45, pars triangularis) but not its right homologue, correlated with better speech outcome, suggesting that this 'higher-level' area may be more critically involved with production when associated motor speech regions are damaged. We suggest that the bilateral morphological abnormalities within cortical speech networks in childhood prevented reorganization of speech function from the left- to right-hemisphere. Rather, functional reorganization involved over-recruitment of left-hemisphere motor regions, a reorganization method that was only partly relatively effective, given the presence of persisting yet mild speech deficits. The bilateral structural abnormalities found to limit functional reorganization here, may also be critical to poor speech prognosis for populations with congenital, degenerative or acquired neurological disorders throughout the lifespan.

  6. Can musical training influence brain connectivity? Evidence from diffusion tensor MRI.

    PubMed

    Moore, Emma; Schaefer, Rebecca S; Bastin, Mark E; Roberts, Neil; Overy, Katie

    2014-06-10

    In recent years, musicians have been increasingly recruited to investigate grey and white matter neuroplasticity induced by skill acquisition. The development of Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) has allowed more detailed investigation of white matter connections within the brain, addressing questions about the effect of musical training on connectivity between specific brain regions. Here, current DT-MRI analysis techniques are discussed and the available evidence from DT-MRI studies into differences in white matter architecture between musicians and non-musicians is reviewed. Collectively, the existing literature tends to support the hypothesis that musical training can induce changes in cross-hemispheric connections, with significant differences frequently reported in various regions of the corpus callosum of musicians compared with non-musicians. However, differences found in intra-hemispheric fibres have not always been replicated, while findings regarding the internal capsule and corticospinal tracts appear to be contradictory. There is also recent evidence to suggest that variances in white matter structure in non-musicians may correlate with their ability to learn musical skills, offering an alternative explanation for the structural differences observed between musicians and non-musicians. Considering the inconsistencies in the current literature, possible reasons for conflicting results are offered, along with suggestions for future research in this area.

  7. Progression of regional grey matter atrophy in multiple sclerosis

    PubMed Central

    Marinescu, Razvan V; Young, Alexandra L; Firth, Nicholas C; Jorge Cardoso, M; Tur, Carmen; De Angelis, Floriana; Cawley, Niamh; Brownlee, Wallace J; De Stefano, Nicola; Laura Stromillo, M; Battaglini, Marco; Ruggieri, Serena; Gasperini, Claudio; Filippi, Massimo; Rocca, Maria A; Rovira, Alex; Sastre-Garriga, Jaume; Geurts, Jeroen J G; Vrenken, Hugo; Wottschel, Viktor; Leurs, Cyra E; Uitdehaag, Bernard; Pirpamer, Lukas; Enzinger, Christian; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A; Chard, Declan; Thompson, Alan J; Barkhof, Frederik; Alexander, Daniel C; Ciccarelli, Olga

    2018-01-01

    Abstract See Stankoff and Louapre (doi:10.1093/brain/awy114) for a scientific commentary on this article. Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in multiple sclerosis and its association with disability accumulation. In this longitudinal study, we included 1417 subjects: 253 with clinically isolated syndrome, 708 with relapsing-remitting multiple sclerosis, 128 with secondary-progressive multiple sclerosis, 125 with primary-progressive multiple sclerosis, and 203 healthy control subjects from seven European centres. Subjects underwent repeated MRI (total number of scans 3604); the mean follow-up for patients was 2.41 years (standard deviation = 1.97). Disability was scored using the Expanded Disability Status Scale. We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template and used an established data-driven event-based model to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific event-based model stage, based on the number of their atrophic regions. Linear mixed-effects models were used to explore associations between the rate of increase in event-based model stages, and T2 lesion load, disease-modifying treatments, comorbidity, disease duration and disability accumulation. The first regions to become atrophic in patients with clinically isolated syndrome and relapse-onset multiple sclerosis were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse-onset multiple sclerosis and late atrophy in primary-progressive multiple sclerosis. Patients with secondary-progressive multiple sclerosis showed the highest event-based model stage (the highest number of atrophic regions, P < 0.001) at the study entry. All multiple sclerosis phenotypes, but clinically isolated syndrome, showed a faster rate of increase in the event-based model stage than healthy controls. T2 lesion load and disease duration in all patients were associated with increased event-based model stage, but no effects of disease-modifying treatments and comorbidity on event-based model stage were observed. The annualized rate of event-based model stage was associated with the disability accumulation in relapsing-remitting multiple sclerosis, independent of disease duration (P < 0.0001). The data-driven staging of atrophy progression in a large multiple sclerosis sample demonstrates that grey matter atrophy spreads to involve more regions over time. The sequence in which regions become atrophic is reasonably consistent across multiple sclerosis phenotypes. The spread of atrophy was associated with disease duration and with disability accumulation over time in relapsing-remitting multiple sclerosis. PMID:29741648

  8. Progression of regional grey matter atrophy in multiple sclerosis.

    PubMed

    Eshaghi, Arman; Marinescu, Razvan V; Young, Alexandra L; Firth, Nicholas C; Prados, Ferran; Jorge Cardoso, M; Tur, Carmen; De Angelis, Floriana; Cawley, Niamh; Brownlee, Wallace J; De Stefano, Nicola; Laura Stromillo, M; Battaglini, Marco; Ruggieri, Serena; Gasperini, Claudio; Filippi, Massimo; Rocca, Maria A; Rovira, Alex; Sastre-Garriga, Jaume; Geurts, Jeroen J G; Vrenken, Hugo; Wottschel, Viktor; Leurs, Cyra E; Uitdehaag, Bernard; Pirpamer, Lukas; Enzinger, Christian; Ourselin, Sebastien; Gandini Wheeler-Kingshott, Claudia A; Chard, Declan; Thompson, Alan J; Barkhof, Frederik; Alexander, Daniel C; Ciccarelli, Olga

    2018-06-01

    See Stankoff and Louapre (doi:10.1093/brain/awy114) for a scientific commentary on this article.Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in multiple sclerosis and its association with disability accumulation. In this longitudinal study, we included 1417 subjects: 253 with clinically isolated syndrome, 708 with relapsing-remitting multiple sclerosis, 128 with secondary-progressive multiple sclerosis, 125 with primary-progressive multiple sclerosis, and 203 healthy control subjects from seven European centres. Subjects underwent repeated MRI (total number of scans 3604); the mean follow-up for patients was 2.41 years (standard deviation = 1.97). Disability was scored using the Expanded Disability Status Scale. We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template and used an established data-driven event-based model to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific event-based model stage, based on the number of their atrophic regions. Linear mixed-effects models were used to explore associations between the rate of increase in event-based model stages, and T2 lesion load, disease-modifying treatments, comorbidity, disease duration and disability accumulation. The first regions to become atrophic in patients with clinically isolated syndrome and relapse-onset multiple sclerosis were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse-onset multiple sclerosis and late atrophy in primary-progressive multiple sclerosis. Patients with secondary-progressive multiple sclerosis showed the highest event-based model stage (the highest number of atrophic regions, P < 0.001) at the study entry. All multiple sclerosis phenotypes, but clinically isolated syndrome, showed a faster rate of increase in the event-based model stage than healthy controls. T2 lesion load and disease duration in all patients were associated with increased event-based model stage, but no effects of disease-modifying treatments and comorbidity on event-based model stage were observed. The annualized rate of event-based model stage was associated with the disability accumulation in relapsing-remitting multiple sclerosis, independent of disease duration (P < 0.0001). The data-driven staging of atrophy progression in a large multiple sclerosis sample demonstrates that grey matter atrophy spreads to involve more regions over time. The sequence in which regions become atrophic is reasonably consistent across multiple sclerosis phenotypes. The spread of atrophy was associated with disease duration and with disability accumulation over time in relapsing-remitting multiple sclerosis.

  9. 1H-MRS in autism spectrum disorders: a systematic meta-analysis.

    PubMed

    Ipser, Jonathan C; Syal, Supriya; Bentley, Judy; Adnams, Colleen M; Steyn, Bennie; Stein, Dan J

    2012-09-01

    We conducted a systematic review and meta-analysis of proton magnetic resonance spectroscopy (1H-MRS) studies comparing autism spectrum disorder (ASD) patients with healthy controls, with the aim of profiling ASD-associated changes in the metabolites N-acetyl-aspartate (NAA) and Creatine (Cr). Meta-regression models of NAA and Cr levels were employed, using data from 20 eligible studies (N = 852), to investigate age-dependent differences in both global brain and region-specific metabolite levels, while controlling for measurement method (Cr-ratio versus absolute concentrations). Decreased NAA concentrations that were specific to children were found for whole-brain grey and white matter. In addition, a significant decrease in NAA was evident across age categories in the parietal cortex, the cerebellum, and the anterior cingulate cortex. Higher levels of Cr were observed for ASD adults than children in global grey matter, with specific increases for adults in the temporal lobe and decreased Cr in the occipital lobe in children. No differences were found for either NAA or Cr in the frontal lobes. These data provide some evidence that ASD is characterized by age-dependent fluctuations in metabolite levels across the whole brain and at the level of specific regions thought to underlie ASD-associated behavioural and affective deficits. Differences in Cr as a function of age and brain region suggests caution in the interpretation of Cr-based ratio measures of metabolites. Despite efforts to control for sources of heterogeneity, considerable variability in metabolite levels was observed in frontal and temporal regions, warranting further investigation.

  10. Prefrontal cortex volume reductions and tic inhibition are unrelated in uncomplicated GTS adults.

    PubMed

    Ganos, Christos; Kühn, Simone; Kahl, Ursula; Schunke, Odette; Brandt, Valerie; Bäumer, Tobias; Thomalla, Götz; Haggard, Patrick; Münchau, Alexander

    2014-01-01

    Tics in Gilles de la Tourette syndrome (GTS) are repetitive patterned movements, resembling spontaneous motor behaviour, but escaping voluntary control. Previous studies hypothesised relations between structural alterations in prefrontal cortex of GTS adults and tic severity using voxel-based morphometry (VBM), but could not demonstrate a significant association. The relation between prefrontal cortex structure and tic inhibition has not been investigated. Here, we used VBM to examine 14 GTS adults without associated comorbidities, and 15 healthy controls. We related structural alterations in GTS to clinical measures of tic severity and tic control. Grey matter volumes in the right inferior frontal gyrus and the left frontal pole were reduced in patients relative to healthy controls. These changes were not related to tic severity and tic inhibition. Prefrontal grey matter volume reductions in GTS adults are not related to state measures of tic phenomenology. © 2013.

  11. Anatomic Correlates of Stereotypies in Frontotemporal Lobar Degeneration

    PubMed Central

    Josephs, Keith A.; Whitwell, Jennifer L.; Jack, Clifford R.

    2009-01-01

    Stereotypies are common in frontotemporal lobar degeneration (FTLD) however the anatomical correlates of stereotypies are unknown. We therefore set out to compare patterns of grey matter volume loss in FTLD subjects with and without stereotypies. Subjects with a diagnosis of FTLD that met international consensus criteria were prospectively recruited and separated into those with and without stereotypies. MRI and cognitive measures were obtained and voxel-based morphometry was used to assess the patterns of grey matter volume loss in those with and without stereotypies, compared to a group of age-and gender-matched controls. Demographic and clinical features were similar between subjects with and without stereotypies. FTLD subjects with stereotypies had greater volume loss in the striatum compared to those without stereotypies. Those without stereotypies showed a more widespread and typical pattern of cortical frontotemporal loss. Stereotypies in FTLD are therefore associated with a greater proportion of striatal to cortical volume loss than those without stereotypies. PMID:17574708

  12. Aortic stiffness is associated with white matter integrity in patients with type 1 diabetes.

    PubMed

    Tjeerdema, Nathanja; Van Schinkel, Linda D; Westenberg, Jos J; Van Elderen, Saskia G; Van Buchem, Mark A; Smit, Johannes W; Van der Grond, Jeroen; De Roos, Albert

    2014-09-01

    To assess the association between aortic pulse wave velocity (PWV) as a marker of arterial stiffness and diffusion tensor imaging of brain white matter integrity in patients with type 1 diabetes using advanced magnetic resonance imaging (MRI) technology. Forty-one patients with type 1 diabetes (23 men, mean age 44 ± 12 years, mean diabetes duration 24 ± 13 years) were included. Aortic PWV was assessed using through-plane velocity-encoded MRI. Brain diffusion tensor imaging (DTI) measurements were performed on 3-T MRI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated for white and grey matter integrity. Pearson correlation and multivariable linear regression analyses including cardiovascular risk factors as covariates were assessed. Multivariable linear regression analyses revealed that aortic PWV is independently associated with white matter integrity FA (β = -0.777, p = 0.008) in patients with type 1 diabetes. This effect was independent of age, gender, mean arterial pressure, body mass index, smoking, duration of diabetes and glycated haemoglobin levels. Aortic PWV was not significantly related to grey matter integrity. Our data suggest that aortic stiffness is independently associated with reduced white matter integrity in patients with type 1 diabetes. Aortic stiffness is associated with brain injury. Aortic stiffness exposes small vessels to high pressure fluctuations and flow. Aortic stiffness is associated with microvascular brain injury in diabetes. This suggests a vascular contribution to early subtle microstructural deficits.

  13. Increased Plp1 gene expression leads to massive microglial cell activation and inflammation throughout the brain

    PubMed Central

    Tatar, Carrie L; Appikatla, Sunita; Bessert, Denise A; Paintlia, Ajaib S; Singh, Inderjit; Skoff, Robert P

    2010-01-01

    PMD (Pelizaeus–Merzbacher disease) is a rare neurodegenerative disorder that impairs motor and cognitive functions and is associated with a shortened lifespan. The cause of PMD is mutations of the PLP1 [proteolipid protein 1 gene (human)] gene. Transgenic mice with increased Plp1 [proteolipid protein 1 gene (non-human)] copy number model most aspects of PMD patients with duplications. Hypomyelination and demyelination are believed to cause the neurological abnormalities in mammals with PLP1 duplications. We show, for the first time, intense microglial reactivity throughout the grey and white matter of a transgenic mouse line with increased copy number of the native Plp1 gene. Activated microglia in the white and grey matter of transgenic mice are found as early as postnatal day 7, before myelin commences in normal cerebra. This finding indicates that degeneration of myelin does not cause the microglial response. Microglial numbers are doubled due to in situ proliferation. Compared with the jp (jimpy) mouse, which has much more oligodendrocyte death and hardly any myelin, microglia in the overexpressors show a more dramatic microglial reactivity than jp, especially in the grey matter. Predictably, many classical markers of an inflammatory response, including TNF-α (tumour necrosis factor-α) and IL-6, are significantly up-regulated manyfold. Because inflammation is believed to contribute to axonal degeneration in multiple sclerosis and other neurodegenerative diseases, inflammation in mammals with increased Plp1 gene dosage may also contribute to axonal degeneration described in patients and rodents with PLP1 increased gene dosage. PMID:20885931

  14. Grey Matter Changes Associated with Heavy Cannabis Use: A Longitudinal sMRI Study.

    PubMed

    Koenders, Laura; Cousijn, Janna; Vingerhoets, Wilhelmina A M; van den Brink, Wim; Wiers, Reinout W; Meijer, Carin J; Machielsen, Marise W J; Veltman, Dick J; Goudriaan, Anneke E; de Haan, Lieuwe

    2016-01-01

    Cannabis is the most frequently used illicit drug worldwide. Cross-sectional neuroimaging studies suggest that chronic cannabis exposure and the development of cannabis use disorders may affect brain morphology. However, cross-sectional studies cannot make a conclusive distinction between cause and consequence and longitudinal neuroimaging studies are lacking. In this prospective study we investigate whether continued cannabis use and higher levels of cannabis exposure in young adults are associated with grey matter reductions. Heavy cannabis users (N = 20, age baseline M = 20.5, SD = 2.1) and non-cannabis using healthy controls (N = 22, age baseline M = 21.6, SD = 2.45) underwent a comprehensive psychological assessment and a T1- structural MRI scan at baseline and 3 years follow-up. Grey matter volumes (orbitofrontal cortex, anterior cingulate cortex, insula, striatum, thalamus, amygdala, hippocampus and cerebellum) were estimated using the software package SPM (VBM-8 module). Continued cannabis use did not have an effect on GM volume change at follow-up. Cross-sectional analyses at baseline and follow-up revealed consistent negative correlations between cannabis related problems and cannabis use (in grams) and regional GM volume of the left hippocampus, amygdala and superior temporal gyrus. These results suggests that small GM volumes in the medial temporal lobe are a risk factor for heavy cannabis use or that the effect of cannabis on GM reductions is limited to adolescence with no further damage of continued use after early adulthood. Long-term prospective studies starting in early adolescence are needed to reach final conclusions.

  15. Grey Matter Changes Associated with Heavy Cannabis Use: A Longitudinal sMRI Study

    PubMed Central

    Cousijn, Janna; Vingerhoets, Wilhelmina A. M.; van den Brink, Wim; Wiers, Reinout W.; Meijer, Carin J.; Machielsen, Marise W. J.; Veltman, Dick J.; Goudriaan, Anneke E.; de Haan, Lieuwe

    2016-01-01

    Cannabis is the most frequently used illicit drug worldwide. Cross-sectional neuroimaging studies suggest that chronic cannabis exposure and the development of cannabis use disorders may affect brain morphology. However, cross-sectional studies cannot make a conclusive distinction between cause and consequence and longitudinal neuroimaging studies are lacking. In this prospective study we investigate whether continued cannabis use and higher levels of cannabis exposure in young adults are associated with grey matter reductions. Heavy cannabis users (N = 20, age baseline M = 20.5, SD = 2.1) and non-cannabis using healthy controls (N = 22, age baseline M = 21.6, SD = 2.45) underwent a comprehensive psychological assessment and a T1- structural MRI scan at baseline and 3 years follow-up. Grey matter volumes (orbitofrontal cortex, anterior cingulate cortex, insula, striatum, thalamus, amygdala, hippocampus and cerebellum) were estimated using the software package SPM (VBM-8 module). Continued cannabis use did not have an effect on GM volume change at follow-up. Cross-sectional analyses at baseline and follow-up revealed consistent negative correlations between cannabis related problems and cannabis use (in grams) and regional GM volume of the left hippocampus, amygdala and superior temporal gyrus. These results suggests that small GM volumes in the medial temporal lobe are a risk factor for heavy cannabis use or that the effect of cannabis on GM reductions is limited to adolescence with no further damage of continued use after early adulthood. Long-term prospective studies starting in early adolescence are needed to reach final conclusions. PMID:27224247

  16. Establishment of Requirements and Methodology for the Development and Implementation of GreyMatters, a Memory Clinic Information System.

    PubMed

    Tapuria, Archana; Evans, Matt; Curcin, Vasa; Austin, Tony; Lea, Nathan; Kalra, Dipak

    2017-01-01

    The aim of the paper is to establish the requirements and methodology for the development process of GreyMatters, a memory clinic system, outlining the conceptual, practical, technical and ethical challenges, and the experiences of capturing clinical and research oriented data along with the implementation of the system. The methodology for development of the information system involved phases of requirements gathering, modeling and prototype creation, and 'bench testing' the prototype with experts. The standard Institute of Electrical and Electronics Engineers (IEEE) recommended approach for the specifications of software requirements was adopted. An electronic health record (EHR) standard, EN13606 was used, and clinical modelling was done through archetypes and the project complied with data protection and privacy legislation. The requirements for GreyMatters were established. Though the initial development was complex, the requirements, methodology and standards adopted made the construction, deployment, adoption and population of a memory clinic and research database feasible. The electronic patient data including the assessment scales provides a rich source of objective data for audits and research and to establish study feasibility and identify potential participants for the clinical trials. The establishment of requirements and methodology, addressing issues of data security and confidentiality, future data compatibility and interoperability and medico-legal aspects such as access controls and audit trails, led to a robust and useful system. The evaluation supports that the system is an acceptable tool for clinical, administrative, and research use and forms a useful part of the wider information architecture.

  17. Behavioural and neuroanatomical correlates of auditory speech analysis in primary progressive aphasias.

    PubMed

    Hardy, Chris J D; Agustus, Jennifer L; Marshall, Charles R; Clark, Camilla N; Russell, Lucy L; Bond, Rebecca L; Brotherhood, Emilie V; Thomas, David L; Crutch, Sebastian J; Rohrer, Jonathan D; Warren, Jason D

    2017-07-27

    Non-verbal auditory impairment is increasingly recognised in the primary progressive aphasias (PPAs) but its relationship to speech processing and brain substrates has not been defined. Here we addressed these issues in patients representing the non-fluent variant (nfvPPA) and semantic variant (svPPA) syndromes of PPA. We studied 19 patients with PPA in relation to 19 healthy older individuals. We manipulated three key auditory parameters-temporal regularity, phonemic spectral structure and prosodic predictability (an index of fundamental information content, or entropy)-in sequences of spoken syllables. The ability of participants to process these parameters was assessed using two-alternative, forced-choice tasks and neuroanatomical associations of task performance were assessed using voxel-based morphometry of patients' brain magnetic resonance images. Relative to healthy controls, both the nfvPPA and svPPA groups had impaired processing of phonemic spectral structure and signal predictability while the nfvPPA group additionally had impaired processing of temporal regularity in speech signals. Task performance correlated with standard disease severity and neurolinguistic measures. Across the patient cohort, performance on the temporal regularity task was associated with grey matter in the left supplementary motor area and right caudate, performance on the phoneme processing task was associated with grey matter in the left supramarginal gyrus, and performance on the prosodic predictability task was associated with grey matter in the right putamen. Our findings suggest that PPA syndromes may be underpinned by more generic deficits of auditory signal analysis, with a distributed cortico-subcortical neuraoanatomical substrate extending beyond the canonical language network. This has implications for syndrome classification and biomarker development.

  18. Immediate remote ischemic postconditioning after hypoxia ischemia in piglets protects cerebral white matter but not grey matter.

    PubMed

    Ezzati, Mojgan; Bainbridge, Alan; Broad, Kevin D; Kawano, Go; Oliver-Taylor, Aaron; Rocha-Ferreira, Eridan; Alonso-Alconada, Daniel; Fierens, Igor; Rostami, Jamshid; Jane Hassell, K; Tachtsidis, Ilias; Gressens, Pierre; Hristova, Mariya; Bennett, Kate; Lebon, Sophie; Fleiss, Bobbi; Yellon, Derek; Hausenloy, Derek J; Golay, Xavier; Robertson, Nicola J

    2016-08-01

    Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention whereby brief episodes of ischemia/reperfusion of one organ (limb) mitigate damage in another organ (brain) that has experienced severe hypoxia-ischemia. Our aim was to assess whether RIPostC is protective following cerebral hypoxia-ischemia in a piglet model of neonatal encephalopathy (NE) using magnetic resonance spectroscopy (MRS) biomarkers and immunohistochemistry. After hypoxia-ischemia (HI), 16 Large White female newborn piglets were randomized to: (i) no intervention (n = 8); (ii) RIPostC - with four, 10-min cycles of bilateral lower limb ischemia/reperfusion immediately after HI (n = 8). RIPostC reduced the hypoxic-ischemic-induced increase in white matter proton MRS lactate/N acetyl aspartate (p = 0.005) and increased whole brain phosphorus-31 MRS ATP (p = 0.039) over the 48 h after HI. Cell death was reduced with RIPostC in the periventricular white matter (p = 0.03), internal capsule (p = 0.002) and corpus callosum (p = 0.021); there was reduced microglial activation in corpus callosum (p = 0.001) and more surviving oligodendrocytes in corpus callosum (p = 0.029) and periventricular white matter (p = 0.001). Changes in gene expression were detected in the white matter at 48 h, including KATP channel and endothelin A receptor. Immediate RIPostC is a potentially safe and promising brain protective therapy for babies with NE with protection in white but not grey matter. © The Author(s) 2015.

  19. Brain volume changes over the first year of treatment in schizophrenia: relationships to antipsychotic treatment.

    PubMed

    Emsley, R; Asmal, L; du Plessis, S; Chiliza, B; Phahladira, L; Kilian, S

    2017-09-01

    Progressive brain volume reductions have been described in schizophrenia, and an association with antipsychotic exposure has been reported. We compared percentage changes in grey and white matter volume from baseline to month 12 in 23 previously antipsychotic-naïve patients with a first episode of schizophrenia or schizophreniform disorder who were treated with the lowest effective dose of flupenthixol decanoate depot formulation, with 53 matched healthy individuals. Total antipsychotic dose was precisely calculated and its relationship with brain volume changes investigated. Relationships between volumetric changes and treatment were further investigated in terms of treatment response (changes in psychopathology and functionality) and treatment-related adverse-events (extrapyramidal symptoms and weight gain). Excessive cortical volume reductions were observed in patients [-4.6 (6.6)%] v. controls [-1.12 (4.0)%] (p = 0.009), with no significant group differences for changes in subcortical grey matter and white matter volumes. In a multiple regression model, the only significant predictor of cortical volume change was total antipsychotic dose received (p = 0.04). Cortical volume change was not significantly associated with the changes in psychopathology, functionality, extrapyramidal symptoms and body mass index or age, gender and duration of untreated psychosis. Brain volume reductions associated with antipsychotic treatment are not restricted to poor outcome patients and occur even with the lowest effective dose of antipsychotic. The lack of an association with poor treatment response or treatment-related adverse effects counts against cortical volume reductions reflecting neurotoxicity, at least in the short term. On the other hand, the volume reductions were not linked to the therapeutic benefits of antipsychotics.

  20. Impact of breast milk on IQ, brain size and white matter development

    PubMed Central

    Isaacs, Elizabeth B.; Fischl, Bruce R.; Quinn, Brian T.; Chong, Wui K.; Gadian, David G.; Lucas, Alan

    2010-01-01

    Although observational findings linking breast milk to higher scores on cognitive tests may be confounded by factors associated with mothers’ choice to breastfeed, it has been suggested that one or more constituents of breast milk facilitate cognitive development, particularly in preterms. Because cognitive scores are related to head size, we hypothesised that breast milk mediates cognitive effects by affecting brain growth. We used detailed data from a randomized feeding trial to calculate percentage of breast milk (%EBM) in the infant diet of 50 adolescents. MRI scans were obtained (mean age=15y9m), allowing volumes of total brain (TBV), white and grey matter (WMV, GMV) to be calculated. In the total group %EBM correlated significantly with Verbal IQ (VIQ); in boys, with all IQ scores, TBV and WMV. VIQ was, in turn, correlated with WMV and, in boys only, additionally with TBV. No significant relationships were seen in girls or with grey matter. These data support the hypothesis that breast milk promotes brain development, particularly white matter growth. The selective effect in males accords with animal and human evidence regarding gender effects of early diet. Our data have important neurobiological and public health implications and identify areas for future mechanistic study. PMID:20035247

  1. Biological sex affects the neurobiology of autism

    PubMed Central

    Lombardo, Michael V.; Suckling, John; Ruigrok, Amber N. V.; Chakrabarti, Bhismadev; Ecker, Christine; Deoni, Sean C. L.; Craig, Michael C.; Murphy, Declan G. M.; Bullmore, Edward T.; Baron-Cohen, Simon

    2013-01-01

    In autism, heterogeneity is the rule rather than the exception. One obvious source of heterogeneity is biological sex. Since autism was first recognized, males with autism have disproportionately skewed research. Females with autism have thus been relatively overlooked, and have generally been assumed to have the same underlying neurobiology as males with autism. Growing evidence, however, suggests that this is an oversimplification that risks obscuring the biological base of autism. This study seeks to answer two questions about how autism is modulated by biological sex at the level of the brain: (i) is the neuroanatomy of autism different in males and females? and (ii) does the neuroanatomy of autism fit predictions from the ‘extreme male brain’ theory of autism, in males and/or in females? Neuroanatomical features derived from voxel-based morphometry were compared in a sample of equal-sized high-functioning male and female adults with and without autism (n = 120, n = 30/group). The first question was investigated using a 2 × 2 factorial design, and by spatial overlap analyses of the neuroanatomy of autism in males and females. The second question was tested through spatial overlap analyses of specific patterns predicted by the extreme male brain theory. We found that the neuroanatomy of autism differed between adult males and females, evidenced by minimal spatial overlap (not different from that occurred under random condition) in both grey and white matter, and substantially large white matter regions showing significant sex × diagnosis interactions in the 2 × 2 factorial design. These suggest that autism manifests differently by biological sex. Furthermore, atypical brain areas in females with autism substantially and non-randomly (P < 0.001) overlapped with areas that were sexually dimorphic in neurotypical controls, in both grey and white matter, suggesting neural ‘masculinization’. This was not seen in males with autism. How differences in neuroanatomy relate to the similarities in cognition between males and females with autism remains to be understood. Future research should stratify by biological sex to reduce heterogeneity and to provide greater insight into the neurobiology of autism. PMID:23935125

  2. Biological sex affects the neurobiology of autism.

    PubMed

    Lai, Meng-Chuan; Lombardo, Michael V; Suckling, John; Ruigrok, Amber N V; Chakrabarti, Bhismadev; Ecker, Christine; Deoni, Sean C L; Craig, Michael C; Murphy, Declan G M; Bullmore, Edward T; Baron-Cohen, Simon

    2013-09-01

    In autism, heterogeneity is the rule rather than the exception. One obvious source of heterogeneity is biological sex. Since autism was first recognized, males with autism have disproportionately skewed research. Females with autism have thus been relatively overlooked, and have generally been assumed to have the same underlying neurobiology as males with autism. Growing evidence, however, suggests that this is an oversimplification that risks obscuring the biological base of autism. This study seeks to answer two questions about how autism is modulated by biological sex at the level of the brain: (i) is the neuroanatomy of autism different in males and females? and (ii) does the neuroanatomy of autism fit predictions from the 'extreme male brain' theory of autism, in males and/or in females? Neuroanatomical features derived from voxel-based morphometry were compared in a sample of equal-sized high-functioning male and female adults with and without autism (n = 120, n = 30/group). The first question was investigated using a 2 × 2 factorial design, and by spatial overlap analyses of the neuroanatomy of autism in males and females. The second question was tested through spatial overlap analyses of specific patterns predicted by the extreme male brain theory. We found that the neuroanatomy of autism differed between adult males and females, evidenced by minimal spatial overlap (not different from that occurred under random condition) in both grey and white matter, and substantially large white matter regions showing significant sex × diagnosis interactions in the 2 × 2 factorial design. These suggest that autism manifests differently by biological sex. Furthermore, atypical brain areas in females with autism substantially and non-randomly (P < 0.001) overlapped with areas that were sexually dimorphic in neurotypical controls, in both grey and white matter, suggesting neural 'masculinization'. This was not seen in males with autism. How differences in neuroanatomy relate to the similarities in cognition between males and females with autism remains to be understood. Future research should stratify by biological sex to reduce heterogeneity and to provide greater insight into the neurobiology of autism.

  3. Localisation of the spinal nucleus of the accessory nerve in the rabbit.

    PubMed Central

    Ullah, M; Salman, S S

    1986-01-01

    The spinal nucleus of the accessory nerve (SNA) was localised in eight adult rabbits by a retrograde degeneration technique using thionine as a stain for the Nissl substance. The SNA was found to extend from the caudal one fifth of the medulla oblongata to the cranial one fourth of the sixth cervical segment. In the caudal part of the medulla oblongata, the SNA was located in the dorsal part of the detached ventral grey column. In the first cervical segment, the SNA was dorsolateral to the dorsomedial column and dorsal to the ventromedial column of the ventral grey column. In the cranial part of the second cervical segment, the SNA shifted laterally to the lateral margin of the ventral grey column. After this lateral shift, the SNA was located in the lateral part of the ventral grey column of the second, third and fourth cervical segments. In the fifth and cranial one fourth of the sixth cervical segments, the SNA was not a well defined column of cells but was represented by isolated cells scattered in the ventral part of the ventral grey column between the phrenic nucleus and the ventral border of the grey matter. The total number of chromatolysed cells found in the SNA of the right experimental side varied from 2723 to 3210. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 PMID:3429311

  4. Serial brain MRI and ultrasound findings: relation to gestational age, bilirubin level, neonatal neurologic status and neurodevelopmental outcome in infants at risk of kernicterus.

    PubMed

    Gkoltsiou, Konstantina; Tzoufi, Meropi; Counsell, Serena; Rutherford, Mary; Cowan, Frances

    2008-12-01

    To describe cranial ultrasound (cUS) and magnetic resonance imaging (MRI) findings in neonates at risk of kernicterus, in relation to gestational age (GA), total serum bilirubin (TSB), age at imaging and neurodevelopmental outcome. Neonates with peak TSB > 400 micromol/L and/or signs of bilirubin encephalopathy. Review of neonatal data, cUS, preterm, term and later MRI scans and neurodevelopmental outcome. 11 infants were studied, two < 31, four 34-36 and five 37-40 weeks GA. TSB levels: 235-583 micromol/L (preterms); 423-720 micromol/L (terms). Neonatal neurological examination was abnormal in 8/10. cUS showed increased basal ganglia (BG) in 4/9 infants and white matter (WM) echogenicity, lenticulostriate vasculopathy (LSV) and caudothalamic hyperechogencity/cysts (GLCs) in 5/9 infants. MRI showed abnormal signal intensity (SI) in the globus pallidum (GP) in 1/2 preterm, 8/9 term and 9/11 later scans. Abnormal WM SI occurred in 2 preterm, 7 term and 10/11 later scans. Seven infants developed athetoid/dystonic cerebral palsy (CP) and 6 hearing loss (HL). Adverse outcome was associated with abnormal BG on cUS (3/4 CP, 4/4 HL), with high SI in GP (7/9 CP, 6/9 HL) on late T2-weighted MRI (all GA) and on T1/T2-weighted term MRI, mainly in term-born infants. WM abnormalities, GLCs and LSV did not correlate with outcome. Severe CP occurred with relatively low TSB levels in preterms but only at high levels in full-terms; HL was difficult to predict. Early scans did not reliably predict motor deficits whilst all children with CP had abnormal central grey matter on later scans. Abnormal WM was seen early suggesting primary involvement rather than change secondary to grey matter damage. Why characteristic central grey matter MRI features of kernicterus are not seen early remains unexplained.

  5. Brain grey and white matter predictors of verbal ability traits in older age: The Lothian Birth Cohort 1936.

    PubMed

    Hoffman, Paul; Cox, Simon R; Dykiert, Dominika; Muñoz Maniega, Susana; Valdés Hernández, Maria C; Bastin, Mark E; Wardlaw, Joanna M; Deary, Ian J

    2017-08-01

    Cerebral grey and white matter MRI parameters are related to general intelligence and some specific cognitive abilities. Less is known about how structural brain measures relate specifically to verbal processing abilities. We used multi-modal structural MRI to investigate the grey matter (GM) and white matter (WM) correlates of verbal ability in 556 healthy older adults (mean age = 72.68 years, s.d. = .72 years). Structural equation modelling was used to decompose verbal performance into two latent factors: a storage factor that indexed participants' ability to store representations of verbal knowledge and an executive factor that measured their ability to regulate their access to this information in a flexible and task-appropriate manner. GM volumes and WM fractional anisotropy (FA) for components of the language/semantic network were used as predictors of these verbal ability factors. Volume of the ventral temporal cortices predicted participants' storage scores (β = .12, FDR-adjusted p = .04), consistent with the theory that this region acts as a key substrate of semantic knowledge. This effect was mediated by childhood IQ, suggesting a lifelong association between ventral temporal volume and verbal knowledge, rather than an effect of cognitive decline in later life. Executive ability was predicted by FA fractional anisotropy of the arcuate fasciculus (β = .19, FDR-adjusted p = .001), a major language-related tract implicated in speech production. This result suggests that this tract plays a role in the controlled retrieval of word knowledge during speech. At a more general level, these data highlight a basic distinction between information representation, which relies on the accumulation of tissue in specialised GM regions, and executive control, which depends on long-range WM pathways for efficient communication across distributed cortical networks. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Uncertainty representation of grey numbers and grey sets.

    PubMed

    Yang, Yingjie; Liu, Sifeng; John, Robert

    2014-09-01

    In the literature, there is a presumption that a grey set and an interval-valued fuzzy set are equivalent. This presumption ignores the existence of discrete components in a grey number. In this paper, new measurements of uncertainties of grey numbers and grey sets, consisting of both absolute and relative uncertainties, are defined to give a comprehensive representation of uncertainties in a grey number and a grey set. Some simple examples are provided to illustrate that the proposed uncertainty measurement can give an effective representation of both absolute and relative uncertainties in a grey number and a grey set. The relationships between grey sets and interval-valued fuzzy sets are also analyzed from the point of view of the proposed uncertainty representation. The analysis demonstrates that grey sets and interval-valued fuzzy sets provide different but overlapping models for uncertainty representation in sets.

  7. Psychopathic traits are associated with cortical and subcortical volume alterations in healthy individuals.

    PubMed

    Vieira, Joana B; Ferreira-Santos, Fernando; Almeida, Pedro R; Barbosa, Fernando; Marques-Teixeira, João; Marsh, Abigail A

    2015-12-01

    Research suggests psychopathy is associated with structural brain alterations that may contribute to the affective and interpersonal deficits frequently observed in individuals with high psychopathic traits. However, the regional alterations related to different components of psychopathy are still unclear. We used voxel-based morphometry to characterize the structural correlates of psychopathy in a sample of 35 healthy adults assessed with the Triarchic Psychopathy Measure. Furthermore, we examined the regional grey matter alterations associated with the components described by the triarchic model. Our results showed that, after accounting for variation in total intracranial volume, age and IQ, overall psychopathy was negatively associated with grey matter volume in the left putamen and amygdala. Additional regression analysis with anatomical regions of interests revealed total triPM score was also associated with increased lateral orbitofrontal cortex (OFC) and caudate volume. Boldness was positively associated with volume in the right insula. Meanness was positively associated with lateral OFC and striatum volume, and negatively associated with amygdala volume. Finally, disinhibition was negatively associated with amygdala volume. Results highlight the contribution of both subcortical and cortical brain alterations for subclinical psychopathy and are discussed in light of prior research and theoretical accounts about the neurobiological bases of psychopathic traits. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Occipital GABA correlates with cognitive failures in daily life.

    PubMed

    Sandberg, Kristian; Blicher, Jakob Udby; Dong, Mia Yuan; Rees, Geraint; Near, Jamie; Kanai, Ryota

    2014-02-15

    The brain has limited capacity, and so selective attention enhances relevant incoming information while suppressing irrelevant information. This process is not always successful, and the frequency of such cognitive failures varies to a large extent between individuals. Here we hypothesised that individual differences in cognitive failures might be reflected in inhibitory processing in the sensory cortex. To test this hypothesis, we measured GABA in human visual cortex using MR spectroscopy and found a negative correlation between occipital GABA (GABA+/Cr ratio) and cognitive failures as measured by an established cognitive failures questionnaire (CFQ). For a second site in parietal cortex, no correlation between CFQ score and GABA+/Cr ratio was found, thus establishing the regional specificity of the link between occipital GABA and cognitive failures. We further found that grey matter volume in the left superior parietal lobule (SPL) correlated with cognitive failures independently from the impact of occipital GABA and together, occipital GABA and SPL grey matter volume statistically explained around 50% of the individual variability in daily cognitive failures. We speculate that the amount of GABA in sensory areas may reflect the potential capacity to selectively suppress irrelevant information already at the sensory level, or alternatively that GABA influences the specificity of neural representations in visual cortex thus improving the effectiveness of successful attentional modulation. © 2013. Published by Elsevier Inc. All rights reserved.

  9. Catechol-O-methyltransferase (COMT) influences the connectivity of the prefrontal cortex at rest

    PubMed Central

    Tunbridge, Elizabeth M.; Farrell, Sarah M.; Harrison, Paul J.; Mackay, Clare E.

    2013-01-01

    Catechol-O-methyltransferase (COMT) modulates dopamine in the prefrontal cortex (PFC) and influences PFC dopamine-dependent cognitive task performance. A human COMT polymorphism (Val158Met) alters enzyme activity and is associated with both the activation and functional connectivity of the PFC during task performance, particularly working memory. Here, we used functional magnetic resonance imaging and a data-driven, independent components analysis (ICA) approach to compare resting state functional connectivity within the executive control network (ECN) between young, male COMT Val158 (n = 27) and Met158 (n = 28) homozygotes. COMT genotype effects on grey matter were assessed using voxel-based morphometry. COMT genotype significantly modulated functional connectivity within the ECN, which included the head of the caudate, and anterior cingulate and frontal cortical regions. Val158 homozygotes showed greater functional connectivity between a cluster within the left ventrolateral PFC and the rest of the ECN (using a threshold of Z > 2.3 and a family-wise error cluster significance level of p < 0.05). This difference occurred in the absence of any alterations in grey matter. Our data show that COMT Val158Met affects the functional connectivity of the PFC at rest, complementing its prominent role in the activation and functional connectivity of this region during cognitive task performance. The results suggest that genotype-related differences in prefrontal dopaminergic tone result in neuroadaptive changes in basal functional connectivity, potentially including subtle COMT genotype-dependent differences in the relative coupling of task-positive and task-negative regions, which could in turn contribute to its effects on brain activation, connectivity, and behaviour. PMID:23228511

  10. An investigation of cerebral oxygen utilization, blood flow and cognition in healthy aging.

    PubMed

    Catchlove, Sarah J; Macpherson, Helen; Hughes, Matthew E; Chen, Yufen; Parrish, Todd B; Pipingas, Andrew

    2018-01-01

    Understanding how vascular and metabolic factors impact on cognitive function is essential to develop efficient therapies to prevent and treat cognitive losses in older age. Cerebral metabolic rate of oxygen (CMRO2), cerebral blood flow (CBF) and venous oxygenation (Yv) comprise key physiologic processes that maintain optimum functioning of neural activity. Changes to these parameters across the lifespan may precede neurodegeneration and contribute to age-related cognitive decline. This study examined differences in blood flow and metabolism between 31 healthy younger (<50 years) and 29 healthy older (>50 years) adults; and investigated whether these parameters contribute to cognitive performance. Participants underwent a cognitive assessment and MRI scan. Grey matter CMRO2 was calculated from measures of CBF (phase contrast MRI), arterial and venous oxygenation (TRUST MRI) to assess group differences in physiological function and the contribution of these parameters to cognition. Performance on memory (p<0.001) and attention tasks (p<0.001) and total CBF were reduced (p<0.05), and Yv trended toward a decrease (p = .06) in the older group, while grey matter CBF and CMRO2 did not differ between the age groups. Attention was negatively associated with CBF when adjusted (p<0.05) in the older adults, but not in the younger group. There was no such relationship with memory. Neither cognitive measure was associated with oxygen metabolism or venous oxygenation in either age group. Findings indicated an age-related imbalance between oxygen delivery, consumption and demand, evidenced by a decreased supply of oxygen with unchanged metabolism resulting in increased oxygen extraction. CBF predicted attention when the age-effect was controlled, suggesting a task- specific CBF- cognition relationship.

  11. Surface Based Analysis of Diffusion Orientation for Identifying Architectonic Domains in the In Vivo Human Cortex

    PubMed Central

    McNab, Jennifer A.; Polimeni, Jonathan R.; Wang, Ruopeng; Augustinack, Jean C.; Fujimoto, Kyoko; Player, Allison; Janssens, Thomas; Farivar, Reza; Folkerth, Rebecca D.; Vanduffel, Wim; Wald, Lawrence L.

    2012-01-01

    Diffusion tensor MRI is sensitive to the coherent structure of brain tissue and is commonly used to study large-scale white matter structure. Diffusion in grey matter is more isotropic, however, several groups have observed coherent patterns of diffusion anisotropy within the cerebral cortical grey matter. We extend the study of cortical diffusion anisotropy by relating it to the local coordinate system of the folded cerebral cortex. We use 1mm and sub-millimeter isotropic resolution diffusion imaging to perform a laminar analysis of the principal diffusion orientation, fractional anisotropy, mean diffusivity and partial volume effects. Data from 6 in vivo human subjects, a fixed human brain specimen and an anesthetized macaque were examined. Large regions of cortex show a radial diffusion orientation. In vivo human and macaque data displayed a sharp transition from radial to tangential diffusion orientation at the border between primary motor and somatosensory cortex, and some evidence of tangential diffusion in secondary somatosensory cortex and primary auditory cortex. Ex vivo diffusion imaging in a human tissue sample showed some tangential diffusion orientation in S1 but mostly radial diffusion orientations in both M1 and S1. PMID:23247190

  12. Frontotemporal white matter changes in amyotrophic lateral sclerosis.

    PubMed

    Abrahams, Sharon; Goldstein, Laura H; Suckling, John; Ng, Virginia; Simmons, Andy; Chitnis, Xavier; Atkins, Louise; Williams, Steve C R; Leigh, P N

    2005-03-01

    Cognitive dysfunction can occur in some patients with amyotrophic lateral sclerosis (ALS) who are not suffering from dementia. The most striking and consistent cognitive deficit has been found using tests of verbal fluency. ALS patients with verbal fluency deficits have shown functional imaging abnormalities predominantly in frontotemporal regions using positron emission tomography (PET). This study used automated volumetric voxel-based analysis of grey and white matter densities of structural magnetic resonance imaging (MRI) scans to explore the underlying pattern of structural cerebral change in nondemented ALS patients with verbal fluency deficits. Two groups of ALS patients, defined by the presence or absence of cognitive impairment on the basis of the Written Verbal Fluency Test (ALSi, cognitively impaired, n=11; ALSu, cognitively unimpaired n=12) were compared with healthy age matched controls (n=12). A comparison of the ALSi group with controls revealed significantly (p<0.002) reduced white matter volume in extensive motor and non-motor regions, including regions corresponding to frontotemporal association fibres. These patients demonstrated a corresponding cognitive profile of executive and memory dysfunction. Less extensive white matter reductions were revealed in the comparison of the ALSu and control groups in regions corresponding to frontal association fibres. White matter volumes were also found to correlate with performance on memory tests. There were no significant reductions in grey matter volume in the comparison of either patient group with controls. The structural white matter abnormalities in frontal and temporal regions revealed here may underlie the cognitive and functional imaging abnormalities previously reported in non-demented ALS patients. The results also suggest that extra-motor structural abnormalities may be present in ALS patients with no evidence of cognitive change. The findings support the hypothesis of a continuum of extra-motor cerebral and cognitive change in this disorder.

  13. Cardiorespiratory fitness, cognition and brain structure after TIA or minor ischemic stroke.

    PubMed

    Boss, H Myrthe; Van Schaik, Sander M; Witkamp, Theo D; Geerlings, Mirjam I; Weinstein, Henry C; Van den Berg-Vos, Renske M

    2017-10-01

    Background It is not known whether cardiorespiratory fitness is associated with better cognitive performance and brain structure in patients with a TIA or minor ischemic stroke. Aims To examine the association between cardiorespiratory fitness, cognition and brain structure in patients with a TIA and minor stroke. Methods The study population consisted of patients with a TIA or minor stroke with a baseline measurement of the peak oxygen consumption, a MRI scan of brain and neuropsychological assessment. Composite z-scores were calculated for the cognitive domains attention, memory and executive functioning. White matter hyperintensities, microbleeds and lacunes were rated visually. The mean apparent diffusion coefficient was measured in regions of interest in frontal and occipital white matter and in the centrum semiovale as a marker of white matter structure. Normalized brain volumes were estimated by use of Statistical Parametric Mapping. Results In 84 included patients, linear regression analysis adjusted for age, sex and education showed that a higher peak oxygen consumption was associated with higher cognitive z-scores, a larger grey matter volume (B = 0.15 (95% CI 0.05; 0.26)) and a lower mean apparent diffusion coefficient (B = -.004 (95% CI -.007; -.001)). We found no association between the peak oxygen consumption and severe white matter hyperintensities, microbleeds, lacunes and total brain volume. Conclusions These data suggest that cardiorespiratory fitness is associated with better cognitive performance, greater grey matter volume and greater integrity of the white matter in patients with a TIA or minor ischemic stroke. Further prospective trials are necessary to define the effect of cardiorespiratory fitness on cognition and brain structure in patients with TIA or minor stroke.

  14. Classifying adolescent attention-deficit/hyperactivity disorder (ADHD) based on functional and structural imaging.

    PubMed

    Iannaccone, Reto; Hauser, Tobias U; Ball, Juliane; Brandeis, Daniel; Walitza, Susanne; Brem, Silvia

    2015-10-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common disabling psychiatric disorder associated with consistent deficits in error processing, inhibition and regionally decreased grey matter volumes. The diagnosis is based on clinical presentation, interviews and questionnaires, which are to some degree subjective and would benefit from verification through biomarkers. Here, pattern recognition of multiple discriminative functional and structural brain patterns was applied to classify adolescents with ADHD and controls. Functional activation features in a Flanker/NoGo task probing error processing and inhibition along with structural magnetic resonance imaging data served to predict group membership using support vector machines (SVMs). The SVM pattern recognition algorithm correctly classified 77.78% of the subjects with a sensitivity and specificity of 77.78% based on error processing. Predictive regions for controls were mainly detected in core areas for error processing and attention such as the medial and dorsolateral frontal areas reflecting deficient processing in ADHD (Hart et al., in Hum Brain Mapp 35:3083-3094, 2014), and overlapped with decreased activations in patients in conventional group comparisons. Regions more predictive for ADHD patients were identified in the posterior cingulate, temporal and occipital cortex. Interestingly despite pronounced univariate group differences in inhibition-related activation and grey matter volumes the corresponding classifiers failed or only yielded a poor discrimination. The present study corroborates the potential of task-related brain activation for classification shown in previous studies. It remains to be clarified whether error processing, which performed best here, also contributes to the discrimination of useful dimensions and subtypes, different psychiatric disorders, and prediction of treatment success across studies and sites.

  15. Adverse childhood experiences influence the detrimental effect of bipolar disorder and schizophrenia on cortico-limbic grey matter volumes.

    PubMed

    Poletti, Sara; Vai, Benedetta; Smeraldi, Enrico; Cavallaro, Roberto; Colombo, Cristina; Benedetti, Francesco

    2016-01-01

    Adverse childhood experiences (ACE) can lead to several negative consequences in adult life, are highly prevalent in psychiatric disorders where they associate with clinical and brain morphological features. Grey matter volume loss is a central characteristic of bipolar disorder (BD) and schizophrenia (SCZ). The aim of this study is to measure the effect of diagnosis and ACE on GM volume in a sample of patients with BD or SCZ compared with healthy controls (HC). We studied 206 depressed BD patients, 96 SCZ patients and 136 healthy subjects. GM volumes were estimated with 3.0 Tesla MRI and analyzed with VBM technique. The effect of diagnosis was investigated in the whole sample and separately exposed to high and low ACE subjects. An effect of diagnosis was observed in orbitofrontal cortex encompassing BA 47 and insula, and in the thalamus. HC had the highest volume and SCZ patients the lowest with BD patients showing an intermediate volume. This pattern persisted only in subjects with high ACE. No differences were observed for low ACE subjects. The three diagnostic groups differ for age and education, previous and current medications, and treatment periods. Our results underline the importance of ACE on the neural underpinnings of psychiatric psychopathology and suggest a major role of exposure to ACE for the GM deficits to reveal in clinical populations. Exposure to early stress is a crucial factor that must be taken in to account when searching for biomarkers of BD and SCZ. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Myelin water and T(2) relaxation measurements in the healthy cervical spinal cord at 3.0T: repeatability and changes with age.

    PubMed

    MacMillan, Erin L; Mädler, Burkhard; Fichtner, Nicole; Dvorak, Marcel F; Li, David K B; Curt, Armin; MacKay, Alex L

    2011-01-15

    Multiecho T(2) relaxation measurements offer specific information about myelin content through the myelin water fraction (MWF), as well as about the water environments through the intra- and extra-cellular (IE), and global, geometric mean T(2) (GMT(2)) times. While these measurements have yielded new insights into brain development and pathologies, they have yet to be thoroughly investigated in the spinal cord. The goals of this study were: (1) to apply a new 3D multiecho T(2) relaxation measurement in the cervical spine with sufficient axial resolution to distinguish grey and white matter; (2) to perform a pilot reliability assessment of the resulting MWF and GMT(2) measures in a target population; and (3) to detect differences in these measures between a younger cohort (20-30 years of age) and an older cohort (50-75 years of age) of healthy adults. The results demonstrated that the MWF in younger healthy adults follows the known pattern of lower myelin content in grey matter (mean (95% confidence interval)) (0.049 (0.030-0.067)) as compared to white matter (0.296 (0.275-0.317), p<0.001). The reliability coefficients were 0.65 and 0.82 for the MWF in the dorsal (DC) and lateral column (LC) white matter, respectively; 0.79 and 0.52 for the IE GMT(2); and 0.74 and 0.73 for the global GMT(2). Significantly lower MWF were found in the older adults than in the younger adults (DC p=0.014; LC p=0.012), as well as lower IE GMT(2) times (DC p=0.008; LC p=0.042), however, the global GMT(2) times did not show any differences. These changes in MWF and IE GMT(2) times, but not in global GMT(2) times, indicate that multiecho T(2) relaxation measures are sensitive to changes in myelin integrity and cell morphology that may not be apparent on conventional T(2) weighted images. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Early life stress-induced alterations in rat brain structures measured with high resolution MRI.

    PubMed

    Sarabdjitsingh, R Angela; Loi, Manila; Joëls, Marian; Dijkhuizen, Rick M; van der Toorn, Annette

    2017-01-01

    Adverse experiences early in life impair cognitive function both in rodents and humans. In humans this increases the vulnerability to develop mental illnesses while in the rodent brain early life stress (ELS) abnormalities are associated with changes in synaptic plasticity, excitability and microstructure. Detailed information on the effects of ELS on rodent brain structural integrity at large and connectivity within the brain is currently lacking; this information is highly relevant for understanding the mechanism by which early life stress predisposes to mental illnesses. Here, we exposed rats to 24 hours of maternal deprivation (MD) at postnatal day 3, a paradigm known to increase corticosterone levels and thereby activate glucocorticoid receptors in the brain. Using structural magnetic resonance imaging we examined: i) volumetric changes and white/grey matter properties of the whole cerebrum and of specific brain areas; and ii) whether potential alterations could be normalized by blocking glucocorticoid receptors with mifepristone during the critical developmental window of early adolescence, i.e. between postnatal days 26 and 28. The results show that MD caused a volumetric reduction of the prefrontal cortex, particularly the ventromedial part, and the orbitofrontal cortex. Within the whole cerebrum, white (relative to grey) matter volume was decreased and region-specifically in prefrontal cortex and dorsomedial striatum following MD. A trend was found for the hippocampus. Grey matter fractions were not affected. Treatment with mifepristone did not normalize these changes. This study indicates that early life stress in rodents has long lasting consequences for the volume and structural integrity of the brain. However, changes were relatively modest and-unlike behavior- not mitigated by blockade of glucocorticoid receptors during a critical developmental period.

  18. A gradient in cortical pathology in multiple sclerosis by in vivo quantitative 7 T imaging

    PubMed Central

    Louapre, Céline; Govindarajan, Sindhuja T.; Giannì, Costanza; Nielsen, A. Scott; Cohen-Adad, Julien; Sloane, Jacob; Kinkel, Revere P.

    2015-01-01

    We used a surface-based analysis of T2* relaxation rates at 7 T magnetic resonance imaging, which allows sampling quantitative T2* throughout the cortical width, to map in vivo the spatial distribution of intracortical pathology in multiple sclerosis. Ultra-high resolution quantitative T2* maps were obtained in 10 subjects with clinically isolated syndrome/early multiple sclerosis (≤3 years disease duration), 18 subjects with relapsing-remitting multiple sclerosis (≥4 years disease duration), 13 subjects with secondary progressive multiple sclerosis, and in 17 age-matched healthy controls. Quantitative T2* maps were registered to anatomical cortical surfaces for sampling T2* at 25%, 50% and 75% depth from the pial surface. Differences in laminar quantitative T2* between each patient group and controls were assessed using general linear model (P < 0.05 corrected for multiple comparisons). In all 41 multiple sclerosis cases, we tested for associations between laminar quantitative T2*, neurological disability, Multiple Sclerosis Severity Score, cortical thickness, and white matter lesions. In patients, we measured, T2* in intracortical lesions and in the intracortical portion of leukocortical lesions visually detected on 7 T scans. Cortical lesional T2* was compared with patients’ normal-appearing cortical grey matter T2* (paired t-test) and with mean cortical T2* in controls (linear regression using age as nuisance factor). Subjects with multiple sclerosis exhibited relative to controls, independent from cortical thickness, significantly increased T2*, consistent with cortical myelin and iron loss. In early disease, T2* changes were focal and mainly confined at 25% depth, and in cortical sulci. In later disease stages T2* changes involved deeper cortical laminae, multiple cortical areas and gyri. In patients, T2* in intracortical and leukocortical lesions was increased compared with normal-appearing cortical grey matter (P < 10−10 and P < 10−7), and mean cortical T2* in controls (P < 10−5 and P < 10−6). In secondary progressive multiple sclerosis, T2* in normal-appearing cortical grey matter was significantly increased relative to controls (P < 0.001). Laminar T2* changes may, thus, result from cortical pathology within and outside focal cortical lesions. Neurological disability and Multiple Sclerosis Severity Score correlated each with the degree of laminar quantitative T2* changes, independently from white matter lesions, the greatest association being at 25% depth, while they did not correlate with cortical thickness and volume. These findings demonstrate a gradient in the expression of cortical pathology throughout stages of multiple sclerosis, which was associated with worse disability and provides in vivo evidence for the existence of a cortical pathological process driven from the pial surface. PMID:25681411

  19. Capillary electrophoresis with laser-induced fluorescence detection: a sensitive method for monitoring extracellular concentrations of amino acids in the periaqueductal grey matter.

    PubMed

    Bergquist, J; Vona, M J; Stiller, C O; O'Connor, W T; Falkenberg, T; Ekman, R

    1996-03-01

    The use of capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) for the analysis of microdialysate samples from the periaqueductal grey matter (PAG) of freely moving rats is described. By employing 3-(4-carboxybenzoyl)-2-quinoline-carboxaldehyde (CBQCA) as a derivatization agent, we simultaneously monitored the concentrations of 8 amino acids (arginine, glutamine, valine, gamma-amino-n-butyric acid (GABA), alanine, glycine, glutamate, and aspartate), with nanomolar and subnanomolar detection limits. Two of the amino acids (GABA and glutamate) were analysed in parallel by conventional high-performance liquid chromatography (HPLC) in order to directly compare the two analytical methods. Other CE methods for analysis of microdialysate have been previously described, and this improved method offers greater sensitivity, ease of use, and the possibility to monitor several amino acids simultaneously. By using this technique together with an optimised form of microdialysis technique, the tiny sample consumption and the improved detection limits permit the detection of fast and transient transmitter changes.

  20. Social networking sites use and the morphology of a social-semantic brain network.

    PubMed

    Turel, Ofir; He, Qinghua; Brevers, Damien; Bechara, Antoine

    2017-09-30

    Social lives have shifted, at least in part, for large portions of the population to social networking sites. How such lifestyle changes may be associated with brain structures is still largely unknown. In this manuscript, we describe two preliminary studies aimed at exploring this issue. The first study (n = 276) showed that Facebook users reported on increased social-semantic and mentalizing demands, and that such increases were positively associated with people's level of Facebook use. The second study (n = 33) theorized on and examined likely anatomical correlates of such changes in demands on the brain. Findings indicated that the grey matter volumes of the posterior parts of the bilateral middle and superior temporal, and left fusiform gyri were positively associated with the level of Facebook use. These results provided preliminary evidence that grey matter volumes of brain structures involved in social-semantic and mentalizing tasks may be linked to the extent of social networking sites use.

  1. Anaplastic astrocytoma in the spinal cord of an African pygmy hedgehog (Atelerix albiventris).

    PubMed

    Gibson, C J; Parry, N M A; Jakowski, R M; Eshar, D

    2008-11-01

    A 2-year-old, female hedgehog presented with an 8-month history of progressive, ascending paresis/paralysis and was tentatively diagnosed with wobbly hedgehog syndrome. She died awaiting further diagnostic tests, and the owners consented to postmortem examination. Grossly, the bladder was large and flaccid and the cervical and lumbar spinal cord were regionally enlarged, light grey, and friable with multifocal hemorrhages. The thoracic spinal cord was grossly normal. Microscopically all regions of the spinal cord had similar changes, although the cervical and lumbar sections were most severely affected. These regions were completely effaced by a moderately cellular infiltration of highly pleomorphic polygonal to spindle shaped cells, mineralization, and necrosis, which were most consistent with anaplastic astrocytoma. The thoracic spinal cord white matter was similarly infiltrated by the neoplastic cells, with perivascular extension into the otherwise normal grey matter. A diagnosis of anaplastic astrocytoma was confirmed using immunohistochemical stains that were positive for glial fibrillary acidic protein and S100.

  2. Analysis of brain and spinal cord lesions to occult brain damage in seropositive and seronegative neuromyelitis optica.

    PubMed

    Sun, Jie; Sun, Xianting; Zhang, Ningnannan; Wang, Qiuhui; Cai, Huanhuan; Qi, Yuan; Li, Ting; Qin, Wen; Yu, Chunshui

    2017-09-01

    According to aquaporin-4 antibody (AQP4-Ab), neuromyelitis optica (NMO) can be divided into seropositive and seronegative subgroups. The purpose of this study was to a) compare the distribution of spinal cord and brain magnetic resonance imaging (MRI) lesions between seropositive and seronegative NMO patients; b) explore occult brain damage in seropositive and seronegative NMO patients; and c) explore the contribution of visible lesions to occult grey and white matter damage in seropositive and seronegative NMO patients. Twenty-two AQP4-Ab seropositive and 14 seronegative NMO patients and 30 healthy controls were included in the study. Two neuroradiologists independently measured the brain lesion volume (BLV) and the length of spinal cord lesion (LSCL) and recorded the region of brain lesions. The normal-appearing grey matter volume (NAGM-GMV) and white matter fractional anisotropy (NAWM-FA) were calculated for each subject to evaluate occult brain damage. The seropositive patients displayed more extensive damage in the spinal cord than the seronegative patients, and the seronegative group had a higher proportion of patients with brainstem lesions (28.57%) than the seropositive group (4.55%, P=0.064). Both NMO subgroups exhibited reduced NAGM-GMV and NAWM-FA compared with the healthy controls. NAGM-GMV was negatively correlated with LSCL in the seropositive group (r s =-0.444, P=0.044) and with BLV in the seronegative group (r s =-0.768, P=0.002). NAWM-FA was also negatively correlated with BLV in the seropositive group (r s =-0.682, P<0.001). Our findings suggest that the occult brain damage in these two NMO subgroups may be due to different mechanisms, which need to be further clarified. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China.

    PubMed

    Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao

    2015-09-22

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM₁ (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  4. Ionotropic glutamate receptor expression in human white matter.

    PubMed

    Christensen, Pia Crone; Samadi-Bahrami, Zahra; Pavlov, Vlady; Stys, Peter K; Moore, G R Wayne

    2016-09-06

    Glutamate is the key excitatory neurotransmitter of the central nervous system (CNS). Its role in human grey matter transmission is well understood, but this is less clear in white matter (WM). Ionotropic glutamate receptors (iGluR) are found on both neuronal cell bodies and glia as well as on myelinated axons in rodents, and rodent WM tissue is capable of glutamate release. Thus, rodent WM expresses many of the components of the traditional grey matter neuron-to-neuron synapse, but to date this has not been shown for human WM. We demonstrate the presence of iGluRs in human WM by immunofluorescence employing high-resolution spectral confocal imaging. We found that the obligatory N-methyl-d-aspartic acid (NMDA) receptor subunit GluN1 and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA4 co-localized with myelin, oligodendroglial cell bodies and processes. Additionally, GluA4 colocalized with axons, often in distinct clusters. These findings may explain why human WM is vulnerable to excitotoxic events following acute insults such as stroke and traumatic brain injury and in more chronic inflammatory conditions such as multiple sclerosis (MS). Further exploration of human WM glutamate signalling could pave the way for developing future therapies modulating the glutamate-mediated damage in these and other CNS disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Quantitative MRI of the spinal cord and brain in adrenomyeloneuropathy: in vivo assessment of structural changes.

    PubMed

    Castellano, Antonella; Papinutto, Nico; Cadioli, Marcello; Brugnara, Gianluca; Iadanza, Antonella; Scigliuolo, Graziana; Pareyson, Davide; Uziel, Graziella; Köhler, Wolfgang; Aubourg, Patrick; Falini, Andrea; Henry, Roland G; Politi, Letterio S; Salsano, Ettore

    2016-06-01

    Adrenomyeloneuropathy is the late-onset form of X-linked adrenoleukodystrophy, and is considered the most frequent metabolic hereditary spastic paraplegia. In adrenomyeloneuropathy the spinal cord is the main site of pathology. Differently from quantitative magnetic resonance imaging of the brain, little is known about the feasibility and utility of advanced neuroimaging in quantifying the spinal cord abnormalities in hereditary diseases. Moreover, little is known about the subtle pathological changes that can characterize the brain of adrenomyeloneuropathy subjects in the early stages of the disease. We performed a cross-sectional study on 13 patients with adrenomyeloneuropathy and 12 age-matched healthy control subjects who underwent quantitative magnetic resonance imaging to assess the structural changes of the upper spinal cord and brain. Total cord areas from C2-3 to T2-3 level were measured, and diffusion tensor imaging metrics, i.e. fractional anisotropy, mean, axial and radial diffusivity values were calculated in both grey and white matter of spinal cord. In the brain, grey matter regions were parcellated with Freesurfer and average volume and thickness, and mean diffusivity and fractional anisotropy from co-registered diffusion maps were calculated in each region. Brain white matter diffusion tensor imaging metrics were assessed using whole-brain tract-based spatial statistics, and tractography-based analysis on corticospinal tracts. Correlations among clinical, structural and diffusion tensor imaging measures were calculated. In patients total cord area was reduced by 26.3% to 40.2% at all tested levels (P < 0.0001). A mean 16% reduction of spinal cord white matter fractional anisotropy (P ≤ 0.0003) with a concomitant 9.7% axial diffusivity reduction (P < 0.009) and 34.5% radial diffusivity increase (P < 0.009) was observed, suggesting co-presence of axonal degeneration and demyelination. Brain tract-based spatial statistics showed a marked reduction of fractional anisotropy, increase of radial diffusivity (P < 0.001) and no axial diffusivity changes in several white matter tracts, including corticospinal tracts and optic radiations, indicating predominant demyelination. Tractography-based analysis confirmed the results within corticospinal tracts. No significant cortical volume and thickness reduction or grey matter diffusion tensor imaging values alterations were observed in patients. A correlation between radial diffusivity and disease duration along the corticospinal tracts (r = 0.806, P < 0.01) was found. In conclusion, in adrenomyeloneuropathy patients quantitative magnetic resonance imaging-derived measures identify and quantify structural changes in the upper spinal cord and brain which agree with the expected histopathology, and suggest that the disease could be primarily caused by a demyelination rather than a primitive axonal damage. The results of this study may also encourage the employment of quantitative magnetic resonance imaging in other hereditary diseases with spinal cord involvement. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Single house on-site grey water treatment using a submerged membrane bioreactor for toilet flushing.

    PubMed

    Fountoulakis, M S; Markakis, N; Petousi, I; Manios, T

    2016-05-01

    Wastewater recycling has been and continues to be practiced all over the world for a variety of reasons including: increasing water availability, combating water shortages and drought, and supporting environmental and public health protection. Nowadays, one of the most interesting issues for wastewater recycling is the on-site treatment and reuse of grey water. During this study the efficiency of a compact Submerged Membrane Bioreactor (SMBR) system to treat real grey water in a single house in Crete, Greece, was examined. In the study, grey water was collected from a bathtub, shower and washing machine containing significant amounts of organic matter and pathogens. Chemical oxygen demand (COD) removal in the system was approximately 87%. Total suspended solids (TSS) were reduced from 95mgL(-1) in the influent to 8mgL(-1) in the effluent. The efficiency of the system to reduce anionic surfactants was about 80%. Fecal and total coliforms decreased significantly using the SMBR system due to rejection, by the membrane, used in the study. Overall, the SMBR treatment produces average effluent values that would satisfy international guidelines for indoor reuse applications such as toilet flushing. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. The composite Archaean grey gneisses: Petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth

    NASA Astrophysics Data System (ADS)

    Moyen, Jean-François

    2011-04-01

    The geodynamic context of formation of the Archaean continental crust is a matter of debate. The crust is largely made of grey gneiss complexes, a composite rock assemblage dominated by granitoids that are generally regarded as belonging to the TTG (tonalite-trondhjemite-granodiorite) series. Using a large database of published TTG and grey gneiss compositions, it is possible to show that the granitoids forming grey gneiss complexes actually belong to at least four main geochemical groups: (i) a potassic component made of granodiorites and formed by melting of existing crustal lithologies; and (ii) three sodic groups (TTG proper) that comprise low, medium and high pressure groups. The geochemistry of the low pressure group is consistent with derivation from a plagioclase and garnet-amphibolite; the medium pressure group was formed in equilibrium with a garnet-rich, plagioclase-poor amphibolite, whereas the high pressure group derived from a rutile-bearing eclogite. As the temperature of melting of metamafic rocks is largely independent from pressure, this corresponds to melting along a range of contrasting geothermal gradients, in turn reflecting a range of tectonic sites for the formation of the Archaean continental crust.

  8. Automatic segmentation of white matter hyperintensities robust to multicentre acquisition and pathological variability

    NASA Astrophysics Data System (ADS)

    Samaille, T.; Colliot, O.; Cuingnet, R.; Jouvent, E.; Chabriat, H.; Dormont, D.; Chupin, M.

    2012-02-01

    White matter hyperintensities (WMH), commonly seen on FLAIR images in elderly people, are a risk factor for dementia onset and have been associated with motor and cognitive deficits. We present here a method to fully automatically segment WMH from T1 and FLAIR images. Iterative steps of non linear diffusion followed by watershed segmentation were applied on FLAIR images until convergence. Diffusivity function and associated contrast parameter were carefully designed to adapt to WMH segmentation. It resulted in piecewise constant images with enhanced contrast between lesions and surrounding tissues. Selection of WMH areas was based on two characteristics: 1) a threshold automatically computed for intensity selection, 2) main location of areas in white matter. False positive areas were finally removed based on their proximity with cerebrospinal fluid/grey matter interface. Evaluation was performed on 67 patients: 24 with amnestic mild cognitive impairment (MCI), from five different centres, and 43 with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoaraiosis (CADASIL) acquired in a single centre. Results showed excellent volume agreement with manual delineation (Pearson coefficient: r=0.97, p<0.001) and substantial spatial correspondence (Similarity Index: 72%+/-16%). Our method appeared robust to acquisition differences across the centres as well as to pathological variability.

  9. Influence of room lighting on grey-scale perception with a CRT-and a TFT monitor display.

    PubMed

    Haak, R; Wicht, M J; Hellmich, M; Nowak, G; Noack, M J

    2002-05-01

    To determine the influence of ambient lighting on grey-scale perception using a cathode-ray tube (CRT) and a thin film transistor (TFT) computer display. A cathode ray tube (Nokia XS 446) and a liquid crystal display (Panasonic LC 50S) were used at reduced room lighting (70 lux) and under conditions recommended for a dental operatory (1000 lux). Twenty-seven observers examined twice a modified SMPTE test pattern [0 to 255; 255 to 0] grey-scale values. The corresponding contrast differences were allocated to four ranges of grey levels (I: 0-63; II: 64-127; III: 128-191; IV: 192-255). The influences of monitor type, grey-scale range and illumination were evaluated by means of repeated measures analysis of variance. Detection of differences in monochromatic intensity was significantly earlier with reduced lighting (P<0.0001). When full ambient lighting was used, the TFT display was superior compared to the CRT monitor in ranges II and III (P<0.0001), whereas no differences could be detected for grey intensities between 0 and 63 (P=0.71) and between 192 and 255 (P=0.36). Background lighting hampers grey-scale perception on computer displays. In this study of one TFT and one CRT monitor, the TFT in full ambient lighting was associated with earlier detection of grey scale differences than CRT.

  10. 3D Maps from Multiple MRI Illustrate Changing Atrophy Patterns as Subjects Progress from MCI to AD

    PubMed Central

    Whitwell, Jennifer L; Przybelski, Scott; Weigand, Stephen D; Knopman, David S; Boeve, Bradley F; Petersen, Ronald C; Jack, Clifford R

    2009-01-01

    Summary Mild cognitive impairment (MCI), particularly the amnestic subtype (aMCI), is considered as a transitional stage between normal aging and a diagnosis of clinically probable Alzheimer's disease (AD). The aMCI construct is particularly useful as it provides an opportunity to assess a clinical stage which in most subjects represents prodromal AD. The aim of this study was to assess the progression of cerebral atrophy over multiple serial MRI during the period from aMCI to conversion to AD. Thirty-three subjects were selected that fulfilled clinical criteria for aMCI and had three serial MRI scans: the first scan approximately three years before conversion to AD, the second scan approximately one year before conversion, and the third scan at the time of conversion from aMCI to AD. A group of 33 healthy controls were age and gender-matched to the study cohort. Voxel-based morphometry (VBM) was used to assess patterns of grey matter atrophy in the aMCI subjects at each time-point compared to the control group. Customized templates and prior probability maps were used to avoid normalization and segmentation bias. The pattern of grey matter loss in the aMCI subject scans that were three years before conversion was focused primarily on the medial temporal lobes, including the amygdala, anterior hippocampus and entorhinal cortex, with some additional involvement of the fusiform gyrus, compared to controls. The extent and magnitude of the cerebral atrophy further progressed by the time the subjects were one year before conversion. At this point atrophy in the temporal lobes spread to include the middle temporal gyrus, and extended into more posterior regions of the temporal lobe to include the entire extent of the hippocampus. The parietal lobe also started to become involved. By the time the subjects had converted to a clinical diagnosis of AD the pattern of grey matter atrophy had become still more widespread with more severe involvement of the medial temporal lobes and the temporoparietal association cortices and, for the first time, substantial involvement of the frontal lobes. This pattern of progression fits well with the Braak and Braak neurofibrillary pathological staging scheme in AD. It suggests that the earliest changes occur in the anterior medial temporal lobe and fusiform gyrus, and that these changes occur at least three years before conversion to AD. These results also suggest that 3-dimensional patterns of grey matter atrophy may help to predict the time to conversion in subjects with aMCI. PMID:17533169

  11. Grey literature in meta-analyses.

    PubMed

    Conn, Vicki S; Valentine, Jeffrey C; Cooper, Harris M; Rantz, Marilyn J

    2003-01-01

    In meta-analysis, researchers combine the results of individual studies to arrive at cumulative conclusions. Meta-analysts sometimes include "grey literature" in their evidential base, which includes unpublished studies and studies published outside widely available journals. Because grey literature is a source of data that might not employ peer review, critics have questioned the validity of its data and the results of meta-analyses that include it. To examine evidence regarding whether grey literature should be included in meta-analyses and strategies to manage grey literature in quantitative synthesis. This article reviews evidence on whether the results of studies published in peer-reviewed journals are representative of results from broader samplings of research on a topic as a rationale for inclusion of grey literature. Strategies to enhance access to grey literature are addressed. The most consistent and robust difference between published and grey literature is that published research is more likely to contain results that are statistically significant. Effect size estimates of published research are about one-third larger than those of unpublished studies. Unfunded and small sample studies are less likely to be published. Yet, importantly, methodological rigor does not differ between published and grey literature. Meta-analyses that exclude grey literature likely (a) over-represent studies with statistically significant findings, (b) inflate effect size estimates, and (c) provide less precise effect size estimates than meta-analyses including grey literature. Meta-analyses should include grey literature to fully reflect the existing evidential base and should assess the impact of methodological variations through moderator analysis.

  12. Quantification of γ-aminobutyric acid (GABA) in 1 H MRS volumes composed heterogeneously of grey and white matter.

    PubMed

    Mikkelsen, Mark; Singh, Krish D; Brealy, Jennifer A; Linden, David E J; Evans, C John

    2016-11-01

    The quantification of γ-aminobutyric acid (GABA) concentration using localised MRS suffers from partial volume effects related to differences in the intrinsic concentration of GABA in grey (GM) and white (WM) matter. These differences can be represented as a ratio between intrinsic GABA in GM and WM: r M . Individual differences in GM tissue volume can therefore potentially drive apparent concentration differences. Here, a quantification method that corrects for these effects is formulated and empirically validated. Quantification using tissue water as an internal concentration reference has been described previously. Partial volume effects attributed to r M can be accounted for by incorporating into this established method an additional multiplicative correction factor based on measured or literature values of r M weighted by the proportion of GM and WM within tissue-segmented MRS volumes. Simulations were performed to test the sensitivity of this correction using different assumptions of r M taken from previous studies. The tissue correction method was then validated by applying it to an independent dataset of in vivo GABA measurements using an empirically measured value of r M . It was shown that incorrect assumptions of r M can lead to overcorrection and inflation of GABA concentration measurements quantified in volumes composed predominantly of WM. For the independent dataset, GABA concentration was linearly related to GM tissue volume when only the water signal was corrected for partial volume effects. Performing a full correction that additionally accounts for partial volume effects ascribed to r M successfully removed this dependence. With an appropriate assumption of the ratio of intrinsic GABA concentration in GM and WM, GABA measurements can be corrected for partial volume effects, potentially leading to a reduction in between-participant variance, increased power in statistical tests and better discriminability of true effects. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Robust estimation of fractal measures for characterizing the structural complexity of the human brain: optimization and reproducibility

    PubMed Central

    Goñi, Joaquín; Sporns, Olaf; Cheng, Hu; Aznárez-Sanado, Maite; Wang, Yang; Josa, Santiago; Arrondo, Gonzalo; Mathews, Vincent P; Hummer, Tom A; Kronenberger, William G; Avena-Koenigsberger, Andrea; Saykin, Andrew J.; Pastor, María A.

    2013-01-01

    High-resolution isotropic three-dimensional reconstructions of human brain gray and white matter structures can be characterized to quantify aspects of their shape, volume and topological complexity. In particular, methods based on fractal analysis have been applied in neuroimaging studies to quantify the structural complexity of the brain in both healthy and impaired conditions. The usefulness of such measures for characterizing individual differences in brain structure critically depends on their within-subject reproducibility in order to allow the robust detection of between-subject differences. This study analyzes key analytic parameters of three fractal-based methods that rely on the box-counting algorithm with the aim to maximize within-subject reproducibility of the fractal characterizations of different brain objects, including the pial surface, the cortical ribbon volume, the white matter volume and the grey matter/white matter boundary. Two separate datasets originating from different imaging centers were analyzed, comprising, 50 subjects with three and 24 subjects with four successive scanning sessions per subject, respectively. The reproducibility of fractal measures was statistically assessed by computing their intra-class correlations. Results reveal differences between different fractal estimators and allow the identification of several parameters that are critical for high reproducibility. Highest reproducibility with intra-class correlations in the range of 0.9–0.95 is achieved with the correlation dimension. Further analyses of the fractal dimensions of parcellated cortical and subcortical gray matter regions suggest robustly estimated and region-specific patterns of individual variability. These results are valuable for defining appropriate parameter configurations when studying changes in fractal descriptors of human brain structure, for instance in studies of neurological diseases that do not allow repeated measurements or for disease-course longitudinal studies. PMID:23831414

  14. Multiple sclerosis lesions affect intrinsic functional connectivity of the spinal cord.

    PubMed

    Conrad, Benjamin N; Barry, Robert L; Rogers, Baxter P; Maki, Satoshi; Mishra, Arabinda; Thukral, Saakshi; Sriram, Subramaniam; Bhatia, Aashim; Pawate, Siddharama; Gore, John C; Smith, Seth A

    2018-06-01

    Patients with multiple sclerosis present with focal lesions throughout the spinal cord. There is a clinical need for non-invasive measurements of spinal cord activity and functional organization in multiple sclerosis, given the cord's critical role in the disease. Recent reports of spontaneous blood oxygenation level-dependent fluctuations in the spinal cord using functional MRI suggest that, like the brain, cord activity at rest is organized into distinct, synchronized functional networks among grey matter regions, likely related to motor and sensory systems. Previous studies looking at stimulus-evoked activity in the spinal cord of patients with multiple sclerosis have demonstrated increased levels of activation as well as a more bilateral distribution of activity compared to controls. Functional connectivity studies of brain networks in multiple sclerosis have revealed widespread alterations, which may take on a dynamic trajectory over the course of the disease, with compensatory increases in connectivity followed by decreases associated with structural damage. We build upon this literature by examining functional connectivity in the spinal cord of patients with multiple sclerosis. Using ultra-high field 7 T imaging along with processing strategies for robust spinal cord functional MRI and lesion identification, the present study assessed functional connectivity within cervical cord grey matter of patients with relapsing-remitting multiple sclerosis (n = 22) compared to a large sample of healthy controls (n = 56). Patient anatomical images were rated for lesions by three independent raters, with consensus ratings revealing 19 of 22 patients presented with lesions somewhere in the imaged volume. Linear mixed models were used to assess effects of lesion location on functional connectivity. Analysis in control subjects demonstrated a robust pattern of connectivity among ventral grey matter regions as well as a distinct network among dorsal regions. A gender effect was also observed in controls whereby females demonstrated higher ventral network connectivity. Wilcoxon rank-sum tests detected no differences in average connectivity or power of low frequency fluctuations in patients compared to controls. The presence of lesions was, however, associated with local alterations in connectivity with differential effects depending on columnar location. The patient results suggest that spinal cord functional networks are generally intact in relapsing-remitting multiple sclerosis but that lesions are associated with focal abnormalities in intrinsic connectivity. These findings are discussed in light of the current literature on spinal cord functional MRI and the potential neurological underpinnings.

  15. Mathematical models for the diffusion magnetic resonance signal abnormality in patients with prion diseases.

    PubMed

    Figini, Matteo; Alexander, Daniel C; Redaelli, Veronica; Fasano, Fabrizio; Grisoli, Marina; Baselli, Giuseppe; Gambetti, Pierluigi; Tagliavini, Fabrizio; Bizzi, Alberto

    2015-01-01

    In clinical practice signal hyperintensity in the cortex and/or in the striatum on magnetic resonance (MR) diffusion-weighted images (DWIs) is a marker of sporadic Creutzfeldt-Jakob Disease (sCJD). MR diagnostic accuracy is greater than 90%, but the biophysical mechanisms underpinning the signal abnormality are unknown. The aim of this prospective study is to combine an advanced DWI protocol with new mathematical models of the microstructural changes occurring in prion disease patients to investigate the cause of MR signal alterations. This underpins the later development of more sensitive and specific image-based biomarkers. DWI data with a wide a range of echo times and diffusion weightings were acquired in 15 patients with suspected diagnosis of prion disease and in 4 healthy age-matched subjects. Clinical diagnosis of sCJD was made in nine patients, genetic CJD in one, rapidly progressive encephalopathy in three, and Gerstmann-Sträussler-Scheinker syndrome in two. Data were analysed with two bi-compartment models that represent different hypotheses about the histopathological alterations responsible for the DWI signal hyperintensity. A ROI-based analysis was performed in 13 grey matter areas located in affected and apparently unaffected regions from patients and healthy subjects. We provide for the first time non-invasive estimate of the restricted compartment radius, designed to reflect vacuole size, which is a key discriminator of sCJD subtypes. The estimated vacuole size in DWI hyperintense cortex was in the range between 3 and 10 µm that is compatible with neuropathology measurements. In DWI hyperintense grey matter of sCJD patients the two bi-compartment models outperform the classic mono-exponential ADC model. Both new models show that T2 relaxation times significantly increase, fast and slow diffusivities reduce, and the fraction of the compartment with slow/restricted diffusion increases compared to unaffected grey matter of patients and healthy subjects. Analysis of the raw DWI signal allows us to suggest the following acquisition parameters for optimized detection of CJD lesions: b = 3000 s/mm(2) and TE = 103 ms. In conclusion, these results provide the first in vivo estimate of mean vacuole size, new insight on the mechanisms of DWI signal changes in prionopathies and open the way to designing an optimized acquisition protocol to improve early clinical diagnosis and subtyping of sCJD.

  16. Association between fully automated MRI-based volumetry of different brain regions and neuropsychological test performance in patients with amnestic mild cognitive impairment and Alzheimer's disease.

    PubMed

    Arlt, Sönke; Buchert, Ralph; Spies, Lothar; Eichenlaub, Martin; Lehmbeck, Jan T; Jahn, Holger

    2013-06-01

    Fully automated magnetic resonance imaging (MRI)-based volumetry may serve as biomarker for the diagnosis in patients with mild cognitive impairment (MCI) or dementia. We aimed at investigating the relation between fully automated MRI-based volumetric measures and neuropsychological test performance in amnestic MCI and patients with mild dementia due to Alzheimer's disease (AD) in a cross-sectional and longitudinal study. In order to assess a possible prognostic value of fully automated MRI-based volumetry for future cognitive performance, the rate of change of neuropsychological test performance over time was also tested for its correlation with fully automated MRI-based volumetry at baseline. In 50 subjects, 18 with amnestic MCI, 21 with mild AD, and 11 controls, neuropsychological testing and T1-weighted MRI were performed at baseline and at a mean follow-up interval of 2.1 ± 0.5 years (n = 19). Fully automated MRI volumetry of the grey matter volume (GMV) was performed using a combined stereotactic normalisation and segmentation approach as provided by SPM8 and a set of pre-defined binary lobe masks. Left and right hippocampus masks were derived from probabilistic cytoarchitectonic maps. Volumes of the inner and outer liquor space were also determined automatically from the MRI. Pearson's test was used for the correlation analyses. Left hippocampal GMV was significantly correlated with performance in memory tasks, and left temporal GMV was related to performance in language tasks. Bilateral frontal, parietal and occipital GMVs were correlated to performance in neuropsychological tests comprising multiple domains. Rate of GMV change in the left hippocampus was correlated with decline of performance in the Boston Naming Test (BNT), Mini-Mental Status Examination, and trail making test B (TMT-B). The decrease of BNT and TMT-A performance over time correlated with the loss of grey matter in multiple brain regions. We conclude that fully automated MRI-based volumetry allows detection of regional grey matter volume loss that correlates with neuropsychological performance in patients with amnestic MCI or mild AD. Because of the high level of automation, MRI-based volumetry may easily be integrated into clinical routine to complement the current diagnostic procedure.

  17. Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking

    PubMed Central

    Kievit, Rogier A.; Davis, Simon W.; Mitchell, Daniel J.; Taylor, Jason R.; Duncan, John; Tyler, Lorraine K.; Brayne, Carol; Bullmore, Ed; Calder, Andrew; Cusack, Rhodri; Dalgleish, Tim; Matthews, Fiona; Marslen-Wilson, William; Rowe, James; Shafto, Meredith; Campbell, Karen; Cheung, Teresa; Geerligs, Linda; McCarrey, Anna; Tsvetanov, Kamen; Williams, Nitin; Bates, Lauren; Emery, Tina; Erzinçlioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Henson, Richard N.A.

    2014-01-01

    Ageing is characterized by declines on a variety of cognitive measures. These declines are often attributed to a general, unitary underlying cause, such as a reduction in executive function owing to atrophy of the prefrontal cortex. However, age-related changes are likely multifactorial, and the relationship between neural changes and cognitive measures is not well-understood. Here we address this in a large (N=567), population-based sample drawn from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data. We relate fluid intelligence and multitasking to multiple brain measures, including grey matter in various prefrontal regions and white matter integrity connecting those regions. We show that multitasking and fluid intelligence are separable cognitive abilities, with differential sensitivities to age, which are mediated by distinct neural subsystems that show different prediction in older versus younger individuals. These results suggest that prefrontal ageing is a manifold process demanding multifaceted models of neurocognitive ageing. PMID:25519467

  18. Affect of deep brain stimulation on limb paresis after stroke.

    PubMed

    Phillips, N I; Bhakta, B B

    2000-07-15

    A deep brain stimulator was implanted in the periventricular grey matter of the third ventricle for pain after stroke in a man aged 48 years. As well as a beneficial analgesic effect, the patient reported improved function in the contralateral paretic arm, which was confirmed on formal testing.

  19. Development of Relational Reasoning during Adolescence

    ERIC Educational Resources Information Center

    Dumontheil, Iroise; Houlton, Rachael; Christoff, Kalina; Blakemore, Sarah-Jayne

    2010-01-01

    Non-linear changes in behaviour and in brain activity during adolescent development have been reported in a variety of cognitive tasks. These developmental changes are often interpreted as being a consequence of changes in brain structure, including non-linear changes in grey matter volumes, which occur during adolescence. However, very few…

  20. Components of action potential repolarization in cerebellar parallel fibres.

    PubMed

    Pekala, Dobromila; Baginskas, Armantas; Szkudlarek, Hanna J; Raastad, Morten

    2014-11-15

    Repolarization of the presynaptic action potential is essential for transmitter release, excitability and energy expenditure. Little is known about repolarization in thin, unmyelinated axons forming en passant synapses, which represent the most common type of axons in the mammalian brain's grey matter.We used rat cerebellar parallel fibres, an example of typical grey matter axons, to investigate the effects of K(+) channel blockers on repolarization. We show that repolarization is composed of a fast tetraethylammonium (TEA)-sensitive component, determining the width and amplitude of the spike, and a slow margatoxin (MgTX)-sensitive depolarized after-potential (DAP). These two components could be recorded at the granule cell soma as antidromic action potentials and from the axons with a newly developed miniaturized grease-gap method. A considerable proportion of fast repolarization remained in the presence of TEA, MgTX, or both. This residual was abolished by the addition of quinine. The importance of proper control of fast repolarization was demonstrated by somatic recordings of antidromic action potentials. In these experiments, the relatively broad K(+) channel blocker 4-aminopyridine reduced the fast repolarization, resulting in bursts of action potentials forming on top of the DAP. We conclude that repolarization of the action potential in parallel fibres is supported by at least three groups of K(+) channels. Differences in their temporal profiles allow relatively independent control of the spike and the DAP, whereas overlap of their temporal profiles provides robust control of axonal bursting properties.

  1. Feeding ecology of Liza ramada (Risso, 1810) (Pisces, Mugilidae) in a south-western estuary of Portugal

    NASA Astrophysics Data System (ADS)

    Almeida, P. R.

    2003-05-01

    The feeding activity of the Liza ramada population inhabiting the Mira estuary (Portugal) is reduced during the winter and summer months. At the beginning of the spawning migration (i.e. November) an increase in the amount of food ingested was noticed. In the upper estuary, the feeding behaviour is independent of the tidal cycle, although there is some evidence of a daily rhythm in the food consumption rate, with a reduction during the night. No significant correlation was found between the quantity of particulate organic matter and the concentration of microalgae present in the stomach contents, and it seems that the bulk of the organic matter ingested by the thin-lipped grey mullets comes from a different origin than planktonic or benthic microalgae. The L. ramada population showed a positive selection for sediment particles between 55 and 250 μm in diameter. In general, the diet composition of this species showed a low diversity of food items. A total of 52 food items were identified in the stomach contents, the Bacillariophyceae being the dominant group. The genera Melosira and Ciclotella were the most common and abundant food items, although the genera Navicula, Nitzschia and Surirella were also classified as preferential food items. It was found that the volume of ploughed sediment that resulted from the feeding activity of the thin-lipped grey mullets, and the correspondent disturbed area increased exponentially with the length of the fish.

  2. Grey matter damage in progressive multiple sclerosis versus amyotrophic lateral sclerosis: a voxel-based morphometry MRI study.

    PubMed

    Tavazzi, Eleonora; Laganà, Maria Marcella; Bergsland, Niels; Tortorella, Paola; Pinardi, Giovanna; Lunetta, Christian; Corbo, Massimo; Rovaris, Marco

    2015-03-01

    Primary progressive multiple sclerosis (PPMS) and amyotrophic lateral sclerosis (ALS) seem to share some clinical and pathological features. MRI studies revealed the presence of grey matter (GM) atrophy in both diseases, but no comparative data are available. The objective was to compare the regional patterns of GM tissue loss in PPMS and ALS with voxel-based morphometry (VBM). Eighteen PPMS patients, 20 ALS patients, and 31 healthy controls (HC) were studied with a 1.5 Tesla scanner. VBM was performed to assess volumetric GM differences with age and sex as covariates. Threshold-free cluster enhancement analysis was used to obtain significant clusters. Group comparisons were tested with family-wise error correction for multiple comparisons (p < 0.05) except for HC versus MND which was tested at a level of p < 0.001 uncorrected and a cluster threshold of 20 contiguous voxels. Compared to HC, ALS patients showed GM tissue reduction in selected frontal and temporal areas, while PPMS patients showed a widespread bilateral GM volume decrease, involving both deep and cortical regions. Compared to ALS, PPMS patients showed tissue volume reductions in both deep and cortical GM areas. This preliminary study confirms that PPMS is characterized by a more diffuse cortical and subcortical GM atrophy than ALS and that, in the latter condition, brain damage is present outside the motor system. These results suggest that PPMS and ALS may share pathological features leading to GM tissue loss.

  3. Immunosenescence of microglia and macrophages: impact on the ageing central nervous system.

    PubMed

    Rawji, Khalil S; Mishra, Manoj K; Michaels, Nathan J; Rivest, Serge; Stys, Peter K; Yong, V Wee

    2016-03-01

    Ageing of the central nervous system results in a loss of both grey and white matter, leading to cognitive decline. Additional injury to both the grey and white matter is documented in many neurological disorders with ageing, including Alzheimer's disease, traumatic brain and spinal cord injury, stroke, and multiple sclerosis. Accompanying neuronal and glial damage is an inflammatory response consisting of activated macrophages and microglia, innate immune cells demonstrated to be both beneficial and detrimental in neurological repair. This article will propose the following: (i) infiltrating macrophages age differently from central nervous system-intrinsic microglia; (ii) several mechanisms underlie the differential ageing process of these two distinct cell types; and (iii) therapeutic strategies that selectively target these diverse mechanisms may rejuvenate macrophages and microglia for repair in the ageing central nervous system. Most responses of macrophages are diminished with senescence, but activated microglia increase their expression of pro-inflammatory cytokines while diminishing chemotactic and phagocytic activities. The senescence of macrophages and microglia has a negative impact on several neurological diseases, and the mechanisms underlying their age-dependent phenotypic changes vary from extrinsic microenvironmental changes to intrinsic changes in genomic integrity. We discuss the negative effects of age on neurological diseases, examine the response of senescent macrophages and microglia in these conditions, and propose a theoretical framework of therapeutic strategies that target the different mechanisms contributing to the ageing phenotype in these two distinct cell types. Rejuvenation of ageing macrophage/microglia may preserve neurological integrity and promote regeneration in the ageing central nervous system. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Cerebral Asymmetry of fMRI-BOLD Responses to Visual Stimulation

    PubMed Central

    Hougaard, Anders; Jensen, Bettina Hagström; Amin, Faisal Mohammad; Rostrup, Egill; Hoffmann, Michael B.; Ashina, Messoud

    2015-01-01

    Hemispheric asymmetry of a wide range of functions is a hallmark of the human brain. The visual system has traditionally been thought of as symmetrically distributed in the brain, but a growing body of evidence has challenged this view. Some highly specific visual tasks have been shown to depend on hemispheric specialization. However, the possible lateralization of cerebral responses to a simple checkerboard visual stimulation has not been a focus of previous studies. To investigate this, we performed two sessions of blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in 54 healthy subjects during stimulation with a black and white checkerboard visual stimulus. While carefully excluding possible non-physiological causes of left-to-right bias, we compared the activation of the left and the right cerebral hemispheres and related this to grey matter volume, handedness, age, gender, ocular dominance, interocular difference in visual acuity, as well as line-bisection performance. We found a general lateralization of cerebral activation towards the right hemisphere of early visual cortical areas and areas of higher-level visual processing, involved in visuospatial attention, especially in top-down (i.e., goal-oriented) attentional processing. This right hemisphere lateralization was partly, but not completely, explained by an increased grey matter volume in the right hemisphere of the early visual areas. Difference in activation of the superior parietal lobule was correlated with subject age, suggesting a shift towards the left hemisphere with increasing age. Our findings suggest a right-hemispheric dominance of these areas, which could lend support to the generally observed leftward visual attentional bias and to the left hemifield advantage for some visual perception tasks. PMID:25985078

  5. Coupling effects for separate spatial solitons in a biased series centrosymmetric photorefractive crystal circuit considering grey solitons

    NASA Astrophysics Data System (ADS)

    Katti, Aavishkar; Yadav, Ram Anjore

    2018-02-01

    The existence and coupling of grey-grey, grey-bright and grey-dark separate spatial solitons in a biased series centrosymmetric photorefractive crystal circuit is investigated for the first time. The numerical solution of the separate spatial solitons is presented. The coupling between the two separate spatial solitons is analysed for all three cases of separate coupled solitons, namely grey-grey, grey-bright, and grey-dark. Changing the intensity of the soliton in one crystal affects the soliton in both crystals due to flow of the light induced current through the circuit. The effect of the background intensity of each crystal on both the spatial solitons is investigated. Also, the effect of changing the temperature of one crystal affects the soliton in both crystals due to the coupling effect. The soliton width dependence on the temperature is different for each crystal.

  6. Relationship between brain lesion characteristics and communication in preschool children with cerebral palsy.

    PubMed

    Coleman, Andrea; Fiori, Simona; Weir, Kelly A; Ware, Robert S; Boyd, Roslyn N

    2016-11-01

    MRI shows promise as a prognostic tool for clinical findings such as gross motor function in children with cerebral palsy(CP), however the relationship with communication skills requires exploration. To examine the relationship between the type and severity of brain lesion on MRI and communication skills in children with CP. 131 children with CP (73 males(56%)), mean corrected age(SD) 28(5) months, Gross Motor Functional Classification System distribution: I=57(44%), II=14(11%), III=19(14%), IV=17(13%), V=24(18%). Children were assessed on the Communication and Symbolic Behavioral Scales Developmental Profile (CSBS-DP) Infant-Toddler Checklist. Structural MRI was analysed with reference to type and semi-quantitative assessment of the severity of brain lesion. Children were classified for motor type, distribution and GMFCS. The relationships between type/severity of brain lesion and communication ability were analysed using multivariable tobit regression. Children with periventricular white matter lesions had better speech than children with cortical/deep grey matter lesions (β=-2.6, 95%CI=-5.0, -0.2, p=0.04). Brain lesion severity on the semi-quantitative scale was related to overall communication skills (β=-0.9, 95%CI=-1.4, -0.5, p<0.001). Motor impairment better accounted for impairment in overall communication skills than brain lesion severity. Structural MRI has potential prognostic value for communication impairment in children with CP. WHAT THIS PAPER ADDS?: This is the first paper to explore important aspects of communication in relation to the type and severity of brain lesion on MRI in a representative cohort of preschool-aged children with CP. We found a relationship between the type of brain lesion and communication skills, children who had cortical and deep grey matter lesions had overall communication skills>1 SD below children with periventricular white matter lesions. Children with more severe brain lesions on MRI had poorer overall communication skills. Children with CP born at term had poorer communication than those born prematurely and were more likely to have cortical and deep grey matter lesions. Gross motor function better accounted for overall communication skills than the type of brain lesion or brain lesion severity. Copyright © 2016. Published by Elsevier Ltd.

  7. Brain Structural Effects of Psychopharmacological Treatment in Bipolar Disorder

    PubMed Central

    McDonald, Colm

    2015-01-01

    Bipolar disorder is associated with subtle neuroanatomical deficits including lateral ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging studies to date and differential psychotropic medication use is potentially a substantial contributor to this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are associated with neuroanatomical variation. Most studies are negative and suffer from methodological weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic structures. These findings are further supported by the more methodologically robust studies which include large numbers of patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by preclinical studies. PMID:26412064

  8. Brain Structural Effects of Psychopharmacological Treatment in Bipolar Disorder.

    PubMed

    McDonald, Colm

    2015-01-01

    Bipolar disorder is associated with subtle neuroanatomical deficits including lateral ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging studies to date and differential psychotropic medication use is potentially a substantial contributor to this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are associated with neuroanatomical variation. Most studies are negative and suffer from methodological weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic structures. These findings are further supported by the more methodologically robust studies which include large numbers of patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by preclinical studies.

  9. Automatic tissue image segmentation based on image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  10. Development of the Adolescent Brain: Implications for Executive Function and Social Cognition

    ERIC Educational Resources Information Center

    Blakemore, Sarah-Jayne; Choudhury, Suparna

    2006-01-01

    Adolescence is a time of considerable development at the level of behaviour, cognition and the brain. This article reviews histological and brain imaging studies that have demonstrated specific changes in neural architecture during puberty and adolescence, outlining trajectories of grey and white matter development. The implications of brain…

  11. Distinct Patterns of Grey Matter Abnormality in High-Functioning Autism and Asperger's Syndrome

    ERIC Educational Resources Information Center

    McAlonan, Grainne M.; Suckling, John; Wong, Naikei; Cheung, Vinci; Lienenkaemper, Nina; Cheung, Charlton; Chua, Siew E.

    2008-01-01

    Background: Autism exists across a wide spectrum and there is considerable debate as to whether children with Asperger's syndrome, who have normal language milestones, should be considered to comprise a subgroup distinct other from high-functioning children with autism (HFA), who have a history of delayed language development. Magnetic resonance…

  12. Schizophrenia Delays and Alters Maturation of the Brain in Adolescence

    ERIC Educational Resources Information Center

    Douaud, Gwenaelle; Mackay, Clare; Andersson, Jesper; James, Susan; Quested, Digby; Ray, Manaan Kar; Connell, Julie; Roberts, Neil; Crow, Timothy J.; Matthews, Paul M.; Smith, Stephen; James, Anthony

    2009-01-01

    Early-onset schizophrenia appears to be clinically more severe than the adult-onset form of the disease. In a previous study, we showed that anatomically related grey and white matter abnormalities found in adolescents patients were larger and more widespread than what had been reported in the literature on adult schizophrenia. Particularly, we…

  13. Co-Localisation of Abnormal Brain Structure and Function in Specific Language Impairment

    ERIC Educational Resources Information Center

    Badcock, Nicholas A.; Bishop, Dorothy V. M.; Hardiman, Mervyn J.; Barry, Johanna G.; Watkins, Kate E.

    2012-01-01

    We assessed the relationship between brain structure and function in 10 individuals with specific language impairment (SLI), compared to six unaffected siblings, and 16 unrelated control participants with typical language. Voxel-based morphometry indicated that grey matter in the SLI group, relative to controls, was increased in the left inferior…

  14. The Neurobiological Basis and Potential Modification of Emotional Intelligence through Affective / Behavioral Training

    DTIC Science & Technology

    2013-04-01

    alertness (Banks and Dinges, 2007; Punjabi et al., 2003; Van Dongen and Maislin, 2003). Relative to being well rested, prolonged sleep debt may also...Sleep Research Society Sleep credit, grey matter and emotion 7 Punjabi , N. M., Bandeen-Roche, K. and Young, T. Predictors of objective sleep tendency in

  15. The Desire for Amputation or Paralyzation: Evidence for Structural Brain Anomalies in Body Integrity Identity Disorder (BIID).

    PubMed

    Blom, Rianne M; van Wingen, Guido A; van der Wal, Sija J; Luigjes, Judy; van Dijk, Milenna T; Scholte, H Steven; Denys, Damiaan

    2016-01-01

    Body Integrity Identity Disorder (BIID) is a condition in which individuals perceive a mismatch between their internal body scheme and physical body shape, resulting in an absolute desire to be either amputated or paralyzed. The condition is hypothesized to be of congenital nature, but evidence for a neuro-anatomical basis is sparse. We collected T1-weighted structural magnetic resonance imaging scans on a 3T scanner in eight individuals with BIID and 24 matched healthy controls, and analyzed the data using voxel-based morphometry. The results showed reduced grey matter volume in the left dorsal and ventral premotor cortices and larger grey matter volume in the cerebellum (lobule VIIa) in individuals with BIID compared to controls. The premotor cortex and cerebellum are thought to be crucial for the experience of body-ownership and the integration of multisensory information. Our results suggest that BIID is associated with structural brain anomalies and might result from a dysfunction in the integration of multisensory information, leading to the feeling of disunity between the mental and physical body shape.

  16. Structural plasticity in the language system related to increased second language proficiency.

    PubMed

    Stein, Maria; Federspiel, Andrea; Koenig, Thomas; Wirth, Miranka; Strik, Werner; Wiest, Roland; Brandeis, Daniel; Dierks, Thomas

    2012-04-01

    While functional changes linked to second language learning have been subject to extensive investigation, the issue of learning-dependent structural plasticity in the fields of bilingualism and language comprehension has so far received less notice. In the present study we used voxel-based morphometry to monitor structural changes occurring within five months of second language learning. Native English-speaking exchange students learning German in Switzerland were examined once at the beginning of their stay and once about five months later, when their German language skills had significantly increased. We show that structural changes in the left inferior frontal gyrus are correlated with the increase in second language proficiency as measured by a paper-and-pencil language test. Contrary to the increase in proficiency and grey matter, the absolute values of grey matter density and second language proficiency did not correlate (neither on first nor on second measurement). This indicates that the individual amount of learning is reflected in brain structure changes, regardless of absolute proficiency. Copyright © 2010 Elsevier Srl. All rights reserved.

  17. Facial emotion recognition in patients with focal and diffuse axonal injury.

    PubMed

    Yassin, Walid; Callahan, Brandy L; Ubukata, Shiho; Sugihara, Genichi; Murai, Toshiya; Ueda, Keita

    2017-01-01

    Facial emotion recognition impairment has been well documented in patients with traumatic brain injury. Studies exploring the neural substrates involved in such deficits have implicated specific grey matter structures (e.g. orbitofrontal regions), as well as diffuse white matter damage. Our study aims to clarify whether different types of injuries (i.e. focal vs. diffuse) will lead to different types of impairments on facial emotion recognition tasks, as no study has directly compared these patients. The present study examined performance and response patterns on a facial emotion recognition task in 14 participants with diffuse axonal injury (DAI), 14 with focal injury (FI) and 22 healthy controls. We found that, overall, participants with FI and DAI performed more poorly than controls on the facial emotion recognition task. Further, we observed comparable emotion recognition performance in participants with FI and DAI, despite differences in the nature and distribution of their lesions. However, the rating response pattern between the patient groups was different. This is the first study to show that pure DAI, without gross focal lesions, can independently lead to facial emotion recognition deficits and that rating patterns differ depending on the type and location of trauma.

  18. The neuropathological foundations for the restorative neurology of spinal cord injury.

    PubMed

    Kakulas, Byron A; Kaelan, Cahyono

    2015-02-01

    An appreciation of the neuropathology of human spinal cord injury (SCI) is a basic requirement for all concerned with the medical treatment of patients with SCI as well as for the many neuroscientists devoted to finding a "cure". An understanding of the neuropathology of SCI is a necessary guide to those concerned at all levels of treatment, whether they are doctors or other health professionals. The underlying changes in the spinal cord are especially relevant to the restorative neurology (RN) of SCI. The new discipline of RN seeks to enhance the function of residual spinal cord elements which have survived the injury and so improve the patient's rehabilitative status. This is in contrast to the conventional approach in rehabilitation which works around the clinical neurological deficiencies. Following the injury a series of changes take place in the spinal cord and surrounding tissues which continue to evolve throughout the life of the patient. In flexion and extension injuries resulting from motor vehicle trauma, diving and sporting accidents the spinal cord is compressed and disrupted but usually with some continuity remaining in the white matter columns. The brunt of the injury is usually centrally placed where there is bleeding into the disrupted grey matter involving one two segments, usually cervical. The loss of central grey matter is nowhere near as important as is the tearing apart of the white matter tracts in determining the patient's clinical state. The central grey matter supplies one two overlapping segmental myotomes and sensory fields. In contrast loss of continuity in the long white matter tracts is catastrophic because all functions below the level of injury are affected, autonomic or voluntary either by paralysis or anaesthesia, usually both. It is important to determine the exact nature of the injury in every patient as a preliminary to treatment by RN. This assessment is both clinical and neurophysiological with special attention given to any part of the long white matter tracts which may have escaped the initial injury. It is these residual nerve fibres which provide the opportunity to improve the patient's neurological state by being re-activated, modulated and enhanced by stimulation or by other RN methods. The conversion of a clinically complete SCI patient to being incomplete and ambulant is a tremendous improvement in the patient's status. It is the purpose of this article to provide the reader with the essential neuropathology of SCI as a beginning point in planning treatment whether it is medical or ancillary, as well as to inform the neuroscientist about the condition being addressed in his or her research. © 2015 Elsevier B.V. All rights reserved.

  19. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury

    PubMed Central

    Jolly, Amy; de Simoni, Sara; Bourke, Niall; Patel, Maneesh C; Scott, Gregory; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury leads to significant loss of brain volume, which continues into the chronic stage. This can be sensitively measured using volumetric analysis of MRI. Here we: (i) investigated longitudinal patterns of brain atrophy; (ii) tested whether atrophy is greatest in sulcal cortical regions; and (iii) showed how atrophy could be used to power intervention trials aimed at slowing neurodegeneration. In 61 patients with moderate-severe traumatic brain injury (mean age = 41.55 years ± 12.77) and 32 healthy controls (mean age = 34.22 years ± 10.29), cross-sectional and longitudinal (1-year follow-up) brain structure was assessed using voxel-based morphometry on T1-weighted scans. Longitudinal brain volume changes were characterized using a novel neuroimaging analysis pipeline that generates a Jacobian determinant metric, reflecting spatial warping between baseline and follow-up scans. Jacobian determinant values were summarized regionally and compared with clinical and neuropsychological measures. Patients with traumatic brain injury showed lower grey and white matter volume in multiple brain regions compared to controls at baseline. Atrophy over 1 year was pronounced following traumatic brain injury. Patients with traumatic brain injury lost a mean (± standard deviation) of 1.55% ± 2.19 of grey matter volume per year, 1.49% ± 2.20 of white matter volume or 1.51% ± 1.60 of whole brain volume. Healthy controls lost 0.55% ± 1.13 of grey matter volume and gained 0.26% ± 1.11 of white matter volume; equating to a 0.22% ± 0.83 reduction in whole brain volume. Atrophy was greatest in white matter, where the majority (84%) of regions were affected. This effect was independent of and substantially greater than that of ageing. Increased atrophy was also seen in cortical sulci compared to gyri. There was no relationship between atrophy and time since injury or age at baseline. Atrophy rates were related to memory performance at the end of the follow-up period, as well as to changes in memory performance, prior to multiple comparison correction. In conclusion, traumatic brain injury results in progressive loss of brain tissue volume, which continues for many years post-injury. Atrophy is most prominent in the white matter, but is also more pronounced in cortical sulci compared to gyri. These findings suggest the Jacobian determinant provides a method of quantifying brain atrophy following a traumatic brain injury and is informative in determining the long-term neurodegenerative effects after injury. Power calculations indicate that Jacobian determinant images are an efficient surrogate marker in clinical trials of neuroprotective therapeutics. PMID:29309542

  20. Imaging the neuroplastic effects of ketamine with VBM and the necessity of placebo control.

    PubMed

    Höflich, A; Ganger, S; Tik, M; Hahn, A; Kranz, G S; Vanicek, T; Spies, M; Kraus, C; Windischberger, C; Kasper, S; Winkler, D; Lanzenberger, R

    2017-02-15

    In the last years a plethora of studies have investigated morphological changes induced by behavioural or pharmacological interventions using structural T1-weighted MRI and voxel-based morphometry (VBM). Ketamine is thought to exert its antidepressant action by restoring neuroplasticity. In order to test for acute impact of a single ketamine infusion on grey matter volume we performed a placebo-controlled, double-blind investigation in healthy volunteers using VBM. 28 healthy individuals underwent two MRI sessions within a timeframe of 2 weeks, each consisting of two structural T1-weighted MRIs within a single session, one before and one 45min after infusion of S-ketamine (bolus of 0.11mg/kg, followed by an maintenance infusion of 0.12mg/kg) or placebo (0.9% NaCl infusion) using a crossover design. In the repeated-measures ANOVA with time (post-infusion/pre-infusion) and medication (placebo/ketamine) as factors, no significant effect of interaction and no effect of medication was found (FWE-corrected). Importantly, further post-hoc t-tests revealed a strong "decrease" of grey matter both in the placebo and the ketamine condition over time. This effect was evident mainly in frontal and temporal regions bilaterally with t-values ranging from 4.95 to 5.31 (FWE-corrected at p<0.05 voxel level). The vulnerabilities of VBM have been repeatedly demonstrated, with reports of influence of blood flow, tissue water and direct effects of pharmacological compounds on the MRI signal. Here again, we highlight that the relationship between intervention and VBM results is apparently subject to a number of physiological influences, which are partly unknown. Future studies focusing on the effects of ketamine on grey matter should try to integrate known influential factors such as blood flow into analysis. Furthermore, the results of this study highlight the importance of a carefully performed placebo condition in pharmacological fMRI studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Intrinsic signature of essential tremor in the cerebello-frontal network

    PubMed Central

    Popa, Traian; García-Lorenzo, Daniel; Valabregue, Romain; Legrand, André-Pierre; Marais, Lea; Degos, Bertrand; Hubsch, Cecile; Fernández-Vidal, Sara; Bardinet, Eric; Roze, Emmanuel; Lehéricy, Stéphane; Vidailhet, Marie; Meunier, Sabine

    2015-01-01

    See Raethjen and Muthuraman (doi:10.1093/brain/awv238) for a scientific commentary on this article. Essential tremor is a movement disorder characterized by tremor during voluntary movements, mainly affecting the upper limbs. The cerebellum and its connections to the cortex are known to be involved in essential tremor, but no task-free intrinsic signatures of tremor related to structural cerebellar defects have so far been found in the cortical motor network. Here we used voxel-based morphometry, tractography and resting-state functional MRI at 3 T to compare structural and functional features in 19 patients with essential tremor and homogeneous symptoms in the upper limbs, and 19 age- and gender-matched healthy volunteers. Both structural and functional abnormalities were found in the patients' cerebellum and supplementary motor area. Relative to the healthy controls, the essential tremor patients' cerebellum exhibited less grey matter in lobule VIII and less effective connectivity between each cerebellar cortex and the ipsilateral dentate nucleus. The patient's supplementary motor area exhibited (i) more grey matter; (ii) a lower amplitude of low-frequency fluctuation of the blood oxygenation level-dependent signal; (iii) less effective connectivity between each supplementary motor area and the ipsilateral primary motor hand area, and (iv) a higher probability of connection between supplementary motor area fibres and the spinal cord. Structural and functional changes in the supplementary motor area, but not in the cerebellum, correlated with clinical severity. In addition, changes in the cerebellum and supplementary motor area were interrelated, as shown by a correlation between the lower amplitude of low-frequency fluctuation in the supplementary motor area and grey matter loss in the cerebellum. The structural and functional changes observed in the supplementary motor area might thus be a direct consequence of cerebellar defects: the supplementary motor area would attempt to reduce tremor in the motor output by reducing its communication with M1 hand areas and by directly modulating motor output via its corticospinal projections. PMID:26115677

  2. Tracking the development of agrammatic aphasia: A tensor-based morphometry study.

    PubMed

    Whitwell, Jennifer L; Duffy, Joseph R; Machulda, Mary M; Clark, Heather M; Strand, Edythe A; Senjem, Matthew L; Gunter, Jeffrey L; Spychalla, Anthony J; Petersen, Ronald C; Jack, Clifford R; Josephs, Keith A

    2017-05-01

    Agrammatic aphasia can be observed in neurodegenerative disorders and has been traditionally linked with damage to Broca's area, although there have been disagreements concerning whether damage to Broca's area is necessary or sufficient for the development of agrammatism. We aimed to investigate the neuroanatomical correlates of the emergence of agrammatic aphasia utilizing a unique cohort of patients with primary progressive apraxia of speech (PPAOS) that did not have agrammatism at baseline but developed agrammatic aphasia over time. Twenty PPAOS patients were recruited and underwent detailed speech/language assessments and 3T MRI at two visits, approximately two years apart. None of the patients showed evidence of agrammatism in writing or speech at baseline. Eight patients developed aphasia at follow-up (progressors) and 12 did not (non-progressors). Tensor-based morphometry utilizing symmetric normalization (SyN) was used to assess patterns of grey matter atrophy and voxel-based morphometry was used to assess patterns of grey matter loss at baseline. The progressors were younger at onset and more likely to show distorted sound substitutions or additions compared to non-progressors. Both groups showed change over time in premotor and motor cortices, posterior frontal lobe, basal ganglia, thalamus and midbrain, but the progressors showed greater rates of atrophy in left pars triangularis, thalamus and putamen compared to non-progressors. The progressors also showed greater grey matter loss in pars triangularis and putamen at baseline. This cohort provided a unique opportunity to assess the anatomical changes that accompany the development of agrammatic aphasia. The results suggest that damage to a network of regions including Broca's area, thalamus and basal ganglia are responsible for the development of agrammatic aphasia in PPAOS. Clinical and neuroimaging abnormalities were also present before the onset of agrammatism that could help improve prognosis in these subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Grey water biodegradability.

    PubMed

    Ghunmi, Lina Abu; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2011-02-01

    Knowing the biodegradability characteristics of grey water constituents is imperative for a proper design and operation of a biological treatment system of grey water. This study characterizes the different COD fractions of dormitory grey water and investigates the effect of applying different conditions in the biodegradation test. The maximum aerobic and anaerobic biodegradability and conversion rate for the different COD fractions is determined. The results show that, on average, dormitory grey water COD fractions are 28% suspended, 32% colloidal and 40% dissolved. The studied factors incubation time, inoculum addition and temperature are influencing the determined biodegradability. The maximum biodegradability and biodegradation rate differ between different COD fractions, viz. COD(ss), COD(col) and COD(diss). The dissolved COD fraction is characterised by the lowest degradation rate, both for anaerobic and aerobic conditions. The maximum biodegradability for aerobic and anaerobic conditions is 86 and 70% respectively, whereas the first order conversion rate constant, k₂₀, is 0.119 and 0.005 day⁻¹, respectively. The anaerobic and aerobic conversion rates in relation to temperature can be described by the Arrhenius relation, with temperature coefficients of 1.069 and 1.099, respectively.

  4. Ecotoxicological assessment of grey water treatment systems with Daphnia magna and Chironomus riparius.

    PubMed

    Hernández Leal, L; Soeter, A M; Kools, S A E; Kraak, M H S; Parsons, J R; Temmink, H; Zeeman, G; Buisman, C J N

    2012-03-15

    In order to meet environmental quality criteria, grey water was treated in four different ways: 1) aerobic 2) anaerobic+aerobic 3) aerobic+activated carbon 4) aerobic+ozone. Since each treatment has its own specific advantages and disadvantages, the aim of this study was to compare the ecotoxicity of differently treated grey water using Chironomus riparius (96 h test) and Daphnia magna (48 h and 21d test) as test organisms. Grey water exhibited acute toxicity to both test organisms. The aerobic and combined anaerobic+aerobic treatment eliminated mortality in the acute tests, but growth of C. riparius was still affected by these two effluents. Post-treatment by ozone and activated carbon completely removed the acute toxicity from grey water. In the chronic toxicity test the combined anaerobic+aerobic treatment strongly affected D. magna population growth rate (47%), while the aerobic treatment had a small (9%) but significant effect. Hence, aerobic treatment is the best option for biological treatment of grey water, removing most of the toxic effects of grey water. If advanced treatment is required, the treatment with either ozone or GAC were shown to be very effective in complete removal of toxicity from grey water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Computer-assisted three-dimensional reconstructions of ( sup 14 C)-2-deoxy-D-glucose metabolism in cat lumbosacral spinal cord following cutaneous stimulation of the hindfoot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crockett, D.P.; Smith, W.K.; Proshansky, E.

    1989-10-08

    We report on computer-assisted three-dimensional reconstruction of spinal cord activity associated with stimulation of the plantar cushion (PC) as revealed by (14C)-2-deoxy-D-glucose (2-DG) serial autoradiographs. Moderate PC stimulation in cats elicits a reflex phasic plantar flexion of the toes. Four cats were chronically spinalized at about T6 under barbiturate anesthesia. Four to 11 days later, the cats were injected (i.v.) with 2-DG (100 microCi/kg) and the PC was electrically stimulated with needle electrodes at 2-5 times threshold for eliciting a reflex. Following stimulation, the spinal cord was processed for autoradiography. Subsequently, autoradiographs, representing approximately 8-18 mm from spinal segments L6-S1,more » were digitized for computer analysis and 3-D reconstruction. Several strategies of analysis were employed: (1) Three-dimensional volume images were color-coded to represent different levels of functional activity. (2) On the reconstructed volumes, virtual sections were made in the horizontal, sagittal, and transverse planes to view regions of 2-DG activity. (3) In addition, we were able to sample different regions within the grey and white matter semi-quantitatively (i.e., pixel intensity) from section to section to reveal differences between ipsi- and contralateral activity, as well as possible variation between sections. These analyses revealed 2-DG activity associated with moderate PC stimulation, not only in the ipsilateral dorsal horn as we had previously demonstrated, but also in both the ipsilateral and contralateral ventral horns, as well as in the intermediate grey matter. The use of novel computer analysis techniques--combined with an unanesthetized preparation--enabled us to demonstrate that the increased metabolic activity in the lumbosacral spinal cord associated with PC stimulation was much more extensive than had heretofore been observed.« less

  6. Post-adolescent developmental changes in cortical complexity.

    PubMed

    Sandu, Anca-Larisa; Izard, Edouard; Specht, Karsten; Beneventi, Harald; Lundervold, Arvid; Ystad, Martin

    2014-11-27

    Post-adolescence is known to be a period of general maturation and development in the human brain. In brain imaging, volumetric and morphologic cortical grey-matter changes can easily be assessed, but the analysis of cortical complexity seems to have been broadly neglected for this age interval. Magnetic resonance imaging (MRI) was used to acquire structural brain images. The study involved 17 adolescents (mean age 14.1 ± 0.27, 11 girls) who were compared with 14 young adults (mean age 24.24 ± 2.76, 7 women) for measures of brain complexity (fractal dimension--FD), grey matter (GM) volume and surface-area of cortical ribbon. FD was calculated using box-counting and Minkowski-Bouligand methods; FD and GM volume were measured for the whole brain, each hemisphere and lobes: frontal, occipital, parietal and temporal. The results show that the adults have a lower cortical complexity than the adolescents, which was significant for whole brain, left and right hemisphere, frontal and parietal lobes for both genders; and only for males in left temporal lobe. The GM volume was smaller in men than in boys for almost all measurements, and smaller in women than in girls just for right parietal lobe. A significant Pearson correlation was found between FD and GM volume for whole brain and each hemisphere in both genders. The decrease of the GM surface-area was significant in post-adolescence for males, not for females. During post-adolescence there are common changes in cortical complexity in the same regions for both genders, but there are also gender specific changes in some cortical areas. The sex differences from different cortical measurements (FD, GM volume and surface-area of cortical ribbon) could suggest a maturation delay in specific brain regions for each gender in relation to the other and might be explained through the functional role of the corresponding regions reflected in gender difference of developed abilities.

  7. Combining Segmented Grey and White Matter Images Improves Voxel-based Morphometry for the Case of Dilated Lateral Ventricles.

    PubMed

    Goto, Masami; Abe, Osamu; Aoki, Shigeki; Kamagata, Koji; Hori, Masaaki; Miyati, Tosiaki; Gomi, Tsutomu; Takeda, Tohoru

    2018-01-18

    To evaluate the error in segmented tissue images and to show the usefulness of the brain image in voxel-based morphometry (VBM) using Statistical Parametric Mapping (SPM) 12 software and 3D T 1 -weighted magnetic resonance images (3D-T 1 WIs) processed to simulate idiopathic normal pressure hydrocephalus (iNPH). VBM analysis was performed on sagittal 3D-T 1 WIs obtained in 22 healthy volunteers using a 1.5T MR scanner. Regions of interest for the lateral ventricles of all subjects were carefully outlined on the original 3D-T 1 WIs, and two types of simulated 3D-T 1 WI were also prepared (non-dilated 3D-T 1 WI as normal control and dilated 3D-T 1 WI to simulate iNPH). All simulated 3D-T 1 WIs were segmented into gray matter, white matter, and cerebrospinal fluid images, and normalized to standard space. A brain image was made by adding the gray and white matter images. After smoothing with a 6-mm isotropic Gaussian kernel, group comparisons (dilated vs non-dilated) were made for gray and white matter, cerebrospinal fluid, and brain images using a paired t-test. In evaluation of tissue volume, estimation error was larger using gray or white matter images than using the brain image, and estimation errors in gray and white matter volume change were found for the brain surface. To our knowledge, this is the first VBM study to show the possibility that VBM of gray and white matter volume on the brain surface may be more affected by individual differences in the level of dilation of the lateral ventricles than by individual differences in gray and white matter volumes. We recommend that VBM evaluation in patients with iNPH should be performed using the brain image rather than the gray and white matter images.

  8. Quantitative characterization of brain β-amyloid using a joint PiB/FDG PET image histogram

    NASA Astrophysics Data System (ADS)

    Camp, Jon J.; Hanson, Dennis P.; Holmes, David R.; Kemp, Bradley J.; Senjem, Matthew L.; Murray, Melissa E.; Dickson, Dennis W.; Parisi, Joseph; Petersen, Ronald C.; Lowe, Val J.; Robb, Richard A.

    2014-03-01

    A complex analysis performed by spatial registration of PiB and MRI patient images in order to localize the PiB signal to specific cortical brain regions has been proven effective in identifying imaging characteristics associated with underlying Alzheimer's Disease (AD) and Lewy Body Disease (LBD) pathology. This paper presents an original method of image analysis and stratification of amyloid-related brain disease based on the global spatial correlation of PiB PET images with 18F-FDG PET images (without MR images) to categorize the PiB signal arising from the cortex. Rigid registration of PiB and 18F-FDG images is relatively straightforward, and in registration the 18F-FDG signal serves to identify the cortical region in which the PiB signal is relevant. Cortical grey matter demonstrates the highest levels of amyloid accumulation and therefore the greatest PiB signal related to amyloid pathology. The highest intensity voxels in the 18F-FDG image are attributed to the cortical grey matter. The correlation of the highest intensity PiB voxels with the highest 18F-FDG values indicates the presence of β-amyloid protein in the cortex in disease states, while correlation of the highest intensity PiB voxels with mid-range 18F-FDG values indicates only nonspecific binding in the white matter.

  9. An Australian population study of factors associated with MRI patterns in cerebral palsy.

    PubMed

    Reid, Susan M; Dagia, Charuta D; Ditchfield, Michael R; Carlin, John B; Meehan, Elaine M; Reddihough, Dinah S

    2014-02-01

    The aim of this study was to describe the distribution of magnetic resonance imaging (MRI) patterns in a large population sample of children with cerebral palsy (CP) and to examine associations between MRI patterns, and antenatal and perinatal variables. Data were retrieved from the Victorian CP Register for 884 children (527 males, 357 females) born between 1999 and 2006. Postneonatal MRI was classified for 594 children. For 563 children (329 males, 234 females) for whom classification was to a single MRI pattern, the frequency of each variable was compared between patterns and with the population frequency. White matter injury was the most common MRI pattern (45%), followed by grey matter injury (14%), normal imaging (13%), malformations (10%), focal vascular insults (9%), and miscellaneous patterns (7%). Parity, birth gestation, level of neonatal care, Apgar score, and time to established respiration varied between MRI patterns (p<0.01). Nulliparity was most strongly associated with focal vascular insults, whereas multiparity was associated only with malformations. Grey matter injury was not associated with birth in a tertiary unit, but was strongly associated with severe perinatal compromise. The frequency of neonatal seizures and of nursery admissions was lowest among children with malformations. As known risk factors for CP are differentially associated with specific MRI patterns, future exploration of causal pathways might be facilitated when performed in pathogenically defined groups. © 2013 Mac Keith Press.

  10. Diffusion tensor imaging and neurocognition in survivors of childhood acute lymphoblastic leukaemia.

    PubMed

    Edelmann, Michelle N; Krull, Kevin R; Liu, Wei; Glass, John O; Ji, Qing; Ogg, Robert J; Sabin, Noah D; Srivastava, Deo Kumar; Robison, Leslie L; Hudson, Melissa M; Reddick, Wilburn E

    2014-11-01

    Survivors of childhood acute lymphoblastic leukaemia are at risk for neurocognitive impairment, though little information is available on its association with brain integrity, particularly for survivors treated without cranial radiation therapy. This study compares neurocognitive function and brain morphology in long-term adult survivors of childhood acute lymphoblastic leukaemia treated with chemotherapy alone (n = 36) to those treated with cranial radiation therapy (n = 39) and to healthy control subjects (n = 23). Mean (standard deviation) age at evaluation was 24.9 (3.6) years for the chemotherapy group and 26.7 (3.4) years for the cranial radiation therapy group, while time since diagnosis was 15.0 (1.7) and 23.9 (3.1) years, respectively. Brain grey and white matter volume and diffusion tensor imaging was compared between survivor groups and to 23 healthy controls with a mean (standard deviation) age of 23.1 (2.6) years. Survivors treated with chemotherapy alone had higher fractional anisotropy in fibre tracts within the left (P < 0.05), but not in the right, hemisphere when compared to controls. Survivors of acute lymphoblastic leukaemia, regardless of treatment, had a lower ratio of white matter to intracranial volume in frontal and temporal lobes (P < 0.05) compared with control subjects. Survivors of acute lymphoblastic leukaemia treated with chemotherapy alone performed worse in processing speed (P < 0.001), verbal selective reminding (P = 0.01), and academics (P < 0.05) compared to population norms and performed better than survivors treated with cranial radiation therapy on verbal selective reminding (P = 0.02), processing speed (P = 0.05) and memory span (P = 0.009). There were significant associations between neurocognitive performance and brain imaging, particularly for frontal and temporal white and grey matter volume. Survivors of acute lymphoblastic leukaemia treated with chemotherapy alone demonstrated significant long-term differences in neurocognitive function and altered neuroanatomical integrity. These results suggest substantial region-specific white matter alterations in survivors of acute lymphoblastic leukaemia possibly resulting in restricted radial diffusion due to the compaction of neuronal fibres. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Increase in Prefrontal Cortical Volume following Cognitive Behavioural Therapy in Patients with Chronic Fatigue Syndrome

    ERIC Educational Resources Information Center

    de Lange, Floris P.; Koers, Anda; Kalkman, Joke S.; Bleijenberg, Gijs; Hagoort, Peter; van der Meer, Jos W. M.; Toni, Ivan

    2008-01-01

    Chronic fatigue syndrome (CFS) is a disabling disorder, characterized by persistent or relapsing fatigue. Recent studies have detected a decrease in cortical grey matter volume in patients with CFS, but it is unclear whether this cerebral atrophy constitutes a cause or a consequence of the disease. Cognitive behavioural therapy (CBT) is an…

  12. Structural Changes in the Somatosensory System Correlate with Tic Severity in Gilles de la Tourette Syndrome

    ERIC Educational Resources Information Center

    Thomalla, Gotz; Siebner, Hartwig R.; Jonas, Melanie; Baumer, Tobias; Biermann-Ruben, Katja; Hummel, Friedhelm; Gerloff, Christian; Muller-Vahl, Kirsten; Schnitzler, Alfons; Orth, Michael; Munchau, Alexander

    2009-01-01

    Gilles de la Tourette syndrome (GTS) is a neuropsychiatric disorder characterized by multiple motor and vocal tics. Previous structural MRI studies have identified regional abnormalities in grey matter, especially in the basal ganglia. These findings are consistent with the assumption of alterations in cortico-striato-thalamo-cortical circuits and…

  13. Influence of Social-economic Activities on Air Pollutants in Beijing, China

    NASA Astrophysics Data System (ADS)

    Li, Xiaolu; Zheng, Wenfeng; Yin, Lirong; Yin, Zhengtong; Song, Lihong; Tian, Xia

    2017-08-01

    With the rapid economic development, the serious air pollution in Beijing attracts increasing attention in the last decade. Seen as one whole complex and grey system, the causal relationship between the social development and the air pollution in Beijing has been quantitatively analyzed in this paper. By using the grey relational model, the aim of this study is to explore how the socio-economic and human activities affect on the air pollution in the city of Beijing, China. Four air pollutants, as the particulate matter with size 2.5 micrometers or less (PM2.5), particulate matter with size 10 micrometers or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NOx), are selected as the indicators of air pollution. Additionally, fifteen socio-economic indicators are selected to account for the regional socio-economic characteristics (economy variables, energy consumption variables, pollution emissions variables, environment and construction activity variables). The results highlight that all variables are associated with the concentrations of the four selected air pollutants, but with notable differences between the air pollutants. Most of the socio-economic indicators, such as industrial output, total energy consumption are highly correlated with PM2.5, while PM10, SO2, and NOx present in general moderate correlations with most of the socio-economic variables. Contrary to other studies and reports this study reveals that vehicles and life energy do not have the strongest effect on air pollution in Beijing. This study provides useful information to reduce air pollution and support decision-making for sustainable development.

  14. Brain structure in people at ultra-high risk of psychosis, patients with first-episode schizophrenia, and healthy controls: a VBM study.

    PubMed

    Nenadic, Igor; Dietzek, Maren; Schönfeld, Nils; Lorenz, Carsten; Gussew, Alexander; Reichenbach, Jürgen R; Sauer, Heinrich; Gaser, Christian; Smesny, Stefan

    2015-02-01

    Early intervention research in schizophrenia has suggested that brain structural alterations might be present in subjects at high risk of developing psychosis. The heterogeneity of regional effects of these changes, which is established in schizophrenia, however, has not been explored in prodromal or high-risk populations. We used high-resolution MRI and voxel-based morphometry (VBM8) to analyze grey matter differences in 43 ultra high-risk subjects for psychosis (meeting ARMS criteria, identified through CAARMS interviews), 24 antipsychotic-naïve first-episode schizophrenia patients and 49 healthy controls (groups matched for age and gender). Compared to healthy controls, resp., first-episode schizophrenia patients had reduced regional grey matter in left prefrontal, insula, right parietal and left temporal cortices, while the high-risk group showed reductions in right middle temporal and left anterior frontal cortices. When dividing the ultra-high-risk group in those with a genetic risk vs. those with attenuated psychotic symptoms, the former showed left anterior frontal, right caudate, as well as a smaller right hippocampus, and amygdala reduction, while the latter subgroup showed right middle temporal cortical reductions (each compared to healthy controls). Our findings in a clinical psychosis high-risk cohort demonstrate variability of brain structural changes according to subgroup and background of elevated risk, suggesting frontal and possibly also hippocampal/amygdala changes in individuals with genetic susceptibility. Heterogeneity of structural brain changes (as seen in schizophrenia) appears evident even at high-risk stage, prior to potential onset of psychosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Extent and neural basis of semantic memory impairment in mild cognitive impairment.

    PubMed

    Barbeau, Emmanuel J; Didic, Mira; Joubert, Sven; Guedj, Eric; Koric, Lejla; Felician, Olivier; Ranjeva, Jean-Philippe; Cozzone, Patrick; Ceccaldi, Mathieu

    2012-01-01

    An increasing number of studies indicate that semantic memory is impaired in mild cognitive impairment (MCI). However, the extent and the neural basis of this impairment remain unknown. The aim of the present study was: 1) to evaluate whether all or only a subset of semantic domains are impaired in MCI patients; and 2) to assess the neural substrate of the semantic impairment in MCI patients using voxel-based analysis of MR grey matter density and SPECT perfusion. 29 predominantly amnestic MCI patients and 29 matched control subjects participated in this study. All subjects underwent a full neuropsychological assessment, along with a battery of five tests evaluating different domains of semantic memory. A semantic memory composite Z-score was established on the basis of this battery and was correlated with MRI grey matter density and SPECT perfusion measures. MCI patients were found to have significantly impaired performance across all semantic tasks, in addition to their anterograde memory deficit. Moreover, no temporal gradient was found for famous faces or famous public events and knowledge for the most remote decades was also impaired. Neuroimaging analyses revealed correlations between semantic knowledge and perirhinal/entorhinal areas as well as the anterior hippocampus. Therefore, the deficits in the realm of semantic memory in patients with MCI is more widespread than previously thought and related to dysfunction of brain areas beyond the limbic-diencephalic system involved in episodic memory. The severity of the semantic impairment may indicate a decline of semantic memory that began many years before the patients first consulted.

  16. White matter changes in Alzheimer's disease: a focus on myelin and oligodendrocytes.

    PubMed

    Nasrabady, Sara E; Rizvi, Batool; Goldman, James E; Brickman, Adam M

    2018-03-02

    Alzheimer's disease (AD) is conceptualized as a progressive consequence of two hallmark pathological changes in grey matter: extracellular amyloid plaques and neurofibrillary tangles. However, over the past several years, neuroimaging studies have implicated micro- and macrostructural abnormalities in white matter in the risk and progression of AD, suggesting that in addition to the neuronal pathology characteristic of the disease, white matter degeneration and demyelination may be also important pathophysiological features. Here we review the evidence for white matter abnormalities in AD with a focus on myelin and oligodendrocytes, the only source of myelination in the central nervous system, and discuss the relationship between white matter changes and the hallmarks of Alzheimer's disease. We review several mechanisms such as ischemia, oxidative stress, excitotoxicity, iron overload, Aβ toxicity and tauopathy, which could affect oligodendrocytes. We conclude that white matter abnormalities, and in particular myelin and oligodendrocytes, could be mechanistically important in AD pathology and could be potential treatment targets.

  17. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study.

    PubMed

    Miao, Wen; Man, Fengyuan; Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A; He, Huiguang; Jiao, Yonghong

    2015-01-01

    To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender-matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1.

  18. Evaluation of multi-modal, multi-site neuroimaging measures in Huntington's disease: Baseline results from the PADDINGTON study☆

    PubMed Central

    Hobbs, Nicola Z.; Cole, James H.; Farmer, Ruth E.; Rees, Elin M.; Crawford, Helen E.; Malone, Ian B.; Roos, Raymund A.C.; Sprengelmeyer, Reiner; Durr, Alexandra; Landwehrmeyer, Bernhard; Scahill, Rachael I.; Tabrizi, Sarah J.; Frost, Chris

    2012-01-01

    Background Macro- and micro-structural neuroimaging measures provide valuable information on the pathophysiology of Huntington's disease (HD) and are proposed as biomarkers. Despite theoretical advantages of microstructural measures in terms of sensitivity to pathology, there is little evidence directly comparing the two. Methods 40 controls and 61 early HD subjects underwent 3 T MRI (T1- and diffusion-weighted), as part of the PADDINGTON study. Macrostructural volumetrics were obtained for the whole brain, caudate, putamen, corpus callosum (CC) and ventricles. Microstructural diffusion metrics of fractional anisotropy (FA), mean-, radial- and axial-diffusivity (MD, RD, AD) were computed for white matter (WM), CC, caudate and putamen. Group differences were examined adjusting for age, gender and site. A formal comparison of effect sizes determined which modality and metrics provided a statistically significant advantage over others. Results Macrostructural measures showed decreased regional and global volume in HD (p < 0.001); except the ventricles which were enlarged (p < 0.01). In HD, FA was increased in the deep grey-matter structures (p < 0.001), and decreased in the WM (CC, p = 0.035; WM, p = 0.053); diffusivity metrics (MD, RD, AD) were increased for all brain regions (p < 0.001). The largest effect sizes were for putamen volume, caudate volume and putamen diffusivity (AD, RD and MD); each was significantly larger than those for all other metrics (p < 0.05). Conclusion The highest performing macro- and micro-structural metrics had similar sensitivity to HD pathology quantified via effect sizes. Region-of-interest may be more important than imaging modality, with deep grey-matter regions outperforming the CC and global measures, for both volume and diffusivity. FA appears to be relatively insensitive to disease effects. PMID:24179770

  19. Relationship of metabolic and endocrine parameters to brain glucose metabolism in older adults: do cognitively-normal older adults have a particular metabolic phenotype?

    PubMed

    Nugent, S; Castellano, C A; Bocti, C; Dionne, I; Fulop, T; Cunnane, S C

    2016-02-01

    Our primary objective in this study was to quantify whole brain and regional cerebral metabolic rates of glucose (CMRg) in young and older adults in order to determine age-normalized reference CMRg values for healthy older adults with normal cognition for age. Our secondary objectives were to--(i) report a broader range of metabolic and endocrine parameters including body fat composition that could form the basis for the concept of a 'metabolic phenotype' in cognitively normal, older adults, and (ii) to assess whether medications commonly used to control blood lipids, blood pressure or thyroxine affect CMRg values in older adults. Cognition assessed by a battery of tests was normal for age and education in both groups. Compared to the young group (25 years old; n = 34), the older group (72 years old; n = 41) had ~14% lower CMRg (μmol/100 g/min) specifically in the frontal cortex, and 18% lower CMRg in the caudate. Lower grey matter volume and cortical thickness was widespread in the older group. These differences in CMRg, grey matter volume and cortical thickness were present in the absence of any known evidence for prodromal Alzheimer's disease (AD). Percent total body fat was positively correlated with CMRg in many brain regions but only in the older group. Before and after controlling for body fat, HOMA2-IR was significantly positively correlated to CMRg in several brain regions in the older group. These data show that compared to a healthy younger adult, the metabolic phenotype of a cognitively-normal 72 year old person includes similar plasma glucose, insulin, cholesterol, triglycerides and TSH, higher hemoglobin A1c and percent body fat, lower CMRg in the superior frontal cortex and caudate, but the same CMRg in the hippocampus and white matter. Age-normalization of cognitive test results is standard practice and we would suggest that regional CMRg in cognitively healthy older adults should also be age-normalized.

  20. Brain intra- and extracellular sodium concentration in multiple sclerosis: a 7 T MRI study.

    PubMed

    Petracca, Maria; Vancea, Roxana O; Fleysher, Lazar; Jonkman, Laura E; Oesingmann, Niels; Inglese, Matilde

    2016-03-01

    Intra-axonal accumulation of sodium ions is one of the key mechanisms of delayed neuro-axonal degeneration that contributes to disability accrual in multiple sclerosis. In vivo sodium magnetic resonance imaging studies have demonstrated an increase of brain total sodium concentration in patients with multiple sclerosis, especially in patients with greater disability. However, total sodium concentration is a weighted average of intra- and extra-cellular sodium concentration whose changes reflect different tissue pathophysiological processes. The in vivo, non-invasive measurement of intracellular sodium concentration is quite challenging and the few applications in patients with neurological diseases are limited to case reports and qualitative assessments. In the present study we provide first evidence of the feasibility of triple quantum filtered (23)Na magnetic resonance imaging at 7 T, and provide in vivo quantification of global and regional brain intra- and extra-cellular sodium concentration in 19 relapsing-remitting multiple sclerosis patients and 17 heathy controls. Global grey matter and white matter total sodium concentration (respectively P < 0.05 and P < 0.01), and intracellular sodium concentration (both P < 0.001) were higher while grey matter and white matter intracellular sodium volume fraction (indirect measure of extracellular sodium concentration) were lower (respectively P = 0.62 and P < 0.001) in patients compared with healthy controls. At a brain regional level, clusters of increased total sodium concentration and intracellular sodium concentration and decreased intracellular sodium volume fraction were found in several cortical, subcortical and white matter regions when patients were compared with healthy controls (P < 0.05 family-wise error corrected for total sodium concentration, P < 0.05 uncorrected for multiple comparisons for intracellular sodium concentration and intracellular sodium volume fraction). Measures of total sodium concentration and intracellular sodium volume fraction, but not measures of intracellular sodium concentration were correlated with T2-weighted and T1-weighted lesion volumes (0.05 < P < 0.01) and with Expanded Disability Status Scale (P < 0.05). Thus, suggesting that while intracellular sodium volume fraction decrease could reflect expansion of extracellular space due to tissue loss, intracellular sodium concentration increase could reflect neuro-axonal metabolic dysfunction. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Increase in gray matter volume and white matter fractional anisotropy in the motor pathways of patients with secondarily generalized neocortical seizures.

    PubMed

    Hsin, Yue-Loong; Harnod, Tomor; Chang, Cheng-Siu; Peng, Syu-Jyun

    2017-11-01

    Convulsive motor activity is a clinical manifestation of secondarily generalized seizures evolving from different focal regions. The way in which the motor seizures present themselves is not very different from most of the generalized seizures in and between epilepsy patients. This might point towards the involvement of motor-related cortices and corticospinal pathway for wide spread propagation of epileptic activity. Our aim was to identify changes in the cerebral structures and to correlate clinical variables with structural changes particularly in the motor-related cortices and pathway of patients with generalized convulsions from different seizure foci. Sixteen patients with focal onset and secondarily generalized seizures were included, along with sixteen healthy volunteers. Structural differences were analysed by measuring grey matter (GM) volume and thickness via T1-weighted MRI, and white matter (WM) fractional anisotropy (FA) via diffusion tensor imaging. GM and WM microstructural properties were compared between patients and controls by voxel- and surface- based analyses. Next, morphometric findings were correlated with seizure severity and disease duration to identify the pathologic process. In addition to widely reduced GM and WM properties, increased GM volume in the bilateral precentral gyri and paracentral lobules, and elevated regional FA in the bilateral corticospinal tracts adjacent to these motor -related GM were observed in patients and with higher statistical difference in the sub-patient group with drug-resistance. The increment of GM volume and WM FA in the motor pathway positively correlated with severity and duration of epilepsy. The demonstrated microstructural changes of motor pathways imply a plastic process of motor networks in the patients with frequent generalization of focal seizures. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Does the inclusion of grey literature influence estimates of intervention effectiveness reported in meta-analyses?

    PubMed

    McAuley, L; Pham, B; Tugwell, P; Moher, D

    2000-10-07

    The inclusion of only a subset of all available evidence in a meta-analysis may introduce biases and threaten its validity; this is particularly likely if the subset of included studies differ from those not included, which may be the case for published and grey literature (unpublished studies, with limited distribution). We set out to examine whether exclusion of grey literature, compared with its inclusion in meta-analysis, provides different estimates of the effectiveness of interventions assessed in randomised trials. From a random sample of 135 meta-analyses, we identified and retrieved 33 publications that included both grey and published primary studies. The 33 publications contributed 41 separate meta-analyses from several disease areas. General characteristics of the meta-analyses and associated studies and outcome data at the trial level were collected. We explored the effects of the inclusion of grey literature on the quantitative results using logistic-regression analyses. 33% of the meta-analyses were found to include some form of grey literature. The grey literature, when included, accounts for between 4.5% and 75% of the studies in a meta-analysis. On average, published work, compared with grey literature, yielded significantly larger estimates of the intervention effect by 15% (ratio of odds ratios=1.15 [95% CI 1.04-1.28]). Excluding abstracts from the analysis further compounded the exaggeration (1.33 [1.10-1.60]). The exclusion of grey literature from meta-analyses can lead to exaggerated estimates of intervention effectiveness. In general, meta-analysts should attempt to identify, retrieve, and include all reports, grey and published, that meet predefined inclusion criteria.

  3. Trait conscientiousness and the personality meta-trait stability are associated with regional white matter microstructure.

    PubMed

    Lewis, Gary J; Cox, Simon R; Booth, Tom; Muñoz Maniega, Susana; Royle, Natalie A; Valdés Hernández, Maria; Wardlaw, Joanna M; Bastin, Mark E; Deary, Ian J

    2016-08-01

    Establishing the neural bases of individual differences in personality has been an enduring topic of interest. However, while a growing literature has sought to characterize grey matter correlates of personality traits, little attention to date has been focused on regional white matter correlates of personality, especially for the personality traits agreeableness, conscientiousness and openness. To rectify this gap in knowledge we used a large sample (n > 550) of older adults who provided data on both personality (International Personality Item Pool) and white matter tract-specific fractional anisotropy (FA) from diffusion tensor MRI. Results indicated that conscientiousness was associated with greater FA in the left uncinate fasciculus (β = 0.17, P < 0.001). We also examined links between FA and the personality meta-trait 'stability', which is defined as the common variance underlying agreeableness, conscientiousness, and neuroticism/emotional stability. We observed an association between left uncinate fasciculus FA and stability (β = 0.27, P < 0.001), which fully accounted for the link between left uncinate fasciculus FA and conscientiousness. In sum, these results provide novel evidence for links between regional white matter microstructure and key traits of human personality, specifically conscientiousness and the meta-trait, stability. Future research is recommended to replicate and address the causal directions of these associations. © The Author (2016). Published by Oxford University Press.

  4. On the characterization of the heterogeneous mechanical response of human brain tissue.

    PubMed

    Forte, Antonio E; Gentleman, Stephen M; Dini, Daniele

    2017-06-01

    The mechanical characterization of brain tissue is a complex task that scientists have tried to accomplish for over 50 years. The results in the literature often differ by orders of magnitude because of the lack of a standard testing protocol. Different testing conditions (including humidity, temperature, strain rate), the methodology adopted, and the variety of the species analysed are all potential sources of discrepancies in the measurements. In this work, we present a rigorous experimental investigation on the mechanical properties of human brain, covering both grey and white matter. The influence of testing conditions is also shown and thoroughly discussed. The material characterization performed is finally adopted to provide inputs to a mathematical formulation suitable for numerical simulations of brain deformation during surgical procedures.

  5. Nitrous oxide emissions during biological soil disinfestation with different organic matter and plastic mulch films in laboratory-scale tests.

    PubMed

    Maeda, Morihiro; Kayano, Eisuke; Fujiwara, Taku; Nagare, Hideaki; Akao, Satoshi

    2015-10-23

    Nitrous oxide (N 2 O), which is a greenhouse gas, may be more emitted as an intermediate product of denitrification during biological soil disinfestation. The biological soil disinfestation is a method to suppress soil-borne pathogens under reductive soil conditions produced by the application of organic matter and water irrigation with plastic film. The objective of the study was to determine the effects of different organic matter and mulch films on N 2 O emissions during biological soil disinfestation. Grey lowland soil amended with cattle compost plus rice bran (0.2%), rice husk (0.2%) or dent corn (0.1%, 0.2% and 0.4%) was incubated at 100% water-holding capacity with or without plastic films made of polyvinyl chloride (PVC) and triple-layer polyolefin (3PO) for 72 h at 50°C. Permeation of the two films was also measured at 25°C and 50°C. Results showed that incorporation of organic matter increased N 2 O emissions compared with no organic matter addition at 50°C. Incorporation of rice bran and dent corn with easily decomposable C and low C:N ratios increased N 2 O emissions for the first 12 h, but thereafter, available C supply from these amendments suppressed N 2 O emissions. Permeability of mulch films increased at a higher temperature and was larger for PVC than for 3PO. Our study indicated that rice husk should not be used for soil disinfestation and that application rates of organic matter must be determined based on their decomposability. Moreover, mulch film covering would not suppress N 2 O emission in biological soil disinfestation because of high temperature.

  6. Early development of structural networks and the impact of prematurity on brain connectivity.

    PubMed

    Batalle, Dafnis; Hughes, Emer J; Zhang, Hui; Tournier, J-Donald; Tusor, Nora; Aljabar, Paul; Wali, Luqman; Alexander, Daniel C; Hajnal, Joseph V; Nosarti, Chiara; Edwards, A David; Counsell, Serena J

    2017-04-01

    Preterm infants are at high risk of neurodevelopmental impairment, which may be due to altered development of brain connectivity. We aimed to (i) assess structural brain development from 25 to 45 weeks gestational age (GA) using graph theoretical approaches and (ii) test the hypothesis that preterm birth results in altered white matter network topology. Sixty-five infants underwent MRI between 25 +3 and 45 +6 weeks GA. Structural networks were constructed using constrained spherical deconvolution tractography and were weighted by measures of white matter microstructure (fractional anisotropy, neurite density and orientation dispersion index). We observed regional differences in brain maturation, with connections to and from deep grey matter showing most rapid developmental changes during this period. Intra-frontal, frontal to cingulate, frontal to caudate and inter-hemispheric connections matured more slowly. We demonstrated a core of key connections that was not affected by GA at birth. However, local connectivity involving thalamus, cerebellum, superior frontal lobe, cingulate gyrus and short range cortico-cortical connections was related to the degree of prematurity and contributed to altered global topology of the structural brain network. The relative preservation of core connections at the expense of local connections may support more effective use of impaired white matter reserve following preterm birth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Left Inferior Frontal Cortex and Syntax: Function, Structure and Behaviour in Patients with Left Hemisphere Damage

    ERIC Educational Resources Information Center

    Tyler, Lorraine K.; Marslen-Wilson, William D.; Randall, Billi; Wright, Paul; Devereux, Barry J.; Zhuang, Jie; Papoutsi, Marina; Stamatakis, Emmanuel A.

    2011-01-01

    For the past 150 years, neurobiological models of language have debated the role of key brain regions in language function. One consistently debated set of issues concern the role of the left inferior frontal gyrus in syntactic processing. Here we combine measures of functional activity, grey matter integrity and performance in patients with left…

  8. Identifying Lesions on Structural Brain Images-Validation of the Method and Application to Neuropsychological Patients

    ERIC Educational Resources Information Center

    Stamatakis, E.A.; Tyler, L.K.

    2005-01-01

    The study of neuropsychological disorders has been greatly facilitated by the localization of brain lesions on MRI scans. Current popular approaches for the assessment of MRI brain scans mostly depend on the successful segmentation of the brain into grey and white matter. These methods cannot be used effectively with large lesions because lesions…

  9. Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys

    PubMed Central

    Konopaske, Glenn T.; Dorph-Petersen, Karl-Anton; Sweet, Robert A.; Pierri, Joseph N.; Zhang, Wei; Sampson, Allan R.; Lewis, David A.

    2008-01-01

    Background Both in vivo and post-mortem studies suggest that oligodendrocyte and myelination alterations are present in individuals with schizophrenia. However, it is unclear whether prolonged treatment with antipsychotic medications contributes to these disturbances. We recently reported that chronic exposure of macaque monkeys to haloperidol or olanzapine was associated with a 10−18% lower glial cell number in the parietal grey matter. Consequently, in this study we sought to determine whether the lower glial cell number was due to fewer oligodendrocytes as opposed to lower numbers of astrocytes. Methods Using fluorescent immunocytochemical techniques, we optimized the visualization of each cell type throughout the entire thickness of tissue sections, while minimizing final tissue shrinkage. As a result, we were able to obtain robust stereological estimates of total oligodendrocyte and astrocyte numbers in the parietal grey matter using the optical fractionator method. Results We found a significant 20.5% lower astrocyte number with a non-significant 12.9% lower oligodendrocyte number in the antipsychotic-exposed monkeys. Similar effects were seen in both the haloperidol and olanzapine groups. Conclusion These findings suggest that studies investigating glial cell alterations in schizophrenia must take into account the effect of antipsychotic treatment. PMID:17945195

  10. Structural neuroanatomy of tinnitus and hyperacusis in semantic dementia.

    PubMed

    Mahoney, Colin J; Rohrer, Jonathan D; Goll, Johanna C; Fox, Nick C; Rossor, Martin N; Warren, Jason D

    2011-11-01

    Tinnitus and hyperacusis are common symptoms of excessive auditory perception in the general population; however, their anatomical substrates and disease associations continue to be defined. with semantic dementia (SemD) frequently report tinnitus and hyperacusis but the significance and basis for these symptoms have not been elucidated. 43 patients with a diagnosis of SemD attending a specialist cognitive disorders clinic were retrospectively studied. 14 patients (32% of the cohort) reported at least moderately severe chronic auditory symptoms: seven had tinnitus and a further seven had hyperacusis, and all had brain MRI while symptomatic. MRI data from SemD patients with and without auditory symptoms were compared using voxel based morphometry in order to identify neuroanatomical associations of tinnitus and hyperacusis. Compared with SemD patients with no history of auditory symptoms, patients with tinnitus or hyperacusis had relative preservation of grey matter in the posterior superior temporal lobe and reduced grey matter in the orbitofrontal cortex and medial geniculate nucleus. Tinnitus and hyperacusis may be a significant issue in SemD. Neuroanatomical evidence in SemD supports previous work implicating a distributed cortico-subcortical auditory and limbic network in the pathogenesis of these abnormal auditory percepts.

  11. The pedunculopontine nucleus is related to visual hallucinations in Parkinson's disease: preliminary results of a voxel-based morphometry study.

    PubMed

    Janzen, J; van 't Ent, D; Lemstra, A W; Berendse, H W; Barkhof, F; Foncke, E M J

    2012-01-01

    Visual hallucinations (VH) are common in Parkinson's disease (PD) and lead to a poor quality of life. For a long time, dopaminergic therapy was considered to be the most important risk factor for the development of VH in PD. Recently, the cholinergic system, including the pedunculopontine nucleus (PPN), has been implicated in the pathophysiology of VH. The aim of the present study was to investigate grey matter density of the PPN region and one of its projection areas, the thalamus. Thirteen non-demented PD patients with VH were compared to 16 non-demented PD patients without VH, 13 demented PD patients (PDD) with VH and 11 patients with dementia with Lewy bodies (DLB). Isotropic 3-D T1-weighted MRI images (3T) were analysed using voxel-based morphometry (VBM) with the PPN region and thalamus as ROIs. PD and PDD patients with VH showed grey matter reductions of the PPN region and the thalamus compared to PD patients without VH. VH in PD(D) patients are associated with atrophy of the PPN region and its thalamic target area, suggesting that a cholinergic deficit may be involved in the development of VH in PD(D).

  12. Deterioration of abstract reasoning ability in mild cognitive impairment and Alzheimer's disease: correlation with regional grey matter volume loss revealed by diffeomorphic anatomical registration through exponentiated lie algebra analysis.

    PubMed

    Yoshiura, Takashi; Hiwatashi, Akio; Yamashita, Koji; Ohyagi, Yasumasa; Monji, Akira; Takayama, Yukihisa; Kamano, Norihiro; Kawashima, Toshiro; Kira, Jun-Ichi; Honda, Hiroshi

    2011-02-01

    To determine which brain regions are relevant to deterioration in abstract reasoning as measured by Raven's Colored Progressive Matrices (CPM) in the context of dementia. MR images of 37 consecutive patients including 19 with Alzheimer's disease (AD) and 18 with amnestic mild cognitive impairment (aMCI) were retrospectively analyzed. All patients were administered the CPM. Regional grey matter (GM) volume was evaluated according to the regimens of voxel-based morphometry, during which a non-linear registration algorithm called Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra was employed. Multiple regression analyses were used to map the regions where GM volumes were correlated with CPM scores. The strongest correlation with CPM scores was seen in the left middle frontal gyrus while a region with the largest volume was identified in the left superior temporal gyrus. Significant correlations were seen in 14 additional regions in the bilateral cerebral hemispheres and right cerebellum. Deterioration of abstract reasoning ability in AD and aMCI measured by CPM is related to GM loss in multiple regions, which is in close agreement with the results of previous activation studies.

  13. Thalamic Atrophy Contributes to Low Slow Wave Sleep in Neuromyelitis Optica Spectrum Disorder.

    PubMed

    Su, Lei; Han, Yujuan; Xue, Rong; Wood, Kristofer; Shi, Fu-Dong; Liu, Yaou; Fu, Ying

    2016-12-01

    Slow wave sleep abnormality has been reported in neuromyelitis optica spectrum disorder (NMOSD), but mechanism for such abnormality is unknown. To determine the structural defects in the brain that account for the decrease of slow wave sleep in NMOSD patients. Thirty-three NMOSD patients and 18 matched healthy controls (HC) were enrolled. Polysomnography was used to monitor slow wave sleep and three-dimensional T1-weighted MRIs were obtained to assess the alterations of grey matter volume. The percentage of deep slow wave sleep decreased in 93% NMOSD patients. Compared to HC, a reduction of grey matter volume was found in the bilateral thalamus of patients with a lower percentage of slow wave sleep (FWE corrected at cluster-level, p < 0.05, cluster size > 400 voxels). Furthermore, the right thalamic fraction was positively correlated with the decrease in the percentage of slow wave sleep in NMOSD patients (p < 0.05, FDR corrected, cluster size > 200 voxels). Our study identified that thalamic atrophy is associated with the decrease of slow wave sleep in NMOSD patients. Further studies should evaluate whether neurotransmitters or hormones which stem from thalamus are involved in the decrease of slow wave sleep.

  14. At least eighty percent of brain grey matter is modifiable by physical activity: A review study.

    PubMed

    Batouli, Seyed Amir Hossein; Saba, Valiallah

    2017-08-14

    The human brain is plastic, i.e. it can show structural changes in response to the altered environment. Physical activity (PA) is a lifestyle factor which has significant associations with the structural and functional aspects of the human brain, as well as with the mind and body health. Many studies have reported regional/global brain volume increments due to exercising; however, a map which shows the overall extent of the influences of PAs on brain structure is not available. In this study, we collected all the reports on brain structural alterations in association with PA in healthy humans, and next, a brain map of the extent of these effects is provided. The results of this study showed that a large network of brain areas, equal to 82% of the total grey matter volume, were associated with PA. This finding has important implications in utilizing PA as a mediator factor for educational purposes in children, rehabilitation applications in patients, improving the cognitive abilities of the human brain such as in learning or memory, and preventing age-related brain deteriorations. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Clinical study of Mineral Trioxide Aggregate in primary molars. Comparison between Grey and White MTA--a long term follow-up (84 months).

    PubMed

    Cardoso-Silva, Cristina; Barbería, Elena; Maroto, Myriam; García-Godoy, Franklin

    2011-02-01

    The aim of the present study was to conduct a clinical and radiographic long-term evaluation of pulpotomy in temporary molars performed with Grey and White Mineral Trioxide Aggregate (MTA) and compare the results of Grey and White MTA pulpotomies in a sample of 233 primary molars with a maximum follow-up period of 84 months. The sample was selected from patients treated at the Department of Pediatric Dentistry, Faculty of Dentistry, Complutense University of Madrid, Spain. This prospective study included first and second primary molars treated with pulpotomy with Grey or White MTA, controlled for a maximum follow-up period of 84 months. Statistical analysis of clinical and radiographic findings was completed using ANOVA (P<0.05). Follow-up evaluations, performed every 6 months, revealed that only 2 molars treated with White MTA presented abscess and pathological mobility. Radiographic examination of the 210 molars revealed unfavourable pulp response in only 6 molars (internal or furcation root resorption), without statistically significant differences between Grey and White MTA. Two radiological findings were noticed: dentine bridge formation and partial or total root canal stenosis. Grey MTA induced a higher percentage of dentine bridges with statistically significant differences (P<0.05), and a higher percentage of pulp canal stenosis, without a statistically significant difference. Grey and White MTA presented high levels of clinical and radiographic success. Although the present study showed evidence of a very good biologic response with both types of MTA, Grey MTA showed significantly higher number of dentine bridge formation than White MTA. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Creutzfeldt-Jakob disease with severe involvement of cerebral white matter and cerebellum.

    PubMed

    Berciano, J; Berciano, M T; Polo, J M; Figols, J; Ciudad, J; Lafarga, M

    1990-01-01

    We describe a patient with Creutzfeldt-Jakob disease (CJD) of the ataxic and panencephalopathic type. Postmortem examination revealed the characteristic lesions of CJD in the grey matter and profound white matter involvement was seen with immunocytochemical techniques. Ultrastructural white matter lesions were identical to those described in experimentally transmitted CJD. There was marked loss of cerebellar granule cells with virtual disappearance of parallel fibres, but Purkinje cells were only slightly reduced. Electron microscopic studies revealed extensive degenerative changes including cytoplasmic vacuoles in both cell types. Silver methods disclosed massive impregnation of white matter and striking abnormalities of Purkinje cells consisting of hypertrophy and flattening of thick dendritic branches, reduction in the number of terminal branchlets, segmentary loss of spines and polymorphic spines. These findings show the extensive involvement of all three cerebellar cortical layers and the reactive plasticity of Purkinje cells to deafferentiation. They favour the hypothesis that demyelination represents a primary lesion of the white matter.

  17. Cortical magnetic resonance imaging findings in familial pediatric bipolar disorder.

    PubMed

    Chang, Kiki; Barnea-Goraly, Naama; Karchemskiy, Asya; Simeonova, Diana Iorgova; Barnes, Patrick; Ketter, Terence; Reiss, Allan L

    2005-08-01

    Morphometric magnetic resonance imaging (MRI) studies of pediatric bipolar disorder (BD) have not reported on gray matter volumes but have reported increased lateral ventricular size and presence of white matter hyperintensities (WMH). We studied gray matter volume, ventricular-to-brain ratios (VBR), and number of WMH in patients with familial, pediatric BD compared with control subjects. Twenty subjects with BD (aged 14.6 +/- 2.8 years; 4 female) according to the Washington University in St. Louis Kiddie Schedule for Affective Disorders and Schizophrenia, each with a parent with BD, and 20 age-, gender-, and intelligence quotient-matched healthy control subjects (aged 14.1 +/- 2.8 years; 4 female) were scanned at 3 T. Most subjects were taking psychotropic medications. A high-resolution T1-weighted spoiled gradient echo three-dimensional MRI sequence was analyzed by BrainImage for volumetric measurements, and T2-weighted images were read by a neuroradiologist to determine presence of WMH. After covarying for age and total brain volume, there were no significant differences between subjects with BD and control subjects in volume of cerebral (p = .09) or prefrontal gray matter (p = .34). Subjects with BD did not have elevated numbers of WMH or greater VBR when compared with control subjects. Children and adolescents with familial BD do not seem to have decreased cerebral grey matter or increased numbers of WMH, dissimilar to findings in adults with BD. Gray matter decreases and development of WMH might be later sequelae of BD or unique to adult-onset BD.

  18. 25 years of neuroimaging in amyotrophic lateral sclerosis.

    PubMed

    Foerster, Bradley R; Welsh, Robert C; Feldman, Eva L

    2013-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques--such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy--allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development.

  19. 25 years of neuroimaging in amyotrophic lateral sclerosis

    PubMed Central

    Foerster, Bradley R.; Welsh, Robert C.; Feldman, Eva L.

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques—such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy—allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development. PMID:23917850

  20. An EGR performance evaluation and decision-making approach based on grey theory and grey entropy analysis

    PubMed Central

    2018-01-01

    Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization. PMID:29377956

  1. An EGR performance evaluation and decision-making approach based on grey theory and grey entropy analysis.

    PubMed

    Zu, Xianghuan; Yang, Chuanlei; Wang, Hechun; Wang, Yinyan

    2018-01-01

    Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization.

  2. Brain-volume changes in young and middle-aged smokers: a DARTEL-based voxel-based morphometry study.

    PubMed

    Peng, Peng; Wang, Zhenchang; Jiang, Tao; Chu, Shuilian; Wang, Shuangkun; Xiao, Dan

    2017-09-01

    Many studies have reported brain volume changes in smokers. However, the volume differences of grey matter (GM) and white matter (WM) in young and middle-aged male smokers with different lifetime tobacco consumption (pack-years) remain uncertain. To examine the brain volume change, especially whether more pack-years smoking would be associated with smaller gray matter and white matter volume in young and middle-aged male smokers. We used a 3T MR scanner and performed Diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL)-based voxel-based morphometry on 53 long-term male smokers (30.72 ± 4.19 years) and 53 male healthy non-smokers (30.83 ± 5.18 years). We separated smokers to light and heavy smokers by pack-years and compared brain volume between different smoker groups and non-smokers. And then we did analysis of covariance (ANCOVA) between smokers and non-smokers by setting pack-years as covariates. Light and heavy smokers all displayed smaller GM and WM volume than non-smokers and more obviously in heavy smokers. The main smaller areas in light and heavy smokers were superior temporal gyrus, insula, middle occipital gyrus, posterior cingulate, precuneus in GM and posterior cingulate, thalamus and midbrain in WM, in addition, we also observed more pack-years smoking was associated with some certain smaller GM and WM volumes by ANCOVA. Young and middle-aged male smokers had many smaller brain areas than non-smokers. Some of these areas' volume had negative correlation with pack-years, while some had not. These may due to different pathophysiological role of smokings. © 2015 John Wiley & Sons Ltd.

  3. Potential predictors for the amount of intra-operative brain shift during deep brain stimulation surgery

    NASA Astrophysics Data System (ADS)

    Datteri, Ryan; Pallavaram, Srivatsan; Konrad, Peter E.; Neimat, Joseph S.; D'Haese, Pierre-François; Dawant, Benoit M.

    2011-03-01

    A number of groups have reported on the occurrence of intra-operative brain shift during deep brain stimulation (DBS) surgery. This has a number of implications for the procedure including an increased chance of intra-cranial bleeding and complications due to the need for more exploratory electrodes to account for the brain shift. It has been reported that the amount of pneumocephalus or air invasion into the cranial cavity due to the opening of the dura correlates with intraoperative brain shift. Therefore, pre-operatively predicting the amount of pneumocephalus expected during surgery is of interest toward accounting for brain shift. In this study, we used 64 DBS patients who received bilateral electrode implantations and had a post-operative CT scan acquired immediately after surgery (CT-PI). For each patient, the volumes of the pneumocephalus, left ventricle, right ventricle, third ventricle, white matter, grey matter, and cerebral spinal fluid were calculated. The pneumocephalus was calculated from the CT-PI utilizing a region growing technique that was initialized with an atlas-based image registration method. A multi-atlas-based image segmentation method was used to segment out the ventricles of each patient. The Statistical Parametric Mapping (SPM) software package was utilized to calculate the volumes of the cerebral spinal fluid (CSF), white matter and grey matter. The volume of individual structures had a moderate correlation with pneumocephalus. Utilizing a multi-linear regression between the volume of the pneumocephalus and the statistically relevant individual structures a Pearson's coefficient of r = 0.4123 (p = 0.0103) was found. This study shows preliminary results that could be used to develop a method to predict the amount of pneumocephalus ahead of the surgery.

  4. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study

    PubMed Central

    Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A.; He, Huiguang; Jiao, Yonghong

    2015-01-01

    Purpose To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. Methods T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender- matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Results Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. Conclusions CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1. PMID:26186732

  5. Structural modifications of the brain in acclimatization to high-altitude.

    PubMed

    Zhang, Jiaxing; Yan, Xiaodan; Shi, Jinfu; Gong, Qiyong; Weng, Xuchu; Liu, Yijun

    2010-07-06

    Adaptive changes in respiratory and cardiovascular responses at high altitude (HA) have been well clarified. However, the central mechanisms underlying HA acclimatization remain unclear. Using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) with fractional anisotropy (FA) calculation, we investigated 28 Han immigrant residents (17-22 yr) born and raised at HA of 2616-4200 m in Qinghai-Tibetan Plateau for at least 17 years and who currently attended college at sea-level (SL). Their family migrated from SL to HA 2-3 generations ago and has resided at HA ever since. Control subjects were matched SL residents. HA residents (vs. SL) showed decreased grey matter volume in the bilateral anterior insula, right anterior cingulate cortex, bilateral prefrontal cortex, left precentral cortex, and right lingual cortex. HA residents (vs. SL) had significantly higher FA mainly in the bilateral anterior limb of internal capsule, bilateral superior and inferior longitudinal fasciculus, corpus callosum, bilateral superior corona radiata, bilateral anterior external capsule, right posterior cingulum, and right corticospinal tract. Higher FA values in those regions were associated with decreased or unchanged radial diffusivity coinciding with no change of longitudinal diffusivity in HA vs. SL group. Conversely, HA residents had lower FA in the left optic radiation and left superior longitudinal fasciculus. Our data demonstrates that HA acclimatization is associated with brain structural modifications, including the loss of regional cortical grey matter accompanied by changes in the white matter, which may underlie the physiological adaptation of residents at HA.

  6. Seizures and epilepsy in hypoglycaemia caused by inborn errors of metabolism.

    PubMed

    Gataullina, Svetlana; Delonlay, Pascale; Lemaire, Eric; Boddaert, Nathalie; Bulteau, Christine; Soufflet, Christine; Laín, Gemma Aznar; Nabbout, Rima; Chiron, Catherine; Dulac, Olivier

    2015-02-01

    The aim of the study was to characterize seizures and epilepsy related to hypoglycaemia. We analyzed the files of 170 consecutive patients referred for hypoglycaemia (onset 1h to 4y) caused by inborn errors of metabolism (glycogen storage disease type I, fatty acid β-oxidation disorders, and hyperinsulinism). Ninety patients (42 males and 48 females; 38 neonates and 52 infants/children) had brief hypoglycaemic seizures (68%) or status epilepticus (32%). Status epilepticus occurred earlier (mean 1.4d) than brief neonatal seizures (4.3d, p=0.02). Recurrent status epilepticus followed initial status epilepticus and was often triggered by fever. Epilepsy developed in 21 patients. In 18 patients, epilepsy followed hypoglycaemic status epilepticus and began with shorter delay when associated with grey matter lesions (1.9mo, standard error of the mean [SEM] 1mo) than with white matter damage (3.3y [SEM 1y], p=0.003). Three patients with hyperinsulinism developed idiopathic epilepsy following brief neonatal seizures. Brief neonatal hyperinsulinaemic hypoglycaemic seizures have characteristics of idiopathic neonatal seizures. Neonatal status epilepticus should be prevented by the systematic measurement of glucose blood level. Recurrent seizures never consist of status epilepticus when following brief initial seizures. Epilepsy is symptomatic of brain damage with shorter delay in the case of grey rather than white matter lesions, except in a few idiopathic cases in which epilepsy and hyperinsulinism may share a common genetic background. © 2014 Mac Keith Press.

  7. Diffusion-weighted MR of the brain: methodology and clinical application.

    PubMed

    Mascalchi, Mario; Filippi, Massimo; Floris, Roberto; Fonda, Claudio; Gasparotti, Roberto; Villari, Natale

    2005-03-01

    Clinical diffusion magnetic resonance (MR) imaging in humans started in the last decade with the demonstration of the capabilities of this technique of depicting the anatomy of the white matter fibre tracts in the brain. Two main approaches in terms of reconstruction and evaluation of the images obtained with application of diffusion sensitising gradients to an echo planar imaging sequence are possible. The first approach consists of reconstruction of images in which the effect of white matter anisotropy is averaged -- known as the isotropic or diffusion weighted images, which are usually evaluated subjectively for possible areas of increased or decreased signal, reflecting restricted and facilitated diffusion, respectively. The second approach implies reconstruction of image maps of the apparent diffusion coefficient (ADC), in which the T2 weighting of the echo planar diffusion sequence is cancelled out, and their objective, i.e. numerical, evaluation with regions of interest or histogram analysis. This second approach enables a quantitative and reproducible assessment of the diffusion changes not only in areas exhibiting signal abnormality in conventional MR images but also in areas of normal signal. A further level of image post-processing requires the acquisition of images after application of sensitising gradients along at least 6 different spatial orientations and consists of computation of the diffusion tensor and reconstruction of maps of the mean diffusivity (D) and of the white matter anisotropic properties, usually in terms of fractional anisotropy (FA). Diffusion-weighted imaging is complementary to conventional MR imaging in the evaluation of the acute ischaemic stroke. The combination of diffusion and perfusion MR imaging has the potential of providing all the information necessary for the diagnosis and management of the individual patient with acute ischaemic stroke. Diffusion-weighted MR, in particular quantitative evaluation based on the diffusion tensor, has a fundamental role in the assessment of brain maturation and of white matter diseases in the fetus, in the neonate and in the child. Diffusion MR imaging enables a better characterisation of the lesions demonstrated by conventional MR imaging, for instance in the hypoxic-ischaemic encephalopathy, in infections and in the inherited metabolic diseases, and is particularly important for the longitudinal evaluation of these conditions. Diffusion-weighted MR imaging has an established role in the differential diagnosis between brain abscess and cystic tumour and between epidermoid tumour and arachnoid cyst. On the other hand, the results obtained with diffusion MR in the characterisation of type and extension of glioma do not yet allow decision making in the individual patient. Diffusion is one of the most relevant MR techniques to have contributed to a better understanding of the pathophysiological mechanisms of multiple sclerosis (MS). In fact, it improves the specificity of MR in characterising the different pathological substrata underlying the rather uniform lesion appearance on the conventional images and enables detection of damage in the normal-appearing white and grey matter. In MS patients the ADC or D values in the normal-appearing white matter are increased as compared to control values, albeit to a lesser degree than in the lesions demonstrated by T2-weighted images. In addition, the D of the normal appearing grey matter is increased in MS patients and this change correlates with the cognitive deficit of these patients. Histogram analysis in MS patients shows that the peak of the brain D is decreased and right-shifted, reflecting an increase of its value, and the two features correlate with the patient's clinical disability. Ageing is associated to a mild but significant increase of the brain ADC or D which is predominantly due to changes in the white matter. Region of interest and histogram studies have demonstrated that D or ADC are increased in either the areas of leukoaraiosis or the normal-appearing white matter in patients with inherited cerebral autosomal dominant arteriopathy with subcortical infarcts and stroke or sporadic ischaemic leukoencephalopathy. Diffusion changes might be a more sensitive marker for progression of the disease than conventional imaging findings. In neurodegenerative diseases of the central nervous system such as Alzheimer's disease, Huntington's disease, hereditary ataxias and motor neuron disease, quantitative diffusion MR demonstrates the cortical and subcortical grey matter damage, which is reflected in a regional increase of D or ADC, but also reveals the concomitant white matter changes that are associated with an increase in D or ADC and decrease in FA. In all these diseases the diffusion changes are correlated to the clinical deficit and are potentially useful for early diagnosis and longitudinal evaluation, especially in the context of pharmacological trials.

  8. Neurostructural correlates of two subtypes of specific phobia: a voxel-based morphometry study.

    PubMed

    Hilbert, Kevin; Evens, Ricarda; Maslowski, Nina Isabel; Wittchen, Hans-Ulrich; Lueken, Ulrike

    2015-02-28

    The animal and blood-injection-injury (BII) subtypes of specific phobia are both characterized by subjective fear but distinct autonomic reactions to threat. Previous functional neuroimaging studies have related these characteristic responses to shared and non-shared neural underpinnings. However, no comparative structural data are available. This study aims to fill this gap by comparing the two subtypes and also comparing them with a non-phobic control group. Gray and white matter data of 33 snake phobia subjects (SP), 26 dental phobia subjects (DP), and 37 healthy control (HC) subjects were analyzed with voxel-based morphometry. Especially DP differed from HC and SP by showing significantly increased grey matter volumes in widespread areas including the right subgenual anterior cingulate gyrus, left insula, left orbitofrontal and left prefrontal (PFC) cortices. In addition, white matter volume was significantly increased in the left PFC in DP compared with SP. These results are in line with functional changes observed in dental phobia and point toward those brain circuits associated with emotional processing and regulation. Future studies should aim to further delineate functional and structural connectivity alterations in specific phobia. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. The Ins and Outs of Meaning: Behavioral and Neuroanatomical Dissociation of Semantically-Driven Word Retrieval and Multimodal Semantic Recognition in Aphasia

    PubMed Central

    Mirman, Daniel; Zhang, Yongsheng; Wang, Ze; Coslett, H. Branch; Schwartz, Myrna F.

    2015-01-01

    Theories about the architecture of language processing differ with regard to whether verbal and nonverbal comprehension share a functional and neural substrate and how meaning extraction in comprehension relates to the ability to use meaning to drive verbal production. We (re-)evaluate data from 17 cognitive-linguistic performance measures of 99 participants with chronic aphasia using factor analysis to establish functional components and support vector regression-based lesion-symptom mapping to determine the neural correlates of deficits on these functional components. The results are highly consistent with our previous findings: production of semantic errors is behaviorally and neuroanatomically distinct from verbal and nonverbal comprehension. Semantic errors were most strongly associated with left ATL damage whereas deficits on tests of verbal and non-verbal semantic recognition were most strongly associated with damage to deep white matter underlying the frontal lobe at the confluence of multiple tracts, including the inferior fronto-occipital fasciculus, the uncinate fasciculus, and the anterior thalamic radiations. These results suggest that traditional views based on grey matter hub(s) for semantic processing are incomplete and that the role of white matter in semantic cognition has been underappreciated. PMID:25681739

  10. [The use of the T2-weighted turbo-spin-echo sequence in studying the neurocranium. A comparison with the conventional T2-weighted spin-echo sequence].

    PubMed

    Siewert, C; Hosten, N; Felix, R

    1994-07-01

    T2-weighted spin-echo imaging is the standard screening procedure in MR imaging of the neurocranium. We evaluated fast spin-echo T2-weighted imaging (TT2) of the neurocranium in comparison to conventional spin-echo T2-weighted imaging (T2). Signal-to-noise and contrast-to-noise ratio of normal brain tissues (basal ganglia, grey and white matter, CSF fluid) and different pathologies were calculated. Signal-to-noise ratio and contrast-to-noise ratio were significantly higher in TT2 than in T2 (with the exception of gray-to-white matter contrast). Tissues with increased content of water protons (mobile protons) showed the highest contrast to surrounding tissues. The increased signal intensity of fat must be given due attention in fatty lesions. Because the contrast-to-noise ratio between white matter and basal ganglia is less in TT2, Parkinson patients have to be examined by conventional T2. If these limitations are taken into account, fast spin-echo T2-weighted imaging is well appropriate for MR imaging of the neurocranium, resulting in heavy T2-weighting achieved in a short acquisition time.

  11. Grey-Markov prediction model based on background value optimization and central-point triangular whitenization weight function

    NASA Astrophysics Data System (ADS)

    Ye, Jing; Dang, Yaoguo; Li, Bingjun

    2018-01-01

    Grey-Markov forecasting model is a combination of grey prediction model and Markov chain which show obvious optimization effects for data sequences with characteristics of non-stationary and volatility. However, the state division process in traditional Grey-Markov forecasting model is mostly based on subjective real numbers that immediately affects the accuracy of forecasting values. To seek the solution, this paper introduces the central-point triangular whitenization weight function in state division to calculate possibilities of research values in each state which reflect preference degrees in different states in an objective way. On the other hand, background value optimization is applied in the traditional grey model to generate better fitting data. By this means, the improved Grey-Markov forecasting model is built. Finally, taking the grain production in Henan Province as an example, it verifies this model's validity by comparing with GM(1,1) based on background value optimization and the traditional Grey-Markov forecasting model.

  12. Indirect Effects of Elevated Body Mass Index on Memory Performance Through Altered Cerebral Metabolite Concentrations

    PubMed Central

    Gonzales, Mitzi M.; Takashi, Tarumi; Eagan, Danielle E.; Tanaka, Hirofumi; Vaghasia, Miral; Haley, Andreana P.

    2012-01-01

    Objective Elevated body mass index (BMI) at midlife is associated with increased risk of cognitive decline in later life. The goal of the current study was to assess mechanisms of early brain vulnerability by examining if higher BMI at midlife has an effect on current cognitive performance through alterations in cerebral neurochemistry. Methods Fifty-five participants, aged 40–60 years, underwent neuropsychological testing, health screen, and proton magnetic resonance spectroscopy (1H MRS) examining N-acetyl-aspartate (NAA), creatine (Cr), myo-inositol (mI), choline (Cho), and glutamate (Glu) concentrations in occipitoparietal grey matter. Concentrations of NAA, Cho, mI, and Glu were calculated as a ratio over Cr and examined in relation to BMI using multivariate regression analyses. Structural equation modeling was used to determine if BMI had an indirect effect on cognition through cerebral metabolite levels. Results Higher BMI was associated with elevations in mI/Cr (F(5,45)= 3.843, p=0.006, β=0.444, p=0.002), independent of age, sex, fasting glucose levels, and systolic blood pressure. Moreover, a chi-square difference test of the direct and indirect structural equation models revealed that BMI had an indirect effect on global cognitive performance (ΔX2(df=2) =19.939, p<0.001). Subsequent follow-up analyses revealed that this effect was specific to memory (ΔX2(df=2) = 22.027, p<0.001). Conclusions Higher BMI was associated with elevations in mI/Cr concentrations in the occipitoparietal grey matter and indirectly related to poorer memory performance through mI/Cr, potentially implicating plasma hypertonicity and neuroinflammation as mechanisms underlying obesity-related brain vulnerability. PMID:22822230

  13. Grey matter abnormalities in children and adolescents with functional neurological symptom disorder.

    PubMed

    Kozlowska, Kasia; Griffiths, Kristi R; Foster, Sheryl L; Linton, James; Williams, Leanne M; Korgaonkar, Mayuresh S

    2017-01-01

    Functional neurological symptom disorder refers to the presence of neurological symptoms not explained by neurological disease. Although this disorder is presumed to reflect abnormal function of the brain, recent studies in adults show neuroanatomical abnormalities in brain structure . These structural brain abnormalities have been presumed to reflect long-term adaptations to the disorder, and it is unknown whether child and adolescent patients, with illness that is typically of shorter duration, show similar deficits or have normal brain structure. High-resolution, three-dimensional T1-weighted magnetic resonance images (MRIs) were acquired in 25 patients (aged 10-18 years) and 24 healthy controls. Structure was quantified in terms of grey matter volume using voxel-based morphometry. Post hoc, we examined whether regions of structural difference related to a measure of motor readiness to emotional signals and to clinical measures of illness duration, illness severity, and anxiety/depression. Patients showed greater volumes in the left supplementary motor area (SMA) and right superior temporal gyrus (STG) and dorsomedial prefrontal cortex (DMPFC) (corrected p < 0.05). Previous studies of adult patients have also reported alterations of the SMA. Greater SMA volumes correlated with faster reaction times in identifying emotions but not with clinical measures. The SMA, STG, and DMPFC are known to be involved in the perception of emotion and the modulation of motor responses. These larger volumes may reflect the early expression of an experience-dependent plasticity process associated with increased vigilance to others' emotional states and enhanced motor readiness to organize self-protectively in the context of the long-standing relational stress that is characteristic of this disorder.

  14. Grey matter volume patterns in thalamic nuclei are associated with familial risk for schizophrenia.

    PubMed

    Pergola, Giulio; Trizio, Silvestro; Di Carlo, Pasquale; Taurisano, Paolo; Mancini, Marina; Amoroso, Nicola; Nettis, Maria Antonietta; Andriola, Ileana; Caforio, Grazia; Popolizio, Teresa; Rampino, Antonio; Di Giorgio, Annabella; Bertolino, Alessandro; Blasi, Giuseppe

    2017-02-01

    Previous evidence suggests reduced thalamic grey matter volume (GMV) in patients with schizophrenia (SCZ). However, it is not considered an intermediate phenotype for schizophrenia, possibly because previous studies did not assess the contribution of individual thalamic nuclei and employed univariate statistics. Here, we hypothesized that multivariate statistics would reveal an association of GMV in different thalamic nuclei with familial risk for schizophrenia. We also hypothesized that accounting for the heterogeneity of thalamic GMV in healthy controls would improve the detection of subjects at familial risk for the disorder. We acquired MRI scans for 96 clinically stable SCZ, 55 non-affected siblings of patients with schizophrenia (SIB), and 249 HC. The thalamus was parceled into seven regions of interest (ROIs). After a canonical univariate analysis, we used GMV estimates of thalamic ROIs, together with total thalamic GMV and premorbid intelligence, as features in Random Forests to classify HC, SIB, and SCZ. Then, we computed a Misclassification Index for each individual and tested the improvement in SIB detection after excluding a subsample of HC misclassified as patients. Random Forests discriminated SCZ from HC (accuracy=81%) and SIB from HC (accuracy=75%). Left anteromedial thalamic volumes were significantly associated with both multivariate classifications (p<0.05). Excluding HC misclassified as SCZ improved greatly HC vs. SIB classification (Cohen's d=1.39). These findings suggest that multivariate statistics identify a familial background associated with thalamic GMV reduction in SCZ. They also suggest the relevance of inter-individual variability of GMV patterns for the discrimination of individuals at familial risk for the disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Maternal sensitivity and the empathic brain: Influences of early life maltreatment.

    PubMed

    Mielke, Emilia L; Neukel, Corinne; Bertsch, Katja; Reck, Corinna; Möhler, Eva; Herpertz, Sabine C

    2016-06-01

    One of the most striking characteristics of early life maltreatment (ELM) is the risk of transmission across generations, which could be linked to differences in maternal behavior. Maternal sensitivity includes appropriate and positive affective exchanges between mother and child. Mothers with a history of ELM have been found to show a lower sensitivity representing a significant risk factor for maltreating their own children. 25 mothers with and 28 mothers without sexual and/or physical childhood maltreatment (as assessed with the Childhood Experience of Care and Abuse interview) and their children participated in a standardized mother-child interaction task. Videotaped interactions were rated by two independent trained raters based on the Emotional Availability Scales. In addition, empathic capabilities were assessed with the Interpersonal Reactivity Index. High resolution structural magnetic resonance brain images of the mothers were analyzed with unbiased voxel-based morphometry and correlated with maternal sensitivity. Results indicate that mothers with ELM were less sensitive in the standardized interaction with their own child. In non-maltreated control mothers, maternal sensitivity was positively related to anterior insular grey matter volume, a region which is crucially involved in emotional empathy, while there was a positive association between maternal sensitivity and grey matter volume in parts of the cognitive empathy network such as the superior temporal sulcus and temporal pole region in mothers with ELM. These results implicate that neurostructural alterations associated with poor maternal sensitivity might be a sequelae of ELM and that mothers with ELM may try to compensate deficits in emotional empathy by recruiting brain regions involved in cognitive empathy when interacting with their child. Thus, findings suggest possible coping strategies of mother with ELM to prevent an intergenerational transmission of abuse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. From Cortical and Subcortical Grey Matter Abnormalities to Neurobehavioral Phenotype of Angelman Syndrome: A Voxel-Based Morphometry Study

    PubMed Central

    Aghakhanyan, Gayane; Bonanni, Paolo; Randazzo, Giovanna; Nappi, Sara; Tessarotto, Federica; De Martin, Lara; Frijia, Francesca; De Marchi, Daniele; De Masi, Francesco; Kuppers, Beate; Lombardo, Francesco; Caramella, Davide; Montanaro, Domenico

    2016-01-01

    Angelman syndrome (AS) is a rare neurogenetic disorder due to loss of expression of maternal ubiquitin-protein ligase E3A (UBE3A) gene. It is characterized by severe developmental delay, speech impairment, movement or balance disorder and typical behavioral uniqueness. Affected individuals show normal magnetic resonance imaging (MRI) findings, although mild dysmyelination may be observed. In this study, we adopted a quantitative MRI analysis with voxel-based morphometry (FSL-VBM) method to investigate disease-related changes in the cortical/subcortical grey matter (GM) structures. Since 2006 to 2013 twenty-six AS patients were assessed by our multidisciplinary team. From those, sixteen AS children with confirmed maternal 15q11-q13 deletions (mean age 7.7 ± 3.6 years) and twenty-one age-matched controls were recruited. The developmental delay and motor dysfunction were assessed using Bayley III and Gross Motor Function Measure (GMFM). Principal component analysis (PCA) was applied to the clinical and neuropsychological datasets. High-resolution T1-weighted images were acquired and FSL-VBM approach was applied to investigate differences in the local GM volume and to correlate clinical and neuropsychological changes in the regional distribution of GM. We found bilateral GM volume loss in AS compared to control children in the striatum, limbic structures, insular and orbitofrontal cortices. Voxel-wise correlation analysis with the principal components of the PCA output revealed a strong relationship with GM volume in the superior parietal lobule and precuneus on the left hemisphere. The anatomical distribution of cortical/subcortical GM changes plausibly related to several clinical features of the disease and may provide an important morphological underpinning for clinical and neurobehavioral symptoms in children with AS. PMID:27626634

  17. Utility of the cumulative stress and mismatch hypotheses in understanding the neurobiological impacts of childhood abuse and recent stress in youth with emerging mental disorder.

    PubMed

    Paquola, Casey; Bennett, Maxwell R; Hatton, Sean N; Hermens, Daniel F; Lagopoulos, Jim

    2017-05-01

    Childhood abuse has an enduring impact on the brain's stress system. Whether the effects of childhood abuse and adulthood stress are additive (cumulative stress hypothesis) or interactive (mismatch hypothesis) is widely disputed, however. The primary aim of this study was to test the utility of the cumulative stress and mismatch hypotheses in understanding brain and behaviour. We recruited 64 individuals (aged 14-26) from a specialised clinic for assessment and early intervention of mental health problems in young people. A T1-weighted MRI, a resting state fMRI and clinical assessment were acquired from each participant. Grey matter estimates and resting state functional connectivity (rsFC) of the hippocampus, amygdala and anterior cingulate cortex (ACC) were determined using segmentation and seed-to-voxel rsFC analyses. We explored the effects of childhood abuse and recent stress on the structure and function of the regions of interest within general linear models. Worse psychiatric symptoms were significantly related to higher levels of life time stress. Individuals with mismatched childhood and recent stress levels had reduced left hippocampal volume, reduced ACC-ventrolateral prefrontal cortex rsFC and greater ACC-hippocampus rsFC, compared to individuals with matched childhood and recent stress levels. These results show specific utility of the cumulative stress hypothesis in understanding psychiatric symptomatology and of the mismatch hypothesis in modelling hippocampal grey matter, prefrontal rsFC, and prefrontal-hippocampal rsFC. We provide novel evidence for the enduring impact of childhood abuse on stress reactivity in a clinical population, and demonstrate the distinct effects of stress in different systems. Hum Brain Mapp 38:2709-2721, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Abnormal subcortical nuclei shapes in patients with type 2 diabetes mellitus.

    PubMed

    Chen, Ji; Zhang, Junxiang; Liu, Xuebing; Wang, Xiaoyang; Xu, Xiangjin; Li, Hui; Cao, Bo; Yang, Yanqiu; Lu, Jingjing; Chen, Ziqian

    2017-10-01

    Type 2 diabetes mellitus (T2DM) increases the risk of brain atrophy and dementia. We aimed to elucidate deep grey matter (GM) structural abnormalities and their relationships with T2DM cognitive deficits by combining region of interest (ROI)-based volumetry, voxel-based morphometry (VBM) and shape analysis. We recruited 23 T2DM patients and 24 age-matched healthy controls to undergo T1-weighted structural MRI scanning. Images were analysed using the three aforementioned methods to obtain deep GM structural shapes and volumes. Biochemical and cognitive assessments were made and were correlated with the resulting metrics. Shape analysis revealed that T2DM is associated with focal atrophy in the bilateral caudate head and dorso-medial part of the thalamus. ROI-based volumetry only detected thalamic volume reduction in T2DM when compared to the controls. No significant between-group differences were found by VBM. Furthermore, a worse performance of cognitive processing speed correlated with more severe GM atrophy in the bilateral dorso-medial part of the thalamus. Also, the GM volume in the bilateral dorso-medial part of the thalamus changed negatively with HbA 1c . Shape analysis is sensitive in identifying T2DM deep GM structural abnormalities and their relationships with cognitive impairments, which may greatly assist in clarifying the neural substrate of T2DM cognitive dysfunction. • Type 2 diabetes mellitus is accompanied with brain atrophy and cognitive dysfunction • Deep grey matter structures are essential for multiple cognitive processes • Shape analysis revealed local atrophy in the dorso-medial thalamus and caudatum in patients • Dorso-medial thalamic atrophy correlated to cognitive processing speed slowing and high HbA1c. • Shape analysis has advantages in unraveling neural substrates of diabetic cognitive deficits.

  19. New Advances in Molecular Therapy for Muscle Repair After Diseases and Injuries

    DTIC Science & Technology

    2010-04-01

    in grey matter indicated small neuron and axon communication . Project # 5 Final Report** Inhibiting cell death and promoting muscle growth for...the treatment of other genetic and acquired causes of muscle wasting. We produced multiple AAV8 vectors with expression cassettes designed to... communication between the various investigators and institutions. The Administrative Core holds weekly/biweekly seminar series for SCRC

  20. Prevention of Blast-Related Injuries

    DTIC Science & Technology

    2015-07-14

    pathology of traumatic axonal injury involves distinct injury processes, neurofilament compaction (NFC) and impaired axoplasmic transport (IAT)1. In rat...assessments and may render diagnosis of blast related pathology even more difficult. These neuronal injury changes in the grey matter that appeared...were from blast studies using rodents16,17 and impulse noise18. A putative pathological implication for microglia comes from studies by Kane et al

  1. SU-F-I-46: Optimizing Dose Reduction in Adult Head CT Protocols While Maintaining Image Quality in Postmortem Head Scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnharski, I; Carranza, C; Quails, N

    Purpose: To optimize adult head CT protocol by reducing dose to an appropriate level while providing CT images of diagnostic quality. Methods: Five cadavers were scanned from the skull base to the vertex using a routine adult head CT protocol (120 kVp, 270 mA, 0.75 s rotation, 0.5 mm × 32 detectors, 70.8 mGy CTDIvol) followed by seven reduced-dose protocols with varying combinations of reduced tube current, reduced rotation time, and increased detectors with CTDIvol ranging from 38.2 to 65.6 mGy. Organ doses were directly measured with 21 OSL dosimeters placed on the surface and implanted in the head bymore » a neurosurgeon. Two neuroradiologists assessed grey-white matter differentiation, fluid space, ventricular size, midline shift, brain mass, edema, ischemia, and skull fractures on a three point scale: (1) Unacceptable, (2) Borderline Acceptable, and (3) Acceptable. Results: For the standard scan, doses to the skin, lens of the eye, salivary glands, thyroid, and brain were 37.55 mGy, 49.65 mGy, 40.67 mGy, 4.63 mGy, and 27.33 mGy, respectively. Two cadavers had cerebral edema due to changing dynamics of postmortem effects, causing the grey-white matter differentiation to appear less distinct. Two cadavers with preserved grey-white matter received acceptable scores for all image quality features for the protocol with a CTDIvol of 57.3 mGy, allowing organ dose savings ranging from 34% to 45%. One cadaver allowed for greater dose reduction for the protocol with a CTDIvol of 42 mGy. Conclusion: Efforts to optimize scan protocol should consider both dose and clinical image quality. This is made possible with postmortem subjects, whose brains are similar to patients, allowing for an investigation of ideal scan parameters. Radiologists at our institution accepted scan protocols acquired with lower scan parameters, with CTDIvol values closer to the American College of Radiology’s (ACR) Achievable Dose level of 57 mGy.« less

  2. Assessment of fluid distribution and flow properties in two phase fluid flow using X-ray CT technology

    NASA Astrophysics Data System (ADS)

    Jiang, Lanlan; Wu, Bohao; Li, Xingbo; Wang, Sijia; Wang, Dayong; Zhou, Xinhuan; Zhang, Yi

    2018-04-01

    To study on microscale distribution of CO2 and brine during two-phase flow is crucial for understanding the trapping mechanisms of CO2 storage. In this study, CO2-brine flow experiments in porous media were conducted using X-ray computed tomography. The porous media were packed with glass beads. The pore structure (porosity/tortuosity) and flow properties at different flow rates and flow fractions were investigated. The results showed that porosity of the packed beads differed at different position as a result of heterogeneity. The CO2 saturation is higher at low injection flow rates and high CO2 fractions. CO2 distribution at the pore scale was also visualized. ∅ Porosity of porous media CT brine_ sat grey value of sample saturated with brine CT dry grey value of sample saturated with air CT brine grey value of pure brine CT air grey value of pure air CT flow grey values of sample with two fluids occupying the pore space {CT}_{CO_2_ sat} grey value of sample saturated with CO2 {f}_{CO_2}({S}_{CO_2}) CO2 fraction {q}_{CO_2} the volume flow rate for CO2 q brine the volume flow rate for brine L Thickness of the porous media, mm L e a bundle of capillaries of equal length, mm τ Tortuosity, calculated from L e / L.

  3. "Grey matters".

    PubMed

    Rose, Katie

    2014-01-01

    It's common in this world, for diagnoses to be confused. This grey, oblique world is the "World of Brain Tumors" from which these narratives are written, a world I entered when a tangerine-sized tumor was found on my temporal lobe. Each narrative illustrates this world in which everything is covered in a thick film rendering things once obvious, now unknown. Parents are asked to choose treatment plans for their children, plans that will inevitably alter their child's quality of life but in ways they cannot determine or even imagine. Parents are asked to play God. Most of the parents who share their stories in this collection, parents of PBT (pediatric brain tumor) patients have to walk the line of trying to not disrupt their relationships with their physicians, wanting the best for their child, and facing the decision to follow their gut or go with advised treatment plans.

  4. Independent contribution of temporal beta-amyloid deposition to memory decline in the pre-dementia phase of Alzheimer's disease.

    PubMed

    Chételat, Gaël; Villemagne, Victor L; Pike, Kerryn E; Ellis, Kathryn A; Bourgeat, Pierrick; Jones, Gareth; O'Keefe, Graeme J; Salvado, Olivier; Szoeke, Cassandra; Martins, Ralph N; Ames, David; Masters, Colin L; Rowe, Christopher C

    2011-03-01

    The relationship between β-amyloid deposition and memory deficits in early Alzheimer's disease is unresolved, as past studies show conflicting findings. The present study aims to determine the relative contribution of regional β-amyloid deposition, hippocampal atrophy and white matter integrity to episodic memory deficits in non-demented older individuals harbouring one of the characteristic hallmarks of Alzheimer's disease, i.e. with β-amyloid pathology. Understanding these relationships is critical for effective therapeutic development. Brain magnetic resonance imaging and [(11)C]Pittsburgh Compound B-positron emission tomography scans were obtained in 136 non-demented individuals aged over 60 years, including 93 healthy elderly and 43 patients with mild cognitive impairment. Voxel-based correlations were computed between a memory composite score and grey matter volume, white matter volume and β-amyloid deposition imaging datasets. Hierarchical linear regression analyses were then performed using values extracted in regions of most significant correlations to determine the relative contribution of each modality to memory deficits. All analyses were conducted pooling all groups together as well as within separate subgroups of cognitively normal elderly, patients with mild cognitive impairment and individuals with high versus low neocortical β-amyloid. Brain areas of highest correlation with episodic memory deficits were the hippocampi for grey matter volume, the perforant path for white matter volume and the temporal neocortex for β-amyloid deposition. When considering these three variables together, only hippocampal volume and temporal β-amyloid deposition provided independent contributions to memory deficits. In contrast to global β-amyloid deposition, temporal β-amyloid deposition was still related to memory independently from hippocampal atrophy within subgroups of cognitively normal elderly, patients with mild cognitive impairment or cases with high neocortical β-amyloid. In the pre-dementia stage of Alzheimer's disease, subtle episodic memory impairment is related to β-amyloid deposition, especially in the temporal neocortex, and independently from hippocampal atrophy, suggesting that both factors should be independently targeted in therapeutic trials aimed at reducing cognitive decline.

  5. Multi-Vendor Implementation and Comparison of Volumetric Whole-Brain Echo-Planar MR Spectroscopic Imaging

    PubMed Central

    Sabati, Mohammad; Sheriff, Sulaiman; Gu, Meng; Wei, Juan; Zhu, Henry; Barker, Peter B.; Spielman, Daniel M.; Alger, Jeffry R.; Maudsley, Andrew A.

    2014-01-01

    Purpose To assess volumetric proton MR spectroscopic imaging of the human brain on multi-vendor MRI instruments. Methods Echo-planar spectroscopic imaging (EPSI) was developed on instruments from three manufacturers, with matched specifications and acquisition protocols that accounted for differences in sampling performance, RF power, and data formats. Inter-site reproducibility was evaluated for signal-normalized maps of N-acetylaspartate (NAA), Creatine (Cre) and Choline using phantom and human subject measurements. Comparative analyses included metrics for spectral quality, spatial coverage, and mean values in atlas-registered brain regions. Results Inter-site differences for phantom measurements were under 1.7% for individual metabolites and 0.2% for ratio measurements. Spatial uniformity ranged from 79% to 91%. The human studies found differences of mean values in the temporal lobe, but good agreement in other white-matter regions, with maximum differences relative to their mean of under 3.2%. For NAA/Cre, the maximum difference was 1.8%. In grey-matter a significant difference was observed for frontal lobe NAA. Primary causes of inter-site differences were attributed to shim quality, B0 drift, and accuracy of RF excitation. Correlation coefficients for measurements at each site were over 0.60, indicating good reliability. Conclusion A volumetric intensity-normalized MRSI acquisition can be implemented in a comparable manner across multi-vendor MR instruments. PMID:25354190

  6. Using atmospheric pressure plasma treatment for treating grey cotton fabric.

    PubMed

    Kan, Chi-Wai; Lam, Chui-Fung; Chan, Chee-Kooi; Ng, Sun-Pui

    2014-02-15

    Conventional wet treatment, desizing, scouring and bleaching, for grey cotton fabric involves the use of high water, chemical and energy consumption which may not be considered as a clean process. This study aims to investigate the efficiency of the atmospheric pressure plasma (APP) treatment on treating grey cotton fabric when compared with the conventional wet treatment. Grey cotton fabrics were treated with different combinations of plasma parameters with helium and oxygen gases and also through conventional desizing, scouring and bleaching processes in order to obtain comparable results. The results obtained from wicking and water drop tests showed that wettability of grey cotton fabrics was greatly improved after plasma treatment and yielded better results than conventional desizing and scouring. The weight reduction of plasma treated grey cotton fabrics revealed that plasma treatment can help remove sizing materials and impurities. Chemical and morphological changes in plasma treated samples were analysed by FTIR and SEM, respectively. Finally, dyeability of the plasma treated and conventional wet treated grey cotton fabrics was compared and the results showed that similar dyeing results were obtained. This can prove that plasma treatment would be another choice for treating grey cotton fabrics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The costs, effects and cost-effectiveness of strategies to increase coverage of routine immunizations in low- and middle-income countries: systematic review of the grey literature.

    PubMed

    Batt, Katherine; Fox-Rushby, J A; Castillo-Riquelme, Marianela

    2004-09-01

    Evidence-based reviews of published literature can be subject to several biases. Grey literature, however, can be of poor quality and expensive to access. Effective search strategies also vary by topic and are rarely known in advance. This paper complements a systematic review of the published literature on the costs and effects of expanding immunization services in developing countries. The quality of data on the effectiveness and cost-effectiveness of strategies to increase immunization coverage is shown to be similar across literatures, but the quality of information on costing is much lower in the grey literature. After excluding poorer quality studies from this review we found the quantity of available evidence almost doubled, particularly for more complex health-system interventions and cost or cost-effectiveness analyses. Interventions in the grey literature are more up to date and cover a different geographical spread. Consequently the conclusions of the published and grey literatures differ, although the number of papers is still too low to account for differences across types of interventions. We recommend that in future researchers consider using non-English keywords in their searches.

  8. The costs, effects and cost-effectiveness of strategies to increase coverage of routine immunizations in low- and middle-income countries: systematic review of the grey literature.

    PubMed Central

    Batt, Katherine; Fox-Rushby, J. A.; Castillo-Riquelme, Marianela

    2004-01-01

    Evidence-based reviews of published literature can be subject to several biases. Grey literature, however, can be of poor quality and expensive to access. Effective search strategies also vary by topic and are rarely known in advance. This paper complements a systematic review of the published literature on the costs and effects of expanding immunization services in developing countries. The quality of data on the effectiveness and cost-effectiveness of strategies to increase immunization coverage is shown to be similar across literatures, but the quality of information on costing is much lower in the grey literature. After excluding poorer quality studies from this review we found the quantity of available evidence almost doubled, particularly for more complex health-system interventions and cost or cost-effectiveness analyses. Interventions in the grey literature are more up to date and cover a different geographical spread. Consequently the conclusions of the published and grey literatures differ, although the number of papers is still too low to account for differences across types of interventions. We recommend that in future researchers consider using non-English keywords in their searches. PMID:15628207

  9. Developmental Patterns of Doublecortin Expression and White Matter Neuron Density in the Postnatal Primate Prefrontal Cortex and Schizophrenia

    PubMed Central

    Fung, Samantha J.; Joshi, Dipesh; Allen, Katherine M.; Sivagnanasundaram, Sinthuja; Rothmond, Debora A.; Saunders, Richard; Noble, Pamela L.; Webster, Maree J.; Shannon Weickert, Cynthia

    2011-01-01

    Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n = 37) and matched controls (n = 37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia. PMID:21966452

  10. Micropollutant removal from black water and grey water sludge in a UASB-GAC reactor.

    PubMed

    Butkovskyi, A; Sevenou, L; Meulepas, R J W; Hernandez Leal, L; Zeeman, G; Rijnaarts, H H M

    2018-02-01

    The effect of granular activated carbon (GAC) addition on the removal of diclofenac, ibuprofen, metoprolol, galaxolide and triclosan in a up-flow anaerobic sludge blanket (UASB) reactor was studied. Prior to the reactor studies, batch experiments indicated that addition of activated carbon to UASB sludge can decrease micropollutant concentrations in both liquid phase and sludge. In continuous experiments, two UASB reactors were operated for 260 days at an HRT of 20 days, using a mixture of source separated black water and sludge from aerobic grey water treatment as influent. GAC (5.7 g per liter of reactor volume) was added to one of the reactors on day 138. No significant difference in COD removal and biogas production between reactors with and without GAC addition was observed. In the presence of GAC, fewer micropollutants were washed out with the effluent and a lower accumulation of micropollutants in sludge and particulate organic matter occurred, which is an advantage in micropollutant emission reduction from wastewater. However, the removal of micropollutants by adding GAC to a UASB reactor would require more activated carbon compared to effluent post-treatment. Additional research is needed to estimate the effect of bioregeneration on the lifetime of activated carbon in a UASB-GAC reactor.

  11. Automatic brain tissue segmentation based on graph filter.

    PubMed

    Kong, Youyong; Chen, Xiaopeng; Wu, Jiasong; Zhang, Pinzheng; Chen, Yang; Shu, Huazhong

    2018-05-09

    Accurate segmentation of brain tissues from magnetic resonance imaging (MRI) is of significant importance in clinical applications and neuroscience research. Accurate segmentation is challenging due to the tissue heterogeneity, which is caused by noise, bias filed and partial volume effects. To overcome this limitation, this paper presents a novel algorithm for brain tissue segmentation based on supervoxel and graph filter. Firstly, an effective supervoxel method is employed to generate effective supervoxels for the 3D MRI image. Secondly, the supervoxels are classified into different types of tissues based on filtering of graph signals. The performance is evaluated on the BrainWeb 18 dataset and the Internet Brain Segmentation Repository (IBSR) 18 dataset. The proposed method achieves mean dice similarity coefficient (DSC) of 0.94, 0.92 and 0.90 for the segmentation of white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) for BrainWeb 18 dataset, and mean DSC of 0.85, 0.87 and 0.57 for the segmentation of WM, GM and CSF for IBSR18 dataset. The proposed approach can well discriminate different types of brain tissues from the brain MRI image, which has high potential to be applied for clinical applications.

  12. Design, synthesis and biological evaluation of trimethine cyanine dyes as fluorescent probes for the detection of tau fibrils in Alzheimer's disease brain and olfactory epithelium.

    PubMed

    Gu, Jiamin; Anumala, Upendra Rao; Heyny-von Haußen, Roland; Hölzer, Jana; Goetschy-Meyer, Valérie; Mall, Gerhard; Hilger, Ingrid; Czech, Christian; Schmidt, Boris

    2013-06-01

    Shedding light on grey matter: Fluorescent trimethine cyanines were evaluated as imaging probes for neurofibrillary tangles in post-mortem brain sections of Alzheimer's disease patients. These probes bind to neurofibrillary tangles with high contrast and selectivity over amyloid β plaques. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. New Advances in Molecular Therapy for Muscle Repair after Diseases and Injuries

    DTIC Science & Technology

    2009-04-01

    broader scientific community . Investigator: Johnny Huard - 9 - Project # 1 Progress Report The use of suramin to improve muscle healing after...black arrow ) in grey matter indicated small neuron and axon communication . Project # 5 Final Report Inhibiting cell death and promoting muscle...potential to treat muscle wasting induced by cancer. We anticipate that these results can be generalized to the treatment of other genetic and acquired

  14. Brain development of the preterm neonate after neonatal hydrocortisone treatment for chronic lung disease

    PubMed Central

    Benders, Manon J. N. L.; Groenendaal, Floris; van Bel, Frank; Vinh, Russia Ha; Dubois, Jessica; Lazeyras, François; Warfield, Simon K.; Hüppi, Petra S.; de Vries, Linda S.

    2015-01-01

    Previous studies reported impaired cerebral cortical gray matter development and neurodevelopmental impairment following neonatal dexamethasone treatment for chronic lung disease in preterm newborns. No long-term effects on neurocognitive outcome have yet been shown for hydrocortisone treatment. A prospective study was performed to evaluate brain growth at term in preterm infants who did receive neonatal hydrocortisone for chronic lung disease. Thirty-eight preterm infants (n=19 hydrocortisone, n=19 controls) were matched for gestational age at birth. Gestational age and birth weight were 27.0±1.4 vs. 27.6±1.1 weeks (p=ns), and 826±173 vs. 1017±202 gram respectively (p<0.05). Infants were studied at term equivalent age. Hydrocortisone was started with a dose of 5 mg/kg/day for 1 week, followed by a tapering course over 3 weeks. A 3D-MRI technique was used to quantify cerebral tissue volumes: cortical grey matter, basal ganglia/thalami, unmyelinated white matter, myelinated white matter, cerebellum, and cerebrospinal fluid. Infants who were treated with hydrocortisone had more severe respiratory distress. There were no differences in cerebral tissue volumes between the 2 groups at term equivalent age. In conclusion, no effect on brain growth, measured at term equivalent age, was shown following treatment with hydrocortisone for chronic lung disease. PMID:19851225

  15. Dysfunctional, but not functional, impulsivity is associated with a history of seriously violent behaviour and reduced orbitofrontal and hippocampal volumes in schizophrenia.

    PubMed

    Kumari, Veena; Barkataki, Ian; Goswami, Sangeeta; Flora, Satinder; Das, Mrigendra; Taylor, Pamela

    2009-07-15

    Aggression and violent acts have been linked with impulsive responding. We investigated whether impulsive personality trait, especially suggestive of dysfunctional impulsivity (i.e. fast and inaccurate responding where this is non-optimal), is associated with a history of seriously violent behaviour and specific brain deficits in schizophrenia. Twenty-four male participants with schizophrenia, of whom 10 had a history of serious physical violence, and 14 healthy male participants were assessed on impulsiveness (dysfunctional impulsivity), venturesomeness (functional impulsivity), and empathy. All participants underwent magnetic resonance imaging. The results revealed that participants with schizophrenia and a history of violence showed elevated impulsiveness but had comparable scores on venturesomeness and empathy dimensions. Impulsiveness scores correlated negatively with reduced orbitofrontal grey matter volume in both the patient and healthy control groups, and with hippocampal volume in the patient group. Our findings suggest that dysfunctional, but not functional, impulsivity is elevated in patients with schizophrenia with a propensity for repetitive violence, and this in turn appears to be associated with reduce volumes of both the orbitofrontal cortex grey matter and the hippocampus. Violence risk prediction and management strategies in schizophrenia may benefit from including specific measures of dysfunctional impulsive traits.

  16. Left nucleus accumbens atrophy in deficit schizophrenia: A preliminary study.

    PubMed

    De Rossi, Pietro; Dacquino, Claudia; Piras, Fabrizio; Caltagirone, Carlo; Spalletta, Gianfranco

    2016-08-30

    A question that remains to be answered is whether schizophrenia can be characterized by a single etiopathophysiology or whether separate sub-syndromes should be differentiated to define specific mechanisms for each sub-type. Individuals affected by the deficit subtype of schizophrenia (DSZ) display avolitional/amotivational features that respond poorly to conventional treatments. Characterizing DSZ from a neuroanatomical point of view may help clarify this issue and develop new treatment strategies. To determine if DSZ is associated with structural alterations in specific deep grey matter structures linked to its key clinical features, 22 DSZ patients, 22 non-deficit schizophrenia (NDSZ) patients and 22 healthy controls (HC) were recruited for a case-control cross-sectional study. High-resolution magnetic resonance imaging was performed in all subjects and volumes of deep grey matter structures were measured using FreeSurfer. DSZ patients displayed smaller left accumbens volumes compared to both NDSZ patients and HC. Moreover, age and duration of illness were significantly associated with lower volume of the left accumbens in DSZ but not in NDSZ. Findings indicate that DSZ is associated with lower volume of the nucleus accumbens in the dominant hemisphere. This is consistent with the psychopathological features and functional impairments present in DSZ and thus indicates a potential mechanism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Grey matter density changes of structures involved in Posttraumatic Stress Disorder (PTSD) after recovery following Eye Movement Desensitization and Reprocessing (EMDR) therapy.

    PubMed

    Boukezzi, Sarah; El Khoury-Malhame, Myriam; Auzias, Guillaume; Reynaud, Emmanuelle; Rousseau, Pierre-François; Richard, Emmanuel; Zendjidjian, Xavier; Roques, Jacques; Castelli, Nathalie; Correard, Nadia; Guyon, Valérie; Gellato, Caroline; Samuelian, Jean-Claude; Cancel, Aida; Comte, Magali; Latinus, Marianne; Guedj, Eric; Khalfa, Stéphanie

    2017-08-30

    Recovery of stress-induced structural alterations in Posttraumatic Stress Disorder (PTSD) remains largely unexplored. This study aimed to determine whether symptoms improvement is associated with grey matter (GM) density changes of brain structures involved in PTSD. Two groups of PTSD patients were involved in this study. The first group was treated with Eye Movement Desensitization and Reprocessing (EMDR) therapy and recovered from their symptoms (recovery group) (n = 11); Patients were scanned prior to therapy (T1), one week (T2) and five months after the end of therapy (T3). The second group included patients which followed a supportive therapy and remained symptomatic (wait-list group) (n = 7). They were scanned at three time-steps mimicking the same inter-scan intervals. Voxel-based morphometry (VBM) was used to characterize GM density evolution. GM density values showed a significant group-by-time interaction effect between T1 and T3 in prefrontal cortex areas. These interaction effects were driven by a GM density increase in the recovery group with respect to the wait-list group. Symptoms removal goes hand-in-hand with GM density enhancement of structures involved in emotional regulation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. Degradation of cognitive timing mechanisms in behavioural variant frontotemporal dementia

    PubMed Central

    Henley, Susie M.D.; Downey, Laura E.; Nicholas, Jennifer M.; Kinnunen, Kirsi M.; Golden, Hannah L.; Buckley, Aisling; Mahoney, Colin J.; Crutch, Sebastian J.

    2014-01-01

    The current study examined motor timing in frontotemporal dementia (FTD), which manifests as progressive deterioration in social, behavioural and cognitive functions. Twenty-patients fulfilling consensus clinical criteria for behavioural variant FTD (bvFTD), 11 patients fulfilling consensus clinical criteria for semantic-variant primary progressive aphasia (svPPA), four patients fulfilling criteria for nonfluent/agrammatic primary progressive aphasia (naPPA), eight patients fulfilling criteria for Alzheimer׳s disease (AD), and 31 controls were assessed on both an externally- and self-paced finger-tapping task requiring maintenance of a regular, 1500 ms beat over 50 taps. Grey and white matter correlates of deficits in motor timing were examined using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI). bvFTD patients exhibited significant deficits in aspects of both externally- and self-paced tapping. Increased mean inter-response interval (faster than target tap time) in the self-paced task was associated with reduced grey matter volume in the cerebellum bilaterally, right middle temporal gyrus, and with increased axial diffusivity in the right superior longitudinal fasciculus, regions and tracts which have been suggested to be involved in a subcortical–cortical network of structures underlying timing abilities. This suggests that such structures can be affected in bvFTD, and that impaired motor timing may underlie some characteristics of the bvFTD phenotype. PMID:25447066

  19. Patterns of brain atrophy associated with episodic memory and semantic fluency decline in aging.

    PubMed

    Pelletier, Amandine; Bernard, Charlotte; Dilharreguy, Bixente; Helmer, Catherine; Le Goff, Melanie; Chanraud, Sandra; Dartigues, Jean-François; Allard, Michèle; Amieva, Hélène; Catheline, Gwénaëlle

    2017-03-09

    The cerebral substratum of age-related cognitive decline was evaluated in an elderly-cohort followed for 12 years (n=306). Participants, free of dementia, received neuropsychological assessments every two years and an MRI exam at baseline and four years later. Cognitive decline was evaluated on two broadly used tests to detect dementia: the Free and Cued Selective Reminding Test (FCSRT), a verbal episodic memory task, and the Isaacs Set Test (IST), a semantic fluency task. Using voxel-based approach, the relationship between cognitive decline with 1/ baseline grey matter volumes and 2/ grey matter volume loss between the two scans was explored. Baseline volumes analysis revealed that FCSRT and IST declines were both associated with lower volumes of the medial temporal region. Volumes loss analysis confirmed that both declines are related to medial temporal lobe atrophy and revealed that FCSRT decline was specifically associated with atrophy of the posterior cingulate cortex whereas IST decline was specifically related to temporal pole atrophy. These results suggest that cognitive decline across aging is firstly related to structural modifications of the medial temporal lobe, followed by an atrophy in the posterior midline structures for episodic memory and an atrophy of the temporal pole for semantic fluency.

  20. The partial volume effect in the quantification of 1H magnetic resonance spectroscopy in Alzheimer's disease and aging.

    PubMed

    Mato Abad, Virginia; Quirós, Alicia; García-Álvarez, Roberto; Loureiro, Javier Pereira; Alvarez-Linera, Juan; Frank, Ana; Hernández-Tamames, Juan Antonio

    2014-01-01

    1H-MRS variability increases due to normal aging and also as a result of atrophy in grey and white matter caused by neurodegeneration. In this work, an automatic process was developed to integrate data from spectra and high-resolution anatomical images to quantify metabolites, taking into account tissue partial volumes within the voxel of interest avoiding additional spectra acquisitions required for partial volume correction. To evaluate this method, we use a cohort of 135 subjects (47 male and 88 female, aged between 57 and 99 years) classified into 4 groups: 38 healthy participants, 20 amnesic mild cognitive impairment patients, 22 multi-domain mild cognitive impairment patients, and 55 Alzheimer's disease patients. Our findings suggest that knowing the voxel composition of white and grey matter and cerebrospinal fluid is necessary to avoid partial volume variations in a single-voxel study and to decrease part of the variability found in metabolites quantification, particularly in those studies involving elder patients and neurodegenerative diseases. The proposed method facilitates the use of 1H-MRS techniques in statistical studies in Alzheimer's disease, because it provides more accurate quantitative measurements, reduces the inter-subject variability, and improves statistical results when performing group comparisons.

  1. A case study of magnetic resonance imaging of cerebrovascular reactivity: a powerful imaging marker for mild traumatic brain injury.

    PubMed

    Chan, Suk-tak; Evans, Karleyton C; Rosen, Bruce R; Song, Tian-yue; Kwong, Kenneth K

    2015-01-01

    To use breath-hold functional magnetic resonance imaging (fMRI) to localize the brain regions with impaired cerebrovascular reactivity (CVR) in a female patient diagnosed with mild traumatic brain injury (mTBI). The extent of impaired CVR was evaluated 2 months after concussion. Follow-up scan was performed 1 year post-mTBI using the same breath-hold fMRI technique. Case report. fMRI blood oxygenation dependent level (BOLD) signals were measured under breath-hold challenge in a female mTBI patient 2 months after concussion followed by a second fMRI with breath-hold challenge 1 year later. CVR was expressed as the percentage change of BOLD signals per unit time of breath-hold. In comparison with CVR measurement of normal control subjects, statistical maps of CVR revealed substantial neurovascular deficits and hemispheric asymmetry within grey and white matter in the initial breath-hold fMRI scan. Follow-up breath-hold fMRI performed 1 year post-mTBI demonstrated normalization of CVR accompanied with symptomatic recovery. CVR may serve as an imaging biomarker to detect subtle deficits in both grey and white matter for individual diagnosis of mTBI. The findings encourage further investigation of hypercapnic fMRI as a diagnostic tool for mTBI.

  2. Whole head quantitative susceptibility mapping using a least-norm direct dipole inversion method.

    PubMed

    Sun, Hongfu; Ma, Yuhan; MacDonald, M Ethan; Pike, G Bruce

    2018-06-15

    A new dipole field inversion method for whole head quantitative susceptibility mapping (QSM) is proposed. Instead of performing background field removal and local field inversion sequentially, the proposed method performs dipole field inversion directly on the total field map in a single step. To aid this under-determined and ill-posed inversion process and obtain robust QSM images, Tikhonov regularization is implemented to seek the local susceptibility solution with the least-norm (LN) using the L-curve criterion. The proposed LN-QSM does not require brain edge erosion, thereby preserving the cerebral cortex in the final images. This should improve its applicability for QSM-based cortical grey matter measurement, functional imaging and venography of full brain. Furthermore, LN-QSM also enables susceptibility mapping of the entire head without the need for brain extraction, which makes QSM reconstruction more automated and less dependent on intermediate pre-processing methods and their associated parameters. It is shown that the proposed LN-QSM method reduced errors in a numerical phantom simulation, improved accuracy in a gadolinium phantom experiment, and suppressed artefacts in nine subjects, as compared to two-step and other single-step QSM methods. Measurements of deep grey matter and skull susceptibilities from LN-QSM are consistent with established reconstruction methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Epilepsy in multiple sclerosis: The role of temporal lobe damage.

    PubMed

    Calabrese, M; Castellaro, M; Bertoldo, A; De Luca, A; Pizzini, F B; Ricciardi, G K; Pitteri, M; Zimatore, S; Magliozzi, R; Benedetti, M D; Manganotti, P; Montemezzi, S; Reynolds, R; Gajofatto, A; Monaco, S

    2017-03-01

    Although temporal lobe pathology may explain some of the symptoms of multiple sclerosis (MS), its role in the pathogenesis of seizures has not been clarified yet. To investigate the role of temporal lobe damage in MS patients suffering from epilepsy, by the application of advanced multimodal 3T magnetic resonance imaging (MRI) analysis. A total of 23 relapsing remitting MS patients who had epileptic seizures (RRMS/E) and 23 disease duration matched RRMS patients without any history of seizures were enrolled. Each patient underwent advanced 3T MRI protocol specifically conceived to evaluate grey matter (GM) damage. This includes grey matter lesions (GMLs) identification, evaluation of regional cortical thickness and indices derived from the Neurite Orientation Dispersion and Density Imaging model. Regional analysis revealed that in RRMS/E, the regions most affected by GMLs were the hippocampus (14.2%), the lateral temporal lobe (13.5%), the cingulate (10.0%) and the insula (8.4%). Cortical thinning and alteration of diffusion metrics were observed in several regions of temporal lobe, in insular cortex and in cingulate gyrus of RRMS/E compared to RRMS ( p< 0.05 for all comparisons). Compared to RRMS, RRMS/E showed more severe damage of temporal lobe, which exceeds what would be expected on the basis of the global GM damage observed.

  4. Brain tissue stiffness is a sensitive marker for acidosis.

    PubMed

    Holtzmann, Kathrin; Gautier, Hélène O B; Christ, Andreas F; Guck, Jochen; Káradóttir, Ragnhildur Thóra; Franze, Kristian

    2016-09-15

    Carbon dioxide overdose is frequently used to cull rodents for tissue harvesting. However, this treatment may lead to respiratory acidosis, which potentially could change the properties of the investigated tissue. Mechanical tissue properties often change in pathological conditions and may thus offer a sensitive generic readout for changes in biological tissues with clinical relevance. In this study, we performed force-indentation measurements with an atomic force microscope on acute cerebellar slices from adult rats to test if brain tissue undergoes changes following overexposure to CO2 compared to other methods of euthanasia. The pH significantly decreased in brain tissue of animals exposed to CO2. Concomitant with the drop in pH, cerebellar grey matter significantly stiffened. Tissue stiffening was reproduced by incubation of acute cerebellar slices in acidic medium. Tissue stiffness provides an early, generic indicator for pathophysiological changes in the CNS. Atomic force microscopy offers unprecedented high spatial resolution to detect such changes. Our results indicate that the stiffness particularly of grey matter strongly correlates with changes of the pH in the cerebellum. Furthermore, the method of tissue harvesting and preparation may not only change tissue stiffness but very likely also other physiologically relevant parameters, highlighting the importance of appropriate sample preparation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. The effect of a muscarinic receptor 1 gene variant on grey matter volume in schizophrenia.

    PubMed

    Cropley, Vanessa L; Scarr, Elizabeth; Fornito, Alex; Klauser, Paul; Bousman, Chad A; Scott, Rodney; Cairns, Murray J; Tooney, Paul A; Pantelis, Christos; Dean, Brian

    2015-11-30

    Previous research has demonstrated that individuals with schizophrenia who are homozygous at the c.267C>A single nucleotide polymorphism (rs2067477) within the cholinergic muscarinic M1 receptor (CHRM1) perform less well on the Wisconsin Card Sorting Test (WCST) than those who are heterozygous. This study sought to determine whether variation in the rs2067477 genotype was associated with differential changes in brain structure. Data from 227 patients with established schizophrenia or schizoaffective disorder were obtained from the Australian Schizophrenia Research Bank. Whole-brain voxel-based morphometry was performed to compare regional grey matter volume (GMV) between the 267C/C (N=191) and 267C/A (N=36) groups. Secondary analyses tested for an effect of genotype on cognition (the WCST was not available). Individuals who were homozygous (267C/C) demonstrated significantly reduced GMV in the right precentral gyrus compared to those who were heterozygous (267C/A). These preliminary results suggest that the rs2067477 genotype is associated with brain structure in the right precentral gyrus in individuals with schizophrenia/schizoaffective disorder. Future studies are required to replicate these results and directly link the volumetric reductions with specific cognitive processes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Grey fuzzy optimization model for water quality management of a river system

    NASA Astrophysics Data System (ADS)

    Karmakar, Subhankar; Mujumdar, P. P.

    2006-07-01

    A grey fuzzy optimization model is developed for water quality management of river system to address uncertainty involved in fixing the membership functions for different goals of Pollution Control Agency (PCA) and dischargers. The present model, Grey Fuzzy Waste Load Allocation Model (GFWLAM), has the capability to incorporate the conflicting goals of PCA and dischargers in a deterministic framework. The imprecision associated with specifying the water quality criteria and fractional removal levels are modeled in a fuzzy mathematical framework. To address the imprecision in fixing the lower and upper bounds of membership functions, the membership functions themselves are treated as fuzzy in the model and the membership parameters are expressed as interval grey numbers, a closed and bounded interval with known lower and upper bounds but unknown distribution information. The model provides flexibility for PCA and dischargers to specify their aspirations independently, as the membership parameters for different membership functions, specified for different imprecise goals are interval grey numbers in place of a deterministic real number. In the final solution optimal fractional removal levels of the pollutants are obtained in the form of interval grey numbers. This enhances the flexibility and applicability in decision-making, as the decision-maker gets a range of optimal solutions for fixing the final decision scheme considering technical and economic feasibility of the pollutant treatment levels. Application of the GFWLAM is illustrated with case study of the Tunga-Bhadra river system in India.

  7. A dialogical exploration of the grey zone of health and illness: medical science, anthropology, and Plato on alcohol consumption.

    PubMed

    Bonner, Kieran

    2009-01-01

    This paper takes a phenomenological hermeneutic orientation to explicate and explore the notion of the grey zone of health and illness and seeks to develop the concept through an examination of the case of alcohol consumption. The grey zone is an interpretive area referring to the irremediable zone of ambiguity that haunts even the most apparently resolute discourse. This idea points to an ontological indeterminacy, in the face of which decisions have to be made with regard to the health of a person (e.g., an alcoholic), a system (e.g., the health system), or a society. The fundamental character of this notion will be developed in relation to the discourse on health and the limitations of different disciplinary practices. The case of alcohol consumption will be used to tease out the grey zone embedded in the different kinds of knowledge made available through the disciplinary traditions of medical science, with its emphasis on somatic well-being, and anthropology, with its focus on communal well-being. This tension or grey zone embedded in different knowledge outcomes will be shown to have a discursive parallel with the dialogue between the Athenian, the Spartan, and the Cretan in Plato's Laws. Making use of the dialogical approach as described by Gadamer, the Athenian's particular resolution of the tension will be explored as a case study to demonstrate the necessarily particular analysis involved in a grey zone resolution.

  8. Deriving Hounsfield units using grey levels in cone beam computed tomography

    PubMed Central

    Mah, P; Reeves, T E; McDavid, W D

    2010-01-01

    Objectives An in vitro study was performed to investigate the relationship between grey levels in dental cone beam CT (CBCT) and Hounsfield units (HU) in CBCT scanners. Methods A phantom containing 8 different materials of known composition and density was imaged with 11 different dental CBCT scanners and 2 medical CT scanners. The phantom was scanned under three conditions: phantom alone and phantom in a small and large water container. The reconstructed data were exported as Digital Imaging and Communications in Medicine (DICOM) and analysed with On Demand 3D® by Cybermed, Seoul, Korea. The relationship between grey levels and linear attenuation coefficients was investigated. Results It was demonstrated that a linear relationship between the grey levels and the attenuation coefficients of each of the materials exists at some “effective” energy. From the linear regression equation of the reference materials, attenuation coefficients were obtained for each of the materials and CT numbers in HU were derived using the standard equation. Conclusions HU can be derived from the grey levels in dental CBCT scanners using linear attenuation coefficients as an intermediate step. PMID:20729181

  9. Suitability assessment of grey water quality treated with an upflow-downflow siliceous sand/marble waste filtration system for agricultural and industrial purposes.

    PubMed

    Chaabane, Safa; Riahi, Khalifa; Hamrouni, Hédi; Thayer, Béchir Ben

    2017-04-01

    The present study examines the suitability assessment of an upflow-downflow siliceous sand/marble waste filtration system for treatment and reuse of grey water collected from bathrooms of the student residential complex at the Higher Institute of Engineering Medjez El Bab (Tunisia). Once the optimization of grey water pre-treatment system has been determined, the filtration system was operated at different hydraulic loading rate and media filter proportions in order to assess the suitability of treated grey water for irrigational purpose according to salinity hazard, sodium hazard, magnesium hazard, permeability index, water infiltration rate, and widely used graphical methods. Suitability of the treated grey water for industrial purpose was evaluated in terms of foaming, corrosion, and scaling. Under optimal operational conditions, results reveals that treated grey water samples with an upflow-downflow siliceous sand/marble waste filtration system may be considered as a good and an excellent water quality suitable for irrigation purpose. However, treated grey water was found not appropriate for industrial purpose due to high concentrations of calcium and sodium that can generate foaming and scaling harm to boilers. These results suggest that treated grey water with an upflow-downflow siliceous sand/marble waste filtration system would support production when used as irrigation water.

  10. Grey water treatment in UASB reactor at ambient temperature.

    PubMed

    Elmitwalli, T A; Shalabi, M; Wendland, C; Otterpohl, R

    2007-01-01

    In this paper, the feasibility of grey water treatment in a UASB reactor was investigated. The batch recirculation experiments showed that a maximum total-COD removal of 79% can be obtained in grey-water treatment in the UASB reactor. The continuous operational results of a UASB reactor treating grey water at different hydraulic retention time (HRT) of 20, 12 and 8 hours at ambient temperature (14-24 degrees C) showed that 31-41% of total COD was removed. These results were significantly higher than that achieved by a septic tank (11-14%), the most common system for grey water pre-treatment, at HRT of 2-3 days. The relatively lower removal of total COD in the UASB reactor was mainly due to a higher amount of colloidal COD in the grey water, as compared to that reported in domestic wastewater. The grey water had a limited amount of nitrogen, which was mainly in particulate form (80-90%). The UASB reactor removed 24-36% and 10-24% of total nitrogen and total phosphorus, respectively, in the grey water, due to particulate nutrients removal by physical entrapment and sedimentation. The sludge characteristics of the UASB reactor showed that the system had stable performance and the recommended HRT for the reactor is 12 hours.

  11. Yellowing and bleaching of grey hair caused by photo and thermal degradation.

    PubMed

    Richena, M; Silveira, M; Rezende, C A; Joekes, I

    2014-09-05

    Yellowing is an undesirable phenomenon that is common in people with white and grey hair. Because white hair has no melanin, the pigment responsible for hair colour, the effects of photodegradation are more visible in this type of hair. The origin of yellowing and its relation to photodegradation processes are not properly established, and many questions remain open in this field. In this work, the photodegradation of grey hair was investigated as a function of the wavelength of incident radiation, and its ultrastructure was determined, always comparing the results obtained for the white and black fibres present in grey hair with the results of white wool. The results presented herein indicate that the photobehaviour of grey hair irradiated with a mercury lamp or with solar radiation is dependent on the wavelength range of the incident radiation and on the initial shade of yellow in the sample. Two types of grey hair were used: (1) blended grey hair (more yellow) and (2) grey hair from a single-donor (less yellow). After exposure to a full-spectrum mercury lamp for 200 h, the blended white hair turned less yellow (the yellow-blue difference, Db(*) becomes negative, Db(*)=-6), whereas the white hair from the single-donor turned slightly yellower (Db(*)=2). In contrast, VIS+IR irradiation resulted in bleaching in both types of hair, whereas a thermal treatment (at 81 °C) caused yellowing of both types of hair, resulting in a Db(*)=3 for blended white hair and Db(*)=9 for single-donor hair. The identity of the yellow chromophores was investigated by UV-Vis spectroscopy. The results obtained with this technique were contradictory, however, and it was not possible to obtain a simple correlation between the sample shade of yellow and the absorption spectra. In addition, the results are discussed in terms of the morphology differences between the pigmented and non-pigmented parts of grey hair, the yellowing and bleaching effects of grey hair, and the occurrence of dark-follow reactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. No rainbow for grey bamboo sharks: evidence for the absence of colour vision in sharks from behavioural discrimination experiments.

    PubMed

    Schluessel, V; Rick, I P; Plischke, K

    2014-11-01

    Despite convincing data collected by microspectrophotometry and molecular biology, rendering sharks colourblind cone monochromats, the question of whether sharks can perceive colour had not been finally resolved in the absence of any behavioural experiments compensating for the confounding factor of brightness. The present study tested the ability of juvenile grey bamboo sharks to perceive colour in an experimental design based on a paradigm established by Karl von Frisch using colours in combination with grey distractor stimuli of equal brightness. Results showed that contrasts but no colours could be discriminated. Blue and yellow stimuli were not distinguished from a grey distractor stimulus of equal brightness but could be distinguished from distractor stimuli of varying brightness. In addition, different grey stimuli were distinguished significantly above chance level from one another. In conclusion, the behavioural results support the previously collected physiological data on bamboo sharks, which mutually show that the grey bamboo shark, like several marine mammals, is a cone monochromate and colourblind.

  13. Fractal analysis of MRI data for the characterization of patients with schizophrenia and bipolar disorder.

    PubMed

    Squarcina, Letizia; De Luca, Alberto; Bellani, Marcella; Brambilla, Paolo; Turkheimer, Federico E; Bertoldo, Alessandra

    2015-02-21

    Fractal geometry can be used to analyze shape and patterns in brain images. With this study we use fractals to analyze T1 data of patients affected by schizophrenia or bipolar disorder, with the aim of distinguishing between healthy and pathological brains using the complexity of brain structure, in particular of grey matter, as a marker of disease. 39 healthy volunteers, 25 subjects affected by schizophrenia and 11 patients affected by bipolar disorder underwent an MRI session. We evaluated fractal dimension of the brain cortex and its substructures, calculated with an algorithm based on the box-count algorithm. We modified this algorithm, with the aim of avoiding the segmentation processing step and using all the information stored in the image grey levels. Moreover, to increase sensitivity to local structural changes, we computed a value of fractal dimension for each slice of the brain or of the particular structure. To have reference values in comparing healthy subjects with patients, we built a template by averaging fractal dimension values of the healthy volunteers data. Standard deviation was evaluated and used to create a confidence interval. We also performed a slice by slice t-test to assess the difference at slice level between the three groups. Consistent average fractal dimension values were found across all the structures in healthy controls, while in the pathological groups we found consistent differences, indicating a change in brain and structures complexity induced by these disorders.

  14. Fractal analysis of MRI data for the characterization of patients with schizophrenia and bipolar disorder

    NASA Astrophysics Data System (ADS)

    Squarcina, Letizia; De Luca, Alberto; Bellani, Marcella; Brambilla, Paolo; Turkheimer, Federico E.; Bertoldo, Alessandra

    2015-02-01

    Fractal geometry can be used to analyze shape and patterns in brain images. With this study we use fractals to analyze T1 data of patients affected by schizophrenia or bipolar disorder, with the aim of distinguishing between healthy and pathological brains using the complexity of brain structure, in particular of grey matter, as a marker of disease. 39 healthy volunteers, 25 subjects affected by schizophrenia and 11 patients affected by bipolar disorder underwent an MRI session. We evaluated fractal dimension of the brain cortex and its substructures, calculated with an algorithm based on the box-count algorithm. We modified this algorithm, with the aim of avoiding the segmentation processing step and using all the information stored in the image grey levels. Moreover, to increase sensitivity to local structural changes, we computed a value of fractal dimension for each slice of the brain or of the particular structure. To have reference values in comparing healthy subjects with patients, we built a template by averaging fractal dimension values of the healthy volunteers data. Standard deviation was evaluated and used to create a confidence interval. We also performed a slice by slice t-test to assess the difference at slice level between the three groups. Consistent average fractal dimension values were found across all the structures in healthy controls, while in the pathological groups we found consistent differences, indicating a change in brain and structures complexity induced by these disorders.

  15. Mammalian pheromone studies, VII. Identification of thiazole derivatives in the preorbital gland secretions of the grey duiker, Sylvicapra grimmia, and the red duiker, Cephalophus natalensis.

    PubMed

    Burger, B V; Pretorius, P J; Stander, J; Grierson, G R

    1988-01-01

    2-Isobutyl-1,3-thiazole and its 4,5-dihydro derivative were identified in the preorbital gland secretions of the grey duiker, Sylvicapra grimmia, and the red duiker, Cephalophus natalensis, but are absent from the preorbital secretion of the blue duiker, C. monticola. These two compounds which are present in high, but varying concentrations in the secretions of male grey duikers, are present in low concentrations in the secretions of females. This seems to be the only consistent significant difference between the secretions of male and female grey duikers and together with the fact that only males mark out their territories, was construed as evidence in favour of these two compounds playing a significant role in the territorial behaviour of male grey duikers.

  16. VISUALIZING IRON IN MULTIPLE SCLEROSIS

    PubMed Central

    Bagnato, Francesca; Hametner, Simon; Welch, Edward Brian

    2012-01-01

    Magnetic resonance imaging (MRI) protocols that are designed to be sensitive to iron typically take advantage of (1) iron effects on the relaxation of water protons and/or (2) iron-induced local magnetic field susceptibility changes. Increasing evidence sustains the notion that imaging iron in brain of patients with multiple sclerosis (MS) may add some specificity toward the identification of the disease pathology. The present review summarizes currently reported in vivo and post mortem MRI evidence of (1) iron detection in white matter and grey matter of MS brains, (2) pathological and physiological correlates of iron as disclosed by imaging and (3) relations between iron accumulation and disease progression as measured by clinical metrics. PMID:23347601

  17. Radiative heat transfer in strongly forward scattering media of circulating fluidized bed combustors

    NASA Astrophysics Data System (ADS)

    Ates, Cihan; Ozen, Guzide; Selçuk, Nevin; Kulah, Gorkem

    2016-10-01

    Investigation of the effect of particle scattering on radiative incident heat fluxes and source terms is carried out in the dilute zone of the lignite-fired 150 kWt Middle East Technical University Circulating Fluidized Bed Combustor (METU CFBC) test rig. The dilute zone is treated as an axisymmetric cylindrical enclosure containing grey/non-grey, absorbing, emitting gas with absorbing, emitting non/isotropically/anisotropically scattering particles surrounded by grey diffuse walls. A two-dimensional axisymmetric radiation model based on Method of Lines (MOL) solution of Discrete Ordinates Method (DOM) coupled with Grey Gas (GG)/Spectral Line-Based Weighted Sum of Grey Gases Model (SLW) and Mie theory/geometric optics approximation (GOA) is extended for incorporation of anisotropic scattering by using normalized Henyey-Greenstein (HG)/transport approximation for the phase function. Input data for the radiation model is obtained from predictions of a comprehensive model previously developed and benchmarked against measurements on the same CFBC burning low calorific value indigenous lignite with high volatile matter/fixed carbon (VM/FC) ratio in its own ash. Predictive accuracy and computational efficiency of nonscattering, isotropic scattering and forward scattering with transport approximation are tested by comparing their predictions with those of forward scattering with HG. GG and GOA based on reflectivity with angular dependency are found to be accurate and CPU efficient. Comparisons reveal that isotropic assumption leads to under-prediction of both incident heat fluxes and source terms for which discrepancy is much larger. On the other hand, predictions obtained by neglecting scattering were found to be in favorable agreement with those of forward scattering at significantly less CPU time. Transport approximation is as accurate and CPU efficient as HG. These findings indicate that negligence of scattering is a more practical choice in solution of the radiative transfer equation (RTE) in conjunction with conservation equations for the system under consideration.

  18. The superior colliculus of the camel: a neuronal-specific nuclear protein (NeuN) and neuropeptide study

    PubMed Central

    Mensah-Brown, E P K; Garey, L J

    2006-01-01

    In this study we examined the superior colliculus of the midbrain of the one-humped (dromedary) camel, Camelus dromedarius, using Nissl staining and anti-neuronal-specific nuclear protein (NeuN) immunohistochemistry for total neuronal population as well as for the enkephalins, somatostatin (SOM) and substance P (SP). It was found that, unlike in most mammals, the superior colliculus is much larger than the inferior colliculus. The superior colliculus is concerned with visual reflexes and the co-ordination of head, neck and eye movements, which are certainly of importance to this animal with large eyes, head and neck, and apparently good vision. The basic neuronal architecture and lamination of the superior colliculus are similar to that in other mammals. However, we describe for the first time an unusually large content of neurons in the superior colliculus with strong immunoreactivity for met-enkephalin, an endogenous opioid. We classified the majority of these neurons as small (perimeters of 40–50 µm), and localized diffusely throughout the superficial grey and stratum opticum. In addition, large pyramidal-like neurons with perimeters of 100 µm and above were present in the intermediate grey layer. Large unipolar cells were located immediately dorsal to the deep grey layer. By contrast, small neurons (perimeters of 40–50 µm) immunopositive to SOM and SP were located exclusively in the superficial grey layer. We propose that this system may be associated with a pain-inhibiting pathway that has been described from the periaqueductal grey matter, juxtaposing the deep layers of the superior colliculus, to the lower brainstem and spinal cord. Such pain inhibition could be important in relation to the camel's life in the harsh environment of its native deserts, often living in very high temperatures with no shade and a diet consisting largely of thorny branches. PMID:16441568

  19. Brain tumor modeling: glioma growth and interaction with chemotherapy

    NASA Astrophysics Data System (ADS)

    Banaem, Hossein Y.; Ahmadian, Alireza; Saberi, Hooshangh; Daneshmehr, Alireza; Khodadad, Davood

    2011-10-01

    In last decade increasingly mathematical models of tumor growths have been studied, particularly on solid tumors which growth mainly caused by cellular proliferation. In this paper we propose a modified model to simulate the growth of gliomas in different stages. Glioma growth is modeled by a reaction-advection-diffusion. We begin with a model of untreated gliomas and continue with models of polyclonal glioma following chemotherapy. From relatively simple assumptions involving homogeneous brain tissue bounded by a few gross anatomical landmarks (ventricles and skull) the models have been expanded to include heterogeneous brain tissue with different motilities of glioma cells in grey and white matter. Tumor growth is characterized by a dangerous change in the control mechanisms, which normally maintain a balance between the rate of proliferation and the rate of apoptosis (controlled cell death). Result shows that this model closes to clinical finding and can simulate brain tumor behavior properly.

  20. A Patient-Specific Anisotropic Diffusion Model for Brain Tumour Spread.

    PubMed

    Swan, Amanda; Hillen, Thomas; Bowman, John C; Murtha, Albert D

    2018-05-01

    Gliomas are primary brain tumours arising from the glial cells of the nervous system. The diffuse nature of spread, coupled with proximity to critical brain structures, makes treatment a challenge. Pathological analysis confirms that the extent of glioma spread exceeds the extent of the grossly visible mass, seen on conventional magnetic resonance imaging (MRI) scans. Gliomas show faster spread along white matter tracts than in grey matter, leading to irregular patterns of spread. We propose a mathematical model based on Diffusion Tensor Imaging, a new MRI imaging technique that offers a methodology to delineate the major white matter tracts in the brain. We apply the anisotropic diffusion model of Painter and Hillen (J Thoer Biol 323:25-39, 2013) to data from 10 patients with gliomas. Moreover, we compare the anisotropic model to the state-of-the-art Proliferation-Infiltration (PI) model of Swanson et al. (Cell Prolif 33:317-329, 2000). We find that the anisotropic model offers a slight improvement over the standard PI model. For tumours with low anisotropy, the predictions of the two models are virtually identical, but for patients whose tumours show higher anisotropy, the results differ. We also suggest using the data from the contralateral hemisphere to further improve the model fit. Finally, we discuss the potential use of this model in clinical treatment planning.

Top