Upscaling of Hydraulic Conductivity using the Double Constraint Method
NASA Astrophysics Data System (ADS)
El-Rawy, Mustafa; Zijl, Wouter; Batelaan, Okke
2013-04-01
The mathematics and modeling of flow through porous media is playing an increasingly important role for the groundwater supply, subsurface contaminant remediation and petroleum reservoir engineering. In hydrogeology hydraulic conductivity data are often collected at a scale that is smaller than the grid block dimensions of a groundwater model (e.g. MODFLOW). For instance, hydraulic conductivities determined from the field using slug and packer tests are measured in the order of centimeters to meters, whereas numerical groundwater models require conductivities representative of tens to hundreds of meters of grid cell length. Therefore, there is a need for upscaling to decrease the number of grid blocks in a groundwater flow model. Moreover, models with relatively few grid blocks are simpler to apply, especially when the model has to run many times, as is the case when it is used to assimilate time-dependent data. Since the 1960s different methods have been used to transform a detailed description of the spatial variability of hydraulic conductivity to a coarser description. In this work we will investigate a relatively simple, but instructive approach: the Double Constraint Method (DCM) to identify the coarse-scale conductivities to decrease the number of grid blocks. Its main advantages are robustness and easy implementation, enabling to base computations on any standard flow code with some post processing added. The inversion step of the double constraint method is based on a first forward run with all known fluxes on the boundary and in the wells, followed by a second forward run based on the heads measured on the phreatic surface (i.e. measured in shallow observation wells) and in deeper observation wells. Upscaling, in turn is inverse modeling (DCM) to determine conductivities in coarse-scale grid blocks from conductivities in fine-scale grid blocks. In such a way that the head and flux boundary conditions applied to the fine-scale model are also honored at the coarse-scale. Exemplification will be presented for the Kleine Nete catchment, Belgium. As a result we identified coarse-scale conductivities while decreasing the number of grid blocks with the advantage that a model run costs less computation time and requires less memory space. In addition, ranking of models was investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, R.E.; Tiner, P.F.; Williams, J.K.
1992-08-01
An inventory of surface debris in designated grid blocks at the White Wing Scrap Yard [Waste Area Grouping 11 (WAG 11)] was conducted intermittently from February through June 1992 by members of the Measurement Applications and Development Group, Health and Safety Research Division, Oak Ridge National Laboratory (ORNL) at the request of ORNL Environmental Restoration (ER) Program personnel. The objectives of this project are outlined in the following four phases: (1) estimate the amount (volume) and type (e.g., glass, metal and plastics) of surface waste material in 30 designated grid blocks (100- by 100-ft grids); (2) conduct limited air samplingmore » for organic chemical pollutants at selected locations (e.g., near drums, in holes, or other potentially contaminated areas); (3) conduct a walkover gamma radiation scan extending outward (approximately 50 ft) beyond the proposed location of the WAG 11 perimeter fence; and (4) recommend one grid block as a waste staging area. This recommendation is based on location and accessibility for debris staging/transport activities and on low levels of gamma radiation in the grid block.« less
Surface debris inventory at White Wing Scrap Yard, Oak Ridge Reservation, Oak Ridge, Tennessee
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, R.E.; Tiner, P.F.; Williams, J.K.
1992-08-01
An inventory of surface debris in designated grid blocks at the White Wing Scrap Yard [Waste Area Grouping 11 (WAG 11)] was conducted intermittently from February through June 1992 by members of the Measurement Applications and Development Group, Health and Safety Research Division, Oak Ridge National Laboratory (ORNL) at the request of ORNL Environmental Restoration (ER) Program personnel. The objectives of this project are outlined in the following four phases: (1) estimate the amount (volume) and type (e.g., glass, metal and plastics) of surface waste material in 30 designated grid blocks (100- by 100-ft grids); (2) conduct limited air samplingmore » for organic chemical pollutants at selected locations (e.g., near drums, in holes, or other potentially contaminated areas); (3) conduct a walkover gamma radiation scan extending outward (approximately 50 ft) beyond the proposed location of the WAG 11 perimeter fence; and (4) recommend one grid block as a waste staging area. This recommendation is based on location and accessibility for debris staging/transport activities and on low levels of gamma radiation in the grid block.« less
SmaggIce 2.0: Additional Capabilities for Interactive Grid Generation of Iced Airfoils
NASA Technical Reports Server (NTRS)
Kreeger, Richard E.; Baez, Marivell; Braun, Donald C.; Schilling, Herbert W.; Vickerman, Mary B.
2008-01-01
The Surface Modeling and Grid Generation for Iced Airfoils (SmaggIce) software toolkit has been extended to allow interactive grid generation for multi-element iced airfoils. The essential phases of an icing effects study include geometry preparation, block creation and grid generation. SmaggIce Version 2.0 now includes these main capabilities for both single and multi-element airfoils, plus an improved flow solver interface and a variety of additional tools to enhance the efficiency and accuracy of icing effects studies. An overview of these features is given, especially the new multi-element blocking strategy using the multiple wakes method. Examples are given which illustrate the capabilities of SmaggIce for conducting an icing effects study for both single and multi-element airfoils.
An interactive multi-block grid generation system
NASA Technical Reports Server (NTRS)
Kao, T. J.; Su, T. Y.; Appleby, Ruth
1992-01-01
A grid generation procedure combining interactive and batch grid generation programs was put together to generate multi-block grids for complex aircraft configurations. The interactive section provides the tools for 3D geometry manipulation, surface grid extraction, boundary domain construction for 3D volume grid generation, and block-block relationships and boundary conditions for flow solvers. The procedure improves the flexibility and quality of grid generation to meet the design/analysis requirements.
TIGGERC: Turbomachinery Interactive Grid Generator for 2-D Grid Applications and Users Guide
NASA Technical Reports Server (NTRS)
Miller, David P.
1994-01-01
A two-dimensional multi-block grid generator has been developed for a new design and analysis system for studying multiple blade-row turbomachinery problems. TIGGERC is a mouse driven, interactive grid generation program which can be used to modify boundary coordinates and grid packing and generates surface grids using a hyperbolic tangent or algebraic distribution of grid points on the block boundaries. The interior points of each block grid are distributed using a transfinite interpolation approach. TIGGERC can generate a blocked axisymmetric H-grid, C-grid, I-grid or O-grid for studying turbomachinery flow problems. TIGGERC was developed for operation on Silicon Graphics workstations. Detailed discussion of the grid generation methodology, menu options, operational features and sample grid geometries are presented.
Gholami, Somayeh; Nedaie, Hassan Ali; Longo, Francesco; Ay, Mohammad Reza; Dini, Sharifeh A.; Meigooni, Ali S.
2017-01-01
Purpose: The clinical efficacy of Grid therapy has been examined by several investigators. In this project, the hole diameter and hole spacing in Grid blocks were examined to determine the optimum parameters that give a therapeutic advantage. Methods: The evaluations were performed using Monte Carlo (MC) simulation and commonly used radiobiological models. The Geant4 MC code was used to simulate the dose distributions for 25 different Grid blocks with different hole diameters and center-to-center spacing. The therapeutic parameters of these blocks, namely, the therapeutic ratio (TR) and geometrical sparing factor (GSF) were calculated using two different radiobiological models, including the linear quadratic and Hug–Kellerer models. In addition, the ratio of the open to blocked area (ROTBA) is also used as a geometrical parameter for each block design. Comparisons of the TR, GSF, and ROTBA for all of the blocks were used to derive the parameters for an optimum Grid block with the maximum TR, minimum GSF, and optimal ROTBA. A sample of the optimum Grid block was fabricated at our institution. Dosimetric characteristics of this Grid block were measured using an ionization chamber in water phantom, Gafchromic film, and thermoluminescent dosimeters in Solid Water™ phantom materials. Results: The results of these investigations indicated that Grid blocks with hole diameters between 1.00 and 1.25 cm and spacing of 1.7 or 1.8 cm have optimal therapeutic parameters (TR > 1.3 and GSF~0.90). The measured dosimetric characteristics of the optimum Grid blocks including dose profiles, percentage depth dose, dose output factor (cGy/MU), and valley-to-peak ratio were in good agreement (±5%) with the simulated data. Conclusion: In summary, using MC-based dosimetry, two radiobiological models, and previously published clinical data, we have introduced a method to design a Grid block with optimum therapeutic response. The simulated data were reproduced by experimental data. PMID:29296035
Integrated geometry and grid generation system for complex configurations
NASA Technical Reports Server (NTRS)
Akdag, Vedat; Wulf, Armin
1992-01-01
A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X; Driewer, J; Lei, Y
2015-06-15
Purpose: Grid therapy has promising applications in the radiation treatment of bulky and large tumors. However, research and applications of grid therapy is limited by the accessibility of the specialized blocks that produce the grid of pencil-like radiation beams. In this study, a Cerrobend grid block was fabricated using a 3D printing technique. Methods: A grid block mold was designed with divergent tubes following beam central rays. The mold was printed using a resin with the working temperature below 230 °C. The melted Cerrobend liquid at 120°oC was cast into the resin mold to yield a block with a thicknessmore » of 7.4 cm. The grid had a hexagonal pattern, with each pencil beam diameter of 1.4 cm at the iso-center plane; the distance between the beam centers was 2 cm. The dosimetric properties of the grid block were studied using radiographic film and small field dosimeters. Results: the grid block was fabricated to be mounted at the third accessory mount of a Siemens Oncor linear accelerator. Fabricating a grid block using 3D printing is similar to making cutouts for traditional radiotherapy photon blocks, with the difference being that the mold was created by a 3D printer rather than foam. In this study, the valley-to-peak ratio for a 6MV photon grid beam was 20% at dmax, and 30% at 10 cm depth, respectively. Conclusion: We have demonstrated a novel process for implementing grid radiotherapy using 3D printing techniques. Compared to existing approaches, our technique combines reduced cost, accessibility, and flexibility in customization with efficient delivery. This lays the groundwork for future studies to improve our understanding of the efficacy of grid therapy and apply it to improve cancer treatment.« less
Program Aids Specification Of Multiple-Block Grids
NASA Technical Reports Server (NTRS)
Sorenson, R. L.; Mccann, K. M.
1993-01-01
3DPREP computer program aids specification of multiple-block computational grids. Highly interactive graphical preprocessing program designed for use on powerful graphical scientific computer workstation. Divided into three main parts, each corresponding to principal graphical-and-alphanumerical display. Relieves user of some burden of collecting and formatting many data needed to specify blocks and grids, and prepares input data for NASA's 3DGRAPE grid-generating computer program.
NASA Astrophysics Data System (ADS)
Lin, S. T.; Liou, T. S.
2017-12-01
Numerical simulation of groundwater flow in anisotropic aquifers usually suffers from the lack of accuracy of calculating groundwater flux across grid blocks. Conventional two-point flux approximation (TPFA) can only obtain the flux normal to the grid interface but completely neglects the one parallel to it. Furthermore, the hydraulic gradient in a grid block estimated from TPFA can only poorly represent the hydraulic condition near the intersection of grid blocks. These disadvantages are further exacerbated when the principal axes of hydraulic conductivity, global coordinate system, and grid boundary are not parallel to one another. In order to refine the estimation the in-grid hydraulic gradient, several multiple-point flux approximation (MPFA) methods have been developed for two-dimensional groundwater flow simulations. For example, the MPFA-O method uses the hydraulic head at the junction node as an auxiliary variable which is then eliminated using the head and flux continuity conditions. In this study, a three-dimensional MPFA method will be developed for numerical simulation of groundwater flow in three-dimensional and strongly anisotropic aquifers. This new MPFA method first discretizes the simulation domain into hexahedrons. Each hexahedron is further decomposed into a certain number of tetrahedrons. The 2D MPFA-O method is then extended to these tetrahedrons, using the unknown head at the intersection of hexahedrons as an auxiliary variable along with the head and flux continuity conditions to solve for the head at the center of each hexahedron. Numerical simulations using this new MPFA method have been successfully compared with those obtained from a modified version of TOUGH2.
Evaluation of a commercially‐available block for spatially fractionated radiation therapy
Buckey, Courtney; Cashon, Ken; Gutierrez, Alonso; Esquivel, Carlos; Shi, Chengyu; Papanikolaou, Nikos
2010-01-01
In this paper, we present the dosimetric characteristics of a commercially‐produced universal GRID block for spatially fractioned radiation therapy. The dosimetric properties of the GRID block were evaluated. Ionization chamber and film measurements using both Kodak EDR2 and Gafchromic EBT film were performed in a solid water phantom to determine the relative output of the GRID block as well as its spatial dosimetric characteristics. The surface dose under the block and at the openings was measured using ultra thin TLDs. After introducing the GRID block into the treatment planning system, a treatment plan was created using the GRID block and also by creating a GRID pattern using the multi‐leaf collimator. The percent depth doses measured with film showed that there is a shift of the dmax towards shallower depths for both energies (6 MV and 18 MV) under investigation. It was observed that the skin dose at the GRID openings was higher than the corresponding open field by a factor as high as 50% for both photon energies. The profiles showed the transmission under the block was in the order of 15–20% for 6 MV and 30% for 18 MV. The MUs calculated for a real patient using the block were about 80% less than the corresponding MUs for the same plan using the multileaf collimator to define the GRID. Based on this investigation, this brass GRID compensator is a viable alternative to other solid compensators or MLC‐based fields currently in use. Its ease of creation and use give it decided advantages. Its ability to be created once and used for multiple patients (by varying the collimation of the linear accelerator jaws) makes it attractive from a cost perspective. We believe this compensator can be put to clinical use, and will allow more centers to offer GRID therapy to their patients. PACS number: 87.53.Mr
SU-F-T-436: A Method to Evaluate Dosimetric Properties of SFGRT in Eclipse TPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, M; Tobias, R; Pankuch, M
Purpose: The objective was to develop a method for dose distribution calculation of spatially-fractionated-GRID-radiotherapy (SFGRT) in Eclipse treatment-planning-system (TPS). Methods: Patient treatment-plans with SFGRT for bulky tumors were generated in Varian Eclipse version11. A virtual structure based on the GRID pattern was created and registered to a patient CT image dataset. The virtual GRID structure was positioned on the iso-center level together with matching beam geometries to simulate a commercially available GRID block made of brass. This method overcame the difficulty in treatment-planning and dose-calculation due to the lack o-the option to insert a GRID block add-on in Eclipse TPS.more » The patient treatment-planning displayed GRID effects on the target, critical structures, and dose distribution. The dose calculations were compared to the measurement results in phantom. Results: The GRID block structure was created to follow the beam divergence to the patient CT images. The inserted virtual GRID block made it possible to calculate the dose distributions and profiles at various depths in Eclipse. The virtual GRID block was added as an option to TPS. The 3D representation of the isodose distribution of the spatially-fractionated beam was generated in axial, coronal, and sagittal planes. Physics of GRID can be different from that for fields shaped by regular blocks because the charge-particle-equilibrium cannot be guaranteed for small field openings. Output factor (OF) measurement was required to calculate the MU to deliver the prescribed dose. The calculated OF based on the virtual GRID agreed well with the measured OF in phantom. Conclusion: The method to create the virtual GRID block has been proposed for the first time in Eclipse TPS. The dosedistributions, in-plane and cross-plane profiles in PTV can be displayed in 3D-space. The calculated OF’s based on the virtual GRID model compare well to the measured OF’s for SFGRT clinical use.« less
Computing Aerodynamic Performance of a 2D Iced Airfoil: Blocking Topology and Grid Generation
NASA Technical Reports Server (NTRS)
Chi, X.; Zhu, B.; Shih, T. I.-P.; Slater, J. W.; Addy, H. E.; Choo, Yung K.; Lee, Chi-Ming (Technical Monitor)
2002-01-01
The ice accrued on airfoils can have enormously complicated shapes with multiple protruded horns and feathers. In this paper, several blocking topologies are proposed and evaluated on their ability to produce high-quality structured multi-block grid systems. A transition layer grid is introduced to ensure that jaggedness on the ice-surface geometry do not to propagate into the domain. This is important for grid-generation methods based on hyperbolic PDEs (Partial Differential Equations) and algebraic transfinite interpolation. A 'thick' wrap-around grid is introduced to ensure that grid lines clustered next to solid walls do not propagate as streaks of tightly packed grid lines into the interior of the domain along block boundaries. For ice shapes that are not too complicated, a method is presented for generating high-quality single-block grids. To demonstrate the usefulness of the methods developed, grids and CFD solutions were generated for two iced airfoils: the NLF0414 airfoil with and without the 623-ice shape and the B575/767 airfoil with and without the 145m-ice shape. To validate the computations, the computed lift coefficients as a function of angle of attack were compared with available experimental data. The ice shapes and the blocking topologies were prepared by NASA Glenn's SmaggIce software. The grid systems were generated by using a four-boundary method based on Hermite interpolation with controls on clustering, orthogonality next to walls, and C continuity across block boundaries. The flow was modeled by the ensemble-averaged compressible Navier-Stokes equations, closed by the shear-stress transport turbulence model in which the integration is to the wall. All solutions were generated by using the NPARC WIND code.
Modeling and Grid Generation of Iced Airfoils
NASA Technical Reports Server (NTRS)
Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.
2007-01-01
SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.
Multiple-block grid adaption for an airplane geometry
NASA Technical Reports Server (NTRS)
Abolhassani, Jamshid Samareh; Smith, Robert E.
1988-01-01
Grid-adaption methods are developed with the capability of moving grid points in accordance with several variables for a three-dimensional multiple-block grid system. These methods are algebraic, and they are implemented for the computation of high-speed flow over an airplane configuration.
Automatic blocking for complex three-dimensional configurations
NASA Technical Reports Server (NTRS)
Dannenhoffer, John F., III
1995-01-01
A new blocking technique for complex three-dimensional configurations is described. This new technique is based upon the concept of an abstraction, or squared-up representation, of the configuration and the associated grid. By allowing the user to describe blocking requirements in natural terms (such as 'wrap a grid around this leading edge' or 'make all grid lines emanating from this wall orthogonal to it'), users can quickly generate complex grids around complex configurations, while still maintaining a high level of control where desired. An added advantage of the abstraction concept is that once a blocking is defined for a class of configurations, it can be automatically applied to other configurations of the same class, making the new technique particularly well suited for the parametric variations which typically occur during design processes. Grids have been generated for a variety of real-world, two- and three-dimensional configurations. In all cases, the time required to generate the grid, given just an electronic form of the configuration, was at most a few days. Hence with this new technique, the generation of a block-structured grid is only slightly more expensive than the generation of an unstructured grid for the same configuration.
NASA Technical Reports Server (NTRS)
1998-01-01
Pointwise Inc.'s, Gridgen Software is a system for the generation of 3D (three dimensional) multiple block, structured grids. Gridgen is a visually-oriented, graphics-based interactive code used to decompose a 3D domain into blocks, distribute grid points on curves, initialize and refine grid points on surfaces and initialize volume grid points. Gridgen is available to U.S. citizens and American-owned companies by license.
Multidisciplinary Simulation Acceleration using Multiple Shared-Memory Graphical Processing Units
NASA Astrophysics Data System (ADS)
Kemal, Jonathan Yashar
For purposes of optimizing and analyzing turbomachinery and other designs, the unsteady Favre-averaged flow-field differential equations for an ideal compressible gas can be solved in conjunction with the heat conduction equation. We solve all equations using the finite-volume multiple-grid numerical technique, with the dual time-step scheme used for unsteady simulations. Our numerical solver code targets CUDA-capable Graphical Processing Units (GPUs) produced by NVIDIA. Making use of MPI, our solver can run across networked compute notes, where each MPI process can use either a GPU or a Central Processing Unit (CPU) core for primary solver calculations. We use NVIDIA Tesla C2050/C2070 GPUs based on the Fermi architecture, and compare our resulting performance against Intel Zeon X5690 CPUs. Solver routines converted to CUDA typically run about 10 times faster on a GPU for sufficiently dense computational grids. We used a conjugate cylinder computational grid and ran a turbulent steady flow simulation using 4 increasingly dense computational grids. Our densest computational grid is divided into 13 blocks each containing 1033x1033 grid points, for a total of 13.87 million grid points or 1.07 million grid points per domain block. To obtain overall speedups, we compare the execution time of the solver's iteration loop, including all resource intensive GPU-related memory copies. Comparing the performance of 8 GPUs to that of 8 CPUs, we obtain an overall speedup of about 6.0 when using our densest computational grid. This amounts to an 8-GPU simulation running about 39.5 times faster than running than a single-CPU simulation.
Numerical simulation of rough-surface aerodynamics
NASA Astrophysics Data System (ADS)
Chi, Xingkai
Computational fluid dynamics (CFD) simulations of flow over surfaces with roughness in which the details of the surface geometry must be resolved pose major challenges. The objective of this study is to address these challenges through two important engineering problems, where roughness play a critical role---flow over airfoils with accrued ice and flow and heat transfer over turbine blade surfaces roughened by erosion and/or deposition. CFD simulations of iced airfoils face two major challenges. The first is how to generate high-quality single- and multi-block structured grids for highly convoluted convex and concave surface geometries with multiple scales. In this study, two methods were developed for the generation of high-quality grids for such geometries. The method developed for single-block grids involves generating a grid about the clean airfoil, carving out a portion of that grid about the airfoil, replacing that portion with a grid that accounts for the accrued ice geometry, and performing elliptic smoothing. The method developed for multi-block grids involves a transition-layer grid to ensure jaggedness in the ice geometry does not propagate into the domain. It also involves a "thick" wrap-around grid about the ice to ensure grid lines clustered next to solid surfaces do not propagate as streaks of tightly packed grid lines into the domain along block boundaries. For multi-block grids, this study also developed blocking topologies that ensure solutions to multi-block grids converge to steady state as quickly as single-block grids. The second major challenge in CFD simulations of iced airfoils is not knowing when it will predict reliably because of uncertainties in the turbulence modeling. In this study, the effects of turbulence models in predicting lift, drag, and moment coefficients were examined for airfoils with rime ice (i.e., ice with jaggedness only) and with glaze ice (i.e., ice with multiple protruding horns and surface jaggedness) as a function of angle of attack. In this examination, three different CFD codes---WIND, FLUENT, and PowerFLOW were used to examine a variety of turbulence models, including Spalart-Allmaras, RNG k-epsilon, shear-stress transport, v2-f, and differential Reynolds stress with and without non-equilibrium wall functions. The accuracy of the CFD predictions was evaluated by comparing grid-independent solutions with measured experimental data. Results obtained show CFD with WIND and FLUENT to predict the aerodynamics of airfoils with rime ice reliably up to near stall for all turbulence models investigated. (Abstract shortened by UMI.)
An experimental study on compressive behavior of rubble stone walls retrofitted with BFRP grids
NASA Astrophysics Data System (ADS)
Huang, Hui; Jia, Bin; Li, Wenjing; Liu, Xiao; Yang, Dan; Deng, Chuanli
2018-03-01
An experimental study was conducted to investigate the compressive behavior of rubble stone walls retrofitted with BFRP grids. The experimental program consisted of four rubble stone walls: one unretrofitted rubble stone wall (reference wall) and three BFRP grids retrofitted rubble stone walls. The main purpose of the tests was to gain a better understanding of the compressive behavior of rubble stone walls retrofitted with different amount of BFRP grids. The experimental results showed that the reference wall failed with out-of-plane collapse due to poor connection between rubble stone blocks and the three BFRP grids retrofitted walls failed with BFRP grids rupture followed by out-of-plane collapse. The measured compressive strength of the BFRP grids retrofitted walls is about 1.4 to 2.5 times of that of the reference wall. Besides, the rubble stone wall retrofitted with the maximum amount of BFRP grids showed the minimum vertical and out-of-plane displacements under the same load.
Task Assignment Heuristics for Parallel and Distributed CFD Applications
NASA Technical Reports Server (NTRS)
Lopez-Benitez, Noe; Djomehri, M. Jahed; Biswas, Rupak
2003-01-01
This paper proposes a task graph (TG) model to represent a single discrete step of multi-block overset grid computational fluid dynamics (CFD) applications. The TG model is then used to not only balance the computational workload across the overset grids but also to reduce inter-grid communication costs. We have developed a set of task assignment heuristics based on the constraints inherent in this class of CFD problems. Two basic assignments, the smallest task first (STF) and the largest task first (LTF), are first presented. They are then systematically costs. To predict the performance of the proposed task assignment heuristics, extensive performance evaluations are conducted on a synthetic TG with tasks defined in terms of the number of grid points in predetermined overlapping grids. A TG derived from a realistic problem with eight million grid points is also used as a test case.
NASA Technical Reports Server (NTRS)
Spekreijse, S. P.; Boerstoel, J. W.; Vitagliano, P. L.; Kuyvenhoven, J. L.
1992-01-01
About five years ago, a joint development was started of a flow simulation system for engine-airframe integration studies on propeller as well as jet aircraft. The initial system was based on the Euler equations and made operational for industrial aerodynamic design work. The system consists of three major components: a domain modeller, for the graphical interactive subdivision of flow domains into an unstructured collection of blocks; a grid generator, for the graphical interactive computation of structured grids in blocks; and a flow solver, for the computation of flows on multi-block grids. The industrial partners of the collaboration and NLR have demonstrated that the domain modeller, grid generator and flow solver can be applied to simulate Euler flows around complete aircraft, including propulsion system simulation. Extension to Navier-Stokes flows is in progress. Delft Hydraulics has shown that both the domain modeller and grid generator can also be applied successfully for hydrodynamic configurations. An overview is given about the main aspects of both domain modelling and grid generation.
Performance Analysis of a Hybrid Overset Multi-Block Application on Multiple Architectures
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak
2003-01-01
This paper presents a detailed performance analysis of a multi-block overset grid compu- tational fluid dynamics app!ication on multiple state-of-the-art computer architectures. The application is implemented using a hybrid MPI+OpenMP programming paradigm that exploits both coarse and fine-grain parallelism; the former via MPI message passing and the latter via OpenMP directives. The hybrid model also extends the applicability of multi-block programs to large clusters of SNIP nodes by overcoming the restriction that the number of processors be less than the number of grid blocks. A key kernel of the application, namely the LU-SGS linear solver, had to be modified to enhance the performance of the hybrid approach on the target machines. Investigations were conducted on cacheless Cray SX6 vector processors, cache-based IBM Power3 and Power4 architectures, and single system image SGI Origin3000 platforms. Overall results for complex vortex dynamics simulations demonstrate that the SX6 achieves the highest performance and outperforms the RISC-based architectures; however, the best scaling performance was achieved on the Power3.
Validation of a Three-Dimensional Ablation and Thermal Response Simulation Code
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Milos, Frank S.; Gokcen, Tahir
2010-01-01
The 3dFIAT code simulates pyrolysis, ablation, and shape change of thermal protection materials and systems in three dimensions. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid system to simulate the shape change due to surface recession. This work is the first part of a code validation study for new capabilities that were added to 3dFIAT. These expanded capabilities include a multi-block moving grid system and an orthotropic thermal conductivity model. This paper focuses on conditions with minimal shape change in which the fluid/solid coupling is not necessary. Two groups of test cases of 3dFIAT analyses of Phenolic Impregnated Carbon Ablator in an arc-jet are presented. In the first group, axisymmetric iso-q shaped models are studied to check the accuracy of three-dimensional multi-block grid system. In the second group, similar models with various through-the-thickness conductivity directions are examined. In this group, the material thermal response is three-dimensional, because of the carbon fiber orientation. Predictions from 3dFIAT are presented and compared with arcjet test data. The 3dFIAT predictions agree very well with thermocouple data for both groups of test cases.
NASA Technical Reports Server (NTRS)
Steinbrenner, John P.; Chawner, John R.
1992-01-01
GRIDGEN is a government domain software package for interactive generation of multiple block grids around general configurations. Though it has been freely available since 1989, it has not been widely embraced by the internal flow community due to a misconception that it was designed for external flow use only. In reality GRIDGEN has always worked for internal flow applications, and GRIDGEN ongoing enhancements are increasing the quality of and efficiency with which grids for external and internal flow problems may be constructed. The software consists of four codes used to perform the four steps of the grid generation process. GRIDBLOCK is first used to decompose the flow domain into a collection of component blocks and then to establish interblock connections and flow solver boundary conditions. GRIDGEN2D is then used to generate surface grids on the outer shell of each component block. GRIDGEN3D generates grid points on the interior of each block, and finally GRIDVUE3D is used to inspect the resulting multiple block grid. Three of these codes (GRIDBLOCK, GRIDGEN2D, and GRIDVUE3D) are highly interactive and graphical in nature, and currently run on Silicon Graphics, Inc., and IBM RS/6000 workstations. The lone batch code (GRIDGEN3D) may be run on any of several Unix based platforms. Surface grid generation in GRIDGEN2D is being improved with the addition of higher order surface definitions (NURBS and parametric surfaces input in IGES format and bicubic surfaces input in PATRAN Neutral File format) and double precision mathematics. In addition, two types of automation have been added to GRIDGEN2D that reduce the learning curve slope for new users and eliminate work for experienced users. Volume grid generation using GRIDGEN3D has been improved via the addition of an advanced hybrid control function formulation that provides both orthogonality and clustering control at the block faces and clustering control on the block interior.
Single block three-dimensional volume grids about complex aerodynamic vehicles
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Weilmuenster, K. James
1993-01-01
This paper presents an alternate approach for the generation of volumetric grids for supersonic and hypersonic flows about complex configurations. The method uses parametric two dimensional block face grid definition within the framework of GRIDGEN2D. The incorporation of face decomposition reduces complex surfaces to simple shapes. These simple shapes are combined to obtain the final face definition. The advantages of this method include the reduction of overall grid generation time through the use of vectorized computer code, the elimination of the need to generate matching block faces, and the implementation of simplified boundary conditions. A simple axisymmetric grid is used to illustrate this method. In addition, volume grids for two complex configurations, the Langley Lifting Body (HL-20) and the Space Shuttle Orbiter, are shown.
Algorithms for the automatic generation of 2-D structured multi-block grids
NASA Technical Reports Server (NTRS)
Schoenfeld, Thilo; Weinerfelt, Per; Jenssen, Carl B.
1995-01-01
Two different approaches to the fully automatic generation of structured multi-block grids in two dimensions are presented. The work aims to simplify the user interactivity necessary for the definition of a multiple block grid topology. The first approach is based on an advancing front method commonly used for the generation of unstructured grids. The original algorithm has been modified toward the generation of large quadrilateral elements. The second method is based on the divide-and-conquer paradigm with the global domain recursively partitioned into sub-domains. For either method each of the resulting blocks is then meshed using transfinite interpolation and elliptic smoothing. The applicability of these methods to practical problems is demonstrated for typical geometries of fluid dynamics.
3DGRAPE - THREE DIMENSIONAL GRIDS ABOUT ANYTHING BY POISSON'S EQUATION
NASA Technical Reports Server (NTRS)
Sorenson, R. L.
1994-01-01
The ability to treat arbitrary boundary shapes is one of the most desirable characteristics of a method for generating grids. 3DGRAPE is designed to make computational grids in or about almost any shape. These grids are generated by the solution of Poisson's differential equations in three dimensions. The program automatically finds its own values for inhomogeneous terms which give near-orthogonality and controlled grid cell height at boundaries. Grids generated by 3DGRAPE have been applied to both viscous and inviscid aerodynamic problems, and to problems in other fluid-dynamic areas. 3DGRAPE uses zones to solve the problem of warping one cube into the physical domain in real-world computational fluid dynamics problems. In a zonal approach, a physical domain is divided into regions, each of which maps into its own computational cube. It is believed that even the most complicated physical region can be divided into zones, and since it is possible to warp a cube into each zone, a grid generator which is oriented to zones and allows communication across zonal boundaries (where appropriate) solves the problem of topological complexity. 3DGRAPE expects to read in already-distributed x,y,z coordinates on the bodies of interest, coordinates which will remain fixed during the entire grid-generation process. The 3DGRAPE code makes no attempt to fit given body shapes and redistribute points thereon. Body-fitting is a formidable problem in itself. The user must either be working with some simple analytical body shape, upon which a simple analytical distribution can be easily effected, or must have available some sophisticated stand-alone body-fitting software. 3DGRAPE does not require the user to supply the block-to-block boundaries nor the shapes of the distribution of points. 3DGRAPE will typically supply those block-to-block boundaries simply as surfaces in the elliptic grid. Thus at block-to-block boundaries the following conditions are obtained: (1) grids lines will match up as they approach the block-to-block boundary from either side, (2) grid lines will cross the boundary with no slope discontinuity, (3) the spacing of points along the line piercing the boundary will be continuous, (4) the shape of the boundary will be consistent with the surrounding grid, and (5) the distribution of points on the boundary will be reasonable in view of the surrounding grid. 3DGRAPE offers a powerful building-block approach to complex 3-D grid generation, but is a low-level tool. Users may build each face of each block as they wish, from a wide variety of resources. 3DGRAPE uses point-successive-over-relaxation (point-SOR) to solve the Poisson equations. This method is slow, although it does vectorize nicely. Any number of sophisticated graphics programs may be used on the stored output file of 3DGRAPE though it lacks interactive graphics. Versatility was a prominent consideration in developing the code. The block structure allows a great latitude in the problems it can treat. As the acronym implies, this program should be able to handle just about any physical region into which a computational cube or cubes can be warped. 3DGRAPE was written in FORTRAN 77 and should be machine independent. It was originally developed on a Cray under COS and tested on a MicroVAX 3200 under VMS 5.1.
FANS-3D Users Guide (ESTEP Project ER 201031)
2016-08-01
governing laminar and turbulent flows in body-fitted curvilinear grids. The code employs multi-block overset ( chimera ) grids, including fully matched...governing incompressible flow in body-fitted grids. The code allows for multi-block overset ( chimera ) grids, which can be fully matched, arbitrarily...interested reader may consult the Chimera Overset Structured Mesh-Interpolation Code (COSMIC) Users’ Manual (Chen, 2009). The input file used for
Optimal domain decomposition strategies
NASA Technical Reports Server (NTRS)
Yoon, Yonghyun; Soni, Bharat K.
1995-01-01
The primary interest of the authors is in the area of grid generation, in particular, optimal domain decomposition about realistic configurations. A grid generation procedure with optimal blocking strategies has been developed to generate multi-block grids for a circular-to-rectangular transition duct. The focus of this study is the domain decomposition which optimizes solution algorithm/block compatibility based on geometrical complexities as well as the physical characteristics of flow field. The progress realized in this study is summarized in this paper.
Three-dimensional hybrid grid generation using advancing front techniques
NASA Technical Reports Server (NTRS)
Steinbrenner, John P.; Noack, Ralph W.
1995-01-01
A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.
Adaptive EAGLE dynamic solution adaptation and grid quality enhancement
NASA Technical Reports Server (NTRS)
Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.
1992-01-01
In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.
Geometry modeling and multi-block grid generation for turbomachinery configurations
NASA Technical Reports Server (NTRS)
Shih, Ming H.; Soni, Bharat K.
1992-01-01
An interactive 3D grid generation code, Turbomachinery Interactive Grid genERation (TIGER), was developed for general turbomachinery configurations. TIGER features the automatic generation of multi-block structured grids around multiple blade rows for either internal, external, or internal-external turbomachinery flow fields. Utilization of the Bezier's curves achieves a smooth grid and better orthogonality. TIGER generates the algebraic grid automatically based on geometric information provided by its built-in pseudo-AI algorithm. However, due to the large variation of turbomachinery configurations, this initial grid may not always be as good as desired. TIGER therefore provides graphical user interactions during the process which allow the user to design, modify, as well as manipulate the grid, including the capability of elliptic surface grid generation.
Block-structured grids for complex aerodynamic configurations: Current status
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Sanetrik, Mark D.; Parlette, Edward B.
1995-01-01
The status of CFD methods based on the use of block-structured grids for analyzing viscous flows over complex configurations is examined. The objective of the present study is to make a realistic assessment of the usability of such grids for routine computations typically encountered in the aerospace industry. It is recognized at the very outset that the total turnaround time, from the moment the configuration is identified until the computational results have been obtained and postprocessed, is more important than just the computational time. Pertinent examples will be cited to demonstrate the feasibility of solving flow over practical configurations of current interest on block-structured grids.
NASA Astrophysics Data System (ADS)
Bonduà, Stefano; Battistelli, Alfredo; Berry, Paolo; Bortolotti, Villiam; Consonni, Alberto; Cormio, Carlo; Geloni, Claudio; Vasini, Ester Maria
2017-11-01
As is known, a full three-dimensional (3D) unstructured grid permits a great degree of flexibility when performing accurate numerical reservoir simulations. However, when the Integral Finite Difference Method (IFDM) is used for spatial discretization, constraints (arising from the required orthogonality between the segment connecting the blocks nodes and the interface area between blocks) pose difficulties in the creation of grids with irregular shaped blocks. The full 3D Voronoi approach guarantees the respect of IFDM constraints and allows generation of grids conforming to geological formations and structural objects and at the same time higher grid resolution in volumes of interest. In this work, we present dedicated pre- and post-processing gridding software tools for the TOUGH family of numerical reservoir simulators, developed by the Geothermal Research Group of the DICAM Department, University of Bologna. VORO2MESH is a new software coded in C++, based on the voro++ library, allowing computation of the 3D Voronoi tessellation for a given domain and the creation of a ready to use TOUGH2 MESH file. If a set of geological surfaces is available, the software can directly generate the set of Voronoi seed points used for tessellation. In order to reduce the number of connections and so to decrease computation time, VORO2MESH can produce a mixed grid with regular blocks (orthogonal prisms) and irregular blocks (polyhedron Voronoi blocks) at the point of contact between different geological formations. In order to visualize 3D Voronoi grids together with the results of numerical simulations, the functionality of the TOUGH2Viewer post-processor has been extended. We describe an application of VORO2MESH and TOUGH2Viewer to validate the two tools. The case study deals with the simulation of the migration of gases in deep layered sedimentary formations at basin scale using TOUGH2-TMGAS. A comparison between the simulation performances of unstructured and structured grids is presented.
Compact cell-centered discretization stencils at fine-coarse block structured grid interfaces
NASA Astrophysics Data System (ADS)
Pletzer, Alexander; Jamroz, Ben; Crockett, Robert; Sides, Scott
2014-03-01
Different strategies for coupling fine-coarse grid patches are explored in the context of the adaptive mesh refinement (AMR) method. We show that applying linear interpolation to fill in the fine grid ghost values can produce a finite volume stencil of comparable accuracy to quadratic interpolation provided the cell volumes are adjusted. The volume of fine cells expands whereas the volume of neighboring coarse cells contracts. The amount by which the cells contract/expand depends on whether the interface is a face, an edge, or a corner. It is shown that quadratic or better interpolation is required when the conductivity is spatially varying, anisotropic, the refinement ratio is other than two, or when the fine-coarse interface is concave.
A general multiblock Euler code for propulsion integration. Volume 1: Theory document
NASA Technical Reports Server (NTRS)
Chen, H. C.; Su, T. Y.; Kao, T. J.
1991-01-01
A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.
Internal Passage Heat Transfer Prediction Using Multiblock Grids and a Kappa-Omega Turbulence Model
NASA Technical Reports Server (NTRS)
Rigby, David L.; Ameri, Ali A.; Steinthorsson, Erlendur
1996-01-01
Numerical simulations of the three-dimensional flow and heat transfer in a rectangular duct with a 180 C bend were performed. Results are presented for Reynolds numbers of 17,000 and 37,000 and for aspect ratios of 0.5 and I.O. A kappa-omega turbulence model with no reference to distance to a wall is used. Direct comparison between single block and multiblock grid calculations are made. Heat transfer and velocity distributions are compared to available literature with good agreement. The multi-block grid system is seen to produce more accurate results compared to a single-block grid with the same number of cells.
Program EAGLE User’s Manual. Volume 3. Grid Generation Code
1988-09-01
15 1. ompps.te Grid Structure ..... .. .................. . 15 2. Block Interfaces ......... ...................... . 18 3. Fundmental ...in principle it is possible to establish a correspondence between any physical region and a single empty rectangular block for general three...differences. Since this second surrounding layer is not involved in the grid generation, no further account will be taken of its presence in the present
Adaptive 3D single-block grids for the computation of viscous flows around wings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmeijer, R.; Kok, J.C.
1996-12-31
A robust algorithm for the adaption of a 3D single-block structured grid suitable for the computation of viscous flows around a wing is presented and demonstrated by application to the ONERA M6 wing. The effects of grid adaption on the flow solution and accuracy improvements is analyzed. Reynolds number variations are studied.
NASA Technical Reports Server (NTRS)
Janus, J. Mark; Whitfield, David L.
1990-01-01
Improvements are presented of a computer algorithm developed for the time-accurate flow analysis of rotating machines. The flow model is a finite volume method utilizing a high-resolution approximate Riemann solver for interface flux definitions. The numerical scheme is a block LU implicit iterative-refinement method which possesses apparent unconditional stability. Multiblock composite gridding is used to orderly partition the field into a specified arrangement of blocks exhibiting varying degrees of similarity. Block-block relative motion is achieved using local grid distortion to reduce grid skewness and accommodate arbitrary time step selection. A general high-order numerical scheme is applied to satisfy the geometric conservation law. An even-blade-count counterrotating unducted fan configuration is chosen for a computational study comparing solutions resulting from altering parameters such as time step size and iteration count. The solutions are compared with measured data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Tushita, E-mail: tp3rn@virginia.edu; Peppard, Heather; Williams, Mark B.
2016-04-15
Purpose: Radiation scattered from the breast in digital breast tomosynthesis (DBT) causes image degradation, including loss of contrast between cancerous and background tissue. Unlike in 2-dimensional (2D) mammography, an antiscatter grid cannot readily be used in DBT because changing alignment between the tube and detector during the scan would result in unacceptable loss of primary radiation. However, in the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis, the tube and detector rotate around a common axis, thereby maintaining a fixed tube-detector alignment. This C-arm geometry raises the possibility of using a 2D (cellular) focused antiscattermore » grid. The purpose of this study is to assess change in image quality when using an antiscatter grid in the DBT portion of a DMT scan under conditions of fixed radiation dose. Methods: Two 2D focused prototype grids with 80 cm focal length were tested, one stack-laminated from copper (Cu) and one cast from a tungsten-polymer (W-poly). They were reciprocated using a motion scheme designed to maximize transmission of primary x-ray photons. Grid-in and grid-out scatter-to-primary ratios (SPRs) were measured for rectangular blocks of material simulating 30%, 50%, and 70% glandular tissue compositions. For assessment of changes in image quality through the addition of a grid, the Computerized Imaging Reference Systems, Inc., phantom Model 011A containing a set of 1 cm thick blocks simulating a range of glandular/adipose ratios from 0/100 to 100/0 was used. To simulate 6.5 and 8.5 cm thick compressed breasts, 1 cm thick slices of PMMA were added to the Model 011A phantom. DBT images were obtained with and without the grid, with exposure parameters fixed for a given compressed thickness. Signal-difference-to-noise ratios (SDNRs), contrast, and voxel value-based attenuation coefficients (μ) were measured for all blocks from reconstructed phantom images. Results: For 4, 6, and 8 cm tissue-equivalent block phantom thicknesses, the inclusion of the W-poly grid reduced the SPR by factors of 5, 6, and 5.8, respectively. For the same thicknesses, the copper grid reduced the SPR by factors of 3.9, 4.5, and 4.9. For the 011A phantom, the W-poly grid raised the SDNR of the 70/30 block from 0.8, −0.32, and −0.72 to 0.9, 0.76, and 0.062 for the 4.5, 6.5, and 8.5 cm phantoms, respectively. It raised the SDNR of the 100/0 block from 3.78, 1.95, and 1.0 to 3.79, 3.67, and 3.25 for the 4.5, 6.5, and 8.5 cm phantoms, respectively. Inclusion of the W-poly grid improved the accuracy of image-based μ values for all block compositions. However, smearing of attenuation across slices due to limited angular sampling decreases the sensitivity of voxel values to changing composition compared to theoretical μ values. Conclusions: Under conditions of fixed radiation dose to the breast, use of a 2D focused grid increased contrast, SDNR, and accuracy of estimated attenuation for mass-simulating block compositions in all phantom thicknesses tested, with the degree of improvement depending upon material composition. A 2D antiscatter grid can be usefully incorporated in DBT systems that employ fully isocentric tube-detector rotation.« less
Icing Branch Current Research Activities in Icing Physics
NASA Technical Reports Server (NTRS)
Vargas, Mario
2009-01-01
Current development: A grid block transformation scheme which allows the input of grids in arbitrary reference frames, the use of mirror planes, and grids with relative velocities has been developed. A simple ice crystal and sand particle bouncing scheme has been included. Added an SLD splashing model based on that developed by William Wright for the LEWICE 3.2.2 software. A new area based collection efficiency algorithm will be incorporated which calculates trajectories from inflow block boundaries to outflow block boundaries. This method will be used for calculating and passing collection efficiency data between blade rows for turbo-machinery calculations.
Load Balancing Strategies for Multi-Block Overset Grid Applications
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak; Lopez-Benitez, Noe; Biegel, Bryan (Technical Monitor)
2002-01-01
The multi-block overset grid method is a powerful technique for high-fidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process uses a grid system that discretizes the problem domain by using separately generated but overlapping structured grids that periodically update and exchange boundary information through interpolation. For efficient high performance computations of large-scale realistic applications using this methodology, the individual grids must be properly partitioned among the parallel processors. Overall performance, therefore, largely depends on the quality of load balancing. In this paper, we present three different load balancing strategies far overset grids and analyze their effects on the parallel efficiency of a Navier-Stokes CFD application running on an SGI Origin2000 machine.
NASA Astrophysics Data System (ADS)
Ivan, L.; De Sterck, H.; Susanto, A.; Groth, C. P. T.
2015-02-01
A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with high-order accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency gains that can be potentially achieved using fourth-order schemes as compared to second-order methods for the same error level. Applications on extended cubed-sphere grids incorporating a seventh root block that discretizes the interior of the inner sphere demonstrate the versatility of the spatial discretization method.
Geometric Theory of Moving Grid Wavefront Sensor
1977-06-30
Identify by block numbot) Adaptive Optics WaVefront Sensor Geometric Optics Analysis Moving Ronchi Grid "ABSTRACT (Continue an revere sdde If nooessaY...ad Identify by block nucber)A geometric optics analysis is made for a wavefront sensor that uses a moving Ronchi grid. It is shown that by simple data... optical systems being considered or being developed -3 for imaging an object through a turbulent atmosphere. Some of these use a wavefront sensor to
Blocking performance approximation in flexi-grid networks
NASA Astrophysics Data System (ADS)
Ge, Fei; Tan, Liansheng
2016-12-01
The blocking probability to the path requests is an important issue in flexible bandwidth optical communications. In this paper, we propose a blocking probability approximation method of path requests in flexi-grid networks. It models the bundled neighboring carrier allocation with a group of birth-death processes and provides a theoretical analysis to the blocking probability under variable bandwidth traffic. The numerical results show the effect of traffic parameters to the blocking probability of path requests. We use the first fit algorithm in network nodes to allocate neighboring carriers to path requests in simulations, and verify approximation results.
Mehl, S.; Hill, M.C.
2004-01-01
This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497-511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, "cage-shell" interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size - A coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.
Recent enhancements to the GRIDGEN structured grid generation system
NASA Technical Reports Server (NTRS)
Steinbrenner, John P.; Chawner, John R.
1992-01-01
Significant enhancements are being implemented into the GRIDGEN3D, multiple block, structured grid generation software. Automatic, point-to-point, interblock connectivity will be possible through the addition of the domain entity to GRIDBLOCK's block construction process. Also, the unification of GRIDGEN2D and GRIDBLOCK has begun with the addition of edge grid point distribution capability to GRIDBLOCK. The geometric accuracy of surface grids and the ease with which databases may be obtained is being improved by adding support for standard computer-aided design formats (e.g., PATRAN Neutral and IGES files). Finally, volume grid quality was improved through addition of new SOR algorithm features and the new hybrid control function type to GRIDGEN3D.
A grid generation system for multi-disciplinary design optimization
NASA Technical Reports Server (NTRS)
Jones, William T.; Samareh-Abolhassani, Jamshid
1995-01-01
A general multi-block three-dimensional volume grid generator is presented which is suitable for Multi-Disciplinary Design Optimization. The code is timely, robust, highly automated, and written in ANSI 'C' for platform independence. Algebraic techniques are used to generate and/or modify block face and volume grids to reflect geometric changes resulting from design optimization. Volume grids are generated/modified in a batch environment and controlled via an ASCII user input deck. This allows the code to be incorporated directly into the design loop. Generated volume grids are presented for a High Speed Civil Transport (HSCT) Wing/Body geometry as well a complex HSCT configuration including horizontal and vertical tails, engine nacelles and pylons, and canard surfaces.
QX MAN: Q and X file manipulation
NASA Technical Reports Server (NTRS)
Krein, Mark A.
1992-01-01
QX MAN is a grid and solution file manipulation program written primarily for the PARC code and the GRIDGEN family of grid generation codes. QX MAN combines many of the features frequently encountered in grid generation, grid refinement, the setting-up of initial conditions, and post processing. QX MAN allows the user to manipulate single block and multi-block grids (and their accompanying solution files) by splitting, concatenating, rotating, translating, re-scaling, and stripping or adding points. In addition, QX MAN can be used to generate an initial solution file for the PARC code. The code was written to provide several formats for input and output in order for it to be useful in a broad spectrum of applications.
Thermal Analysis of Magnetically-Coupled Pump for Cryogenic Applications
NASA Technical Reports Server (NTRS)
Senocak, Inanc; Udaykumar, H. S.; Ndri, Narcisse; Francois, Marianne; Shyy, Wei
1999-01-01
Magnetically-coupled pump is under evaluation at Kennedy Space Center for possible cryogenic applications. A major concern is the impact of low temperature fluid flows on the pump performance. As a first step toward addressing this and related issues, a computational fluid dynamics and heat transfer tool has been adopted in a pump geometry. The computational tool includes (i) a commercial grid generator to handle multiple grid blocks and complicated geometric definitions, and (ii) an in-house computational fluid dynamics and heat transfer software developed in the Principal Investigator's group at the University of Florida. Both pure-conduction and combined convection-conduction computations have been conducted. A pure-conduction analysis gives insufficient information about the overall thermal distribution. Combined convection-conduction analysis indicates the significant influence of the coolant over the entire flow path. Since 2-D simulation is of limited help, future work on full 3-D modeling of the pump using multi-materials is needed. A comprehensive and accurate model can be developed to take into account the effect of multi-phase flow in the cooling flow loop, and the magnetic interactions.
Numerical Solution of the Three-Dimensional Navier-Stokes Equation.
1982-03-01
compressible, viscous fluid in an arbitrary geometry. We wish to use a grid generating scheme so we assume that the geometry of the physical problem given in...bian J of the mapping are provided. (For work on grid generating schemes see [4], [5] or [6).) Hence we must solve the following system of equations...these limitations the data structure used in the ILLIAC code is to partition the grid into 8 x 8 x 8 blocks. A row of these blocks in a given
Dickinson, J.E.; James, S.C.; Mehl, S.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Faunt, C.C.; Eddebbarh, A.-A.
2007-01-01
A flexible, robust method for linking parent (regional-scale) and child (local-scale) grids of locally refined models that use different numerical methods is developed based on a new, iterative ghost-node method. Tests are presented for two-dimensional and three-dimensional pumped systems that are homogeneous or that have simple heterogeneity. The parent and child grids are simulated using the block-centered finite-difference MODFLOW and control-volume finite-element FEHM models, respectively. The models are solved iteratively through head-dependent (child model) and specified-flow (parent model) boundary conditions. Boundary conditions for models with nonmatching grids or zones of different hydraulic conductivity are derived and tested against heads and flows from analytical or globally-refined models. Results indicate that for homogeneous two- and three-dimensional models with matched grids (integer number of child cells per parent cell), the new method is nearly as accurate as the coupling of two MODFLOW models using the shared-node method and, surprisingly, errors are slightly lower for nonmatching grids (noninteger number of child cells per parent cell). For heterogeneous three-dimensional systems, this paper compares two methods for each of the two sets of boundary conditions: external heads at head-dependent boundary conditions for the child model are calculated using bilinear interpolation or a Darcy-weighted interpolation; specified-flow boundary conditions for the parent model are calculated using model-grid or hydrogeologic-unit hydraulic conductivities. Results suggest that significantly more accurate heads and flows are produced when both Darcy-weighted interpolation and hydrogeologic-unit hydraulic conductivities are used, while the other methods produce larger errors at the boundary between the regional and local models. The tests suggest that, if posed correctly, the ghost-node method performs well. Additional testing is needed for highly heterogeneous systems. ?? 2007 Elsevier Ltd. All rights reserved.
The three-dimensional Multi-Block Advanced Grid Generation System (3DMAGGS)
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Weilmuenster, Kenneth J.
1993-01-01
As the size and complexity of three dimensional volume grids increases, there is a growing need for fast and efficient 3D volumetric elliptic grid solvers. Present day solvers are limited by computational speed and do not have all the capabilities such as interior volume grid clustering control, viscous grid clustering at the wall of a configuration, truncation error limiters, and convergence optimization residing in one code. A new volume grid generator, 3DMAGGS (Three-Dimensional Multi-Block Advanced Grid Generation System), which is based on the 3DGRAPE code, has evolved to meet these needs. This is a manual for the usage of 3DMAGGS and contains five sections, including the motivations and usage, a GRIDGEN interface, a grid quality analysis tool, a sample case for verifying correct operation of the code, and a comparison to both 3DGRAPE and GRIDGEN3D. Since it was derived from 3DGRAPE, this technical memorandum should be used in conjunction with the 3DGRAPE manual (NASA TM-102224).
Arc Length Based Grid Distribution For Surface and Volume Grids
NASA Technical Reports Server (NTRS)
Mastin, C. Wayne
1996-01-01
Techniques are presented for distributing grid points on parametric surfaces and in volumes according to a specified distribution of arc length. Interpolation techniques are introduced which permit a given distribution of grid points on the edges of a three-dimensional grid block to be propagated through the surface and volume grids. Examples demonstrate how these methods can be used to improve the quality of grids generated by transfinite interpolation.
Zhang, Hong; Ren, Lei; Kong, Vic; Giles, William; Zhang, You; Jin, Jian-Yue
2016-01-01
A preobject grid can reduce and correct scatter in cone beam computed tomography (CBCT). However, half of the signal in each projection is blocked by the grid. A synchronized moving grid (SMOG) has been proposed to acquire two complimentary projections at each gantry position and merge them into one complete projection. That approach, however, suffers from increased scanning time and the technical difficulty of accurately merging the two projections per gantry angle. Herein, the authors present a new SMOG approach which acquires a single projection per gantry angle, with complimentary grid patterns for any two adjacent projections, and use an interprojection sensor fusion (IPSF) technique to estimate the blocked signal in each projection. The method may have the additional benefit of reduced imaging dose due to the grid blocking half of the incident radiation. The IPSF considers multiple paired observations from two adjacent gantry angles as approximations of the blocked signal and uses a weighted least square regression of these observations to finally determine the blocked signal. The method was first tested with a simulated SMOG on a head phantom. The signal to noise ratio (SNR), which represents the difference of the recovered CBCT image to the original image without the SMOG, was used to evaluate the ability of the IPSF in recovering the missing signal. The IPSF approach was then tested using a Catphan phantom on a prototype SMOG assembly installed in a bench top CBCT system. In the simulated SMOG experiment, the SNRs were increased from 15.1 and 12.7 dB to 35.6 and 28.9 dB comparing with a conventional interpolation method (inpainting method) for a projection and the reconstructed 3D image, respectively, suggesting that IPSF successfully recovered most of blocked signal. In the prototype SMOG experiment, the authors have successfully reconstructed a CBCT image using the IPSF-SMOG approach. The detailed geometric features in the Catphan phantom were mostly recovered according to visual evaluation. The scatter related artifacts, such as cupping artifacts, were almost completely removed. The IPSF-SMOG is promising in reducing scatter artifacts and improving image quality while reducing radiation dose.
Plane Smoothers for Multiblock Grids: Computational Aspects
NASA Technical Reports Server (NTRS)
Llorente, Ignacio M.; Diskin, Boris; Melson, N. Duane
1999-01-01
Standard multigrid methods are not well suited for problems with anisotropic discrete operators, which can occur, for example, on grids that are stretched in order to resolve a boundary layer. One of the most efficient approaches to yield robust methods is the combination of standard coarsening with alternating-direction plane relaxation in the three dimensions. However, this approach may be difficult to implement in codes with multiblock structured grids because there may be no natural definition of global lines or planes. This inherent obstacle limits the range of an implicit smoother to only the portion of the computational domain in the current block. This report studies in detail, both numerically and analytically, the behavior of blockwise plane smoothers in order to provide guidance to engineers who use block-structured grids. The results obtained so far show alternating-direction plane smoothers to be very robust, even on multiblock grids. In common computational fluid dynamics multiblock simulations, where the number of subdomains crossed by the line of a strong anisotropy is low (up to four), textbook multigrid convergence rates can be obtained with a small overlap of cells between neighboring blocks.
NASA Astrophysics Data System (ADS)
Guo, Tongqing; Chen, Hao; Lu, Zhiliang
2018-05-01
Aiming at extremely large deformation, a novel predictor-corrector-based dynamic mesh method for multi-block structured grid is proposed. In this work, the dynamic mesh generation is completed in three steps. At first, some typical dynamic positions are selected and high-quality multi-block grids with the same topology are generated at those positions. Then, Lagrange interpolation method is adopted to predict the dynamic mesh at any dynamic position. Finally, a rapid elastic deforming technique is used to correct the small deviation between the interpolated geometric configuration and the actual instantaneous one. Compared with the traditional methods, the results demonstrate that the present method shows stronger deformation ability and higher dynamic mesh quality.
Hybrid Grid Techniques for Propulsion Applications
NASA Technical Reports Server (NTRS)
Koomullil, Roy P.; Soni, Bharat K.; Thornburg, Hugh J.
1996-01-01
During the past decade, computational simulation of fluid flow for propulsion activities has progressed significantly, and many notable successes have been reported in the literature. However, the generation of a high quality mesh for such problems has often been reported as a pacing item. Hence, much effort has been expended to speed this portion of the simulation process. Several approaches have evolved for grid generation. Two of the most common are structured multi-block, and unstructured based procedures. Structured grids tend to be computationally efficient, and have high aspect ratio cells necessary for efficently resolving viscous layers. Structured multi-block grids may or may not exhibit grid line continuity across the block interface. This relaxation of the continuity constraint at the interface is intended to ease the grid generation process, which is still time consuming. Flow solvers supporting non-contiguous interfaces require specialized interpolation procedures which may not ensure conservation at the interface. Unstructured or generalized indexing data structures offer greater flexibility, but require explicit connectivity information and are not easy to generate for three dimensional configurations. In addition, unstructured mesh based schemes tend to be less efficient and it is difficult to resolve viscous layers. Recently hybrid or generalized element solution and grid generation techniques have been developed with the objective of combining the attractive features of both structured and unstructured techniques. In the present work, recently developed procedures for hybrid grid generation and flow simulation are critically evaluated, and compared to existing structured and unstructured procedures in terms of accuracy and computational requirements.
Dosimetric characteristics with spatial fractionation using electron grid therapy.
Meigooni, A S; Parker, S A; Zheng, J; Kalbaugh, K J; Regine, W F; Mohiuddin, M
2002-01-01
Recently, promising clinical results have been shown in the delivery of palliative treatments using megavoltage photon grid therapy. However, the use of megavoltage photon grid therapy is limited in the treatment of bulky superficial lesions where critical radiosensitive anatomical structures are present beyond tumor volumes. As a result, spatially fractionated electron grid therapy was investigated in this project. Dose distributions of 1.4-cm-thick cerrobend grid blocks were experimentally determined for electron beams ranging from 6 to 20 MeV. These blocks were designed and fabricated at out institution to fit into a 20 x 20-cm(2) electron cone of a commercially available linear accelerator. Beam profiles and percentage depth dose (PDD) curves were measured in Solid Water phantom material using radiographic film, LiF TLD, and ionometric techniques. Open-field PDD curves were compared with those of single holes grid with diameters of 1.5, 2.0, 2.5, 3.0, and 3.5 cm to find the optimum diameter. A 2.5-cm hole diameter was found to be the optimal size for all electron energies between 6 and 20 MeV. The results indicate peak-to-valley ratios decrease with depth and the largest ratio is found at Dmax. Also, the TLD measurements show that the dose under the blocked regions of the grid ranged from 9.7% to 39% of the dose beneath the grid holes, depending on the measurement location and beam energy.
NASA Technical Reports Server (NTRS)
Atkins, Harold
1991-01-01
A multiple block multigrid method for the solution of the three dimensional Euler and Navier-Stokes equations is presented. The basic flow solver is a cell vertex method which employs central difference spatial approximations and Runge-Kutta time stepping. The use of local time stepping, implicit residual smoothing, multigrid techniques and variable coefficient numerical dissipation results in an efficient and robust scheme is discussed. The multiblock strategy places the block loop within the Runge-Kutta Loop such that accuracy and convergence are not affected by block boundaries. This has been verified by comparing the results of one and two block calculations in which the two block grid is generated by splitting the one block grid. Results are presented for both Euler and Navier-Stokes computations of wing/fuselage combinations.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Thomas, James L.; Biedron, Robert T.; Diskin, Boris
2005-01-01
FMG3D (full multigrid 3 dimensions) is a pilot computer program that solves equations of fluid flow using a finite difference representation on a structured grid. Infrastructure exists for three dimensions but the current implementation treats only two dimensions. Written in Fortran 90, FMG3D takes advantage of the recursive subroutine feature, dynamic memory allocation, and structured-programming constructs of that language. FMG3D supports multi-block grids with three types of block-to-block interfaces: periodic, C-zero, and C-infinity. For all three types, grid points must match at interfaces. For periodic and C-infinity types, derivatives of grid metrics must be continuous at interfaces. The available equation sets are as follows: scalar elliptic equations, scalar convection equations, and the pressure-Poisson formulation of the Navier-Stokes equations for an incompressible fluid. All the equation sets are implemented with nonzero forcing functions to enable the use of user-specified solutions to assist in verification and validation. The equations are solved with a full multigrid scheme using a full approximation scheme to converge the solution on each succeeding grid level. Restriction to the next coarser mesh uses direct injection for variables and full weighting for residual quantities; prolongation of the coarse grid correction from the coarse mesh to the fine mesh uses bilinear interpolation; and prolongation of the coarse grid solution uses bicubic interpolation.
Software Design Document SAF Simulation Host CSCI (8). Volume 1, Sections 1.0 - 2.7
1991-06-01
list for the patch, testing edges matching grid-loc-woni for intervisibility blocks. Calls Function IWhere Described Icheck edges Sec. 2.6.7.1.8 Table...edges matching grid-loc-word for intervisibility blocks. Calls Function Where Described check box Sec. 2.6.7.1.31 treelines Sec. 2.6.7.1.16 Icheck edges
NASA National Combustion Code Simulations
NASA Technical Reports Server (NTRS)
Iannetti, Anthony; Davoudzadeh, Farhad
2001-01-01
A systematic effort is in progress to further validate the National Combustion Code (NCC) that has been developed at NASA Glenn Research Center (GRC) for comprehensive modeling and simulation of aerospace combustion systems. The validation efforts include numerical simulation of the gas-phase combustor experiments conducted at the Center for Turbulence Research (CTR), Stanford University, followed by comparison and evaluation of the computed results with the experimental data. Presently, at GRC, a numerical model of the experimental gaseous combustor is built to simulate the experimental model. The constructed numerical geometry includes the flow development sections for air annulus and fuel pipe, 24 channel air and fuel swirlers, hub, combustor, and tail pipe. Furthermore, a three-dimensional multi-block, multi-grid grid (1.6 million grid points, 3-levels of multi-grid) is generated. Computational simulation of the gaseous combustor flow field operating on methane fuel has started. The computational domain includes the whole flow regime starting from the fuel pipe and the air annulus, through the 12 air and 12 fuel channels, in the combustion region and through the tail pipe.
Flow solution on a dual-block grid around an airplane
NASA Technical Reports Server (NTRS)
Eriksson, Lars-Erik
1987-01-01
The compressible flow around a complex fighter-aircraft configuration (fuselage, cranked delta wing, canard, and inlet) is simulated numerically using a novel grid scheme and a finite-volume Euler solver. The patched dual-block grid is generated by an algebraic procedure based on transfinite interpolation, and the explicit Runge-Kutta time-stepping Euler solver is implemented with a high degree of vectorization on a Cyber 205 processor. Results are presented in extensive graphs and diagrams and characterized in detail. The concentration of grid points near the wing apex in the present scheme is shown to facilitate capture of the vortex generated by the leading edge at high angles of attack and modeling of its interaction with the canard wake.
Reynolds-Averaged Navier-Stokes Simulations of Two Partial-Span Flap Wing Experiments
NASA Technical Reports Server (NTRS)
Takalluk, M. A.; Laflin, Kelly R.
1998-01-01
Structured Reynolds Averaged Navier-Stokes simulations of two partial-span flap wing experiments were performed. The high-lift aerodynamic and aeroacoustic wind-tunnel experiments were conducted at both the NASA Ames 7-by 10-Foot Wind Tunnel and at the NASA Langley Quiet Flow Facility. The purpose of these tests was to accurately document the acoustic and aerodynamic characteristics associated with the principle airframe noise sources, including flap side-edge noise. Specific measurements were taken that can be used to validate analytic and computational models of the noise sources and associated aerodynamic for configurations and conditions approximating flight for transport aircraft. The numerical results are used to both calibrate a widely used CFD code, CFL3D, and to obtain details of flap side-edge flow features not discernible from experimental observations. Both experimental set-ups were numerically modeled by using multiple block structured grids. Various turbulence models, grid block-interface interaction methods and grid topologies were implemented. Numerical results of both simulations are in excellent agreement with experimental measurements and flow visualization observations. The flow field in the flap-edge region was adequately resolved to discern some crucial information about the flow physics and to substantiate the merger of the two vortical structures. As a result of these investigations, airframe noise modelers have proposed various simplified models which use the results obtained from the steady-state computations as input.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hong; Kong, Vic; Ren, Lei
2016-01-15
Purpose: A preobject grid can reduce and correct scatter in cone beam computed tomography (CBCT). However, half of the signal in each projection is blocked by the grid. A synchronized moving grid (SMOG) has been proposed to acquire two complimentary projections at each gantry position and merge them into one complete projection. That approach, however, suffers from increased scanning time and the technical difficulty of accurately merging the two projections per gantry angle. Herein, the authors present a new SMOG approach which acquires a single projection per gantry angle, with complimentary grid patterns for any two adjacent projections, and usemore » an interprojection sensor fusion (IPSF) technique to estimate the blocked signal in each projection. The method may have the additional benefit of reduced imaging dose due to the grid blocking half of the incident radiation. Methods: The IPSF considers multiple paired observations from two adjacent gantry angles as approximations of the blocked signal and uses a weighted least square regression of these observations to finally determine the blocked signal. The method was first tested with a simulated SMOG on a head phantom. The signal to noise ratio (SNR), which represents the difference of the recovered CBCT image to the original image without the SMOG, was used to evaluate the ability of the IPSF in recovering the missing signal. The IPSF approach was then tested using a Catphan phantom on a prototype SMOG assembly installed in a bench top CBCT system. Results: In the simulated SMOG experiment, the SNRs were increased from 15.1 and 12.7 dB to 35.6 and 28.9 dB comparing with a conventional interpolation method (inpainting method) for a projection and the reconstructed 3D image, respectively, suggesting that IPSF successfully recovered most of blocked signal. In the prototype SMOG experiment, the authors have successfully reconstructed a CBCT image using the IPSF-SMOG approach. The detailed geometric features in the Catphan phantom were mostly recovered according to visual evaluation. The scatter related artifacts, such as cupping artifacts, were almost completely removed. Conclusions: The IPSF-SMOG is promising in reducing scatter artifacts and improving image quality while reducing radiation dose.« less
Description of the F-16XL Geometry and Computational Grids Used in CAWAPI
NASA Technical Reports Server (NTRS)
Boelens, O. J.; Badcock, K. J.; Gortz, S.; Morton, S.; Fritz, W.; Karman, S. L., Jr.; Michal, T.; Lamar, J. E.
2009-01-01
The objective of the Cranked-Arrow Wing Aerodynamics Project International (CAWAPI) was to allow a comprehensive validation of Computational Fluid Dynamics methods against the CAWAP flight database. A major part of this work involved the generation of high-quality computational grids. Prior to the grid generation an IGES file containing the air-tight geometry of the F-16XL aircraft was generated by a cooperation of the CAWAPI partners. Based on this geometry description both structured and unstructured grids have been generated. The baseline structured (multi-block) grid (and a family of derived grids) has been generated by the National Aerospace Laboratory NLR. Although the algorithms used by NLR had become available just before CAWAPI and thus only a limited experience with their application to such a complex configuration had been gained, a grid of good quality was generated well within four weeks. This time compared favourably with that required to produce the unstructured grids in CAWAPI. The baseline all-tetrahedral and hybrid unstructured grids has been generated at NASA Langley Research Center and the USAFA, respectively. To provide more geometrical resolution, trimmed unstructured grids have been generated at EADS-MAS, the UTSimCenter, Boeing Phantom Works and KTH/FOI. All grids generated within the framework of CAWAPI will be discussed in the article. Both results obtained on the structured grids and the unstructured grids showed a significant improvement in agreement with flight test data in comparison with those obtained on the structured multi-block grid used during CAWAP.
Haines, Seth S.; Hart, Patrick E.; Ruppel, Carolyn; O'Brien, Thomas; Baldwin, Wayne; White, Jenny; Moore, Eric; Dal Ferro, Peter; Lemmond, Peter
2014-01-01
The U.S. Geological Survey led a seismic acquisition cruise in the Gulf of Mexico from April 18 to May 3, 2013, with the objectives of (1) achieving improved imaging and characterization at two established gas hydrate study sites, and (2) refining geophysical methods for gas hydrate characterization in other locations. We conducted this acquisition aboard the R/V Pelican, and used a pair of 105/105-cubic-inch generator/injector air guns to provide seismic energy that we recorded using a 450-meter 72-channel digital hydrophone streamer and 25 multicomponent ocean-bottom seismometers. In the area of lease block Green Canyon 955, we deployed 21 ocean-bottom seismometers and acquired approximately 400 kilometers of high-resolution two-dimensional streamer seismic data in a grid with line spacing as small as 50 meters and along radial lines that provide source offsets up to 10 kilometers and diverse azimuths for the ocean-bottom seismometers. In the area of lease block Walker Ridge 313, we deployed 25 ocean-bottom seismometers and acquired approximately 450 kilometers of streamer seismic data in a grid pattern with line spacing as small as 250 meters and along radial lines that provide source offsets up to 10 kilometers for the ocean-bottom seismometers. The data acquisition effort was conducted safely and met the scientific objectives.
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Delaney, Robert A.; Bettner, James L.
1990-01-01
The time-dependent three-dimensional Euler equations of gas dynamics were solved numerically to study the steady compressible transonic flow about ducted propfan propulsion systems. Aerodynamic calculations were based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. An implicit residual smoothing operator was used to aid convergence. Two calculation grids were employed in this study. The first grid utilized an H-type mesh network with a branch cut opening to represent the axisymmetric cowl. The second grid utilized a multiple-block mesh system with a C-type grid about the cowl. The individual blocks were numerically coupled in the Euler solver. Grid systems were generated by a combined algebraic/elliptic algortihm developed specifically for ducted propfans. Numerical calculations were initially performed for unducted propfans to verify the accuracy of the three-dimensional Euler formulation. The Euler analyses were then applied for the calculation of ducted propfan flows, and predicted results were compared with experimental data for two cases. The three-dimensional Euler analyses displayed exceptional accuracy, although certain parameters were observed to be very sensitive to geometric deflections. Both solution schemes were found to be very robust and demonstrated nearly equal efficiency and accuracy, although it was observed that the multi-block C-grid formulation provided somewhat better resolution of the cowl leading edge region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, R; Bednarek, D; Rudin, S
2015-06-15
Purpose: Anti-scatter grid-line artifacts are more prominent for high-resolution x-ray detectors since the fraction of a pixel blocked by the grid septa is large. Direct logarithmic subtraction of the artifact pattern is limited by residual scattered radiation and we investigate an iterative method for scatter correction. Methods: A stationary Smit-Rοntgen anti-scatter grid was used with a high resolution Dexela 1207 CMOS X-ray detector (75 µm pixel size) to image an artery block (Nuclear Associates, Model 76-705) placed within a uniform head equivalent phantom as the scattering source. The image of the phantom was divided by a flat-field image obtained withoutmore » scatter but with the grid to eliminate grid-line artifacts. Constant scatter values were subtracted from the phantom image before dividing by the averaged flat-field-with-grid image. The standard deviation of pixel values for a fixed region of the resultant images with different subtracted scatter values provided a measure of the remaining grid-line artifacts. Results: A plot of the standard deviation of image pixel values versus the subtracted scatter value shows that the image structure noise reaches a minimum before going up again as the scatter value is increased. This minimum corresponds to a minimization of the grid-line artifacts as demonstrated in line profile plots obtained through each of the images perpendicular to the grid lines. Artifact-free images of the artery block were obtained with the optimal scatter value obtained by this iterative approach. Conclusion: Residual scatter subtraction can provide improved grid-line artifact elimination when using the flat-field with grid “subtraction” technique. The standard deviation of image pixel values can be used to determine the optimal scatter value to subtract to obtain a minimization of grid line artifacts with high resolution x-ray imaging detectors. This study was supported by NIH Grant R01EB002873 and an equipment grant from Toshiba Medical Systems Corp.« less
Parallelized implicit propagators for the finite-difference Schrödinger equation
NASA Astrophysics Data System (ADS)
Parker, Jonathan; Taylor, K. T.
1995-08-01
We describe the application of block Gauss-Seidel and block Jacobi iterative methods to the design of implicit propagators for finite-difference models of the time-dependent Schrödinger equation. The block-wise iterative methods discussed here are mixed direct-iterative methods for solving simultaneous equations, in the sense that direct methods (e.g. LU decomposition) are used to invert certain block sub-matrices, and iterative methods are used to complete the solution. We describe parallel variants of the basic algorithm that are well suited to the medium- to coarse-grained parallelism of work-station clusters, and MIMD supercomputers, and we show that under a wide range of conditions, fine-grained parallelism of the computation can be achieved. Numerical tests are conducted on a typical one-electron atom Hamiltonian. The methods converge robustly to machine precision (15 significant figures), in some cases in as few as 6 or 7 iterations. The rate of convergence is nearly independent of the finite-difference grid-point separations.
Alsabery, A I; Sheremet, M A; Chamkha, A J; Hashim, I
2018-05-09
The problem of steady, laminar natural convection in a discretely heated and cooled square cavity filled by an alumina/water nanofluid with a centered heat-conducting solid block under the effects of inclined uniform magnetic field, Brownian diffusion and thermophoresis is studied numerically by using the finite difference method. Isothermal heaters and coolers are placed along the vertical walls and the bottom horizontal wall, while the upper horizontal wall is kept adiabatic. Water-based nanofluids with alumina nanoparticles are chosen for investigation. The governing parameters of this study are the Rayleigh number (10 3 ≤ Ra ≤ 10 6 ), the Hartmann number (0 ≤ Ha ≤ 50), thermal conductivity ratio (0.28 ≤ k w ≤ 16), centered solid block size (0.1 ≤ D ≤ 0.7) and the nanoparticles volume fraction (0 ≤ ϕ ≤ 0.04). The developed computational code is validated comprehensively using the grid independency test and numerical and experimental data of other authors. The obtained results reveal that the effects of the thermal conductivity ratio, centered solid block size and the nanoparticles volume fraction are non-linear for the heat transfer rate. Therefore, it is possible to find optimal parameters for the heat transfer enhancement in dependence on the considered system. Moreover, high values of the Rayleigh number and nanoparticles volume fraction characterize homogeneous distributions of nanoparticles inside the cavity. High concentration of nanoparticles can be found near the centered solid block where thermal plumes from the local heaters interact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hathaway, M.D.; Wood, J.R.
1997-10-01
CFD codes capable of utilizing multi-block grids provide the capability to analyze the complete geometry of centrifugal compressors. Attendant with this increased capability is potentially increased grid setup time and more computational overhead with the resultant increase in wall clock time to obtain a solution. If the increase in difficulty of obtaining a solution significantly improves the solution from that obtained by modeling the features of the tip clearance flow or the typical bluntness of a centrifugal compressor`s trailing edge, then the additional burden is worthwhile. However, if the additional information obtained is of marginal use, then modeling of certainmore » features of the geometry may provide reasonable solutions for designers to make comparative choices when pursuing a new design. In this spirit a sequence of grids were generated to study the relative importance of modeling versus detailed gridding of the tip gap and blunt trailing edge regions of the NASA large low-speed centrifugal compressor for which there is considerable detailed internal laser anemometry data available for comparison. The results indicate: (1) There is no significant difference in predicted tip clearance mass flow rate whether the tip gap is gridded or modeled. (2) Gridding rather than modeling the trailing edge results in better predictions of some flow details downstream of the impeller, but otherwise appears to offer no great benefits. (3) The pitchwise variation of absolute flow angle decreases rapidly up to 8% impeller radius ratio and much more slowly thereafter. Although some improvements in prediction of flow field details are realized as a result of analyzing the actual geometry there is no clear consensus that any of the grids investigated produced superior results in every case when compared to the measurements. However, if a multi-block code is available, it should be used, as it has the propensity for enabling better predictions than a single block code.« less
NASA Astrophysics Data System (ADS)
Zapata, M. A. Uh; Van Bang, D. Pham; Nguyen, K. D.
2016-05-01
This paper presents a parallel algorithm for the finite-volume discretisation of the Poisson equation on three-dimensional arbitrary geometries. The proposed method is formulated by using a 2D horizontal block domain decomposition and interprocessor data communication techniques with message passing interface. The horizontal unstructured-grid cells are reordered according to the neighbouring relations and decomposed into blocks using a load-balanced distribution to give all processors an equal amount of elements. In this algorithm, two parallel successive over-relaxation methods are presented: a multi-colour ordering technique for unstructured grids based on distributed memory and a block method using reordering index following similar ideas of the partitioning for structured grids. In all cases, the parallel algorithms are implemented with a combination of an acceleration iterative solver. This solver is based on a parabolic-diffusion equation introduced to obtain faster solutions of the linear systems arising from the discretisation. Numerical results are given to evaluate the performances of the methods showing speedups better than linear.
Mehl, S.; Hill, M.C.
2002-01-01
A new method of local grid refinement for two-dimensional block-centered finite-difference meshes is presented in the context of steady-state groundwater-flow modeling. The method uses an iteration-based feedback with shared nodes to couple two separate grids. The new method is evaluated by comparison with results using a uniform fine mesh, a variably spaced mesh, and a traditional method of local grid refinement without a feedback. Results indicate: (1) The new method exhibits quadratic convergence for homogeneous systems and convergence equivalent to uniform-grid refinement for heterogeneous systems. (2) Coupling the coarse grid with the refined grid in a numerically rigorous way allowed for improvement in the coarse-grid results. (3) For heterogeneous systems, commonly used linear interpolation of heads from the large model onto the boundary of the refined model produced heads that are inconsistent with the physics of the flow field. (4) The traditional method works well in situations where the better resolution of the locally refined grid has little influence on the overall flow-system dynamics, but if this is not true, lack of a feedback mechanism produced errors in head up to 3.6% and errors in cell-to-cell flows up to 25%. ?? 2002 Elsevier Science Ltd. All rights reserved.
Non-Pilot Protection of the HVDC Grid
NASA Astrophysics Data System (ADS)
Badrkhani Ajaei, Firouz
This thesis develops a non-pilot protection system for the next generation power transmission system, the High-Voltage Direct Current (HVDC) grid. The HVDC grid protection system is required to be (i) adequately fast to prevent damages and/or converter blocking and (ii) reliable to minimize the impacts of faults. This study is mainly focused on the Modular Multilevel Converter (MMC) -based HVDC grid since the MMC is considered as the building block of the future HVDC systems. The studies reported in this thesis include (i) developing an enhanced equivalent model of the MMC to enable accurate representation of its DC-side fault response, (ii) developing a realistic HVDC-AC test system that includes a five-terminal MMC-based HVDC grid embedded in a large interconnected AC network, (iii) investigating the transient response of the developed test system to AC-side and DC-side disturbances in order to determine the HVDC grid protection requirements, (iv) investigating the fault surge propagation in the HVDC grid to determine the impacts of the DC-side fault location on the measured signals at each relay location, (v) designing a protection algorithm that detects and locates DC-side faults reliably and sufficiently fast to prevent relay malfunction and unnecessary blocking of the converters, and (vi) performing hardware-in-the-loop tests on the designed relay to verify its potential to be implemented in hardware. The results of the off-line time domain transients studies in the PSCAD software platform and the real-time hardware-in-the-loop tests using an enhanced version of the RTDS platform indicate that the developed HVDC grid relay meets all technical requirements including speed, dependability, security, selectivity, and robustness. Moreover, the developed protection algorithm does not impose considerable computational burden on the hardware.
NASA Technical Reports Server (NTRS)
Cannizzaro, Frank E.; Ash, Robert L.
1992-01-01
A state-of-the-art computer code has been developed that incorporates a modified Runge-Kutta time integration scheme, upwind numerical techniques, multigrid acceleration, and multi-block capabilities (RUMM). A three-dimensional thin-layer formulation of the Navier-Stokes equations is employed. For turbulent flow cases, the Baldwin-Lomax algebraic turbulence model is used. Two different upwind techniques are available: van Leer's flux-vector splitting and Roe's flux-difference splitting. Full approximation multi-grid plus implicit residual and corrector smoothing were implemented to enhance the rate of convergence. Multi-block capabilities were developed to provide geometric flexibility. This feature allows the developed computer code to accommodate any grid topology or grid configuration with multiple topologies. The results shown in this dissertation were chosen to validate the computer code and display its geometric flexibility, which is provided by the multi-block structure.
NASA Technical Reports Server (NTRS)
Shyam, Vikram
2010-01-01
A preprocessor for the Computational Fluid Dynamics (CFD) code TURBO has been developed and tested. The preprocessor converts grids produced by GridPro (Program Development Company (PDC)) into a format readable by TURBO and generates the necessary input files associated with the grid. The preprocessor also generates information that enables the user to decide how to allocate the computational load in a multiple block per processor scenario.
Can contaminant transport models predict breakthrough?
Peng, Wei-Shyuan; Hampton, Duane R.; Konikow, Leonard F.; Kambham, Kiran; Benegar, Jeffery J.
2000-01-01
A solute breakthrough curve measured during a two-well tracer test was successfully predicted in 1986 using specialized contaminant transport models. Water was injected into a confined, unconsolidated sand aquifer and pumped out 125 feet (38.3 m) away at the same steady rate. The injected water was spiked with bromide for over three days; the outflow concentration was monitored for a month. Based on previous tests, the horizontal hydraulic conductivity of the thick aquifer varied by a factor of seven among 12 layers. Assuming stratified flow with small dispersivities, two research groups accurately predicted breakthrough with three-dimensional (12-layer) models using curvilinear elements following the arc-shaped flowlines in this test. Can contaminant transport models commonly used in industry, that use rectangular blocks, also reproduce this breakthrough curve? The two-well test was simulated with four MODFLOW-based models, MT3D (FD and HMOC options), MODFLOWT, MOC3D, and MODFLOW-SURFACT. Using the same 12 layers and small dispersivity used in the successful 1986 simulations, these models fit almost as accurately as the models using curvilinear blocks. Subtle variations in the curves illustrate differences among the codes. Sensitivities of the results to number and size of grid blocks, number of layers, boundary conditions, and values of dispersivity and porosity are briefly presented. The fit between calculated and measured breakthrough curves degenerated as the number of layers and/or grid blocks decreased, reflecting a loss of model predictive power as the level of characterization lessened. Therefore, the breakthrough curve for most field sites can be predicted only qualitatively due to limited characterization of the hydrogeology and contaminant source strength.
NASA Technical Reports Server (NTRS)
Sjogreen, Bjoern; Yee, H. C.
2007-01-01
Flows containing steady or nearly steady strong shocks in parts of the flow field, and unsteady turbulence with shocklets on other parts of the flow field are difficult to capture accurately and efficiently employing the same numerical scheme even under the multiblock grid or adaptive grid refinement framework. On one hand, sixth-order or higher shock-capturing methods are appropriate for unsteady turbulence with shocklets. On the other hand, lower order shock-capturing methods are more effective for strong steady shocks in terms of convergence. In order to minimize the shortcomings of low order and high order shock-capturing schemes for the subject flows,a multi- block overlapping grid with different orders of accuracy on different blocks is proposed. Test cases to illustrate the performance of the new solver are included.
NASA Astrophysics Data System (ADS)
Peace, Andrew J.; May, Nicholas E.; Pocock, Mark F.; Shaw, Jonathon A.
1994-04-01
This paper is concerned with the flow modelling capabilities of an advanced CFD simulation system known by the acronym SAUNA. This system is aimed primarily at complex aircraft configurations and possesses a unique grid generation strategy in its use of block-structured, unstructured or hybrid grids, depending on the geometric complexity of the addressed configuration. The main focus of the paper is in demonstrating the recently developed multi-grid, block-structured grid, viscous flow capability of SAUNA, through its evaluation on a number of configurations. Inviscid predictions are also presented, both as a means of interpreting the viscous results and with a view to showing more completely the capabilities of SAUNA. It is shown that accuracy and flexibility are combined in an efficient manner, thus demonstrating the value of SAUNA in aerodynamic design.
Singularity classification as a design tool for multiblock grids
NASA Technical Reports Server (NTRS)
Jones, Alan K.
1992-01-01
A major stumbling block in interactive design of 3-D multiblock grids is the difficulty of visualizing the design as a whole. One way to make this visualization task easier is to focus, at least in early design stages, on an aspect of the grid which is inherently easy to present graphically, and to conceptualize mentally, namely the nature and location of singularities in the grid. The topological behavior of a multiblock grid design is determined by what happens at its edges and vertices. Only a few of these are in any way exceptional. The exceptional behaviors lie along a singularity graph, which is a 1-D construct embedded in 3-D space. The varieties of singular behavior are limited enough to make useful symbology on a graphics device possible. Furthermore, some forms of block design manipulation that appear appropriate to the early conceptual-modeling phase can be accomplished on this level of abstraction. An overview of a proposed singularity classification scheme and selected examples of corresponding manipulation techniques is presented.
Use of upscaled elevation and surface roughness data in two-dimensional surface water models
Hughes, J.D.; Decker, J.D.; Langevin, C.D.
2011-01-01
In this paper, we present an approach that uses a combination of cell-block- and cell-face-averaging of high-resolution cell elevation and roughness data to upscale hydraulic parameters and accurately simulate surface water flow in relatively low-resolution numerical models. The method developed allows channelized features that preferentially connect large-scale grid cells at cell interfaces to be represented in models where these features are significantly smaller than the selected grid size. The developed upscaling approach has been implemented in a two-dimensional finite difference model that solves a diffusive wave approximation of the depth-integrated shallow surface water equations using preconditioned Newton–Krylov methods. Computational results are presented to show the effectiveness of the mixed cell-block and cell-face averaging upscaling approach in maintaining model accuracy, reducing model run-times, and how decreased grid resolution affects errors. Application examples demonstrate that sub-grid roughness coefficient variations have a larger effect on simulated error than sub-grid elevation variations.
Feasibility of a simple method of hybrid collimation for megavoltage grid therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almendral, Pedro; Mancha, Pedro J.; Roberto, Daniel
2013-05-15
Purpose: Megavoltage grid therapy is currently delivered with step-and-shoot multisegment techniques or using a high attenuation block with divergent holes. However, the commercial availability of grid blocks is limited, their construction is difficult, and step-and-shoot techniques require longer treatment times and are not practical with some multileaf collimators. This work studies the feasibility of a hybrid collimation system for grid therapy that does not require multiple segments and can be easily implemented with widely available technical means. Methods: The authors have developed a system to generate a grid of beamlets by the simultaneous use of two perpendicular sets of equallymore » spaced leaves that project stripe patterns in orthogonal directions. One of them is generated with the multileaf collimator integrated in the accelerator and the other with an in-house made collimator constructed with a low melting point alloy commonly available at radiation oncology departments. The characteristics of the grid fields for 6 and 18 MV have been studied with a shielded diode, an unshielded diode, and radiochromic film. Results: The grid obtained with the hybrid collimation is similar to some of the grids used clinically with respect to the beamlet size (about 1 cm) and the percentage of open beam (1/4 of the total field). The grid fields are less penetrating than the open fields of the same energy. Depending on the depth and the direction of the profiles (diagonal or along the principal axes), the measured valley-to-peak dose ratios range from 5% to 16% for 6 MV and from 9% to 20% for 18 MV. All the detectors yield similar results in the measurement of profiles and percent depth dose, but the shielded diode seems to overestimate the output factors. Conclusions: The combination of two stripe pattern collimators in orthogonal directions is a feasible method to obtain two-dimensional arrays of beamlets and has potential usefulness as an efficient way to deliver grid therapy. The implementation of this method is technically simpler than the construction of a conventional grid block.« less
Feasibility of a simple method of hybrid collimation for megavoltage grid therapy.
Almendral, Pedro; Mancha, Pedro J; Roberto, Daniel
2013-05-01
Megavoltage grid therapy is currently delivered with step-and-shoot multisegment techniques or using a high attenuation block with divergent holes. However, the commercial availability of grid blocks is limited, their construction is difficult, and step-and-shoot techniques require longer treatment times and are not practical with some multileaf collimators. This work studies the feasibility of a hybrid collimation system for grid therapy that does not require multiple segments and can be easily implemented with widely available technical means. The authors have developed a system to generate a grid of beamlets by the simultaneous use of two perpendicular sets of equally spaced leaves that project stripe patterns in orthogonal directions. One of them is generated with the multileaf collimator integrated in the accelerator and the other with an in-house made collimator constructed with a low melting point alloy commonly available at radiation oncology departments. The characteristics of the grid fields for 6 and 18 MV have been studied with a shielded diode, an unshielded diode, and radiochromic film. The grid obtained with the hybrid collimation is similar to some of the grids used clinically with respect to the beamlet size (about 1 cm) and the percentage of open beam (1/4 of the total field). The grid fields are less penetrating than the open fields of the same energy. Depending on the depth and the direction of the profiles (diagonal or along the principal axes), the measured valley-to-peak dose ratios range from 5% to 16% for 6 MV and from 9% to 20% for 18 MV. All the detectors yield similar results in the measurement of profiles and percent depth dose, but the shielded diode seems to overestimate the output factors. The combination of two stripe pattern collimators in orthogonal directions is a feasible method to obtain two-dimensional arrays of beamlets and has potential usefulness as an efficient way to deliver grid therapy. The implementation of this method is technically simpler than the construction of a conventional grid block.
NASA Astrophysics Data System (ADS)
Kardan, Farshid; Cheng, Wai-Chi; Baverel, Olivier; Porté-Agel, Fernando
2016-04-01
Understanding, analyzing and predicting meteorological phenomena related to urban planning and built environment are becoming more essential than ever to architectural and urban projects. Recently, various version of RANS models have been established but more validation cases are required to confirm their capability for wind flows. In the present study, the performance of recently developed RANS models, including the RNG k-ɛ , SST BSL k-ω and SST ⪆mma-Reθ , have been evaluated for the flow past a single block (which represent the idealized architecture scale). For validation purposes, the velocity streamlines and the vertical profiles of the mean velocities and variances were compared with published LES and wind tunnel experiment results. Furthermore, other additional CFD simulations were performed to analyze the impact of regular/irregular mesh structures and grid resolutions based on selected turbulence model in order to analyze the grid independency. Three different grid resolutions (coarse, medium and fine) of Nx × Ny × Nz = 320 × 80 × 320, 160 × 40 × 160 and 80 × 20 × 80 for the computational domain and nx × nz = 26 × 32, 13 × 16 and 6 × 8, which correspond to number of grid points on the block edges, were chosen and tested. It can be concluded that among all simulated RANS models, the SST ⪆mma-Reθ model performed best and agreed fairly well to the LES simulation and experimental results. It can also be concluded that the SST ⪆mma-Reθ model provides a very satisfactory results in terms of grid dependency in the fine and medium grid resolutions in both regular and irregular structure meshes. On the other hand, despite a very good performance of the RNG k-ɛ model in the fine resolution and in the regular structure grids, a disappointing performance of this model in the coarse and medium grid resolutions indicates that the RNG k-ɛ model is highly dependent on grid structure and grid resolution. These quantitative validations are essential to access the accuracy of RANS models for the simulation of flow in urban environment.
Fraas, A.P.; Tudor, J.J.
1963-08-01
An improved moderator structure for nuclear reactors consists of moderator blocks arranged in horizontal layers to form a multiplicity of vertically stacked columns of blocks. The blocks in each vertical column are keyed together, and a ceramic grid is disposed between each horizontal layer of blocks. Pressure plates cover- the lateral surface of the moderator structure in abutting relationship with the peripheral terminal lengths of the ceramic grids. Tubular springs are disposed between the pressure plates and a rigid external support. The tubular springs have their axes vertically disposed to facilitate passage of coolant gas through the springs and are spaced apart a selected distance such that at sonae preselected point of spring deflection, the sides of the springs will contact adjacent springs thereby causing a large increase in resistance to further spring deflection. (AEC)
Advanced Computing Architectures for Cognitive Processing
2009-07-01
Evolution ................................................................................. 20 Figure 9: Logic diagram smart block-based neuron...48 Figure 21: Naive Grid Potential Kernel...processing would be helpful for Air Force systems acquisition. Specific cognitive processing approaches addressed herein include global information grid
Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G.
2012-01-01
In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids. The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable. In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation. We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards. PMID:22347787
Massanes, Francesc; Cadennes, Marie; Brankov, Jovan G
2011-07-01
In this paper we describe and evaluate a fast implementation of a classical block matching motion estimation algorithm for multiple Graphical Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) computing engine. The implemented block matching algorithm (BMA) uses summed absolute difference (SAD) error criterion and full grid search (FS) for finding optimal block displacement. In this evaluation we compared the execution time of a GPU and CPU implementation for images of various sizes, using integer and non-integer search grids.The results show that use of a GPU card can shorten computation time by a factor of 200 times for integer and 1000 times for a non-integer search grid. The additional speedup for non-integer search grid comes from the fact that GPU has built-in hardware for image interpolation. Further, when using multiple GPU cards, the presented evaluation shows the importance of the data splitting method across multiple cards, but an almost linear speedup with a number of cards is achievable.In addition we compared execution time of the proposed FS GPU implementation with two existing, highly optimized non-full grid search CPU based motion estimations methods, namely implementation of the Pyramidal Lucas Kanade Optical flow algorithm in OpenCV and Simplified Unsymmetrical multi-Hexagon search in H.264/AVC standard. In these comparisons, FS GPU implementation still showed modest improvement even though the computational complexity of FS GPU implementation is substantially higher than non-FS CPU implementation.We also demonstrated that for an image sequence of 720×480 pixels in resolution, commonly used in video surveillance, the proposed GPU implementation is sufficiently fast for real-time motion estimation at 30 frames-per-second using two NVIDIA C1060 Tesla GPU cards.
Adaptive Mesh Refinement in Curvilinear Body-Fitted Grid Systems
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Modiano, David; Colella, Phillip
1995-01-01
To be truly compatible with structured grids, an AMR algorithm should employ a block structure for the refined grids to allow flow solvers to take advantage of the strengths of unstructured grid systems, such as efficient solution algorithms for implicit discretizations and multigrid schemes. One such algorithm, the AMR algorithm of Berger and Colella, has been applied to and adapted for use with body-fitted structured grid systems. Results are presented for a transonic flow over a NACA0012 airfoil (AGARD-03 test case) and a reflection of a shock over a double wedge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana, R; Bednarek, D; Rudin, S
Purpose: Demonstrate the effectiveness of an anti-scatter grid artifact minimization method by removing the grid-line artifacts for three different grids when used with a high resolution CMOS detector. Method: Three different stationary x-ray grids were used with a high resolution CMOS x-ray detector (Dexela 1207, 75 µm pixels, sensitivity area 11.5cm × 6.5cm) to image a simulated artery block phantom (Nuclear Associates, Stenosis/Aneurysm Artery Block 76–705) combined with a frontal head phantom used as the scattering source. The x-ray parameters were 98kVp, 200mA, and 16ms for all grids. With all the three grids, two images were acquired: the first formore » a scatter-less flat field including the grid and the second of the object with the grid which may still have some scatter transmission. Because scatter has a low spatial frequency distribution, it was represented by an estimated constant value as an initial approximation and subtracted from the image of the object with grid before dividing by an average frame of the grid flat-field with no scatter. The constant value was iteratively changed to minimize residual grid-line artifact. This artifact minimization process was used for all the three grids. Results: Anti-scatter grid lines artifacts were successfully eliminated in all the three final images taken with the three different grids. The image contrast and CNR were also compared before and after the correction, and also compared with those from the image of the object when no grid was used. The corrected images showed an increase in CNR of approximately 28%, 33% and 25% for the three grids, as compared to the images when no grid at all was used. Conclusion: Anti-scatter grid-artifact minimization works effectively irrespective of the specifications of the grid when it is used with a high spatial resolution detector. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
FAS multigrid calculations of three dimensional flow using non-staggered grids
NASA Technical Reports Server (NTRS)
Matovic, D.; Pollard, A.; Becker, H. A.; Grandmaison, E. W.
1993-01-01
Grid staggering is a well known remedy for the problem of velocity/pressure coupling in incompressible flow calculations. Numerous inconveniences occur, however, when staggered grids are implemented, particularly when a general-purpose code, capable of handling irregular three-dimensional domains, is sought. In several non-staggered grid numerical procedures proposed in the literature, the velocity/pressure coupling is achieved by either pressure or velocity (momentum) averaging. This approach is not convenient for simultaneous (block) solvers that are preferred when using multigrid methods. A new method is introduced in this paper that is based upon non-staggered grid formulation with a set of virtual cell face velocities used for pressure/velocity coupling. Instead of pressure or velocity averaging, a momentum balance at the cell face is used as a link between the momentum and mass balance constraints. The numerical stencil is limited to 9 nodes (in 2D) or 27 nodes (in 3D), both during the smoothing and inter-grid transfer, which is a convenient feature when a block point solver is applied. The results for a lid-driven cavity and a cube in a lid-driven cavity are presented and compared to staggered grid calculations using the same multigrid algorithm. The method is shown to be stable and produce a smooth (wiggle-free) pressure field.
A Structured Grid Based Solution-Adaptive Technique for Complex Separated Flows
NASA Technical Reports Server (NTRS)
Thornburg, Hugh; Soni, Bharat K.; Kishore, Boyalakuntla; Yu, Robert
1996-01-01
The objective of this work was to enhance the predictive capability of widely used computational fluid dynamic (CFD) codes through the use of solution adaptive gridding. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. In order to study the accuracy and efficiency improvements due to the grid adaptation, it is necessary to quantify grid size and distribution requirements as well as computational times of non-adapted solutions. Flow fields about launch vehicles of practical interest often involve supersonic freestream conditions at angle of attack exhibiting large scale separate vortical flow, vortex-vortex and vortex-surface interactions, separated shear layers and multiple shocks of different intensity. In this work, a weight function and an associated mesh redistribution procedure is presented which detects and resolves these features without user intervention. Particular emphasis has been placed upon accurate resolution of expansion regions and boundary layers. Flow past a wedge at Mach=2.0 is used to illustrate the enhanced detection capabilities of this newly developed weight function.
Computation of Flow Over a Drag Prediction Workshop Wing/Body Transport Configuration Using CFL3D
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; Biedron, Robert T.
2001-01-01
A Drag Prediction Workshop was held in conjunction with the 19th AIAA Applied Aerodynamics Conference in June 2001. The purpose of the workshop was to assess the prediction of drag by computational methods for a wing/body configuration (DLR-F4) representative of subsonic transport aircraft. This report details computed results submitted to this workshop using the Reynolds-averaged Navier-Stokes code CFL3D. Two supplied grids were used: a point-matched 1-to-1 multi-block grid, and an overset multi-block grid. The 1-to-1 grid, generally of much poorer quality and with less streamwise resolution than the overset grid, is found to be too coarse to adequately resolve the surface pressures. However, the global forces and moments are nonetheless similar to those computed using the overset grid. The effect of three different turbulence models is assessed using the 1-to-1 grid. Surface pressures are very similar overall, and the drag variation due to turbulence model is 18 drag counts. Most of this drag variation is in the friction component, and is attributed in part to insufficient grid resolution of the 1-to-1 grid. The misnomer of 'fully turbulent' computations is discussed; comparisons are made using different transition locations and their effects on the global forces and moments are quantified. Finally, the effect of two different versions of a widely used one-equation turbulence model is explored.
Air-core grid for scattered x-ray rejection
Logan, C.M.; Lane, S.M.
1995-10-03
The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 {micro}m pore size, 80% open area, and 4 mm thickness. 2 figs.
Air-core grid for scattered x-ray rejection
Logan, Clinton M.; Lane, Stephen M.
1995-01-01
The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 .mu.m pore size, 80% open area, and 4 mm thickness.
Surface Modeling and Grid Generation of Orbital Sciences X34 Vehicle. Phase 1
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1997-01-01
The surface modeling and grid generation requirements, motivations, and methods used to develop Computational Fluid Dynamic volume grids for the X34-Phase 1 are presented. The requirements set forth by the Aerothermodynamics Branch at the NASA Langley Research Center serve as the basis for the final techniques used in the construction of all volume grids, including grids for parametric studies of the X34. The Integrated Computer Engineering and Manufacturing code for Computational Fluid Dynamics (ICEM/CFD), the Grid Generation code (GRIDGEN), the Three-Dimensional Multi-block Advanced Grid Generation System (3DMAGGS) code, and Volume Grid Manipulator (VGM) code are used to enable the necessary surface modeling, surface grid generation, volume grid generation, and grid alterations, respectively. All volume grids generated for the X34, as outlined in this paper, were used for CFD simulations within the Aerothermodynamics Branch.
A method for interactive specification of multiple-block topologies
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.; Mccann, Karen M.
1991-01-01
A method is presented for dealing with the vast amount of topological and other data which must be specified to generate a multiple-block computational grid. Specific uses of the graphical capabilities of a powerful scientific workstation are described which reduce the burden on the user of collecting and formatting such large amounts of data. A program to implement this method, 3DPREP, is described. A plotting transformation algorithm, some useful software tools, notes on programming, and a database organization are also presented. Example grids developed using the method are shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiemann, Reinhard; Demory, Marie-Estelle; Shaffrey, Len C.
The aim of this study is to investigate if the representation of Northern Hemisphere blocking is sensitive to resolution in current-generation atmospheric global circulation models (AGCMs). An evaluation is thus conducted of how well atmospheric blocking is represented in four AGCMs whose horizontal resolution is increased from a grid spacing of more than 100 km to about 25 km. It is shown that Euro-Atlantic blocking is simulated overall more credibly at higher resolution (i.e., in better agreement with a 50-yr reference blocking climatology created from the reanalyses ERA-40 and ERA-Interim). The improvement seen with resolution depends on the season andmore » to some extent on the model considered. Euro-Atlantic blocking is simulated more realistically at higher resolution in winter, spring, and autumn, and robustly so across the model ensemble. The improvement in spring is larger than that in winter and autumn. Summer blocking is found to be better simulated at higher resolution by one model only, with little change seen in the other three models. The representation of Pacific blocking is not found to systematically depend on resolution. Despite the improvements seen with resolution, the 25-km models still exhibit large biases in Euro-Atlantic blocking. For example, three of the four 25-km models underestimate winter northern European blocking frequency by about one-third. The resolution sensitivity and biases in the simulated blocking are shown to be in part associated with the mean-state biases in the models' midlatitude circulation.« less
Schiemann, Reinhard; Demory, Marie-Estelle; Shaffrey, Len C.; ...
2016-12-19
The aim of this study is to investigate if the representation of Northern Hemisphere blocking is sensitive to resolution in current-generation atmospheric global circulation models (AGCMs). An evaluation is thus conducted of how well atmospheric blocking is represented in four AGCMs whose horizontal resolution is increased from a grid spacing of more than 100 km to about 25 km. It is shown that Euro-Atlantic blocking is simulated overall more credibly at higher resolution (i.e., in better agreement with a 50-yr reference blocking climatology created from the reanalyses ERA-40 and ERA-Interim). The improvement seen with resolution depends on the season andmore » to some extent on the model considered. Euro-Atlantic blocking is simulated more realistically at higher resolution in winter, spring, and autumn, and robustly so across the model ensemble. The improvement in spring is larger than that in winter and autumn. Summer blocking is found to be better simulated at higher resolution by one model only, with little change seen in the other three models. The representation of Pacific blocking is not found to systematically depend on resolution. Despite the improvements seen with resolution, the 25-km models still exhibit large biases in Euro-Atlantic blocking. For example, three of the four 25-km models underestimate winter northern European blocking frequency by about one-third. The resolution sensitivity and biases in the simulated blocking are shown to be in part associated with the mean-state biases in the models' midlatitude circulation.« less
A numerical study of mixing in supersonic combustors with hypermixing injectors
NASA Technical Reports Server (NTRS)
Lee, J.
1993-01-01
A numerical study was conducted to evaluate the performance of wall mounted fuel-injectors designed for potential Supersonic Combustion Ramjet (SCRAM-jet) engine applications. The focus of this investigation was to numerically simulate existing combustor designs for the purpose of validating the numerical technique and the physical models developed. Three different injector designs of varying complexity were studied to fully understand the computational implications involved in accurate predictions. A dual transverse injection system and two streamwise injector designs were studied. The streamwise injectors were designed with swept ramps to enhance fuel-air mixing and combustion characteristics at supersonic speeds without the large flow blockage and drag contribution of the transverse injection system. For this study, the Mass-Average Navier-Stokes equations and the chemical species continuity equations were solved. The computations were performed using a finite-volume implicit numerical technique and multiple block structured grid system. The interfaces of the multiple block structured grid systems were numerically resolved using the flux-conservative technique. Detailed comparisons between the computations and existing experimental data are presented. These comparisons show that numerical predictions are in agreement with the experimental data. These comparisons also show that a number of turbulence model improvements are needed for accurate combustor flowfield predictions.
A numerical study of mixing in supersonic combustors with hypermixing injectors
NASA Technical Reports Server (NTRS)
Lee, J.
1992-01-01
A numerical study was conducted to evaluate the performance of wall mounted fuel-injectors designed for potential Supersonic Combustion Ramjet (SCRAM-jet) engine applications. The focus of this investigation was to numerically simulate existing combustor designs for the purpose of validating the numerical technique and the physical models developed. Three different injector designs of varying complexity were studied to fully understand the computational implications involved in accurate predictions. A dual transverse injection system and two streamwise injector designs were studied. The streamwise injectors were designed with swept ramps to enhance fuel-air mixing and combustion characteristics at supersonic speeds without the large flow blockage and drag contribution of the transverse injection system. For this study, the Mass-Averaged Navier-Stokes equations and the chemical species continuity equations were solved. The computations were performed using a finite-volume implicit numerical technique and multiple block structured grid system. The interfaces of the multiple block structured grid systems were numerically resolved using the flux-conservative technique. Detailed comparisons between the computations and existing experimental data are presented. These comparisons show that numerical predictions are in agreement with the experimental data. These comparisons also show that a number of turbulence model improvements are needed for accurate combustor flowfield predictions.
Algorithms for parallel flow solvers on message passing architectures
NASA Technical Reports Server (NTRS)
Vanderwijngaart, Rob F.
1995-01-01
The purpose of this project has been to identify and test suitable technologies for implementation of fluid flow solvers -- possibly coupled with structures and heat equation solvers -- on MIMD parallel computers. In the course of this investigation much attention has been paid to efficient domain decomposition strategies for ADI-type algorithms. Multi-partitioning derives its efficiency from the assignment of several blocks of grid points to each processor in the parallel computer. A coarse-grain parallelism is obtained, and a near-perfect load balance results. In uni-partitioning every processor receives responsibility for exactly one block of grid points instead of several. This necessitates fine-grain pipelined program execution in order to obtain a reasonable load balance. Although fine-grain parallelism is less desirable on many systems, especially high-latency networks of workstations, uni-partition methods are still in wide use in production codes for flow problems. Consequently, it remains important to achieve good efficiency with this technique that has essentially been superseded by multi-partitioning for parallel ADI-type algorithms. Another reason for the concentration on improving the performance of pipeline methods is their applicability in other types of flow solver kernels with stronger implied data dependence. Analytical expressions can be derived for the size of the dynamic load imbalance incurred in traditional pipelines. From these it can be determined what is the optimal first-processor retardation that leads to the shortest total completion time for the pipeline process. Theoretical predictions of pipeline performance with and without optimization match experimental observations on the iPSC/860 very well. Analysis of pipeline performance also highlights the effect of uncareful grid partitioning in flow solvers that employ pipeline algorithms. If grid blocks at boundaries are not at least as large in the wall-normal direction as those immediately adjacent to them, then the first processor in the pipeline will receive a computational load that is less than that of subsequent processors, magnifying the pipeline slowdown effect. Extra compensation is needed for grid boundary effects, even if all grid blocks are equally sized.
NASA Astrophysics Data System (ADS)
Toth, Kristof; Hu, Hanqiong; Choo, Youngwoo; Loewenberg, Michael; Osuji, Chinedum
The delivery of sub-micron droplets of dilute polymer solutions to a heated substrate by electrospray deposition (ESD) enables precisely controlled and continuous growth of block copolymer (BCP) thin films. Here we explore patterned deposition of BCP films by spatially varying the electric field at the substrate using an underlying charged grid, as well as film growth kinetics. Numerical analysis was performed to examine pattern fidelity by considering the trajectories of charged droplets during flight through imposed periodic field variations in the vicinity of the substrate. Our work uncovered an unexpected modality for improving the resolution of the patterning process via stronger field focusing through the use of a second oppositely charged grid beneath a primary focusing array, with an increase in highly localized droplet deposition on the intersecting nodes of the grid. Substrate coverage kinetics are considered for homopolymer deposition in the context of simple kinetic models incorporating temperature and molecular weight dependence of diffusivity. By contrast, film coverage kinetics for block copolymer depositions are additionally convoluted with preferential wetting and thickness-periodicity commensurability effects. NSF GRFP.
Analysis Insights: Energy Storage - Possibilities for Expanding Electric Grid Flexibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-02-01
NREL Analysis Insights mines our body of analysis work to synthesize topical insights and key findings. In this issue, we explore energy storage and the role it is playing and could potentially play in increasing grid flexibility and renewable energy integration. We explore energy storage as one building block for a more flexible power system, policy and R and D as drivers of energy storage deployment, methods for valuing energy storage in grid applications, ways that energy storage supports renewable integration, and emerging opportunities for energy storage in the electric grid.
GridMan: A grid manipulation system
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.; Wang, Zhu
1992-01-01
GridMan is an interactive grid manipulation system. It operates on grids to produce new grids which conform to user demands. The input grids are not constrained to come from any particular source. They may be generated by algebraic methods, elliptic methods, hyperbolic methods, parabolic methods, or some combination of methods. The methods are included in the various available structured grid generation codes. These codes perform the basic assembly function for the various elements of the initial grid. For block structured grids, the assembly can be quite complex due to a large number of clock corners, edges, and faces for which various connections and orientations must be properly identified. The grid generation codes are distinguished among themselves by their balance between interactive and automatic actions and by their modest variations in control. The basic form of GridMan provides a much more substantial level of grid control and will take its input from any of the structured grid generation codes. The communication link to the outside codes is a data file which contains the grid or section of grid.
Geometric Stitching Method for Double Cameras with Weak Convergence Geometry
NASA Astrophysics Data System (ADS)
Zhou, N.; He, H.; Bao, Y.; Yue, C.; Xing, K.; Cao, S.
2017-05-01
In this paper, a new geometric stitching method is proposed which utilizes digital elevation model (DEM)-aided block adjustment to solve relative orientation parameters for dual-camera with weak convergence geometry. A rational function model (RFM) with affine transformation is chosen as the relative orientation model. To deal with the weak geometry, a reference DEM is used in this method as an additional constraint in the block adjustment, which only calculates the planimetry coordinates of tie points (TPs). After that we can use the obtained affine transform coefficients to generate virtual grid, and update rational polynomial coefficients (RPCs) to complete the geometric stitching. Our proposed method was tested on GaoFen-2(GF-2) dual-camera panchromatic (PAN) images. The test results show that the proposed method can achieve an accuracy of better than 0.5 pixel in planimetry and have a seamless visual effect. For regions with small relief, when global DEM with 1 km grid, SRTM with 90 m grid and ASTER GDEM V2 with 30 m grid replaced DEM with 1m grid as elevation constraint it is almost no loss of accuracy. The test results proved the effectiveness and feasibility of the stitching method.
The block adaptive multigrid method applied to the solution of the Euler equations
NASA Technical Reports Server (NTRS)
Pantelelis, Nikos
1993-01-01
In the present study, a scheme capable of solving very fast and robust complex nonlinear systems of equations is presented. The Block Adaptive Multigrid (BAM) solution method offers multigrid acceleration and adaptive grid refinement based on the prediction of the solution error. The proposed solution method was used with an implicit upwind Euler solver for the solution of complex transonic flows around airfoils. Very fast results were obtained (18-fold acceleration of the solution) using one fourth of the volumes of a global grid with the same solution accuracy for two test cases.
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Modiano, David; Colella, Phillip
1994-01-01
A methodology for accurate and efficient simulation of unsteady, compressible flows is presented. The cornerstones of the methodology are a special discretization of the Navier-Stokes equations on structured body-fitted grid systems and an efficient solution-adaptive mesh refinement technique for structured grids. The discretization employs an explicit multidimensional upwind scheme for the inviscid fluxes and an implicit treatment of the viscous terms. The mesh refinement technique is based on the AMR algorithm of Berger and Colella. In this approach, cells on each level of refinement are organized into a small number of topologically rectangular blocks, each containing several thousand cells. The small number of blocks leads to small overhead in managing data, while their size and regular topology means that a high degree of optimization can be achieved on computers with vector processors.
Transformation of two and three-dimensional regions by elliptic systems
NASA Technical Reports Server (NTRS)
Mastin, C. Wayne
1994-01-01
Several reports are attached to this document which contain the results of our research at the end of this contract period. Three of the reports deal with our work on generating surface grids. One is a preprint of a paper which will appear in the journal Applied Mathematics and Computation. Another is the abstract from a dissertation which has been prepared by Ahmed Khamayseh, a graduate student who has been supported by this grant for the last two years. The last report on surface grids is the extended abstract of a paper to be presented at the 14th IMACS World Congress in July. This report contains results on conformal mappings of surfaces, which are closely related to elliptic methods for surface grid generation. A preliminary report is included on new methods for dealing with block interfaces in multiblock grid systems. The development work is complete and the methods will eventually be incorporated into the National Grid Project (NGP) grid generation code. Thus, the attached report contains only a simple grid system which was used to test the algorithms to prove that the concepts are sound. These developments will greatly aid grid control when using elliptic systems and prevent unwanted grid movement. The last report is a brief summary of some timings that were obtained when the multiblock grid generation code was run on the Intel IPSC/860 hypercube. Since most of the data in a grid code is local to a particular block, only a small fraction of the total data must be passed between processors. The data is also distributed among the processors so that the total size of the grid can be increase along with the number of processors. This work is only in a preliminary stage. However, one of the ERC graduate students has taken an interest in the project and is presently extending these results as a part of his master's thesis.
Preparation of a Burkholderia Mallei Vaccine
1999-01-01
infections in animals as some of the human ones, there are 10 specific animal diseases including: calf septicaemia, bovine mastitis , porcine oedema disease...middle logarithmic phase and placed on a Formvar-coated nickel grid (400 mesh) for 2 min. The grid was blocked for 30 min with 0.5% bovine serum albumin
Gou, Perng-Fei; Townsend, Harold E.; Barbanti, Giancarlo
1994-01-01
A corium protection assembly includes a perforated base grid disposed below a pressure vessel containing a nuclear reactor core and spaced vertically above a containment vessel floor to define a sump therebetween. A plurality of layers of protective blocks are disposed on the grid for protecting the containment vessel floor from the corium.
An object-oriented approach for parallel self adaptive mesh refinement on block structured grids
NASA Technical Reports Server (NTRS)
Lemke, Max; Witsch, Kristian; Quinlan, Daniel
1993-01-01
Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.
NASA Astrophysics Data System (ADS)
Yuan, H. Z.; Wang, Y.; Shu, C.
2017-12-01
This paper presents an adaptive mesh refinement-multiphase lattice Boltzmann flux solver (AMR-MLBFS) for effective simulation of complex binary fluid flows at large density ratios. In this method, an AMR algorithm is proposed by introducing a simple indicator on the root block for grid refinement and two possible statuses for each block. Unlike available block-structured AMR methods, which refine their mesh by spawning or removing four child blocks simultaneously, the present method is able to refine its mesh locally by spawning or removing one to four child blocks independently when the refinement indicator is triggered. As a result, the AMR mesh used in this work can be more focused on the flow region near the phase interface and its size is further reduced. In each block of mesh, the recently proposed MLBFS is applied for the solution of the flow field and the level-set method is used for capturing the fluid interface. As compared with existing AMR-lattice Boltzmann models, the present method avoids both spatial and temporal interpolations of density distribution functions so that converged solutions on different AMR meshes and uniform grids can be obtained. The proposed method has been successfully validated by simulating a static bubble immersed in another fluid, a falling droplet, instabilities of two-layered fluids, a bubble rising in a box, and a droplet splashing on a thin film with large density ratios and high Reynolds numbers. Good agreement with the theoretical solution, the uniform-grid result, and/or the published data has been achieved. Numerical results also show its effectiveness in saving computational time and virtual memory as compared with computations on uniform meshes.
Observing atmospheric blocking with GPS radio occultation - one decade of measurements
NASA Astrophysics Data System (ADS)
Brunner, Lukas; Steiner, Andrea
2017-04-01
Atmospheric blocking has received a lot of attention in recent years due to its impact on mid-latitude circulation and subsequently on weather extremes such as cold and warm spells. So far blocking studies have been based mainly on re-analysis data or model output. However, it has been shown that blocking frequency exhibits considerable inter-model spread in current climate models. Here we use one decade (2006 to 2016) of satellite-based observations from GPS radio occultation (RO) to analyze blocking in RO data building on work by Brunner et al. (2016). Daily fields on a 2.5°×2.5° longitude-latitude grid are calculated by applying an adequate gridding strategy to the RO measurements. For blocking detection we use a standard blocking detection algorithm based on 500 hPa geopotential height (GPH) gradients. We investigate vertically resolved atmospheric variables such as GPH, temperature, and water vapor before, during, and after blocking events to increase process understanding. Moreover, utilizing the coverage of the RO data set, we investigate global blocking frequencies. The main blocking regions in the northern and southern hemisphere are identified and the (vertical) atmospheric structure linked to blocking events is compared. Finally, an inter-comparison of results from RO data to different re-analyses, such as ERA-Interim, MERRA 2, and JRA-55, is presented. Brunner, L., A. K. Steiner, B. Scherllin-Pirscher, and M. W. Jury (2016): Exploring atmospheric blocking with GPS radio occultation observations. Atmos. Chem. Phys., 16, 4593-4604, doi:10.5194/acp-16-4593-2016.
Aerodynamic simulation on massively parallel systems
NASA Technical Reports Server (NTRS)
Haeuser, Jochem; Simon, Horst D.
1992-01-01
This paper briefly addresses the computational requirements for the analysis of complete configurations of aircraft and spacecraft currently under design to be used for advanced transportation in commercial applications as well as in space flight. The discussion clearly shows that massively parallel systems are the only alternative which is both cost effective and on the other hand can provide the necessary TeraFlops, needed to satisfy the narrow design margins of modern vehicles. It is assumed that the solution of the governing physical equations, i.e., the Navier-Stokes equations which may be complemented by chemistry and turbulence models, is done on multiblock grids. This technique is situated between the fully structured approach of classical boundary fitted grids and the fully unstructured tetrahedra grids. A fully structured grid best represents the flow physics, while the unstructured grid gives best geometrical flexibility. The multiblock grid employed is structured within a block, but completely unstructured on the block level. While a completely unstructured grid is not straightforward to parallelize, the above mentioned multiblock grid is inherently parallel, in particular for multiple instruction multiple datastream (MIMD) machines. In this paper guidelines are provided for setting up or modifying an existing sequential code so that a direct parallelization on a massively parallel system is possible. Results are presented for three parallel systems, namely the Intel hypercube, the Ncube hypercube, and the FPS 500 system. Some preliminary results for an 8K CM2 machine will also be mentioned. The code run is the two dimensional grid generation module of Grid, which is a general two dimensional and three dimensional grid generation code for complex geometries. A system of nonlinear Poisson equations is solved. This code is also a good testcase for complex fluid dynamics codes, since the same datastructures are used. All systems provided good speedups, but message passing MIMD systems seem to be best suited for large miltiblock applications.
NASA Astrophysics Data System (ADS)
de la Llave Plata, M.; Couaillier, V.; Le Pape, M.-C.; Marmignon, C.; Gazaix, M.
2013-03-01
This paper reports recent work on the extension of the multiblock structured solver elsA to deal with hybrid grids. The new hybrid-grid solver is called elsA-H (elsA-Hybrid), is based on the investigation of a new unstructured-grid module has been built within the original elsA CFD (computational fluid dynamics) system. The implementation benefits from the flexibility of the object-oriented design. The aim of elsA-H is to take advantage of the full potential of structured solvers and unstructured mesh generation by allowing any type of grid to be used within the same simulation process. The main challenge lies in the numerical treatment of the hybrid-grid interfaces where blocks of different type meet. In particular, one must pay attention to the transfer of information across these boundaries, so that the accuracy of the numerical scheme is preserved and flux conservation is guaranteed. In this paper, the numerical approach allowing to achieve this is presented. A comparison between the hybrid and the structured-grid methods is also carried out by considering a fully hexahedral multiblock mesh for which a few blocks have been transformed into unstructured. The performance of elsA-H for the simulation of internal flows will be demonstrated on a number of turbomachinery configurations.
CFD Methods and Tools for Multi-Element Airfoil Analysis
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; George, Michael W. (Technical Monitor)
1995-01-01
This lecture will discuss the computational tools currently available for high-lift multi-element airfoil analysis. It will present an overview of a number of different numerical approaches, their current capabilities, short-comings, and computational costs. The lecture will be limited to viscous methods, including inviscid/boundary layer coupling methods, and incompressible and compressible Reynolds-averaged Navier-Stokes methods. Both structured and unstructured grid generation approaches will be presented. Two different structured grid procedures are outlined, one which uses multi-block patched grids, the other uses overset chimera grids. Turbulence and transition modeling will be discussed.
Parallel Adaptive Mesh Refinement Library
NASA Technical Reports Server (NTRS)
Mac-Neice, Peter; Olson, Kevin
2005-01-01
Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.
There Once Was a 9-Block ...--A Middle-School Design for Probability and Statistics
ERIC Educational Resources Information Center
Abrahamson, Dor; Janusz, Ruth M.; Wilensky, Uri
2006-01-01
ProbLab is a probability-and-statistics unit developed at the Center for Connected Learning and Computer-Based Modeling, Northwestern University. Students analyze the combinatorial space of the 9-block, a 3-by-3 grid of squares, in which each square can be either green or blue. All 512 possible 9-blocks are constructed and assembled in a "bar…
Climatology of tracked persistent maxima of 500-hPa geopotential height
NASA Astrophysics Data System (ADS)
Liu, Ping; Zhu, Yuejian; Zhang, Qin; Gottschalck, Jon; Zhang, Minghua; Melhauser, Christopher; Li, Wei; Guan, Hong; Zhou, Xiaqiong; Hou, Dingchen; Peña, Malaquias; Wu, Guoxiong; Liu, Yimin; Zhou, Linjiong; He, Bian; Hu, Wenting; Sukhdeo, Raymond
2017-10-01
Persistent open ridges and blocking highs (maxima) of 500-hPa geopotential height (Z500; PMZ) adjacent in space and time are identified and tracked as one event with a Lagrangian objective approach to derive their climatological statistics with some dynamical reasoning. A PMZ starts with a core that contains a local eddy maximum of Z500 and its neighboring grid points whose eddy values decrease radially to about 20 geopotential meters (GPMs) smaller than the maximum. It connects two consecutive cores that share at least one grid point and are within 10° of longitude of each other using an intensity-weighted location. The PMZ ends at the core without a successor. On each day, the PMZ impacts an area of grid points contiguous to the core and with eddy values decreasing radially to 100 GPMs. The PMZs identified and tracked consist of persistent ridges, omega blockings and blocked anticyclones either connected or as individual events. For example, the PMZ during 2-13 August 2003 corresponds to persistent open ridges that caused the extreme heatwave in Western Europe. Climatological statistics based on the PMZs longer than 3 days generally agree with those of blockings. In the Northern Hemisphere, more PMZs occur in DJF season than in JJA and their duration both exhibit a log-linear distribution. Because more omega-shape blocking highs and open ridges are counted, the PMZs occur more frequently over Northeast Pacific than over Atlantic-Europe during cool seasons. Similar results are obtained using the 200-hPa geopotential height (in place of Z500), indicating the quasi-barotropic nature of the PMZ.
Navier-Stokes simulation of rotor-body flowfield in hover using overset grids
NASA Technical Reports Server (NTRS)
Srinivasan, G. R.; Ahmad, J. U.
1993-01-01
A free-wake Navier-Stokes numerical scheme and multiple Chimera overset grids have been utilized for calculating the quasi-steady hovering flowfield of a Boeing-360 rotor mounted on an axisymmetric whirl-tower. The entire geometry of this rotor-body configuration is gridded-up with eleven different overset grids. The composite grid has 1.3 million grid points for the entire flow domain. The numerical results, obtained using coarse grids and a rigid rotor assumption, show a thrust value that is within 5% of the experimental value at a flow condition of M(sub tip) = 0.63, Theta(sub c) = 8 deg, and Re = 2.5 x 10(exp 6). The numerical method thus demonstrates the feasibility of using a multi-block scheme for calculating the flowfields of complex configurations consisting of rotating and non-rotating components.
A multi-block adaptive solving technique based on lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Zhang, Yang; Xie, Jiahua; Li, Xiaoyue; Ma, Zhenghai; Zou, Jianfeng; Zheng, Yao
2018-05-01
In this paper, a CFD parallel adaptive algorithm is self-developed by combining the multi-block Lattice Boltzmann Method (LBM) with Adaptive Mesh Refinement (AMR). The mesh refinement criterion of this algorithm is based on the density, velocity and vortices of the flow field. The refined grid boundary is obtained by extending outward half a ghost cell from the coarse grid boundary, which makes the adaptive mesh more compact and the boundary treatment more convenient. Two numerical examples of the backward step flow separation and the unsteady flow around circular cylinder demonstrate the vortex structure of the cold flow field accurately and specifically.
Method and system for managing power grid data
Yin, Jian; Akyol, Bora A.; Gorton, Ian
2015-11-10
A system and method of managing time-series data for smart grids is disclosed. Data is collected from a plurality of sensors. An index is modified for a newly created block. A one disk operation per read or write is performed. The one disk operation per read includes accessing and looking up the index to locate the data without movement of an arm of the disk, and obtaining the data. The one disk operation per write includes searching the disk for free space, calculating an offset, modifying the index, and writing the data contiguously into a block of the disk the index points to.
Initial development of 5D COGENT
NASA Astrophysics Data System (ADS)
Cohen, R. H.; Lee, W.; Dorf, M.; Dorr, M.
2015-11-01
COGENT is a continuum gyrokinetic edge code being developed by the by the Edge Simulation Laboratory (ESL) collaboration. Work to date has been primarily focussed on a 4D (axisymmetric) version that models transport properties of edge plasmas. We have begun development of an initial 5D version to study edge turbulence, with initial focus on kinetic effects on blob dynamics and drift-wave instability in a shearless magnetic field. We are employing compiler directives and preprocessor macros to create a single source code that can be compiled in 4D or 5D, which helps to ensure consistency of physics representation between the two versions. A key aspect of COGENT is the employment of mapped multi-block grid capability to handle the complexity of diverter geometry. It is planned to eventually exploit this capability to handle magnetic shear, through a series of successively skewed unsheared grid blocks. The initial version has an unsheared grid and will be used to explore the degree to which a radial domain must be block decomposed. We report on the status of code development and initial tests. Work performed for USDOE, at LLNL under contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Stefanski, Douglas Lawrence
A finite volume method for solving the Reynolds Averaged Navier-Stokes (RANS) equations on unstructured hybrid grids is presented. Capabilities for handling arbitrary mixtures of reactive gas species within the unstructured framework are developed. The modeling of turbulent effects is carried out via the 1998 Wilcox k -- o model. This unstructured solver is incorporated within VULCAN -- a multi-block structured grid code -- as part of a novel patching procedure in which non-matching interfaces between structured blocks are replaced by transitional unstructured grids. This approach provides a fully-conservative alternative to VULCAN's non-conservative patching methods for handling such interfaces. In addition, the further development of the standalone unstructured solver toward large-eddy simulation (LES) applications is also carried out. Dual time-stepping using a Crank-Nicholson formulation is added to recover time-accuracy, and modeling of sub-grid scale effects is incorporated to provide higher fidelity LES solutions for turbulent flows. A switch based on the work of Ducros, et al., is implemented to transition from a monotonicity-preserving flux scheme near shocks to a central-difference method in vorticity-dominated regions in order to better resolve small-scale turbulent structures. The updated unstructured solver is used to carry out large-eddy simulations of a supersonic constrained mixing layer.
NASA Technical Reports Server (NTRS)
Papadopoulos, Periklis; Venkatapathy, Ethiraj; Prabhu, Dinesh; Loomis, Mark P.; Olynick, Dave; Arnold, James O. (Technical Monitor)
1998-01-01
Recent advances in computational power enable computational fluid dynamic modeling of increasingly complex configurations. A review of grid generation methodologies implemented in support of the computational work performed for the X-38 and X-33 are presented. In strategizing topological constructs and blocking structures factors considered are the geometric configuration, optimal grid size, numerical algorithms, accuracy requirements, physics of the problem at hand, computational expense, and the available computer hardware. Also addressed are grid refinement strategies, the effects of wall spacing, and convergence. The significance of grid is demonstrated through a comparison of computational and experimental results of the aeroheating environment experienced by the X-38 vehicle. Special topics on grid generation strategies are also addressed to model control surface deflections, and material mapping.
High performance x-ray anti-scatter grid
Logan, Clinton M.
1995-01-01
An x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury.
High-Throughput Characterization of Porous Materials Using Graphics Processing Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jihan; Martin, Richard L.; Rübel, Oliver
We have developed a high-throughput graphics processing units (GPU) code that can characterize a large database of crystalline porous materials. In our algorithm, the GPU is utilized to accelerate energy grid calculations where the grid values represent interactions (i.e., Lennard-Jones + Coulomb potentials) between gas molecules (i.e., CHmore » $$_{4}$$ and CO$$_{2}$$) and material's framework atoms. Using a parallel flood fill CPU algorithm, inaccessible regions inside the framework structures are identified and blocked based on their energy profiles. Finally, we compute the Henry coefficients and heats of adsorption through statistical Widom insertion Monte Carlo moves in the domain restricted to the accessible space. The code offers significant speedup over a single core CPU code and allows us to characterize a set of porous materials at least an order of magnitude larger than ones considered in earlier studies. For structures selected from such a prescreening algorithm, full adsorption isotherms can be calculated by conducting multiple grand canonical Monte Carlo simulations concurrently within the GPU.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, H; Kong, V; Jin, J
Purpose: A synchronized moving grid (SMOG) has been proposed to reduce scatter and lag artifacts in cone beam computed tomography (CBCT). However, information is missing in each projection because certain areas are blocked by the grid. A previous solution to this issue is acquiring 2 complimentary projections at each position, which increases scanning time. This study reports our first Result using an inter-projection sensor fusion (IPSF) method to estimate missing projection in our prototype SMOG-based CBCT system. Methods: An in-house SMOG assembling with a 1:1 grid of 3 mm gap has been installed in a CBCT benchtop. The grid movesmore » back and forth in a 3-mm amplitude and up-to 20-Hz frequency. A control program in LabView synchronizes the grid motion with the platform rotation and x-ray firing so that the grid patterns for any two neighboring projections are complimentary. A Catphan was scanned with 360 projections. After scatter correction, the IPSF algorithm was applied to estimate missing signal for each projection using the information from the 2 neighboring projections. Feldkamp-Davis-Kress (FDK) algorithm was applied to reconstruct CBCT images. The CBCTs were compared to those reconstructed using normal projections without applying the SMOG system. Results: The SMOG-IPSF method may reduce image dose by half due to the blocked radiation by the grid. The method almost completely removed scatter related artifacts, such as the cupping artifacts. The evaluation of line pair patterns in the CatPhan suggested that the spatial resolution degradation was minimal. Conclusion: The SMOG-IPSF is promising in reducing scatter artifacts and improving image quality while reducing radiation dose.« less
Adaptive Numerical Algorithms in Space Weather Modeling
NASA Technical Reports Server (NTRS)
Toth, Gabor; vanderHolst, Bart; Sokolov, Igor V.; DeZeeuw, Darren; Gombosi, Tamas I.; Fang, Fang; Manchester, Ward B.; Meng, Xing; Nakib, Dalal; Powell, Kenneth G.;
2010-01-01
Space weather describes the various processes in the Sun-Earth system that present danger to human health and technology. The goal of space weather forecasting is to provide an opportunity to mitigate these negative effects. Physics-based space weather modeling is characterized by disparate temporal and spatial scales as well as by different physics in different domains. A multi-physics system can be modeled by a software framework comprising of several components. Each component corresponds to a physics domain, and each component is represented by one or more numerical models. The publicly available Space Weather Modeling Framework (SWMF) can execute and couple together several components distributed over a parallel machine in a flexible and efficient manner. The framework also allows resolving disparate spatial and temporal scales with independent spatial and temporal discretizations in the various models. Several of the computationally most expensive domains of the framework are modeled by the Block-Adaptive Tree Solar wind Roe Upwind Scheme (BATS-R-US) code that can solve various forms of the magnetohydrodynamics (MHD) equations, including Hall, semi-relativistic, multi-species and multi-fluid MHD, anisotropic pressure, radiative transport and heat conduction. Modeling disparate scales within BATS-R-US is achieved by a block-adaptive mesh both in Cartesian and generalized coordinates. Most recently we have created a new core for BATS-R-US: the Block-Adaptive Tree Library (BATL) that provides a general toolkit for creating, load balancing and message passing in a 1, 2 or 3 dimensional block-adaptive grid. We describe the algorithms of BATL and demonstrate its efficiency and scaling properties for various problems. BATS-R-US uses several time-integration schemes to address multiple time-scales: explicit time stepping with fixed or local time steps, partially steady-state evolution, point-implicit, semi-implicit, explicit/implicit, and fully implicit numerical schemes. Depending on the application, we find that different time stepping methods are optimal. Several of the time integration schemes exploit the block-based granularity of the grid structure. The framework and the adaptive algorithms enable physics based space weather modeling and even forecasting.
Goode, D.J.; Appel, C.A.
1992-01-01
More accurate alternatives to the widely used harmonic mean interblock transmissivity are proposed for block-centered finite-difference models of ground-water flow in unconfined aquifers and in aquifers having smoothly varying transmissivity. The harmonic mean is the exact interblock transmissivity for steady-state one-dimensional flow with no recharge if the transmissivity is assumed to be spatially uniform over each finite-difference block, changing abruptly at the block interface. However, the harmonic mean may be inferior to other means if transmissivity varies in a continuous or smooth manner between nodes. Alternative interblock transmissivity functions are analytically derived for the case of steady-state one-dimensional flow with no recharge. The second author has previously derived the exact interblock transmissivity, the logarithmic mean, for one-dimensional flow when transmissivity is a linear function of distance in the direction of flow. We show that the logarithmic mean transmissivity is also exact for uniform flow parallel to the direction of changing transmissivity in a two- or three-dimensional model, regardless of grid orientation relative to the flow vector. For the case of horizontal flow in a homogeneous unconfined or water-table aquifer with a horizontal bottom and with areally distributed recharge, the exact interblock transmissivity is the unweighted arithmetic mean of transmissivity at the nodes. This mean also exhibits no grid-orientation effect for unidirectional flow in a two-dimensional model. For horizontal flow in an unconfined aquifer with no recharge where hydraulic conductivity is a linear function of distance in the direction of flow the exact interblock transmissivity is the product of the arithmetic mean saturated thickness and the logarithmic mean hydraulic conductivity. For several hypothetical two- and three-dimensional cases with smoothly varying transmissivity or hydraulic conductivity, the harmonic mean is shown to yield the least accurate solution to the flow equation of the alternatives considered. Application of the alternative interblock transmissivities to a regional aquifer system model indicates that the changes in computed heads and fluxes are typically small, relative to model calibration error. For this example, the use of alternative interblock transmissivities resulted in an increase in computational effort of less than 3 percent. Numerical algorithms to compute alternative interblock transmissivity functions in a modular three-dimensional flow model are presented and documented.
Performance Enhancement Strategies for Multi-Block Overset Grid CFD Applications
NASA Technical Reports Server (NTRS)
Djomehri, M. Jahed; Biswas, Rupak
2003-01-01
The overset grid methodology has significantly reduced time-to-solution of highfidelity computational fluid dynamics (CFD) simulations about complex aerospace configurations. The solution process resolves the geometrical complexity of the problem domain by using separately generated but overlapping structured discretization grids that periodically exchange information through interpolation. However, high performance computations of such large-scale realistic applications must be handled efficiently on state-of-the-art parallel supercomputers. This paper analyzes the effects of various performance enhancement strategies on the parallel efficiency of an overset grid Navier-Stokes CFD application running on an SGI Origin2000 machinc. Specifically, the role of asynchronous communication, grid splitting, and grid grouping strategies are presented and discussed. Details of a sophisticated graph partitioning technique for grid grouping are also provided. Results indicate that performance depends critically on the level of latency hiding and the quality of load balancing across the processors.
NASA Technical Reports Server (NTRS)
Shih, Ming H.; Soni, Bharat K.
1993-01-01
The issue of time efficiency in grid generation is addressed by developing a user friendly graphical interface for interactive/automatic construction of structured grids around complex turbomachinery/axis-symmetric configurations. The accuracy of geometry modeling and its fidelity is accomplished by adapting the nonuniform rational b-spline (NURBS) representation. A customized interactive grid generation code, TIGER, has been developed to facilitate the grid generation process for complicated internal, external, and internal-external turbomachinery fields simulations. The FORMS Library is utilized to build user-friendly graphical interface. The algorithm allows a user to redistribute grid points interactively on curves/surfaces using NURBS formulation with accurate geometric definition. TIGER's features include multiblock, multiduct/shroud, multiblade row, uneven blade count, and patched/overlapping block interfaces. It has been applied to generate grids for various complicated turbomachinery geometries, as well as rocket and missile configurations.
Topography Modeling in Atmospheric Flows Using the Immersed Boundary Method
NASA Technical Reports Server (NTRS)
Ackerman, A. S.; Senocak, I.; Mansour, N. N.; Stevens, D. E.
2004-01-01
Numerical simulation of flow over complex geometry needs accurate and efficient computational methods. Different techniques are available to handle complex geometry. The unstructured grid and multi-block body-fitted grid techniques have been widely adopted for complex geometry in engineering applications. In atmospheric applications, terrain fitted single grid techniques have found common use. Although these are very effective techniques, their implementation, coupling with the flow algorithm, and efficient parallelization of the complete method are more involved than a Cartesian grid method. The grid generation can be tedious and one needs to pay special attention in numerics to handle skewed cells for conservation purposes. Researchers have long sought for alternative methods to ease the effort involved in simulating flow over complex geometry.
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.; Mccann, Karen
1992-01-01
A proven 3-D multiple-block elliptic grid generator, designed to run in 'batch mode' on a supercomputer, is improved by the creation of a modern graphical user interface (GUI) running on a workstation. The two parts are connected in real time by a network. The resultant system offers a significant speedup in the process of preparing and formatting input data and the ability to watch the grid solution converge by replotting the grid at each iteration step. The result is a reduction in user time and CPU time required to generate the grid and an enhanced understanding of the elliptic solution process. This software system, called GRAPEVINE, is described, and certain observations are made concerning the creation of such software.
Grid-size dependence of Cauchy boundary conditions used to simulate stream-aquifer interactions
Mehl, S.; Hill, M.C.
2010-01-01
This work examines the simulation of stream–aquifer interactions as grids are refined vertically and horizontally and suggests that traditional methods for calculating conductance can produce inappropriate values when the grid size is changed. Instead, different grid resolutions require different estimated values. Grid refinement strategies considered include global refinement of the entire model and local refinement of part of the stream. Three methods of calculating the conductance of the Cauchy boundary conditions are investigated. Single- and multi-layer models with narrow and wide streams produced stream leakages that differ by as much as 122% as the grid is refined. Similar results occur for globally and locally refined grids, but the latter required as little as one-quarter the computer execution time and memory and thus are useful for addressing some scale issues of stream–aquifer interactions. Results suggest that existing grid-size criteria for simulating stream–aquifer interactions are useful for one-layer models, but inadequate for three-dimensional models. The grid dependence of the conductance terms suggests that values for refined models using, for example, finite difference or finite-element methods, cannot be determined from previous coarse-grid models or field measurements. Our examples demonstrate the need for a method of obtaining conductances that can be translated to different grid resolutions and provide definitive test cases for investigating alternative conductance formulations.
Heat Transfer on a Film-Cooled Rotating Blade
NASA Technical Reports Server (NTRS)
Garg, Vijay K.
1999-01-01
A multi-block, three-dimensional Navier-Stokes code has been used to compute heat transfer coefficient on the blade, hub and shroud for a rotating high-pressure turbine blade with 172 film-cooling holes in eight rows. Film cooling effectiveness is also computed on the adiabatic blade. Wilcox's k-omega model is used for modeling the turbulence. Of the eight rows of holes, three are staggered on the shower-head with compound-angled holes. With so many holes on the blade it was somewhat of a challenge to get a good quality grid on and around the blade and in the tip clearance region. The final multi-block grid consists of 4784 elementary blocks which were merged into 276 super blocks. The viscous grid has over 2.2 million cells. Each hole exit, in its true oval shape, has 80 cells within it so that coolant velocity, temperature, k and omega distributions can be specified at these hole exits. It is found that for the given parameters, heat transfer coefficient on the cooled, isothermal blade is highest in the leading edge region and in the tip region. Also, the effectiveness over the cooled, adiabatic blade is the lowest in these regions. Results for an uncooled blade are also shown, providing a direct comparison with those for the cooled blade. Also, the heat transfer coefficient is much higher on the shroud as compared to that on the hub for both the cooled and the uncooled cases.
High performance x-ray anti-scatter grid
Logan, C.M.
1995-05-23
Disclosed are an x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury. 4 Figs.
Mehl, Steffen W.; Hill, Mary C.
2011-01-01
This report documents modifications to the Streamflow-Routing Package (SFR2) to route streamflow through grids constructed using the multiple-refined-areas capability of shared node Local Grid Refinement (LGR) of MODFLOW-2005. MODFLOW-2005 is the U.S. Geological Survey modular, three-dimensional, finite-difference groundwater-flow model. LGR provides the capability to simulate groundwater flow by using one or more block-shaped, higher resolution local grids (child model) within a coarser grid (parent model). LGR accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundaries. Compatibility with SFR2 allows for streamflow routing across grids. LGR can be used in two- and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems.
NASA Astrophysics Data System (ADS)
Peng, Ao-Ping; Li, Zhi-Hui; Wu, Jun-Lin; Jiang, Xin-Yu
2016-12-01
Based on the previous researches of the Gas-Kinetic Unified Algorithm (GKUA) for flows from highly rarefied free-molecule transition to continuum, a new implicit scheme of cell-centered finite volume method is presented for directly solving the unified Boltzmann model equation covering various flow regimes. In view of the difficulty in generating the single-block grid system with high quality for complex irregular bodies, a multi-block docking grid generation method is designed on the basis of data transmission between blocks, and the data structure is constructed for processing arbitrary connection relations between blocks with high efficiency and reliability. As a result, the gas-kinetic unified algorithm with the implicit scheme and multi-block docking grid has been firstly established and used to solve the reentry flow problems around the multi-bodies covering all flow regimes with the whole range of Knudsen numbers from 10 to 3.7E-6. The implicit and explicit schemes are applied to computing and analyzing the supersonic flows in near-continuum and continuum regimes around a circular cylinder with careful comparison each other. It is shown that the present algorithm and modelling possess much higher computational efficiency and faster converging properties. The flow problems including two and three side-by-side cylinders are simulated from highly rarefied to near-continuum flow regimes, and the present computed results are found in good agreement with the related DSMC simulation and theoretical analysis solutions, which verify the good accuracy and reliability of the present method. It is observed that the spacing of the multi-body is smaller, the cylindrical throat obstruction is greater with the flow field of single-body asymmetrical more obviously and the normal force coefficient bigger. While in the near-continuum transitional flow regime of near-space flying surroundings, the spacing of the multi-body increases to six times of the diameter of the single-body, the interference effects of the multi-bodies tend to be negligible. The computing practice has confirmed that it is feasible for the present method to compute the aerodynamics and reveal flow mechanism around complex multi-body vehicles covering all flow regimes from the gas-kinetic point of view of solving the unified Boltzmann model velocity distribution function equation.
NASA Astrophysics Data System (ADS)
Martínez-Casasnovas, J. A.; Ramos, M. C.
2009-04-01
As suggested by previous research in the field of precision viticulture, intra-field yield variability is dependent on the variation of soil properties, and in particular the soil moisture content. Since the mapping in detail of this soil property for precision viticulture applications is highly costly, the objective of the present research is to analyse its relationship with the normalised difference vegetation index from high resolution satellite images to the use it in the definition of vineyard zonal management. The final aim is to improve irrigation in commercial vineyard blocks for better management of inputs and to deliver a more homogeneous fruit to the winery. The study was carried out in a vineyard block located in Raimat (NE Spain, Costers del Segre Designation of Origin). This is a semi-arid area with continental Mediterranean climate and a total annual precipitation between 300-400 mm. The vineyard block (4.5 ha) is planted with Syrah vines in a 3x2 m pattern. The vines are irrigated by means of drips under a partial root drying schedule. Initially, the irrigation sectors had a quadrangular distribution, with a size of about 1 ha each. Yield is highly variable within the block, presenting a coefficient of variation of 24.9%. For the measurement of the soil moisture content a regular sampling grid of 30 x 40 m was defined. This represents a sample density of 8 samples ha-1. At the nodes of the grid, TDR (Time Domain Reflectometer) probe tubes were permanently installed up to the 80 cm or up to reaching a contrasting layer. Multi-temporal measures were taken at different depths (each 20 cm) between November 2006 and December 2007. For each date, a map of the variability of the profile soil moisture content was interpolated by means of geostatistical analysis: from the measured values at the grid points the experimental variograms were computed and modelled and global block kriging (10 m squared blocks) undertaken with a grid spacing of 3 m x 3 m. On the other hand, three Quickbird-2 satellite images where acquired and processed to monitor plant vigour. The dates of images acquisition were: 29-07-2004, 13-07-2005 and 13-07-2006. They are within the range of
Near millimeter wave bandpass filters
NASA Technical Reports Server (NTRS)
Timusk, T.; Richards, P. L.
1981-01-01
The properties of bandpass filters for broadband photometry are reported in the 3-12/cm frequency range. The filters are based on a combination of capacitive grids deposited on thick Mylar substrates and are designed to have very high out-of-band rejection. Low frequencies are blocked by a thick grill that consists of a hexagonal grid of circular holes in a thick metal plate.
Vertical Scan (V-SCAN) for 3-D Grid Adaptive Mesh Refinement for an atmospheric Model Dynamical Core
NASA Astrophysics Data System (ADS)
Andronova, N. G.; Vandenberg, D.; Oehmke, R.; Stout, Q. F.; Penner, J. E.
2009-12-01
One of the major building blocks of a rigorous representation of cloud evolution in global atmospheric models is a parallel adaptive grid MPI-based communication library (an Adaptive Blocks for Locally Cartesian Topologies library -- ABLCarT), which manages the block-structured data layout, handles ghost cell updates among neighboring blocks and splits a block as refinements occur. The library has several modules that provide a layer of abstraction for adaptive refinement: blocks, which contain individual cells of user data; shells - the global geometry for the problem, including a sphere, reduced sphere, and now a 3D sphere; a load balancer for placement of blocks onto processors; and a communication support layer which encapsulates all data movement. A major performance concern with adaptive mesh refinement is how to represent calculations that have need to be sequenced in a particular order in a direction, such as calculating integrals along a specific path (e.g. atmospheric pressure or geopotential in the vertical dimension). This concern is compounded if the blocks have varying levels of refinement, or are scattered across different processors, as can be the case in parallel computing. In this paper we describe an implementation in ABLCarT of a vertical scan operation, which allows computing along vertical paths in the correct order across blocks transparent to their resolution and processor location. We test this functionality on a 2D and a 3D advection problem, which tests the performance of the model’s dynamics (transport) and physics (sources and sinks) for different model resolutions needed for inclusion of cloud formation.
TopMaker: A Technique for Automatic Multi-Block Topology Generation Using the Medial Axis
NASA Technical Reports Server (NTRS)
Heidmann, James D. (Technical Monitor); Rigby, David L.
2004-01-01
A two-dimensional multi-block topology generation technique has been developed. Very general configurations are addressable by the technique. A configuration is defined by a collection of non-intersecting closed curves, which will be referred to as loops. More than a single loop implies that holes exist in the domain, which poses no problem. This technique requires only the medial vertices and the touch points that define each vertex. From the information about the medial vertices, the connectivity between medial vertices is generated. The physical shape of the medial edge is not required. By applying a few simple rules to each medial edge, the multiblock topology is generated with no user intervention required. The resulting topologies contain only the level of complexity dictated by the configurations. Grid lines remain attached to the boundary except at sharp concave turns where a change in index family is introduced as would be desired. Keeping grid lines attached to the boundary is especially important in the area of computational fluid dynamics where highly clustered grids are used near no-slip boundaries. This technique is simple and robust and can easily be incorporated into the overall grid generation process.
NASA Astrophysics Data System (ADS)
Liu, Ying; Xu, Zhenhuan; Li, Yuguo
2018-04-01
We present a goal-oriented adaptive finite element (FE) modelling algorithm for 3-D magnetotelluric fields in generally anisotropic conductivity media. The model consists of a background layered structure, containing anisotropic blocks. Each block and layer might be anisotropic by assigning to them 3 × 3 conductivity tensors. The second-order partial differential equations are solved using the adaptive finite element method (FEM). The computational domain is subdivided into unstructured tetrahedral elements, which allow for complex geometries including bathymetry and dipping interfaces. The grid refinement process is guided by a global posteriori error estimator and is performed iteratively. The system of linear FE equations for electric field E is solved with a direct solver MUMPS. Then the magnetic field H can be found, in which the required derivatives are computed numerically using cubic spline interpolation. The 3-D FE algorithm has been validated by comparisons with both the 3-D finite-difference solution and 2-D FE results. Two model types are used to demonstrate the effects of anisotropy upon 3-D magnetotelluric responses: horizontal and dipping anisotropy. Finally, a 3D sea hill model is modelled to study the effect of oblique interfaces and the dipping anisotropy.
Dai, Ruizhi; Thomas, Ayanna K; Taylor, Holly A
2018-01-30
Research examining object identity and location processing in visuo-spatial working memory (VSWM) has yielded inconsistent results on whether age differences exist in VSWM. The present study investigated whether these inconsistencies may stem from age-related differences in VSWM sub-processes, and whether processing of component VSWM information can be facilitated. In two experiments, younger and older adults studied 5 × 5 grids containing five objects in separate locations. In a continuous recognition paradigm, participants were tested on memory for object identity, location, or identity and location information combined. Spatial and categorical relationships were manipulated within grids to provide trial-level facilitation. In Experiment 1, randomizing trial types (location, identity, combination) assured that participants could not predict the information that would be queried. In Experiment 2, blocking trials by type encouraged strategic processing. Thus, we manipulated the nature of the task through object categorical relationship and spatial organization, and trial blocking. Our findings support age-related declines in VSWM. Additionally, grid organizations (categorical and spatial relationships), and trial blocking differentially affected younger and older adults. Younger adults used spatial organizations more effectively whereas older adults demonstrated an association bias. Our finding also suggests that older adults may be less efficient than younger adults in strategically engaging information processing.
Point-by-point compositional analysis for atom probe tomography.
Stephenson, Leigh T; Ceguerra, Anna V; Li, Tong; Rojhirunsakool, Tanaporn; Nag, Soumya; Banerjee, Rajarshi; Cairney, Julie M; Ringer, Simon P
2014-01-01
This new alternate approach to data processing for analyses that traditionally employed grid-based counting methods is necessary because it removes a user-imposed coordinate system that not only limits an analysis but also may introduce errors. We have modified the widely used "binomial" analysis for APT data by replacing grid-based counting with coordinate-independent nearest neighbour identification, improving the measurements and the statistics obtained, allowing quantitative analysis of smaller datasets, and datasets from non-dilute solid solutions. It also allows better visualisation of compositional fluctuations in the data. Our modifications include:.•using spherical k-atom blocks identified by each detected atom's first k nearest neighbours.•3D data visualisation of block composition and nearest neighbour anisotropy.•using z-statistics to directly compare experimental and expected composition curves. Similar modifications may be made to other grid-based counting analyses (contingency table, Langer-Bar-on-Miller, sinusoidal model) and could be instrumental in developing novel data visualisation options.
Conservative zonal schemes for patched grids in 2 and 3 dimensions
NASA Technical Reports Server (NTRS)
Hessenius, Kristin A.
1987-01-01
The computation of flow over complex geometries, such as realistic aircraft configurations, poses difficult grid generation problems for computational aerodynamicists. The creation of a traditional, single-module grid of acceptable quality about an entire configuration may be impossible even with the most sophisticated of grid generation techniques. A zonal approach, wherein the flow field is partitioned into several regions within which grids are independently generated, is a practical alternative for treating complicated geometries. This technique not only alleviates the problems of discretizing a complex region, but also facilitates a block processing approach to computation thereby circumventing computer memory limitations. The use of such a zonal scheme, however, requires the development of an interfacing procedure that ensures a stable, accurate, and conservative calculation for the transfer of information across the zonal borders.
Travel-time-based thermal tracer tomography
NASA Astrophysics Data System (ADS)
Somogyvári, Márk; Bayer, Peter; Brauchler, Ralf
2016-05-01
Active thermal tracer testing is a technique to get information about the flow and transport properties of an aquifer. In this paper we propose an innovative methodology using active thermal tracers in a tomographic setup to reconstruct cross-well hydraulic conductivity profiles. This is facilitated by assuming that the propagation of the injected thermal tracer is mainly controlled by advection. To reduce the effects of density and viscosity changes and thermal diffusion, early-time diagnostics are used and specific travel times of the tracer breakthrough curves are extracted. These travel times are inverted with an eikonal solver using the staggered grid method to reduce constraints from the pre-defined grid geometry and to improve the resolution. Finally, non-reliable pixels are removed from the derived hydraulic conductivity tomograms. The method is applied to successfully reconstruct cross-well profiles as well as a 3-D block of a high-resolution fluvio-aeolian aquifer analog data set. Sensitivity analysis reveals a negligible role of the injection temperature, but more attention has to be drawn to other technical parameters such as the injection rate. This is investigated in more detail through model-based testing using diverse hydraulic and thermal conditions in order to delineate the feasible range of applications for the new tomographic approach.
Summary of the Fourth AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.;
2010-01-01
Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Slater, John W.; Henderson, Todd L.; Bidwell, Colin S.; Braun, Donald C.; Chung, Joongkee
1998-01-01
TURBO-GRD is a software system for interactive two-dimensional boundary/field grid generation. modification, and refinement. Its features allow users to explicitly control grid quality locally and globally. The grid control can be achieved interactively by using control points that the user picks and moves on the workstation monitor or by direct stretching and refining. The techniques used in the code are the control point form of algebraic grid generation, a damped cubic spline for edge meshing and parametric mapping between physical and computational domains. It also performs elliptic grid smoothing and free-form boundary control for boundary geometry manipulation. Internal block boundaries are constructed and shaped by using Bezier curve. Because TURBO-GRD is a highly interactive code, users can read in an initial solution, display its solution contour in the background of the grid and control net, and exercise grid modification using the solution contour as a guide. This process can be called an interactive solution-adaptive grid generation.
A quasi-optical flight mixer. [Schottky diodes and wire grid lenses
NASA Technical Reports Server (NTRS)
1978-01-01
A mechanically stable single block mixer design is described utilizing a recessed whisker and beamwidth equalization lens. A stripline I.F. matching section which is an integral part of the mixer is presented. Engineering measurements of wire grids and dielectric transmission loss near one millimeter wavelength are given and an anomolous I-V curve behavior observed during diode whiskering is discussed.
Evidence for Feature and Location Learning in Human Visual Perceptual Learning
ERIC Educational Resources Information Center
Moreno-Fernández, María Manuela; Salleh, Nurizzati Mohd; Prados, Jose
2015-01-01
In Experiment 1, human participants were pre-exposed to two similar checkerboard grids (AX and X) in alternation, and to a third grid (BX) in a separate block of trials. In a subsequent test, the unique feature A was better detected than the feature B when they were presented in the same location during the pre-exposure and test phases. However,…
Merging seismic and MT in Garden Valley, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Telleen, K.E.
1986-04-01
In the northern part of Garden Valley, Nevada, a 1978 regional seismic program encountered a large area of poor to no-reflection data. Surface geology suggested that a large high structure might underlie the valley floor, and that shallowly buried basalts were causing the poor data. The implied strongly layered structure of electrical resistivity - resistive basalt on conductive Tertiary clastics on resistive paleozoic carbonates - formed an ideal theater for the magnetotelluric method. In 1984, Conoco acquired 48 magnetotelluric sites on about a half-mile grid. These data supported the presence of a buried high block in the Paleozoic rocks andmore » allowed confident mapping of its outlines. In addition, the magnetotelluric survey showed a thin, shallowly buried resistor coextensive with the seismic no-reflection area. In 1985, a high-effort repeat of the earlier no-reflection seismic line confirmed the high block, improved the fault interpretation, and provided weak guidance on the depth of the targeted Paleozoic rocks. Because Garden Valley's Paleozoic stratigraphy differs negligibly from that at nearby Grant Canyon field, the high block constitutes an attractive prospect - possibly the first one found in Nevada due largely to magnetotelluric surveying.« less
Single and double grid long-range alpha detectors
MacArthur, Duncan W.; Allander, Krag S.
1993-01-01
Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.
Single and double grid long-range alpha detectors
MacArthur, D.W.; Allander, K.S.
1993-03-16
Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.
SU-F-T-513: Dosimetric Validation of Spatially Fractionated Radiotherapy Using Gel Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papanikolaou, P; Watts, L; Kirby, N
2016-06-15
Purpose: Spatially fractionated radiation therapy, also known as GRID therapy, is used to treat large solid tumors by irradiating the target to a single dose of 10–20Gy through spatially distributed beamlets. We have investigated the use of a 3D gel for dosimetric characterization of GRID therapy. Methods: GRID therapy is an external beam analog of volumetric brachytherapy, whereby we produce a distribution of hot and cold dose columns inside the tumor volume. Such distribution can be produced with a block or by using a checker-like pattern with MLC. We have studied both types of GRID delivery. A cube shaped acrylicmore » phantom was filled with polymer gel and served as a 3D dosimeter. The phantom was scanned and the CT images were used to produce two plans in Pinnacle, one with the grid block and one with the MLC defined grid. A 6MV beam was used for the plan with a prescription of 1500cGy at dmax. The irradiated phantom was scanned in a 3T MRI scanner. Results: 3D dose maps were derived from the MR scans of the gel dosimeter and were found to be in good agreement with the predicted dose distribution from the RTP system. Gamma analysis showed a passing rate of 93% for 5% dose and 2mm DTA scoring criteria. Both relative and absolute dose profiles are in good agreement, except in the peripheral beamlets where the gel measured slightly higher dose, possibly because of the changing head scatter conditions that the RTP is not fully accounting for. Our results have also been benchmarked against ionization chamber measurements. Conclusion: We have investigated the use of a polymer gel for the 3D dosimetric characterization and evaluation of GRID therapy. Our results demonstrated that the planning system can predict fairly accurately the dose distribution for GRID type therapy.« less
Progress on a generalized coordinates tensor product finite element 3DPNS algorithm for subsonic
NASA Technical Reports Server (NTRS)
Baker, A. J.; Orzechowski, J. A.
1983-01-01
A generalized coordinates form of the penalty finite element algorithm for the 3-dimensional parabolic Navier-Stokes equations for turbulent subsonic flows was derived. This algorithm formulation requires only three distinct hypermatrices and is applicable using any boundary fitted coordinate transformation procedure. The tensor matrix product approximation to the Jacobian of the Newton linear algebra matrix statement was also derived. Tne Newton algorithm was restructured to replace large sparse matrix solution procedures with grid sweeping using alpha-block tridiagonal matrices, where alpha equals the number of dependent variables. Numerical experiments were conducted and the resultant data gives guidance on potentially preferred tensor product constructions for the penalty finite element 3DPNS algorithm.
Application of a Scalable, Parallel, Unstructured-Grid-Based Navier-Stokes Solver
NASA Technical Reports Server (NTRS)
Parikh, Paresh
2001-01-01
A parallel version of an unstructured-grid based Navier-Stokes solver, USM3Dns, previously developed for efficient operation on a variety of parallel computers, has been enhanced to incorporate upgrades made to the serial version. The resultant parallel code has been extensively tested on a variety of problems of aerospace interest and on two sets of parallel computers to understand and document its characteristics. An innovative grid renumbering construct and use of non-blocking communication are shown to produce superlinear computing performance. Preliminary results from parallelization of a recently introduced "porous surface" boundary condition are also presented.
GENIE(++): A Multi-Block Structured Grid System
NASA Technical Reports Server (NTRS)
Williams, Tonya; Nadenthiran, Naren; Thornburg, Hugh; Soni, Bharat K.
1996-01-01
The computer code GENIE++ is a continuously evolving grid system containing a multitude of proven geometry/grid techniques. The generation process in GENIE++ is based on an earlier version. The process uses several techniques either separately or in combination to quickly and economically generate sculptured geometry descriptions and grids for arbitrary geometries. The computational mesh is formed by using an appropriate algebraic method. Grid clustering is accomplished with either exponential or hyperbolic tangent routines which allow the user to specify a desired point distribution. Grid smoothing can be accomplished by using an elliptic solver with proper forcing functions. B-spline and Non-Uniform Rational B-splines (NURBS) algorithms are used for surface definition and redistribution. The built in sculptured geometry definition with desired distribution of points, automatic Bezier curve/surface generation for interior boundaries/surfaces, and surface redistribution is based on NURBS. Weighted Lagrance/Hermite transfinite interpolation methods, interactive geometry/grid manipulation modules, and on-line graphical visualization of the generation process are salient features of this system which result in a significant time savings for a given geometry/grid application.
Software Design Strategies for Multidisciplinary Computational Fluid Dynamics
2012-07-01
on the left-hand-side of Figure 3. The resulting unstructured grid system does a good job of representing the flowfield locally around the solid... Laboratory [16–19]. It uses Cartesian block structured grids, which lead to a substantially more efficient computational execution compared to the...including blade sectional lift and pitching moment. These Helios-computed airloads show good agreement with the experimental data. Many of the
NASA Astrophysics Data System (ADS)
Tscherning, Carl Christian; Arabelos, Dimitrios; Reguzzoni, Mirko
2013-04-01
The GOCE satellite measures gravity gradients which are filtered and transformed to gradients into an Earth-referenced frame by the GOCE High Level processing Facility. More than 80000000 data with 6 components are available from the period 2009-2011. IAG Arctic gravity was used north of 83 deg., while data at the Antarctic was not used due to bureaucratic restrictions by the data-holders. Subsets of the data have been used to produce gridded values at 10 km altitude of gravity anomalies and vertical gravity gradients in 20 deg. x 20 deg. blocks with 10' spacing. Various combinations and densities of data were used to obtain values in areas with known gravity anomalies. The (marginally) best choice was vertical gravity gradients selected with an approximately 0.125 deg spacing. Using Least-Squares Collocation, error-estimates were computed and compared to the difference between the GOCE-grids and grids derived from EGM2008 to deg. 512. In general a good agreement was found, however with some inconsistencies in certain areas. The computation time on a usual server with 24 processors was typically 100 minutes for a block with generally 40000 GOCE vertical gradients as input. The computations will be updated with new Wiener-filtered data in the near future.
NASA Astrophysics Data System (ADS)
Sides, Scott; Jamroz, Ben; Crockett, Robert; Pletzer, Alexander
2012-02-01
Self-consistent field theory (SCFT) for dense polymer melts has been highly successful in describing complex morphologies in block copolymers. Field-theoretic simulations such as these are able to access large length and time scales that are difficult or impossible for particle-based simulations such as molecular dynamics. The modified diffusion equations that arise as a consequence of the coarse-graining procedure in the SCF theory can be efficiently solved with a pseudo-spectral (PS) method that uses fast-Fourier transforms on uniform Cartesian grids. However, PS methods can be difficult to apply in many block copolymer SCFT simulations (eg. confinement, interface adsorption) in which small spatial regions might require finer resolution than most of the simulation grid. Progress on using new solver algorithms to address these problems will be presented. The Tech-X Chompst project aims at marrying the best of adaptive mesh refinement with linear matrix solver algorithms. The Tech-X code PolySwift++ is an SCFT simulation platform that leverages ongoing development in coupling Chombo, a package for solving PDEs via block-structured AMR calculations and embedded boundaries, with PETSc, a toolkit that includes a large assortment of sparse linear solvers.
NASA Astrophysics Data System (ADS)
Abdel-Fattah, Mohamed I.; Metwalli, Farouk I.; Mesilhi, El Sayed I.
2018-02-01
3D static reservoir modeling of the Bahariya reservoirs using seismic and wells data can be a relevant part of an overall strategy for the oilfields development in South Umbarka area (Western Desert, Egypt). The seismic data is used to build the 3D grid, including fault sticks for the fault modeling, and horizon interpretations and surfaces for horizon modeling. The 3D grid is the digital representation of the structural geology of Bahariya Formation. When we got a reasonably accurate representation, we fill the 3D grid with facies and petrophysical properties to simulate it, to gain a more precise understanding of the reservoir properties behavior. Sequential Indicator Simulation (SIS) and Sequential Gaussian Simulation (SGS) techniques are the stochastic algorithms used to spatially distribute discrete reservoir properties (facies) and continuous reservoir properties (shale volume, porosity, and water saturation) respectively within the created 3D grid throughout property modeling. The structural model of Bahariya Formation exhibits the trapping mechanism which is a fault assisted anticlinal closure trending NW-SE. This major fault breaks the reservoirs into two major fault blocks (North Block and South Block). Petrophysical models classified Lower Bahariya reservoir as a moderate to good reservoir rather than Upper Bahariya reservoir in terms of facies, with good porosity and permeability, low water saturation, and moderate net to gross. The Original Oil In Place (OOIP) values of modeled Bahariya reservoirs show hydrocarbon accumulation in economic quantity, considering the high structural dips at the central part of South Umbarka area. The powerful of 3D static modeling technique has provided a considerable insight into the future prediction of Bahariya reservoirs performance and production behavior.
Structured grid technology to enable flow simulation in an integrated system environment
NASA Astrophysics Data System (ADS)
Remotigue, Michael Gerard
An application-driven Computational Fluid Dynamics (CFD) environment needs flexible and general tools to effectively solve complex problems in a timely manner. In addition, reusable, portable, and maintainable specialized libraries will aid in rapidly developing integrated systems or procedures. The presented structured grid technology enables the flow simulation for complex geometries by addressing grid generation, grid decomposition/solver setup, solution, and interpretation. Grid generation is accomplished with the graphical, arbitrarily-connected, multi-block structured grid generation software system (GUM-B) developed and presented here. GUM-B is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a solid-modeling data structure that utilizes a structured grid generation library and a geometric library based on Non-Uniform Rational B-Splines (NURBS). A presented modification of the solid-modeling data structure provides the capability for arbitrarily-connected regions between the grid blocks. The presented grid generation library provides algorithms that are reliable and accurate. GUM-B has been utilized to generate numerous structured grids for complex geometries in hydrodynamics, propulsors, and aerodynamics. The versatility of the libraries that compose GUM-B is also displayed in a prototype to automatically regenerate a grid for a free-surface solution. Grid decomposition and solver setup is accomplished with the graphical grid manipulation and repartition software system (GUMBO) developed and presented here. GUMBO is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a structured grid-tools library. The described functions within the grid-tools library reduce the possibility of human error during decomposition and setup for the numerical solver by accounting for boundary conditions and connectivity. GUMBO is linked with a flow solver interface, to the parallel UNCLE code, to provide load balancing tools and solver setup. Weeks of boundary condition and connectivity specification and validation has been reduced to hours. The UNCLE flow solver is utilized for the solution of the flow field. To accelerate convergence toward a quick engineering answer, a full multigrid (FMG) approach coupled with UNCLE, which is a full approximation scheme (FAS), is presented. The prolongation operators used in the FMG-FAS method are compared. The procedure is demonstrated on a marine propeller in incompressible flow. Interpretation of the solution is accomplished by vortex feature detection. Regions of "Intrinsic Swirl" are located by interrogating the velocity gradient tensor for complex eigenvalues. The "Intrinsic Swirl" parameter is visualized on a solution of a marine propeller to determine if any vortical features are captured. The libraries and the structured grid technology presented herein are flexible and general enough to tackle a variety of complex applications. This technology has significantly enabled the capability of the ERC personnel to effectively calculate solutions for complex geometries.
TIGER: Turbomachinery interactive grid generation
NASA Technical Reports Server (NTRS)
Soni, Bharat K.; Shih, Ming-Hsin; Janus, J. Mark
1992-01-01
A three dimensional, interactive grid generation code, TIGER, is being developed for analysis of flows around ducted or unducted propellers. TIGER is a customized grid generator that combines new technology with methods from general grid generation codes. The code generates multiple block, structured grids around multiple blade rows with a hub and shroud for either C grid or H grid topologies. The code is intended for use with a Euler/Navier-Stokes solver also being developed, but is general enough for use with other flow solvers. TIGER features a silicon graphics interactive graphics environment that displays a pop-up window, graphics window, and text window. The geometry is read as a discrete set of points with options for several industrial standard formats and NASA standard formats. Various splines are available for defining the surface geometries. Grid generation is done either interactively or through a batch mode operation using history files from a previously generated grid. The batch mode operation can be done either with a graphical display of the interactive session or with no graphics so that the code can be run on another computer system. Run time can be significantly reduced by running on a Cray-YMP.
NASA Astrophysics Data System (ADS)
Yahya, W. N. W.; Zaini, S. S.; Ismail, M. A.; Majid, T. A.; Deraman, S. N. C.; Abdullah, J.
2018-04-01
Damage due to wind-related disasters is increasing due to global climate change. Many studies have been conducted to study the wind effect surrounding low-rise building using wind tunnel tests or numerical simulations. The use of numerical simulation is relatively cheap but requires very good command in handling the software, acquiring the correct input parameters and obtaining the optimum grid or mesh. However, before a study can be conducted, a grid sensitivity test must be conducted to get a suitable cell number for the final to ensure an accurate result with lesser computing time. This study demonstrates the numerical procedures for conducting a grid sensitivity analysis using five models with different grid schemes. The pressure coefficients (CP) were observed along the wall and roof profile and compared between the models. The results showed that medium grid scheme can be used and able to produce high accuracy results compared to finer grid scheme as the difference in terms of the CP values was found to be insignificant.
Remanent magnetization and three-dimensional density model of the Kentucky anomaly region
NASA Technical Reports Server (NTRS)
1982-01-01
Existing software was modified to handle 3-D density and magnetization models of the Kentucky body and is being tested. Gravity and magnetic anomaly data sets are ready for use. A preliminary block model is under construction using the 1:1,000,000 maps. An x-y grid to overlay the 1:2,500,000 Albers maps and keyed to the 1:1,000,000 scale block models was created. Software was developed to generate a smoothed MAGSAT data set over this grid; this is to be input to an inversion program for generating the regional magnetization map. The regional scale 1:2,500,000 map mosaic is being digitized using previous magnetization models, the U.S. magnetic anomaly map, and regional tectonic maps as a guide.
Research on the key technology of update of land survey spatial data based on embedded GIS and GPS
NASA Astrophysics Data System (ADS)
Chen, Dan; Liu, Yanfang; Yu, Hai; Xia, Yin
2009-10-01
According to the actual needs of the second land-use survey and the PDA's characteristics of small volume and small memory, it can be analyzed that the key technology of the data collection system of field survey based on GPS-PDA is the read speed of the data. In order to enhance the speed and efficiency of the analysis of the spatial data on mobile devices, we classify the layers of spatial data; get the Layer-Grid Index by getting the different levels and blocks of the layer of spatial data; then get the R-TREE index of the spatial data objects. Different scale levels of space are used in different levels management. The grid method is used to do the block management.
Atmospheric Science Data Center
2018-05-16
... Instantaneous (Hourly Gridded), Monthly, Daily, Monthly Hourly File Format: HDF Tools: ... Aqua; Edition2 for TRMM; Edition1 for NPP) are approved for science publications. SCAR-B Block: ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samimi, B.; Bagherpour, H.; Nioc, A.
1995-08-01
The geological reservoir study of the supergiant Ahwaz field significantly improved the history matching process in many aspects, particularly the development of a geostatistical model which allowed a sound basis for changes and by delivering much needed accurate estimates of grid block vertical permeabilities. The geostatistical reservoir evaluation was facilitated by using the Heresim package and litho-stratigraphic zonations for the entire field. For each of the geological zones, 3-dimensional electrolithofacies and petrophysical property distributions (realizations) were treated which captured the heterogeneities which significantly affected fluid flow. However, as this level of heterogeneity was at a significantly smaller scale than themore » flow simulation grid blocks, a scaling up effort was needed to derive the effective flow properties of the blocks (porosity, horizontal and vertical permeability, and water saturation). The properties relating to the static reservoir description were accurately derived by using stream tube techniques developed in-house whereas, the relative permeabilities of the grid block were derived by dynamic pseudo relative permeability techniques. The prediction of vertical and lateral communication and water encroachment was facilitated by a close integration of pressure, saturation data, geostatistical modelling and sedimentological studies of the depositional environments and paleocurrents. The nature of reservoir barriers and baffles varied both vertically and laterally in this heterogeneous reservoir. Maps showing differences in pressure between zones after years of production served as a guide to integrating the static geological studies to the dynamic behaviour of each of the 16 reservoir zones. The use of deep wells being drilled to a deeper reservoir provided data to better understand the sweep efficiency and the continuity of barriers and baffles.« less
Multi-blocking strategies for the INS3D incompressible Navier-Stokes code
NASA Technical Reports Server (NTRS)
Gatlin, Boyd
1990-01-01
With the continuing development of bigger and faster supercomputers, computational fluid dynamics (CFD) has become a useful tool for real-world engineering design and analysis. However, the number of grid points necessary to resolve realistic flow fields numerically can easily exceed the memory capacity of available computers. In addition, geometric shapes of flow fields, such as those in the Space Shuttle Main Engine (SSME) power head, may be impossible to fill with continuous grids upon which to obtain numerical solutions to the equations of fluid motion. The solution to this dilemma is simply to decompose the computational domain into subblocks of manageable size. Computer codes that are single-block by construction can be modified to handle multiple blocks, but ad-hoc changes in the FORTRAN have to be made for each geometry treated. For engineering design and analysis, what is needed is generalization so that the blocking arrangement can be specified by the user. INS3D is a computer program for the solution of steady, incompressible flow problems. It is used frequently to solve engineering problems in the CFD Branch at Marshall Space Flight Center. INS3D uses an implicit solution algorithm and the concept of artificial compressibility to provide the necessary coupling between the pressure field and the velocity field. The development of generalized multi-block capability in INS3D is described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.C. Weaver
2008-06-12
Conduct verification surveys of available grids at the DWI 1630 in Knoxville, Tennessee. A representative with the Independent Environmental Assessment and Verification (IEAV) team from ORISE conducted a verification survey of a partial area within Grid E9.
Atmospheric Science Data Center
2018-05-16
... Instantaneous (Hourly Gridded), Monthly, Daily, Monthly Hourly File Format: HDF Tools: ... Aqua; Edition1 for NPP; Edition2 for TRMM) are approved for science publications. SCAR-B Block: ...
Three-dimensional zonal grids about arbitrary shapes by Poisson's equation
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.
1988-01-01
A method for generating 3-D finite difference grids about or within arbitrary shapes is presented. The 3-D Poisson equations are solved numerically, with values for the inhomogeneous terms found automatically by the algorithm. Those inhomogeneous terms have the effect near boundaries of reducing cell skewness and imposing arbitrary cell height. The method allows the region of interest to be divided into zones (blocks), allowing the method to be applicable to almost any physical domain. A FORTRAN program called 3DGRAPE has been written to implement the algorithm. Lastly, a method for redistributing grid points along lines normal to boundaries will be described.
NASA Astrophysics Data System (ADS)
Clemo, T. M.; Ramarao, B.; Kelly, V. A.; Lavenue, M.
2011-12-01
Capture is a measure of the impact of groundwater pumping upon groundwater and surface water systems. The computation of capture through analytical or numerical methods has been the subject of articles in the literature for several decades (Bredehoeft et al., 1982). Most recently Leake et al. (2010) described a systematic way to produce capture maps in three-dimensional systems using a numerical perturbation approach in which capture from streams was computed using unit rate pumping at many locations within a MODFLOW model. The Leake et al. (2010) method advances the current state of computing capture. A limitation stems from the computational demand required by the perturbation approach wherein days or weeks of computational time might be required to obtain a robust measure of capture. In this paper, we present an efficient method to compute capture in three-dimensional systems based upon adjoint states. The efficiency of the adjoint method will enable uncertainty analysis to be conducted on capture calculations. The USGS and INTERA have collaborated to extend the MODFLOW Adjoint code (Clemo, 2007) to include stream-aquifer interaction and have applied it to one of the examples used in Leake et al. (2010), the San Pedro Basin MODFLOW model. With five layers and 140,800 grid blocks per layer, the San Pedro Basin model, provided an ideal example data set to compare the capture computed from the perturbation and the adjoint methods. The capture fraction map produced from the perturbation method for the San Pedro Basin model required significant computational time to compute and therefore the locations for the pumping wells were limited to 1530 locations in layer 4. The 1530 direct simulations of capture require approximately 76 CPU hours. Had capture been simulated in each grid block in each layer, as is done in the adjoint method, the CPU time would have been on the order of 4 years. The MODFLOW-Adjoint produced the capture fraction map of the San Pedro Basin model at 704,000 grid blocks (140,800 grid blocks x 5 layers) in just 6 minutes. The capture fraction maps from the perturbation and adjoint methods agree closely. The results of this study indicate that the adjoint capture method and its associated computational efficiency will enable scientists and engineers facing water resource management decisions to evaluate the sensitivity and uncertainty of impacts to regional water resource systems as part of groundwater supply strategies. Bredehoeft, J.D., S.S. Papadopulos, and H.H. Cooper Jr, Groundwater: The water budget myth. In Scientific Basis of Water-Resources Management, ed. National Research Council (U.S.), Geophysical Study Committee, 51-57. Washington D.C.: National Academy Press, 1982. Clemo, Tom, MODFLOW-2005 Ground-Water Model-Users Guide to Adjoint State based Sensitivity Process (ADJ), BSU CGISS 07-01, Center for the Geophysical Investigation of the Shallow Subsurface, Boise State University, 2007. Leake, S.A., H.W. Reeves, and J.E. Dickinson, A New Capture Fraction Method to Map How Pumpage Affects Surface Water Flow, Ground Water, 48(5), 670-700, 2010.
NASA Astrophysics Data System (ADS)
Richling, Andy; Rust, Henning W.; Bissolli, Peter; Ulbrich, Uwe
2017-04-01
Atmospheric blocking plays a crucial role in climate variability in the mid-latitudes. Especially meteorological extremes like heatwaves, cold spells and droughts are often related to persistent and stationary blocking events. For climate monitoring it is important to identify and characterise such blocking events as well as to analyse the relationship between blockings and meteorological extremes in a quantitative way. In this study we identify atmospheric blocking events and analyse the influence on temperature and precipitation extremes with statistical models. For the detection of atmospheric blocking events, we apply modified 2-dimensional versions of commonly used blocking indices suggested by Tibaldi and Molteni (1990) as well as Masato et al. (2013) on daily fields of 500hPa geopotential heights of the Era-Interim reanalysis dataset. A result is a list of blocking events with a multidimensional index characterising area, intensity, location and duration and maps of these parameters, which are intended to be used operationally for regular climate diagnostics at the German Meteorological Service. In addition, relationships between grid-point-base blocking frequency, intensity and location parameters and the number of daily temperature/precipitation extremes based on the E-OBS gridded dataset are investigated using general linear models on a monthly time scale. The number of counts as well as probabilities of occurrence of daily extremes within a certain calendar month will be analysed in this framework. G. Masato, B. J. Hoskins, and T. Woollings. Winter and Summer Northern Hemisphere Blocking in CMIP5 Models. J. Climate, 26:7044-7059, 2013a. doi: http://dx.doi.org/10.1175/JCLI-D- 12-00466.1. G. Masato, B. J. Hoskins, and T. Woollings. Wave-Breaking Characteristics of Northern Hemi- sphere Winter Blocking: A Two-Dimensional Approach. J. Climate, 26:4535-4549, 2013b. doi: http://dx.doi.org/10.1175/JCLI-D-12-00240.1. S. Tibaldi and F. Molteni. On the operational predictability of blocking. Tellus, 42A:343-365, 1990. doi: 10.1034/j.1600-0870.1990.t01-2-00003.x.
NASA Astrophysics Data System (ADS)
Suharsono; Nurdian, S. W.; Palupi, I. R.
2016-11-01
Relocating hypocenter is a way to improve the velocity model of the subsurface. One of the method is Grid Search. To perform the distribution of the velocity in subsurface by tomography method, it is used the result of relocating hypocenter to be a reference for subsurface analysis in volcanic and major structural patterns, such as in Central Java. The main data of this study is the earthquake data recorded from 1952 to 2012 with the P wave number is 9162, the number of events is 2426 were recorded by 30 stations located in the vicinity of Central Java. Grid search method has some advantages they are: it can relocate the hypocenter more accurate because this method is dividing space lattice model into blocks, and each grid block can only be occupied by one point hypocenter. Tomography technique is done by travel time data that has had relocated with inversion pseudo bending method. Grid search relocated method show that the hypocenter's depth is shallower than before and the direction is to the south, the hypocenter distribution is modeled into the subduction zone between the continent of Eurasia with the Indo-Australian with an average angle of 14 °. The tomography results show the low velocity value is contained under volcanoes with value of -8% to -10%, then the pattern of the main fault structure in Central Java can be description by the results of tomography at high velocity that is from 8% to 10% with the direction is northwest and northeast-southwest.
Performance Modeling of Experimental Laser Lightcrafts
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.; Turner, Jim (Technical Monitor)
2001-01-01
A computational plasma aerodynamics model is developed to study the performance of a laser propelled Lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure-based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibrium thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literatures. The predicted coupling coefficients for the Lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.
See, R.B.; Reddy, M.M.; Martin, R.G.
1987-01-01
Three sensors were tested on building stones exposed to conditions that produce deposition of moisture. A relative humidity probe, a gypsum collected circuit grid, and a limestone block resistor were tested as sensors for determining surface wetness. Sensors were tested under laboratory conditions of constant relative humidity and temperature and also under on-site conditions of variable relative humidity and temperature for 8 weeks at Newcomb, New York. Laboratory tests indicated that relative humidity alone did not cause sensors to become saturated. However, relative humidity did control the rate at which sensors dried after being saturated with distilled water. On-site testing of the relative humidity probe and the gypsum coated circuit grid indicated that they respond to a diurnal wetting and drying cycle; the limestone block resistor only responded to rainfall. (Author 's abstract)
Yoshida, Eiji; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko; Moriya, Takahiro; Omura, Tomohide; Watanabe, Mitsuo; Murayama, Hideo; Yamaya, Taiga
2013-01-01
The X'tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from the six sides of a crystal block. The X'tal cube is composed of the 3D crystal block with isotropic resolution and arrays of multi-pixel photon counters (MPPCs). In this study, to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving (SSLE) technique to a monolithic crystal block instead of gluing segmented small crystals. The SSLE technique provided micro-crack walls which carve a groove into a monolithic scintillator block. Using the fabricated X'tal cube, we evaluated its intrinsic spatial resolution to show a proof of concept of isotropic resolution. The 3D grids of 2 mm pitch were fabricated into an 18 × 18 × 18 mm(3) monolithic lutetium yttrium orthosilicate (LYSO) crystal by the SSLE technique. 4 × 4 MPPCs were optically coupled to each surface of the crystal block. The X'tal cube was uniformly irradiated by (22)Na gamma rays, and all of the 3D grids on the 3D position histogram were separated clearly by an Anger-type calculation from the 96-channel MPPC signals. Response functions of the X'tal cube were measured by scanning with a (22)Na point source. The gamma-ray beam with a 1.0 mm slit was scanned in 0.25 mm steps by positioning of the X'tal cube at vertical and 45° incident angles. The average FWHM resolution at both incident angles was 2.1 mm. Therefore, we confirmed the isotropic spatial resolution performance of the X'tal cube.
Digital Systems Validation Handbook. Volume 2
1989-02-01
power. 2. A grid of wires, solid sheet, or foil. 3. A wire from circuit to grounding block or case. 4. A wire from circuit to structure. 5. Shield...RETURN. (11) 1. Structure, for power, fault, and "discrete" circuits. 2. A grid of wires, solid sheet, or foil. 3. A wire from circuit load back to...TV (14) Television TWTD (13) Thin Wire Time Domain TX (5) Transmit U.K. (13,141 United Kingdom U.S. (14) United States UART (15) Universal Asynchronous
Numerical grid generation in computational field simulations. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soni, B.K.; Thompson, J.F.; Haeuser, J.
1996-12-31
To enhance the CFS technology to its next level of applicability (i.e., to create acceptance of CFS in an integrated product and process development involving multidisciplinary optimization) the basic requirements are: rapid turn-around time, reliable and accurate simulation, affordability and appropriate linkage to other engineering disciplines. In response to this demand, there has been a considerable growth in the grid generation related research activities involving automization, parallel processing, linkage with the CAD-CAM systems, CFS with dynamic motion and moving boundaries, strategies and algorithms associated with multi-block structured, unstructured, hybrid, hexahedral, and Cartesian grids, along with its applicability to various disciplinesmore » including biomedical, semiconductor, geophysical, ocean modeling, and multidisciplinary optimization.« less
NASA Astrophysics Data System (ADS)
Rizqy Averous, Nurhan; Berthold, Anica; Schneider, Alexander; Schwimmbeck, Franz; Monti, Antonello; De Doncker, Rik W.
2016-09-01
A vast increase of wind turbines (WT) contribution in the modern electrical grids have led to the development of grid connection requirements. In contrast to the conventional test method, testing power-electronics converters for WT using a grid emulator at Center for Wind Power Drives (CWD) RWTH Aachen University offers more flexibility for conducting test scenarios. Further analysis on the performance of the device under test (DUT) is however required when testing with grid emulator since the characteristic of the grid emulator might influence the performance of the DUT. This paper focuses on the performance analysis of the DUT when tested using grid emulator. Beside the issue regarding the current harmonics, the performance during Fault Ride-Through (FRT) is discussed in detail. A power hardware in the loop setup is an attractive solution to conduct a comprehensive study on the interaction between the power-electronics converters and the electrical grids.
NASA Astrophysics Data System (ADS)
Witantyo; Setyawan, David
2018-03-01
In a lead acid battery industry, grid casting is a process that has high defect and thickness variation level. DMAIC (Define-Measure-Analyse-Improve-Control) method and its tools will be used to improve the casting process. In the Define stage, it is used project charter and SIPOC (Supplier Input Process Output Customer) method to map the existent problem. In the Measure stage, it is conducted a data retrieval related to the types of defect and the amount of it, also the grid thickness variation that happened. And then the retrieved data is processed and analyzed by using 5 Why’s and FMEA method. In the Analyze stage, it is conducted a grid observation that experience fragile and crack type of defect by using microscope showing the amount of oxide Pb inclusion in the grid. Analysis that is used in grid casting process shows the difference of temperature that is too high between the metal fluid and mold temperature, also the corking process that doesn’t have standard. The Improve stage is conducted a fixing process which generates the reduction of grid variation thickness level and defect/unit level from 9,184% to 0,492%. In Control stage, it is conducted a new working standard determination and already fixed control process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.C. Weaver
2008-03-19
Conduct verification surveys of available grids at the David Witherspoon Incorporated 1630 Site (DWI 1630) in Knoxville, Tennessee. The IVT conducted verification activities of partial grids H19, J21, J22, X20, and X21.
Method of assembly of molecular-sized nets and scaffolding
Michl, Josef; Magnera, Thomas F.; David, Donald E.; Harrison, Robin M.
1999-01-01
The present invention relates to methods and starting materials for forming molecular-sized grids or nets, or other structures based on such grids and nets, by creating molecular links between elementary molecular modules constrained to move in only two directions on an interface or surface by adhesion or bonding to that interface or surface. In the methods of this invention, monomers are employed as the building blocks of grids and more complex structures. Monomers are introduced onto and allowed to adhere or bond to an interface. The connector groups of adjacent adhered monomers are then polymerized with each other to form a regular grid in two dimensions above the interface. Modules that are not bound or adhered to the interface are removed prior to reaction of the connector groups to avoid undesired three-dimensional cross-linking and the formation of non-grid structures. Grids formed by the methods of this invention are useful in a variety of applications, including among others, for separations technology, as masks for forming regular surface structures (i.e., metal deposition) and as templates for three-dimensional molecular-sized structures.
The implementation of an aeronautical CFD flow code onto distributed memory parallel systems
NASA Astrophysics Data System (ADS)
Ierotheou, C. S.; Forsey, C. R.; Leatham, M.
2000-04-01
The parallelization of an industrially important in-house computational fluid dynamics (CFD) code for calculating the airflow over complex aircraft configurations using the Euler or Navier-Stokes equations is presented. The code discussed is the flow solver module of the SAUNA CFD suite. This suite uses a novel grid system that may include block-structured hexahedral or pyramidal grids, unstructured tetrahedral grids or a hybrid combination of both. To assist in the rapid convergence to a solution, a number of convergence acceleration techniques are employed including implicit residual smoothing and a multigrid full approximation storage scheme (FAS). Key features of the parallelization approach are the use of domain decomposition and encapsulated message passing to enable the execution in parallel using a single programme multiple data (SPMD) paradigm. In the case where a hybrid grid is used, a unified grid partitioning scheme is employed to define the decomposition of the mesh. The parallel code has been tested using both structured and hybrid grids on a number of different distributed memory parallel systems and is now routinely used to perform industrial scale aeronautical simulations. Copyright
Method of assembly of molecular-sized nets and scaffolding
Michl, J.; Magnera, T.F.; David, D.E.; Harrison, R.M.
1999-03-02
The present invention relates to methods and starting materials for forming molecular-sized grids or nets, or other structures based on such grids and nets, by creating molecular links between elementary molecular modules constrained to move in only two directions on an interface or surface by adhesion or bonding to that interface or surface. In the methods of this invention, monomers are employed as the building blocks of grids and more complex structures. Monomers are introduced onto and allowed to adhere or bond to an interface. The connector groups of adjacent adhered monomers are then polymerized with each other to form a regular grid in two dimensions above the interface. Modules that are not bound or adhered to the interface are removed prior to reaction of the connector groups to avoid undesired three-dimensional cross-linking and the formation of non-grid structures. Grids formed by the methods of this invention are useful in a variety of applications, including among others, for separations technology, as masks for forming regular surface structures (i.e., metal deposition) and as templates for three-dimensional molecular-sized structures. 9 figs.
Unstructured Grids for Sonic Boom Analysis and Design
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Nayani, Sudheer N.
2015-01-01
An evaluation of two methods for improving the process for generating unstructured CFD grids for sonic boom analysis and design has been conducted. The process involves two steps: the generation of an inner core grid using a conventional unstructured grid generator such as VGRID, followed by the extrusion of a sheared and stretched collar grid through the outer boundary of the core grid. The first method evaluated, known as COB, automatically creates a cylindrical outer boundary definition for use in VGRID that makes the extrusion process more robust. The second method, BG, generates the collar grid by extrusion in a very efficient manner. Parametric studies have been carried out and new options evaluated for each of these codes with the goal of establishing guidelines for best practices for maintaining boom signature accuracy with as small a grid as possible. In addition, a preliminary investigation examining the use of the CDISC design method for reducing sonic boom utilizing these grids was conducted, with initial results confirming the feasibility of a new remote design approach.
NASA Astrophysics Data System (ADS)
Benjamin, Christopher J.; Wright, Kyle J.; Bolton, Scott C.; Hyun, Seok-Hee; Krynski, Kyle; Grover, Mahima; Yu, Guimei; Guo, Fei; Kinzer-Ursem, Tamara L.; Jiang, Wen; Thompson, David H.
2016-10-01
We report the fabrication of transmission electron microscopy (TEM) grids bearing graphene oxide (GO) sheets that have been modified with Nα, Nα-dicarboxymethyllysine (NTA) and deactivating agents to block non-selective binding between GO-NTA sheets and non-target proteins. The resulting GO-NTA-coated grids with these improved antifouling properties were then used to isolate His6-T7 bacteriophage and His6-GroEL directly from cell lysates. To demonstrate the utility and simplified workflow enabled by these grids, we performed cryo-electron microscopy (cryo-EM) of His6-GroEL obtained from clarified E. coli lysates. Single particle analysis produced a 3D map with a gold standard resolution of 8.1 Å. We infer from these findings that TEM grids modified with GO-NTA are a useful tool that reduces background and improves both the speed and simplicity of biological sample preparation for high-resolution structure elucidation by cryo-EM.
Benjamin, Christopher J; Wright, Kyle J; Bolton, Scott C; Hyun, Seok-Hee; Krynski, Kyle; Grover, Mahima; Yu, Guimei; Guo, Fei; Kinzer-Ursem, Tamara L; Jiang, Wen; Thompson, David H
2016-10-17
We report the fabrication of transmission electron microscopy (TEM) grids bearing graphene oxide (GO) sheets that have been modified with N α , N α -dicarboxymethyllysine (NTA) and deactivating agents to block non-selective binding between GO-NTA sheets and non-target proteins. The resulting GO-NTA-coated grids with these improved antifouling properties were then used to isolate His 6 -T7 bacteriophage and His 6 -GroEL directly from cell lysates. To demonstrate the utility and simplified workflow enabled by these grids, we performed cryo-electron microscopy (cryo-EM) of His 6 -GroEL obtained from clarified E. coli lysates. Single particle analysis produced a 3D map with a gold standard resolution of 8.1 Å. We infer from these findings that TEM grids modified with GO-NTA are a useful tool that reduces background and improves both the speed and simplicity of biological sample preparation for high-resolution structure elucidation by cryo-EM.
The 3DGRAPE book: Theory, users' manual, examples
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.
1989-01-01
A users' manual for a new three-dimensional grid generator called 3DGRAPE is presented. The program, written in FORTRAN, is capable of making zonal (blocked) computational grids in or about almost any shape. Grids are generated by the solution of Poisson's differential equations in three dimensions. The program automatically finds its own values for inhomogeneous terms which give near-orthogonality and controlled grid cell height at boundaries. Grids generated by 3DGRAPE have been applied to both viscous and inviscid aerodynamic problems, and to problems in other fluid-dynamic areas. The smoothness for which elliptic methods are known is seen here, including smoothness across zonal boundaries. An introduction giving the history, motivation, capabilities, and philosophy of 3DGRAPE is presented first. Then follows a chapter on the program itself. The input is then described in detail. A chapter on reading the output and debugging follows. Three examples are then described, including sample input data and plots of output. Last is a chapter on the theoretical development of the method.
Improved 3-D turbomachinery CFD algorithm
NASA Technical Reports Server (NTRS)
Janus, J. Mark; Whitfield, David L.
1988-01-01
The building blocks of a computer algorithm developed for the time-accurate flow analysis of rotating machines are described. The flow model is a finite volume method utilizing a high resolution approximate Riemann solver for interface flux definitions. This block LU implicit numerical scheme possesses apparent unconditional stability. Multi-block composite gridding is used to orderly partition the field into a specified arrangement. Block interfaces, including dynamic interfaces, are treated such as to mimic interior block communication. Special attention is given to the reduction of in-core memory requirements by placing the burden on secondary storage media. Broad applicability is implied, although the results presented are restricted to that of an even blade count configuration. Several other configurations are presently under investigation, the results of which will appear in subsequent publications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Y; Park, M; Kim, H
Purpose: This study aims to identify the feasibility of a novel cesium-iodine (CsI)-based flat-panel detector (FPD) for removing scatter radiation in diagnostic radiology. Methods: The indirect FPD comprises three layers: a substrate, scintillation, and thin-film-transistor (TFT) layer. The TFT layer has a matrix structure with pixels. There are ineffective dimensions on the TFT layer, such as the voltage and data lines; therefore, we devised a new FPD system having net-like lead in the substrate layer, matching the ineffective area, to block the scatter radiation so that only primary X-rays could reach the effective dimension.To evaluate the performance of this newmore » FPD system, we conducted a Monte Carlo simulation using MCNPX 2.6.0 software. Scatter fractions (SFs) were acquired using no grid, a parallel grid (8:1 grid ratio), and the new system, and the performances were compared.Two systems having different thicknesses of lead in the substrate layer—10 and 20μm—were simulated. Additionally, we examined the effects of different pixel sizes (153×153 and 163×163μm) on the image quality, while keeping the effective area of pixels constant (143×143μm). Results: In case of 10μm lead, the SFs of the new system (∼11%) were lower than those of the other system (∼27% with no grid, ∼16% with parallel grid) at 40kV. However, as the tube voltage increased, the SF of new system (∼19%) was higher than that of parallel grid (∼18%) at 120kV. In the case of 20μm lead, the SFs of the new system were lower than those of the other systems at all ranges of the tube voltage (40–120kV). Conclusion: The novel CsI-based FPD system for removing scatter radiation is feasible for improving the image contrast but must be optimized with respect to the lead thickness, considering the system’s purposes and the ranges of the tube voltage in diagnostic radiology. This study was supported by a grant(K1422651) from Institute of Health Science, Korea University.« less
Semianalytical computation of path lines for finite-difference models
Pollock, D.W.
1988-01-01
A semianalytical particle tracking method was developed for use with velocities generated from block-centered finite-difference ground-water flow models. Based on the assumption that each directional velocity component varies linearly within a grid cell in its own coordinate directions, the method allows an analytical expression to be obtained describing the flow path within an individual grid cell. Given the intitial position of a particle anywhere in a cell, the coordinates of any other point along its path line within the cell, and the time of travel between them, can be computed directly. For steady-state systems, the exit point for a particle entering a cell at any arbitrary location can be computed in a single step. By following the particle as it moves from cell to cell, this method can be used to trace the path of a particle through any multidimensional flow field generated from a block-centered finite-difference flow model. -Author
See, R.B.; Reddy, M.M.; Martin, R.G.
1988-01-01
Three moisture sensors were tested as a means for determining the surface wetness on carbonate building stones exposed to conditions that produce deposition of moisture. A relative-humidity probe, a gypsum-coated circuit grid, and a limestone-block resistor were tested as sensors for determining surface wetness. Sensors were tested under laboratory conditions of constant relative humidity and temperature and also under on-site conditions of variable relative humidity and temperature for eight weeks at Newcomb, NY. Laboratory tests indicated that relative humidity alone did not cause sensors to become saturated with water. However, the rates of drying indicated by the sensors after an initial saturation were inversely related to the relative humidity. On-site testing of the relative-humidity probe and the gypsum-coated ciruit grid indicated that they respond to a diurnal wetting and drying cycle; the limestone-block resistor responded only to rainfall.
THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mignone, A.; Tzeferacos, P.; Zanni, C.
We present a description of the adaptive mesh refinement (AMR) implementation of the PLUTO code for solving the equations of classical and special relativistic magnetohydrodynamics (MHD and RMHD). The current release exploits, in addition to the static grid version of the code, the distributed infrastructure of the CHOMBO library for multidimensional parallel computations over block-structured, adaptively refined grids. We employ a conservative finite-volume approach where primary flow quantities are discretized at the cell center in a dimensionally unsplit fashion using the Corner Transport Upwind method. Time stepping relies on a characteristic tracing step where piecewise parabolic method, weighted essentially non-oscillatory,more » or slope-limited linear interpolation schemes can be handily adopted. A characteristic decomposition-free version of the scheme is also illustrated. The solenoidal condition of the magnetic field is enforced by augmenting the equations with a generalized Lagrange multiplier providing propagation and damping of divergence errors through a mixed hyperbolic/parabolic explicit cleaning step. Among the novel features, we describe an extension of the scheme to include non-ideal dissipative processes, such as viscosity, resistivity, and anisotropic thermal conduction without operator splitting. Finally, we illustrate an efficient treatment of point-local, potentially stiff source terms over hierarchical nested grids by taking advantage of the adaptivity in time. Several multidimensional benchmarks and applications to problems of astrophysical relevance assess the potentiality of the AMR version of PLUTO in resolving flow features separated by large spatial and temporal disparities.« less
Navier-Stokes Aerodynamic Simulation of the V-22 Osprey on the Intel Paragon MPP
NASA Technical Reports Server (NTRS)
Vadyak, Joseph; Shrewsbury, George E.; Narramore, Jim C.; Montry, Gary; Holst, Terry; Kwak, Dochan (Technical Monitor)
1995-01-01
The paper will describe the Development of a general three-dimensional multiple grid zone Navier-Stokes flowfield simulation program (ENS3D-MPP) designed for efficient execution on the Intel Paragon Massively Parallel Processor (MPP) supercomputer, and the subsequent application of this method to the prediction of the viscous flowfield about the V-22 Osprey tiltrotor vehicle. The flowfield simulation code solves the thin Layer or full Navier-Stoke's equation - for viscous flow modeling, or the Euler equations for inviscid flow modeling on a structured multi-zone mesh. In the present paper only viscous simulations will be shown. The governing difference equations are solved using a time marching implicit approximate factorization method with either TVD upwind or central differencing used for the convective terms and central differencing used for the viscous diffusion terms. Steady state or Lime accurate solutions can be calculated. The present paper will focus on steady state applications, although time accurate solution analysis is the ultimate goal of this effort. Laminar viscosity is calculated using Sutherland's law and the Baldwin-Lomax two layer algebraic turbulence model is used to compute the eddy viscosity. The Simulation method uses an arbitrary block, curvilinear grid topology. An automatic grid adaption scheme is incorporated which concentrates grid points in high density gradient regions. A variety of user-specified boundary conditions are available. This paper will present the application of the scalable and superscalable versions to the steady state viscous flow analysis of the V-22 Osprey using a multiple zone global mesh. The mesh consists of a series of sheared cartesian grid blocks with polar grids embedded within to better simulate the wing tip mounted nacelle. MPP solutions will be shown in comparison to equivalent Cray C-90 results and also in comparison to experimental data. Discussions on meshing considerations, wall clock execution time, load balancing, and scalability will be provided.
NASA Astrophysics Data System (ADS)
Feng, Wenqiang; Guo, Zhenlin; Lowengrub, John S.; Wise, Steven M.
2018-01-01
We present a mass-conservative full approximation storage (FAS) multigrid solver for cell-centered finite difference methods on block-structured, locally cartesian grids. The algorithm is essentially a standard adaptive FAS (AFAS) scheme, but with a simple modification that comes in the form of a mass-conservative correction to the coarse-level force. This correction is facilitated by the creation of a zombie variable, analogous to a ghost variable, but defined on the coarse grid and lying under the fine grid refinement patch. We show that a number of different types of fine-level ghost cell interpolation strategies could be used in our framework, including low-order linear interpolation. In our approach, the smoother, prolongation, and restriction operations need never be aware of the mass conservation conditions at the coarse-fine interface. To maintain global mass conservation, we need only modify the usual FAS algorithm by correcting the coarse-level force function at points adjacent to the coarse-fine interface. We demonstrate through simulations that the solver converges geometrically, at a rate that is h-independent, and we show the generality of the solver, applying it to several nonlinear, time-dependent, and multi-dimensional problems. In several tests, we show that second-order asymptotic (h → 0) convergence is observed for the discretizations, provided that (1) at least linear interpolation of the ghost variables is employed, and (2) the mass conservation corrections are applied to the coarse-level force term.
Experimental and analytical study of close-coupled ventral nozzles for ASTOVL aircraft
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Smith, C. Frederic
1990-01-01
Flow in a generic ventral nozzle system was studied experimentally and analytically with a block version of the PARC3D computational fluid dynamics program (a full Navier-Stokes equation solver) in order to evaluate the program's ability to predict system performance and internal flow patterns. For the experimental work a one-third-size model tailpipe with a single large rectangular ventral nozzle mounted normal to the tailpipe axis was tested with unheated air at steady-state pressure ratios up to 4.0. The end of the tailpipe was closed to simulate a blocked exhaust nozzle. Measurements showed about 5 1/2 percent flow-turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning loss, reasonable nozzle performance coefficients, and a significant aftward axial component of thrust due to flow turning more than 90 deg. Flow behavior into and through the ventral duct is discussed and illustrated with paint streak flow visualization photographs. For the analytical work the same ventral system configuration was modeled with two computational grids to evaluate the effect of grid density. Both grids gave good results. The finer-grid solution produced more detailed flow patterns and predicted performance parameters, such as thrust and discharge coefficient, within 1 percent of the measured values. PARC3D flow visualization images are shown for comparison with the paint streak photographs. Modeling and computational issues encountered in the analytical work are discussed.
Multiple-body simulation with emphasis on integrated Space Shuttle vehicle
NASA Technical Reports Server (NTRS)
Chiu, Ing-Tsau
1993-01-01
The program to obtain intergrid communications - Pegasus - was enhanced to make better use of computing resources. Periodic block tridiagonal and penta-diagonal diagonal routines in OVERFLOW were modified to use a better algorithm to speed up the calculation for grids with periodic boundary conditions. Several programs were added to collar grid tools and a user friendly shell script was developed to help users generate collar grids. User interface for HYPGEN was modified to cope with the changes in HYPGEN. ET/SRB attach hardware grids were added to the computational model for the space shuttle and is currently incorporated into the refined shuttle model jointly developed at Johnson Space Center and Ames Research Center. Flow simulation for the integrated space shuttle vehicle at flight Reynolds number was carried out and compared with flight data as well as the earlier simulation for wind tunnel Reynolds number.
NASA Astrophysics Data System (ADS)
Errami, Y.; Obbadi, A.; Sahnoun, S.; Benhmida, M.; Ouassaid, M.; Maaroufi, M.
2016-07-01
This paper presents nonlinear backstepping control for Wind Power Generation System (WPGS) based Permanent Magnet Synchronous Generator (PMSG) and connected to utility grid. The block diagram of the WPGS with PMSG and the grid side back-to-back converter is established with the dq frame of axes. This control scheme emphasises the regulation of the dc-link voltage and the control of the power factor at changing wind speed. Besides, in the proposed control strategy of WPGS, Maximum Power Point Tracking (MPPT) technique and pitch control are provided. The stability of the regulators is assured by employing Lyapunov analysis. The proposed control strategy for the system has been validated by MATLAB simulations under varying wind velocity and the grid fault condition. In addition, a comparison of simulation results based on the proposed Backstepping strategy and conventional Vector Control is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael J. Bockelie
2002-01-04
This DOE SBIR Phase II final report summarizes research that has been performed to develop a parallel adaptive tool for modeling steady, two phase turbulent reacting flow. The target applications for the new tool are full scale, fossil-fuel fired boilers and furnaces such as those used in the electric utility industry, chemical process industry and mineral/metal process industry. The type of analyses to be performed on these systems are engineering calculations to evaluate the impact on overall furnace performance due to operational, process or equipment changes. To develop a Computational Fluid Dynamics (CFD) model of an industrial scale furnace requiresmore » a carefully designed grid that will capture all of the large and small scale features of the flowfield. Industrial systems are quite large, usually measured in tens of feet, but contain numerous burners, air injection ports, flames and localized behavior with dimensions that are measured in inches or fractions of inches. To create an accurate computational model of such systems requires capturing length scales within the flow field that span several orders of magnitude. In addition, to create an industrially useful model, the grid can not contain too many grid points - the model must be able to execute on an inexpensive desktop PC in a matter of days. An adaptive mesh provides a convenient means to create a grid that can capture both fine flow field detail within a very large domain with a ''reasonable'' number of grid points. However, the use of an adaptive mesh requires the development of a new flow solver. To create the new simulation tool, we have combined existing reacting CFD modeling software with new software based on emerging block structured Adaptive Mesh Refinement (AMR) technologies developed at Lawrence Berkeley National Laboratory (LBNL). Specifically, we combined: -physical models, modeling expertise, and software from existing combustion simulation codes used by Reaction Engineering International; -mesh adaption, data management, and parallelization software and technology being developed by users of the BoxLib library at LBNL; and -solution methods for problems formulated on block structured grids that were being developed in collaboration with technical staff members at the University of Utah Center for High Performance Computing (CHPC) and at LBNL. The combustion modeling software used by Reaction Engineering International represents an investment of over fifty man-years of development, conducted over a period of twenty years. Thus, it was impractical to achieve our objective by starting from scratch. The research program resulted in an adaptive grid, reacting CFD flow solver that can be used only on limited problems. In current form the code is appropriate for use on academic problems with simplified geometries. The new solver is not sufficiently robust or sufficiently general to be used in a ''production mode'' for industrial applications. The principle difficulty lies with the multi-level solver technology. The use of multi-level solvers on adaptive grids with embedded boundaries is not yet a mature field and there are many issues that remain to be resolved. From the lessons learned in this SBIR program, we have started work on a new flow solver with an AMR capability. The new code is based on a conventional cell-by-cell mesh refinement strategy used in unstructured grid solvers that employ hexahedral cells. The new solver employs several of the concepts and solution strategies developed within this research program. The formulation of the composite grid problem for the new solver has been designed to avoid the embedded boundary complications encountered in this SBIR project. This follow-on effort will result in a reacting flow CFD solver with localized mesh capability that can be used to perform engineering calculations on industrial problems in a production mode.« less
NASA Astrophysics Data System (ADS)
Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.
2016-12-01
Disposal of high-level radioactive waste in a deep geological repository in crystalline host rock is one of the potential options for long term isolation. Characterization of the natural barrier system is an important component of the disposal option. In this study we present numerical modeling of flow and transport in fractured crystalline rock using an updated fracture continuum model (FCM). The FCM is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The original method by McKenna and Reeves (2005) has been updated to provide capabilities that enhance representation of fractured rock. As reported in Hadgu et al. (2015) the method was first modified to include fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation. More recently the FCM has been extended to include three different methods. (1) The Sequential Gaussian Simulation (SGSIM) method uses spatial correlation to generate fractures and define their properties for FCM (2) The ELLIPSIM method randomly generates a specified number of ellipses with properties defined by probability distributions. Each ellipse represents a single fracture. (3) Direct conversion of discrete fracture network (DFN) output. Test simulations were conducted to simulate flow and transport using ELLIPSIM and direct conversion of DFN methods. The simulations used a 1 km x 1km x 1km model domain and a structured with grid block of size of 10 m x 10m x 10m, resulting in a total of 106 grid blocks. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the different methods were applied to generate representative permeability fields. The PFLOTRAN (Hammond et al., 2014) code was used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic representation of complex fracture systems. This approach is of interest for nuclear waste disposal models applied over large domains. SAND2016-7509 A
FDTD simulation of transmittance characteristics of one-dimensional conducting electrodes.
Lee, Kilbock; Song, Seok Ho; Ahn, Jinho
2014-03-24
We investigated transparent conducting electrodes consisting of periodic one-dimensional Ag or Al grids with widths from 25 nm to 5 μm via the finite-difference time-domain method. To retain high transmittance, two grid configurations with opening ratios of 90% and 95% were simulated. Polarization-dependent characteristics of the transmission spectra revealed that the overall transmittance of micron-scale grid electrodes may be estimated by the sum of light power passing through the uncovered area and the light power penetrating the covered metal layer. However, several dominant physical phenomena significantly affect the transmission spectra of the nanoscale grids: Rayleigh anomaly, transmission decay in TE polarized mode, and localized surface plasmon resonance. We conclude that, for applications of transparent electrodes, the critical feature sizes of conducting 1D grids should not be less than the wavelength scale in order to maintain uniform and predictable transmission spectra and low electrical resistivity.
Performance Modeling of an Experimental Laser Propelled Lightcraft
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.
2000-01-01
A computational plasma aerodynamics model is developed to study the performance of an experimental laser propelled lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure- based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibn'um thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and equi refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literature. The predicted coupling coefficients for the lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.
NASA Astrophysics Data System (ADS)
Ma, Sangback
In this paper we compare various parallel preconditioners such as Point-SSOR (Symmetric Successive OverRelaxation), ILU(0) (Incomplete LU) in the Wavefront ordering, ILU(0) in the Multi-color ordering, Multi-Color Block SOR (Successive OverRelaxation), SPAI (SParse Approximate Inverse) and pARMS (Parallel Algebraic Recursive Multilevel Solver) for solving large sparse linear systems arising from two-dimensional PDE (Partial Differential Equation)s on structured grids. Point-SSOR is well-known, and ILU(0) is one of the most popular preconditioner, but it is inherently serial. ILU(0) in the Wavefront ordering maximizes the parallelism in the natural order, but the lengths of the wave-fronts are often nonuniform. ILU(0) in the Multi-color ordering is a simple way of achieving a parallelism of the order N, where N is the order of the matrix, but its convergence rate often deteriorates as compared to that of natural ordering. We have chosen the Multi-Color Block SOR preconditioner combined with direct sparse matrix solver, since for the Laplacian matrix the SOR method is known to have a nondeteriorating rate of convergence when used with the Multi-Color ordering. By using block version we expect to minimize the interprocessor communications. SPAI computes the sparse approximate inverse directly by least squares method. Finally, ARMS is a preconditioner recursively exploiting the concept of independent sets and pARMS is the parallel version of ARMS. Experiments were conducted for the Finite Difference and Finite Element discretizations of five two-dimensional PDEs with large meshsizes up to a million on an IBM p595 machine with distributed memory. Our matrices are real positive, i. e., their real parts of the eigenvalues are positive. We have used GMRES(m) as our outer iterative method, so that the convergence of GMRES(m) for our test matrices are mathematically guaranteed. Interprocessor communications were done using MPI (Message Passing Interface) primitives. The results show that in general ILU(0) in the Multi-Color ordering ahd ILU(0) in the Wavefront ordering outperform the other methods but for symmetric and nearly symmetric 5-point matrices Multi-Color Block SOR gives the best performance, except for a few cases with a small number of processors.
Grid-Optimization Program for Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Daniel, R. E.; Lee, T. S.
1986-01-01
CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.
A comparison of solute-transport solution techniques based on inverse modelling results
Mehl, S.; Hill, M.C.
2000-01-01
Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results-simulated breakthrough curves, sensitivity analysis, and calibrated parameter values-change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.Five common numerical techniques (finite difference, predictor-corrector, total-variation-diminishing, method-of-characteristics, and modified-method-of-characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using randomly distributed homogeneous blocks of five sand types. This experimental model provides an outstanding opportunity to compare the solution techniques because of the heterogeneous hydraulic conductivity distribution of known structure, and the availability of detailed measurements with which to compare simulated concentrations. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation, given the different methods of simulating solute transport. The results show that simulated peak concentrations, even at very fine grid spacings, varied because of different amounts of numerical dispersion. Sensitivity analysis results were robust in that they were independent of the solution technique. They revealed extreme correlation between hydraulic conductivity and porosity, and that the breakthrough curve data did not provide enough information about the dispersivities to estimate individual values for the five sands. However, estimated hydraulic conductivity values are significantly influenced by both the large possible variations in model dispersion and the amount of numerical dispersion present in the solution technique.
Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow
NASA Astrophysics Data System (ADS)
Henshaw, William D.; Schwendeman, Donald W.
2006-08-01
We consider the solution of the reactive and non-reactive Euler equations on two-dimensional domains that evolve in time. The domains are discretized using moving overlapping grids. In a typical grid construction, boundary-fitted grids are used to represent moving boundaries, and these grids overlap with stationary background Cartesian grids. Block-structured adaptive mesh refinement (AMR) is used to resolve fine-scale features in the flow such as shocks and detonations. Refinement grids are added to base-level grids according to an estimate of the error, and these refinement grids move with their corresponding base-level grids. The numerical approximation of the governing equations takes place in the parameter space of each component grid which is defined by a mapping from (fixed) parameter space to (moving) physical space. The mapped equations are solved numerically using a second-order extension of Godunov's method. The stiff source term in the reactive case is handled using a Runge-Kutta error-control scheme. We consider cases when the boundaries move according to a prescribed function of time and when the boundaries of embedded bodies move according to the surface stress exerted by the fluid. In the latter case, the Newton-Euler equations describe the motion of the center of mass of the each body and the rotation about it, and these equations are integrated numerically using a second-order predictor-corrector scheme. Numerical boundary conditions at slip walls are described, and numerical results are presented for both reactive and non-reactive flows that demonstrate the use and accuracy of the numerical approach.
Gu, Xingxing; Tong, Chuan-Jia; Rehman, Sarish; Liu, Li-Min; Hou, Yanglong; Zhang, Shanqing
2016-06-29
Low-cost, long-life, and high-performance lithium batteries not only provide an economically viable power source to electric vehicles and smart electricity grids but also address the issues of the energy shortage and environmental sustainability. Herein, low-cost, hierarchically porous, and nitrogen-doped loofah sponge carbon (N-LSC) derived from the loofah sponge has been synthesized via a simple calcining process and then applied as a multifunctional blocking layer for Li-S, Li-Se, and Li-I2 batteries. As a result of the ultrahigh specific area (2551.06 m(2) g(-1)), high porosity (1.75 cm(3) g(-1)), high conductivity (1170 S m(-1)), and heteroatoms doping of N-LSC, the resultant Li-S, Li-Se, and Li-I2 batteries with the N-LSC-900 membrane deliver outstanding electrochemical performance stability in all cases, i.e., high reversible capacities of 623.6 mA h g(-1) at 1675 mA g(-1) after 500 cycles, 350 mA h g(-1) at 1356 mA g(-1) after 1000 cycles, and 150 mA h g(-1) at 10550 mA g(-1) after 5000 cycles, respectively. The successful application to Li-S, Li-Se, and Li-I2 batteries suggests that loofa sponge carbon could play a vital role in modern rechargeable battery industries as a universal, cost-effective, environmentally friendly, and high-performance blocking layer.
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Reuthler, James J.; McDaniel, Ryan D.
2003-01-01
A flexible framework for the development of block structured volume grids for hypersonic Navier-Stokes flow simulations was developed for analysis of the Shuttle Orbiter Columbia. The development of the flexible framework, resulted in an ability to quickly generate meshes to directly correlate solutions contributed by participating groups on a common surface mesh, providing confidence for the extension of the envelope of solutions and damage scenarios. The framework draws on the experience of NASA Langely and NASA Ames Research Centers in structured grid generation, and consists of a grid generation process that is implemented through a division of responsibilities. The nominal division of labor consisted of NASA Johnson Space Center coordinating the damage scenarios to be analyzed by the Aerothermodynamics Columbia Accident Investigation (CAI) team, Ames developing the surface grids that described the computational volume about the orbiter, and Langely improving grid quality of Ames generated data and constructing the final volume grids. Distributing the work among the participants in the Aerothermodynamic CIA team resulted in significantly less time required to construct complete meshes than possible by any individual participant. The approach demonstrated that the One-NASA grid generation team could sustain the demand for new meshes to explore new damage scenarios within a aggressive timeline.
Mehl, S.; Hill, M.C.
2002-01-01
Models with local grid refinement, as often required in groundwater models, pose special problems for model calibration. This work investigates the calculation of sensitivities and the performance of regression methods using two existing and one new method of grid refinement. The existing local grid refinement methods considered are: (a) a variably spaced grid in which the grid spacing becomes smaller near the area of interest and larger where such detail is not needed, and (b) telescopic mesh refinement (TMR), which uses the hydraulic heads or fluxes of a regional model to provide the boundary conditions for a locally refined model. The new method has a feedback between the regional and local grids using shared nodes, and thereby, unlike the TMR methods, balances heads and fluxes at the interfacing boundary. Results for sensitivities are compared for the three methods and the effect of the accuracy of sensitivity calculations are evaluated by comparing inverse modelling results. For the cases tested, results indicate that the inaccuracies of the sensitivities calculated using the TMR approach can cause the inverse model to converge to an incorrect solution.
Mehl, S.; Hill, M.C.
2002-01-01
Models with local grid refinement, as often required in groundwater models, pose special problems for model calibration. This work investigates the calculation of sensitivities and performance of regression methods using two existing and one new method of grid refinement. The existing local grid refinement methods considered are (1) a variably spaced grid in which the grid spacing becomes smaller near the area of interest and larger where such detail is not needed and (2) telescopic mesh refinement (TMR), which uses the hydraulic heads or fluxes of a regional model to provide the boundary conditions for a locally refined model. The new method has a feedback between the regional and local grids using shared nodes, and thereby, unlike the TMR methods, balances heads and fluxes at the interfacing boundary. Results for sensitivities are compared for the three methods and the effect of the accuracy of sensitivity calculations are evaluated by comparing inverse modelling results. For the cases tested, results indicate that the inaccuracies of the sensitivities calculated using the TMR approach can cause the inverse model to converge to an incorrect solution.
FDD Massive MIMO Channel Estimation With Arbitrary 2D-Array Geometry
NASA Astrophysics Data System (ADS)
Dai, Jisheng; Liu, An; Lau, Vincent K. N.
2018-05-01
This paper addresses the problem of downlink channel estimation in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the cdownlink channel. However, there are at least two shortcomings of these DFT-based methods: 1) they are applicable to uniform linear arrays (ULAs) only, since the DFT basis requires a special structure of ULAs, and 2) they always suffer from a performance loss due to the leakage of energy over some DFT bins. To deal with the above shortcomings, we introduce an off-grid model for downlink channel sparse representation with arbitrary 2D-array antenna geometry, and propose an efficient sparse Bayesian learning (SBL) approach for the sparse channel recovery and off-grid refinement. The main idea of the proposed off-grid method is to consider the sampled grid points as adjustable parameters. Utilizing an in-exact block majorization-minimization (MM) algorithm, the grid points are refined iteratively to minimize the off-grid gap. Finally, we further extend the solution to uplink-aided channel estimation by exploiting the angular reciprocity between downlink and uplink channels, which brings enhanced recovery performance.
Development of a Flexible Framework for Hypersonic Navier-Stoke Space Shuttle Orbiter Meshes
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Reuthler, James J.; McDaniel, Ryan D.
2004-01-01
A flexible framework constructing block structured volume grids for hypersonic Navier-Strokes flow simulations was developed for the analysis of the Shuttle Orbiter Columbia. The development of the framework, which was partially basedon the requirements of the primary flow solvers used resulted in an ability to directly correlate solutions contributed by participating groups on a common surface mesh. A foundation was built through the assessment of differences between differnt solvers, which provided confidence for independent assessment of other damage scenarios by team members. The framework draws on the experience of NASA Langley and NASA Ames Research Centers in structured grid generation, and consists of a grid generation, and consist of a grid generation process implemented through a division of responsibilities. The nominal division of labor consisted of NASA Johnson Space Center coordinating the damage scenarios to be analyzed by the Aerothermodynamics Columbia Accident Investigation (ACAI) team, Ames developing the surface grids that described the computational volume about the Orbiter, and Langley improving grid quality of Ames generated data and constructing the final computational volume grids. Distributing the work among the participant in th ACAI team resulted in significantl less time required to construct complete meshes than possible by any individual participant. The approach demonstrated that the One-NASA grid generation team could sustain the demand of for five new meshes to explore new damage scenarios within an aggressive time-line.
Woven-grid sealed quasi-bipolar lead-acid battery construction and fabricating method
NASA Technical Reports Server (NTRS)
Rippel, Wally E. (Inventor)
1989-01-01
A quasi-bipolar lead-acid battery construction includes a plurality of bipolar cells disposed in side-by-side relation to form a stack, and a pair of monoplanar plates at opposite ends of the stack, the cell stack and monopolar plates being contained within a housing of the battery. Each bipolar cell is loaded with an electrolyte and composed of a bipolar electrode plate and a pair of separator plates disposed on opposite sides of the electrode plate and peripherally sealed thereto. Each bipolar electrode plate is composed of a partition sheet and two bipolar electrode elements folded into a hairpin configuration and applied over opposite edges of the partition sheet so as to cover the opposite surfaces of the opposite halves thereof. Each bipolar electrode element is comprised of a woven grid with a hot-melt strip applied to a central longitudinal region of the grid along which the grid is folded into the hairpin configuration, and layers of negative and positive active material pastes applied to opposite halves of the grid on opposite sides of the central hot-melt strip. The grid is made up of strands of conductive and non-conductive yarns composing the respective transverse and longitudinal weaves of the grid. The conductive yarn has a multi-stranded glass core surrounded and covered by a lead sheath, whereas the non-conductive yarn has a multi-stranded glass core surrounded and covered by a thermally activated sizing.
Application of the Cubed-Sphere Grid to Tilted Black-Hole Accretion Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fragile, P C; Lindner, C C; Anninos, P
2008-09-24
In recent work we presented the first results of global general relativistic magnetohydrodynamic (GRMHD) simulations of tilted (or misaligned) accretion disks around rotating black holes. The simulated tilted disks showed dramatic differences from comparable untilted disks, such as asymmetrical accretion onto the hole through opposing 'plunging streams' and global precession of the disk powered by a torque provided by the black hole. However, those simulations used a traditional spherical-polar grid that was purposefully underresolved along the pole, which prevented us from assessing the behavior of any jets that may have been associated with the tilted disks. To address this shortcomingmore » we have added a block-structured 'cubed-sphere' grid option to the Cosmos++ GRMHD code, which will allow us to simultaneously resolve the disk and polar regions. Here we present our implementation of this grid and the results of a small suite of validation tests intended to demonstrate that the new grid performs as expected. The most important test in this work is a comparison of identical tilted disks, one evolved using our spherical-polar grid and the other with the cubed-sphere grid. We also demonstrate an interesting dependence of the early-time evolution of our disks on their orientation with respect to the grid alignment. This dependence arises from the differing treatment of current sheets within the disks, especially whether they are aligned with symmetry planes of the grid or not.« less
Self-doped microphase separated block copolymer electrolyte
Mayes, Anne M.; Sadoway, Donald R.; Banerjee, Pallab; Soo, Philip; Huang, Biying
2002-01-01
A polymer electrolyte includes a self-doped microphase separated block copolymer including at least one ionically conductive block and at least one second block that is immiscible in the ionically conductive block, an anion immobilized on the polymer electrolyte and a cationic species. The ionically conductive block provides a continuous ionically conductive pathway through the electrolyte. The electrolyte may be used as an electrolyte in an electrochemical cell.
Autonomous Energy Grids: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroposki, Benjamin D; Dall-Anese, Emiliano; Bernstein, Andrey
With much higher levels of distributed energy resources - variable generation, energy storage, and controllable loads just to mention a few - being deployed into power systems, the data deluge from pervasive metering of energy grids, and the shaping of multi-level ancillary-service markets, current frameworks to monitoring, controlling, and optimizing large-scale energy systems are becoming increasingly inadequate. This position paper outlines the concept of 'Autonomous Energy Grids' (AEGs) - systems that are supported by a scalable, reconfigurable, and self-organizing information and control infrastructure, can be extremely secure and resilient (self-healing), and self-optimize themselves in real-time for economic and reliable performancemore » while systematically integrating energy in all forms. AEGs rely on scalable, self-configuring cellular building blocks that ensure that each 'cell' can self-optimize when isolated from a larger grid as well as partaking in the optimal operation of a larger grid when interconnected. To realize this vision, this paper describes the concepts and key research directions in the broad domains of optimization theory, control theory, big-data analytics, and complex system modeling that will be necessary to realize the AEG vision.« less
Enabling Object Storage via shims for Grid Middleware
NASA Astrophysics Data System (ADS)
Cadellin Skipsey, Samuel; De Witt, Shaun; Dewhurst, Alastair; Britton, David; Roy, Gareth; Crooks, David
2015-12-01
The Object Store model has quickly become the basis of most commercially successful mass storage infrastructure, backing so-called ”Cloud” storage such as Amazon S3, but also underlying the implementation of most parallel distributed storage systems. Many of the assumptions in Object Store design are similar, but not identical, to concepts in the design of Grid Storage Elements, although the requirement for ”POSIX-like” filesystem structures on top of SEs makes the disjunction seem larger. As modern Object Stores provide many features that most Grid SEs do not (block level striping, parallel access, automatic file repair, etc.), it is of interest to see how easily we can provide interfaces to typical Object Stores via plugins and shims for Grid tools, and how well experiments can adapt their data models to them. We present evaluation of, and first-deployment experiences with, (for example) Xrootd-Ceph interfaces for direct object-store access, as part of an initiative within GridPP[1] hosted at RAL. Additionally, we discuss the tradeoffs and experience of developing plugins for the currently-popular Ceph parallel distributed filesystem for the GFAL2 access layer, at Glasgow.
Performance prediction using geostatistics and window reservoir simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fontanilla, J.P.; Al-Khalawi, A.A.; Johnson, S.G.
1995-11-01
This paper is the first window model study in the northern area of a large carbonate reservoir in Saudi Arabia. It describes window reservoir simulation with geostatistics to model uneven water encroachment in the southwest producing area of the northern portion of the reservoir. In addition, this paper describes performance predictions that investigate the sweep efficiency of the current peripheral waterflood. A 50 x 50 x 549 (240 m. x 260 m. x 0.15 m. average grid block size) geological model was constructed with geostatistics software. Conditional simulation was used to obtain spatial distributions of porosity and volume of dolomite.more » Core data transforms were used to obtain horizontal and vertical permeability distributions. Simple averaging techniques were used to convert the 549-layer geological model to a 50 x 50 x 10 (240 m. x 260 m. x 8 m. average grid block size) window reservoir simulation model. Flux injectors and flux producers were assigned to the outermost grid blocks. Historical boundary flux rates were obtained from a coarsely-ridded full-field model. Pressure distribution, water cuts, GORs, and recent flowmeter data were history matched. Permeability correction factors and numerous parameter adjustments were required to obtain the final history match. The permeability correction factors were based on pressure transient permeability-thickness analyses. The prediction phase of the study evaluated the effects of infill drilling, the use of artificial lifts, workovers, horizontal wells, producing rate constraints, and tight zone development to formulate depletion strategies for the development of this area. The window model will also be used to investigate day-to-day reservoir management problems in this area.« less
NASA Astrophysics Data System (ADS)
Ke, Rihuan; Ng, Michael K.; Sun, Hai-Wei
2015-12-01
In this paper, we study the block lower triangular Toeplitz-like with tri-diagonal blocks system which arises from the time-fractional partial differential equation. Existing fast numerical solver (e.g., fast approximate inversion method) cannot handle such linear system as the main diagonal blocks are different. The main contribution of this paper is to propose a fast direct method for solving this linear system, and to illustrate that the proposed method is much faster than the classical block forward substitution method for solving this linear system. Our idea is based on the divide-and-conquer strategy and together with the fast Fourier transforms for calculating Toeplitz matrix-vector multiplication. The complexity needs O (MNlog2 M) arithmetic operations, where M is the number of blocks (the number of time steps) in the system and N is the size (number of spatial grid points) of each block. Numerical examples from the finite difference discretization of time-fractional partial differential equations are also given to demonstrate the efficiency of the proposed method.
Robust and efficient overset grid assembly for partitioned unstructured meshes
NASA Astrophysics Data System (ADS)
Roget, Beatrice; Sitaraman, Jayanarayanan
2014-03-01
This paper presents a method to perform efficient and automated Overset Grid Assembly (OGA) on a system of overlapping unstructured meshes in a parallel computing environment where all meshes are partitioned into multiple mesh-blocks and processed on multiple cores. The main task of the overset grid assembler is to identify, in parallel, among all points in the overlapping mesh system, at which points the flow solution should be computed (field points), interpolated (receptor points), or ignored (hole points). Point containment search or donor search, an algorithm to efficiently determine the cell that contains a given point, is the core procedure necessary for accomplishing this task. Donor search is particularly challenging for partitioned unstructured meshes because of the complex irregular boundaries that are often created during partitioning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X; Liang, X; Penagaricano, J
2015-06-15
Purpose: To present the first clinical applications of Helical Tomotherapy-based spatially fractionated radiotherapy (HT-GRID) for deep seated tumors and associated dosimetric study. Methods: Ten previously treated GRID patients were selected (5 HT-GRID and 5 LINAC-GRID using a commercially available GRID block). Each case was re-planned either in HT-GRID or LINAC-GRID for a total of 10 plans for both techniques using same prescribed dose of 20 Gy to maximum point dose of GRID GTV. For TOMO-GRID, a programmable virtual TOMOGRID template mimicking a GRID pattern was generated. Dosimetric parameters compared included: GRID GTV mean dose (Dmean) and equivalent uniform dose (EUD),more » GRID GTV dose inhomogeneity (Ratio(valley/peak)), normal tissue Dmean and EUD, and other organs-at-risk(OARs) doses. Results: The median tumor volume was 634 cc, ranging from 182 to 4646 cc. Median distance from skin to the deepest part of tumor was 22cm, ranging from 8.9 to 38cm. The median GRID GTV Dmean and EUD was 10.65Gy (9.8–12.5Gy) and 7.62Gy (4.31–11.06Gy) for HT-GRID and was 6.73Gy (4.44–8.44Gy) and 3.95Gy (0.14–4.2Gy) for LINAC-GRID. The median Ratio(valley/peak) was 0.144(0.05–0.29) for HT-GRID and was 0.055(0.0001–0.14) for LINAC-GRID. For normal tissue in HT-GRID, the median Dmean and EUD was 1.24Gy (0.34–2.54Gy) and 5.45 Gy(3.45–6.89Gy) and was 0.61 Gy(0.11–1.52Gy) and 6Gy(4.45–6.82Gy) for LINAC-GRID. The OAR doses were comparable between the HT-GRID and LINAC-GRID. However, in some cases it was not possible to avoid a critical structure in LINAC-GRID; while HT-GRID can spare more tissue doses for certain critical structures. Conclusion: HT-GRID delivers higher GRID GTV Dmean, EUD and Ratio(valley/peak) compared to LINAC-GRID. HT-GRID delivers higher Dmean and lower EUD for normal tissue compared to LINAC-GRID. TOMOGRID template can be highly patient-specific and allows adjustment of the GRID pattern to different tumor sizes and shapes when they are deeply-seated and cannot be safely treated with LINAC-GRID.« less
Thermal Conductivity in Soil: Theoretical Approach by 3D Infinite Resistance Grid Model
NASA Astrophysics Data System (ADS)
Changjan, A.; Intaravicha, N.
2018-05-01
Thermal conductivity in soil was elementary characteristic of soil that conduct heat, measured in terms of Fourier’s Law for heat conduction and useful application in many fields: such as Utilizing underground cable for transmission and distribution systems, the rate of cooling of the cable depends on the thermal properties of the soil surrounding the cable. In this paper, we investigated thermal conductivity in soil by infinite three dimensions (3D) electrical resistance circuit concept. Infinite resistance grid 3D was the grid of resistors that extends to infinity in all directions. Model of thermal conductivity in soil of this research was generated from this concept: comparison between electrical resistance and thermal resistance in soil. Finally, we investigated the analytical form of thermal conductivity in soil which helpful for engineering and science students that could exhibit education with a principle of physics that applied to real situations.
Space Weather Effects on Current and Future Electric Power Systems
NASA Astrophysics Data System (ADS)
Munoz, D.; Dutta, O.; Tandoi, C.; Brandauer, W.; Mohamed, A.; Damas, M. C.
2016-12-01
This work addresses the effects of Geomagnetic Disturbances (GMDs) on the present bulk power system as well as the future smart grid, and discusses the mitigation of these geomagnetic impacts, so as to reduce the vulnerabilities of the electric power network to large space weather events. Solar storm characterized by electromagnetic radiation generates geo-electric fields that result in the flow of Geomagnetically Induced Currents (GICs) through the transmission lines, followed by transformers and the ground. As the ground conductivity and the power network topology significantly vary with the region, it becomes imperative to estimate of the magnitude of GICs for different places. In this paper, the magnitude of GIC has been calculated for New York State (NYS) with the help of extensive modelling of the whole NYS electricity transmission network using real data. Although GIC affects only high voltage levels, e.g. above 300 kV, the presence of coastline in NYS makes the low voltage transmission lines also susceptible to GIC. Besides this, the encroachment of technologies pertaining to smart grid implementation, such as Phasor Measurement Units (PMUs), Microgrids, Flexible AC Transmission System (FACTS), and Information and Communication Technology (ICT) have been analyzed for GMD impacts. Inaccurate PMU results due to scintillation of GPS signals that are affected by electromagnetic interference of solar storm, presence of renewable energy resources in coastal areas that are more vulnerable to GMD, the ability of FACTS devices to either block or pave new path for GICs and so on, shed some light on impacts of GMD on smart grid technologies.
Interim Report by Asia International Grid Connection Study Group
NASA Astrophysics Data System (ADS)
Omatsu, Ryo
2018-01-01
The Asia International Grid Connection Study Group Interim Report examines the feasibility of developing an international grid connection in Japan. The Group has investigated different cases of grid connections in Europe and conducted research on electricity markets in Northeast Asia, and identifies the barriers and challenges for developing an international grid network including Japan. This presentation introduces basic contents of the interim report by the Study Group.
Advanced grid-stiffened composite shells for applications in heavy-lift helicopter rotor blade spars
NASA Astrophysics Data System (ADS)
Narayanan Nampy, Sreenivas
Modern rotor blades are constructed using composite materials to exploit their superior structural performance compared to metals. Helicopter rotor blade spars are conventionally designed as monocoque structures. Blades of the proposed Heavy Lift Helicopter are envisioned to be as heavy as 800 lbs when designed using the monocoque spar design. A new and innovative design is proposed to replace the conventional spar designs with light weight grid-stiffened composite shell. Composite stiffened shells have been known to provide excellent strength to weight ratio and damage tolerance with an excellent potential to reduce weight. Conventional stringer--rib stiffened construction is not suitable for rotor blade spars since they are limited in generating high torsion stiffness that is required for aeroelastic stability of the rotor. As a result, off-axis (helical) stiffeners must be provided. This is a new design space where innovative modeling techniques are needed. The structural behavior of grid-stiffened structures under axial, bending, and torsion loads, typically experienced by rotor blades need to be accurately predicted. The overall objective of the present research is to develop and integrate the necessary design analysis tools to conduct a feasibility study in employing grid-stiffened shells for heavy-lift rotor blade spars. Upon evaluating the limitations in state-of-the-art analytical models in predicting the axial, bending, and torsion stiffness coefficients of grid and grid-stiffened structures, a new analytical model was developed. The new analytical model based on the smeared stiffness approach was developed employing the stiffness matrices of the constituent members of the grid structure such as an arch, helical, or straight beam representing circumferential, helical, and longitudinal stiffeners. This analysis has the capability to model various stiffening configurations such as angle-grid, ortho-grid, and general-grid. Analyses were performed using an existing state-of-the-art and newly developed model to predict the torsion, bending, and axial stiffness of grid and grid-stiffened structures with various stiffening configurations. These predictions were compared to results generated using finite element analysis (FEA) to observe excellent correlation (within 6%) for a range of parameters for grid and grid-stiffened structures such as grid density, stiffener angle, and aspect ratio of the stiffener cross-section. Experimental results from cylindrical grid specimen testing were compared with analytical prediction using the new analysis. The new analysis predicted stiffness coefficients with nearly 7% error compared to FEA results. From the parametric studies conducted, it was observed that the previous state-of-the-art analysis on the other hand exhibited errors of the order of 39% for certain designs. Stability evaluations were also conducted by integrating the new analysis with established stability formulations. A design study was conducted to evaluate the potential weight savings of a simple grid-stiffened rotor blade spar structure compared to a baseline monocoque design. Various design constraints such as stiffness, strength, and stability were imposed. A manual search was conducted for design parameters such as stiffener density, stiffener angle, shell laminate, and stiffener aspect ratio that provide lightweight grid-stiffened designs compared to the baseline. It was found that a weight saving of 9.1% compared to the baseline is possible without violating any of the design constraints.
How Portuguese and American Teachers Plan for Literacy Instruction
ERIC Educational Resources Information Center
Spear-Swerling, Louise; Lopes, Joao; Oliveira, Celia; Zibulsky, Jamie
2016-01-01
This study explored American and Portuguese elementary teachers' preferences in planning for literacy instruction using the Language Arts Activity Grid (LAAG; Cunningham, Zibulsky, Stanovich, & Stanovich, 2009), on which teachers described their preferred instructional activities for a hypothetical 2-h language arts block. Portuguese teachers…
Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.
2016-01-01
Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.
Glucose biosensor based on GOx/HRP bienzyme at liquid-crystal/aqueous interface.
Khan, Mashooq; Park, Soo-Young
2015-11-01
Glucose oxidase (GOx) and horseradish peroxidase (HRP) were co-immobilized to the polyacrylicacid block of a poly(acrylicacid-b-4-cyanobiphenyl-4'-undecylacrylate) (PAA-b-LCP) copolymer in water. PAA-b-LCP was strongly anchored by the LCP block in 4-cyano-4'-pentylbiphenyl (5CB) which was contained in a transmission electron microscope (TEM) grid for glucose detection. The optimal conditions for the performance of the TEM grid glucose biosensor were studied in terms of the activity and stability of the immobilized enzymes. Glucose in water was detected by the 5CB changing from a planar to a homeotropic orientation, as observed through a polarized optical microscope. The TEM biosensor detected glucose concentrations at ⩾0.02 mM, with an optimal GOx/HRP molar ratio of 3/1. This glucose biosensor has characteristics of enzyme sensitivity and stability, reusability, the ease and selective glucose detection which may provide a new way of detecting glucose. Copyright © 2015 Elsevier Inc. All rights reserved.
An Aerodynamic Simulation Process for Iced Lifting Surfaces and Associated Issues
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Vickerman, Mary B.; Hackenberg, Anthony W.; Rigby, David L.
2003-01-01
This paper discusses technologies and software tools that are being implemented in a software toolkit currently under development at NASA Glenn Research Center. Its purpose is to help study the effects of icing on airfoil performance and assist with the aerodynamic simulation process which consists of characterization and modeling of ice geometry, application of block topology and grid generation, and flow simulation. Tools and technologies for each task have been carefully chosen based on their contribution to the overall process. For the geometry characterization and modeling, we have chosen an interactive rather than automatic process in order to handle numerous ice shapes. An Appendix presents features of a software toolkit developed to support the interactive process. Approaches taken for the generation of block topology and grids, and flow simulation, though not yet implemented in the software, are discussed with reasons for why particular methods are chosen. Some of the issues that need to be addressed and discussed by the icing community are also included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
P.C. Weaver
2009-02-17
Conduct verification surveys of grids at the DWI 1630 Site in Knoxville, Tennessee. The independent verification team (IVT) from ORISE, conducted verification activities in whole and partial grids, as completed by BJC. ORISE site activities included gamma surface scans and soil sampling within 33 grids; G11 through G14; H11 through H15; X14, X15, X19, and X21; J13 through J15 and J17 through J21; K7 through K9 and K13 through K15; L13 through L15; and M14 through M16
NASA Astrophysics Data System (ADS)
Herrick, Gregory Paul
The quest to accurately capture flow phenomena with length-scales both short and long and to accurately represent complex flow phenomena within disparately sized geometry inspires a need for an efficient, high-fidelity, multi-block structured computational fluid dynamics (CFD) parallel computational scheme. This research presents and demonstrates a more efficient computational method by which to perform multi-block structured CFD parallel computational simulations, thus facilitating higher-fidelity solutions of complicated geometries (due to the inclusion of grids for "small'' flow areas which are often merely modeled) and their associated flows. This computational framework offers greater flexibility and user-control in allocating the resource balance between process count and wall-clock computation time. The principal modifications implemented in this revision consist of a "multiple grid block per processing core'' software infrastructure and an analytic computation of viscous flux Jacobians. The development of this scheme is largely motivated by the desire to simulate axial compressor stall inception with more complete gridding of the flow passages (including rotor tip clearance regions) than has been previously done while maintaining high computational efficiency (i.e., minimal consumption of computational resources), and thus this paradigm shall be demonstrated with an examination of instability in a transonic axial compressor. However, the paradigm presented herein facilitates CFD simulation of myriad previously impractical geometries and flows and is not limited to detailed analyses of axial compressor flows. While the simulations presented herein were technically possible under the previous structure of the subject software, they were much less computationally efficient and thus not pragmatically feasible; the previous research using this software to perform three-dimensional, full-annulus, time-accurate, unsteady, full-stage (with sliding-interface) simulations of rotating stall inception in axial compressors utilized tip clearance periodic models, while the scheme here is demonstrated by a simulation of axial compressor stall inception utilizing gridded rotor tip clearance regions. As will be discussed, much previous research---experimental, theoretical, and computational---has suggested that understanding clearance flow behavior is critical to understanding stall inception, and previous computational research efforts which have used tip clearance models have begged the question, "What about the clearance flows?''. This research begins to address that question.
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Delaney, Robert A.; Bettner, James L.
1991-01-01
The primary objective was the development of a time dependent 3-D Euler/Navier-Stokes aerodynamic analysis to predict unsteady compressible transonic flows about ducted and unducted propfan propulsion systems at angle of attack. The resulting computer codes are referred to as Advanced Ducted Propfan Analysis Codes (ADPAC). A computer program user's manual is presented for the ADPAC. Aerodynamic calculations were based on a four stage Runge-Kutta time marching finite volume solution technique with added numerical dissipation. A time accurate implicit residual smoothing operator was used for unsteady flow predictions. For unducted propfans, a single H-type grid was used to discretize each blade passage of the complete propeller. For ducted propfans, a coupled system of five grid blocks utilizing an embedded C grid about the cowl leading edge was used to discretize each blade passage. Grid systems were generated by a combined algebraic/elliptic algorithm developed specifically for ducted propfans. Numerical calculations were compared with experimental data for both ducted and unducted flows.
A novel approach to multiple sequence alignment using hadoop data grids.
Sudha Sadasivam, G; Baktavatchalam, G
2010-01-01
Multiple alignment of protein sequences helps to determine evolutionary linkage and to predict molecular structures. The factors to be considered while aligning multiple sequences are speed and accuracy of alignment. Although dynamic programming algorithms produce accurate alignments, they are computation intensive. In this paper we propose a time efficient approach to sequence alignment that also produces quality alignment. The dynamic nature of the algorithm coupled with data and computational parallelism of hadoop data grids improves the accuracy and speed of sequence alignment. The principle of block splitting in hadoop coupled with its scalability facilitates alignment of very large sequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Brion
2014-10-01
The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormalmore » conditions testing, and charging of a plug-in vehicle.« less
Results from Operational Testing of the Siemens Smart Grid-Capable Electric Vehicle Supply Equipment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Brion
2015-05-01
The Idaho National Laboratory conducted testing and analysis of the Siemens smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Siemens for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Siemens smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormalmore » conditions testing, and charging of a plug-in vehicle.« less
Summary of the Third AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Brodersen, Olaf P.; Eisfeld, Bernhard; Wahls, Richard A.; Morrison, Joseph H.; Zickuhr, Tom; Laflin, Kelly R.; Mavriplis, DImitri J.
2007-01-01
The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-al;one configurations of that are representative of transonic transport aircraft. The baseline DLR-F6 wing-body geometry, previously utilized in DPW-II, is also augmented with a side-body fairing to help reduce the complexity of the flow physics in the wing-body juncture region. In addition, two new wing-alone geometries have been developed for the DPW-II. Numerical calculations are performed using industry-relevant test cases that include lift-specific and fixed-alpha flight conditions, as well as full drag polars. Drag, lift, and pitching moment predictions from previous Reynolds-Averaged Navier-Stokes computational fluid Dynamics Methods are presented, focused on fully-turbulent flows. Solutions are performed on structured, unstructured, and hybrid grid systems. The structured grid sets include point-matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, and prismatic elements. Effort was made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body families are comprised of a coarse, medium, and fine grid, while the wing-alone families also include an extra-fine mesh. These mesh sequences are utilized to help determine how the provided flow solutions fair with respect to asymptotic grid convergence, and are used to estimate an absolute drag of each configuration.
Point Cloud Oriented Shoulder Line Extraction in Loess Hilly Area
NASA Astrophysics Data System (ADS)
Min, Li; Xin, Yang; Liyang, Xiong
2016-06-01
Shoulder line is the significant line in hilly area of Loess Plateau in China, dividing the surface into positive and negative terrain (P-N terrains). Due to the point cloud vegetation removal methods of P-N terrains are different, there is an imperative need for shoulder line extraction. In this paper, we proposed an automatic shoulder line extraction method based on point cloud. The workflow is as below: (i) ground points were selected by using a grid filter in order to remove most of noisy points. (ii) Based on DEM interpolated by those ground points, slope was mapped and classified into two classes (P-N terrains), using Natural Break Classified method. (iii) The common boundary between two slopes is extracted as shoulder line candidate. (iv) Adjust the filter gird size and repeat step i-iii until the shoulder line candidate matches its real location. (v) Generate shoulder line of the whole area. Test area locates in Madigou, Jingbian County of Shaanxi Province, China. A total of 600 million points are acquired in the test area of 0.23km2, using Riegl VZ400 3D Laser Scanner in August 2014. Due to the limit Granted computing performance, the test area is divided into 60 blocks and 13 of them around the shoulder line were selected for filter grid size optimizing. The experiment result shows that the optimal filter grid size varies in diverse sample area, and a power function relation exists between filter grid size and point density. The optimal grid size was determined by above relation and shoulder lines of 60 blocks were then extracted. Comparing with the manual interpretation results, the accuracy of the whole result reaches 85%. This method can be applied to shoulder line extraction in hilly area, which is crucial for point cloud denoising and high accuracy DEM generation.
Method for fabricating solar cells having integrated collector grids
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr. (Inventor)
1979-01-01
A heterojunction or Schottky barrier photovoltaic device comprising a conductive base metal layer compatible with and coating predominately the exposed surface of the p-type substrate of the device such that a back surface field region is formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device having a metal alloy grid network of the same metal elements of the oxide constituents of the mixed metal oxide layer embedded in the mixed metal oxide layer, an insulating layer which prevents electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer, and a metal contact means covering the insulating layer and in intimate contact with the metal grid network embedded in the transparent, conductive oxide layer for conducting electrons generated by the photovoltaic process from the device.
Interdigitated photovoltaic power conversion device
Ward, James Scott; Wanlass, Mark Woodbury; Gessert, Timothy Arthur
1999-01-01
A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.
Interdigitated photovoltaic power conversion device
Ward, J.S.; Wanlass, M.W.; Gessert, T.A.
1999-04-27
A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.
Rapid Airplane Parametric Input Design (RAPID)
NASA Technical Reports Server (NTRS)
Smith, Robert E.
1995-01-01
RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool ADIFOR to the grid generation program. The output of ADIFOR is a new source code containing the old code plus expressions for derivatives of specified dependent variables (grid coordinates) with respect to specified independent variables (design parameters). The RAPID methodology and software provide a means of rapidly defining numerical prototypes, grids, and grid sensitivity of a class of airplane configurations. This technology and software is highly useful for CFD research for preliminary design and optimization processes.
NASA Technical Reports Server (NTRS)
Hinke, Thomas H.
2004-01-01
Grid technology consists of middleware that permits distributed computations, data and sensors to be seamlessly integrated into a secure, single-sign-on processing environment. In &is environment, a user has to identify and authenticate himself once to the grid middleware, and then can utilize any of the distributed resources to which he has been,panted access. Grid technology allows resources that exist in enterprises that are under different administrative control to be securely integrated into a single processing environment The grid community has adopted commercial web services technology as a means for implementing persistent, re-usable grid services that sit on top of the basic distributed processing environment that grids provide. These grid services can then form building blocks for even more complex grid services. Each grid service is characterized using the Web Service Description Language, which provides a description of the interface and how other applications can access it. The emerging Semantic grid work seeks to associates sufficient semantic information with each grid service such that applications wii1 he able to automatically select, compose and if necessary substitute available equivalent services in order to assemble collections of services that are most appropriate for a particular application. Grid technology has been used to provide limited support to various Earth and space science applications. Looking to the future, this emerging grid service technology can provide a cyberinfrastructures for both the Earth and space science communities. Groups within these communities could transform those applications that have community-wide applicability into persistent grid services that are made widely available to their respective communities. In concert with grid-enabled data archives, users could easily create complex workflows that extract desired data from one or more archives and process it though an appropriate set of widely distributed grid services discovered using semantic grid technology. As required, high-end computational resources could be drawn from available grid resource pools. Using grid technology, this confluence of data, services and computational resources could easily be harnessed to transform data from many different sources into a desired product that is delivered to a user's workstation or to a web portal though which it could be accessed by its intended audience.
Low-pass interference filters for submillimeter astronomy
NASA Technical Reports Server (NTRS)
Whitcomb, S. E.; Keene, J.
1980-01-01
Low-pass (long-wave transmitting) interference filters, suitable for broadband photometric observations, previously have been constructed from series of capacitive grids stretched on thin Mylar. These filters have the desired optical properties of high transmission, sharp cut-ons, and good blocking at short wavelengths. Their designs, however, do not scale from one wavelength to another and their performance can deteriorate at low temperatures due to differential contraction of the dielectric backing and the supporting structure. The deviation of these early filters from the predicted scaling was due primarily to the difference in refractive index between the backing material and the medium between the grids. In the present paper, filters are described in which dielectric spacers are used, instead of air, as the medium between the grids. This technique has improved the scaling and has reduced the distortion from differential contraction.
An FPGA Architecture for Extracting Real-Time Zernike Coefficients from Measured Phase Gradients
NASA Astrophysics Data System (ADS)
Moser, Steven; Lee, Peter; Podoleanu, Adrian
2015-04-01
Zernike modes are commonly used in adaptive optics systems to represent optical wavefronts. However, real-time calculation of Zernike modes is time consuming due to two factors: the large factorial components in the radial polynomials used to define them and the large inverse matrix calculation needed for the linear fit. This paper presents an efficient parallel method for calculating Zernike coefficients from phase gradients produced by a Shack-Hartman sensor and its real-time implementation using an FPGA by pre-calculation and storage of subsections of the large inverse matrix. The architecture exploits symmetries within the Zernike modes to achieve a significant reduction in memory requirements and a speed-up of 2.9 when compared to published results utilising a 2D-FFT method for a grid size of 8×8. Analysis of processor element internal word length requirements show that 24-bit precision in precalculated values of the Zernike mode partial derivatives ensures less than 0.5% error per Zernike coefficient and an overall error of <1%. The design has been synthesized on a Xilinx Spartan-6 XC6SLX45 FPGA. The resource utilisation on this device is <3% of slice registers, <15% of slice LUTs, and approximately 48% of available DSP blocks independent of the Shack-Hartmann grid size. Block RAM usage is <16% for Shack-Hartmann grid sizes up to 32×32.
Solar cells having integral collector grids
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr. (Inventor)
1978-01-01
A heterojunction or Schottky barrier photovoltaic device is described, comprising a conductive base metal layer. A back surface field region was formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device. A metal alloy grid network was included. An insulating layer prevented electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer.
User's manual for the HYPGEN hyperbolic grid generator and the HGUI graphical user interface
NASA Technical Reports Server (NTRS)
Chan, William M.; Chiu, Ing-Tsau; Buning, Pieter G.
1993-01-01
The HYPGEN program is used to generate a 3-D volume grid over a user-supplied single-block surface grid. This is accomplished by solving the 3-D hyperbolic grid generation equations consisting of two orthogonality relations and one cell volume constraint. In this user manual, the required input files and parameters and output files are described. Guidelines on how to select the input parameters are given. Illustrated examples are provided showing a variety of topologies and geometries that can be treated. HYPGEN can be used in stand-alone mode as a batch program or it can be called from within a graphical user interface HGUI that runs on Silicon Graphics workstations. This user manual provides a description of the menus, buttons, sliders, and typein fields in HGUI for users to enter the parameters needed to run HYPGEN. Instructions are given on how to configure the interface to allow HYPGEN to run either locally or on a faster remote machine through the use of shell scripts on UNIX operating systems. The volume grid generated is copied back to the local machine for visualization using a built-in hook to PLOT3D.
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.; Alter, Stephen J.
1995-01-01
This document is a users' manual for a new three-dimensional structured multiple-block volume g generator called 3DGRAPE/AL. It is a significantly improved version of the previously-released a widely-distributed programs 3DGRAPE and 3DMAGGS. It generates volume grids by iteratively solving the Poisson Equations in three-dimensions. The right-hand-side terms are designed so that user-specific; grid cell heights and user-specified grid cell skewness near boundary surfaces result automatically, with little user intervention. The code is written in Fortran-77, and can be installed with or without a simple graphical user interface which allows the user to watch as the grid is generated. An introduction describing the improvements over the antecedent 3DGRAPE code is presented first. Then follows a chapter on the basic grid generator program itself, and comments on installing it. The input is then described in detail. After that is a description of the Graphical User Interface. Five example cases are shown next, with plots of the results. Following that is a chapter on two input filters which allow use of input data generated elsewhere. Last is a treatment of the theory embodied in the code.
Mehl, Steffen W.; Hill, Mary C.
2007-01-01
This report documents the addition of the multiple-refined-areas capability to shared node Local Grid Refinement (LGR) and Boundary Flow and Head (BFH) Package of MODFLOW-2005, the U.S. Geological Survey modular, three-dimensional, finite-difference ground-water flow model. LGR now provides the capability to simulate ground-water flow by using one or more block-shaped, higher resolution local grids (child model) within a coarser grid (parent model). LGR accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundaries. The ability to have multiple, nonoverlapping areas of refinement is important in situations where there is more than one area of concern within a regional model. In this circumstance, LGR can be used to simulate these distinct areas with higher resolution grids. LGR can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined ground-water systems. The BFH Package can be used to simulate these situations by using either the parent or child models independently.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Richard Barney; Scoffield, Don; Bennett, Brion
2013-12-01
The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionalitymore » testing, abnormal conditions testing, and charging of a plug-in vehicle.« less
Grid Fin Stabilization of the Orion Launch Abort Vehicle
NASA Technical Reports Server (NTRS)
Pruzan, Daniel A.; Mendenhall, Michael R.; Rose, William C.; Schuster, David M.
2011-01-01
Wind tunnel tests were conducted by Nielsen Engineering & Research (NEAR) and Rose Engineering & Research (REAR) in conjunction with the NASA Engineering & Safety Center (NESC) on a 6%-scale model of the Orion launch abort vehicle (LAV) configured with four grid fins mounted near the base of the vehicle. The objectives of these tests were to 1) quantify LAV stability augmentation provided by the grid fins from subsonic through supersonic Mach numbers, 2) assess the benefits of swept grid fins versus unswept grid fins on the LAV, 3) determine the effects of the LAV abort motors on grid fin aerodynamics, and 4) generate an aerodynamic database for use in the future application of grid fins to small length-to-diameter ratio vehicles similar to the LAV. The tests were conducted in NASA Ames Research Center's 11x11-foot transonic wind tunnel from Mach 0.5 through Mach 1.3 and in their 9x7-foot supersonic wind tunnel from Mach 1.6 through Mach 2.5. Force- and moment-coefficient data were collected for the complete vehicle and for each individual grid fin as a function of angle of attack and sideslip angle. Tests were conducted with both swept and unswept grid fins with the simulated abort motors (cold jets) off and on. The swept grid fins were designed with a 22.5deg aft sweep angle for both the frame and the internal lattice so that the frontal projection of the swept fins was the same as for the unswept fins. Data from these tests indicate that both unswept and swept grid fins provide significant improvements in pitch stability as compared to the baseline vehicle over the Mach number range investigated. The swept fins typically provide improved stability as compared to the unswept fins, but the performance gap diminished as Mach number was increased. The aerodynamic performance of the fins was not observed to degrade when the abort motors were turned on. Results from these tests indicate that grid fins can be a robust solution for stabilizing the Orion LAV over a wide range of operating conditions.
NASA Technical Reports Server (NTRS)
Campbell, W.
1981-01-01
A theoretical evaluation of the stability of an explicit finite difference solution of the transient temperature field in a composite medium is presented. The grid points of the field are assumed uniformly spaced, and media interfaces are either vertical or horizontal and pass through grid points. In addition, perfect contact between different media (infinite interfacial conductance) is assumed. A finite difference form of the conduction equation is not valid at media interfaces; therefore, heat balance forms are derived. These equations were subjected to stability analysis, and a computer graphics code was developed that permitted determination of a maximum time step for a given grid spacing.
NASA Astrophysics Data System (ADS)
Bhadra, Narendra; Foldes, Emily; Vrabec, Tina; Kilgore, Kevin; Bhadra, Niloy
2018-02-01
Objective. Application of kilohertz frequency alternating current (KHFAC) waveforms can result in nerve conduction block that is induced in less than a second. Conduction recovers within seconds when KHFAC is applied for about 5-10 min. This study investigated the effect of repeated and prolonged application of KHFAC on rat sciatic nerve with bipolar platinum electrodes. Approach. Varying durations of KHFAC at signal amplitudes for conduction block with intervals of no stimulus were studied. Nerve conduction was monitored by recording peak Gastrocnemius muscle force utilizing stimulation electrodes proximal (PS) and distal (DS) to a blocking electrode. The PS signal traveled through the block zone on the nerve, while the DS went directly to the motor end-plate junction. The PS/DS force ratio provided a measure of conduction patency of the nerve in the block zone. Main results. Conduction recovery times were found to be significantly affected by the cumulative duration of KHFAC application. Peak stimulated muscle force returned to pre-block levels immediately after cessation of KHFAC delivery when it was applied for less than about 15 min. They fell significantly but recovered to near pre-block levels for cumulative stimulus of 50 ± 20 min, for the tested On/Off times and frequencies. Conduction recovered in two phases, an initial fast one (60-80% recovery), followed by a slower phase. No permanent conduction block was seen at the end of the observation period during any experiment. Significance. This carry-over block effect may be exploited to provide continuous conduction block in peripheral nerves without continuous application of KHFAC.
Organic photovoltaic cell incorporating electron conducting exciton blocking layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen R.; Lassiter, Brian E.
2014-08-26
The present disclosure relates to photosensitive optoelectronic devices including a compound blocking layer located between an acceptor material and a cathode, the compound blocking layer including: at least one electron conducting material, and at least one wide-gap electron conducting exciton blocking layer. For example, 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure increased power conversion efficiency is achieved, compared to anmore » analogous device using a conventional blocking layers shown to conduct electrons via damage-induced midgap states.« less
Adaptive grid methods for RLV environment assessment and nozzle analysis
NASA Technical Reports Server (NTRS)
Thornburg, Hugh J.
1996-01-01
Rapid access to highly accurate data about complex configurations is needed for multi-disciplinary optimization and design. In order to efficiently meet these requirements a closer coupling between the analysis algorithms and the discretization process is needed. In some cases, such as free surface, temporally varying geometries, and fluid structure interaction, the need is unavoidable. In other cases the need is to rapidly generate and modify high quality grids. Techniques such as unstructured and/or solution-adaptive methods can be used to speed the grid generation process and to automatically cluster mesh points in regions of interest. Global features of the flow can be significantly affected by isolated regions of inadequately resolved flow. These regions may not exhibit high gradients and can be difficult to detect. Thus excessive resolution in certain regions does not necessarily increase the accuracy of the overall solution. Several approaches have been employed for both structured and unstructured grid adaption. The most widely used involve grid point redistribution, local grid point enrichment/derefinement or local modification of the actual flow solver. However, the success of any one of these methods ultimately depends on the feature detection algorithm used to determine solution domain regions which require a fine mesh for their accurate representation. Typically, weight functions are constructed to mimic the local truncation error and may require substantial user input. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. These weight functions can then be used to construct blending functions for algebraic redistribution, interpolation functions for unstructured grid generation, forcing functions to attract/repel points in an elliptic system, or to trigger local refinement, based upon application of an equidistribution principle. The popularity of solution-adaptive techniques is growing in tandem with unstructured methods. The difficultly of precisely controlling mesh densities and orientations with current unstructured grid generation systems has driven the use of solution-adaptive meshing. Use of derivatives of density or pressure are widely used for construction of such weight functions, and have been proven very successful for inviscid flows with shocks. However, less success has been realized for flowfields with viscous layers, vortices or shocks of disparate strength. It is difficult to maintain the appropriate mesh point spacing in the various regions which require a fine spacing for adequate resolution. Mesh points often migrate from important regions due to refinement of dominant features. An example of this is the well know tendency of adaptive methods to increase the resolution of shocks in the flowfield around airfoils, but in the incorrect location due to inadequate resolution of the stagnation region. This problem has been the motivation for this research.
Structured background grids for generation of unstructured grids by advancing front method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar
1991-01-01
A new method of background grid construction is introduced for generation of unstructured tetrahedral grids using the advancing-front technique. Unlike the conventional triangular/tetrahedral background grids which are difficult to construct and usually inadequate in performance, the new method exploits the simplicity of uniform Cartesian meshes and provides grids of better quality. The approach is analogous to solving a steady-state heat conduction problem with discrete heat sources. The spacing parameters of grid points are distributed over the nodes of a Cartesian background grid by interpolating from a few prescribed sources and solving a Poisson equation. To increase the control over the grid point distribution, a directional clustering approach is used. The new method is convenient to use and provides better grid quality and flexibility. Sample results are presented to demonstrate the power of the method.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1989-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji
2017-01-01
In the multi-dimensional space-time conservation element and solution element16 (CESE) method, triangles and tetrahedral mesh elements turn out to be the most natural building blocks for 2D and 3D spatial grids, respectively. As such, the CESE method is naturally compatible with the simplest 2D and 3D unstructured grids and thus can be easily applied to solve problems with complex geometries. However, because (a) accurate solution of a high-Reynolds number flow field near a solid wall requires that the grid intervals along the direction normal to the wall be much finer than those in a direction parallel to the wall and, as such, the use of grid cells with extremely high aspect ratio (103 to 106) may become mandatory, and (b) unlike quadrilateral hexahedral grids, it is well-known that accuracy of gradient computations involving triangular tetrahedral grids tends to deteriorate rapidly as cell aspect ratio increases. As a result, the use of triangular tetrahedral grid cells near a solid wall has long been deemed impractical by CFD researchers. In view of (a) the critical role played by triangular tetrahedral grids in the CESE development, and (b) the importance of accurate resolution of high-Reynolds number flow field near a solid wall, as will be presented in the main paper, a comprehensive and rigorous mathematical framework that clearly identifies the reasons behind the accuracy deterioration as described above has been developed for the 2D case involving triangular cells. By avoiding the pitfalls identified by the 2D framework, and its 3D extension, it has been shown numerically.
The importance of non-quasigeostrophic forcing during the development of a blocking anticyclone
NASA Technical Reports Server (NTRS)
Tsou, Chih-Hua; Smith, Phillip J.
1990-01-01
This study examines the impact of non-quasigeostrophic (NQG) processes during the development of a blocking anticyclone (January 21, 1979 over the southern tip of Greenland) and a precursor, upstream intense cyclone (January 18, 1979). Energy quantities and height tendencies determined from quasigeostrophic estimates are compared with the same quantities obtained from more general formulations. GLA FGGE Level III-b analysis on a 4 deg lat by 5 deg long grid was used to obtain energetics results. It is concluded that NQG processes strengthened the intensity of the block and a precursor explosive cyclone and that a portion of this increase resulted from enhanced baroclinic conversion of eddy potential to eddy kinetic energy and reduced barotropic energy conversion from eddy to zonal flow. It is suggested that NQG vorticity advection, instead of moderating wave developments, enhanced the block development, and it is also suggested that QG forcing might not have been adequate to produce the observed block development.
Application of FUN3D Solver for Aeroacoustics Simulation of a Nose Landing Gear Configuration
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.
2011-01-01
Numerical simulations have been performed for a nose landing gear configuration corresponding to the experimental tests conducted in the Basic Aerodynamic Research Tunnel at NASA Langley Research Center. A widely used unstructured grid code, FUN3D, is examined for solving the unsteady flow field associated with this configuration. A series of successively finer unstructured grids has been generated to assess the effect of grid refinement. Solutions have been obtained on purely tetrahedral grids as well as mixed element grids using hybrid RANS/LES turbulence models. The agreement of FUN3D solutions with experimental data on the same size mesh is better on mixed element grids compared to pure tetrahedral grids, and in general improves with grid refinement.
TopMaker: Technique Developed for Automatic Multiblock Topology Generation Using the Medial Axis
NASA Technical Reports Server (NTRS)
Rigby, David L.
2004-01-01
The TopMaker technique was developed in an effort to reduce the time required for grid generation in complex numerical studies. Topology generation accounts for much of the man-hours required for structured multiblock grids. With regard to structured multiblock grids, topology refers to how the blocks are arranged and connected. A two-dimensional multiblock topology generation technique has been developed at the NASA Glenn Research Center. Very general configurations can be addressed by the technique. A configuration is defined by a collection of non-intersecting closed curves, which will be referred to as loops. More than a single loop implies that holes exist in the domain, which poses no problem. This technique requires only the medial vertices and the touch points that define each vertex. From the information about the medial vertices, the connectivity between medial vertices is generated. The physical shape of the medial edge is not required. By applying a few simple rules to each medial edge, a multiblock topology can be generated without user intervention. The resulting topologies contain only the level of complexity dictated by the configurations. Grid lines remain attached to the boundary except at sharp concave turns, where a change in index family is introduced as would be desired. Keeping grid lines attached to the boundary is especially important in computational fluid dynamics, where highly clustered grids are used near no-slip boundaries. This technique is simple and robust and can easily be incorporated into the overall grid-generation process.
Detector Position Estimation for PET Scanners.
Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul
2012-06-11
Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks.
Color visualization for fluid flow prediction
NASA Technical Reports Server (NTRS)
Smith, R. E.; Speray, D. E.
1982-01-01
High-resolution raster scan color graphics allow variables to be presented as a continuum, in a color-coded picture that is referenced to a geometry such as a flow field grid or a boundary surface. Software is used to map a scalar variable such as pressure or temperature, defined on a two-dimensional slice of a flow field. The geometric shape is preserved in the resulting picture, and the relative magnitude of the variable is color-coded onto the geometric shape. The primary numerical process for color coding is an efficient search along a raster scan line to locate the quadrilteral block in the grid that bounds each pixel on the line. Tension spline interpolation is performed relative to the grid for specific values of the scalar variable, which is then color coded. When all pixels for the field of view are color-defined, a picture is played back from a memory device onto a television screen.
A procedure for automating CFD simulations of an inlet-bleed problem
NASA Technical Reports Server (NTRS)
Chyu, Wei J.; Rimlinger, Mark J.; Shih, Tom I.-P.
1995-01-01
A procedure was developed to improve the turn-around time for computational fluid dynamics (CFD) simulations of an inlet-bleed problem involving oblique shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through one or more circular holes. This procedure is embodied in a preprocessor called AUTOMAT. With AUTOMAT, once data for the geometry and flow conditions have been specified (either interactively or via a namelist), it will automatically generate all input files needed to perform a three-dimensional Navier-Stokes simulation of the prescribed inlet-bleed problem by using the PEGASUS and OVERFLOW codes. The input files automatically generated by AUTOMAT include those for the grid system and those for the initial and boundary conditions. The grid systems automatically generated by AUTOMAT are multi-block structured grids of the overlapping type. Results obtained by using AUTOMAT are presented to illustrate its capability.
Maity, Sudhangshu; Jana, Tushar
2014-05-14
A series of meta-polybenzimidazole-block-para-polybenzimidazole (m-PBI-b-p-PBI), segmented block copolymers of PBI, were synthesized with various structural motifs and block lengths by condensing the diamine terminated meta-PBI (m-PBI-Am) and acid terminated para-PBI (p-PBI-Ac) oligomers. NMR studies and existence of two distinct glass transition temperatures (Tg), obtained from dynamical mechanical analysis (DMA) results, unequivocally confirmed the formation of block copolymer structure through the current polymerization methodology. Appropriate and careful selection of oligomers chain length enabled us to tailor the block length of block copolymers and also to make varieties of structural motifs. Increasingly distinct Tg peaks with higher block length of segmented block structure attributed the decrease in phase mixing between the meta-PBI and para-PBI blocks, which in turn resulted into nanophase segregated domains. The proton conductivities of proton exchange membrane (PEM) developed from phosphoric acid (PA) doped block copolymer membranes were found to be increasing substantially with increasing block length of copolymers even though PA loading of these membranes did not alter appreciably with varying block length. For example when molecular weight (Mn) of blocks were increased from 1000 to 5500 then the proton conductivities at 160 °C of resulting copolymers increased from 0.05 to 0.11 S/cm. Higher block length induced nanophase separation between the blocks by creating less morphological barrier within the block which facilitated the movement of the proton in the block and hence resulting higher proton conductivity of the PEM. The structural varieties also influenced the phase separation and proton conductivity. In comparison to meta-para random copolymers reported earlier, the current meta-para segmented block copolymers were found to be more suitable for PBI-based PEM.
INTERA Environmental Consultants, Inc.
1979-01-01
The major limitation of the model arises using second-order correct (central-difference) finite-difference approximation in space. To avoid numerical oscillations in the solution, the user must restrict grid block and time step sizes depending upon the magnitude of the dispersivity.
Building Multilevel Secure Web Services-Based Components for the Global Information Grid
2006-05-01
unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Transforming: Business , Security ,Warfighting 16 CROSSTALK The Journal of Defense...A Single Step of the BAC Table 1: A Single Step of the Block Access Controller Transforming: Business , Security ,Warfighting 18 CROSSTALK The Journal
Carpet: Adaptive Mesh Refinement for the Cactus Framework
NASA Astrophysics Data System (ADS)
Schnetter, Erik; Hawley, Scott; Hawke, Ian
2016-11-01
Carpet is an adaptive mesh refinement and multi-patch driver for the Cactus Framework (ascl:1102.013). Cactus is a software framework for solving time-dependent partial differential equations on block-structured grids, and Carpet acts as driver layer providing adaptive mesh refinement, multi-patch capability, as well as parallelization and efficient I/O.
Wilde, M C; Boake, C; Sherer, M
2000-01-01
Final broken configuration errors on the Wechsler Adult Intelligence Scale-Revised (WAIS-R; Wechsler, 1981) Block Design subtest were examined in 50 moderate and severe nonpenetrating traumatically brain injured adults. Patients were divided into left (n = 15) and right hemisphere (n = 19) groups based on a history of unilateral craniotomy for treatment of an intracranial lesion and were compared to a group with diffuse or negative brain CT scan findings and no history of neurosurgery (n = 16). The percentage of final broken configuration errors was related to injury severity, Benton Visual Form Discrimination Test (VFD; Benton, Hamsher, Varney, & Spreen, 1983) total score and the number of VFD rotation and peripheral errors. The percentage of final broken configuration errors was higher in the patients with right craniotomies than in the left or no craniotomy groups, which did not differ. Broken configuration errors did not occur more frequently on designs without an embedded grid pattern. Right craniotomy patients did not show a greater percentage of broken configuration errors on nongrid designs as compared to grid designs.
NASA Technical Reports Server (NTRS)
Lessard, Wendy B.
1999-01-01
The objective of this study is to calibrate a Navier-Stokes code for the TCA (30/10) baseline configuration (partial span leading edge flaps were deflected at 30 degs. and all the trailing edge flaps were deflected at 10 degs). The computational results for several angles of attack are compared with experimental force, moments, and surface pressures. The code used in this study is CFL3D; mesh sequencing and multi-grid were used to full advantage to accelerate convergence. A multi-grid approach was used similar to that used for the Reference H configuration allowing point-to-point matching across all the trailingedge block interfaces. From past experiences with the Reference H (ie, good force, moment, and pressure comparisons were obtained), it was assumed that the mounting system would produce small effects; hence, it was not initially modeled. However, comparisons of lower surface pressures indicated the post mount significantly influenced the lower surface pressures, so the post geometry was inserted into the existing grid using Chimera (overset grids).
Ahmadi, Emad; Katnani, Husam A.; Daftari Besheli, Laleh; Gu, Qiang; Atefi, Reza; Villeneuve, Martin Y.; Eskandar, Emad; Lev, Michael H.; Golby, Alexandra J.; Gupta, Rajiv
2016-01-01
Purpose To develop an electrocorticography (ECoG) grid by using deposition of conductive nanoparticles in a polymer thick film on an organic substrate (PTFOS) that induces minimal, if any, artifacts on computed tomographic (CT) and magnetic resonance (MR) images and is safe in terms of tissue reactivity and MR heating. Materials and Methods All procedures were approved by the Animal Care and Use Committee and complied with the Public Health Services Guide for the Care and Use of Animals. Electrical functioning of PTFOS for cortical recording and stimulation was tested in two mice. PTFOS disks were implanted in two mice; after 30 days, the tissues surrounding the implants were harvested, and tissue injury was studied by using immunostaining. Five neurosurgeons rated mechanical properties of PTFOS compared with conventional grids by using a three-level Likert scale. Temperature increases during 30 minutes of 3-T MR imaging were measured in a head phantom with no grid, a conventional grid, and a PTFOS grid. Two neuroradiologists rated artifacts on CT and MR images of a cadaveric head specimen with no grid, a conventional grid, and a PTFOS grid by using a four-level Likert scale, and the mean ratings were compared between grids. Results Oscillatory local field potentials were captured with cortical recordings. Cortical stimulations in motor cortex elicited muscle contractions. PTFOS implants caused no adverse tissue reaction. Mechanical properties were rated superior to conventional grids (χ2 test, P < .05). The temperature increase during MR imaging for the three cases of no grid, PTFOS grid, and conventional grid was 3.84°C, 4.05°C, and 10.13°C, respectively. PTFOS induced no appreciable artifacts on CT and MR images, and PTFOS image quality was rated significantly higher than that with conventional grids (two-tailed t test, P < .05). Conclusion PTFOS grids may be an attractive alternative to conventional ECoG grids with regard to mechanical properties, 3-T MR heating profile, and CT and MR imaging artifacts. © RSNA, 2016 Online supplemental material is available for this article. PMID:26844363
Study of Swept Angle Effects on Grid Fins Aerodynamics Performance
NASA Astrophysics Data System (ADS)
Faza, G. A.; Fadillah, H.; Silitonga, F. Y.; Agoes Moelyadi, Mochamad
2018-04-01
Grid fin is an aerodynamic control surface that usually used on missiles and rockets. In the recent several years many researches have conducted to develop a more efficient grid fins. There are many possibilities of geometric combination could be done to improve aerodynamics characteristic of a grid fin. This paper will only discuss about the aerodynamics characteristics of grid fins compared by another grid fins with different swept angle. The methodology that used to compare the aerodynamics is Computational Fluid Dynamics (CFD). The result of this paper might be used for future studies to answer our former question or as a reference for related studies.
ESIF 2016: Modernizing Our Grid and Energy System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Becelaere, Kimberly
This 2016 annual report highlights work conducted at the Energy Systems Integration Facility (ESIF) in FY 2016, including grid modernization, high-performance computing and visualization, and INTEGRATE projects.
[Conduction block: a notion to let through].
Fournier, E
2012-12-01
Historical study of electrodiagnosis indicates that nerve conduction block is an old notion, used as early as the second century by Galien and then early in the 19th by physiologists such as Müller and Mateucci. Although introduced into the field of human pathology by Mitchell in 1872, who used it to study nerve injuries, and then by Erb in 1874 to study radial palsy, the contribution of nerve conduction blocks to electrodiagnosis was not exploited until the 1980s. At that time, attempts to improve early diagnosis of Guillain-Barré syndrome showed that among the electrophysiological consequences of demyelination, conduction block was the most appropriate to account for the paralysis. At the same time, descriptions of neuropathies characterized by conduction blocks led to considering conduction block as a major electrophysiological sign. Why was it so difficult for this sign to be retained for electrodiagnosis? Since the notion is not always associated with anatomical lesions, it doesn't fit easily into anatomoclinical reasoning, but has to be thought of in functional terms. Understanding how an uninjured axon could fail to conduct action potentials leads to an examination of the intimate consequences of demyelinations and axonal dysfunctions. But some of the difficulty encountered in adding this new old sign to the armamentarium of electrophysiological diagnosis was related to the technical precautions required to individualize a block. Several pitfalls have to be avoided if a conduction block is to be afforded real diagnostic value. Similar precautions and discussions are also needed to establish an opposing sign, the "excitability block" or "inverse block". Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Recovery from distal ulnar motor conduction block injury: serial EMG studies.
Montoya, Liliana; Felice, Kevin J
2002-07-01
Acute conduction block injuries often result from nerve compression or trauma. The temporal pattern of clinical, electrophysiologic, and histopathologic changes following these injuries has been extensively studied in experimental animal models but not in humans. Our recent evaluation of a young man with an injury to the deep motor branch of the ulnar nerve following nerve compression from weightlifting exercises provided the opportunity to follow the course and recovery of a severe conduction block injury with sequential nerve conduction studies. The conduction block slowly and completely resolved, as did the clinical deficit, over a 14-week period. The reduction in conduction block occurred at a linear rate of -6.1% per week. Copyright 2002 Wiley Periodicals, Inc.
Conduction block of mammalian myelinated nerve by local cooling to 15–30°C after a brief heating
Zhang, Zhaocun; Lyon, Timothy D.; Kadow, Brian T.; Shen, Bing; Wang, Jicheng; Lee, Andy; Kang, Audry; Roppolo, James R.; de Groat, William C.
2016-01-01
This study aimed at understanding thermal effects on nerve conduction and developing new methods to produce a reversible thermal block of axonal conduction in mammalian myelinated nerves. In 13 cats under α-chloralose anesthesia, conduction block of pudendal nerves (n = 20) by cooling (5–30°C) or heating (42–54°C) a small segment (9 mm) of the nerve was monitored by the urethral striated muscle contractions and increases in intraurethral pressure induced by intermittent (5 s on and 20 s off) electrical stimulation (50 Hz, 0.2 ms) of the nerve. Cold block was observed at 5–15°C while heat block occurred at 50–54°C. A complete cold block up to 10 min was fully reversible, but a complete heat block was only reversible when the heating duration was less than 1.3 ± 0.1 min. A brief (<1 min) reversible complete heat block at 50–54°C or 15 min of nonblock mild heating at 46–48°C significantly increased the cold block temperature to 15–30°C. The effect of heating on cold block fully reversed within ∼40 min. This study discovered a novel method to block mammalian myelinated nerves at 15–30°C, providing the possibility to develop an implantable device to block axonal conduction and treat many chronic disorders. The effect of heating on cold block is of considerable interest because it raises many basic scientific questions that may help reveal the mechanisms underlying cold or heat block of axonal conduction. PMID:26740534
A method for producing digital probabilistic seismic landslide hazard maps
Jibson, R.W.; Harp, E.L.; Michael, J.A.
2000-01-01
The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include: (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24 000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10 m grid spacing using ARC/INFO GIS software on a UNIX computer. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure. ?? 2000 Elsevier Science B.V. All rights reserved.
Jibson, Randall W.; Harp, Edwin L.; Michael, John A.
1998-01-01
The 1994 Northridge, California, earthquake is the first earthquake for which we have all of the data sets needed to conduct a rigorous regional analysis of seismic slope instability. These data sets include (1) a comprehensive inventory of triggered landslides, (2) about 200 strong-motion records of the mainshock, (3) 1:24,000-scale geologic mapping of the region, (4) extensive data on engineering properties of geologic units, and (5) high-resolution digital elevation models of the topography. All of these data sets have been digitized and rasterized at 10-m grid spacing in the ARC/INFO GIS platform. Combining these data sets in a dynamic model based on Newmark's permanent-deformation (sliding-block) analysis yields estimates of coseismic landslide displacement in each grid cell from the Northridge earthquake. The modeled displacements are then compared with the digital inventory of landslides triggered by the Northridge earthquake to construct a probability curve relating predicted displacement to probability of failure. This probability function can be applied to predict and map the spatial variability in failure probability in any ground-shaking conditions of interest. We anticipate that this mapping procedure will be used to construct seismic landslide hazard maps that will assist in emergency preparedness planning and in making rational decisions regarding development and construction in areas susceptible to seismic slope failure.
The Fault Block Model: A novel approach for faulted gas reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ursin, J.R.; Moerkeseth, P.O.
1994-12-31
The Fault Block Model was designed for the development of gas production from Sleipner Vest. The reservoir consists of marginal marine sandstone of Hugine Formation. Modeling of highly faulted and compartmentalized reservoirs is severely impeded by the nature and extent of known and undetected faults and, in particular, their effectiveness as flow barrier. The model presented is efficient and superior to other models, for highly faulted reservoir, i.e. grid based simulators, because it minimizes the effect of major undetected faults and geological uncertainties. In this article the authors present the Fault Block Model as a new tool to better understandmore » the implications of geological uncertainty in faulted gas reservoirs with good productivity, with respect to uncertainty in well coverage and optimum gas recovery.« less
NASA Technical Reports Server (NTRS)
Houston, Johnny L.
1990-01-01
Program EAGLE (Eglin Arbitrary Geometry Implicit Euler) is a multiblock grid generation and steady-state flow solver system. This system combines a boundary conforming surface generation, a composite block structure grid generation scheme, and a multiblock implicit Euler flow solver algorithm. The three codes are intended to be used sequentially from the definition of the configuration under study to the flow solution about the configuration. EAGLE was specifically designed to aid in the analysis of both freestream and interference flow field configurations. These configurations can be comprised of single or multiple bodies ranging from simple axisymmetric airframes to complex aircraft shapes with external weapons. Each body can be arbitrarily shaped with or without multiple lifting surfaces. Program EAGLE is written to compile and execute efficiently on any CRAY machine with or without Solid State Disk (SSD) devices. Also, the code uses namelist inputs which are supported by all CRAY machines using the FORTRAN Compiler CF177. The use of namelist inputs makes it easier for the user to understand the inputs and to operate Program EAGLE. Recently, the Code was modified to operate on other computers, especially the Sun Spare4 Workstation. Several two-dimensional grid configurations were completely and successfully developed using EAGLE. Currently, EAGLE is being used for three-dimension grid applications.
Parallel architectures for iterative methods on adaptive, block structured grids
NASA Technical Reports Server (NTRS)
Gannon, D.; Vanrosendale, J.
1983-01-01
A parallel computer architecture well suited to the solution of partial differential equations in complicated geometries is proposed. Algorithms for partial differential equations contain a great deal of parallelism. But this parallelism can be difficult to exploit, particularly on complex problems. One approach to extraction of this parallelism is the use of special purpose architectures tuned to a given problem class. The architecture proposed here is tuned to boundary value problems on complex domains. An adaptive elliptic algorithm which maps effectively onto the proposed architecture is considered in detail. Two levels of parallelism are exploited by the proposed architecture. First, by making use of the freedom one has in grid generation, one can construct grids which are locally regular, permitting a one to one mapping of grids to systolic style processor arrays, at least over small regions. All local parallelism can be extracted by this approach. Second, though there may be a regular global structure to the grids constructed, there will be parallelism at this level. One approach to finding and exploiting this parallelism is to use an architecture having a number of processor clusters connected by a switching network. The use of such a network creates a highly flexible architecture which automatically configures to the problem being solved.
An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters.
Kang, Junmo; Jang, Yonghee; Kim, Youngsoo; Cho, Seung-Hyun; Suhr, Jonghwan; Hong, Byung Hee; Choi, Jae-Boong; Byun, Doyoung
2015-04-21
Recently, carbon materials such as carbon nanotubes and graphene have been proposed as alternatives to indium tin oxide (ITO) for fabricating transparent conducting materials. However, obtaining low sheet resistance and high transmittance of these carbon materials has been challenging due to the intrinsic properties of the materials. In this paper, we introduce highly transparent and flexible conductive films based on a hybrid structure of graphene and an Ag-grid. Electrohydrodynamic (EHD) jet printing was used to produce a micro-scale grid consisting of Ag lines less than 10 μm wide. We were able to directly write the Ag-grid on a large-area graphene/flexible substrate due to the high conductivity of graphene. The hybrid electrode could be fabricated using hot pressing transfer and EHD jet printing in a non-vacuum, maskless, and low-temperature environment. The hybrid electrode offers an effective and simple route for achieving a sheet resistance as low as ∼4 Ω per square with ∼78% optical transmittance. Finally, we demonstrate that transparent flexible heaters based on the hybrid conductive films could be used in a vehicle or a smart window system.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-11
... Grid Data Privacy AGENCY: Office of Electricity Delivery and Energy Reliability, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: The U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability (DOE OE) will convene the first meeting of the smart grid data privacy...
NASA Technical Reports Server (NTRS)
Krist, Steven E.; Bauer, Steven X. S.
1999-01-01
The design process for developing the natural flow wing design on the HSR arrow wing configuration utilized several design tools and analysis methods. Initial fuselage/wing designs were generated with inviscid analysis and optimization methods in conjunction with the natural flow wing design philosophy. A number of designs were generated, satisfying different system constraints. Of the three natural flow wing designs developed, the NFWAc2 configuration is the design which satisfies the constraints utilized by McDonnell Douglas Aerospace (MDA) in developing a series of optimized configurations; a wind tunnel model of the MDA designed OPT5 configuration was constructed and tested. The present paper is concerned with the viscous analysis and inverse design of the arrow wing configurations, including the effects of the installed diverters/nacelles. Analyses were conducted with OVERFLOW, a Navier-Stokes flow solver for overset grids. Inverse designs were conducted with OVERDISC, which couples OVERFLOW with the CDISC inverse design method. An initial system of overset grids was generated for the OPT5 configuration with installed diverters/nacelles. An automated regridding process was then developed to use the OPT5 component grids to create grids for the natural flow wing designs. The inverse design process was initiated using the NFWAc2 configuration as a starting point, eventually culminating in the NFWAc4 design-for which a wind tunnel model was constructed. Due to the time constraints on the design effort, initial analyses and designs were conducted with a fairly coarse grid; subsequent analyses have been conducted on a refined system of grids. Comparisons of the computational results to experiment are provided at the end of this paper.
NASA Astrophysics Data System (ADS)
Cortinez, J. M.; Valocchi, A. J.; Herrera, P. A.
2013-12-01
Because of the finite size of numerical grids, it is very difficult to correctly account for processes that occur at different spatial scales to accurately simulate the migration of conservative and reactive compounds dissolved in groundwater. In one hand, transport processes in heterogeneous porous media are controlled by local-scale dispersion associated to transport processes at the pore-scale. On the other hand, variations of velocity at the continuum- or Darcy-scale produce spreading of the contaminant plume, which is referred to as macro-dispersion. Furthermore, under some conditions both effects interact, so that spreading may enhance the action of local-scale dispersion resulting in higher mixing, dilution and reaction rates. Traditionally, transport processes at different spatial scales have been included in numerical simulations by using a single dispersion coefficient. This approach implicitly assumes that the separate effects of local-dispersion and macro-dispersion can be added and represented by a unique effective dispersion coefficient. Moreover, the selection of the effective dispersion coefficient for numerical simulations usually do not consider the filtering effect of the grid size over the small-scale flow features. We have developed a multi-scale Lagragian numerical method that allows using two different dispersion coefficients to represent local- and macro-scale dispersion. This technique considers fluid particles that carry solute mass and whose locations evolve according to a deterministic component given by the grid-scale velocity and a stochastic component that corresponds to a block-effective macro-dispersion coefficient. Mass transfer between particles due to local-scale dispersion is approximated by a meshless method. We use our model to test under which transport conditions the combined effect of local- and macro-dispersion are additive and can be represented by a single effective dispersion coefficient. We also demonstrate that for the situations where both processes are additive, an effective grid-dependent dispersion coefficient can be derived based on the concept of block-effective dispersion. We show that the proposed effective dispersion coefficient is able to reproduce dilution, mixing and reaction rates for a wide range of transport conditions similar to the ones found in many practical applications.
NASA Astrophysics Data System (ADS)
Mende, Denis; Böttger, Diana; Löwer, Lothar; Becker, Holger; Akbulut, Alev; Stock, Sebastian
2018-02-01
The European power grid infrastructure faces various challenges due to the expansion of renewable energy sources (RES). To conduct investigations on interactions between power generation and the power grid, models for the power market as well as for the power grid are necessary. This paper describes the basic functionalities and working principles of both types of models as well as steps to couple power market results and the power grid model. The combination of these models is beneficial in terms of gaining realistic power flow scenarios in the grid model and of being able to pass back results of the power flow and restrictions to the market model. Focus is laid on the power grid model and possible application examples like algorithms in grid analysis, operation and dynamic equipment modelling.
Rijal, J P; Brewster, C C; Bergh, J C
2014-06-01
Grape root borer, Vitacea polistiformis (Harris) (Lepidoptera: Sesiidae) is a potentially destructive pest of grape vines, Vitis spp. in the eastern United States. After feeding on grape roots for ≍2 yr in Virginia, larvae pupate beneath the soil surface around the vine base. Adults emerge during July and August, leaving empty pupal exuviae on or protruding from the soil. Weekly collections of pupal exuviae from an ≍1-m-diameter weed-free zone around the base of a grid of sample vines in Virginia vineyards were conducted in July and August, 2008-2012, and their distribution was characterized using both nonspatial (dispersion) and spatial techniques. Taylor's power law showed a significant aggregation of pupal exuviae, based on data from 19 vineyard blocks. Combined use of geostatistical and Spatial Analysis by Distance IndicEs methods indicated evidence of an aggregated pupal exuviae distribution pattern in seven of the nine blocks used for those analyses. Grape root borer pupal exuviae exhibited spatial dependency within a mean distance of 8.8 m, based on the range values of best-fitted variograms. Interpolated and clustering index-based infestation distribution maps were developed to show the spatial pattern of the insect within the vineyard blocks. The temporal distribution of pupal exuviae showed that the majority of moths emerged during the 3-wk period spanning the third week of July and the first week of August. The spatial distribution of grape root borer pupal exuviae was used in combination with temporal moth emergence patterns to develop a quantitative and efficient sampling scheme to assess infestations.
Demonstration Of Ultra HI-FI (UHF) Methods
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2004-01-01
Computational aero-acoustics (CAA) requires efficient, high-resolution simulation tools. Most current techniques utilize finite-difference approaches because high order accuracy is considered too difficult or expensive to achieve with finite volume or finite element methods. However, a novel finite volume approach (Ultra HI-FI or UHF) which utilizes Hermite fluxes is presented which can achieve both arbitrary accuracy and fidelity in space and time. The technique can be applied to unstructured grids with some loss of fidelity or with multi-block structured grids for maximum efficiency and resolution. In either paradigm, it is possible to resolve ultra-short waves (less than 2 PPW). This is demonstrated here by solving the 4th CAA workshop Category 1 Problem 1.
Wafer-fused semiconductor radiation detector
Lee, Edwin Y.; James, Ralph B.
2002-01-01
Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.
Catheter ablation as a treatment of atrioventricular block.
Tuohy, Stephen; Saliba, Walid; Pai, Manjunath; Tchou, Patrick
2018-01-01
Symptomatic second-degree atrioventricular (AV) block is typically treated by implantation of a pacemaker. An otherwise healthy AV conduction system can nevertheless develop AV block due to interference from junctional extrasystoles. When present with a high burden, these can produce debilitating symptoms from AV block despite an underlying normal AV node and His-Purkinje system properties. The purpose of this study was to describe a catheter ablation approach for alleviating symptomatic AV block due to a ventricular nodal pathway interfering with AV conduction. Common clinical monitoring techniques such as Holter and event recorders were used. Standard electrophysiological study techniques using multipolar recording and ablation catheters were utilized during procedures. A 55-year-old woman presented with highly symptomatic, high-burden second-degree AV block due to concealed and manifest junctional premature beats. Electrophysiological characteristics indicated interference of AV conduction due to a concealed ventricular nodal pathway as the cause of the AV block. The patient's AV nodal and His-Purkinje system conduction characteristics were otherwise normal. Radiofrequency catheter ablation of the pathway was successful in restoring normal AV conduction and eliminating her clinical symptoms. Pathways inserting into the AV junction can interfere with AV conduction. When present at a high burden, this type of AV block can be highly symptomatic. Catheter ablation techniques can be used to alleviate this type of AV block and restore normal AV conduction. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Unstructured Grid Generation Techniques and Software
NASA Technical Reports Server (NTRS)
Posenau, Mary-Anne K. (Editor)
1993-01-01
The Workshop on Unstructured Grid Generation Techniques and Software was conducted for NASA to assess its unstructured grid activities, improve the coordination among NASA centers, and promote technology transfer to industry. The proceedings represent contributions from Ames, Langley, and Lewis Research Centers, and the Johnson and Marshall Space Flight Centers. This report is a compilation of the presentations made at the workshop.
Demonstration of Active Power Controls by Utility-Scale PV Power Plant in an Island Grid: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan; O'Neill, Barbara
The National Renewable Energy Laboratory (NREL), AES, and the Puerto Rico Electric Power Authority conducted a demonstration project on a utility-scale photovoltaic (PV) plant to test the viability of providing important ancillary services from this facility. As solar generation increases globally, there is a need for innovation and increased operational flexibility. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, it may mitigate the impact of its variability on the grid and contribute to important system requirements more like traditional generators. In 2015,more » testing was completed on a 20-MW AES plant in Puerto Rico, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls. This data showed how active power controls can leverage PV's value from being simply an intermittent energy resource to providing additional ancillary services for an isolated island grid. Specifically, the tests conducted included PV plant participation in automatic generation control, provision of droop response, and fast frequency response.« less
A Scalable proxy cache for Grid Data Access
NASA Astrophysics Data System (ADS)
Cristian Cirstea, Traian; Just Keijser, Jan; Koeroo, Oscar Arthur; Starink, Ronald; Templon, Jeffrey Alan
2012-12-01
We describe a prototype grid proxy cache system developed at Nikhef, motivated by a desire to construct the first building block of a future https-based Content Delivery Network for grid infrastructures. Two goals drove the project: firstly to provide a “native view” of the grid for desktop-type users, and secondly to improve performance for physics-analysis type use cases, where multiple passes are made over the same set of data (residing on the grid). We further constrained the design by requiring that the system should be made of standard components wherever possible. The prototype that emerged from this exercise is a horizontally-scalable, cooperating system of web server / cache nodes, fronted by a customized webDAV server. The webDAV server is custom only in the sense that it supports http redirects (providing horizontal scaling) and that the authentication module has, as back end, a proxy delegation chain that can be used by the cache nodes to retrieve files from the grid. The prototype was deployed at Nikhef and tested at a scale of several terabytes of data and approximately one hundred fast cores of computing. Both small and large files were tested, in a number of scenarios, and with various numbers of cache nodes, in order to understand the scaling properties of the system. For properly-dimensioned cache-node hardware, the system showed speedup of several integer factors for the analysis-type use cases. These results and others are presented and discussed.
Bayless, E. Randall; Arihood, Leslie D.; Reeves, Howard W.; Sperl, Benjamin J.S.; Qi, Sharon L.; Stipe, Valerie E.; Bunch, Aubrey R.
2017-01-18
As part of the National Water Availability and Use Program established by the U.S. Geological Survey (USGS) in 2005, this study took advantage of about 14 million records from State-managed collections of water-well drillers’ records and created a database of hydrogeologic properties for the glaciated United States. The water-well drillers’ records were standardized to be relatively complete and error-free and to provide consistent variables and naming conventions that span all State boundaries.Maps and geospatial grids were developed for (1) total thickness of glacial deposits, (2) total thickness of coarse-grained deposits, (3) specific-capacity based transmissivity and hydraulic conductivity, and (4) texture-based estimated equivalent horizontal and vertical hydraulic conductivity and transmissivity. The information included in these maps and grids is required for most assessments of groundwater availability, in addition to having applications to studies of groundwater flow and transport. The texture-based estimated equivalent horizontal and vertical hydraulic conductivity and transmissivity were based on an assumed range of hydraulic conductivity values for coarse- and fine-grained deposits and should only be used with complete awareness of the methods used to create them. However, the maps and grids of texture-based estimated equivalent hydraulic conductivity and transmissivity may be useful for application to areas where a range of measured values is available for re-scaling.Maps of hydrogeologic information for some States are presented as examples in this report but maps and grids for all States are available electronically at the project Web site (USGS Glacial Aquifer System Groundwater Availability Study, http://mi.water.usgs.gov/projects/WaterSmart/Map-SIR2015-5105.html) and the Science Base Web site, https://www.sciencebase.gov/catalog/item/58756c7ee4b0a829a3276352.
WIND Toolkit Offshore Summary Dataset
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draxl, Caroline; Musial, Walt; Scott, George
This dataset contains summary statistics for offshore wind resources for the continental United States derived from the Wind Integration National Datatset (WIND) Toolkit. These data are available in two formats: GDB - Compressed geodatabases containing statistical summaries aligned with lease blocks (aliquots) stored in a GIS format. These data are partitioned into Pacific, Atlantic, and Gulf resource regions. HDF5 - Statistical summaries of all points in the offshore Pacific, Atlantic, and Gulf offshore regions. These data are located on the original WIND Toolkit grid and have not been reassigned or downsampled to lease blocks. These data were developed under contractmore » by NREL for the Bureau of Oceanic Energy Management (BOEM).« less
NASA Astrophysics Data System (ADS)
Penner, Joyce E.; Andronova, Natalia; Oehmke, Robert C.; Brown, Jonathan; Stout, Quentin F.; Jablonowski, Christiane; van Leer, Bram; Powell, Kenneth G.; Herzog, Michael
2007-07-01
One of the most important advances needed in global climate models is the development of atmospheric General Circulation Models (GCMs) that can reliably treat convection. Such GCMs require high resolution in local convectively active regions, both in the horizontal and vertical directions. During previous research we have developed an Adaptive Mesh Refinement (AMR) dynamical core that can adapt its grid resolution horizontally. Our approach utilizes a finite volume numerical representation of the partial differential equations with floating Lagrangian vertical coordinates and requires resolving dynamical processes on small spatial scales. For the latter it uses a newly developed general-purpose library, which facilitates 3D block-structured AMR on spherical grids. The library manages neighbor information as the blocks adapt, and handles the parallel communication and load balancing, freeing the user to concentrate on the scientific modeling aspects of their code. In particular, this library defines and manages adaptive blocks on the sphere, provides user interfaces for interpolation routines and supports the communication and load-balancing aspects for parallel applications. We have successfully tested the library in a 2-D (longitude-latitude) implementation. During the past year, we have extended the library to treat adaptive mesh refinement in the vertical direction. Preliminary results are discussed. This research project is characterized by an interdisciplinary approach involving atmospheric science, computer science and mathematical/numerical aspects. The work is done in close collaboration between the Atmospheric Science, Computer Science and Aerospace Engineering Departments at the University of Michigan and NOAA GFDL.
NASA Astrophysics Data System (ADS)
Özacar, Arda A.; Abgarmi, Bizhan
2017-04-01
The North Anatolian Fault Zone (NAFZ) is an active continental transform plate boundary that accommodates the westward extrusion of the Anatolian plate. The central segment of NAFZ displays northward convex surface trace which coincides partly with the Paleo-Tethyan suture formed during the early Cenozoic. The depth extent and detailed structure of the actively deforming crust along the NAF is still under much debate and processes responsible from rapid uplift are enigmatic. In this study, over five thousand high quality P receiver functions are computed using teleseismic earthquakes recorded by permanent stations of national agencies and temporary North Anatolian Fault Passive Seismic experiment (2005-2008). In order to map the crustal thickness and Vp/Vs variations accurately, the study area is divided into grids with 20 km spacing and along each grid line Moho phase and its multiples are picked through constructed common conversion point (CCP) profiles. According to our results, nature of discontinuities and crustal thickness display sharp changes across the main strand of NAFZ supporting a lithospheric scale faulting that offsets Moho discontinuity. In the southern block, crust is relatively thin in the west ( 35 km) and becomes thicker gradually towards east ( 40 km). In contrast, the northern block displays a strong lateral change in crustal thickness reaching up to 10 km across a narrow roughly N-S oriented zone which is interpreted as the subsurface signature of the ambiguous boundary between Istanbul Block and Pontides located further west at the surface.
Investigation of advancing front method for generating unstructured grid
NASA Technical Reports Server (NTRS)
Thomas, A. M.; Tiwari, S. N.
1992-01-01
The advancing front technique is used to generate an unstructured grid about simple aerodynamic geometries. Unstructured grids are generated using VGRID2D and VGRID3D software. Specific problems considered are a NACA 0012 airfoil, a bi-plane consisting of two NACA 0012 airfoil, a four element airfoil in its landing configuration, and an ONERA M6 wing. Inviscid time dependent solutions are computed on these geometries using USM3D and the results are compared with standard test results obtained by other investigators. A grid convergence study is conducted for the NACA 0012 airfoil and compared with a structured grid. A structured grid is generated using GRIDGEN software and inviscid solutions computed using CFL3D flow solver. The results obtained by unstructured grid for NACA 0012 airfoil showed an asymmetric distribution of flow quantities, and a fine distribution of grid was required to remove this asymmetry. On the other hand, the structured grid predicted a very symmetric distribution, but when the total number of points were compared to obtain the same results it was seen that structured grid required more grid points.
Combined KHFAC+DC nerve block without onset or reduced nerve conductivity after block
Franke, Manfred; Vrabec, Tina; Wainright, Jesse; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin
2017-01-01
Background Kilohertz Frequency Alternating Current waveforms (KHFAC) have been shown to provide peripheral nerve conductivity block in many acute and chronic animal models. KHFAC nerve block could be used to address multiple disorders caused by neural over-activity, including blocking pain and spasticity. However, one drawback of KHFAC block is a transient activation of nerve fibers during the initiation of the nerve block, called the onset response. The objective of this study is to evaluate the feasibility of using charge balanced direct current (CBDC) waveforms to temporarily block motor nerve conductivity distally to the KHFAC electrodes to mitigate the block onset-response. Methods A total of eight animals were used in this study. A set of four animals were used to assess feasibility and reproducibility of a combined KHFAC+CBDC block. A following randomized study, conducted on a second set of four animals, compared the onset response resulting from KHFAC alone and combined KHFAC+CBDC waveforms. To quantify the onset, peak forces and the force-time integral were measured during KHFAC block initiation. Nerve conductivity was monitored throughout the study by comparing muscle twitch forces evoked by supra-maximal stimulation proximal and distal to the block electrodes. Each animal of the randomized study received at least 300 seconds (range: 318 to 1563s) of cumulative DC to investigate the impact of combined KHFAC+CBDC on nerve viability. Results The peak onset force was reduced significantly from 20.73 N (range: 18.6–26.5 N) with KHFAC alone to 0.45 N (range: 0.2–0.7 N) with the combined CBDC and KHFAC block waveform (p<0.001). The area under the force curve was reduced from 6.8 Ns (range: 3.5–21.9 Ns) to 0.54 Ns (range: 0.18–0.86Ns) (p<0.01). No change in nerve conductivity was observed after application of the combined KHFAC+CBDC block relative to KHFAC waveforms. Conclusion The distal application of CBDC can significantly reduce or even completely prevent the KHFAC onset response without a change in nerve conductivity. PMID:25115572
Combined KHFAC + DC nerve block without onset or reduced nerve conductivity after block
NASA Astrophysics Data System (ADS)
Franke, Manfred; Vrabec, Tina; Wainright, Jesse; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin
2014-10-01
Objective. Kilohertz frequency alternating current (KHFAC) waveforms have been shown to provide peripheral nerve conductivity block in many acute and chronic animal models. KHFAC nerve block could be used to address multiple disorders caused by neural over-activity, including blocking pain and spasticity. However, one drawback of KHFAC block is a transient activation of nerve fibers during the initiation of the nerve block, called the onset response. The objective of this study is to evaluate the feasibility of using charge balanced direct current (CBDC) waveforms to temporarily block motor nerve conductivity distally to the KHFAC electrodes to mitigate the block onset-response. Approach. A total of eight animals were used in this study. A set of four animals were used to assess feasibility and reproducibility of a combined KHFAC + CBDC block. A following randomized study, conducted on a second set of four animals, compared the onset response resulting from KHFAC alone and combined KHFAC + CBDC waveforms. To quantify the onset, peak forces and the force-time integral were measured during KHFAC block initiation. Nerve conductivity was monitored throughout the study by comparing muscle twitch forces evoked by supra-maximal stimulation proximal and distal to the block electrodes. Each animal of the randomized study received at least 300 s (range: 318-1563 s) of cumulative dc to investigate the impact of combined KHFAC + CBDC on nerve viability. Main results. The peak onset force was reduced significantly from 20.73 N (range: 18.6-26.5 N) with KHFAC alone to 0.45 N (range: 0.2-0.7 N) with the combined CBDC and KHFAC block waveform (p < 0.001). The area under the force curve was reduced from 6.8 Ns (range: 3.5-21.9 Ns) to 0.54 Ns (range: 0.18-0.86 Ns) (p < 0.01). No change in nerve conductivity was observed after application of the combined KHFAC + CBDC block relative to KHFAC waveforms. Significance. The distal application of CBDC can significantly reduce or even completely prevent the KHFAC onset response without a change in nerve conductivity.
Variable Grid Traveltime Tomography for Near-surface Seismic Imaging
NASA Astrophysics Data System (ADS)
Cai, A.; Zhang, J.
2017-12-01
We present a new algorithm of traveltime tomography for imaging the subsurface with automated variable grids upon geological structures. The nonlinear traveltime tomography along with Tikhonov regularization using conjugate gradient method is a conventional method for near surface imaging. However, model regularization for any regular and even grids assumes uniform resolution. From geophysical point of view, long-wavelength and large scale structures can be reliably resolved, the details along geological boundaries are difficult to resolve. Therefore, we solve a traveltime tomography problem that automatically identifies large scale structures and aggregates grids within the structures for inversion. As a result, the number of velocity unknowns is reduced significantly, and inversion intends to resolve small-scale structures or the boundaries of large-scale structures. The approach is demonstrated by tests on both synthetic and field data. One synthetic model is a buried basalt model with one horizontal layer. Using the variable grid traveltime tomography, the resulted model is more accurate in top layer velocity, and basalt blocks, and leading to a less number of grids. The field data was collected in an oil field in China. The survey was performed in an area where the subsurface structures were predominantly layered. The data set includes 476 shots with a 10 meter spacing and 1735 receivers with a 10 meter spacing. The first-arrival traveltime of the seismogram is picked for tomography. The reciprocal errors of most shots are between 2ms and 6ms. The normal tomography results in fluctuations in layers and some artifacts in the velocity model. In comparison, the implementation of new method with proper threshold provides blocky model with resolved flat layer and less artifacts. Besides, the number of grids reduces from 205,656 to 4,930 and the inversion produces higher resolution due to less unknowns and relatively fine grids in small structures. The variable grid traveltime tomography provides an alternative imaging solution for blocky structures in the subsurface and builds a good starting model for waveform inversion and statics.
Spatial distribution pattern of termite in Endau Rompin Plantation
NASA Astrophysics Data System (ADS)
Jalaludin, Nur-Atiqah; Rahim, Faszly
2015-09-01
We censused 18 field blocks approximately 190 ha with total of 28,604 palms in a grid of 2×4 palms from July 2011 to March 2013. The field blocks comprise of rows of palm trees, harvesting paths, field drains and stacking rows with maximum of 30 palms per row, planted about 9 m apart, alternately in maximum of 80 rows. SADIE analysis generating index of aggregation, Ia, local clustering value, Vi and local gap value, Vj is adopted to estimate spatial pattern. The patterns were then presented in contour map using Surfer 12 software. The patterns produced associated with factors i.e. habitat disturbance, habitat fragmentation and resources affecting nesting and foraging activities. Result shows that field blocks with great habitat disturbance recorded highest dead palms and termites hits. Blocks located far from the main access road recorded less than 2% palms with termite hits. This research may provide ecological data on termite spatial pattern in oil palm ecosystem.
Zhang, Lina; Zhang, Haoxu; Zhou, Ruifeng; Chen, Zhuo; Li, Qunqing; Fan, Shoushan; Ge, Guanglu; Liu, Renxiao; Jiang, Kaili
2011-09-23
A novel grid for use in transmission electron microscopy is developed. The supporting film of the grid is composed of thin graphene oxide films overlying a super-aligned carbon nanotube network. The composite film combines the advantages of graphene oxide and carbon nanotube networks and has the following properties: it is ultra-thin, it has a large flat and smooth effective supporting area with a homogeneous amorphous appearance, high stability, and good conductivity. The graphene oxide-carbon nanotube grid has a distinct advantage when characterizing the fine structure of a mass of nanomaterials over conventional amorphous carbon grids. Clear high-resolution transmission electron microscopy images of various nanomaterials are obtained easily using the new grids.
Utilizing Metalized Fabrics for Liquid and Rip Detection and Localization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, Stephen; Mahan, Cody; Kuhn, Michael J
2013-01-01
This paper proposes a novel technique for utilizing conductive textiles as a distributed sensor for detecting and localizing liquids (e.g., blood), rips (e.g., bullet holes), and potentially biosignals. The proposed technique is verified through both simulation and experimental measurements. Circuit theory is utilized to depict conductive fabric as a bounded, near-infinite grid of resistors. Solutions to the well-known infinite resistance grid problem are used to confirm the accuracy and validity of this modeling approach. Simulations allow for discontinuities to be placed within the resistor matrix to illustrate the effects of bullet holes within the fabric. A real-time experimental system wasmore » developed that uses a multiplexed Wheatstone bridge approach to reconstruct the resistor grid across the conductive fabric and detect liquids and rips. The resistor grid model is validated through a comparison of simulated and experimental results. Results suggest accuracy proportional to the electrode spacing in determining the presence and location of discontinuities in conductive fabric samples. Future work is focused on refining the experimental system to provide more accuracy in detecting and localizing events as well as developing a complete prototype that can be deployed for field testing. Potential applications include intelligent clothing, flexible, lightweight sensing systems, and combat wound detection.« less
Viscous Design of TCA Configuration
NASA Technical Reports Server (NTRS)
Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.
1999-01-01
The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.
NASA Astrophysics Data System (ADS)
Sun, Alexander Y.; Morris, Alan P.; Mohanty, Sitakanta
2009-07-01
Estimated parameter distributions in groundwater models may contain significant uncertainties because of data insufficiency. Therefore, adaptive uncertainty reduction strategies are needed to continuously improve model accuracy by fusing new observations. In recent years, various ensemble Kalman filters have been introduced as viable tools for updating high-dimensional model parameters. However, their usefulness is largely limited by the inherent assumption of Gaussian error statistics. Hydraulic conductivity distributions in alluvial aquifers, for example, are usually non-Gaussian as a result of complex depositional and diagenetic processes. In this study, we combine an ensemble Kalman filter with grid-based localization and a Gaussian mixture model (GMM) clustering techniques for updating high-dimensional, multimodal parameter distributions via dynamic data assimilation. We introduce innovative strategies (e.g., block updating and dimension reduction) to effectively reduce the computational costs associated with these modified ensemble Kalman filter schemes. The developed data assimilation schemes are demonstrated numerically for identifying the multimodal heterogeneous hydraulic conductivity distributions in a binary facies alluvial aquifer. Our results show that localization and GMM clustering are very promising techniques for assimilating high-dimensional, multimodal parameter distributions, and they outperform the corresponding global ensemble Kalman filter analysis scheme in all scenarios considered.
Electromagnetic sensing for deterministic finishing gridded domes
NASA Astrophysics Data System (ADS)
Galbraith, Stephen L.
2013-06-01
Electromagnetic sensing is a promising technology for precisely locating conductive grid structures that are buried in optical ceramic domes. Burying grid structures directly in the ceramic makes gridded dome construction easier, but a practical sensing technology is required to locate the grid relative to the dome surfaces. This paper presents a novel approach being developed for locating mesh grids that are physically thin, on the order of a mil, curved, and 75% to 90% open space. Non-contact location sensing takes place over a distance of 1/2 inch. A non-contact approach was required because the presence of the ceramic material precludes touching the grid with a measurement tool. Furthermore, the ceramic which may be opaque or transparent is invisible to the sensing technology which is advantageous for calibration. The paper first details the physical principles being exploited. Next, sensor impedance response is discussed for thin, open mesh, grids versus thick, solid, metal conductors. Finally, the technology approach is incorporated into a practical field tool for use in inspecting gridded domes.
Reducing Electromagnetic Interference in a Grid Tied Single Phase Power Inverter
2016-09-01
ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER INVERTER by Jason Hassan Valiani September 2016 Thesis Advisor: Giovanna Oriti...3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE REDUCING ELECTROMAGNETIC INTERFERENCE IN A GRID TIED SINGLE PHASE POWER...explored. The primary goal is to understand the effects each modulation strategy has on the conducted electromagnetic interference (EMI) and then
School Disruption on the Small Scale: Can Micro-Schools Break Out of an Elite Niche?
ERIC Educational Resources Information Center
Cohen, Justin C.
2017-01-01
NuVu is an off-the-grid, independent "micro-school" in Massachusetts, whose 60 students are stretching the boundaries of what constitutes education in America. Instead of switching between subject-driven classes that teach a common curriculum, they follow a fluid schedule in two-week blocks, and apply math, reading, problem-solving, and…
Snowdon, Richard L; Balasubramaniam, Richard; Teh, Andrew W; Haqqani, Haris M; Medi, Caroline; Rosso, Raphael; Vohra, Jitendra K; Kistler, Peter M; Morton, Joseph B; Sparks, Paul B; Kalman, Jonathan M
2010-05-01
Ablation for atypical atrial flutter (AFL) is often performed during tachycardia, with termination or noninducibility of AFL as the endpoint. Termination alone is, however, an inadequate endpoint for typical AFL ablation, where incomplete isthmus block leads to high recurrence rates. We assessed conduction block across a low lateral right atrial (RA) ablation line (LRA) from free wall scar to the inferior vena cava (IVC) or tricuspid annulus in 11 consecutive patients with atypical RA free wall flutter. LRA block was assessed following termination of AFL, by pacing from the ablation catheter in the low lateral RA posterior to the ablation line and recording the sequence and timing of activation anterior to the line with a duodecapole catheter, and vice versa for bidirectional block. LRA block resulted in a high to low activation pattern on the halo and a mean conduction time of 201 +/- 48 ms to distal halo. LRA conduction block was present in only 2 out of 6 patients after termination of AFL by ablation. Ablation was performed during sinus rhythm (SR) in 9 patients to achieve LRA conduction block. No recurrence of AFL was observed at long-term follow-up (22 +/- 12 months); 3 patients developed AF. Termination of right free wall flutter is often associated with persistent LRA conduction and additional radiofrequency ablation (RFA) in SR is usually required. Low RA pacing may be used to assess LRA conduction block and offers a robust endpoint for atypical RA free wall flutter ablation, which results in a high long-term cure rate.
A parallel adaptive mesh refinement algorithm
NASA Technical Reports Server (NTRS)
Quirk, James J.; Hanebutte, Ulf R.
1993-01-01
Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the local resolution of the computational grid to the numerical solution being sought have emerged as powerful tools for solving problems that contain disparate length and time scales. In particular, several workers have demonstrated the effectiveness of employing an adaptive, block-structured hierarchical grid system for simulations of complex shock wave phenomena. Unfortunately, from the parallel algorithm developer's viewpoint, this class of scheme is quite involved; these schemes cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested. However, because of their block-structured nature such schemes are inherently parallel, so all is not lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized. This method is built upon just a few simple message passing routines and so it may be implemented across a broad class of MIMD machines. Moreover, the method of parallelization is such that the original serial code is left virtually intact, and so we are left with just a single product to support. The importance of this fact should not be underestimated given the size and complexity of the original algorithm.
Column generation algorithms for virtual network embedding in flexi-grid optical networks.
Lin, Rongping; Luo, Shan; Zhou, Jingwei; Wang, Sheng; Chen, Bin; Zhang, Xiaoning; Cai, Anliang; Zhong, Wen-De; Zukerman, Moshe
2018-04-16
Network virtualization provides means for efficient management of network resources by embedding multiple virtual networks (VNs) to share efficiently the same substrate network. Such virtual network embedding (VNE) gives rise to a challenging problem of how to optimize resource allocation to VNs and to guarantee their performance requirements. In this paper, we provide VNE algorithms for efficient management of flexi-grid optical networks. We provide an exact algorithm aiming to minimize the total embedding cost in terms of spectrum cost and computation cost for a single VN request. Then, to achieve scalability, we also develop a heuristic algorithm for the same problem. We apply these two algorithms for a dynamic traffic scenario where many VN requests arrive one-by-one. We first demonstrate by simulations for the case of a six-node network that the heuristic algorithm obtains very close blocking probabilities to exact algorithm (about 0.2% higher). Then, for a network of realistic size (namely, USnet) we demonstrate that the blocking probability of our new heuristic algorithm is about one magnitude lower than a simpler heuristic algorithm, which was a component of an earlier published algorithm.
Integrated residential photovoltaic array development
NASA Technical Reports Server (NTRS)
Royal, G. C., III
1981-01-01
Sixteen conceptual designs of residential photovoltaic arrays are described. Each design concept was evaluated by an industry advisory panel using a comprehensive set of technical, economic and institutional criteria. Key electrical and mechanical concerns that effect further array subsystem development are also discussed. Three integrated array design concepts were selected by the advisory panel for further optimization and development. From these concepts a single one will be selected for detailed analysis and prototype fabrication. The three concepts selected are: (1) An array of frameless panels/modules sealed in a T shaped zipper locking neoprene gasket grid pressure fitted into an extruded aluminum channel grid fastened across the rafters. (2) An array of frameless modules pressure fitted in a series of zipper locking EPDM rubber extrusions adhesively bonded to the roof. Series string voltage is developed using a set of integral tongue connectors and positioning blocks. (3) An array of frameless modules sealed by a silicone adhesive in a prefabricated grid of rigid tape and sheet metal attached to the roof.
Sedimentary Geothermal Feasibility Study: October 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Augustine, Chad; Zerpa, Luis
The objective of this project is to analyze the feasibility of commercial geothermal projects using numerical reservoir simulation, considering a sedimentary reservoir with low permeability that requires productivity enhancement. A commercial thermal reservoir simulator (STARS, from Computer Modeling Group, CMG) is used in this work for numerical modeling. In the first stage of this project (FY14), a hypothetical numerical reservoir model was developed, and validated against an analytical solution. The following model parameters were considered to obtain an acceptable match between the numerical and analytical solutions: grid block size, time step and reservoir areal dimensions; the latter related to boundarymore » effects on the numerical solution. Systematic model runs showed that insufficient grid sizing generates numerical dispersion that causes the numerical model to underestimate the thermal breakthrough time compared to the analytic model. As grid sizing is decreased, the model results converge on a solution. Likewise, insufficient reservoir model area introduces boundary effects in the numerical solution that cause the model results to differ from the analytical solution.« less
Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.
Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki
2016-02-01
To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.
High Order Schemes in Bats-R-US for Faster and More Accurate Predictions
NASA Astrophysics Data System (ADS)
Chen, Y.; Toth, G.; Gombosi, T. I.
2014-12-01
BATS-R-US is a widely used global magnetohydrodynamics model that originally employed second order accurate TVD schemes combined with block based Adaptive Mesh Refinement (AMR) to achieve high resolution in the regions of interest. In the last years we have implemented fifth order accurate finite difference schemes CWENO5 and MP5 for uniform Cartesian grids. Now the high order schemes have been extended to generalized coordinates, including spherical grids and also to the non-uniform AMR grids including dynamic regridding. We present numerical tests that verify the preservation of free-stream solution and high-order accuracy as well as robust oscillation-free behavior near discontinuities. We apply the new high order accurate schemes to both heliospheric and magnetospheric simulations and show that it is robust and can achieve the same accuracy as the second order scheme with much less computational resources. This is especially important for space weather prediction that requires faster than real time code execution.
Blocking-state influence on shot noise and conductance in quantum dots
NASA Astrophysics Data System (ADS)
Harabula, M.-C.; Ranjan, V.; Haller, R.; Fülöp, G.; Schönenberger, C.
2018-03-01
Quantum dots (QDs) investigated through electron transport measurements often exhibit varying, state-dependent tunnel couplings to the leads. Under specific conditions, weakly coupled states can result in a strong suppression of the electrical current, and they are correspondingly called blocking states. Using the combination of conductance and shot noise measurements, we investigate blocking states in carbon nanotube (CNT) QDs. We report negative differential conductance and super-Poissonian noise. The enhanced noise is the signature of electron bunching, which originates from random switches between the strongly and weakly conducting states of the QD. Negative differential conductance appears here when the blocking state is an excited state. In this case, at the threshold voltage where the blocking state becomes populated, the current is reduced. Using a master equation approach, we provide numerical simulations reproducing both the conductance and the shot noise pattern observed in our measurements.
Mehl, Steffen W.; Hill, Mary C.
2013-01-01
This report documents the addition of ghost node Local Grid Refinement (LGR2) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference groundwater flow model. LGR2 provides the capability to simulate groundwater flow using multiple block-shaped higher-resolution local grids (a child model) within a coarser-grid parent model. LGR2 accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the grid-refinement interface boundary. LGR2 can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems. Traditional one-way coupled telescopic mesh refinement methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled ghost-node method of LGR2 provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR2, evaluates accuracy and performance for two-and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH2) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR2.
Szapocznik, José; Lombard, Joanna; Martinez, Frank; Mason, Craig A.; Gorman-Smith, Deborah; Plater-Zyberk, Elizabeth; Brown, Scott C.; Spokane, Arnold
2013-01-01
A population-based study examined the relationship between diversity of use of the built environment and teacher reports of children's grades. Diversity of use of the built environment (i.e., proportion of a block that is residential, institutional, commercial and vacant) was assessed for all 403 city blocks in East Little Havana, Miami—a Hispanic neighborhood. Cluster analysis identified three block-types, based on diversity of use: Residential, Mixed-Use, and Commercial. Cross-classified hierarchical linear modeling was used to examine the impact of diversity of use, school, gender, and year-in-school on academic and conduct grades for 2857 public school children who lived in these blocks. Contrary to popular belief, mixed-use blocks were associated with optimal outcomes. Specifically, follow-up analyses found that a youth living on a residential block had a 74% greater odds of being in the lowest 10% of conduct grades (conduct GPA <2.17) than a youth living on a mixed-use block. In fact, an analysis of the population attributable fraction suggests that if the risk associated with residential blocks could be reduced to the level of risk associated with mixed-use blocks, a 38% reduction in Conduct GPAs <2.17 could be achieved in the total population. These findings suggest that public policy targeting the built environment may be a mechanism for community-based interventions to enhance children's classroom conduct, and potentially related sequelae. PMID:16967342
Using the High-Level Based Program Interface to Facilitate the Large Scale Scientific Computing
Shang, Yizi; Shang, Ling; Gao, Chuanchang; Lu, Guiming; Ye, Yuntao; Jia, Dongdong
2014-01-01
This paper is to make further research on facilitating the large-scale scientific computing on the grid and the desktop grid platform. The related issues include the programming method, the overhead of the high-level program interface based middleware, and the data anticipate migration. The block based Gauss Jordan algorithm as a real example of large-scale scientific computing is used to evaluate those issues presented above. The results show that the high-level based program interface makes the complex scientific applications on large-scale scientific platform easier, though a little overhead is unavoidable. Also, the data anticipation migration mechanism can improve the efficiency of the platform which needs to process big data based scientific applications. PMID:24574931
Full Navier-Stokes analysis of a two-dimensional mixer/ejector nozzle for noise suppression
NASA Technical Reports Server (NTRS)
Debonis, James R.
1992-01-01
A three-dimensional full Navier-Stokes (FNS) analysis was performed on a mixer/ejector nozzle designed to reduce the jet noise created at takeoff by a future supersonic transport. The PARC3D computational fluid dynamics (CFD) code was used to study the flow field of the nozzle. The grid that was used in the analysis consisted of approximately 900,000 node points contained in eight grid blocks. Two nozzle configurations were studied: a constant area mixing section and a diverging mixing section. Data are presented for predictions of pressure, velocity, and total temperature distributions and for evaluations of internal performance and mixing effectiveness. The analysis provided good insight into the behavior of the flow.
Metal nano-grids for transparent conduction in solar cells
Muzzillo, Christopher P.
2017-05-11
A general procedure for predicting metal grid performance in solar cells was developed. Unlike transparent conducting oxides (TCOs) or other homogeneous films, metal grids induce more resistance in the neighbor layer. The resulting balance of transmittance, neighbor and grid resistance was explored in light of cheap lithography advances that have enabled metal nano-grid (MNG) fabrication. The patterned MNGs have junction resistances and degradation rates that are more favorable than solution-synthesized metal nanowires. Neighbor series resistance was simulated by the finite element method, although a simpler analytical model was sufficient in most cases. Finite-difference frequency-domain transmittance simulations were performed for MNGsmore » with minimum wire width (w) of 50 nm, but deviations from aperture transmittance were small in magnitude. Depending on the process, MNGs can exhibit increased series resistance as w is decreased. However, numerous experimental reports have already achieved transmittance-MNG sheet resistance trade-offs comparable to TCOs. The transmittance, neighbor and MNG series resistances were used to parameterize a grid fill factor for a solar cell. In conclusion, this new figure of merit was used to demonstrate that although MNGs have only been employed in low efficiency solar cells, substantial gains in performance are predicted for decreased w in all high efficiency absorber technologies.« less
Metal nano-grids for transparent conduction in solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzillo, Christopher P.
A general procedure for predicting metal grid performance in solar cells was developed. Unlike transparent conducting oxides (TCOs) or other homogeneous films, metal grids induce more resistance in the neighbor layer. The resulting balance of transmittance, neighbor and grid resistance was explored in light of cheap lithography advances that have enabled metal nano-grid (MNG) fabrication. The patterned MNGs have junction resistances and degradation rates that are more favorable than solution-synthesized metal nanowires. Neighbor series resistance was simulated by the finite element method, although a simpler analytical model was sufficient in most cases. Finite-difference frequency-domain transmittance simulations were performed for MNGsmore » with minimum wire width (w) of 50 nm, but deviations from aperture transmittance were small in magnitude. Depending on the process, MNGs can exhibit increased series resistance as w is decreased. However, numerous experimental reports have already achieved transmittance-MNG sheet resistance trade-offs comparable to TCOs. The transmittance, neighbor and MNG series resistances were used to parameterize a grid fill factor for a solar cell. In conclusion, this new figure of merit was used to demonstrate that although MNGs have only been employed in low efficiency solar cells, substantial gains in performance are predicted for decreased w in all high efficiency absorber technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dong Sik; Lee, Sanggyun
2013-06-15
Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequenciesmore » are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.« less
Electric Vehicle Grid Experiments and Analysis
DOT National Transportation Integrated Search
2018-02-02
This project developed a low cost building energy management system (EMS) and conducted vehicle-to-grid (V2G) experiments on a commercial office building. The V2G effort included theinstallation and operation of a Princeton Power System CA-30 bi-dire...
Internally folded expanded metal electrode for battery construction
NASA Technical Reports Server (NTRS)
Pierce, Doug C. (Inventor); Korinek, Paul D. (Inventor); Morgan, Maurice C. (Inventor)
1993-01-01
A battery system is disclosed which includes folded grids of expanded metal inserted through non-conductive substrates and pasted with electrochemically active materials. In the most preferred embodiment, a frame is provided with a plastic insert, and slots are provided in the latter to receive the expanded metal grid. After suitable coinage of the grid and insertion through the plastic film, the grid is sealed and pasted on opposite sides with positive and negative active material. A battery is assembled using one or a plurality of the resulting electrode elements, with separators, to produce a high-power, lead-acid battery. The folded grid provides many of the design benefits of standard bipolar construction.
Highly Conductive Anion Exchange Block Copolymers
We are developing a comprehensive fundamental understanding of the interplay between transport and morphology in newly synthesized hydroxide...conducting block copolymers. We are synthesizing hydroxide conducting block copolymers of various (1) morphology types, (2) ionic concentrations, and (3...ionic domain sizes. We are carefully characterizing the morphology and transport properties using both conventional and new advanced in situ techniques
Importance of Grid Center Arrangement
NASA Astrophysics Data System (ADS)
Pasaogullari, O.; Usul, N.
2012-12-01
In Digital Elevation Modeling, grid size is accepted to be the most important parameter. Despite the point density and/or scale of the source data, it is freely decided by the user. Most of the time, arrangement of the grid centers are ignored, even most GIS packages omit the choice of grid center coordinate selection. In our study; importance of the arrangement of grid centers is investigated. Using the analogy between "Raster Grid DEM" and "Bitmap Image", importance of placement of grid centers in DEMs are measured. The study has been conducted on four different grid DEMs obtained from a half ellipsoid. These grid DEMs are obtained in such a way that they are half grid size apart from each other. Resulting grid DEMs are investigated through similarity measures. Image processing scientists use different measures to investigate the dis/similarity between the images and the amount of different information they carry. Grid DEMs are projected to a finer grid in order to co-center. Similarity measures are then applied to each grid DEM pairs. These similarity measures are adapted to DEM with band reduction and real number operation. One of the measures gives function graph and the others give measure matrices. Application of similarity measures to six grid DEM pairs shows interesting results. These four different grid DEMs are created with the same method for the same area, surprisingly; thirteen out of 14 measures state that, the half grid size apart grid DEMs are different from each other. The results indicated that although grid DEMs carry mutual information, they have also additional individual information. In other words, half grid size apart constructed grid DEMs have non-redundant information.; Joint Probability Distributions Function Graphs
Block structured adaptive mesh and time refinement for hybrid, hyperbolic + N-body systems
NASA Astrophysics Data System (ADS)
Miniati, Francesco; Colella, Phillip
2007-11-01
We present a new numerical algorithm for the solution of coupled collisional and collisionless systems, based on the block structured adaptive mesh and time refinement strategy (AMR). We describe the issues associated with the discretization of the system equations and the synchronization of the numerical solution on the hierarchy of grid levels. We implement a code based on a higher order, conservative and directionally unsplit Godunov’s method for hydrodynamics; a symmetric, time centered modified symplectic scheme for collisionless component; and a multilevel, multigrid relaxation algorithm for the elliptic equation coupling the two components. Numerical results that illustrate the accuracy of the code and the relative merit of various implemented schemes are also presented.
Well-posed and stable transmission problems
NASA Astrophysics Data System (ADS)
Nordström, Jan; Linders, Viktor
2018-07-01
We introduce the notion of a transmission problem to describe a general class of problems where different dynamics are coupled in time. Well-posedness and stability are analysed for continuous and discrete problems using both strong and weak formulations, and a general transmission condition is obtained. The theory is applied to the coupling of fluid-acoustic models, multi-grid implementations, adaptive mesh refinements, multi-block formulations and numerical filtering.
Parameterization of Small-Scale Processes
1989-09-01
1989, Honolulu, Hawaii !7 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FELD GROUP SIJB- GROUP general...detailed sensitivit. studies to assess the dependence of results on the edd\\ viscosities and diffusivities by a direct comparison with certain observations...better sub-grid scale parameterization is to mount a concerted s .arch for model fits to observations. These would require exhaustive sensitivity studies
Methodology for the Assessment of 3D Conduction Effects in an Aerothermal Wind Tunnel Test
NASA Technical Reports Server (NTRS)
Oliver, Anthony Brandon
2010-01-01
This slide presentation reviews a method for the assessment of three-dimensional conduction effects during test in a Aerothermal Wind Tunnel. The test objectives were to duplicate and extend tests that were performed during the 1960's on thermal conduction on proturberance on a flat plate. Slides review the 1D versus 3D conduction data reduction error, the analysis process, CFD-based analysis, loose coupling method that simulates a wind tunnel test run, verification of the CFD solution, Grid convergence, Mach number trend, size trends, and a Sumary of the CFD conduction analysis. Other slides show comparisons to pretest CFD at Mach 1.5 and 2.16 and the geometries of the models and grids.
Multi-Dimensional Damage Detection
NASA Technical Reports Server (NTRS)
Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Lewis, Mark E. (Inventor); Snyder, Sarah J. (Inventor); Medelius, Pedro J. (Inventor)
2016-01-01
Methods and systems may provide for a structure having a plurality of interconnected panels, wherein each panel has a plurality of detection layers separated from one another by one or more non-detection layers. The plurality of detection layers may form a grid of conductive traces. Additionally, a monitor may be coupled to each grid of conductive traces, wherein the monitor is configured to detect damage to the plurality of interconnected panels in response to an electrical property change with respect to one or more of the conductive traces. In one example, the structure is part of an inflatable space platform such as a spacecraft or habitat.
Grid Convergence for Turbulent Flows(Invited)
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Rumsey, Christopher L.; Schwoppe, Axel
2015-01-01
A detailed grid convergence study has been conducted to establish accurate reference solutions corresponding to the one-equation linear eddy-viscosity Spalart-Allmaras turbulence model for two dimensional turbulent flows around the NACA 0012 airfoil and a flat plate. The study involved three widely used codes, CFL3D (NASA), FUN3D (NASA), and TAU (DLR), and families of uniformly refined structured grids that differ in the grid density patterns. Solutions computed by different codes on different grid families appear to converge to the same continuous limit, but exhibit different convergence characteristics. The grid resolution in the vicinity of geometric singularities, such as a sharp trailing edge, is found to be the major factor affecting accuracy and convergence of discrete solutions, more prominent than differences in discretization schemes and/or grid elements. The results reported for these relatively simple turbulent flows demonstrate that CFL3D, FUN3D, and TAU solutions are very accurate on the finest grids used in the study, but even those grids are not sufficient to conclusively establish an asymptotic convergence order.
Parallel-wire grid assembly with method and apparatus for construction thereof
Lewandowski, E.F.; Vrabec, J.
1981-10-26
Disclosed is a parallel wire grid and an apparatus and method for making the same. The grid consists of a generally coplanar array of parallel spaced-apart wires secured between metallic frame members by an electrically conductive epoxy. The method consists of continuously winding a wire about a novel winding apparatus comprising a plurality of spaced-apart generally parallel spindles. Each spindle is threaded with a number of predeterminedly spaced-apart grooves which receive and accurately position the wire at predetermined positions along the spindle. Overlying frame members coated with electrically conductive epoxy are then placed on either side of the wire array and are drawn together. After the epoxy hardens, portions of the wire array lying outside the frame members are trimmed away.
Parallel-wire grid assembly with method and apparatus for construction thereof
Lewandowski, Edward F.; Vrabec, John
1984-01-01
Disclosed is a parallel wire grid and an apparatus and method for making the same. The grid consists of a generally coplanar array of parallel spaced-apart wires secured between metallic frame members by an electrically conductive epoxy. The method consists of continuously winding a wire about a novel winding apparatus comprising a plurality of spaced-apart generally parallel spindles. Each spindle is threaded with a number of predeterminedly spaced-apart grooves which receive and accurately position the wire at predetermined positions along the spindle. Overlying frame members coated with electrically conductive epoxy are then placed on either side of the wire array and are drawn together. After the epoxy hardens, portions of the wire array lying outside the frame members are trimmed away.
Alternating current long range alpha particle detector
MacArthur, Duncan W.; McAtee, James L.
1993-01-01
An alpha particle detector, utilizing alternating currents, whcih is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.
Alternating current long range alpha particle detector
MacArthur, D.W.; McAtee, J.L.
1993-02-16
An alpha particle detector, utilizing alternating currents, which is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.
NASA Astrophysics Data System (ADS)
Karaş, Mustafa; Tank, Sabri Bülent; Özaydın, Sinan
2017-08-01
This study attempts to reveal the fault zone characteristics of the locked Ganos Fault based on electrical resistivity studies including audio-frequency (AMT: 10,400-1 Hz) and wide-band (MT: 360-0.000538 Hz) magnetotellurics near the epicenter of the last major event, that is, the 1912 Mürefte Earthquake ( M w 7.4). The AMT data were collected at twelve stations, closely spaced from north to south, to resolve the shallow resistivity structure to 1 km depth. Subsequently, 13 wide-band MT stations were arranged to form a grid enclosing the AMT profile to decipher the deeper structure. Three-dimensional inverse modeling indicates highly conductive anomalies representing fault zone conductors along the Ganos Fault. Subsidiary faults around the Ganos Fault, which are conductive structures with individual mechanically weak features, merge into a greater damage zone, creating a wide fluid-bearing environment. This damage zone is located on the southern side of the fault and defines an asymmetry around the main fault strand, which demonstrates distributed conduit behavior of fluid flow. Ophiolitic basement occurs as low-conductivity block beneath younger formations at a depth of 2 km, where the mechanically weak to strong transition occurs. Resistive structures on both sides of the fault beneath this transition suggest that the lack of seismicity might be related to the absence of fluid pathways in the seismogenic zone.[Figure not available: see fulltext.
The Effects of City Streets on an Urban Disease Vector
Barbu, Corentin M.; Hong, Andrew; Manne, Jennifer M.; Small, Dylan S.; Quintanilla Calderón, Javier E.; Sethuraman, Karthik; Quispe-Machaca, Víctor; Ancca-Juárez, Jenny; Cornejo del Carpio, Juan G.; Málaga Chavez, Fernando S.; Náquira, César; Levy, Michael Z.
2013-01-01
With increasing urbanization vector-borne diseases are quickly developing in cities, and urban control strategies are needed. If streets are shown to be barriers to disease vectors, city blocks could be used as a convenient and relevant spatial unit of study and control. Unfortunately, existing spatial analysis tools do not allow for assessment of the impact of an urban grid on the presence of disease agents. Here, we first propose a method to test for the significance of the impact of streets on vector infestation based on a decomposition of Moran's spatial autocorrelation index; and second, develop a Gaussian Field Latent Class model to finely describe the effect of streets while controlling for cofactors and imperfect detection of vectors. We apply these methods to cross-sectional data of infestation by the Chagas disease vector Triatoma infestans in the city of Arequipa, Peru. Our Moran's decomposition test reveals that the distribution of T. infestans in this urban environment is significantly constrained by streets (p<0.05). With the Gaussian Field Latent Class model we confirm that streets provide a barrier against infestation and further show that greater than 90% of the spatial component of the probability of vector presence is explained by the correlation among houses within city blocks. The city block is thus likely to be an appropriate spatial unit to describe and control T. infestans in an urban context. Characteristics of the urban grid can influence the spatial dynamics of vector borne disease and should be considered when designing public health policies. PMID:23341756
Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics
NASA Astrophysics Data System (ADS)
Gilles, Luc; Ellerbroek, Brent L.; Vogel, Curtis R.
2003-09-01
Multiconjugate adaptive optics (MCAO) systems with 104-105 degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wave-front control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 104 actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10-2 Hz, i.e., 4-5 orders of magnitude lower than the typical 103 Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.
NASA Astrophysics Data System (ADS)
Mohamed, N. E.; Yaramanci, U.; Kheiralla, K. M.; Abdelgalil, M. Y.
2011-07-01
Two geophysical techniques were integrated to map the groundwater aquifers on complex geological settings, in the crystalline basement terrain in northeast Nuba Mountains. The water flow is structurally controlled by the northwest-southeast extensional faults as one of several in-situ deformational patterns that are attributed to the collision of the Pan-African oceanic assemblage of the Nubian shield against the pre-Pan African continental crust to the west. The structural lineaments and drainage systems have been enhanced by the remote sensing technique. The geophysical techniques used are: vertical electrical soundings (VES) and electrical resistivity tomography (ERT), in addition to hydraulic conductivity measurements. These measurements were designed to overlap in order to improve the producibility of the geophysical data and to provide a better interpretation of the hydrogeological setting of the aquifer complex structure. Smooth and Block inversion schemes were attempted for the observed ERT data to study their reliability in mapping the different geometries in the complex subsurface. The VES data was conducted where ERT survey was not accessible, and inverted smoothly and merged with the ERT in the 3D resistivity grid. The hydraulic conductivity was measured for 42 water samples collected from the distributed dug wells in the study area; where extremely high saline zones were recorded and have been compared to the resistivity values in the 3D model.
Vijayaraman, Pugazhendhi; Dandamudi, Gopi; Naperkowski, Angela; Oren, Jess; Storm, Randle; Ellenbogen, Kenneth A
2012-10-01
Complete electrical isolation of pulmonary veins (PVs) remains the cornerstone of ablation therapy for atrial fibrillation. Entrance block without exit block has been reported to occur in 40% of the patients. Far-field capture (FFC) can occur during pacing from the superior PVs to assess exit block, and this may appear as persistent conduction from PV to left atrium (LA). To facilitate accurate assessment of exit block. Twenty consecutive patients with symptomatic atrial fibrillation referred for ablation were included in the study. Once PV isolation (entrance block) was confirmed, pacing from all the bipoles on the Lasso catheter was used to assess exit block by using a pacing stimulus of 10 mA at 2 ms. Evidence for PV capture without conduction to LA was necessary to prove exit block. If conduction to LA was noticed, pacing output was decreased until there was PV capture without conduction to LA or no PV capture was noted to assess for far-field capture in both the upper PVs. All 20 patients underwent successful isolation (entrance block) of all 76 (4 left common PV) veins: mean age 58 ± 9 years; paroxysmal atrial fibrillation 40%; hypertension 70%, diabetes mellitus 30%, coronary artery disease 15%; left ventricular ejection fraction 55% ± 10%; LA size 42 ± 11 mm. Despite entrance block, exit block was absent in only 16% of the PVs, suggesting persistent PV to LA conduction. FFC of LA appendage was noted in 38% of the left superior PVs. FFC of the superior vena cava was noted in 30% of the right superior PVs. The mean pacing threshold for FFC was 7 ± 4 mA. Decreasing pacing output until only PV capture (loss of FFC) is noted was essential to confirm true exit block. FFC of LA appendage or superior vena cava can masquerade as persistent PV to LA conduction. A careful assessment for PV capture at decreasing pacing output is essential to exclude FFC. Copyright © 2012 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry
2017-07-01
Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF of Schaap et al. (2001) applied to the SoilGrids1km data set of Hengl et al. (2014). The example data set is provided at a global resolution of 0.25° at https://doi.org/10.1594/PANGAEA.870605.
On a simulation study for reliable and secured smart grid communications
NASA Astrophysics Data System (ADS)
Mallapuram, Sriharsha; Moulema, Paul; Yu, Wei
2015-05-01
Demand response is one of key smart grid applications that aims to reduce power generation at peak hours and maintain a balance between supply and demand. With the support of communication networks, energy consumers can become active actors in the energy management process by adjusting or rescheduling their electricity usage during peak hours based on utilities pricing incentives. Nonetheless, the integration of communication networks expose the smart grid to cyber-attacks. In this paper, we developed a smart grid simulation test-bed and designed evaluation scenarios. By leveraging the capabilities of Matlab and ns-3 simulation tools, we conducted a simulation study to evaluate the impact of cyber-attacks on demand response application. Our data shows that cyber-attacks could seriously disrupt smart grid operations, thus confirming the need of secure and resilient communication networks for supporting smart grid operations.
Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon
Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which aremore » anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.« less
Geophysical Studies of Irish Granites Using Magnetotelluric and Gravity Data
NASA Astrophysics Data System (ADS)
Farrell, T. F.; Muller, M. R.; Rath, V.; Feely, M.; Hogg, C.
2014-12-01
We present results of on-going geophysical studies of Caledonian radiothermal granite bodies in Ireland, which are being undertaken to investigate the volumetric depth extent and structural features of these granites. During three field seasons, magnetotelluric (MT) and audio-magnetotelluric (AMT) data were acquired at 156 sites targeting three separate granite bodies. These studies will contribute to a crustal-scale investigation of the geothermal energy potential of the granites and their contribution to the thermal field of the Irish crust. Across the calc-alkaline Galway granite, located on the Irish west coast, MT and AMT data were acquired at 75 sites distributed in a grid. Preliminary 3D inversion reveals the presence of a resistor, thickest beneath the central block of the granite where it extends to depths of 11 - 12 km. The greater depth of the resistor beneath the central block is in contrast to previous thinking that proposed the central block granites to have shallower depth extent than those of the western block, based on Bouguer anomaly maps of the area in which the western block exhibited a more pronounced negative Bouguer anomaly than the central block. At the S-type Leinster granite, in eastern Ireland and to the south of Dublin, MT and AMT data were acquired along two profiles (LGN - 27 sites and LGS - 32 sites). Preliminary 1D inversions of AMT data along profile LGN show the Northern Units of the Leinster granite to extend to a depth of 4.5 km and the Lugnaquilla pluton extending to 2.5 km depth. MT and AMT data were acquired at 22 sites along a profile across the buried Kentstown granite, 35 km to the NW of Dublin. The Kentstown granite was intersected by two mineral exploration boreholes at depths of 492 m and 663 m. Preliminary 2D inversions do not yet satisfactorily resolve the top of the buried granite. Inversion of MT and AMT data is continuing, with the electrical conductivity structures revealed by these inversions being used to constrain inversions of gravity data. The integration of MT and gravity data will provide an insight into the potential density distribution within the resistors associated with the granites and whether the granites, likely to have elevated heat-production (HP), are underlain by electrically resistive but denser, more mafic bodies, likely to be associated with lower HP.
Dong, Nan; Yang, Xiaohuan; Cai, Hongyan; Xu, Fengjiao
2017-01-01
The research on the grid size suitability is important to provide improvement in accuracies of gridded population distribution. It contributes to reveal the actual spatial distribution of population. However, currently little research has been done in this area. Many well-modeled gridded population dataset are basically built at a single grid scale. If the grid cell size is not appropriate, it will result in spatial information loss or data redundancy. Therefore, in order to capture the desired spatial variation of population within the area of interest, it is necessary to conduct research on grid size suitability. This study summarized three expressed levels to analyze grid size suitability, which include location expressed level, numeric information expressed level, and spatial relationship expressed level. This study elaborated the reasons for choosing the five indexes to explore expression suitability. These five indexes are consistency measure, shape index rate, standard deviation of population density, patches diversity index, and the average local variance. The suitable grid size was determined by constructing grid size-indicator value curves and suitable grid size scheme. Results revealed that the three expressed levels on 10m grid scale are satisfying. And the population distribution raster data with 10m grid size provide excellent accuracy without loss. The 10m grid size is recommended as the appropriate scale for generating a high-quality gridded population distribution in our study area. Based on this preliminary study, it indicates the five indexes are coordinated with each other and reasonable and effective to assess grid size suitability. We also suggest choosing these five indexes in three perspectives of expressed level to carry out the research on grid size suitability of gridded population distribution.
Dong, Nan; Yang, Xiaohuan; Cai, Hongyan; Xu, Fengjiao
2017-01-01
The research on the grid size suitability is important to provide improvement in accuracies of gridded population distribution. It contributes to reveal the actual spatial distribution of population. However, currently little research has been done in this area. Many well-modeled gridded population dataset are basically built at a single grid scale. If the grid cell size is not appropriate, it will result in spatial information loss or data redundancy. Therefore, in order to capture the desired spatial variation of population within the area of interest, it is necessary to conduct research on grid size suitability. This study summarized three expressed levels to analyze grid size suitability, which include location expressed level, numeric information expressed level, and spatial relationship expressed level. This study elaborated the reasons for choosing the five indexes to explore expression suitability. These five indexes are consistency measure, shape index rate, standard deviation of population density, patches diversity index, and the average local variance. The suitable grid size was determined by constructing grid size-indicator value curves and suitable grid size scheme. Results revealed that the three expressed levels on 10m grid scale are satisfying. And the population distribution raster data with 10m grid size provide excellent accuracy without loss. The 10m grid size is recommended as the appropriate scale for generating a high-quality gridded population distribution in our study area. Based on this preliminary study, it indicates the five indexes are coordinated with each other and reasonable and effective to assess grid size suitability. We also suggest choosing these five indexes in three perspectives of expressed level to carry out the research on grid size suitability of gridded population distribution. PMID:28122050
El Mansouri, Bouchra; Amarir, Fatima; Hajli, Yamina; Fellah, Hajiba; Sebti, Faiza; Delouane, Bouchra; Sadak, Abderrahim; Adlaoui, El Bachir; Rhajaoui, Mohammed
2017-01-01
The aim of our study was to assess a standardized supervisory grid as a new supervision tool being used in the laboratories of leishmaniasis. We conducted a pilot trial to evaluate the ongoing performances of seven provincial laboratories, in four provinces in Morocco, over a period of two years, between 2006 and 2014. This study detailed the situation in provincial laboratories before and after the implementation of the supervisory grid. A total of twenty-one grids were analyzed. In 2006, the results clearly showed a poor performance of laboratories: need for training (41.6%), staff performing skin biopsy (25%), shortage of materials and reagents (65%), non-compliant document and local management (85%). Several corrective actions were conducted by the National Reference Laboratory (LNRL) of Leishmaniasis during the study period. In 2014, the LNRL recorded a net improvement of the performances of the laboratories. The need for training, the quality of the biopsy, the supply of tools and reagents were met and an effective coordination activity was established between the LNRL and the provincial laboratories. This trial shows the effectiveness of the grid as a high quality supervisory tool and as a cornerstone of making progress on fight programs against leishmaniases.
Optimizing the Distribution of Tie Points for the Bundle Adjustment of HRSC Image Mosaics
NASA Astrophysics Data System (ADS)
Bostelmann, J.; Breitkopf, U.; Heipke, C.
2017-07-01
For a systematic mapping of the Martian surface, the Mars Express orbiter is equipped with a multi-line scanner: Since the beginning of 2004 the High Resolution Stereo Camera (HRSC) regularly acquires long image strips. By now more than 4,000 strips covering nearly the whole planet are available. Due to the nine channels, each with different viewing direction, and partly with different optical filters, each strip provides 3D and color information and allows the generation of digital terrain models (DTMs) and orthophotos. To map larger regions, neighboring HRSC strips can be combined to build DTM and orthophoto mosaics. The global mapping scheme Mars Chart 30 is used to define the extent of these mosaics. In order to avoid unreasonably large data volumes, each MC-30 tile is divided into two parts, combining about 90 strips each. To ensure a seamless fit of these strips, several radiometric and geometric corrections are applied in the photogrammetric process. A simultaneous bundle adjustment of all strips as a block is carried out to estimate their precise exterior orientation. Because size, position, resolution and image quality of the strips in these blocks are heterogeneous, also the quality and distribution of the tie points vary. In absence of ground control points, heights of a global terrain model are used as reference information, and for this task a regular distribution of these tie points is preferable. Besides, their total number should be limited because of computational reasons. In this paper, we present an algorithm, which optimizes the distribution of tie points under these constraints. A large number of tie points used as input is reduced without affecting the geometric stability of the block by preserving connections between strips. This stability is achieved by using a regular grid in object space and discarding, for each grid cell, points which are redundant for the block adjustment. The set of tie points, filtered by the algorithm, shows a more homogenous distribution and is considerably smaller. Used for the block adjustment, it yields results of equal quality, with significantly shorter computation time. In this work, we present experiments with MC-30 half-tile blocks, which confirm our idea for reaching a stable and faster bundle adjustment. The described method is used for the systematic processing of HRSC data.
Spaceflight Operations Services Grid (SOSG) Prototype Implementation and Feasibility Study
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Thigpen, William W.; Lisotta, Anthony J.; Redman, Sandra
2004-01-01
Science Operations Services Grid is focusing on building a prototype grid-based environment that incorporates existing and new spaceflight services to enable current and future NASA programs with cost savings and new and evolvable methods to conduct science in a distributed environment. The Science Operations Services Grid (SOSG) will provide a distributed environment for widely disparate organizations to conduct their systems and processes in a more efficient and cost effective manner. These organizations include those that: 1) engage in space-based science and operations, 2) develop space-based systems and processes, and 3) conduct scientific research, bringing together disparate scientific disciplines like geology and oceanography to create new information. In addition educational outreach will be significantly enhanced by providing to schools the same tools used by NASA with the ability of the schools to actively participate on many levels in the science generated by NASA from space and on the ground. The services range from voice, video and telemetry processing and display to data mining, high level processing and visualization tools all accessible from a single portal. In this environment, users would not require high end systems or processes at their home locations to use these services. Also, the user would need to know minimal details about the applications in order to utilize the services. In addition, security at all levels is an underlying goal of the project. The Science Operations Services Grid will focus on four tools that are currently used by the ISS Payload community along with nine more that are new to the community. Under the prototype four Grid virtual organizations PO) will be developed to represent four types of users. They are a Payload (experimenters) VO, a Flight Controllers VO, an Engineering and Science Collaborators VO and an Education and Public Outreach VO. The User-based services will be implemented to replicate the operational voice, video, telemetry and commanding systems. Once the User-based services are in place, they will be analyzed to establish feasibility for Grid enabling. If feasible then each User-based service will be Grid enabled. The remaining non-Grid services if not already Web enabled will be so enabled. In the end, four portals will be developed one for each VO. Each portal will contain the appropriate User-based services required for that VO to operate.
NASA Technical Reports Server (NTRS)
Hall, Edward J.; Delaney, Robert A.; Bettner, James L.
1991-01-01
The primary objective of this study was the development of a time-dependent three-dimensional Euler/Navier-Stokes aerodynamic analysis to predict unsteady compressible transonic flows about ducted and unducted propfan propulsion systems at angle of attack. The computer codes resulting from this study are referred to as Advanced Ducted Propfan Analysis Codes (ADPAC). This report is intended to serve as a computer program user's manual for the ADPAC developed under Task 2 of NASA Contract NAS3-25270, Unsteady Ducted Propfan Analysis. Aerodynamic calculations were based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. A time-accurate implicit residual smoothing operator was utilized for unsteady flow predictions. For unducted propfans, a single H-type grid was used to discretize each blade passage of the complete propeller. For ducted propfans, a coupled system of five grid blocks utilizing an embedded C-grid about the cowl leading edge was used to discretize each blade passage. Grid systems were generated by a combined algebraic/elliptic algorithm developed specifically for ducted propfans. Numerical calculations were compared with experimental data for both ducted and unducted propfan flows. The solution scheme demonstrated efficiency and accuracy comparable with other schemes of this class.
NASA Astrophysics Data System (ADS)
Gohl, Karsten; Denk, Astrid; Eagles, Graeme; Wobbe, Florian
2013-02-01
The Amundsen Sea Embayment (ASE), with Pine Island Bay (PIB) in the eastern embayment, is a key location to understanding tectonic processes of the Pacific margin of West Antarctica. PIB has for a long time been suggested to contain the crustal boundary between the Thurston Island block and the Marie Byrd Land block. Plate tectonic reconstructions have shown that the initial rifting and breakup of New Zealand from West Antarctica occurred between Chatham Rise and the eastern Marie Byrd Land at the ASE. Recent concepts have discussed the possibility of PIB being the site of one of the eastern branches of the West Antarctic Rift System (WARS). About 30,000 km of aeromagnetic data - collected opportunistically by ship-based helicopter flights - and tracks of ship-borne magnetics were recorded over the ASE shelf during two RV Polarstern expeditions in 2006 and 2010. Grid processing, Euler deconvolution and 2D modelling were applied for the analysis of magnetic anomaly patterns, identification of structural lineaments and characterisation of magnetic source bodies. The grid clearly outlines the boundary zone between the inner shelf with outcropping basement rocks and the sedimentary basins of the middle to outer shelf. Distinct zones of anomaly patterns and lineaments can be associated with at least three tectonic phases from (1) magmatic emplacement zones of Cretaceous rifting and breakup (100-85 Ma), to (2) a southern distributed plate boundary zone of the Bellingshausen Plate (80-61 Ma) and (3) activities of the WARS indicated by NNE-SSW trending lineaments (55-30 Ma?). The analysis and interpretation are also used for constraining the directions of some of the flow paths of past grounded ice streams across the shelf.
NASA Astrophysics Data System (ADS)
Abdoulaye, D.; Koalaga, Z.; Zougmore, F.
2012-02-01
This paper deals with a key solution for power outages problem experienced by many African countries and this through grid-connected photovoltaic (PV) systems with batteries storage. African grids are characterized by an insufficient power supply and frequent interruptions. Due to this fact, users who especially use classical grid-connected photovoltaic systems are unable to profit from their installation even if there is sun. In this study, we suggest the using of a grid-connected photovoltaic system with batteries storage as a solution to these problems. This photovoltaic system works by injecting the surplus of electricity production into grid and can also deliver electricity as a stand-alone system with all security needed. To achieve our study objectives, firstly we conducted a survey of a real situation of one African electrical grid, the case of Burkina Faso (SONABEL: National Electricity Company of Burkina). Secondly, as study case, we undertake a sizing, a modeling and a simulation of a grid-connected PV system with batteries storage for the LAME laboratory at the University of Ouagadougou. The simulation shows that the proposed grid-connected system allows users to profit from their photovoltaic installation at any time even if the public electrical grid has some failures either during the day or at night.
FV-MHMM: A Discussion on Weighting Schemes.
NASA Astrophysics Data System (ADS)
Franc, J.; Gerald, D.; Jeannin, L.; Egermann, P.; Masson, R.
2016-12-01
Upscaling or homogenization techniques consist in finding block-equivalentor equivalent upscaled properties on a coarse grid from heterogeneousproperties defined on an underlying fine grid. However, this couldbecome costly and resource consuming. Harder et al., 2013, have developeda Multiscale Hybrid-Mixed Method (MHMM) of upscaling to treat Darcytype equations on heterogeneous fields formulated using a finite elementmethod. Recently, Franc et al. 2016, has extended this method of upscalingto finite volume formulation (FV-MHMM). Although convergence refiningLagrange multipliers space has been observed, numerical artefactscan occur while trapping numerically the flow in regions of low permeability. This work will present the development of the method along with theresults obtained from its classical formulation. Then, two weightingschemes and their benefits on the FV-MHMM method will be presented insome simple random permeability cases. Next example will involve alarger heterogeneous 2D permeability field extracted from the 10thSPE test case. Eventually, multiphase flow will be addressed asan extension of this single phase flow method. An elliptic pressureequation solved on the coarse grid via FV-MHMM will be sequentiallycoupled with a hyperbolic saturation equation on the fine grid. Theimproved accuracy thanks to the weighting scheme will be measuredcompared to a finite volume fine grid solution. References: Harder, C., Paredes, D. and Valentin, F., A family of multiscalehybrid-mixed finite element methods for the Darcy equation with roughcoefficients, Journal of Computational Physics, 2013. Franc J., Debenest G., Jeannin L., Egermann P. and Masson R., FV-MHMMfor reservoir modelling ECMOR XV-15th European Conference on the Mathematicsof Oil Recovery, 2015.
NASA Astrophysics Data System (ADS)
Xiang, Min; Qu, Qinqin; Chen, Cheng; Tian, Li; Zeng, Lingkang
2017-11-01
To improve the reliability of communication service in smart distribution grid (SDG), an access selection algorithm based on dynamic network status and different service types for heterogeneous wireless networks was proposed. The network performance index values were obtained in real time by multimode terminal and the variation trend of index values was analyzed by the growth matrix. The index weights were calculated by entropy-weight and then modified by rough set to get the final weights. Combining the grey relational analysis to sort the candidate networks, and the optimum communication network is selected. Simulation results show that the proposed algorithm can implement dynamically access selection in heterogeneous wireless networks of SDG effectively and reduce the network blocking probability.
CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W.; Almgren, A.; Bell, J.
We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunovmore » scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.« less
Development of a Whole Container Seal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhn, Michael J; Pickett, Chris A; Stinson, Brad J
This paper outlines a technique for utilizing electrically conductive textiles as a whole container seal. This method has the potential to provide more robustness for ensuring that the container has not been breached versus conventional sealing methods that only provide tamper indication at the area used for normal access. The conductive textile is used as a distributed sensor for detecting and localizing container tamper or breach. For sealing purposes, the conductive fabric represents a bounded, near-infinite grid of resistors. The well-known infinite resistance grid problem was used to model and confirm the expected accuracy and validity of this approach. Anmore » experimental setup was built that uses a multiplexed Wheatstone bridge measurement to determine the resistances of a coarse electrode grid across the conductive fabric. Non-uniform resistance values of the grid infer the presence of damage or tears in the fabric. Results suggest accuracy proportional to the electrode spacing in determining the presence and location of disturbances in conductive fabric samples. Current work is focused on constructing experimental prototypes for field and environmental testing to gauge the performance of these whole container seals in real world conditions. We are also developing software and hardware to interface with the whole container seals. The latest prototypes are expected to provide more accuracy in detecting and localizing events, although detection of a penetration should be adequate for most sealing applications. We are also developing smart sensing nodes that integrate digital hardware and additional sensors (e.g., motion, humidity) into the electrode nodes within the whole container seal.« less
A new lumped-parameter model for flow in unsaturated dual-porosity media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, Robert W.; Hadgu, Teklu; Bodvarsson, Gudmundur S.
A new lumped-parameter approach to simulating unsaturated flow processes in dual-porosity media such as fractured rocks or aggregated soils is presented. Fluid flow between the fracture network and the matrix blocks is described by a non-linear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. Unlike a Warren-Root-type equation, this equation is accurate in both the early and late time regimes. The fracture/matrix interflow equation has been incorporated into an existing unsaturated flow simulator, to serve as a source/sink term for fracture gridblocks. Flow processes are then simulated usingmore » only fracture gridblocks in the computational grid. This new lumped-parameter approach has been tested on two problems involving transient flow in fractured/porous media, and compared with simulations performed using explicit discretization of the matrix blocks. The new procedure seems to accurately simulate flow processes in unsaturated fractured rocks, and typically requires an order of magnitude less computational time than do simulations using fully-discretized matrix blocks. [References: 37]« less
NASA Astrophysics Data System (ADS)
Gutzwiller, David; Gontier, Mathieu; Demeulenaere, Alain
2014-11-01
Multi-Block structured solvers hold many advantages over their unstructured counterparts, such as a smaller memory footprint and efficient serial performance. Historically, multi-block structured solvers have not been easily adapted for use in a High Performance Computing (HPC) environment, and the recent trend towards hybrid GPU/CPU architectures has further complicated the situation. This paper will elaborate on developments and innovations applied to the NUMECA FINE/Turbo solver that have allowed near-linear scalability with real-world problems on over 250 hybrid GPU/GPU cluster nodes. Discussion will focus on the implementation of virtual partitioning and load balancing algorithms using a novel meta-block concept. This implementation is transparent to the user, allowing all pre- and post-processing steps to be performed using a simple, unpartitioned grid topology. Additional discussion will elaborate on developments that have improved parallel performance, including fully parallel I/O with the ADIOS API and the GPU porting of the computationally heavy CPUBooster convergence acceleration module. Head of HPC and Release Management, Numeca International.
Reynolds-averaged Navier-Stokes based ice accretion for aircraft wings
NASA Astrophysics Data System (ADS)
Lashkajani, Kazem Hasanzadeh
This thesis addresses one of the current issues in flight safety towards increasing icing simulation capabilities for prediction of complex 2D and 3D glaze ice shapes over aircraft surfaces. During the 1980's and 1990's, the field of aero-icing was established to support design and certification of aircraft flying in icing conditions. The multidisciplinary technologies used in such codes were: aerodynamics (panel method), droplet trajectory calculations (Lagrangian framework), thermodynamic module (Messinger model) and geometry module (ice accretion). These are embedded in a quasi-steady module to simulate the time-dependent ice accretion process (multi-step procedure). The objectives of the present research are to upgrade the aerodynamic module from Laplace to Reynolds-Average Navier-Stokes equations solver. The advantages are many. First, the physical model allows accounting for viscous effects in the aerodynamic module. Second, the solution of the aero-icing module directly provides the means for characterizing the aerodynamic effects of icing, such as loss of lift and increased drag. Third, the use of a finite volume approach to solving the Partial Differential Equations allows rigorous mesh and time convergence analysis. Finally, the approaches developed in 2D can be easily transposed to 3D problems. The research was performed in three major steps, each providing insights into the overall numerical approaches. The most important realization comes from the need to develop specific mesh generation algorithms to ensure feasible solutions in very complex multi-step aero-icing calculations. The contributions are presented in chronological order of their realization. First, a new framework for RANS based two-dimensional ice accretion code, CANICE2D-NS, is developed. A multi-block RANS code from U. of Liverpool (named PMB) is providing the aerodynamic field using the Spalart-Allmaras turbulence model. The ICEM-CFD commercial tool is used for the iced airfoil remeshing and field smoothing. The new coupling is fully automated and capable of multi-step ice accretion simulations via a quasi-steady approach. In addition, the framework allows for flow analysis and aerodynamic performance prediction of the iced airfoils. The convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multi-time steps in icing simulations to achieve solver independent solutions. Second, a Multi-Block Navier-Stokes code, NSMB, is coupled with the CANICE2D icing framework. Attention is paid to the roughness implementation of the ONERA roughness model within the Spalart-Allmaras turbulence model, and to the convergence of the steady and quasi-steady iterative procedure. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results of CANICE2D-NS show good agreement with experimental data both in terms of predicted ice shapes as well as aerodynamic analysis of predicted and experimental ice shapes. Third, an efficient single-block structured Navier-Stokes CFD code, NSCODE, is coupled with the CANICE2D-NS icing framework. Attention is paid to the roughness implementation of the Boeing model within the Spalart-Allmaras turbulence model, and to acceleration of the convergence of the steady and quasi-steady iterative procedures. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases, including code to code comparisons with the same framework coupled with the NSMB Navier-Stokes solver. The efficiency of the J-multigrid approach to solve the flow equations on complex iced geometries is demonstrated. Since it was noted in all these calculations that the ICEM-CFD grid generation package produced a number of issues such as inefficient mesh quality and smoothing deficiencies (notably grid shocks), a fourth study proposes a new mesh generation algorithm. A PDE based multi-block structured grid generation code, NSGRID, is developed for this purpose. The study includes the developments of novel mesh generation algorithms over complex glaze ice shapes containing multi-curvature ice accretion geometries, such as single/double ice horns. The twofold approaches tackle surface geometry discretization as well as field mesh generation. An adaptive curvilinear curvature control algorithm is constructed solving a 1D elliptic PDE equation with periodic source terms. This method controls the arclength grid spacing so that high convex and concave curvature regions around ice horns are appropriately captured and is shown to effectively treat the grid shock problem. Then, a novel blended method is developed by defining combinations of source terms with 2D elliptic equations. The source terms include two common control functions, Sorenson and Spekreijse, and an additional third source term to improve orthogonality. This blended method is shown to be very effective for improving grid quality metrics for complex glaze ice meshes with RANS resolution. The performance in terms of residual reduction per non-linear iteration of several solution algorithms (Point-Jacobi, Gauss-Seidel, ADI, Point and Line SOR) are discussed within the context of a full Multi-grid operator. Details are given on the various formulations used in the linearization process. It is shown that the performance of the solution algorithm depends on the type of control function used. Finally, the algorithms are validated on standard complex experimental ice shapes, demonstrating the applicability of the methods. Finally, the automated framework of RANS based two-dimensional multi-step ice accretion, CANICE2D-NS is developed, coupled with a Multi-Block Navier-Stokes CFD code, NSCODE2D, a Multi-Block elliptic grid generation code, NSGRID2D, and a Multi-Block Eulerian droplet solver, NSDROP2D (developed at Polytechnique Montreal). The framework allows Lagrangian and Eulerian droplet computations within a chimera approach treating multi-elements geometries. The code was tested on public and confidential validation test cases including standard NATO cases. In addition, up to 10 times speedup is observed in the mesh generation procedure by using the implicit line SOR and ADI smoothers within a multigrid procedure. The results demonstrate the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters.
Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes
NASA Astrophysics Data System (ADS)
Hoarfrost, Megan Lane
Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene-
The Scotia Plantation: implications for multiaged and even-aged silviculture
Kevin L. O' Hara
2012-01-01
The Scotia Plantation was established in 1982 on the large alluvial flat south of Scotia and adjacent to the Eel River. Seedlings, from local "woods run" seed sources, were planted on a 3.1 x 3.1 m (10 x 10 ft) grid. Site quality was very high, with site index averaging greater than 45 m (50 yr base). In 1997, the area was divided into blocks and a...
1992-07-09
This sharp, cloud free view of San Antonio, Texas (29.5N, 98.5W) illustrates the classic pattern of western cities. The city has a late nineteenth century Anglo grid pattern overlaid onto an earlier, less regular Hispanic settlement. A well marked central business district having streets laid out north/south and east/west is surrounded by blocks of suburban homes and small businesses set between the older colonial radial transportation routes.
On the application of Chimera/unstructured hybrid grids for conjugate heat transfer
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing
1995-01-01
A hybrid grid system that combines the Chimera overset grid scheme and an unstructured grid method is developed to study fluid flow and heat transfer problems. With the proposed method, the solid structural region, in which only the heat conduction is considered, can be easily represented using an unstructured grid method. As for the fluid flow region external to the solid material, the Chimera overset grid scheme has been shown to be very flexible and efficient in resolving complex configurations. The numerical analyses require the flow field solution and material thermal response to be obtained simultaneously. A continuous transfer of temperature and heat flux is specified at the interface, which connects the solid structure and the fluid flow as an integral system. Numerical results are compared with analytical and experimental data for a flat plate and a C3X cooled turbine cascade. A simplified drum-disk system is also simulated to show the effectiveness of this hybrid grid system.
Earth Observations taken by the Expedition 14 crew
2007-12-30
ISS014-E-10547 (30 Dec. 2006) --- Barcelona, Spain is featured in this image photographed by an Expedition 14 crewmember on the International Space Station. Barcelona occupies a low plateau along the Mediterranean coastal plain. The city is the second largest in Spain (after the capital of Madrid), and hosts the country's largest seaport (portions of which are visible at lower right). This detailed view captures several notable features of the Barcelona urban landscape. The architectural design of the Eixample district (center) displays a grid pattern distinctive for Barcelona. Built during the 19th and 20th centuries, the district was built with octagonal city blocks -- originally intended to be open structures of only two or three sides surrounding gardens and open space. While the original street grid pattern remains, today many of the octagonal blocks are completely built up. The adjacent Cuitat Vella, or old city, presents a much denser building pattern which dates from Roman times. Also visible at lower right is the 173-meter high Montjuic Mountain -- historically the location of fortresses due to its strategic position overlooking the city's harbor. Light tan and orange structures visible at the crest of the mountain include the stadium and other buildings used in the 1992 Summer Olympic Games at Barcelona.
Microstructured block copolymer surfaces for control of microbe capture and aggregation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Ryan R; Shubert, Katherine R; Morrell, Jennifer L.
2014-01-01
The capture and arrangement of surface-associated microbes is influenced by biochemical and physical properties of the substrate. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe capture. Films of poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA) were patterned on silicon surfaces into line or square grid patterns with 5 m wide features and varied edge spacing. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates capturedmore » was dependent on the pattern dimensions. Line patterns with edge spacing of 5 m or less led to the capture of individual microbes with minimal formation of aggregates, while grid patterns with the same spacing also captured individual microbes with further reduction in aggregation. Both geometries allowed for increases in aggregate size distribution with increased in edge spacing. These engineered surfaces combine spatial confinement with affinity-based microbe capture based on exopolysaccharide content to control the degree of microbe aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.« less
FY2017 Electrification Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
During fiscal year 2017 (FY 2017), the U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) funded early stage research & development (R&D) projects that address Batteries and Electrification of the U.S. transportation sector. The VTO Electrification Sub-Program is composed of Electric Drive Technologies, and Grid Integration activities. The Electric Drive Technologies group conducts R&D projects that advance Electric Motors and Power Electronics technologies. The Grid and Charging Infrastructure group conducts R&D projects that advance Grid Modernization and Electric Vehicle Charging technologies. This document presents a brief overview of the Electrification Sub-Program and progress reports for its R&D projects. Eachmore » of the progress reports provide a project overview and highlights of the technical results that were accomplished in FY 2017.« less
Designing for Wide-Area Situation Awareness in Future Power Grid Operations
NASA Astrophysics Data System (ADS)
Tran, Fiona F.
Power grid operation uncertainty and complexity continue to increase with the rise of electricity market deregulation, renewable generation, and interconnectedness between multiple jurisdictions. Human operators need appropriate wide-area visualizations to help them monitor system status to ensure reliable operation of the interconnected power grid. We observed transmission operations at a control centre, conducted critical incident interviews, and led focus group sessions with operators. The results informed a Work Domain Analysis of power grid operations, which in turn informed an Ecological Interface Design concept for wide-area monitoring. I validated design concepts through tabletop discussions and a usability evaluation with operators, earning a mean System Usability Scale score of 77 out of 90. The design concepts aim to support an operator's complete and accurate understanding of the power grid state, which operators increasingly require due to the critical nature of power grid infrastructure and growing sources of system uncertainty.
NASA Astrophysics Data System (ADS)
Kim, Kyo-Tae; Yun, Ryang-Young; Han, Moo-Jae; Heo, Ye-Ji; Song, Yong-Keun; Heo, Sung-Wook; Oh, Kyeong-Min; Park, Sung-Kwang
2017-10-01
Currently, in the radiation diagnosis field, mammography is used for the early detection of breast cancer. In addition, studies are being conducted on a grid to produce high-quality images. Although the grid ratio of the grid, which affects the scattering removal rate, must be increased to improve image quality, it increases the total exposure dose. While the use of automatic exposure control is recommended to minimize this problem, existing mammography equipment, unlike general radiography equipment, is mounted on the back of a detector. Therefore, the device is greatly affected by the detector and supporting device, and it is difficult to control the exposure dose. Accordingly, in this research, an integrated AEC-grid device that simultaneously performs AEC and grid functions was used to minimize the unnecessary exposure dose while removing scattering, thereby realizing superior image quality.
NASA Technical Reports Server (NTRS)
Finley, Dennis B.; Karman, Steve L., Jr.
1996-01-01
The objective of the second phase of the Euler Technology Assessment program was to evaluate the ability of Euler computational fluid dynamics codes to predict compressible flow effects over a generic fighter wind tunnel model. This portion of the study was conducted by Lockheed Martin Tactical Aircraft Systems, using an in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaption of the volume grid during the solution to resolve high-gradient regions. The SPLITFLOW code predictions of configuration forces and moments are shown to be adequate for preliminary design, including predictions of sideslip effects and the effects of geometry variations at low and high angles-of-attack. The transonic pressure prediction capabilities of SPLITFLOW are shown to be improved over subsonic comparisons. The time required to generate the results from initial surface data is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.
14 CFR 33.99 - General conduct of block tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 33.99 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.99 General conduct of block... is used for the endurance test it must be subjected to a calibration check before starting the...
14 CFR 33.99 - General conduct of block tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 33.99 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.99 General conduct of block... is used for the endurance test it must be subjected to a calibration check before starting the...
14 CFR 33.99 - General conduct of block tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 33.99 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.99 General conduct of block... is used for the endurance test it must be subjected to a calibration check before starting the...
14 CFR 33.99 - General conduct of block tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 33.99 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.99 General conduct of block... is used for the endurance test it must be subjected to a calibration check before starting the...
14 CFR 33.99 - General conduct of block tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 33.99 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.99 General conduct of block... is used for the endurance test it must be subjected to a calibration check before starting the...
Benjamin, Christopher J; Wright, Kyle J; Hyun, Seok-Hee; Krynski, Kyle; Yu, Guimei; Bajaj, Ruchika; Guo, Fei; Stauffacher, Cynthia V; Jiang, Wen; Thompson, David H
2016-01-19
We report the preparation and performance of TEM grids bearing stabilized nonfouling lipid monolayer coatings. These films contain NTA capture ligands of controllable areal density at the distal end of a flexible poly(ethylene glycol) 2000 (PEG2000) spacer to avoid preferred orientation of surface-bound histidine-tagged (His-tag) protein targets. Langmuir-Schaefer deposition at 30 mN/m of mixed monolayers containing two novel synthetic lipids-1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[(5-amido-1-carboxypentyl)iminodiacetic acid]polyethylene glycolamide 2000) (NTA-PEG2000-DSPE) and 1,2-(tricosa-10',12'-diynoyl)-sn-glycero-3-phosphoethanolamine-N-(methoxypolyethylene glycolamide 350) (mPEG350-DTPE)-in 1:99 and 5:95 molar ratios prior to treatment with a 5 min, 254 nm light exposure was used for grid fabrication. These conditions were designed to limit nonspecific protein adsorption onto the stabilized lipid coating by favoring the formation of a mPEG350 brush layer below a flexible, mushroom conformation of NTA-PEG2000 at low surface density to enable specific immobilization and random orientation of the protein target on the EM grid. These grids were then used to capture His6-T7 bacteriophage and RplL from cell lysates, as well as purified His8-green fluorescent protein (GFP) and nanodisc solubilized maltose transporter, His6-MalFGK2. Our findings indicate that TEM grid supported, polymerized NTA lipid monolayers are capable of capturing His-tag protein targets in a manner that controls their areal densities, while efficiently blocking nonspecific adsorption and limiting film degradation, even upon prolonged detergent exposure.
Mehl, Steffen W.; Hill, Mary C.
2006-01-01
This report documents the addition of shared node Local Grid Refinement (LGR) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference ground-water flow model. LGR provides the capability to simulate ground-water flow using one block-shaped higher-resolution local grid (a child model) within a coarser-grid parent model. LGR accomplishes this by iteratively coupling two separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundary. LGR can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined ground-water systems. Traditional one-way coupled telescopic mesh refinement (TMR) methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled shared-node method of LGR provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR, evaluates LGR accuracy and performance for two- and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR.
Integration Of 3D Geographic Information System (GIS) For Effective Waste Management Practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rood, G.J.; Hecox, G.R.
2006-07-01
Soil remediation in response to the presence of residual radioactivity resulting from past MED/AEC activities is currently in progress under the Formerly Utilized Sites Remedial Action Program near the St. Louis, MO airport. During GY05, approximately 92,000 cubic meters (120,000 cubic yards) of radioactive soil was excavated, packaged and transported via rail for disposal at U.S. Ecology or Envirocare of Utah, LLC. To facilitate the management of excavation/transportation/disposal activities, a 3D GIS was developed for the site that was used to estimate the in-situ radionuclide activities, activities in excavation block areas, and shipping activities using a sum-of ratio (SOR) methodmore » for combining various radionuclide compounds into applicable transportation and disposal SOR values. The 3D GIS was developed starting with the SOR values for the approximately 900 samples from 90 borings. These values were processed into a three-dimensional (3D) point grid using kriging with nominal grid spacing of 1.5 by 1.5 meter horizontal by 0.3 meter vertical. The final grid, clipped to the area and soil interval above the planned base of excavation, consisted of 210,000 individual points. Standard GIS volumetric and spatial join procedures were used to calculate the volume of soil represented by each grid point, the base of excavation, depth below ground surface, elevation, surface elevation and SOR values for each point in the final grid. To create the maps needed for management, the point grid results were spatially joined to each excavation area in 0.9 meter (3 foot) depth intervals and the average SOR and total volumes were calculations. The final maps were color-coded for easy identification of areas above the specific transportation or disposal criteria. (authors)« less
NASA Astrophysics Data System (ADS)
Shimelevich, M. I.; Obornev, E. A.; Obornev, I. E.; Rodionov, E. A.
2017-07-01
The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.
Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Liou, M. S.; Povinelli, L. A.
1993-01-01
A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping, and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results shown are a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.
Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Liou, M.-S.; Povinelli, L. A.
1993-01-01
A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results are shown a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.
Luo, Haoxiang; Mittal, Rajat; Zheng, Xudong; Bielamowicz, Steven A.; Walsh, Raymond J.; Hahn, James K.
2008-01-01
A new numerical approach for modeling a class of flow–structure interaction problems typically encountered in biological systems is presented. In this approach, a previously developed, sharp-interface, immersed-boundary method for incompressible flows is used to model the fluid flow and a new, sharp-interface Cartesian grid, immersed boundary method is devised to solve the equations of linear viscoelasticity that governs the solid. The two solvers are coupled to model flow–structure interaction. This coupled solver has the advantage of simple grid generation and efficient computation on simple, single-block structured grids. The accuracy of the solid-mechanics solver is examined by applying it to a canonical problem. The solution methodology is then applied to the problem of laryngeal aerodynamics and vocal fold vibration during human phonation. This includes a three-dimensional eigen analysis for a multi-layered vocal fold prototype as well as two-dimensional, flow-induced vocal fold vibration in a modeled larynx. Several salient features of the aerodynamics as well as vocal-fold dynamics are presented. PMID:19936017
Stability Test for Transient-Temperature Calculations
NASA Technical Reports Server (NTRS)
Campbell, W.
1984-01-01
Graphical test helps assure numerical stability of calculations of transient temperature or diffusion in composite medium. Rectangular grid forms basis of two-dimensional finite-difference model for heat conduction or other diffusion like phenomena. Model enables calculation of transient heat transfer among up to four different materials that meet at grid point.
Effect of facility background gases on internal erosion of the 30-cm Hg ion thruster
NASA Technical Reports Server (NTRS)
Rawlin, V. K.; Mantenieks, M. A.
1978-01-01
Sputtering erosion of the upstream side of the molybdenum screen grid by discharge chamber ions in mercury bombardment thrusters was considered. Data which revealed that the screen grid erosion was very sensitive to the partial pressure of certain background gases in the space simulation vacuum facility were presented along with results of tests conducted to evaluate this effect. It is shown from estimates of the screen grid erosion in space that adequate lifetime for proposed missions exists.
NASA Astrophysics Data System (ADS)
Pruess, K.
2001-12-01
Sedimentary formations often have a layered structure in which hydrogeologic properties have substantially larger correlation length in the bedding plane than perpendicular to it. Laboratory and field experiments and observations have shown that even small-scale layering, down to millimeter-size laminations, can substantially alter and impede the downward migration of infiltrating liquids, while enhancing lateral flow. The fundamental mechanism is that of a capillary barrier: at increasingly negative moisture tension (capillary suction pressure), coarse-grained layers with large pores desaturate more quickly than finer-grained media. This strongly reduces the hydraulic conductivity of the coarser (higher saturated hydraulic conductivity) layers, which then act as barriers to downward flow, forcing water to accumulate and spread near the bottom of the overlying finer-grained material. We present a "composite medium approximation" (COMA) for anisotropic flow behavior on a typical grid block scale (0.1 - 1 m or larger) in finite-difference models. On this scale the medium is conceptualized as consisting of homogeneous horizontal layers with uniform thickness, and capillary equilibrium is assumed to prevail locally. Directionally-dependent relative permeabilities are obtained by considering horizontal flow to proceed via "conductors in parallel," while vertical flow involves "resistors in series." The model is formulated for the general case of N layers, and implementation of a simplified two-layer (fine-coarse) approximation in the multiphase flow simulator TOUGH2 is described. The accuracy of COMA is evaluated by comparing numerical simulations of plume migration in 1-D and 2-D unsaturated flow with results of fine-grid simulations in which all layers are discretized explicitly. Applications to water seepage and solute transport at the Hanford site are also described. This work was supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 through Memorandum Purchase Order 248861-A-B2 between Pacific Northwest National Laboratory and Lawrence Berkeley National Laboratory.
Experimental Study of Two Phase Flow Behavior Past BWR Spacer Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ratnayake, Ruwan K.; Hochreiter, L.E.; Ivanov, K.N.
2002-07-01
Performance of best estimate codes used in the nuclear industry can be significantly improved by reducing the empiricism embedded in their constitutive models. Spacer grids have been found to have an important impact on the maximum allowable Critical Heat Flux within the fuel assembly of a nuclear reactor core. Therefore, incorporation of suitable spacer grids models can improve the critical heat flux prediction capability of best estimate codes. Realistic modeling of entrainment behavior of spacer grids requires understanding the different mechanisms that are involved. Since visual information pertaining to the entrainment behavior of spacer grids cannot possibly be obtained frommore » operating nuclear reactors, experiments have to be designed and conducted for this specific purpose. Most of the spacer grid experiments available in literature have been designed in view of obtaining quantitative data for the purpose of developing or modifying empirical formulations for heat transfer, critical heat flux or pressure drop. Very few experiments have been designed to provide fundamental information which can be used to understand spacer grid effects and phenomena involved in two phase flow. Air-water experiments were conducted to obtain visual information on the two-phase flow behavior both upstream and downstream of Boiling Water Reactor (BWR) spacer grids. The test section was designed and constructed using prototypic dimensions such as the channel cross-section, rod diameter and other spacer grid configurations of a typical BWR fuel assembly. The test section models the flow behavior in two adjacent sub channels in the BWR core. A portion of a prototypic BWR spacer grid accounting for two adjacent channels was used with industrial mild steel rods for the purpose of representing the channel internals. Symmetry was preserved in this practice, so that the channel walls could effectively be considered as the channel boundaries. Thin films were established on the rod surfaces by injecting water through a set of perforations at the bottom ends of the rods, ensuring that the flow upstream of the bottom-most spacer grid is predominantly annular. The flow conditions were regulated such that they represent typical BWR operating conditions. Photographs taken during experiments show that the film entrainment increases significantly at the spacer grids, since the points of contact between the rods and the grids result in a peeling off of large portions of the liquid film from the rod surfaces. Decreasing the water flow resulted in eventual drying out, beginning at positions immediately upstream of the spacer grids. (authors)« less
NASA Astrophysics Data System (ADS)
Mueller, J.; Petersen, J. C.; Pilz, E.; Wiegand, H.
1981-06-01
The flow behavior in a jet mixing visualization chamber for turbulent fuel spray mixing with air under compression, e.g., at top dead center in diesel engines, was investigated with a laser Doppler velocimeter. The measurements were performed in two cuts in the profile perpendicular to the flow direction. The range of flow conditions in the measuring chamber was tested. The measurements were conducted with and without turbulence grids and shear flow grids behind the inlet nozzle. Wire grids did not enhance the turbulence in the measuring chamber. One of the tested shear flow grids produced shear flow as expected. A turbulence grid whose design was based on experimental results, produced a turbulence degree of up to 30% over the whole measuring cross section.
The role of tortuosity on ion conduction in block copolymer electrolyte thin films
NASA Astrophysics Data System (ADS)
Kambe, Yu; Arges, Christopher G.; Nealey, Paul F.
This talk discusses the role of grain tortuosity on ion conductivity in block copolymer electrolyte (BCE) thin films. In particular, we studied lamellae forming BCEs with both domains oriented perpendicular to the substrate surface and connected directly from one electrode to another - i.e., tortuosity of one. The BCE is composed of ion-conducting, poly(2-vinyl n-methylpyridinium) blocks and non-ionic polystyrene blocks. Prior to creating the BCE, the pristine block copolymer, poly(styrene- b-2-vinyl pyridine), was directly self-assembled (DSA) on topographical or chemical patterns via graphoepitaxy and chemoepitaxy. A chemical vapor infiltration reaction modified the P2VP block into positively charged, fixed quaternary ammonium groups paired with mobile counteranions. The graphoepitaxy process utilized topographical interdigitated gold nanoelectrodes (100s of nanometers spacing between electrodes) created via e-beam lithography. Alternatively, chemical patterns had gold electrodes incorporated into them with 10s to 100s of microns spacing using conventional optical lithography. The interdigitated gold electrodes enabled in-plane ion conductivity measurements of the DSA BCEs to study the role of grain tortuosity on ion conductivity. U.S. Department of Energy Office of Science: Contract No. DE-AC02-06CH11357.
NASA Astrophysics Data System (ADS)
Brunner, Lukas; Steiner, Andrea; Sillmann, Jana
2017-04-01
Atmospheric blocking is a key contributor to European temperature extremes. It leads to stable, long-lasting weather patterns, which favor the development of cold and warm spells. The link between blocking and such temperature extremes differs significantly across Europe. In northern Europe a majority of warm spells are connected to blocking, while cold spells are suppressed during blocked conditions. In southern Europe the opposite picture arises with most cold spells occurring during blocking and warm spells suppressed. Building on earlier work by Brunner et al. (2017) this study aims at a better understanding of the connection between blocking and temperature extremes in Europe. We investigate cold and warm spells with and without blocking in observations from the European daily high-resolution gridded dataset (E-OBS) from 1979 to 2015. We use an objective extreme index (Russo et al. 2015) to identify and compare cold and warm spells across Europe. Our work is lead by the main question: Are cold/warm spells coinciding with blocking different from cold/warm spells during unblocked conditions in regard to duration, extend, or amplitude? Here we present our research question and the study setup, and show first results of our analysis on European temperature extremes. Brunner, L., G. Hegerl, and A. Steiner (2017): Connecting Atmospheric Blocking to European Temperature Extremes in Spring. J. Climate, 30, 585-594, doi: 10.1175/JCLI-D-16-0518.1. Russo, S., J. Sillmann, and E. M. Fischer (2015): Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 10.12, S. 124003. doi: 10.1088/1748-9326/10/12/124003.
NASA Astrophysics Data System (ADS)
Akbar, Somaieh; Fathianpour, Nader
2016-12-01
The Curie point depth is of great importance in characterizing geothermal resources. In this study, the Curie iso-depth map was provided using the well-known method of dividing the aeromagnetic dataset into overlapping blocks and analyzing the power spectral density of each block separately. Determining the optimum block dimension is vital in improving the resolution and accuracy of estimating Curie point depth. To investigate the relation between the optimal block size and power spectral density, a forward magnetic modeling was implemented on an artificial prismatic body with specified characteristics. The top, centroid, and bottom depths of the body were estimated by the spectral analysis method for different block dimensions. The result showed that the optimal block size could be considered as the smallest possible block size whose corresponding power spectrum represents an absolute maximum in small wavenumbers. The Curie depth map of the Sabalan geothermal field and its surrounding areas, in the northwestern Iran, was produced using a grid of 37 blocks with different dimensions from 10 × 10 to 50 × 50 km2, which showed at least 50% overlapping with adjacent blocks. The Curie point depth was estimated in the range of 5 to 21 km. The promising areas with the Curie point depths less than 8.5 km are located around Mountain Sabalan encompassing more than 90% of known geothermal resources in the study area. Moreover, the Curie point depth estimated by the improved spectral analysis is in good agreement with the depth calculated from the thermal gradient data measured in one of the exploratory wells in the region.
An installed nacelle design code using a multiblock Euler solver. Volume 2: User guide
NASA Technical Reports Server (NTRS)
Chen, H. C.
1992-01-01
This is a user manual for the general multiblock Euler design (GMBEDS) code. The code is for the design of a nacelle installed on a geometrically complex configuration such as a complete airplane with wing/body/nacelle/pylon. It consists of two major building blocks: a design module developed by LaRC using directive iterative surface curvature (DISC); and a general multiblock Euler (GMBE) flow solver. The flow field surrounding a complex configuration is divided into a number of topologically simple blocks to facilitate surface-fitted grid generation and improve flow solution efficiency. This user guide provides input data formats along with examples of input files and a Unix script for program execution in the UNICOS environment.
Sea-floor character and sedimentary processes of Block Island Sound, offshore Rhode Island
Poppe, L.J.; Danforth, W.W.; McMullen, K.Y.; Blankenship, M.A.; Glomb, K.A.; Wright, D.B.; Smith, S.M.
2012-01-01
Gridded multibeam bathymetry covers approximately 634 square kilometers of sea floor in Block Island Sound. Although originally collected for charting purposes during National Oceanic and Atmospheric Administration hydrographic surveys H12009, H12010, H12011, H12015, H12033, H12137, and H12139, these combined acoustic data and the sea-floor sediment sampling and photography stations subsequently occupied to verify them during U.S. Geological Survey cruise 2011-006-FA (1) show the composition and terrain of the seabed, (2) provide information on sediment transport and benthic habitat, and (3) are part of an expanding series of studies that provide a fundamental framework for research and management activities (for example, wind farms and fisheries) along the Rhode Island inner continental shelf.
Numerical study of supersonic combustors by multi-block grids with mismatched interfaces
NASA Technical Reports Server (NTRS)
Moon, Young J.
1990-01-01
A three dimensional, finite rate chemistry, Navier-Stokes code was extended to a multi-block code with mismatched interface for practical calculations of supersonic combustors. To ensure global conservation, a conservative algorithm was used for the treatment of mismatched interfaces. The extended code was checked against one test case, i.e., a generic supersonic combustor with transverse fuel injection, examining solution accuracy, convergence, and local mass flux error. After testing, the code was used to simulate the chemically reacting flow fields in a scramjet combustor with parallel fuel injectors (unswept and swept ramps). Computational results were compared with experimental shadowgraph and pressure measurements. Fuel-air mixing characteristics of the unswept and swept ramps were compared and investigated.
Stochastic Ground Water Flow Simulation with a Fracture Zone Continuum Model
Langevin, C.D.
2003-01-01
A method is presented for incorporating the hydraulic effects of vertical fracture zones into two-dimensional cell-based continuum models of ground water flow and particle tracking. High hydraulic conductivity features are used in the model to represent fracture zones. For fracture zones that are not coincident with model rows or columns, an adjustment is required for the hydraulic conductivity value entered into the model cells to compensate for the longer flowpath through the model grid. A similar adjustment is also required for simulated travel times through model cells. A travel time error of less than 8% can occur for particles moving through fractures with certain orientations. The fracture zone continuum model uses stochastically generated fracture zone networks and Monte Carlo analysis to quantify uncertainties with simulated advective travel times. An approach is also presented for converting an equivalent continuum model into a fracture zone continuum model by establishing the contribution of matrix block transmissivity to the bulk transmissivity of the aquifer. The methods are used for a case study in west-central Florida to quantify advective travel times from a potential wetland rehydration site to a municipal supply wellfield. Uncertainties in advective travel times are assumed to result from the presence of vertical fracture zones, commonly observed on aerial photographs as photolineaments.
Evolution of passive scalar statistics in a spatially developing turbulence
NASA Astrophysics Data System (ADS)
Paul, I.; Papadakis, G.; Vassilicos, J. C.
2018-02-01
We investigate the evolution of passive scalar statistics in a spatially developing turbulence using direct numerical simulation. Turbulence is generated by a square grid element, which is heated continuously, and the passive scalar is temperature. The square element is the fundamental building block for both regular and fractal grids. We trace the dominant mechanisms responsible for the dynamical evolution of scalar-variance and its dissipation along the bar and grid-element centerlines. The scalar-variance is generated predominantly by the action of the mean scalar gradient behind the bar and is transported laterally by turbulent fluctuations to the grid-element centerline. The scalar-variance dissipation (proportional to the scalar-gradient variance) is produced primarily by the compression of the fluctuating scalar-gradient vector by the turbulent strain rate, while the contribution of mean velocity and scalar fields is negligible. Close to the grid element the scalar spectrum exhibits a well-defined -5 /3 power-law, even though the basic premises of the Kolmogorov-Obukhov-Corrsin theory are not satisfied (the fluctuating scalar field is highly intermittent, inhomogeneous, and anisotropic, and the local Corrsin-microscale-Péclet number is small). At this location, the PDF of scalar gradient production is only slightly skewed towards positive, and the fluctuating scalar-gradient vector aligns only with the compressive strain-rate eigenvector. The scalar-gradient vector is stretched or compressed stronger than the vorticity vector by turbulent strain rate throughout the grid-element centerline. However, the alignment of the former changes much earlier in space than that of the latter, resulting in scalar-variance dissipation to decay earlier along the grid-element centerline compared to the turbulent kinetic energy dissipation. The universal alignment behavior of the scalar-gradient vector is found far downstream, although the local Reynolds and Péclet numbers (based on the Taylor and Corrsin length scales, respectively) are low.
Grid generation about complex three-dimensional aircraft configurations
NASA Technical Reports Server (NTRS)
Klopfer, Goetz H.
1991-01-01
The problem of obtaining three dimensional grids with sufficient resolution to resolve all the flow or other physical features of interest is addressed. The generation of a computational grid involves a series of compromises to resolve several conflicting requirements. On one hand, one would like the grid to be fine enough and not too skewed to reduce the numerical errors and to adequately resolve the pertinent physical features of the flow field about the aircraft. On the other hand, the capabilities of present or even future supercomputers are finite and the number of mesh points must be limited to a reasonable number: one which is usually much less than desired for numerical accuracy. One technique to overcome this limitation is the 'zonal' grid approach. In this method, the overall field is subdivided into smaller zones or blocks in each of which an independent grid is generated with enough grid density to resolve the flow features in that zone. The zonal boundaries or interfaces require special boundary conditions such that the conservation properties of the governing equations are observed. Much work was done in 3-D zonal approaches with nonconservative zonal interfaces. A 3-D zonal conservative interfacing method that is efficient and easy to implement was developed during the past year. During the course of the work, it became apparent that it would be much more feasible to do the conservative interfacing with cell-centered finite volume codes instead of the originally planned finite difference codes. Accordingly, the CNS code was converted to finite volume form. This new version of the code is named CNSFV. The original multi-zonal interfacing capability of the CNS code was enhanced by generalizing the procedure to allow for completely arbitrarily shaped zones with no mesh continuity between the zones. While this zoning capability works well for most flow situations, it is, however, still nonconservative. The conservative interface algorithm was also implemented but was not completely validated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanasamy, G; Zhang, X; Paudel, N
Purpose: The aim of this project is to study the therapeutic ratio (TR) for helical Tomotherapy (HT) based spatially fractionated radiotherapy (GRID). Estimation of TR was based on the linear-quadratic cell survival model by comparing the normal cell survival in a HT GRID to that of a uniform dose delivery in an open-field for the same tumor survival. Methods: HT GRID plan was generated using a patient specific virtual GRID block pattern of non-divergent, cylinder shaped holes using MLCs. TR was defined as the ratio of normal tissue surviving fraction (SF) under HT GRID irradiation to an open field irradiationmore » with an equivalent dose that result in the same tumor cell SF. The ratio was estimated from DVH data on ten patient plans with deep seated, bulky tumor approved by the treating radiation oncologist. Dependence of the TR values on radio-sensitivity of the tumor cells and prescription dose were also analyzed. Results: The mean ± standard deviation (SD) of TR was 4.0±0.7 (range: 3.1 to 5.5) for the 10 patients with single fraction dose of 20 Gy and tumor cell SF of 0.5 at 2 Gy. In addition, mean±SD of TR = 1±0.1 and 18.0±5.1 were found for tumor with SF of 0.3 and 0.7, respectively. Reducing the prescription dose to 15 and 10 Gy lowered the TR to 2.0±0.2 and 1.2±0.04 for a tumor cell SF of 0.5 at 2 Gy. In this study, the SF of normal cells was assumed to be 0.5 at 2 Gy. Conclusion: HT GRID displayed a significant therapeutic advantage over uniform dose from an open field irradiation. TR increases with the radioresistance of the tumor cells and with prescription dose.« less
Effects of strychnine on the sodium conductance of the frog node of Ranvier
1977-01-01
Strychnine blocks sodium conductance in the frog node of Ranvier. This block was studied by reducing and slowing sodium inactivation with scorpion venom. The block is voltage and time dependent. The more positive the axoplasm the greater the block and the faster the approach to equilibrium. Some evidence is presented suggesting that only open channels can be blocked. The block is reduced by raising external sodium or lithium but not impermeant cations. A quaternary derivative of strychnine was synthesized and found to have the same action only when applied intracellularly. We conclude that strychnine blocks sodium channels by a mechanism analogous to that by which it blocks potassium channels. The potassium channel block had previously been found to be identical to that by tetraethylammonium ion derivatives. In addition, strychnine resembles procaine and its derivatives in both its structure and the mechanism of sodium channel block. PMID:302321
Xia, Zhouhui; Gao, Peng; Sun, Teng; Wu, Haihua; Tan, Yeshu; Song, Tao; Lee, Shuit-Tong; Sun, Baoquan
2018-04-25
Silicon (Si)/organic heterojunction solar cells based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and n-type Si have attracted wide interests because they promise cost-effectiveness and high-efficiency. However, the limited conductivity of PEDOT:PSS leads to an inefficient hole transport efficiency for the heterojunction device. Therefore, a high dense top-contact metal grid electrode is required to assure the efficient charge collection efficiency. Unfortunately, the large metal grid coverage ratio electrode would lead to undesirable optical loss. Here, we develop a strategy to balance PEDOT:PSS conductivity and grid optical transmittance via a buried molybdenum oxide/silver grid electrode. In addition, the grid electrode coverage ratio is optimized to reduce its light shading effect. The buried electrode dramatically reduces the device series resistance, which leads to a higher fill factor (FF). With the optimized buried electrode, a record FF of 80% is achieved for flat Si/PEDOT:PSS heterojunction devices. With further enhancement adhesion between the PEDOT:PSS film and Si substrate by a chemical cross-linkable silance, a power conversion efficiency of 16.3% for organic/textured Si heterojunction devices is achieved. Our results provide a path to overcome the inferior organic semiconductor property to enhance the organic/Si heterojunction solar cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Dietiker, Jean -Francois; Rogers, William
2016-07-29
Both experimental tests and numerical simulations were conducted to investigate the fluidization behavior of a solid CO 2 sorbent with a mean diameter of 100 μm and density of about 480 kg/m, which belongs to Geldart's Group A powder. A carefully designed fluidized bed facility was used to perform a series of experimental tests to study the flow hydrodynamics. Numerical simulations using the two-fluid model indicated that the grid resolution has a significant impact on the bed expansion and bubbling flow behavior. Due to the limited computational resource, no good grid independent results were achieved using the standard models asmore » far as the bed expansion is concerned. In addition, all simulations tended to under-predict the bubble size substantially. Effects of various model settings including both numerical and physical parameters have been investigated with no significant improvement observed. The latest filtered sub-grid drag model was then tested in the numerical simulations. Compared to the standard drag model, the filtered drag model with two markers not only predicted reasonable bed expansion but also yielded realistic bubbling behavior. As a result, a grid sensitivity study was conducted for the filtered sub-grid model and its applicability and limitation were discussed.« less
Amphiphilic block copolymer membrane for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Wang, Fei; Sylvia, James M.; Jacob, Monsy M.; Peramunage, Dharmasena
2013-11-01
An amphiphilic block copolymer comprised of hydrophobic polyaryletherketone (PAEK) and hydrophilic sulfonated polyaryletherketone (SPAEK) blocks has been synthesized and characterized. A membrane prepared from the block copolymer is used as the separator in a single cell vanadium redox flow battery (VRB). The proton conductivity, mechanical property, VO2+ permeability and single VRB cell performance of this block copolymer membrane are investigated and compared to Nafion™ 117. The block copolymer membrane showed significantly improved vanadium ion selectivity, higher mechanical strength and lower conductivity than Nafion™ 117. The VRB containing the block copolymer membrane exhibits higher coulombic efficiency and similar energy efficiency compared to a VRB using Nafion™ 117. The better vanadium ion selectivity of the block copolymer membrane has led to a much smaller capacity loss during 50 charge-discharge cycles for the VRB.
Preconditioned conjugate gradient wave-front reconstructors for multiconjugate adaptive optics.
Gilles, Luc; Ellerbroek, Brent L; Vogel, Curtis R
2003-09-10
Multiconjugate adaptive optics (MCAO) systems with 10(4)-10(5) degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 10(4) actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10(-2) Hz, i.e., 4-5 orders of magnitude lower than the typical 10(3) Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.
Multigrid Methods for the Computation of Propagators in Gauge Fields
NASA Astrophysics Data System (ADS)
Kalkreuter, Thomas
Multigrid methods were invented for the solution of discretized partial differential equations in order to overcome the slowness of traditional algorithms by updates on various length scales. In the present work generalizations of multigrid methods for propagators in gauge fields are investigated. Gauge fields are incorporated in algorithms in a covariant way. The kernel C of the restriction operator which averages from one grid to the next coarser grid is defined by projection on the ground-state of a local Hamiltonian. The idea behind this definition is that the appropriate notion of smoothness depends on the dynamics. The ground-state projection choice of C can be used in arbitrary dimension and for arbitrary gauge group. We discuss proper averaging operations for bosons and for staggered fermions. The kernels C can also be used in multigrid Monte Carlo simulations, and for the definition of block spins and blocked gauge fields in Monte Carlo renormalization group studies. Actual numerical computations are performed in four-dimensional SU(2) gauge fields. We prove that our proposals for block spins are “good”, using renormalization group arguments. A central result is that the multigrid method works in arbitrarily disordered gauge fields, in principle. It is proved that computations of propagators in gauge fields without critical slowing down are possible when one uses an ideal interpolation kernel. Unfortunately, the idealized algorithm is not practical, but it was important to answer questions of principle. Practical methods are able to outperform the conjugate gradient algorithm in case of bosons. The case of staggered fermions is harder. Multigrid methods give considerable speed-ups compared to conventional relaxation algorithms, but on lattices up to 184 conjugate gradient is superior.
Experimental optimization of the FireFly 600 photovoltaic off-grid system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyson, William Earl; Orozco, Ron; Ralph, Mark E.
2003-10-01
A comprehensive evaluation and experimental optimization of the FireFly{trademark} 600 off-grid photovoltaic system manufactured by Energia Total, Ltd. was conducted at Sandia National Laboratories in May and June of 2001. This evaluation was conducted at the request of the manufacturer and addressed performance of individual system components, overall system functionality and performance, safety concerns, and compliance with applicable codes and standards. A primary goal of the effort was to identify areas for improvement in performance, reliability, and safety. New system test procedures were developed during the effort.
Method for producing solar energy panels by automation
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr. (Inventor)
1978-01-01
A solar cell panel was fabricated by photoetching a pattern of collector grid systems with appropriate interconnections and bus bar tabs into a glass or plastic sheet. These regions were then filled with a first, thin conductive metal film followed by a layer of a mixed metal oxide, such as InAsO or InSnO. The multiplicity of solar cells were bonded between the protective sheet at the sites of the collector grid systems and a back electrode substrate by conductive metal filled epoxy to complete the fabrication of an integrated solar panel.
Ion implantation of highly corrosive electrolyte battery components
Muller, R.H.; Zhang, S.
1997-01-14
A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, and sodium sulfur. 6 figs.
Advanced Grid-Friendly Controls Demonstration for Utility-Scale
PV power plant in CAISO's footprint. NREL, CAISO, and First Solar conducted demonstration tests that vendors, integrators, and utilities to develop and evaluate photovoltaic (PV) power plants with advanced grid-friendly capabilities. Graph of power over time that shows a PV plant varying output to follow an
Ion implantation of highly corrosive electrolyte battery components
Muller, Rolf H.; Zhang, Shengtao
1997-01-01
A method of producing corrosion resistant electrodes and other surfaces in corrosive batteries using ion implantation is described. Solid electrically conductive material is used as the ion implantation source. Battery electrode grids, especially anode grids, can be produced with greatly increased corrosion resistance for use in lead acid, molten salt, end sodium sulfur.
Axially shaped channel and integral flow trippers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L.; Johansson, E.B.; Matzner, B.
1988-06-07
A fuel assembly is described comprising fuel rods positioned in spaced array by upper and lower tie-plates, an open ended flow channel surrounding the array for conducting coolant upward between a lower support plate having coolant communicated thereto to an upper support grid having a steam/water outlet communicated thereto. The flow channel surrounds the array for conducting coolant about the fuel rods. The open ended channel has a polygon shaped cross section with the channel constituting a closed conduit with flat side sections connected at corners to form the enclosed conduit; means separate from the channel for connecting the uppermore » and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel. The improvement in the flow channel comprises tapered side walls. The tapered side walls extend from an average thick cross section adjacent the lower support plate to an average thin cross section adjacent the upper core grid whereby the channel is reduced in thickness adjacent the upper core grid to correspond with the reduced pressure adjacent the upper core grid.« less
Axially shaped channel and integral flow trippers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowther, R.L. Jr.; Johansson, E.B.; Matzner, B.
1992-02-11
This patent describes a fuel assembly. It comprises: fuel rods positioned in spaced array by upper and lower tie-plates, and open ended flow channel surrounding the array for conducting coolant upward between a lower support plate having coolant communicated thereto to an upper support grid having a steam/water outlet communicated thereto. The flow channel surrounding the array for conducting coolant about the fuel rods; the open ended channel having a polygon shaped cross section with the channel constituting a closed conduit with flat side sections connected at corners to form the enclosed conduit; means separate from the channel for connectingmore » the upper and lower tie-plates together and maintaining the fuel rods in spaced array independent of the flow channel, the improvement in the flow channel comprising tapered side walls, the tapered side walls extending from an average thick cross section adjacent the lower support plate to an average thin cross section adjacent the upper core grid whereby the channel is reduced in thickness adjacent the upper core grid to correspond with the reduced pressure adjacent the upper core grid.« less
Strategies, Protections and Mitigations for Electric Grid from Electromagnetic Pulse Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, Rita Ann; Frickey, Steven Jay
2016-01-01
The mission of DOE’s Office of Electricity Delivery and Energy Reliability (OE) is to lead national efforts to modernize the electricity delivery system, enhance the security and reliability of America’s energy infrastructure and facilitate recovery from disruptions to the energy supply. One of the threats OE is concerned about is a high-altitude electro-magnetic pulse (HEMP) from a nuclear explosion and eletro-magnetic pulse (EMP) or E1 pulse can be generated by EMP weapons. DOE-OE provides federal leadership and technical guidance in addressing electric grid issues. The Idaho National Laboratory (INL) was chosen to conduct the EMP study for DOE-OE due tomore » its capabilities and experience in setting up EMP experiments on the electric grid and conducting vulnerability assessments and developing innovative technology to increase infrastructure resiliency. This report identifies known impacts to EMP threats, known mitigations and effectiveness of mitigations, potential cost of mitigation, areas for government and private partnerships in protecting the electric grid to EMP, and identifying gaps in our knowledge and protection strategies.« less
B-spline Method in Fluid Dynamics
NASA Technical Reports Server (NTRS)
Botella, Olivier; Shariff, Karim; Mansour, Nagi N. (Technical Monitor)
2001-01-01
B-spline functions are bases for piecewise polynomials that possess attractive properties for complex flow simulations : they have compact support, provide a straightforward handling of boundary conditions and grid nonuniformities, and yield numerical schemes with high resolving power, where the order of accuracy is a mere input parameter. This paper reviews the progress made on the development and application of B-spline numerical methods to computational fluid dynamics problems. Basic B-spline approximation properties is investigated, and their relationship with conventional numerical methods is reviewed. Some fundamental developments towards efficient complex geometry spline methods are covered, such as local interpolation methods, fast solution algorithms on cartesian grid, non-conformal block-structured discretization, formulation of spline bases of higher continuity over triangulation, and treatment of pressure oscillations in Navier-Stokes equations. Application of some of these techniques to the computation of viscous incompressible flows is presented.
Open Science in the Cloud: Towards a Universal Platform for Scientific and Statistical Computing
NASA Astrophysics Data System (ADS)
Chine, Karim
The UK, through the e-Science program, the US through the NSF-funded cyber infrastructure and the European Union through the ICT Calls aimed to provide "the technological solution to the problem of efficiently connecting data, computers, and people with the goal of enabling derivation of novel scientific theories and knowledge".1 The Grid (Foster, 2002; Foster; Kesselman, Nick, & Tuecke, 2002), foreseen as a major accelerator of discovery, didn't meet the expectations it had excited at its beginnings and was not adopted by the broad population of research professionals. The Grid is a good tool for particle physicists and it has allowed them to tackle the tremendous computational challenges inherent to their field. However, as a technology and paradigm for delivering computing on demand, it doesn't work and it can't be fixed. On one hand, "the abstractions that Grids expose - to the end-user, to the deployers and to application developers - are inappropriate and they need to be higher level" (Jha, Merzky, & Fox), and on the other hand, academic Grids are inherently economically unsustainable. They can't compete with a service outsourced to the Industry whose quality and price would be driven by market forces. The virtualization technologies and their corollary, the Infrastructure-as-a-Service (IaaS) style cloud, hold the promise to enable what the Grid failed to deliver: a sustainable environment for computational sciences that would lower the barriers for accessing federated computational resources, software tools and data; enable collaboration and resources sharing and provide the building blocks of a ubiquitous platform for traceable and reproducible computational research.
WE-AB-207A-10: Transmission Characteristics of a Two Dimensional Antiscatter Grid Prototype for CBCT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altunbas, C; Kavanagh, B; Miften, M
2016-06-15
Purpose: Scattered radiation remains to be a major contributor to image quality degradation in CBCT. To address the scatter problem, a focused, 2D antiscatter grid (2DASG) prototype was designed, and fabricated using additive manufacturing processes. Its scatter and primary transmission properties were characterized using a linac mounted CBCT system. Methods: The prototype 2DASG was composed of rectangular grid holes separated by tungsten septa, and has a grid pitch of 2.91 mm, grid ratio of 8, and a septal thickness of 0.1 mm. Each grid hole was aligned or focused towards the x-ray source in half-fan (i.e. offset detector) geometry ofmore » the Varian TrueBeam CBCT system. Scatter and primary transmission experiments were performed by using acrylic blocks and the beam-stop method. Transmission properties of a radiographic ASG (1DASG) (grid ratio of 10) was also performed by using the identical setup. Results: At 30 cm phantom thickness, scatter to primary ratio (SPR) was 4.51 without any ASG device. SPR was reduced to 1.28 with 1DASG, and it was further reduced to 0.28 with 2DASG. Scatter transmission fraction (Ts) of 1DASG was 21%, and Ts was reduced to 5.8% with 2DASG. The average primary transmission fraction (Tp) of 1DASG was 70.6%, whereas Tp increased to 85.1% with 2DASG. Variation of Tp across 40 cm length (the long axis of flat panel detector) was 2.6%. Conclusion: When compared to conventional ASGs, the focused 2DASG can vastly improve scatter suppression and primary transmission performance. Due to precise alignment of 2DASG’s grid holes with respect to beam divergence, high degree of primary transmission through the 2DASG was maintained across the full length of the prototype. We strongly believe that robust scatter rejection and primary transmission characteristics of our 2DASG can translate into both improved quantitative accuracy and soft tissue resolution in linac mounted CBCT systems.« less
Capacitively coupled RF diamond-like-carbon reactor
Devlin, David James; Coates, Don Mayo; Archuleta, Thomas Arthur; Barbero, Robert Steven
2000-01-01
A process of coating a non-conductive fiber with diamond-like carbon, including passing a non-conductive fiber between a pair of parallel metal grids within a reaction chamber, introducing a hydrocarbon gas into the reaction chamber, forming a plasma within the reaction chamber for a sufficient period of time whereby diamond-like carbon is formed upon the non-conductive fiber, is provided together with a reactor chamber for deposition of diamond-like carbon upon a non-conductive fiber, including a vacuum chamber, a cathode assembly including a pair of electrically isolated opposingly parallel metal grids spaced apart at a distance of less than about 1 centimeter, an anode, a means of introducing a hydrocarbon gas into said vacuum chamber, and a means of generating a plasma within said vacuum chamber.
Improving Grid Resilience through Informed Decision-making (IGRID)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnham, Laurie; Stamber, Kevin L.; Jeffers, Robert Fredric
The transformation of the distribution grid from a centralized to decentralized architecture, with bi-directional power and data flows, is made possible by a surge in network intelligence and grid automation. While changes are largely beneficial, the interface between grid operator and automated technologies is not well understood, nor are the benefits and risks of automation. Quantifying and understanding the latter is an important facet of grid resilience that needs to be fully investigated. The work described in this document represents the first empirical study aimed at identifying and mitigating the vulnerabilities posed by automation for a grid that for themore » foreseeable future will remain a human-in-the-loop critical infrastructure. Our scenario-based methodology enabled us to conduct a series of experimental studies to identify causal relationships between grid-operator performance and automated technologies and to collect measurements of human performance as a function of automation. Our findings, though preliminary, suggest there are predictive patterns in the interplay between human operators and automation, patterns that can inform the rollout of distribution automation and the hiring and training of operators, and contribute in multiple and significant ways to the field of grid resilience.« less
NASA Technical Reports Server (NTRS)
Smith, Phillip J.
1995-01-01
The formation of a blocking anticyclone over the North Atlantic has been examined over its entire life-CyCle using the Zwack-Okossi (Z-O) equation as the diagnostic tool. This blocking anticyclone occurred in late October and early November of 1985. The data used were provided by the NASA Goddard Laboratory for Atmospheres on a global 2.O degree latitude by 2.5 degree longitudinal grid. The horizontal distribution of the atmospheric forcing mechanisms that were important to 500 mb block formation, maintenance and decay were examined. A scale-partitioned form of the Z-O equation was then used to examine the relative importance of forcing on the planetary and synoptic scales, and their interactions. As seen in previous studies, the results presented here show that upper tropospheric anticyclonic vorticity advection was the most important contributor to block formation and maintenance. However, adiabatic warming, and vorticity tilting were also important at various times during the block lifetime. In association with precursor surface cyclogenesis, the 300 mb jet streak in the downstream (upstream) from a long-wave trough (ridge) amplified significantly. This strengthening of the jet streak enhanced the anti-cyclonic vorticity advection field that aided the amplification of a 500 mb short-wave ridge. Tile partitioned height tendency results demonstrate that the interactions between the planetary and sn,noptic-scale through vorticity advection was the most important contributor to block formation. Planetary-scale, synoptic-scale. and their interactions contributed weakly to the maintenance of the blocking anticyclone with the advection of synoptic-scale vorticity by the planetary-scale flow playing a more important role. Planetary-scale decay ofthe long-wave ridge contributed to the demise of this blocking event.
An overview of controls research on the NASA Langley Research Center grid
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C.
1987-01-01
The NASA Langley Research Center has assembled a flexible grid on which control systems research can be accomplished on a two-dimensional structure that has many physically distributed sensors and actuators. The grid is a rectangular planar structure that is suspended by two cables attached to one edge so that out of plane vibrations are normal to gravity. There are six torque wheel actuators mounted to it so that torque is produced in the grid plane. Also, there are six rate gyros mounted to sense angular motion in the grid plane and eight accelerometers that measure linear acceleration normal to the grid plane. All components can be relocated to meet specific control system test requirements. Digital, analog, and hybrid control systems capability is provided in the apparatus. To date, research on this grid has been conducted in the areas of system and parameter identification, model estimation, distributed modal control, hierarchical adaptive control, and advanced redundancy management algorithms. The presentation overviews each technique and presents the most significant results generated for each area.
NASA Astrophysics Data System (ADS)
Zhang, Hongbo; Ao, Tianqi; Gusyev, Maksym; Ishidaira, Hiroshi; Magome, Jun; Takeuchi, Kuniyoshi
2018-06-01
Nitrogen and phosphorus concentrations in Chinese river catchments are contributed by agricultural non-point and industrial point sources causing deterioration of river water quality and degradation of ecosystem functioning for a long distance downstream. To evaluate these impacts, a distributed pollutant transport module was developed on the basis of BTOPMC (Block-Wise Use of TOPMODEL with Muskingum-Cunge Method), a grid-based distributed hydrological model, using the water flow routing process of BTOPMC as the carrier of pollutant transport due a direct runoff. The pollutant flux at each grid is simulated based on mass balance of pollutants within the grid and surface water transport of these pollutants occurs between grids in the direction of the water flow on daily time steps. The model was tested in the study area of the Lu county area situated in the Laixi River basin in the Sichuan province of southwest China. The simulated concentrations of nitrogen and phosphorus are compared with the available monthly data at several water quality stations. These results demonstrate a greater pollutant concentration in the beginning of high flow period indicating the main mechanism of pollution transport. From these preliminary results, we suggest that the distributed pollutant transport model can reflect the characteristics of the pollutant transport and reach the expected target.
An Application of the Quadrature-Free Discontinuous Galerkin Method
NASA Technical Reports Server (NTRS)
Lockard, David P.; Atkins, Harold L.
2000-01-01
The process of generating a block-structured mesh with the smoothness required for high-accuracy schemes is still a time-consuming process often measured in weeks or months. Unstructured grids about complex geometries are more easily generated, and for this reason, methods using unstructured grids have gained favor for aerodynamic analyses. The discontinuous Galerkin (DG) method is a compact finite-element projection method that provides a practical framework for the development of a high-order method using unstructured grids. Higher-order accuracy is obtained by representing the solution as a high-degree polynomial whose time evolution is governed by a local Galerkin projection. The traditional implementation of the discontinuous Galerkin uses quadrature for the evaluation of the integral projections and is prohibitively expensive. Atkins and Shu introduced the quadrature-free formulation in which the integrals are evaluated a-priori and exactly for a similarity element. The approach has been demonstrated to possess the accuracy required for acoustics even in cases where the grid is not smooth. Other issues such as boundary conditions and the treatment of non-linear fluxes have also been studied in earlier work This paper describes the application of the quadrature-free discontinuous Galerkin method to a two-dimensional shear layer problem. First, a brief description of the method is given. Next, the problem is described and the solution is presented. Finally, the resources required to perform the calculations are given.
NASA Astrophysics Data System (ADS)
Sam, F. Laurent M.; Dabera, G. Dinesha M. R.; Lai, Khue T.; Mills, Christopher A.; Rozanski, Lynn J.; Silva, S. Ravi P.
2014-08-01
Organic light emitting diodes (OLEDs) incorporating grid transparent conducting electrodes (TCEs) with wide grid line spacing suffer from an inability to transfer charge carriers across the gaps in the grids to promote light emission in these areas. High luminance OLEDs fabricated using a hybrid TCE composed of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS PH1000) or regioregular poly(3-hexylthiophene)-wrapped semiconducting single-walled carbon nanotubes (rrP3HT-SWCNT) in combination with a nanometre thin gold grid are reported here. OLEDs fabricated using the hybrid gold grid/PH1000 TCE have a luminance of 18 000 cd m-2 at 9 V; the same as the reference indium tin oxide (ITO) OLED. The gold grid/rrP3HT-SWCNT OLEDs have a lower luminance of 8260 cd m-2 at 9 V, which is likely due to a rougher rrP3HT-SWCNT surface. These results demonstrate that the hybrid gold grid/PH1000 TCE is a promising replacement for ITO in future plastic electronics applications including OLEDs and organic photovoltaics. For applications where surface roughness is not critical, e.g. electrochromic devices or discharge of static electricity, the gold grid/rrP3HT-SWCNT hybrid TCE can be employed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Youngho; Hur, Kyeon; Kang, Yong
This study investigates the emerging harmonic stability concerns to be addressed by grid planners in generation interconnection studies, owing to the increased adoption of renewable energy resources connected to the grid via power electronic converters. The wideband and high-frequency electromagnetic transient (EMT) characteristics of these converter-interfaced generators (CIGs) and their interaction with the grid impedance are not accurately captured in the typical dynamic studies conducted by grid planners. This paper thus identifies the desired components to be studied and subsequently develops a practical process for integrating a new CIG into a grid with the existing CIGs. The steps of thismore » process are as follows: the impedance equation of a CIG using its control dynamics and an interface filter to the grid, for example, an LCL filter (inductor-capacitor-inductor type), is developed; an equivalent impedance model including the existing CIGs nearby and the grid observed from the point of common coupling are derived; the system stability for credible operating scenarios is assessed. Detailed EMT simulations validate the accuracy of the impedance models and stability assessment for various connection scenarios. Here, by complementing the conventional EMT simulation studies, the proposed analytical approach enables grid planners to identify critical design parameters for seamlessly integrating a new CIG and ensuring the reliability of the grid.« less
Second-Degree Interatrial Block in Hemodialysis Patients
Enriquez, Andres; D'Amato, Anna; de Luna, Antoni Bayes; Baranchuk, Adrian
2015-01-01
Interatrial conduction delays manifest as a prolonged P-wave duration on surface ECG and the term interatrial block (IAB) has been coined. They are usually fixed, but cases of intermittent IAB have been described, suggesting functional conduction block at the Bachmann bundle region. We report 2 cases of patients on chronic hemodialysis therapy presenting with intermittent IAB. PMID:25755895
Cho, Youngho; Hur, Kyeon; Kang, Yong; ...
2017-09-08
This study investigates the emerging harmonic stability concerns to be addressed by grid planners in generation interconnection studies, owing to the increased adoption of renewable energy resources connected to the grid via power electronic converters. The wideband and high-frequency electromagnetic transient (EMT) characteristics of these converter-interfaced generators (CIGs) and their interaction with the grid impedance are not accurately captured in the typical dynamic studies conducted by grid planners. This paper thus identifies the desired components to be studied and subsequently develops a practical process for integrating a new CIG into a grid with the existing CIGs. The steps of thismore » process are as follows: the impedance equation of a CIG using its control dynamics and an interface filter to the grid, for example, an LCL filter (inductor-capacitor-inductor type), is developed; an equivalent impedance model including the existing CIGs nearby and the grid observed from the point of common coupling are derived; the system stability for credible operating scenarios is assessed. Detailed EMT simulations validate the accuracy of the impedance models and stability assessment for various connection scenarios. Here, by complementing the conventional EMT simulation studies, the proposed analytical approach enables grid planners to identify critical design parameters for seamlessly integrating a new CIG and ensuring the reliability of the grid.« less
A Geomorphologically Driven Conditional Assessment for the Study of Urban Stone Decay
NASA Astrophysics Data System (ADS)
Johnston, Brian; McKinley, Jennifer; Warke, Patricia; Ruffell, Alastair
2017-04-01
Much of humanity's legacy is within the built environment and therefore in the stones that have been used for its construction. This means that targeted building conservation strategies are vital when considering the maintenance of this heritage. Conditional assessments play a major part in these efforts by classifying blocks based upon their visual state of decay. However, as these tools were developed with the purpose of informing decision making by professionals in the construction and conservation industries, limitations exist when considering them as part of studies with a geomorphological focus. Links between the decay of stonework and spatially variable control factors, such as material properties, microclimatic conditions and pollutant distribution, have been well documented in past studies, with observations of decay on wall sections supporting this concept. For example, the distribution of weathering features can indicate that certain blocks are more susceptible than others to decay. Additionally, adjoining blocks can exhibit similar processes, suggestive of interaction between the blocks, indicating a linkage between individual block scale decay and processes acting at a wider wall scale. These observations have led to comparisons between the weathering of rock outcrops and building façades, with mortar joints playing the role of fractures or bedding. This comparison has highlighted the necessity to not simply consider decay in terms of architecture or engineering, but also in terms of the geomorphological processes taking place. The patterns of decay created at a wall scale, whilst being visually chaotic, can provide clues to the controlling factors acting upon this system, if they are subjected to informed scrutiny. Despite such discussions, the focus of surveys towards remediation have created limitations when applying the results of these surveys towards the understanding of processes acting between blocks at a wall scale. This work aims to take into consideration these limitations by undertaking two conditional assessments, using differing techniques, of wall sections at Fitzroy Presbyterian Church in Belfast. These assessments will be undertaken using a classification system focusing upon percentage of surface alteration. Initially, an assessment was carried out focussing on classifying each block individually. This was then followed by observations in a regular grid of 10x10cm squares across the wall sections. Results suggest that decay features develop beyond the extents of a single stone when situated within a larger built structure, with mortar and blocks providing both interconnectivity and barriers that influence the spread of decay. The results suggest the presence of three wall scale processes; urban microclimatic influencing capillary rise of ground water, architectural features creating a barrier and the passage of moisture through deteriorating mortar. Probe permeametry, GPR and 3D modelling of the wall sections were used to provide support for these findings. For the conservationist, application of a gridded observation approach is time consuming and of little use when deciding upon the remediation of individual blocks. However, in geomorphologically focused studies it facilitates a greater understanding of processes that extend beyond a single block, particularly when considering sites where the development of decay appears to be spatially complex.
Turbulence Impact on Wind Turbines: Experimental Investigations on a Wind Turbine Model
NASA Astrophysics Data System (ADS)
Al-Abadi, A.; Kim, Y. J.; Ertunç, Ö.; Delgado, A.
2016-09-01
Experimental investigations have been conducted by exposing an efficient wind turbine model to different turbulence levels in a wind tunnel. Nearly isotropic turbulence is generated by using two static squared grids: fine and coarse one. In addition, the distance between the wind-turbine and the grid is adjusted. Hence, as the turbulence decays in the flow direction, the wind-turbine is exposed to turbulence with various energy and length scale content. The developments of turbulence scales in the flow direction at various Reynolds numbers and the grid mesh size are measured. Those measurements are conducted with hot-wire anemometry in the absence of the wind-turbine. Detailed measurements and analysis of the upstream and downstream velocities, turbulence intensity and spectrum distributions are done. Performance measurements are conducted with and without turbulence grids and the results are compared. Performance measurements are conducted with an experimental setup that allow measuring of torque, rotational speed from the electrical parameters. The study shows the higher the turbulence level, the higher the power coefficient. This is due to many reasons. First, is the interaction of turbulence scales with the blade surface boundary layer, which in turn delay the stall. Thus, suppressing the boundary layer and preventing it from separation and hence enhancing the aerodynamics characteristics of the blade. In addition, higher turbulence helps in damping the tip vortices. Thus, reduces the tip losses. Adding winglets to the blade tip will reduce the tip vortex. Further investigations of the near and far wake-surrounding intersection are performed to understand the energy exchange and the free stream entrainment that help in retrieving the velocity.
Assessment of Spectroscopic, Real-time Ion Thruster Grid Erosion-rate Measurements
NASA Technical Reports Server (NTRS)
Domonkos, Matthew T.; Stevens, Richard E.
2000-01-01
The success of the ion thruster on the Deep Space One mission has opened the gate to the use of primary ion propulsion. Many of the projected planetary missions require throughput and specific impulse beyond those qualified to date. Spectroscopic, real-time ion thruster grid erosion-rate measurements are currently in development at the NASA Glenn Research Center. A preliminary investigation of the emission spectra from an NSTAR derivative thruster with titanium grid was conducted. Some titanium lines were observed in the discharge chamber; however, the signals were too weak to estimate the erosion of the screen grid. Nevertheless, this technique appears to be the only non-intrusive real-time means to evaluate screen grid erosion, and improvement of the collection optics is proposed. Direct examination of the erosion species using laser-induced fluorescence (LIF) was determined to be the best method for a real-time accelerator grid erosion diagnostic. An approach for a quantitative LIF diagnostic was presented.
Mehl, S.; Hill, M.C.
2001-01-01
Five common numerical techniques for solving the advection-dispersion equation (finite difference, predictor corrector, total variation diminishing, method of characteristics, and modified method of characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using discrete, randomly distributed, homogeneous blocks of five sand types. This experimental model provides an opportunity to compare the solution techniques: the heterogeneous hydraulic-conductivity distribution of known structure can be accurately represented by a numerical model, and detailed measurements can be compared with simulated concentrations and total flow through the tank. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation given the different methods of simulating solute transport. The breakthrough curves show that simulated peak concentrations, even at very fine grid spacings, varied between the techniques because of different amounts of numerical dispersion. Sensitivity-analysis results revealed: (1) a high correlation between hydraulic conductivity and porosity given the concentration and flow observations used, so that both could not be estimated; and (2) that the breakthrough curve data did not provide enough information to estimate individual values of dispersivity for the five sands. This study demonstrates that the choice of assigned dispersivity and the amount of numerical dispersion present in the solution technique influence estimated hydraulic conductivity values to a surprising degree.
The Numerical Simulation of Time Dependent Flow Structures Over a Natural Gravel Surface.
NASA Astrophysics Data System (ADS)
Hardy, R. J.; Lane, S. N.; Ferguson, R. I.; Parsons, D. R.
2004-05-01
Research undertaken over the last few years has demonstrated the importance of the structure of gravel river beds for understanding the interaction between fluid flow and sediment transport processes. This includes the observation of periodic high-speed fluid wedges interconnected by low-speed flow regions. Our understanding of these flows has been enhanced significantly through a series of laboratory experiments and supported by field observations. However, the potential of high resolution three dimensional Computational Fluid Dynamics (CFD) modeling has yet to be fully developed. This is largely the result of the problems of designing numerically stable meshes for use with complex bed topographies and that Reynolds averaged turbulence schemes are applied. This paper develops two novel techniques for dealing with these issues. The first is the development and validation of a method for representing the complex surface topography of gravel-bed rivers in high resolution three-dimensional computational fluid dynamic models. This is based upon a porosity treatment with a regular structured grid and the application of a porosity modification to the mass conservation equation in which: fully blocked cells are assigned a porosity of zero; fully unblocked cells are assigned a porosity of one; and partly blocked cells are assigned a porosity of between 0 and 1, according to the percentage of the cell volume that is blocked. The second is the application of Large Eddy Simulation (LES) which enables time dependent flow structures to be numerically predicted over the complex bed topographies. The regular structured grid with the embedded porosity algorithm maintains a constant grid cell size throughout the domain implying a constant filter scale for the LES simulation. This enables the prediction of coherent structures, repetitive quasi-cyclic large-scale turbulent motions, over the gravel surface which are of a similar magnitude and frequency to those previously observed in both flume and field studies. These structures are formed by topographic forcing within the domain and are scaled with the flow depth. Finally, this provides the numerical framework for the prediction of sediment transport within a time dependent framework. The turbulent motions make a significant contribution to the turbulent shear stress and the pressure fluctuations which significantly affect the forces acting on the bed and potentially control sediment motion.
ERIC Educational Resources Information Center
Hsu, Ting-Chia
2016-01-01
In this study, a peer assessment system using the grid-based knowledge classification approach was developed to improve students' performance during computer skills training. To evaluate the effectiveness of the proposed approach, an experiment was conducted in a computer skills certification course. The participants were divided into three…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
....7 ppb ozone at both locations in 2010. This is 0.2 ppb lower than the State's 2008 modeling... CFR part 2. 2. Tips for Preparing Your Comments. When submitting comments, remember to: Identify the... grid modeling that the State conducted in 2008. (Photochemical grid modeling is used to project future...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... DEPARTMENT OF ENERGY Notice of Availability of Report on Data Access and Privacy Issues Related to... report entitled, ``Data Access and Privacy Issues Related to Smart Grid Technologies.'' In this report... meeting conducted during the preparation of the report. This report responds to recommendations for DOE...
Comparison of Measured and Block Structured Simulations for the F-16XL Aircraft
NASA Technical Reports Server (NTRS)
Boelens, O. J.; Badcock, K. J.; Elmilgui, A.; Abdol-Hamid, K. S.; Massey, S. J.
2008-01-01
This article presents a comparison of the predictions of three RANS codes for flight conditions of the F-16XL aircraft which feature vortical flow. The three codes, ENSOLV, PMB and PAB3D, solve on structured multi-block grids. Flight data for comparison was available in the form of surface pressures, skin friction, boundary layer data and photographs of tufts. The three codes provided predictions which were consistent with expectations based on the turbulence modelling used, which was k- , k- with vortex corrections and an Algebraic Stress Model. The agreement with flight data was good, with the exception of the outer wing primary vortex strength. The confidence in the application of the CFD codes to complex fighter configurations increased significantly through this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karali, Nihan; Flego, Gianluca; Yu, Jiancheng
Given the substantial investments required, there has been keen interest in conducting benefits analysis, i.e., quantifying, and often monetizing, the performance of smart grid technologies. In this study, we compare two different approaches; (1) Electric Power Research Institute (EPRI)’s benefits analysis method and its adaptation to the European contexts by the European Commission, Joint Research Centre (JRC), and (2) the Analytic Hierarchy Process (AHP) and fuzzy logic decision making method. These are applied to three case demonstration projects executed in three different countries; the U.S., China, and Italy, considering uncertainty in each case. This work is conducted under the U.S.more » (United States)-China Climate Change Working Group, smart grid, with an additional major contribution by the European Commission. The following is a brief description of the three demonstration projects.« less
Ishihara, Keiko; Yan, Ding-Hong
2007-01-01
The outward component of the strong inward rectifier K+ current (IKir) plays a pivotal role in polarizing the membranes of excitable and non-excitable cells and is regulated by voltage-dependent channel block by internal cations. Using the Kir2.1 channel, we previously showed that a small fraction of the conductance susceptible only to a low-affinity mode of block likely carries a large portion of the outward current. To further examine the relevance of the low-affinity block to outward IKir and to explore its molecular mechanism, we studied the block of the Kir2.1 and Kir2.2 channels by spermine, which is the principal Kir2 channel blocker. Current–voltage relations of outward Kir2.2 currents showed a peak, a plateau and two peaks in the presence of 10, 1 and 0.1 μm spermine, respectively, which was explained by the presence of two conductances that differ in their susceptibility to spermine block. When the current–voltage relations showed one peak, like those of native IKir, outward Kir2.2 currents were mediated mostly by the conductance susceptible to the low-affinity block. They also flowed in a narrower range than the corresponding Kir2.1 currents, because of 3- to 4-fold greater susceptibility to the low-affinity block than in Kir2.1. Reducing external [K+] shifted the voltage dependences of both the high- and low-affinity block of Kir2.1 in parallel with the shift in the reversal potential, confirming the importance of the low-affinity block in mediating outward IKir. When Kir2.1 mutants known to have reduced sensitivity to internal blockers were examined, the D172N mutation in the transmembrane pore region made almost all of the conductance susceptible only to low-affinity block, while the E224G mutation in the cytoplasmic pore region reduced the sensitivity to low-affinity block without markedly altering that to the high-affinity block or the high/low conductance ratio. The effects of these mutations support the hypothesis that Kir2 channels exist in two states having different susceptibilities to internal cationic blockers. PMID:17640933
Morphology and conductivity of PEO-based polymers having various end functional groups
NASA Astrophysics Data System (ADS)
Jung, Ha Young; Mandal, Prithwiraj; Park, Moon Jeong
Poly(ethylene oxide) (PEO)-based polymers have been considered most promising candidates of polymer electrolytes for lithium batteries owing to the high ionic conductivity of PEO/lithium salt complexes. This positive aspect prompted researchers to investigate PEO-containing block copolymers prepared by linking mechanically robust block to PEO covalently. Given that the microphase separation of block copolymers can affect both mechanical properties and ion transport properties, various strategies have been reported to tune the morphology of PEO-containing block copolymers. In the present study, we describe a simple means for modulating the morphologies of PEO-based block copolymers with an aim to improve ion transport properties. By varying terminal groups of PEO in block copolymers, the disordered morphology can be readily transformed into ordered lamellae or gyroid phases, depending on the type and number density of end group. In particular, the existence of terminal groups resulted in a large reduction in crystallinity of PEO chains and thereby increasing room temperature ionic conductivity.
VIEW FROM ALLEY LOOKING WEST AT REAR ELEVATION OF 260 ...
VIEW FROM ALLEY LOOKING WEST AT REAR ELEVATION OF 260 RENNIE ST., UPRIGHT AND WING TYPE MILL WORKER HOUSING, C. 1900. THIS NEW TOWN SECTION OF GRANITEVILLE ON THE HILL EAST OF THE MILL COMPLEX HAD A GRID-PLAN STREET PATTERN WITH ALLEYS RUNNING THROUGH THE MIDDLE OF THE BLOCKS. NOTE GARAGES ADDED IN THE 1940'S AND IDENTICAL STRUCTURES 262 AND 264 RENNIE ST. TO RIGHT - 260 Rennie Street (House), Graniteville, Aiken County, SC
Numerical Prediction of Periodic Vortex Shedding in Subsonic and Transonic Turbine Cascade Flows
NASA Astrophysics Data System (ADS)
Mensink, C.
1996-05-01
Periodic vortex shedding at the trailing edge of a turbine cascade has been investigated numerically for a subsonic and a transonic cascade flow. The numerical investigation was carried out by a finite volume multiblock code, solving the 2D compressible Reynolds-averaged Navier-Stokes equations on a set of non-overlapping grid blocks that are connected in a conservative way. Comparisons are made with experimental results previously obtained by Sieverding and Heinemann.
NASA Astrophysics Data System (ADS)
Preusker, F.; Oberst, J.; Stark, A.; Burmeister, S.
2018-04-01
We produce high-resolution (222 m/grid element) Digital Terrain Models (DTMs) for Mercury using stereo images from the MESSENGER orbital mission. We have developed a scheme to process large numbers, typically more than 6000, images by photogrammetric techniques, which include, multiple image matching, pyramid strategy, and bundle block adjustments. In this paper, we present models for map quadrangles of the southern hemisphere H11, H12, H13, and H14.
Simulation of naturally fractured reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saidi, A.M.
1983-11-01
A three-dimensional, three-phase reservoir simulator was developed to study the behavior of fully or partially fractured reservoirs. It is also demonstrated, that when a fractured reservoir is subject to a relatively large rate of pressure drop and/or it composed of relatively large blocks, the pseudo steady-state pressure concept gives large errors as compared with transient fromulation. In addition, when gravity drainage and imbibitum processes, which is the most important mechanism in the fractured reservoirs, are represented by a ''lumped parameter'' even larger errors can be produced in exchange flow between matrix and fractures. For these reasons, the matrix blocks aremore » gridded and the transfer between matrix and fractures are calculated using pressure and diffusion transient concept. In this way the gravity drainage is also calculated accurately. As the matrix-fracture exchange flow depends on the location of each matrix grid relative to the GOC and/or WOC in fracture, the exchange flow equation are derived and given for each possible case. The differential equation describing the flow of water, oil, and gas within the matrix and fracture system, each of which may contain six unknowns, are presented. The two sets of equations are solved implicitly for pressure water, and gas stauration in both matrix and fractures. The first twenty two years of the history of Haft Kel field was successfully matched with this model and the results are included.« less
Cheng, Yuhua; Chen, Kai; Bai, Libing; Yang, Jing
2014-02-01
Precise control of the grid-connected current is a challenge in photovoltaic inverter research. Traditional Proportional-Integral (PI) control technology cannot eliminate steady-state error when tracking the sinusoidal signal from the grid, which results in a very high total harmonic distortion in the grid-connected current. A novel PI controller has been developed in this paper, in which the sinusoidal wave is discretized into an N-step input signal that is decided by the control frequency to eliminate the steady state error of the system. The effect of periodical error caused by the dead zone of the power switch and conduction voltage drop can be avoided; the current tracking accuracy and current harmonic content can also be improved. Based on the proposed PI controller, a 700 W photovoltaic grid-connected inverter is developed and validated. The improvement has been demonstrated through experimental results.
Relevance of Conduction Disorders in Bachmann's Bundle During Sinus Rhythm in Humans.
Teuwen, Christophe P; Yaksh, Ameeta; Lanters, Eva A H; Kik, Charles; van der Does, Lisette J M E; Knops, Paul; Taverne, Yannick J H J; van de Woestijne, Pieter C; Oei, Frans B S; Bekkers, Jos A; Bogers, Ad J J C; Allessie, Maurits A; de Groot, Natasja M S
2016-05-01
Bachmann's bundle (BB) is considered to be the main route of interatrial conduction and to play a role in development of atrial fibrillation (AF). The goals of this study are to characterize the presence of conduction disorders in BB during sinus rhythm and to study their relation with AF. High-resolution epicardial mapping (192 unipolar electrodes, interelectrode distance: 2 mm) of sinus rhythm was performed in 185 patients during coronary artery bypass surgery of whom 13 had a history of paroxysmal AF. Continuous rhythm monitoring was used to detect postoperative AF during the first 5 postoperative days. In 67% of the patients, BB was activated from right to left; in the remaining patients from right and middle (21%), right, central, and left (8%), or central (4%) site. Mean effective conduction velocity was 89 cm/s. Conduction block was present in most patients (75%; median 1.1%, range 0-12.8) and was higher in patients with paroxysmal AF compared with patients without a history of AF (3.2% versus 0.9%; P=0.03). A high amount of conduction block (>4%) was associated with de novo postoperative AF (P=0.02). Longitudinal lines of conduction block >10 mm were also associated with postoperative AF (P=0.04). BB may be activated through multiple directions, but the predominant route of conduction is from right to left. Conduction velocity across BB is around 90 cm/s. Conduction is blocked in both longitudinal and transverse direction in the majority of patients. Conduction disorders, particularly long lines of longitudinal conduction block, are more pronounced in patients with AF episodes. © 2016 American Heart Association, Inc.
On-site fuel cell field test support program
NASA Astrophysics Data System (ADS)
Staniunas, J. W.; Merten, G. P.
1982-01-01
In order to assess the impact of grid connection on the potential market for fuel cell service, applications studies were conducted to identify the fuel cell operating modes and corresponding fuel cell sizing criteria which offer the most potential for initial commercial service. The market for grid-connected fuel cell service was quantified using United's market analysis program and computerized building data base. Electric and gas consumption data for 268 buildings was added to our surveyed building data file, bringing the total to 407 buildings. These buildings were analyzed for grid-isolated and grid-connected fuel cell service. The results of the analyses indicated that the nursing home, restaurant and health club building sectors offer significant potential for fuel cell service.
Job Superscheduler Architecture and Performance in Computational Grid Environments
NASA Technical Reports Server (NTRS)
Shan, Hongzhang; Oliker, Leonid; Biswas, Rupak
2003-01-01
Computational grids hold great promise in utilizing geographically separated heterogeneous resources to solve large-scale complex scientific problems. However, a number of major technical hurdles, including distributed resource management and effective job scheduling, stand in the way of realizing these gains. In this paper, we propose a novel grid superscheduler architecture and three distributed job migration algorithms. We also model the critical interaction between the superscheduler and autonomous local schedulers. Extensive performance comparisons with ideal, central, and local schemes using real workloads from leading computational centers are conducted in a simulation environment. Additionally, synthetic workloads are used to perform a detailed sensitivity analysis of our superscheduler. Several key metrics demonstrate that substantial performance gains can be achieved via smart superscheduling in distributed computational grids.
NASA Astrophysics Data System (ADS)
Teran, Alexander Andrew
Nanostructured block copolymer electrolytes containing an ion-conducting block and a modulus-strengthening block are of interest for applications in solid-state lithium metal batteries. These materials can self-assemble into well-defined microstructures, creating conducting channels that facilitate ion transport. The overall objective of this dissertation is to gain a better understanding of the behavior of salt-containing block copolymers, and evaluate their potential for use in solid-state lithium/sulfur batteries. Anionically synthesized polystyrene-b-poly(ethylene oxide) (SEO) copolymers doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt were used as a model system. This thesis investigates the model system on several levels: from fundamental thermodynamic studies to bulk characterization and finally device assembly and testing. First, the thermodynamics of neat and salt-containing block copolymers was studied. The addition of salt to these materials is necessary to make them conductive, however even small amounts of salt can have significant effects on their phase behavior, and consequently their iontransport and mechanical properties. As a result, the effect of salt addition on block copolymer thermodynamics has been the subject of significant interest over the last decade. A comprehensive study of the thermodynamics of block copolymer/salt mixtures over a wide range of molecular weights, compositions, salt concentrations and temperatures was conducted. Next, the effect of molecular weight on ion transport in both homopolymer and copolymer electrolytes were studied over a wide range of chain lengths. Homopolymer electrolytes show an inverse relationship between conductivity and chain length, with a plateau in the infinite molecular weight limit. This is due to the presence of two mechanisms of ion conduction in homopolymers; the first mechanism is a result of the segmental motion of the chains surrounding the salt ions, 2 creating a liquid-like environment around the ion while the second mechanism of ion conduction is attributed to diffusion of the entire polymer chain with coordinated ions. Equilibrated block copolymer electrolytes exhibit a non-monotonic dependence on molecular weight, decreasing with increasing molecular weight in the small molecular weight limit before increasing when molecular weight exceeds about 10 kg mol-1. Conductivity in annealed electrolytes was shown to be affected by two competing factors: the glass transition temperature of the insulating polystyrene block and the width of the conducting poly(ethylene oxide) (PEO) channel. In the low molecular weight limit, all ions are in contact with both polystyrene (PS) and PEO segments. The intermixing between PS and PEO segments is restricted to an interfacial zone of width of about 5 nm. The fraction of ions affected by the interfacial zone decreases as the conducting channel width increases. Furthermore, the effect of thermal history on the conductivity of the block copolymer electrolytes was examined. Results suggest that long-range order impedes ion transport, and consequently decreases in conductivity of up to 80% were seen upon annealing. The effect of morphology on ion transport was studied by conducting simultaneous impedance and X-ray scattering experiments as the block copolymer electrolyte transitioned from an ordered lamellar structure to a disordered phase. The ionic conductivity increased discontinuously through the transition from order to disorder. A simple framework for quantifying the magnitude of the discontinuity was presented. Finally, block copolymer electrolytes were examined specifically for use in high energy density solid state lithium/sulfur batteries. Such materials have been shown to form a stable interface with lithium metal anodes, maintain intimate contact upon cycling, and have sufficiently high shear moduli to retard dendrite formation. Having previously satisfied the concerns associated with the lithium metal anode, the compatibility of the sulfur cathode was explored. The sulfur cathode presents many unique challenges, including the generation of soluble lithium polysulfides (Li2Sx, 2 ≤ x ≤ 8) during discharge. The solubility of such species in block copolymers and their effect on morphology was examined. The lithium polysulfides were found to exhibit similar solubility in the block copolymers as in typical organic electrolytes, however induced unusual and unexpected phase behavior in the block copolymers. Inspired by successful efforts to physically confine the soluble lithium polysulfides via nanostructured carbon-sulfur composites in the cathode, our nanostructured block copolymer electrolytes were employed in full electrochemical cells with a lithium metal anode and sulfur cathode. Different cathode compositions, electrolyte additives, and cell architectures were tested. Surprisingly, the polysulfides diffused readily from the cathode through the block copolymer electrolyte, and the normally robust SEO|Li metal interface was detrimentally affected their presence during cycling. The polysulfides appeared to change the mechanical properties of the electrolyte such that intimate contact with the lithium metal was lost. Several promising strategies to overcome this problem were investigated and offer exciting avenues for improvement for future researchers. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Singh, A.; Holt, R. M.; Ramarao, B.; Clemo, T.
2011-12-01
Three radioactive waste disposal landfills at the Waste Control Specialists (WCS) facility in Andrews County, Texas are constructed below grade, within the low-permeability Dockum Group mudrocks (Cooper Canyon Formation) of Triassic age. Recent site investigations at the WCS disposal facilities indicate the presence of a trapped and compressed gas phase in the mudrocks. The Dockum is a low-permeability medium with vertical and horizontal effective hydraulic conductivities of 1.2E-9 cm/s and 2.9E-7 cm/s. The upper 300+ feet of the Dockum is in the unsaturated zone, with an average saturation of 0.87 and average capillary pressure of 2.8 MPa determined from core samples. Air entry pressures on core samples range from from 0.016 to 9.8 MPa, with a mean of 1.0 MPa. Heat dissipation sensors, thermocouple psychrometers, and advanced tensiometers installed in Dockum borehole arrays generally show capillary pressures one order of magnitude less than those measured on core samples. These differences with core data are attributed to the presence of a trapped and compressed gas phase within Dockum materials. In the vicinity of an instrumented borehole, the gas phase pressure equilibrates with atmospheric pressure, lowering the capillary pressure. We have developed a new macroscopic invasion percolation (MIP) model to illustrate the origin of the trapped gas phase in the Dockum rocks. An MIP model differs from invasion percolation (IP) through the definition of macro-scale capillarity. Individual pore throats and necks are not considered. Instead, a near pore-scale block is defined and characterized by a local threshold spanning pressure (a local block-scale breakthrough pressure) that represents the behavior of the subscale network. The model domain is discretized into an array of grid blocks with assigned spanning pressures. An invasion pressure for each block is then determined by the sum of spanning pressure, buoyance forces, and viscous forces. An IP algorithm sorts the invadable blocks, selects the block connected to the growing cluster with the lowest invasion pressure, and invades it. Our new MIP model incorporates several new features, including an efficient three-dimensional clustering algorithm; simultaneous invasion/reinvasion of water and air phases; hysteresis in water and air drainage curves; capability for distributed porosities and drainage parameters; and gas-phase compression and trapping. We apply this model in simulations representing the WCS site and illustrate the origin of the trapped and compressed gas phase in Dockum mudrocks.
Woods, P S; Ledbetter, M C; Tempel, N
1991-06-01
We describe methods for freezing and drying EDTA-expanded, fixed metaphase chromosomes and nuclei, attached to grids as whole-mounts, for transmission electron microscopy. These methods use a special apparatus that is simple to construct. While separate freezers and dryers are commercially available, one for freezing blocks of tissue by slamming them against a cold metal surface, and the other for vacuum drying the frozen tissue, our apparatus is designed for gentler, cryogenic liquid plunge freezing and drying, sequentially, in the same apparatus, thus avoiding any compression or damage to the specimen. Use of a cryoprotectant is not essential; however, good results are obtained more often when 20% ethanol is used. Freezing is accomplished by rapid propulsion of the grid, with specimens attached, into slushy N2 (-210 degrees C) within the drying chamber; drying is automatic, by either sublimation under vacuum or by solvent substitution using absolute ethanol followed by acetone, which, in turn, is removed with a critical-point dryer. The apparatus offers a means of drying chromosomes and nuclei in an expanded state, and avoids the shrinkage of these structures that occurs during stepwise passage through increasing concentrations of ethanol or acetone.
DenInv3D: a geophysical software for three-dimensional density inversion of gravity field data
NASA Astrophysics Data System (ADS)
Tian, Yu; Ke, Xiaoping; Wang, Yong
2018-04-01
This paper presents a three-dimensional density inversion software called DenInv3D that operates on gravity and gravity gradient data. The software performs inversion modelling, kernel function calculation, and inversion calculations using the improved preconditioned conjugate gradient (PCG) algorithm. In the PCG algorithm, due to the uncertainty of empirical parameters, such as the Lagrange multiplier, we use the inflection point of the L-curve as the regularisation parameter. The software can construct unequally spaced grids and perform inversions using such grids, which enables changing the resolution of the inversion results at different depths. Through inversion of airborne gradiometry data on the Australian Kauring test site, we discovered that anomalous blocks of different sizes are present within the study area in addition to the central anomalies. The software of DenInv3D can be downloaded from http://159.226.162.30.
NASA Technical Reports Server (NTRS)
Stremel, Paul M.
1991-01-01
A method for calculating the incompressible viscous flow about two-dimensional bodies, utilizing the velocity-vorticity form of the Navier-Stokes equations using a staggered-grid formulation is presented. The solution is obtained by employing an alternative-direction implicit method for the solution of the block tridiagonal matrix resulting from the finite-difference representation of the governing equations. The boundary vorticity and the conservation of mass are calculated implicitly as a part of the solution. The mass conservation is calculated to machine zero for the duration of the computation. Calculations for the flow about a circular cylinder, a 2-pct thick flat plate at 90-deg incidence, an elliptic cylinder at 45-deg incidence, and a NACA 0012, with and without a deflected flap, at - 90-deg incidence are performed and compared with the results of other numerical investigations.
A general multiblock Euler code for propulsion integration. Volume 3: User guide for the Euler code
NASA Technical Reports Server (NTRS)
Chen, H. C.; Su, T. Y.; Kao, T. J.
1991-01-01
This manual explains the procedures for using the general multiblock Euler (GMBE) code developed under NASA contract NAS1-18703. The code was developed for the aerodynamic analysis of geometrically complex configurations in either free air or wind tunnel environments (vol. 1). The complete flow field is divided into a number of topologically simple blocks within each of which surface fitted grids and efficient flow solution algorithms can easily be constructed. The multiblock field grid is generated with the BCON procedure described in volume 2. The GMBE utilizes a finite volume formulation with an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. This user guide provides information on the GMBE code, including input data preparations with sample input files and a sample Unix script for program execution in the UNICOS environment.
A Framework for Parallel Unstructured Grid Generation for Complex Aerodynamic Simulations
NASA Technical Reports Server (NTRS)
Zagaris, George; Pirzadeh, Shahyar Z.; Chrisochoides, Nikos
2009-01-01
A framework for parallel unstructured grid generation targeting both shared memory multi-processors and distributed memory architectures is presented. The two fundamental building-blocks of the framework consist of: (1) the Advancing-Partition (AP) method used for domain decomposition and (2) the Advancing Front (AF) method used for mesh generation. Starting from the surface mesh of the computational domain, the AP method is applied recursively to generate a set of sub-domains. Next, the sub-domains are meshed in parallel using the AF method. The recursive nature of domain decomposition naturally maps to a divide-and-conquer algorithm which exhibits inherent parallelism. For the parallel implementation, the Master/Worker pattern is employed to dynamically balance the varying workloads of each task on the set of available CPUs. Performance results by this approach are presented and discussed in detail as well as future work and improvements.
Evaluation of the Lattice-Boltzmann Equation Solver PowerFLOW for Aerodynamic Applications
NASA Technical Reports Server (NTRS)
Lockard, David P.; Luo, Li-Shi; Singer, Bart A.; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
A careful comparison of the performance of a commercially available Lattice-Boltzmann Equation solver (Power-FLOW) was made with a conventional, block-structured computational fluid-dynamics code (CFL3D) for the flow over a two-dimensional NACA-0012 airfoil. The results suggest that the version of PowerFLOW used in the investigation produced solutions with large errors in the computed flow field; these errors are attributed to inadequate resolution of the boundary layer for reasons related to grid resolution and primitive turbulence modeling. The requirement of square grid cells in the PowerFLOW calculations limited the number of points that could be used to span the boundary layer on the wing and still keep the computation size small enough to fit on the available computers. Although not discussed in detail, disappointing results were also obtained with PowerFLOW for a cavity flow and for the flow around a generic helicopter configuration.
Electrically conductive doped block copolymer of polyacetylene and polyisoprene
Aldissi, Mahmoud
1985-01-01
An electrically conductive block copolymer of polyisoprene and polyacetyl and a method of making the same are disclosed. The polymer is prepared by first polymerizing isoprene with n-butyllithium in a toluene solution to form an active isoprenyllithium polymer. The active polymer is reacted with an equimolar amount of titanium butoxide and subsequently exposed to gaseous acetylene. A block copolymer of polyisoprene and polyacetylene is formed. The copolymer is soluble in common solvents and may be doped with I.sub.2 to give it an electrical conductivity in the metallic regime.
Small domain-size multiblock copolymer electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistorino, Jonathan; Eitouni, Hany Basam
2016-09-20
New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.
Flowable Conducting Particle Networks in Redox-Active Electrolytes for Grid Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatzell, K. B.; Boota, M.; Kumbur, E. C.
2015-01-01
This study reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO2+/VO2+ redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage. Charge storage contributionsmore » (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO2+/VO2+ redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s-1) than one based on a non-redox active electrolyte. Furthermore, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less
Flowable conducting particle networks in redox-active electrolytes for grid energy storage
Hatzell, K. B.; Boota, M.; Kumbur, E. C.; ...
2015-01-09
This paper reports a new hybrid approach toward achieving high volumetric energy and power densities in an electrochemical flow capacitor for grid energy storage. The electrochemical flow capacitor suffers from high self-discharge and low energy density because charge storage is limited to the available surface area (electric double layer charge storage). Here, we examine two carbon materials as conducting particles in a flow battery electrolyte containing the VO 2+/VO 2 + redox couple. Highly porous activated carbon spheres (CSs) and multi-walled carbon nanotubes (MWCNTs) are investigated as conducting particle networks that facilitate both faradaic and electric double layer charge storage.more » Charge storage contributions (electric double layer and faradaic) are distinguished for flow-electrodes composed of MWCNTs and activated CSs. A MWCNT flow-electrode based in a redox-active electrolyte containing the VO 2+/VO 2 + redox couple demonstrates 18% less self-discharge, 10 X more energy density, and 20 X greater power densities (at 20 mV s -1) than one based on a non-redox active electrolyte. Additionally, a MWCNT redox-active flow electrode demonstrates 80% capacitance retention, and >95% coulombic efficiency over 100 cycles, indicating the feasibility of utilizing conducting networks with redox chemistries for grid energy storage.« less
Henrique-Araújo, Ricardo; Osório, Flávia L; Gonçalves Ribeiro, Mônica; Soares Monteiro, Ivandro; Williams, Janet B W; Kalali, Amir; Alexandre Crippa, José; Oliveira, Irismar Reis De
2014-07-01
GRID-HAMD is a semi-structured interview guide developed to overcome flaws in HAM-D, and has been incorporated into an increasing number of studies. Carry out the transcultural adaptation of GRID-HAMD into the Brazilian Portuguese language, evaluate the inter-rater reliability of this instrument and the training impact upon this measure, and verify the raters' opinions of said instrument. The transcultural adaptation was conducted by appropriate methodology. The measurement of inter-rater reliability was done by way of videos that were evaluated by 85 professionals before and after training for the use of this instrument. The intraclass correlation coefficient (ICC) remained between 0.76 and 0.90 for GRID-HAMD-21 and between 0.72 and 0.91 for GRID-HAMD-17. The training did not have an impact on the ICC, except for a few groups of participants with a lower level of experience. Most of the participants showed high acceptance of GRID-HAMD, when compared to other versions of HAM-D. The scale presented adequate inter-rater reliability even before training began. Training did not have an impact on this measure, except for a few groups with less experience. GRID-HAMD received favorable opinions from most of the participants.
NASA Technical Reports Server (NTRS)
Finley, Dennis B.
1995-01-01
This report documents results from the Euler Technology Assessment program. The objective was to evaluate the efficacy of Euler computational fluid dynamics (CFD) codes for use in preliminary aircraft design. Both the accuracy of the predictions and the rapidity of calculations were to be assessed. This portion of the study was conducted by Lockheed Fort Worth Company, using a recently developed in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages for this study, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaptation of the volume grid during the solution convergence to resolve high-gradient flow regions. This proved beneficial in resolving the large vortical structures in the flow for several configurations examined in the present study. The SPLITFLOW code predictions of the configuration forces and moments are shown to be adequate for preliminary design analysis, including predictions of sideslip effects and the effects of geometry variations at low and high angles of attack. The time required to generate the results from initial surface definition is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.
Subjective experiences of transient ischaemic attack: a repertory grid approach.
Spurgeon, Laura; James, Gill; Sackley, Cath
2013-01-01
Research on the psychosocial reactions to stroke has been used to inform rehabilitation programmes. Yet much less research has been conducted into experiences of, and reactions to, transient ischaemic attack (TIA), despite its link with secondary stroke. This study aimed to investigate the subjective psychological experiences of TIA. Repertory grid technique was used because of its capacity to make individual implicit experiences explicit. Using the standard repertory grid protocol, 12 post-TIA patients were asked to consider how five everyday activities had been affected by TIA. Each participant generated six constructs or personal perspectives, which were analysed using proprietary (RepGrid IV) software. Despite the individualised nature of the responses, six themes emerged from the constructs. These included deep-seated anxiety about future uncertainties/disruption to normality, loss of confidence, frustration, TIA as a wake-up call, a sense of loss and sadness, and embarrassment. Research has shown that the patient's subjective experience and perspective are important to the rehabilitation process post-stroke. Relatively little research has been conducted into the subjective experiences of TIA patients. This study has revealed a range of subjective reactions to TIA, which could be used to inform individualised post-TIA management, adaptation and rehabilitation.
Use of Ionic Liquids in Rod-Coil Block Copolyimides for Improved Lithium Ion Conduction
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Tigelaar, Dean M.; Chapin, Kara; Bennett, William R.
2007-01-01
Solvent-free, solid polymer electrolytes (SPE) have the potential to improve safety, increase design flexibility and enhance performance of rechargeable lithium batteries. Solution based electrolytes are flammable and typically incompatible with lithium metal anodes, limiting energy density. We have previously demonstrated use of polyimide rod coil block copolymers doped with lithium salts as electrolytes for lithium polymer batteries. The polyimide rod blocks provide dimensional stability while the polyethylene oxide (PEO) coil portions conduct ions. Phase separation of the rods and coils in these highly branched polymers provide channels with an order of magnitude improvement in lithium conduction over polyethylene oxide itself at room temperature. In addition, the polymers have been demonstrated in coin cells to be compatible with lithium metal. For practical use at room temperature and below, however, at least an order of magnitude improvement in ion conduction is still required. The addition of nonvolatile, room temperature ionic liquids has been shown to improve the ionic conductivity of high molecular weight PEO. Herein we describe use of these molten salts to improve ionic conductivity in the rod-coil block copolymers.
Electron gas grid semiconductor radiation detectors
Lee, Edwin Y.; James, Ralph B.
2002-01-01
An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.
Thin Film Electrodes with an Integral Current Collection Grid for Use with Solid Electrolytes
NASA Technical Reports Server (NTRS)
Ryan, M. A.; Kisor, A.; Williams, R. M.; Jeffries-Nakamura, B.; O'Connor, D.
1994-01-01
Thin film, high performance electrodes which can operate in high temperature environments are necessary for many devices which use a solid electrolyte. Electrodes of rhodium-tungsten alloy have been deposited on solid electrolyte using photolytic chemical vapor deposition (PCVD). A technique for depositing electrodes and current collection grids simultaneously has been developed using the prenucleation characteristics of PCVD. This technique makes it possible to fabricate electrodes which allow vapor transport through the thin (<1 (micro)m) portions of the electrode while integral thick grid lines improve the electronic conductivity of the electrode, thus improving overall performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W
2001-12-01
This report documents the Large-Block Test (LBT) conducted at Fran Ridge near Yucca Mountain, Nevada. The LBT was a thermal test conducted on an exposed block of middle non-lithophysal Topopah Spring tuff (Tptpmn) and was designed to assist in understanding the thermal-hydrological-mechanical-chemical (THMC) processes associated with heating and then cooling a partially saturated fractured rock mass. The LBT was unique in that it was a large (3 x 3 x 4.5 m) block with top and sides exposed. Because the block was exposed at the surface, boundary conditions on five of the six sides of the block were relatively wellmore » known and controlled, making this test both easier to model and easier to monitor. This report presents a detailed description of the test as well as analyses of the data and conclusions drawn from the test. The rock block that was tested during the LBT was exposed by excavation and removal of the surrounding rock. The block was characterized and instrumented, and the sides were sealed and insulated to inhibit moisture and heat loss. Temperature on the top of the block was also controlled. The block was heated for 13 months, during which time temperature, moisture distribution, and deformation were monitored. After the test was completed and the block cooled down, a series of boreholes were drilled, and one of the heater holes was over-cored to collect samples for post-test characterization of mineralogy and mechanical properties. Section 2 provides background on the test. Section 3 lists the test objectives and describes the block site, the site configuration, and measurements made during the test. Section 3 also presents a chronology of events associated with the LBT, characterization of the block, and the pre-heat analyses of the test. Section 4 describes the fracture network contained in the block. Section 5 describes the heating/cooling system used to control the temperature in the block and presents the thermal history of the block during the test. Sections 5 through 9 report the measurements made on the block during the preheating, heating, and cooling phases. These measurements include temperature, thermal conductivity and diffusivity, hydrological measurements (electrical resistivity, neutron logging, gas pressure, and relative humidity), geomechanics, selected chemical analyses, and microbial activity. These sections also include analyses and simulations of the block behavior. Finally, conclusions are presented in Section 10. Complete data sets were submitted during the time the test was conducted. The data tracking numbers (DTNs) of all of the data are presented in Table 1-1.« less
Fast, V G; Kléber, A G
1995-05-01
Unidirectional conduction block (UCB) and reentry may occur as a consequence of an abrupt tissue expansion and a related change in the electrical load. The aim of this study was to evaluate critical dimensions of the tissue necessary for establishing UCB in heart cell culture. Neonatal rat heart cell cultures with cell strands of variable width emerging into a large cell area were grown using a technique of patterned cell growth. Action potential upstrokes were measured using a voltage sensitive dye (RH-237) and a linear array of 10 photodiodes with a 15 microns resolution. A mathematical model was used to relate action potential wave shapes to underlying ionic currents. UCB (block of a single impulse in anterograde direction - from a strand to a large area - and conduction in the retrograde direction) occurred in narrow cell strands with a width of 15(SD 4) microns (1-2 cells in width, n = 7) and there was no conduction block in strands with a width of 31(8) microns (n = 9, P < 0.001) or larger. The analysis of action potential waveshapes indicated that conduction block was either due to geometrical expansion alone (n = 5) or to additional local depression of conduction (n = 2). In wide strands, action potential upstrokes during anterograde conduction were characterised by multiple rising phases. Mathematical modelling showed that two rising phases were caused by electronic current flow, whereas local ionic current did not coincide with the rising portions of the upstrokes. (1) High resolution optical mapping shows multiphasic action potential upstrokes at the region of abrupt expansion. At the site of the maximum decrement in conduction, these peaks were largely determined by the electrotonus and not by the local ionic current. (2) Unidirectional conduction block occurred in strands with a width of 15(4) microns (1-2 cells).
Upper Mantle Seismic Structure for NE Tibet From Multiscale Tomography Method
NASA Astrophysics Data System (ADS)
Guo, B.; Liu, Q.; Chen, J.
2013-12-01
In the real seismic experiments, the spatial sampling of rays inside the studied volume is basically nonuniform because of the unequispaced distribution of the seismic stations as well as the earthquake events. The conventional seismic tomography schemes adopt fixed size of cells or grid spacing while the actual resolution varies. As a result, either the phantom velocity anomalies may be aroused in regions that are poorly illuminated by the seismic rays, or the best detailed velocity model is unable to be extracted from those with fine ray coverage. We present an adaptive wavelet parameterization solution for three-dimensional traveltime seismic tomography problem and apply it to the study of the tectonics in the Northeast Tibet region. Different from the traditional parameterization schemes, we discretize the velocity model in terms of the Haar wavelets and the parameters are adjusted adaptively based on both the density and the azimuthal coverage of rays. Therefore, the fine grids are used in regions with the good data coverage, whereas the poorly resolved areas are represented by the coarse grids. Using the traveltime data recorded by the portable seismic array and the regional seismic network in the northeastern Tibet area, we investigate the P wave velocity structure of the crust and upper mantle. Our results show that the structure of the crust and upper mantle in the northeastern Tibet region manifests a strong laterally inhomogeneity, which appears not only in the adjacent areas between the different blocks, but also within each block. The velocity of the crust and upper mantle is highly different between the northeastern Tibet and the Ordos plateau. Of these two regions, the former possesses a low-velocity feature while the latter is referred to a high-velocity pattern. Between the northeastern Tibet and the Ordos plateau, there is a transition zone of about 200km wide, which is associated with an extremely complex velocity structure in crust and upper mantle.
Dissecting the Hydrobiogeochemical Box
NASA Astrophysics Data System (ADS)
Wang, Y.; Alves Meira Neto, A.; Sengupta, A.; Root, R. A.; Dontsova, K.; Troch, P. A. A.; Chorover, J.
2015-12-01
Soil genesis is a coupled hydrologic and biogeochemical process that involves the interaction of weathering rock surfaces and water. Due to strong nonlinear coupling, it is extremely difficult to predict biogeochemical changes from hydrological modeling in natural field systems. A fully controlled and monitored system with known initial conditions could be utilized to isolate variables and simplify these natural processes. To investigate the initial weathering of host rock to soil, we employed a 10° sloping soil lysimeter containing one cubic meter of crushed and homogenized basaltic rock. A major experiment of the Periodic Tracer Hierarchy (PERTH) method (Harman and Kim, 2014) coupled with its bonus experiment were performed in the past two years. These experimental applications successfully described the transit-time distribution (TTD) of a tracer-enriched water breakthrough curve in this unique hydrological system (Harman, 2015). With intensive irrigation and high volume of water storage throughout the experiments, rapid biological changes have been observed on the soil surface, such as algal and grass growth. These observations imply that geochemical hotspots may be established within the soil lysimeter. To understand the detailed 2D spatial distribution of biogeochemical changes, 100 selected and undisturbed soil blocks, among a total 1000 sub-gridded equal sized, are tested with several geochemical tools. Each selected soil block was subjected to elemental analysis by pXRF to determine if elemental migration is detectable in the dynamic proto-soil development. Synchrotron XRD quantification with Reitveld refinement will follow to clarify mineralogical transformations in the soil blocks. The combined techniques aim to confirm the development of geochemical hotspots; and link these findings with previous hydrological findings from the PERTH experiment as well as other hydrological modeling, such as conducted with Hydrus and CATHY. This work provides insight to the detailed correlations between hydrological and biogeochemical processes during incipient soil formation, as well as aiding the development of advanced tools and methods to study complex Earth-system dynamics.
A Data-Driven Approach to Interactive Visualization of Power Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Jun
Driven by emerging industry standards, electric utilities and grid coordination organizations are eager to seek advanced tools to assist grid operators to perform mission-critical tasks and enable them to make quick and accurate decisions. The emerging field of visual analytics holds tremendous promise for improving the business practices in today’s electric power industry. The conducted investigation, however, has revealed that the existing commercial power grid visualization tools heavily rely on human designers, hindering user’s ability to discover. Additionally, for a large grid, it is very labor-intensive and costly to build and maintain the pre-designed visual displays. This project proposes amore » data-driven approach to overcome the common challenges. The proposed approach relies on developing powerful data manipulation algorithms to create visualizations based on the characteristics of empirically or mathematically derived data. The resulting visual presentations emphasize what the data is rather than how the data should be presented, thus fostering comprehension and discovery. Furthermore, the data-driven approach formulates visualizations on-the-fly. It does not require a visualization design stage, completely eliminating or significantly reducing the cost for building and maintaining visual displays. The research and development (R&D) conducted in this project is mainly divided into two phases. The first phase (Phase I & II) focuses on developing data driven techniques for visualization of power grid and its operation. Various data-driven visualization techniques were investigated, including pattern recognition for auto-generation of one-line diagrams, fuzzy model based rich data visualization for situational awareness, etc. The R&D conducted during the second phase (Phase IIB) focuses on enhancing the prototyped data driven visualization tool based on the gathered requirements and use cases. The goal is to evolve the prototyped tool developed during the first phase into a commercial grade product. We will use one of the identified application areas as an example to demonstrate how research results achieved in this project are successfully utilized to address an emerging industry need. In summary, the data-driven visualization approach developed in this project has proven to be promising for building the next-generation power grid visualization tools. Application of this approach has resulted in a state-of-the-art commercial tool currently being leveraged by more than 60 utility organizations in North America and Europe .« less
Ion Conduction in Microphase-Separated Block Copolymer Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kambe, Yu; Arges, Christopher G.; Patel, Shrayesh
2017-01-01
Microphase separation of block copolymers provides a promising route towards engineering a mechanically robust ion conducting film for electrochemical devices. The separation into two different nano-domains enables the film to simultaneously exhibit both high ion conductivity and mechanical robustness, material properties inversely related in most homopolymer and random copolymer electrolytes. To exhibit the maximum conductivity and mechanical robustness, both domains would span across macroscopic length scales enabling uninterrupted ion conduction. One way to achieve this architecture is through external alignment fields that are applied during the microphase separation process. In this review, we present the progress and challenges for aligningmore » the ionic domains in block copolymer electrolytes. A survey of alignment and characterization is followed by a discussion of how the nanoscale architecture affects the bulk conductivity and how alignment may be improved to maximize the number of participating conduction domains.« less
NASA Astrophysics Data System (ADS)
Roh, Y. H.; Yoon, Y.; Kim, K.; Kim, J.; Kim, J.; Morishita, J.
2016-10-01
Scattered radiation is the main reason for the degradation of image quality and the increased patient exposure dose in diagnostic radiology. In an effort to reduce scattered radiation, a novel structure of an indirect flat panel detector has been proposed. In this study, a performance evaluation of the novel system in terms of image contrast as well as an estimation of the number of photons incident on the detector and the grid exposure factor were conducted using Monte Carlo simulations. The image contrast of the proposed system was superior to that of the no-grid system but slightly inferior to that of the parallel-grid system. The number of photons incident on the detector and the grid exposure factor of the novel system were higher than those of the parallel-grid system but lower than those of the no-grid system. The proposed system exhibited the potential for reduced exposure dose without image quality degradation; additionally, can be further improved by a structural optimization considering the manufacturer's specifications of its lead contents.
A design approach for improving the performance of single-grid planar retarding potential analyzers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, R. L.; Earle, G. D.
2011-01-15
Planar retarding potential analyzers (RPAs) have a long flight history and have been included on numerous spaceflight missions including Dynamics Explorer, the Defense Meteorological Satellite Program, and the Communications/Navigation Outage Forecast System. RPAs allow for simultaneous measurement of plasma composition, density, temperature, and the component of the velocity vector normal to the aperture plane. Internal conductive grids are used to approximate ideal potential planes within the instrument, but these grids introduce perturbations to the potential map inside the RPA and cause errors in the measurement of the parameters listed above. A numerical technique is presented herein for minimizing these gridmore » errors for a specific mission by varying the depth and spacing of the grid wires. The example mission selected concentrates on plasma dynamics near the sunset terminator in the equatorial region. The international reference ionosphere model is used to discern the average conditions expected for this mission, and a numerical model of the grid-particle interaction is used to choose a grid design that will best fulfill the mission goals.« less
Cyber-Physical System Security of a Power Grid: State-of-the-Art
Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing
2016-07-14
Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less
Borkenhagen, Ada; Klapp, Burghard F.; Schoeneich, Frank; Brähler, Elmar
2005-01-01
Objectives: The purpose of the investigation was to explore the body image disturbance of anorexics and in-vitro-fertilization patients (IvF-patients) with Body Grid and Body Identity Plot. Methods: The paper reports on an empirical study conducted with 32 anorexic patients and 30 IvF-patients. The structure of the body image was derived from the Body Grid, an idiographic approach following the Role Repertory Grid developed by George A. Kelly [17]. The representation of the body image and the degree of body-acceptance is represented graphically. Results: By the Body Grid and Body Identity Plot measures we were able to identify important differences in body image between anorexics and IvF-patients. Conclusion: The tendencies of dissociation in the body image of anorexics which we found must be seen in the sense of a specific body image disturbance which differs significantly from the body-experience profile of IvF-patients. With the grid approach it was possible to elicit the inner structure of body image and determine the acceptance of the body and integration of single body parts. PMID:19742059
A grid generation and flow solution method for the Euler equations on unstructured grids
NASA Astrophysics Data System (ADS)
Anderson, W. Kyle
1994-01-01
A grid generation and flow solution algorithm for the Euler equations on unstructured grids is presented. The grid generation scheme utilizes Delaunay triangulation and self-generates the field points for the mesh based on cell aspect ratios and allows for clustering near solid surfaces. The flow solution method is an implicit algorithm in which the linear set of equations arising at each time step is solved using a Gauss Seidel procedure which is completely vectorizable. In addition, a study is conducted to examine the number of subiterations required for good convergence of the overall algorithm. Grid generation results are shown in two dimensions for a National Advisory Committee for Aeronautics (NACA) 0012 airfoil as well as a two-element configuration. Flow solution results are shown for two-dimensional flow over the NACA 0012 airfoil and for a two-element configuration in which the solution has been obtained through an adaptation procedure and compared to an exact solution. Preliminary three-dimensional results are also shown in which subsonic flow over a business jet is computed.
Optimizing Data Management in Grid Environments
NASA Astrophysics Data System (ADS)
Zissimos, Antonis; Doka, Katerina; Chazapis, Antony; Tsoumakos, Dimitrios; Koziris, Nectarios
Grids currently serve as platforms for numerous scientific as well as business applications that generate and access vast amounts of data. In this paper, we address the need for efficient, scalable and robust data management in Grid environments. We propose a fully decentralized and adaptive mechanism comprising of two components: A Distributed Replica Location Service (DRLS) and a data transfer mechanism called GridTorrent. They both adopt Peer-to-Peer techniques in order to overcome performance bottlenecks and single points of failure. On one hand, DRLS ensures resilience by relying on a Byzantine-tolerant protocol and is able to handle massive concurrent requests even during node churn. On the other hand, GridTorrent allows for maximum bandwidth utilization through collaborative sharing among the various data providers and consumers. The proposed integrated architecture is completely backwards-compatible with already deployed Grids. To demonstrate these points, experiments have been conducted in LAN as well as WAN environments under various workloads. The evaluation shows that our scheme vastly outperforms the conventional mechanisms in both efficiency (up to 10 times faster) and robustness in case of failures and flash crowd instances.
Cyber-Physical System Security of a Power Grid: State-of-the-Art
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing
Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less
NASA Astrophysics Data System (ADS)
Zhou, W.; Qiu, G. Y.; Oodo, S. O.; He, H.
2013-03-01
An increasing interest in wind energy and the advance of related technologies have increased the connection of wind power generation into electrical grids. This paper proposes an optimization model for determining the maximum capacity of wind farms in a power system. In this model, generator power output limits, voltage limits and thermal limits of branches in the grid system were considered in order to limit the steady-state security influence of wind generators on the power system. The optimization model was solved by a nonlinear primal-dual interior-point method. An IEEE-30 bus system with two wind farms was tested through simulation studies, plus an analysis conducted to verify the effectiveness of the proposed model. The results indicated that the model is efficient and reasonable.
Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid
NASA Astrophysics Data System (ADS)
Kuwayama, Akira
The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.
Solar potential scaling and the urban road network topology
NASA Astrophysics Data System (ADS)
Najem, Sara
2017-01-01
We explore the scaling of cities' solar potentials with their number of buildings and reveal a latent dependence between the solar potential and the length of the corresponding city's road network. This scaling is shown to be valid at the grid and block levels and is attributed to a common street length distribution. Additionally, we compute the buildings' solar potential correlation function and length in order to determine the set of critical exponents typifying the urban solar potential universality class.
Nonequilibrium thermo-chemical calculations using a diagonal implicit scheme
NASA Technical Reports Server (NTRS)
Imlay, Scott T.; Roberts, Donald W.; Soetrisno, Moeljo; Eberhardt, Scott
1991-01-01
A recently developed computer program for hypersonic vehicle flow analysis is described. The program uses a diagonal implicit algorithm to solve the equations of viscous flow for a gas in thermochemical nonequilibrium. The diagonal scheme eliminates the expense of inverting large block matrices that arise when species conservation equations are introduced. The program uses multiple zones of grids patched together and includes radiation wall and rarefied gas boundary conditions. Solutions are presented for hypersonic flows of air and hydrogen air mixtures.
Tackling optimization challenges in industrial load control and full-duplex radios
NASA Astrophysics Data System (ADS)
Gholian, Armen
In price-based demand response programs in smart grid, utilities set the price in accordance with the grid operating conditions and consumers respond to price signals by conducting optimal load control to minimize their energy expenditure while satisfying their energy needs. Industrial sector consumes a large portion of world electricity and addressing optimal load control of energy-intensive industrial complexes, such as steel industry and oil-refinery, is of practical importance. Formulating a general industrial complex and addressing issues in optimal industrial load control in smart grid is the focus of the second part of this dissertation. Several industrial load details are considered in the proposed formulation, including those that do not appear in residential or commercial load control problems. Operation under different smart pricing scenarios, namely, day-ahead pricing, time-of-use pricing, peak pricing, inclining block rates, and critical peak pricing are considered. The use of behind-the-meter renewable generation and energy storage is also considered. The formulated optimization problem is originally nonlinear and nonconvex and thus hard to solve. However, it is then reformulated into a tractable linear mixed-integer program. The performance of the design is assessed through various simulations for an oil refinery and a steel mini-mill. In the third part of this dissertation, a novel all-analog RF interference canceler is proposed. Radio self-interference cancellation (SIC) is the fundamental enabler for full-duplex radios. While SIC methods based on baseband digital signal processing and/or beamforming are inadequate, an all-analog method is useful to drastically reduce the self-interference as the first stage of SIC. It is shown that a uniform architecture with uniformly distributed RF attenuators has a performance highly dependent on the carrier frequency. It is also shown that a new architecture with the attenuators distributed in a clustered fashion has important advantages over the uniform architecture. These advantages are shown numerically through random multipath interference channels, number of control bits in step attenuators, attenuation-dependent phases, single and multi-level structures, etc.
Modelling Near-Surface Metallic Clutter Without the Excruciating Pain
NASA Astrophysics Data System (ADS)
Downs, C. M.; Weiss, C. J.; Bach, J.; Williams, J. T.
2016-12-01
An ongoing problem in modeling electromagnetic (EM) interactions with the near-surface and related anthropogenic metal clutter is the large difference in length scale between the clutter dimensions and their resulting EM response. For example, observational evidence shows that cables, pipes and rail lines can have a strong influence far from where they are located, even in situations where these artefacts are volumetrically insignificant over the scale of the model. This poses a significant modeling problem for understanding geohazards in urban environments, for example, because of the very fine numerical discretization required for accurate representation of an artefact embedded in a larger computational domain. We adopt a sub-grid approximation and impose a boundary condition along grid edges to capture the vanishing fields of a perfect conductor. We work in a Cartesian system where the EM fields are solved via finite volumes in the frequency domain in terms of the Lorenz gauged magnetic vector (A) and electric scalar (Phi) potentials. The electric fied is given simply by A-grad(Phi), and set identically to zero along edges of the mesh that coincide with the center of long, slender metallic conductors. A simple extension to bulky artefacts like blocks or slabs involves endowing all such edges in their interior with the same "internal" boundary condition. In essence, we apply the "perfect electric conductor" boundary condition to select edges interior to the modeling domain. We note a few minor numerical consequences of this approach, namely: the zero-E field internal boundary condition destroys the symmetry of the finite volume coefficient matrix; and, the accuracy of the representation of the conducting artefact is restricted by the relatively coarse discretization mesh. The former is overcome with the use of preconditioned bi-conjugate gradient methods instead of the quasi-minimal-residual method. Both are matrix-free iterative solvers - thus avoiding unnecessary storage- and both exhibit generally good convergence for well-posed problems. The latter is more difficult to overcome without either modifying the mesh (potentially degrading the condition number of the coefficient matrix) or with novel mesh sub-gridding. Initial results show qualitative agreement with the expected physics.
Zhao, Chen; Zhang, Shunqi; Liu, Zhipeng; Yin, Tao
2015-07-01
A new method to improve the focalization and efficiency of the Figure of Eight (FOE) coil in rTMS is discussed in this paper. In order to decrease the half width of the distribution curve (HWDC), as well to increase the ratio of positive peak value to negative peak value (RPN) of the induced electric field, a shield plate with a window and a ferromagnetic block are assumed to enhance the positive peak value of the induced electrical field. The shield is made of highly conductive copper, and the block is made of highly permeable soft magnetic ferrite. A computer simulation is conducted on ANSYS® software to conduct the finite element analysis (FEA). Two comparing coefficients were set up to optimize the sizes of the shield window and the block. Simulation results show that a shield with a 60 mm × 30 mm sized window, together with a block 40 mm thick, can decrease the focal area of a FOE coil by 46.7%, while increasing the RPN by 135.9%. The block enhances the peak value of the electrical field induced by a shield-FOE by 8.4%. A real human head model was occupied in this paper to further verify our method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Møyner, Olav, E-mail: olav.moyner@sintef.no; Lie, Knut-Andreas, E-mail: knut-andreas.lie@sintef.no
2016-01-01
A wide variety of multiscale methods have been proposed in the literature to reduce runtime and provide better scaling for the solution of Poisson-type equations modeling flow in porous media. We present a new multiscale restricted-smoothed basis (MsRSB) method that is designed to be applicable to both rectilinear grids and unstructured grids. Like many other multiscale methods, MsRSB relies on a coarse partition of the underlying fine grid and a set of local prolongation operators (multiscale basis functions) that map unknowns associated with the fine grid cells to unknowns associated with blocks in the coarse partition. These mappings are constructedmore » by restricted smoothing: Starting from a constant, a localized iterative scheme is applied directly to the fine-scale discretization to compute prolongation operators that are consistent with the local properties of the differential operators. The resulting method has three main advantages: First of all, both the coarse and the fine grid can have general polyhedral geometry and unstructured topology. This means that partitions and good prolongation operators can easily be constructed for complex models involving high media contrasts and unstructured cell connections introduced by faults, pinch-outs, erosion, local grid refinement, etc. In particular, the coarse partition can be adapted to geological or flow-field properties represented on cells or faces to improve accuracy. Secondly, the method is accurate and robust when compared to existing multiscale methods and does not need expensive recomputation of local basis functions to account for transient behavior: Dynamic mobility changes are incorporated by continuing to iterate a few extra steps on existing basis functions. This way, the cost of updating the prolongation operators becomes proportional to the amount of change in fluid mobility and one reduces the need for expensive, tolerance-based updates. Finally, since the MsRSB method is formulated on top of a cell-centered, conservative, finite-volume method, it is applicable to any flow model in which one can isolate a pressure equation. Herein, we only discuss single and two-phase incompressible models. Compressible flow, e.g., as modeled by the black-oil equations, is discussed in a separate paper.« less
A high-order spatial filter for a cubed-sphere spectral element model
NASA Astrophysics Data System (ADS)
Kang, Hyun-Gyu; Cheong, Hyeong-Bin
2017-04-01
A high-order spatial filter is developed for the spectral-element-method dynamical core on the cubed-sphere grid which employs the Gauss-Lobatto Lagrange interpolating polynomials (GLLIP) as orthogonal basis functions. The filter equation is the high-order Helmholtz equation which corresponds to the implicit time-differencing of a diffusion equation employing the high-order Laplacian. The Laplacian operator is discretized within a cell which is a building block of the cubed sphere grid and consists of the Gauss-Lobatto grid. When discretizing a high-order Laplacian, due to the requirement of C0 continuity along the cell boundaries the grid-points in neighboring cells should be used for the target cell: The number of neighboring cells is nearly quadratically proportional to the filter order. Discrete Helmholtz equation yields a huge-sized and highly sparse matrix equation whose size is N*N with N the number of total grid points on the globe. The number of nonzero entries is also almost in quadratic proportion to the filter order. Filtering is accomplished by solving the huge-matrix equation. While requiring a significant computing time, the solution of global matrix provides the filtered field free of discontinuity along the cell boundaries. To achieve the computational efficiency and the accuracy at the same time, the solution of the matrix equation was obtained by only accounting for the finite number of adjacent cells. This is called as a local-domain filter. It was shown that to remove the numerical noise near the grid-scale, inclusion of 5*5 cells for the local-domain filter was found sufficient, giving the same accuracy as that obtained by global domain solution while reducing the computing time to a considerably lower level. The high-order filter was evaluated using the standard test cases including the baroclinic instability of the zonal flow. Results indicated that the filter performs better on the removal of grid-scale numerical noises than the explicit high-order viscosity. It was also presented that the filter can be easily implemented on the distributed-memory parallel computers with a desirable scalability.
Effects of strychnine on the potassium conductance of the frog node of Ranvier
1977-01-01
The nature of the block of potassium conductance by strychnine in frog node of Ranvier was investigated. The block is voltage-dependent and reaches a steady level with a relaxation time of 1 to several ms. Block is increased by depolarization or a reduction in [K+]O as well as by increasing strychnine concentration. A quaternary derivative of strychnine produces a similar block only when applied intracellularly. In general and in detail, strychnine block resembles that produced by intracellular application of the substituted tetraethylammonium compounds extensively studied by C.M. Armstrong (1969. J. Gen Physiol. 54:553-575. 1971. J. Gen. Physiol. 58:413-437). The kinetics, voltage dependence, and dependence on [K+]O of strychnine block are of the same form. It is concluded that tertiary strychnine must cross the axon membrane and block from the axoplasmic side in the same fashion as these quaternary amines. PMID:302320
Cathode-less gridded ion thrusters for small satellites
NASA Astrophysics Data System (ADS)
Aanesland, Ane
2016-10-01
Electric space propulsion is now a mature technology for commercial satellites and space missions that requires thrust in the order of hundreds of mN, and with available electric power in the order of kW. Developing electric propulsion for SmallSats (1 to 500 kg satellites) are challenging due to the small space and limited available electric power (in the worst case close to 10 W). One of the challenges in downscaling ion and Hall thrusters is the need to neutralize the positive ion beam to prevent beam stalling. This neutralization is achieved by feeding electrons into the downstream space. In most cases hollow cathodes are used for this purpose, but they are fragile and difficult to implement, and in particular for small systems they are difficult to downscale, both in size and electron current. We describe here a new alternative ion thruster that can provide thrust and specific impulse suitable for mission control of satellites as small as 3 kg. The originality of our thruster lies in the acceleration principles and propellant handling. Continuous ion acceleration is achieved by biasing a set of grids with Radio Frequency voltages (RF) via a blocking capacitor. Due to the different mobility of ions and electrons, the blocking capacitor charges up and rectifies the RF voltage. Thus, the ions are accelerated by the self-bias DC voltage. Moreover, due to the RF oscillations, the electrons escape the thruster across the grids during brief instants in the RF period ensuring a full space charge neutralization of the positive ion beam. Due to the RF nature of this system, the space charge limited current increases by almost a factor of 2 compared to classical DC biased grids, which translates into a specific thrust two times higher than for a similar DC system. This new thruster is called Neptune and operates with only one RF power supply for plasma generation, ion acceleration and electron neutralization. We will present the downscaling of this thruster to a 3cm diameter unit well adapted for a CubeSat or SmallSat mission. This work was supported by Agence Nationale de la Recherche under contract ANR-11-IDEX-0004-02 (Plas@Par) and by SATT Paris-Saclay.
INSTRUMENTATION AND CONTROLS DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING JULY 1, 1957
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1958-10-31
The circuitry and performance characteristics are given for a pulse crossover pickoff gate for use with a medium-speed coincidence circuit. An experimental digital count-rate meter was built which has the analog output characteristics of a rate meter and the counting mechanism of a scaler. A study was made of the grid currents in comnmercially available receiving and amplifying tubes. The study was limited to grid currents exceeding 10 amp, plats voltages between 20 and 300 v, and cathode currents between 50 mu a and 100 ma Tests were conducted to determine the intrinsic staility of neon-filled voltage reference tubes. Internalmore » impedance and drift rate are given for a number of tube types. A neutron-chopper speed-control systemn for use with the time-of-flight spectrometer is being developed. A block diagram of the system is given. The main features of a 256-channel neutron time-of-flight spectrometer Instrumentation for the ORNL Graphite Reactor pile oscillator was redesigned for greater spend and accuracy. A block diagram is given along with preliminary the performance characteristics are given for an 18channel time-base analyzer developed to study the timedependent behavior of neutrons in a moderator. Progress in the developmnent of a position indicator for the single-crystal spectrometer being installed in the Bulk Shielding Facility is reviewed. Modifications made in an existing electron-spin resonance spectromneter to convert it to a superheterodyne electron-spin resonance tem superior in versatility, reliability, and speed, was installed at the ORAC LE. Developmental work on a small, high-efficiency scintillation Geiger counter is described. Three variations of the standard method for preparing zinc sulfide phosphors are discussed. The design and operation of a scanning device developed for scanning activated materials fromn flux distribution experiments is described. Additional work is reported on the development of instrumentation for radiochemical laboratories, powder mnetallurgy laboratories, the Thorex Process, a volatility separation process, uranyl sulfate fuel processing, and homnogeneous reactor control. Specific pieces of equipment developed and described include a resin- bed displacement meter, a viscometer, liquid-level indicators, pressure transmitters, a flow transmitter, a gamma ionization chamber, an oxygen injection system, valves and valve actuators, a magetic flowmeter, and thermocouples. or preceding period see ORNL-2234.) (U.E.B.)« less
Social stimuli enhance phencyclidine (PCP) self-administration in rhesus monkeys
Newman, Jennifer L.; Perry, Jennifer L.; Carroll, Marilyn E.
2007-01-01
Environmental factors, including social interaction, can alter the effects of drugs of abuse on behavior. The present study was conducted to examine the effects of social stimuli on oral phencyclidine (PCP) self-administration by rhesus monkeys. Ten adult rhesus monkeys (M. mulatta) were housed side by side in modular cages that could be configured to provide visual, auditory, and olfactory stimuli provided by another monkey located in the other side of the paired unit. During the first experiment, monkeys self-administered PCP (0.25 mg/ml) and water under concurrent fixed ratio (FR) 16 schedules of reinforcement with either a solid or a grid (social) partition separating each pair of monkeys. In the second experiment, a PCP concentration-response relationship was determined under concurrent progressive ratio (PR) schedules of reinforcement under the solid and grid partition conditions. Under the concurrent FR 16 schedules, PCP and water self-administration was significantly higher during exposure to a cage mate through a grid partition than when a solid partition separated the monkeys. The relative reinforcing strength of PCP, as measured by PR break points, was greater during the grid partition condition compared to the solid partition condition indicated by an upward shift in the concentration-response curve. To determine whether the social stimuli provided by another monkey led to activation of the hypothalamic-pituitary-adrenal (HPA) axis, which may have evoked the increase of PCP self-administration during the grid partition condition, a third experiment was conducted to examine cortisol levels under the two housing conditions. A modest, but nonsignificant increase in cortisol levels was found upon switching from the solid to the grid partition condition. The results suggest that social stimulation among monkeys in adjoining cages leads to enhanced reinforcing strength of PCP. PMID:17560636