Compact cell-centered discretization stencils at fine-coarse block structured grid interfaces
NASA Astrophysics Data System (ADS)
Pletzer, Alexander; Jamroz, Ben; Crockett, Robert; Sides, Scott
2014-03-01
Different strategies for coupling fine-coarse grid patches are explored in the context of the adaptive mesh refinement (AMR) method. We show that applying linear interpolation to fill in the fine grid ghost values can produce a finite volume stencil of comparable accuracy to quadratic interpolation provided the cell volumes are adjusted. The volume of fine cells expands whereas the volume of neighboring coarse cells contracts. The amount by which the cells contract/expand depends on whether the interface is a face, an edge, or a corner. It is shown that quadratic or better interpolation is required when the conductivity is spatially varying, anisotropic, the refinement ratio is other than two, or when the fine-coarse interface is concave.
GSRP/David Marshall: Fully Automated Cartesian Grid CFD Application for MDO in High Speed Flows
NASA Technical Reports Server (NTRS)
2003-01-01
With the renewed interest in Cartesian gridding methodologies for the ease and speed of gridding complex geometries in addition to the simplicity of the control volumes used in the computations, it has become important to investigate ways of extending the existing Cartesian grid solver functionalities. This includes developing methods of modeling the viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and addressing the issues related to the distributed memory parallelization of Cartesian solvers. This research presents advances in two areas of interest in Cartesian grid solvers, viscous effects modeling and MPI parallelization. The development of viscous effects modeling using solely Cartesian grids has been hampered by the widely varying control volume sizes associated with the mesh refinement and the cut cells associated with the solid surface. This problem is being addressed by using physically based modeling techniques to update the state vectors of the cut cells and removing them from the finite volume integration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT, with modifications to its cut cell functionality. The development of MPI parallelization addresses issues associated with utilizing Cartesian solvers on distributed memory parallel environments. This work is performed on an existing Cartesian grid solver, CART3D, with modifications to its parallelization methodology.
Chien, Jason L; Ghassibi, Mark P; Patthanathamrongkasem, Thipnapa; Abumasmah, Ramiz; Rosman, Michael S; Skaat, Alon; Tello, Celso; Liebmann, Jeffrey M; Ritch, Robert; Park, Sung Chul
2017-03-01
To compare glaucoma diagnostic capability of global/regional macular layer parameters in different-sized grids. Serial horizontal spectral-domain optical coherence tomography scans of macula were obtained. Automated macular grids with diameters of 3, 3.45, and 6 mm were used. For each grid, 10 parameters (total volume; average thicknesses in 9 regions) were obtained for 5 layers: macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), ganglion cell-inner plexiform layer (GCIPL; GCL+IPL), and ganglion cell complex (GCC; mRNFL+GCL+IPL). Sixty-nine normal eyes (69 subjects) and 87 glaucomatous eyes (87 patients) were included. For the total volume parameter, the area under the receiver operating characteristic curves (AUCs) in 6-mm grid were larger than the AUCs in 3- and 3.45-mm grids for GCL, GCC, GCIPL, and mRNFL (all P<0.020). For the average thickness parameters, the best AUC in 6-mm grid (T2 region for GCL, IPL, and GCIPL; I2 region for mRNFL and GCC) was greater than the best AUC in 3-mm grid for GCL, GCC, and mRNFL (P<0.045). The AUC of GCL volume (0.920) was similar to those of GCC (0.920) and GCIPL (0.909) volume. The AUC of GCL T2 region thickness (0.942) was similar to those of GCC I2 region (0.942) and GCIPL T2 region (0.934) thickness. Isolated macular GCL appears to be as good as GCC and GCIPL in glaucoma diagnosis, while IPL does not. Larger macular grids may be better at detecting glaucoma. Each layer has a characteristic region with the best glaucoma diagnostic capability.
Domain decomposition by the advancing-partition method for parallel unstructured grid generation
NASA Technical Reports Server (NTRS)
Banihashemi, legal representative, Soheila (Inventor); Pirzadeh, Shahyar Z. (Inventor)
2012-01-01
In a method for domain decomposition for generating unstructured grids, a surface mesh is generated for a spatial domain. A location of a partition plane dividing the domain into two sections is determined. Triangular faces on the surface mesh that intersect the partition plane are identified. A partition grid of tetrahedral cells, dividing the domain into two sub-domains, is generated using a marching process in which a front comprises only faces of new cells which intersect the partition plane. The partition grid is generated until no active faces remain on the front. Triangular faces on each side of the partition plane are collected into two separate subsets. Each subset of triangular faces is renumbered locally and a local/global mapping is created for each sub-domain. A volume grid is generated for each sub-domain. The partition grid and volume grids are then merged using the local-global mapping.
NASA Astrophysics Data System (ADS)
Ivan, L.; De Sterck, H.; Susanto, A.; Groth, C. P. T.
2015-02-01
A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with high-order accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency gains that can be potentially achieved using fourth-order schemes as compared to second-order methods for the same error level. Applications on extended cubed-sphere grids incorporating a seventh root block that discretizes the interior of the inner sphere demonstrate the versatility of the spatial discretization method.
A robust, efficient equidistribution 2D grid generation method
NASA Astrophysics Data System (ADS)
Chacon, Luis; Delzanno, Gian Luca; Finn, John; Chung, Jeojin; Lapenta, Giovanni
2007-11-01
We present a new cell-area equidistribution method for two- dimensional grid adaptation [1]. The method is able to satisfy the equidistribution constraint to arbitrary precision while optimizing desired grid properties (such as isotropy and smoothness). The method is based on the minimization of the grid smoothness integral, constrained to producing a given positive-definite cell volume distribution. The procedure gives rise to a single, non-linear scalar equation with no free-parameters. We solve this equation numerically with the Newton-Krylov technique. The ellipticity property of the linearized scalar equation allows multigrid preconditioning techniques to be effectively used. We demonstrate a solution exists and is unique. Therefore, once the solution is found, the adapted grid cannot be folded due to the positivity of the constraint on the cell volumes. We present several challenging tests to show that our new method produces optimal grids in which the constraint is satisfied numerically to arbitrary precision. We also compare the new method to the deformation method [2] and show that our new method produces better quality grids. [1] G.L. Delzanno, L. Chac'on, J.M. Finn, Y. Chung, G. Lapenta, A new, robust equidistribution method for two-dimensional grid generation, in preparation. [2] G. Liao and D. Anderson, A new approach to grid generation, Appl. Anal. 44, 285--297 (1992).
Fast and accurate Voronoi density gridding from Lagrangian hydrodynamics data
NASA Astrophysics Data System (ADS)
Petkova, Maya A.; Laibe, Guillaume; Bonnell, Ian A.
2018-01-01
Voronoi grids have been successfully used to represent density structures of gas in astronomical hydrodynamics simulations. While some codes are explicitly built around using a Voronoi grid, others, such as Smoothed Particle Hydrodynamics (SPH), use particle-based representations and can benefit from constructing a Voronoi grid for post-processing their output. So far, calculating the density of each Voronoi cell from SPH data has been done numerically, which is both slow and potentially inaccurate. This paper proposes an alternative analytic method, which is fast and accurate. We derive an expression for the integral of a cubic spline kernel over the volume of a Voronoi cell and link it to the density of the cell. Mass conservation is ensured rigorously by the procedure. The method can be applied more broadly to integrate a spherically symmetric polynomial function over the volume of a random polyhedron.
Three-Dimensional High-Order Spectral Finite Volume Method for Unstructured Grids
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel; Wang, Z. J.; Kwak, Dochan (Technical Monitor)
2002-01-01
Many areas require a very high-order accurate numerical solution of conservation laws for complex shapes. This paper deals with the extension to three dimensions of the Spectral Finite Volume (SV) method for unstructured grids, which was developed to solve such problems. We first summarize the limitations of traditional methods such as finite-difference, and finite-volume for both structured and unstructured grids. We then describe the basic formulation of the spectral finite volume method. What distinguishes the SV method from conventional high-order finite-volume methods for unstructured triangular or tetrahedral grids is the data reconstruction. Instead of using a large stencil of neighboring cells to perform a high-order reconstruction, the stencil is constructed by partitioning each grid cell, called a spectral volume (SV), into 'structured' sub-cells, called control volumes (CVs). One can show that if all the SV cells are partitioned into polygonal or polyhedral CV sub-cells in a geometrically similar manner, the reconstructions for all the SVs become universal, irrespective of their shapes, sizes, orientations, or locations. It follows that the reconstruction is reduced to a weighted sum of unknowns involving just a few simple adds and multiplies, and those weights are universal and can be pre-determined once for all. The method is thus very efficient, accurate, and yet geometrically flexible. The most critical part of the SV method is the partitioning of the SV into CVs. In this paper we present the partitioning of a tetrahedral SV into polyhedral CVs with one free parameter for polynomial reconstructions up to degree of precision five. (Note that the order of accuracy of the method is one order higher than the reconstruction degree of precision.) The free parameter will be determined by minimizing the Lebesgue constant of the reconstruction matrix or similar criteria to obtain optimized partitions. The details of an efficient, parallelizable code to solve three-dimensional problems for any order of accuracy are then presented. Important aspects of the data structure are discussed. Comparisons with the Discontinuous Galerkin (DG) method are made. Numerical examples for wave propagation problems are presented.
Test functions for three-dimensional control-volume mixed finite-element methods on irregular grids
Naff, R.L.; Russell, T.F.; Wilson, J.D.; ,; ,; ,; ,; ,
2000-01-01
Numerical methods based on unstructured grids, with irregular cells, usually require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error associated with the numerical approximation scheme. For a logically cubic mesh, the lowest-order shape functions are chosen in a natural way to conserve intercell fluxes that vary linearly in logical space. Vector test functions, while somewhat restricted by the mapping into the logical reference cube, admit a wider class of possibilities. Ideally, an error minimization procedure to select the test function from an acceptable class of candidates would be the best procedure. Lacking such a procedure, we first investigate the effect of possible test functions on the pressure distribution over the control volume; specifically, we look for test functions that allow for the elimination of intermediate pressures on cell faces. From these results, we select three forms for the test function for use in a control-volume mixed method code and subject them to an error analysis for different forms of grid irregularity; errors are reported in terms of the discrete L2 norm of the velocity error. Of these three forms, one appears to produce optimal results for most forms of grid irregularity.
Hierarchical and Parallelizable Direct Volume Rendering for Irregular and Multiple Grids
NASA Technical Reports Server (NTRS)
Wilhelms, Jane; VanGelder, Allen; Tarantino, Paul; Gibbs, Jonathan
1996-01-01
A general volume rendering technique is described that efficiently produces images of excellent quality from data defined over irregular grids having a wide variety of formats. Rendering is done in software, eliminating the need for special graphics hardware, as well as any artifacts associated with graphics hardware. Images of volumes with about one million cells can be produced in one to several minutes on a workstation with a 150 MHz processor. A significant advantage of this method for applications such as computational fluid dynamics is that it can process multiple intersecting grids. Such grids present problems for most current volume rendering techniques. Also, the wide range of cell sizes (by a factor of 10,000 or more), which is typical of such applications, does not present difficulties, as it does for many techniques. A spatial hierarchical organization makes it possible to access data from a restricted region efficiently. The tree has greater depth in regions of greater detail, determined by the number of cells in the region. It also makes it possible to render useful 'preview' images very quickly (about one second for one-million-cell grids) by displaying each region associated with a tree node as one cell. Previews show enough detail to navigate effectively in very large data sets. The algorithmic techniques include use of a kappa-d tree, with prefix-order partitioning of triangles, to reduce the number of primitives that must be processed for one rendering, coarse-grain parallelism for a shared-memory MIMD architecture, a new perspective transformation that achieves greater numerical accuracy, and a scanline algorithm with depth sorting and a new clipping technique.
Impact of dose size in single fraction spatially fractionated (grid) radiotherapy for melanoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hualin, E-mail: hualin.zhang@northwestern.edu, E-mail: hualinzhang@yahoo.com; Zhong, Hualiang; Barth, Rolf F.
2014-02-15
Purpose: To evaluate the impact of dose size in single fraction, spatially fractionated (grid) radiotherapy for selectively killing infiltrated melanoma cancer cells of different tumor sizes, using different radiobiological models. Methods: A Monte Carlo technique was employed to calculate the 3D dose distribution of a commercially available megavoltage grid collimator in a 6 MV beam. The linear-quadratic (LQ) and modified linear quadratic (MLQ) models were used separately to evaluate the therapeutic outcome of a series of single fraction regimens that employed grid therapy to treat both acute and late responding melanomas of varying sizes. The dose prescription point was atmore » the center of the tumor volume. Dose sizes ranging from 1 to 30 Gy at 100% dose line were modeled. Tumors were either touching the skin surface or having their centers at a depth of 3 cm. The equivalent uniform dose (EUD) to the melanoma cells and the therapeutic ratio (TR) were defined by comparing grid therapy with the traditional open debulking field. The clinical outcomes from recent reports were used to verify the authors’ model. Results: Dose profiles at different depths and 3D dose distributions in a series of 3D melanomas treated with grid therapy were obtained. The EUDs and TRs for all sizes of 3D tumors involved at different doses were derived through the LQ and MLQ models, and a practical equation was derived. The EUD was only one fifth of the prescribed dose. The TR was dependent on the prescribed dose and on the LQ parameters of both the interspersed cancer and normal tissue cells. The results from the LQ model were consistent with those of the MLQ model. At 20 Gy, the EUD and TR by the LQ model were 2.8% higher and 1% lower than by the MLQ, while at 10 Gy, the EUD and TR as defined by the LQ model were only 1.4% higher and 0.8% lower, respectively. The dose volume histograms of grid therapy for a 10 cm tumor showed different dosimetric characteristics from those of conventional radiotherapy. A significant portion of the tumor volume received a very large dose in grid therapy, which ensures significant tumor cell killing in these regions. Conversely, some areas received a relatively small dose, thereby sparing interspersed normal cells and increasing radiation tolerance. The radiobiology modeling results indicated that grid therapy could be useful for treating acutely responding melanomas infiltrating radiosensitive normal tissues. The theoretical model predictions were supported by the clinical outcomes. Conclusions: Grid therapy functions by selectively killing infiltrating tumor cells and concomitantly sparing interspersed normal cells. The TR depends on the radiosensitivity of the cell population, dose, tumor size, and location. Because the volumes of very high dose regions are small, the LQ model can be used safely to predict the clinical outcomes of grid therapy. When treating melanomas with a dose of 15 Gy or higher, single fraction grid therapy is clearly advantageous for sparing interspersed normal cells. The existence of a threshold fraction dose, which was found in the authors’ theoretical simulations, was confirmed by clinical observations.« less
Adaptively Refined Euler and Navier-Stokes Solutions with a Cartesian-Cell Based Scheme
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1995-01-01
A Cartesian-cell based scheme with adaptive mesh refinement for solving the Euler and Navier-Stokes equations in two dimensions has been developed and tested. Grids about geometrically complicated bodies were generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells were created using polygon-clipping algorithms. The grid was stored in a binary-tree data structure which provided a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations were solved on the resulting grids using an upwind, finite-volume formulation. The inviscid fluxes were found in an upwinded manner using a linear reconstruction of the cell primitives, providing the input states to an approximate Riemann solver. The viscous fluxes were formed using a Green-Gauss type of reconstruction upon a co-volume surrounding the cell interface. Data at the vertices of this co-volume were found in a linearly K-exact manner, which ensured linear K-exactness of the gradients. Adaptively-refined solutions for the inviscid flow about a four-element airfoil (test case 3) were compared to theory. Laminar, adaptively-refined solutions were compared to accepted computational, experimental and theoretical results.
NASA Astrophysics Data System (ADS)
Karimi-Fard, M.; Durlofsky, L. J.
2016-10-01
A comprehensive framework for modeling flow in porous media containing thin, discrete features, which could be high-permeability fractures or low-permeability deformation bands, is presented. The key steps of the methodology are mesh generation, fine-grid discretization, upscaling, and coarse-grid discretization. Our specialized gridding technique combines a set of intersecting triangulated surfaces by constructing approximate intersections using existing edges. This procedure creates a conforming mesh of all surfaces, which defines the internal boundaries for the volumetric mesh. The flow equations are discretized on this conforming fine mesh using an optimized two-point flux finite-volume approximation. The resulting discrete model is represented by a list of control-volumes with associated positions and pore-volumes, and a list of cell-to-cell connections with associated transmissibilities. Coarse models are then constructed by the aggregation of fine-grid cells, and the transmissibilities between adjacent coarse cells are obtained using flow-based upscaling procedures. Through appropriate computation of fracture-matrix transmissibilities, a dual-continuum representation is obtained on the coarse scale in regions with connected fracture networks. The fine and coarse discrete models generated within the framework are compatible with any connectivity-based simulator. The applicability of the methodology is illustrated for several two- and three-dimensional examples. In particular, we consider gas production from naturally fractured low-permeability formations, and transport through complex fracture networks. In all cases, highly accurate solutions are obtained with significant model reduction.
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.
2009-01-01
Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and efficiency are studied for six nominally second-order accurate schemes: a node-centered scheme, cell-centered node-averaging schemes with and without clipping, and cell-centered schemes with unweighted, weighted, and approximately mapped least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Results from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The second class of tests are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes are less accurate, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to the complexity of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping of the surface anisotropy or modifying the scheme stencil to reflect the direction of strong coupling.
NASA Technical Reports Server (NTRS)
Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)
2002-01-01
The framework for constructing a high-order, conservative Spectral (Finite) Volume (SV) method is presented for two-dimensional scalar hyperbolic conservation laws on unstructured triangular grids. Each triangular grid cell forms a spectral volume (SV), and the SV is further subdivided into polygonal control volumes (CVs) to supported high-order data reconstructions. Cell-averaged solutions from these CVs are used to reconstruct a high order polynomial approximation in the SV. Each CV is then updated independently with a Godunov-type finite volume method and a high-order Runge-Kutta time integration scheme. A universal reconstruction is obtained by partitioning all SVs in a geometrically similar manner. The convergence of the SV method is shown to depend on how a SV is partitioned. A criterion based on the Lebesgue constant has been developed and used successfully to determine the quality of various partitions. Symmetric, stable, and convergent linear, quadratic, and cubic SVs have been obtained, and many different types of partitions have been evaluated. The SV method is tested for both linear and non-linear model problems with and without discontinuities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Touma, Rony; Zeidan, Dia
In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potentialmore » of the proposed scheme.« less
Generation of a composite grid for turbine flows and consideration of a numerical scheme
NASA Technical Reports Server (NTRS)
Choo, Y.; Yoon, S.; Reno, C.
1986-01-01
A composite grid was generated for flows in turbines. It consisted of the C-grid (or O-grid) in the immediate vicinity of the blade and the H-grid in the middle of the blade passage between the C-grids and in the upstream region. This new composite grid provides better smoothness, resolution, and orthogonality than any single grid for a typical turbine blade with a large camber and rounded leading and trailing edges. The C-H (or O-H) composite grid has an unusual grid point that is connected to more than four neighboring nodes in two dimensions (more than six neighboring nodes in three dimensions). A finite-volume lower-upper (LU) implicit scheme to be used on this grid poses no problem and requires no special treatment because each interior cell of this composite grid has only four neighboring cells in two dimensions (six cells in three dimensions). The LU implicit scheme was demonstrated to be efficient and robust for external flows in a broad flow regime and can be easily applied to internal flows and extended from two to three dimensions.
Panday, Sorab; Langevin, Christian D.; Niswonger, Richard G.; Ibaraki, Motomu; Hughes, Joseph D.
2013-01-01
A new version of MODFLOW, called MODFLOW–USG (for UnStructured Grid), was developed to support a wide variety of structured and unstructured grid types, including nested grids and grids based on prismatic triangles, rectangles, hexagons, and other cell shapes. Flexibility in grid design can be used to focus resolution along rivers and around wells, for example, or to subdiscretize individual layers to better represent hydrostratigraphic units. MODFLOW–USG is based on an underlying control volume finite difference (CVFD) formulation in which a cell can be connected to an arbitrary number of adjacent cells. To improve accuracy of the CVFD formulation for irregular grid-cell geometries or nested grids, a generalized Ghost Node Correction (GNC) Package was developed, which uses interpolated heads in the flow calculation between adjacent connected cells. MODFLOW–USG includes a Groundwater Flow (GWF) Process, based on the GWF Process in MODFLOW–2005, as well as a new Connected Linear Network (CLN) Process to simulate the effects of multi-node wells, karst conduits, and tile drains, for example. The CLN Process is tightly coupled with the GWF Process in that the equations from both processes are formulated into one matrix equation and solved simultaneously. This robustness results from using an unstructured grid with unstructured matrix storage and solution schemes. MODFLOW–USG also contains an optional Newton-Raphson formulation, based on the formulation in MODFLOW–NWT, for improving solution convergence and avoiding problems with the drying and rewetting of cells. Because the existing MODFLOW solvers were developed for structured and symmetric matrices, they were replaced with a new Sparse Matrix Solver (SMS) Package developed specifically for MODFLOW–USG. The SMS Package provides several methods for resolving nonlinearities and multiple symmetric and asymmetric linear solution schemes to solve the matrix arising from the flow equations and the Newton-Raphson formulation, respectively.
A mixed volume grid approach for the Euler and Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Coirier, William J.; Jorgenson, Philip C. E.
1996-01-01
An approach for solving the compressible Euler and Navier-Stokes equations upon meshes composed of nearly arbitrary polyhedra is described. Each polyhedron is constructed from an arbitrary number of triangular and quadrilateral face elements, allowing the unified treatment of tetrahedral, prismatic, pyramidal, and hexahedral cells, as well the general cut cells produced by Cartesian mesh approaches. The basics behind the numerical approach and the resulting data structures are described. The accuracy of the mixed volume grid approach is assessed by performing a grid refinement study upon a series of hexahedral, tetrahedral, prismatic, and Cartesian meshes for an analytic inviscid problem. A series of laminar validation cases are made, comparing the results upon differing grid topologies to each other, to theory, and experimental data. A computation upon a prismatic/tetrahedral mesh is made simulating the laminar flow over a wall/cylinder combination.
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.
2010-01-01
Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and complexity are studied for four nominally second-order accurate schemes: a node-centered scheme and three cell-centered schemes - a node-averaging scheme and two schemes with nearest-neighbor and adaptive compact stencils for least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Tests from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The tests of the second class are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes may degenerate on mixed grids, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to that of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping based on a distance function commonly available in practical schemes or modifying the scheme stencil to reflect the direction of strong coupling. The major conclusion is that accuracies of the node centered and the best cell-centered schemes are comparable at equivalent number of degrees of freedom.
3D magnetospheric parallel hybrid multi-grid method applied to planet–plasma interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leclercq, L., E-mail: ludivine.leclercq@latmos.ipsl.fr; Modolo, R., E-mail: ronan.modolo@latmos.ipsl.fr; Leblanc, F.
2016-03-15
We present a new method to exploit multiple refinement levels within a 3D parallel hybrid model, developed to study planet–plasma interactions. This model is based on the hybrid formalism: ions are kinetically treated whereas electrons are considered as a inertia-less fluid. Generally, ions are represented by numerical particles whose size equals the volume of the cells. Particles that leave a coarse grid subsequently entering a refined region are split into particles whose volume corresponds to the volume of the refined cells. The number of refined particles created from a coarse particle depends on the grid refinement rate. In order tomore » conserve velocity distribution functions and to avoid calculations of average velocities, particles are not coalesced. Moreover, to ensure the constancy of particles' shape function sizes, the hybrid method is adapted to allow refined particles to move within a coarse region. Another innovation of this approach is the method developed to compute grid moments at interfaces between two refinement levels. Indeed, the hybrid method is adapted to accurately account for the special grid structure at the interfaces, avoiding any overlapping grid considerations. Some fundamental test runs were performed to validate our approach (e.g. quiet plasma flow, Alfven wave propagation). Lastly, we also show a planetary application of the model, simulating the interaction between Jupiter's moon Ganymede and the Jovian plasma.« less
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2010-01-01
Cell-centered and node-centered approaches have been compared for unstructured finite-volume discretization of inviscid fluxes. The grids range from regular grids to irregular grids, including mixed-element grids and grids with random perturbations of nodes. Accuracy, complexity, and convergence rates of defect-correction iterations are studied for eight nominally second-order accurate schemes: two node-centered schemes with weighted and unweighted least-squares (LSQ) methods for gradient reconstruction and six cell-centered schemes two node-averaging with and without clipping and four schemes that employ different stencils for LSQ gradient reconstruction. The cell-centered nearest-neighbor (CC-NN) scheme has the lowest complexity; a version of the scheme that involves smart augmentation of the LSQ stencil (CC-SA) has only marginal complexity increase. All other schemes have larger complexity; complexity of node-centered (NC) schemes are somewhat lower than complexity of cell-centered node-averaging (CC-NA) and full-augmentation (CC-FA) schemes. On highly anisotropic grids typical of those encountered in grid adaptation, discretization errors of five of the six cell-centered schemes converge with second order on all tested grids; the CC-NA scheme with clipping degrades solution accuracy to first order. The NC schemes converge with second order on regular and/or triangular grids and with first order on perturbed quadrilaterals and mixed-element grids. All schemes may produce large relative errors in gradient reconstruction on grids with perturbed nodes. Defect-correction iterations for schemes employing weighted least-square gradient reconstruction diverge on perturbed stretched grids. Overall, the CC-NN and CC-SA schemes offer the best options of the lowest complexity and secondorder discretization errors. On anisotropic grids over a curved body typical of turbulent flow simulations, the discretization errors converge with second order and are small for the CC-NN, CC-SA, and CC-FA schemes on all grids and for NC schemes on triangular grids; the discretization errors of the CC-NA scheme without clipping do not converge on irregular grids. Accurate gradient reconstruction can be achieved by introducing a local approximate mapping; without approximate mapping, only the NC scheme with weighted LSQ method provides accurate gradients. Defect correction iterations for the CC-NA scheme without clipping diverge; for the NC scheme with weighted LSQ method, the iterations either diverge or converge very slowly. The best option in curved geometries is the CC-SA scheme that offers low complexity, second-order discretization errors, and fast convergence.
NASA Astrophysics Data System (ADS)
Ahmed, Raheel; Edwards, Michael G.; Lamine, Sadok; Huisman, Bastiaan A. H.; Pal, Mayur
2017-11-01
Two novel control-volume methods are presented for flow in fractured media, and involve coupling the control-volume distributed multi-point flux approximation (CVD-MPFA) constructed with full pressure support (FPS), to two types of discrete fracture-matrix approximation for simulation on unstructured grids; (i) involving hybrid grids and (ii) a lower dimensional fracture model. Flow is governed by Darcy's law together with mass conservation both in the matrix and the fractures, where large discontinuities in permeability tensors can occur. Finite-volume FPS schemes are more robust than the earlier CVD-MPFA triangular pressure support (TPS) schemes for problems involving highly anisotropic homogeneous and heterogeneous full-tensor permeability fields. We use a cell-centred hybrid-grid method, where fractures are modelled by lower-dimensional interfaces between matrix cells in the physical mesh but expanded to equi-dimensional cells in the computational domain. We present a simple procedure to form a consistent hybrid-grid locally for a dual-cell. We also propose a novel hybrid-grid for intersecting fractures, for the FPS method, which reduces the condition number of the global linear system and leads to larger time steps for tracer transport. The transport equation for tracer flow is coupled with the pressure equation and provides flow parameter assessment of the fracture models. Transport results obtained via TPS and FPS hybrid-grid formulations are compared with the corresponding results of fine-scale explicit equi-dimensional formulations. The results show that the hybrid-grid FPS method applies to general full-tensor fields and provides improved robust approximations compared to the hybrid-grid TPS method for fractured domains, for both weakly anisotropic permeability fields and very strong anisotropic full-tensor permeability fields where the TPS scheme exhibits spurious oscillations. The hybrid-grid FPS formulation is extended to compressible flow and the results demonstrate the method is also robust for transient flow. Furthermore, we present FPS coupled with a lower-dimensional fracture model, where fractures are strictly lower-dimensional in the physical mesh as well as in the computational domain. We present a comparison of the hybrid-grid FPS method and the lower-dimensional fracture model for several cases of isotropic and anisotropic fractured media which illustrate the benefits of the respective methods.
GRIDGEN Version 1.0: a computer program for generating unstructured finite-volume grids
Lien, Jyh-Ming; Liu, Gaisheng; Langevin, Christian D.
2015-01-01
GRIDGEN is a computer program for creating layered quadtree grids for use with numerical models, such as the MODFLOW–USG program for simulation of groundwater flow. The program begins by reading a three-dimensional base grid, which can have variable row and column widths and spatially variable cell top and bottom elevations. From this base grid, GRIDGEN will continuously divide into four any cell intersecting user-provided refinement features (points, lines, and polygons) until the desired level of refinement is reached. GRIDGEN will then smooth, or balance, the grid so that no two adjacent cells, including overlying and underlying cells, differ by more than a user-specified level tolerance. Once these gridding processes are completed, GRIDGEN saves a tree structure file so that the layered quadtree grid can be quickly reconstructed as needed. Once a tree structure file has been created, GRIDGEN can then be used to (1) export the layered quadtree grid as a shapefile, (2) export grid connectivity and cell information as ASCII text files for use with MODFLOW–USG or other numerical models, and (3) intersect the grid with shapefiles of points, lines, or polygons, and save intersection output as ASCII text files and shapefiles. The GRIDGEN program is demonstrated by creating a layered quadtree grid for the Biscayne aquifer in Miami-Dade County, Florida, using hydrologic features to control where refinement is added.
Barall, Michael
2009-01-01
We present a new finite-element technique for calculating dynamic 3-D spontaneous rupture on an earthquake fault, which can reduce the required computational resources by a factor of six or more, without loss of accuracy. The grid-doubling technique employs small cells in a thin layer surrounding the fault. The remainder of the modelling volume is filled with larger cells, typically two or four times as large as the small cells. In the resulting non-conforming mesh, an interpolation method is used to join the thin layer of smaller cells to the volume of larger cells. Grid-doubling is effective because spontaneous rupture calculations typically require higher spatial resolution on and near the fault than elsewhere in the model volume. The technique can be applied to non-planar faults by morphing, or smoothly distorting, the entire mesh to produce the desired 3-D fault geometry. Using our FaultMod finite-element software, we have tested grid-doubling with both slip-weakening and rate-and-state friction laws, by running the SCEC/USGS 3-D dynamic rupture benchmark problems. We have also applied it to a model of the Hayward fault, Northern California, which uses realistic fault geometry and rock properties. FaultMod implements fault slip using common nodes, which represent motion common to both sides of the fault, and differential nodes, which represent motion of one side of the fault relative to the other side. We describe how to modify the traction-at-split-nodes method to work with common and differential nodes, using an implicit time stepping algorithm.
NASA Astrophysics Data System (ADS)
Toyokuni, G.; Takenaka, H.
2007-12-01
We propose a method to obtain effective grid parameters for the finite-difference (FD) method with standard Earth models using analytical ways. In spite of the broad use of the heterogeneous FD formulation for seismic waveform modeling, accurate treatment of material discontinuities inside the grid cells has been a serious problem for many years. One possible way to solve this problem is to introduce effective grid elastic moduli and densities (effective parameters) calculated by the volume harmonic averaging of elastic moduli and volume arithmetic averaging of density in grid cells. This scheme enables us to put a material discontinuity into an arbitrary position in the spatial grids. Most of the methods used for synthetic seismogram calculation today receives the blessing of the standard Earth models, such as the PREM, IASP91, SP6, and AK135, represented as functions of normalized radius. For the FD computation of seismic waveform with such models, we first need accurate treatment of material discontinuities in radius. This study provides a numerical scheme for analytical calculations of the effective parameters for an arbitrary spatial grids in radial direction as to these major four standard Earth models making the best use of their functional features. This scheme can analytically obtain the integral volume averages through partial fraction decompositions (PFDs) and integral formulae. We have developed a FORTRAN subroutine to perform the computations, which is opened to utilization in a large variety of FD schemes ranging from 1-D to 3-D, with conventional- and staggered-grids. In the presentation, we show some numerical examples displaying the accuracy of the FD synthetics simulated with the analytical effective parameters.
A High-Order Finite Spectral Volume Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Wang, Z. J.; Liu, Yen; Kwak, Dochan (Technical Monitor)
2001-01-01
A time accurate, high-order, conservative, yet efficient method named Finite Spectral Volume (FSV) is developed for conservation laws on unstructured grids. The concept of a 'spectral volume' is introduced to achieve high-order accuracy in an efficient manner similar to spectral element and multi-domain spectral methods. In addition, each spectral volume is further sub-divided into control volumes (CVs), and cell-averaged data from these control volumes is used to reconstruct a high-order approximation in the spectral volume. Riemann solvers are used to compute the fluxes at spectral volume boundaries. Then cell-averaged state variables in the control volumes are updated independently. Furthermore, TVD (Total Variation Diminishing) and TVB (Total Variation Bounded) limiters are introduced in the FSV method to remove/reduce spurious oscillations near discontinuities. A very desirable feature of the FSV method is that the reconstruction is carried out only once, and analytically, and is the same for all cells of the same type, and that the reconstruction stencil is always non-singular, in contrast to the memory and CPU-intensive reconstruction in a high-order finite volume (FV) method. Discussions are made concerning why the FSV method is significantly more efficient than high-order finite volume and the Discontinuous Galerkin (DG) methods. Fundamental properties of the FSV method are studied and high-order accuracy is demonstrated for several model problems with and without discontinuities.
Triangle Geometry Processing for Surface Modeling and Cartesian Grid Generation
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J. (Inventor); Melton, John E. (Inventor); Berger, Marsha J. (Inventor)
2002-01-01
Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.
Triangle geometry processing for surface modeling and cartesian grid generation
Aftosmis, Michael J [San Mateo, CA; Melton, John E [Hollister, CA; Berger, Marsha J [New York, NY
2002-09-03
Cartesian mesh generation is accomplished for component based geometries, by intersecting components subject to mesh generation to extract wetted surfaces with a geometry engine using adaptive precision arithmetic in a system which automatically breaks ties with respect to geometric degeneracies. During volume mesh generation, intersected surface triangulations are received to enable mesh generation with cell division of an initially coarse grid. The hexagonal cells are resolved, preserving the ability to directionally divide cells which are locally well aligned.
NASA Technical Reports Server (NTRS)
Finley, Dennis B.; Karman, Steve L., Jr.
1996-01-01
The objective of the second phase of the Euler Technology Assessment program was to evaluate the ability of Euler computational fluid dynamics codes to predict compressible flow effects over a generic fighter wind tunnel model. This portion of the study was conducted by Lockheed Martin Tactical Aircraft Systems, using an in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaption of the volume grid during the solution to resolve high-gradient regions. The SPLITFLOW code predictions of configuration forces and moments are shown to be adequate for preliminary design, including predictions of sideslip effects and the effects of geometry variations at low and high angles-of-attack. The transonic pressure prediction capabilities of SPLITFLOW are shown to be improved over subsonic comparisons. The time required to generate the results from initial surface data is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.
Toward Verification of USM3D Extensions for Mixed Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Frink, Neal T.; Ding, Ejiang; Parlette, Edward B.
2013-01-01
The unstructured tetrahedral grid cell-centered finite volume flow solver USM3D has been recently extended to handle mixed element grids composed of hexahedral, prismatic, pyramidal, and tetrahedral cells. Presently, two turbulence models, namely, baseline Spalart-Allmaras (SA) and Menter Shear Stress Transport (SST), support mixed element grids. This paper provides an overview of the various numerical discretization options available in the newly enhanced USM3D. Using the SA model, the flow solver extensions are verified on three two-dimensional test cases available on the Turbulence Modeling Resource website at the NASA Langley Research Center. The test cases are zero pressure gradient flat plate, planar shear, and bump-inchannel. The effect of cell topologies on the flow solution is also investigated using the planar shear case. Finally, the assessment of various cell and face gradient options is performed on the zero pressure gradient flat plate case.
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.; Alter, Stephen J.
1995-01-01
This document is a users' manual for a new three-dimensional structured multiple-block volume g generator called 3DGRAPE/AL. It is a significantly improved version of the previously-released a widely-distributed programs 3DGRAPE and 3DMAGGS. It generates volume grids by iteratively solving the Poisson Equations in three-dimensions. The right-hand-side terms are designed so that user-specific; grid cell heights and user-specified grid cell skewness near boundary surfaces result automatically, with little user intervention. The code is written in Fortran-77, and can be installed with or without a simple graphical user interface which allows the user to watch as the grid is generated. An introduction describing the improvements over the antecedent 3DGRAPE code is presented first. Then follows a chapter on the basic grid generator program itself, and comments on installing it. The input is then described in detail. After that is a description of the Graphical User Interface. Five example cases are shown next, with plots of the results. Following that is a chapter on two input filters which allow use of input data generated elsewhere. Last is a treatment of the theory embodied in the code.
Unstructured Euler flow solutions using hexahedral cell refinement
NASA Technical Reports Server (NTRS)
Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.
1991-01-01
An attempt is made to extend grid refinement into three dimensions by using unstructured hexahedral grids. The flow solver is developed using the TIGER (topologically Independent Grid, Euler Refinement) as the starting point. The program uses an unstructured hexahedral mesh and a modified version of the Jameson four-stage, finite-volume Runge-Kutta algorithm for integration of the Euler equations. The unstructured mesh allows for local refinement appropriate for each freestream condition, thereby concentrating mesh cells in the regions of greatest interest. This increases the computational efficiency because the refinement is not required to extend throughout the entire flow field.
Mikhal, Julia; Geurts, Bernard J
2013-12-01
A volume-penalizing immersed boundary method is presented for the simulation of laminar incompressible flow inside geometrically complex blood vessels in the human brain. We concentrate on cerebral aneurysms and compute flow in curved brain vessels with and without spherical aneurysm cavities attached. We approximate blood as an incompressible Newtonian fluid and simulate the flow with the use of a skew-symmetric finite-volume discretization and explicit time-stepping. A key element of the immersed boundary method is the so-called masking function. This is a binary function with which we identify at any location in the domain whether it is 'solid' or 'fluid', allowing to represent objects immersed in a Cartesian grid. We compare three definitions of the masking function for geometries that are non-aligned with the grid. In each case a 'staircase' representation is used in which a grid cell is either 'solid' or 'fluid'. Reliable findings are obtained with our immersed boundary method, even at fairly coarse meshes with about 16 grid cells across a velocity profile. The validation of the immersed boundary method is provided on the basis of classical Poiseuille flow in a cylindrical pipe. We obtain first order convergence for the velocity and the shear stress, reflecting the fact that in our approach the solid-fluid interface is localized with an accuracy on the order of a grid cell. Simulations for curved vessels and aneurysms are done for different flow regimes, characterized by different values of the Reynolds number (Re). The validation is performed for laminar flow at Re = 250, while the flow in more complex geometries is studied at Re = 100 and Re = 250, as suggested by physiological conditions pertaining to flow of blood in the circle of Willis.
Hyperbolic Prismatic Grid Generation and Solution of Euler Equations on Prismatic Grids
NASA Technical Reports Server (NTRS)
Pandya, S. A.; Chattot, JJ; Hafez, M. M.; Kutler, Paul (Technical Monitor)
1994-01-01
A hyperbolic grid generation method is used to generate prismatic grids and an approach using prismatic grids to solve the Euler equations is presented. The theory of the stability and feasibility of the hyperbolic grid generation method is presented. The hyperbolic grid generation method of Steger et al for structured grids is applied to a three dimensional triangularized surface definition to generate a grid that is unstructured on each successive layer. The grid, however, retains structure in the body-normal direction and has a computational cell shaped like a triangular prism. In order to take advantage of the structure in the normal direction, a finite-volume scheme that treats the unknowns along the normal direction implicitly is introduced and the flow over a sphere is simulated.
User's manual for the HYPGEN hyperbolic grid generator and the HGUI graphical user interface
NASA Technical Reports Server (NTRS)
Chan, William M.; Chiu, Ing-Tsau; Buning, Pieter G.
1993-01-01
The HYPGEN program is used to generate a 3-D volume grid over a user-supplied single-block surface grid. This is accomplished by solving the 3-D hyperbolic grid generation equations consisting of two orthogonality relations and one cell volume constraint. In this user manual, the required input files and parameters and output files are described. Guidelines on how to select the input parameters are given. Illustrated examples are provided showing a variety of topologies and geometries that can be treated. HYPGEN can be used in stand-alone mode as a batch program or it can be called from within a graphical user interface HGUI that runs on Silicon Graphics workstations. This user manual provides a description of the menus, buttons, sliders, and typein fields in HGUI for users to enter the parameters needed to run HYPGEN. Instructions are given on how to configure the interface to allow HYPGEN to run either locally or on a faster remote machine through the use of shell scripts on UNIX operating systems. The volume grid generated is copied back to the local machine for visualization using a built-in hook to PLOT3D.
Isotropic stochastic rotation dynamics
NASA Astrophysics Data System (ADS)
Mühlbauer, Sebastian; Strobl, Severin; Pöschel, Thorsten
2017-12-01
Stochastic rotation dynamics (SRD) is a widely used method for the mesoscopic modeling of complex fluids, such as colloidal suspensions or multiphase flows. In this method, however, the underlying Cartesian grid defining the coarse-grained interaction volumes induces anisotropy. We propose an isotropic, lattice-free variant of stochastic rotation dynamics, termed iSRD. Instead of Cartesian grid cells, we employ randomly distributed spherical interaction volumes. This eliminates the requirement of a grid shift, which is essential in standard SRD to maintain Galilean invariance. We derive analytical expressions for the viscosity and the diffusion coefficient in relation to the model parameters, which show excellent agreement with the results obtained in iSRD simulations. The proposed algorithm is particularly suitable to model systems bound by walls of complex shape, where the domain cannot be meshed uniformly. The presented approach is not limited to SRD but is applicable to any other mesoscopic method, where particles interact within certain coarse-grained volumes.
Efficient Unstructured Grid Adaptation Methods for Sonic Boom Prediction
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Carter, Melissa B.; Deere, Karen A.; Waithe, Kenrick A.
2008-01-01
This paper examines the use of two grid adaptation methods to improve the accuracy of the near-to-mid field pressure signature prediction of supersonic aircraft computed using the USM3D unstructured grid flow solver. The first method (ADV) is an interactive adaptation process that uses grid movement rather than enrichment to more accurately resolve the expansion and compression waves. The second method (SSGRID) uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid with the pressure waves and reduce the cell count required to achieve an accurate signature prediction at a given distance from the vehicle. Both methods initially create negative volume cells that are repaired in a module in the ADV code. While both approaches provide significant improvements in the near field signature (< 3 body lengths) relative to a baseline grid without increasing the number of grid points, only the SSGRID approach allows the details of the signature to be accurately computed at mid-field distances (3-10 body lengths) for direct use with mid-field-to-ground boom propagation codes.
1991-02-15
picked, Ce11Pop" .xmonth, CeliPcpUpA .hour’ . Phase kND $80) = 0 ELSE IF (stationinfol36’ [stations. picked, CellIP-- CpA .n=nh, CeSUP pP.hour . Phiase...CellGrid, irt (322,24. 281,314, RightCeliGridAction, ShoCe11~ta, DcNot-hingPr-oc, bJii ne (lfepnIi lfs t.Xj05,efIghplit. Y4, 60,16,white, blak , black...8217.Hilite(oc,yy); with CellPI~p do begin if (SubCells (Hcnth,Hr] .X < (Get~4axX - RightsideStatsA .width - SubCellIs (Month, Hour) Width - SubCellP~ cpA
A finite volume Fokker-Planck collision operator in constants-of-motion coordinates
NASA Astrophysics Data System (ADS)
Xiong, Z.; Xu, X. Q.; Cohen, B. I.; Cohen, R.; Dorr, M. R.; Hittinger, J. A.; Kerbel, G.; Nevins, W. M.; Rognlien, T.
2006-04-01
TEMPEST is a 5D gyrokinetic continuum code for edge plasmas. Constants of motion, namely, the total energy E and the magnetic moment μ, are chosen as coordinate s because of their advantage in minimizing numerical diffusion in advection operato rs. Most existing collision operators are written in other coordinates; using them by interpolating is shown to be less satisfactory in maintaining overall numerical accuracy and conservation. Here we develop a Fokker-Planck collision operator directly in (E,μ) space usin g a finite volume approach. The (E, μ) grid is Cartesian, and the turning point boundary represents a straight line cutting through the grid that separates the ph ysical and non-physical zones. The resulting cut-cells are treated by a cell-mergin g technique to ensure a complete particle conservation. A two dimensional fourth or der reconstruction scheme is devised to achieve good numerical accuracy with modest number of grid points. The new collision operator will be benchmarked by numerical examples.
Surface Modeling and Grid Generation of Orbital Sciences X34 Vehicle. Phase 1
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1997-01-01
The surface modeling and grid generation requirements, motivations, and methods used to develop Computational Fluid Dynamic volume grids for the X34-Phase 1 are presented. The requirements set forth by the Aerothermodynamics Branch at the NASA Langley Research Center serve as the basis for the final techniques used in the construction of all volume grids, including grids for parametric studies of the X34. The Integrated Computer Engineering and Manufacturing code for Computational Fluid Dynamics (ICEM/CFD), the Grid Generation code (GRIDGEN), the Three-Dimensional Multi-block Advanced Grid Generation System (3DMAGGS) code, and Volume Grid Manipulator (VGM) code are used to enable the necessary surface modeling, surface grid generation, volume grid generation, and grid alterations, respectively. All volume grids generated for the X34, as outlined in this paper, were used for CFD simulations within the Aerothermodynamics Branch.
New multigrid approach for three-dimensional unstructured, adaptive grids
NASA Technical Reports Server (NTRS)
Parthasarathy, Vijayan; Kallinderis, Y.
1994-01-01
A new multigrid method with adaptive unstructured grids is presented. The three-dimensional Euler equations are solved on tetrahedral grids that are adaptively refined or coarsened locally. The multigrid method is employed to propagate the fine grid corrections more rapidly by redistributing the changes-in-time of the solution from the fine grid to the coarser grids to accelerate convergence. A new approach is employed that uses the parent cells of the fine grid cells in an adapted mesh to generate successively coaser levels of multigrid. This obviates the need for the generation of a sequence of independent, nonoverlapping grids as well as the relatively complicated operations that need to be performed to interpolate the solution and the residuals between the independent grids. The solver is an explicit, vertex-based, finite volume scheme that employs edge-based data structures and operations. Spatial discretization is of central-differencing type combined with a special upwind-like smoothing operators. Application cases include adaptive solutions obtained with multigrid acceleration for supersonic and subsonic flow over a bump in a channel, as well as transonic flow around the ONERA M6 wing. Two levels of multigrid resulted in reduction in the number of iterations by a factor of 5.
NASA Technical Reports Server (NTRS)
Finley, Dennis B.
1995-01-01
This report documents results from the Euler Technology Assessment program. The objective was to evaluate the efficacy of Euler computational fluid dynamics (CFD) codes for use in preliminary aircraft design. Both the accuracy of the predictions and the rapidity of calculations were to be assessed. This portion of the study was conducted by Lockheed Fort Worth Company, using a recently developed in-house Cartesian-grid code called SPLITFLOW. The Cartesian grid technique offers several advantages for this study, including ease of volume grid generation and reduced number of cells compared to other grid schemes. SPLITFLOW also includes grid adaptation of the volume grid during the solution convergence to resolve high-gradient flow regions. This proved beneficial in resolving the large vortical structures in the flow for several configurations examined in the present study. The SPLITFLOW code predictions of the configuration forces and moments are shown to be adequate for preliminary design analysis, including predictions of sideslip effects and the effects of geometry variations at low and high angles of attack. The time required to generate the results from initial surface definition is on the order of several hours, including grid generation, which is compatible with the needs of the design environment.
Mathematical modeling of polymer flooding using the unstructured Voronoi grid
NASA Astrophysics Data System (ADS)
Kireev, T. F.; Bulgakova, G. T.; Khatmullin, I. F.
2017-12-01
Effective recovery of unconventional oil reserves necessitates development of enhanced oil recovery techniques such as polymer flooding. The study investigated the model of polymer flooding with effects of adsorption and water salinity. The model takes into account six components that include elements of the classic black oil model. These components are polymer, salt, water, dead oil, dry gas and dissolved gas. Solution of the problem is obtained by finite volume method on unstructured Voronoi grid using fully implicit scheme and the Newton’s method. To compare several different grid configurations numerical simulation of polymer flooding is performed. The oil rates obtained by a hexagonal locally refined Voronoi grid are shown to be more accurate than the oil rates obtained by a rectangular grid with the same number of cells. The latter effect is caused by high solution accuracy near the wells due to the local grid refinement. Minimization of the grid orientation effect caused by the hexagonal pattern is also demonstrated. However, in the inter-well regions with large Voronoi cells flood front tends to flatten and the water breakthrough moment is smoothed.
A 3-D enlarged cell technique (ECT) for elastic wave modelling of a curved free surface
NASA Astrophysics Data System (ADS)
Wei, Songlin; Zhou, Jianyang; Zhuang, Mingwei; Liu, Qing Huo
2016-09-01
The conventional finite-difference time-domain (FDTD) method for elastic waves suffers from the staircasing error when applied to model a curved free surface because of its structured grid. In this work, an improved, stable and accurate 3-D FDTD method for elastic wave modelling on a curved free surface is developed based on the finite volume method and enlarged cell technique (ECT). To achieve a sufficiently accurate implementation, a finite volume scheme is applied to the curved free surface to remove the staircasing error; in the mean time, to achieve the same stability as the FDTD method without reducing the time step increment, the ECT is introduced to preserve the solution stability by enlarging small irregular cells into adjacent cells under the condition of conservation of force. This method is verified by several 3-D numerical examples. Results show that the method is stable at the Courant stability limit for a regular FDTD grid, and has much higher accuracy than the conventional FDTD method.
Free stream capturing in fluid conservation law for moving coordinates in three dimensions
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1991-01-01
The free-stream capturing technique for both the finite-volume (FV) and finite-difference (FD) framework is summarized. For an arbitrary motion of the grid, the FV analysis shows that volumes swept by all six surfaces of the cell have to be computed correctly. This means that the free-stream capturing time-metric terms should be calculated not only from a surface vector of a cell at a single time level, but also from a volume swept by the cell surface in space and time. The FV free-stream capturing formulation is applicable to the FD formulation by proper translation from an FV cell to an FD mesh.
Arc Length Based Grid Distribution For Surface and Volume Grids
NASA Technical Reports Server (NTRS)
Mastin, C. Wayne
1996-01-01
Techniques are presented for distributing grid points on parametric surfaces and in volumes according to a specified distribution of arc length. Interpolation techniques are introduced which permit a given distribution of grid points on the edges of a three-dimensional grid block to be propagated through the surface and volume grids. Examples demonstrate how these methods can be used to improve the quality of grids generated by transfinite interpolation.
Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio
NASA Technical Reports Server (NTRS)
Thomas, James
2008-01-01
Gradient approximation methods commonly used in unstructured-grid finite-volume schemes intended for solutions of high Reynolds number flow equations are studied comprehensively. The accuracy of gradients within cells and within faces is evaluated systematically for both node-centered and cell-centered formulations. Computational and analytical evaluations are made on a series of high-aspect-ratio grids with different primal elements, including quadrilateral, triangular, and mixed element grids, with and without random perturbations to the mesh. Both rectangular and cylindrical geometries are considered; the latter serves to study the effects of geometric curvature. The study shows that the accuracy of gradient reconstruction on high-aspect-ratio grids is determined by a combination of the grid and the solution. The contributors to the error are identified and approaches to reduce errors are given, including the addition of higher-order terms in the direction of larger mesh spacing. A parameter GAMMA characterizing accuracy on curved high-aspect-ratio grids is discussed and an approximate-mapped-least-square method using a commonly-available distance function is presented; the method provides accurate gradient reconstruction on general grids. The study is intended to be a reference guide accompanying the construction of accurate and efficient methods for high Reynolds number applications
NASA Astrophysics Data System (ADS)
Herrington, A. R.; Lauritzen, P. H.; Reed, K. A.
2017-12-01
The spectral element dynamical core of the Community Atmosphere Model (CAM) has recently been coupled to an approximately isotropic, finite-volume grid per implementation of the conservative semi-Lagrangian multi-tracer transport scheme (CAM-SE-CSLAM; Lauritzen et al. 2017). In this framework, the semi-Lagrangian transport of tracers are computed on the finite-volume grid, while the adiabatic dynamics are solved using the spectral element grid. The physical parameterizations are evaluated on the finite-volume grid, as opposed to the unevenly spaced Gauss-Lobatto-Legendre nodes of the spectral element grid. Computing the physics on the finite-volume grid reduces numerical artifacts such as grid imprinting, possibly because the forcing terms are no longer computed at element boundaries where the resolved dynamics are least smooth. The separation of the physics grid and the dynamics grid allows for a unique opportunity to understand the resolution sensitivity in CAM-SE-CSLAM. The observed large sensitivity of CAM to horizontal resolution is a poorly understood impediment to improved simulations of regional climate using global, variable resolution grids. Here, a series of idealized moist simulations are presented in which the finite-volume grid resolution is varied relative to the spectral element grid resolution in CAM-SE-CSLAM. The simulations are carried out at multiple spectral element grid resolutions, in part to provide a companion set of simulations, in which the spectral element grid resolution is varied relative to the finite-volume grid resolution, but more generally to understand if the sensitivity to the finite-volume grid resolution is consistent across a wider spectrum of resolved scales. Results are interpreted in the context of prior ideas regarding resolution sensitivity of global atmospheric models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatsonis, Nikolaos A.; Spirkin, Anton
2009-06-01
The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error andmore » sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.« less
NASA Technical Reports Server (NTRS)
Coirier, William John
1994-01-01
A Cartesian, cell-based scheme for solving the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal 'cut' cells are created. The geometry of the cut cells is computed using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded, with a limited linear reconstruction of the primitive variables used to provide input states to an approximate Riemann solver for computing the fluxes between neighboring cells. A multi-stage time-stepping scheme is used to reach a steady-state solution. Validation of the Euler solver with benchmark numerical and exact solutions is presented. An assessment of the accuracy of the approach is made by uniform and adaptive grid refinements for a steady, transonic, exact solution to the Euler equations. The error of the approach is directly compared to a structured solver formulation. A non smooth flow is also assessed for grid convergence, comparing uniform and adaptively refined results. Several formulations of the viscous terms are assessed analytically, both for accuracy and positivity. The two best formulations are used to compute adaptively refined solutions of the Navier-Stokes equations. These solutions are compared to each other, to experimental results and/or theory for a series of low and moderate Reynolds numbers flow fields. The most suitable viscous discretization is demonstrated for geometrically-complicated internal flows. For flows at high Reynolds numbers, both an altered grid-generation procedure and a different formulation of the viscous terms are shown to be necessary. A hybrid Cartesian/body-fitted grid generation approach is demonstrated. In addition, a grid-generation procedure based on body-aligned cell cutting coupled with a viscous stensil-construction procedure based on quadratic programming is presented.
NASA Astrophysics Data System (ADS)
Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard
2013-02-01
In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.
Estimating the system price of redox flow batteries for grid storage
NASA Astrophysics Data System (ADS)
Ha, Seungbum; Gallagher, Kevin G.
2015-11-01
Low-cost energy storage systems are required to support extensive deployment of intermittent renewable energy on the electricity grid. Redox flow batteries have potential advantages to meet the stringent cost target for grid applications as compared to more traditional batteries based on an enclosed architecture. However, the manufacturing process and therefore potential high-volume production price of redox flow batteries is largely unquantified. We present a comprehensive assessment of a prospective production process for aqueous all vanadium flow battery and nonaqueous lithium polysulfide flow battery. The estimated investment and variable costs are translated to fixed expenses, profit, and warranty as a function of production volume. When compared to lithium-ion batteries, redox flow batteries are estimated to exhibit lower costs of manufacture, here calculated as the unit price less materials costs, owing to their simpler reactor (cell) design, lower required area, and thus simpler manufacturing process. Redox flow batteries are also projected to achieve the majority of manufacturing scale benefits at lower production volumes as compared to lithium-ion. However, this advantage is offset due to the dramatically lower present production volume of flow batteries compared to competitive technologies such as lithium-ion.
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1994-01-01
A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: a gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1995-01-01
A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: A gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment and other accepted computational results for a series of low and moderate Reynolds number flows.
Discontinuous Spectral Difference Method for Conservation Laws on Unstructured Grids
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel
2004-01-01
A new, high-order, conservative, and efficient discontinuous spectral finite difference (SD) method for conservation laws on unstructured grids is developed. The concept of discontinuous and high-order local representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) and the Spectral Volume (SV) methods, but while these methods are based on the integrated forms of the equations, the new method is based on the differential form to attain a simpler formulation and higher efficiency. Conventional unstructured finite-difference and finite-volume methods require data reconstruction based on the least-squares formulation using neighboring point or cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every point or cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In addition, the finite-difference method does not satisfy the integral conservation in general. By contrast, the DG and SV methods employ a local, universal reconstruction of a given order of accuracy in each cell in terms of internally defined conservative unknowns. Since the solution is discontinuous across cell boundaries, a Riemann solver is necessary to evaluate boundary flux terms and maintain conservation. In the DG method, a Galerkin finite-element method is employed to update the nodal unknowns within each cell. This requires the inversion of a mass matrix, and the use of quadratures of twice the order of accuracy of the reconstruction to evaluate the surface integrals and additional volume integrals for nonlinear flux functions. In the SV method, the integral conservation law is used to update volume averages over subcells defined by a geometrically similar partition of each grid cell. As the order of accuracy increases, the partitioning for 3D requires the introduction of a large number of parameters, whose optimization to achieve convergence becomes increasingly more difficult. Also, the number of interior facets required to subdivide non-planar faces, and the additional increase in the number of quadrature points for each facet, increases the computational cost greatly.
Solution-Adaptive Cartesian Cell Approach for Viscous and Inviscid Flows
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1996-01-01
A Cartesian cell-based approach for adaptively refined solutions of the Euler and Navier-Stokes equations in two dimensions is presented. Grids about geometrically complicated bodies are generated automatically, by the recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal cut cells are created using modified polygon-clipping algorithms. The grid is stored in a binary tree data structure that provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite volume formulation. The convective terms are upwinded: A linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The results of a study comparing the accuracy and positivity of two classes of cell-centered, viscous gradient reconstruction procedures is briefly summarized. Adaptively refined solutions of the Navier-Stokes equations are shown using the more robust of these gradient reconstruction procedures, where the results computed by the Cartesian approach are compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.
Geometry modeling and grid generation using 3D NURBS control volume
NASA Technical Reports Server (NTRS)
Yu, Tzu-Yi; Soni, Bharat K.; Shih, Ming-Hsin
1995-01-01
The algorithms for volume grid generation using NURBS geometric representation are presented. The parameterization algorithm is enhanced to yield a desired physical distribution on the curve, surface and volume. This approach bridges the gap between CAD surface/volume definition and surface/volume grid generation. Computational examples associated with practical configurations have shown the utilization of these algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maire, Pierre-Henri, E-mail: maire@celia.u-bordeaux1.fr; Abgrall, Rémi, E-mail: remi.abgrall@math.u-bordeau1.fr; Breil, Jérôme, E-mail: breil@celia.u-bordeaux1.fr
2013-02-15
In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic–plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs themore » von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.« less
NASA Astrophysics Data System (ADS)
Boscheri, Walter; Dumbser, Michael
2017-10-01
We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes, like molecular viscosity or heat conduction. High order piecewise polynomials of degree N are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach, making use of an element-local space-time Galerkin finite element predictor. A novel nodal solver algorithm based on the HLL flux is derived to compute the velocity for each nodal degree of freedom that describes the current mesh geometry. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Each technique generates a corresponding number of geometrical degrees of freedom needed to describe the current mesh configuration and which must be considered by the nodal solver for determining the grid velocity. The connection of the old mesh configuration at time tn with the new one at time t n + 1 provides the space-time control volumes on which the governing equations have to be integrated in order to obtain the time evolution of the discrete solution. Our numerical method belongs to the category of so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry (including a possible rezoning step) directly during the computation of the numerical fluxes. We emphasize that our method is a moving mesh method, as opposed to total Lagrangian formulations that are based on a fixed computational grid and which instead evolve the mapping of the reference configuration to the current one. Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume limiter method recently developed in [62] for fixed unstructured grids. In this approach, the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme is verified against a set of physical and numerical detection criteria, such as the positivity of pressure and density, the absence of floating point errors (NaN) and the satisfaction of a relaxed discrete maximum principle (DMP) in the sense of polynomials. Those cells which do not satisfy all of the above criteria are flagged as troubled cells and are recomputed at the aid of a more robust second order TVD finite volume scheme. To preserve the subcell resolution capability of the original DG scheme, the FV limiter is run on a sub-grid that is 2 N + 1 times finer compared to the mesh of the original unlimited DG scheme. The new subcell averages are then gathered back into a high order DG polynomial by a usual conservative finite volume reconstruction operator. The numerical convergence rates of the new ALE ADER-DG schemes are studied up to fourth order in space and time and several test problems are simulated in order to check the accuracy and the robustness of the proposed numerical method in the context of the Euler and Navier-Stokes equations for compressible gas dynamics, considering both inviscid and viscous fluids. Finally, an application inspired by Inertial Confinement Fusion (ICF) type flows is considered by solving the Euler equations and the PDE of viscous and resistive magnetohydrodynamics (VRMHD).
Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Frederickson, Paul O.
1990-01-01
High order accurate finite-volume schemes for solving the Euler equations of gasdynamics are developed. Central to the development of these methods are the construction of a k-exact reconstruction operator given cell-averaged quantities and the use of high order flux quadrature formulas. General polygonal control volumes (with curved boundary edges) are considered. The formulations presented make no explicit assumption as to complexity or convexity of control volumes. Numerical examples are presented for Ringleb flow to validate the methodology.
An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Lessard, Victor R.
1990-01-01
The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.
The Volume Grid Manipulator (VGM): A Grid Reusability Tool
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1997-01-01
This document is a manual describing how to use the Volume Grid Manipulation (VGM) software. The code is specifically designed to alter or manipulate existing surface and volume structured grids to improve grid quality through the reduction of grid line skewness, removal of negative volumes, and adaption of surface and volume grids to flow field gradients. The software uses a command language to perform all manipulations thereby offering the capability of executing multiple manipulations on a single grid during an execution of the code. The command language can be input to the VGM code by a UNIX style redirected file, or interactively while the code is executing. The manual consists of 14 sections. The first is an introduction to grid manipulation; where it is most applicable and where the strengths of such software can be utilized. The next two sections describe the memory management and the manipulation command language. The following 8 sections describe simple and complex manipulations that can be used in conjunction with one another to smooth, adapt, and reuse existing grids for various computations. These are accompanied by a tutorial section that describes how to use the commands and manipulations to solve actual grid generation problems. The last two sections are a command reference guide and trouble shooting sections to aid in the use of the code as well as describe problems associated with generated scripts for manipulation control.
Grid Generation Techniques Utilizing the Volume Grid Manipulator
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1998-01-01
This paper presents grid generation techniques available in the Volume Grid Manipulation (VGM) code. The VGM code is designed to manipulate existing line, surface and volume grids to improve the quality of the data. It embodies an easy to read rich language of commands that enables such alterations as topology changes, grid adaption and smoothing. Additionally, the VGM code can be used to construct simplified straight lines, splines, and conic sections which are common curves used in the generation and manipulation of points, lines, surfaces and volumes (i.e., grid data). These simple geometric curves are essential in the construction of domain discretizations for computational fluid dynamic simulations. By comparison to previously established methods of generating these curves interactively, the VGM code provides control of slope continuity and grid point-to-point stretchings as well as quick changes in the controlling parameters. The VGM code offers the capability to couple the generation of these geometries with an extensive manipulation methodology in a scripting language. The scripting language allows parametric studies of a vehicle geometry to be efficiently performed to evaluate favorable trends in the design process. As examples of the powerful capabilities of the VGM code, a wake flow field domain will be appended to an existing X33 Venturestar volume grid; negative volumes resulting from grid expansions to enable flow field capture on a simple geometry, will be corrected; and geometrical changes to a vehicle component of the X33 Venturestar will be shown.
Tetrahedral Finite-Volume Solutions to the Navier-Stokes Equations on Complex Configurations
NASA Technical Reports Server (NTRS)
Frink, Neal T.; Pirzadeh, Shahyar Z.
1998-01-01
A review of the algorithmic features and capabilities of the unstructured-grid flow solver USM3Dns is presented. This code, along with the tetrahedral grid generator, VGRIDns, is being extensively used throughout the U.S. for solving the Euler and Navier-Stokes equations on complex aerodynamic problems. Spatial discretization is accomplished by a tetrahedral cell-centered finite-volume formulation using Roe's upwind flux difference splitting. The fluxes are limited by either a Superbee or MinMod limiter. Solution reconstruction within the tetrahedral cells is accomplished with a simple, but novel, multidimensional analytical formula. Time is advanced by an implicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the near-wall region of the boundary layer. The issues of accuracy and robustness of USM3Dns Navier-Stokes capabilities are addressed for a flat-plate boundary layer, and a full F-16 aircraft with external stores at transonic speed.
A grid generation system for multi-disciplinary design optimization
NASA Technical Reports Server (NTRS)
Jones, William T.; Samareh-Abolhassani, Jamshid
1995-01-01
A general multi-block three-dimensional volume grid generator is presented which is suitable for Multi-Disciplinary Design Optimization. The code is timely, robust, highly automated, and written in ANSI 'C' for platform independence. Algebraic techniques are used to generate and/or modify block face and volume grids to reflect geometric changes resulting from design optimization. Volume grids are generated/modified in a batch environment and controlled via an ASCII user input deck. This allows the code to be incorporated directly into the design loop. Generated volume grids are presented for a High Speed Civil Transport (HSCT) Wing/Body geometry as well a complex HSCT configuration including horizontal and vertical tails, engine nacelles and pylons, and canard surfaces.
A simple algorithm to improve the performance of the WENO scheme on non-uniform grids
NASA Astrophysics Data System (ADS)
Huang, Wen-Feng; Ren, Yu-Xin; Jiang, Xiong
2018-02-01
This paper presents a simple approach for improving the performance of the weighted essentially non-oscillatory (WENO) finite volume scheme on non-uniform grids. This technique relies on the reformulation of the fifth-order WENO-JS (WENO scheme presented by Jiang and Shu in J. Comput. Phys. 126:202-228, 1995) scheme designed on uniform grids in terms of one cell-averaged value and its left and/or right interfacial values of the dependent variable. The effect of grid non-uniformity is taken into consideration by a proper interpolation of the interfacial values. On non-uniform grids, the proposed scheme is much more accurate than the original WENO-JS scheme, which was designed for uniform grids. When the grid is uniform, the resulting scheme reduces to the original WENO-JS scheme. In the meantime, the proposed scheme is computationally much more efficient than the fifth-order WENO scheme designed specifically for the non-uniform grids. A number of numerical test cases are simulated to verify the performance of the present scheme.
Noorafshan, Ali; Karimi, Fatemeh; Kamali, Ali-Mohammad; Karbalay-Doust, Saied; Nami, Mohammad
2017-11-15
The present study examined the consequences of rapid eye-movement sleep-deprivation (REM-SD) with or without curcumin treatment. The outcome measures comprised quantitative features in the three-dimensional reconstruction (3DR) CA1 and dentate gyrus in experimental and control animals using stereological procedures. Male rats were arbitrarily assigned to nine groups based on the intervention and treatment administered including: 1-cage control+distilled water, 2-cage control+curcumin (100mg/kg/day), 3-cage control+olive oil, 4-REM-SD+distilled water, 5-REM-SD+curcumin, 6-REM-SD+olive oil, 7-grid-floor control+distilled water, 8-grid-floor control+curcumin, and 9-grid-floor control+olive oil. Animals in the latter three groups were placed on wire-mesh grids in the sleep-deprivation box. REM-SD was induced by an apparatus comprising a water tank and multiple platforms. After a period of 21days, rats were submitted to the novel object-recognition task. Later, their brains were excised and evaluated using stereological methods. Our results indicated a respective 29% and 31% reduction in the total volume of CA1, and dentate gyrus in REM-SD+distilled water group as compared to the grid-floor control+distilled water group (p<0.05). Other than the above, the overall number of the pyramidal cells of CA1 and granular cells of dentate gyrus in the sleep-deprived group were found to be reduced by 48% and 25%, respectively. The REM-SD+distilled water group also exhibited impaired object recognition memory and deformed three-dimensional reconstructions of these regions. The volume, cell number, reconstruction, object recognition time, and body weight were however recovered in the REM-SD+curcumin compared to the REM-SD+distilled water group. This suggests the potential neuro-restorative effects of curcumin in our model. Copyright © 2017 Elsevier Inc. All rights reserved.
An implicit numerical model for multicomponent compressible two-phase flow in porous media
NASA Astrophysics Data System (ADS)
Zidane, Ali; Firoozabadi, Abbas
2015-11-01
We introduce a new implicit approach to model multicomponent compressible two-phase flow in porous media with species transfer between the phases. In the implicit discretization of the species transport equation in our formulation we calculate for the first time the derivative of the molar concentration of component i in phase α (cα, i) with respect to the total molar concentration (ci) under the conditions of a constant volume V and temperature T. The species transport equation is discretized by the finite volume (FV) method. The fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides the pressure at grid-cell interfaces in addition to the pressure at the grid-cell center. The efficiency of the proposed model is demonstrated by comparing our results with three existing implicit compositional models. Our algorithm has low numerical dispersion despite the fact it is based on first-order space discretization. The proposed algorithm is very robust.
Advanced Unstructured Grid Generation for Complex Aerodynamic Applications
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2008-01-01
A new approach for distribution of grid points on the surface and in the volume has been developed and implemented in the NASA unstructured grid generation code VGRID. In addition to the point and line sources of prior work, the new approach utilizes surface and volume sources for automatic curvature-based grid sizing and convenient point distribution in the volume. A new exponential growth function produces smoother and more efficient grids and provides superior control over distribution of grid points in the field. All types of sources support anisotropic grid stretching which not only improves the grid economy but also provides more accurate solutions for certain aerodynamic applications. The new approach does not require a three-dimensional background grid as in the previous methods. Instead, it makes use of an efficient bounding-box auxiliary medium for storing grid parameters defined by surface sources. The new approach is less memory-intensive and more efficient computationally. The grids generated with the new method either eliminate the need for adaptive grid refinement for certain class of problems or provide high quality initial grids that would enhance the performance of many adaptation methods.
Detecting vapour bubbles in simulations of metastable water
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal, E-mail: christoph.dellago@univie.ac.at, E-mail: cvaleriani@quim.ucm.es
2014-11-14
The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguishmore » between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.« less
Computational methods for vortex dominated compressible flows
NASA Technical Reports Server (NTRS)
Murman, Earll M.
1987-01-01
The principal objectives were to: understand the mechanisms by which Euler equation computations model leading edge vortex flows; understand the vortical and shock wave structures that may exist for different wing shapes, angles of incidence, and Mach numbers; and compare calculations with experiments in order to ascertain the limitations and advantages of Euler equation models. The initial approach utilized the cell centered finite volume Jameson scheme. The final calculation utilized a cell vertex finite volume method on an unstructured grid. Both methods used Runge-Kutta four stage schemes for integrating the equations. The principal findings are briefly summarized.
Advanced Unstructured Grid Generation for Complex Aerodynamic Applications
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar
2010-01-01
A new approach for distribution of grid points on the surface and in the volume has been developed. In addition to the point and line sources of prior work, the new approach utilizes surface and volume sources for automatic curvature-based grid sizing and convenient point distribution in the volume. A new exponential growth function produces smoother and more efficient grids and provides superior control over distribution of grid points in the field. All types of sources support anisotropic grid stretching which not only improves the grid economy but also provides more accurate solutions for certain aerodynamic applications. The new approach does not require a three-dimensional background grid as in the previous methods. Instead, it makes use of an efficient bounding-box auxiliary medium for storing grid parameters defined by surface sources. The new approach is less memory-intensive and more efficient computationally. The grids generated with the new method either eliminate the need for adaptive grid refinement for certain class of problems or provide high quality initial grids that would enhance the performance of many adaptation methods.
Rapid Airplane Parametric Input Design(RAPID)
NASA Technical Reports Server (NTRS)
Smith, Robert E.; Bloor, Malcolm I. G.; Wilson, Michael J.; Thomas, Almuttil M.
2004-01-01
An efficient methodology is presented for defining a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. A small set of design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tail, horizontal tail, and canard components. The wing, tail, and canard components are manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. Grid sensitivity is obtained by applying the automatic differentiation precompiler ADIFOR to software for the grid generation. The computed surface grids, volume grids, and sensitivity derivatives are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations.
NASA Astrophysics Data System (ADS)
Averkin, Sergey N.; Gatsonis, Nikolaos A.
2018-06-01
An unstructured electrostatic Particle-In-Cell (EUPIC) method is developed on arbitrary tetrahedral grids for simulation of plasmas bounded by arbitrary geometries. The electric potential in EUPIC is obtained on cell vertices from a finite volume Multi-Point Flux Approximation of Gauss' law using the indirect dual cell with Dirichlet, Neumann and external circuit boundary conditions. The resulting matrix equation for the nodal potential is solved with a restarted generalized minimal residual method (GMRES) and an ILU(0) preconditioner algorithm, parallelized using a combination of node coloring and level scheduling approaches. The electric field on vertices is obtained using the gradient theorem applied to the indirect dual cell. The algorithms for injection, particle loading, particle motion, and particle tracking are parallelized for unstructured tetrahedral grids. The algorithms for the potential solver, electric field evaluation, loading, scatter-gather algorithms are verified using analytic solutions for test cases subject to Laplace and Poisson equations. Grid sensitivity analysis examines the L2 and L∞ norms of the relative error in potential, field, and charge density as a function of edge-averaged and volume-averaged cell size. Analysis shows second order of convergence for the potential and first order of convergence for the electric field and charge density. Temporal sensitivity analysis is performed and the momentum and energy conservation properties of the particle integrators in EUPIC are examined. The effects of cell size and timestep on heating, slowing-down and the deflection times are quantified. The heating, slowing-down and the deflection times are found to be almost linearly dependent on number of particles per cell. EUPIC simulations of current collection by cylindrical Langmuir probes in collisionless plasmas show good comparison with previous experimentally validated numerical results. These simulations were also used in a parallelization efficiency investigation. Results show that the EUPIC has efficiency of more than 80% when the simulation is performed on a single CPU from a non-uniform memory access node and the efficiency is decreasing as the number of threads further increases. The EUPIC is applied to the simulation of the multi-species plasma flow over a geometrically complex CubeSat in Low Earth Orbit. The EUPIC potential and flowfield distribution around the CubeSat exhibit features that are consistent with previous simulations over simpler geometrical bodies.
Volume of Valley Networks on Mars and Its Hydrologic Implications
NASA Astrophysics Data System (ADS)
Luo, W.; Cang, X.; Howard, A. D.; Heo, J.
2015-12-01
Valley networks on Mars are river-like features that offer the best evidence for water activities in its geologic past. Previous studies have extracted valley network lines automatically from digital elevation model (DEM) data and manually from remotely sensed images. The volume of material removed by valley networks is an important parameter that could help us infer the amount of water needed to carve the valleys. A progressive black top hat (PBTH) transformation algorithm has been adapted from image processing to extract valley volume and successfully applied to simulated landform and Ma'adim Valles, Mars. However, the volume of valley network excavation on Mars has not been estimated on a global scale. In this study, the PBTH method was applied to the whole Mars to estimate this important parameter. The process was automated with Python in ArcGIS. Polygons delineating the valley associated depressions were generated by using a multi-flow direction growth method, which started with selected high point seeds on a depth grid (essentially an inverted valley) created by PBTH transformation and grew outward following multi-flow direction on the depth grid. Two published versions of valley network lines were integrated to automatically select depression polygons that represent the valleys. Some crater depressions that are connected with valleys and thus selected in the previous step were removed by using information from a crater database. Because of large distortion associated with global dataset in projected maps, the volume of each cell within a valley was calculated using the depth of the cell multiplied by the spherical area of the cell. The volumes of all the valley cells were then summed to produce the estimate of global valley excavation volume. Our initial result of this estimate was ~2.4×1014 m3. Assuming a sediment density of 2900 kg/m3, a porosity of 0.35, and a sediment load of 1.5 kg/m3, the global volume of water needed to carve the valleys was estimated to be ~7.1×1017 m3. Because of the coarse resolution of MOLA data, this is a conservative lower bound. Comparing with the hypothesized northern ocean volume 2.3×1016 m3 estimated by Carr and Head (2003), our estimate of water volume suggests and confirms an active hydrologic cycle for early Mars. Further hydrologic analysis will improve the estimate accuracy.
Dickinson, J.E.; James, S.C.; Mehl, S.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Faunt, C.C.; Eddebbarh, A.-A.
2007-01-01
A flexible, robust method for linking parent (regional-scale) and child (local-scale) grids of locally refined models that use different numerical methods is developed based on a new, iterative ghost-node method. Tests are presented for two-dimensional and three-dimensional pumped systems that are homogeneous or that have simple heterogeneity. The parent and child grids are simulated using the block-centered finite-difference MODFLOW and control-volume finite-element FEHM models, respectively. The models are solved iteratively through head-dependent (child model) and specified-flow (parent model) boundary conditions. Boundary conditions for models with nonmatching grids or zones of different hydraulic conductivity are derived and tested against heads and flows from analytical or globally-refined models. Results indicate that for homogeneous two- and three-dimensional models with matched grids (integer number of child cells per parent cell), the new method is nearly as accurate as the coupling of two MODFLOW models using the shared-node method and, surprisingly, errors are slightly lower for nonmatching grids (noninteger number of child cells per parent cell). For heterogeneous three-dimensional systems, this paper compares two methods for each of the two sets of boundary conditions: external heads at head-dependent boundary conditions for the child model are calculated using bilinear interpolation or a Darcy-weighted interpolation; specified-flow boundary conditions for the parent model are calculated using model-grid or hydrogeologic-unit hydraulic conductivities. Results suggest that significantly more accurate heads and flows are produced when both Darcy-weighted interpolation and hydrogeologic-unit hydraulic conductivities are used, while the other methods produce larger errors at the boundary between the regional and local models. The tests suggest that, if posed correctly, the ghost-node method performs well. Additional testing is needed for highly heterogeneous systems. ?? 2007 Elsevier Ltd. All rights reserved.
Rapid Structured Volume Grid Smoothing and Adaption Technique
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
2006-01-01
A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reductions in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.
Rapid Structured Volume Grid Smoothing and Adaption Technique
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
2004-01-01
A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reduction in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.
The three-dimensional Multi-Block Advanced Grid Generation System (3DMAGGS)
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Weilmuenster, Kenneth J.
1993-01-01
As the size and complexity of three dimensional volume grids increases, there is a growing need for fast and efficient 3D volumetric elliptic grid solvers. Present day solvers are limited by computational speed and do not have all the capabilities such as interior volume grid clustering control, viscous grid clustering at the wall of a configuration, truncation error limiters, and convergence optimization residing in one code. A new volume grid generator, 3DMAGGS (Three-Dimensional Multi-Block Advanced Grid Generation System), which is based on the 3DGRAPE code, has evolved to meet these needs. This is a manual for the usage of 3DMAGGS and contains five sections, including the motivations and usage, a GRIDGEN interface, a grid quality analysis tool, a sample case for verifying correct operation of the code, and a comparison to both 3DGRAPE and GRIDGEN3D. Since it was derived from 3DGRAPE, this technical memorandum should be used in conjunction with the 3DGRAPE manual (NASA TM-102224).
Assessment of the Unstructured Grid Software TetrUSS for Drag Prediction of the DLR-F4 Configuration
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.; Frink, Neal T.
2002-01-01
An application of the NASA unstructured grid software system TetrUSS is presented for the prediction of aerodynamic drag on a transport configuration. The paper briefly describes the underlying methodology and summarizes the results obtained on the DLR-F4 transport configuration recently presented in the first AIAA computational fluid dynamics (CFD) Drag Prediction Workshop. TetrUSS is a suite of loosely coupled unstructured grid CFD codes developed at the NASA Langley Research Center. The meshing approach is based on the advancing-front and the advancing-layers procedures. The flow solver employs a cell-centered, finite volume scheme for solving the Reynolds Averaged Navier-Stokes equations on tetrahedral grids. For the present computations, flow in the viscous sublayer has been modeled with an analytical wall function. The emphasis of the paper is placed on the practicality of the methodology for accurately predicting aerodynamic drag data.
NASA Technical Reports Server (NTRS)
White, Jeffery A.; Baurle, Robert A.; Passe, Bradley J.; Spiegel, Seth C.; Nishikawa, Hiroaki
2017-01-01
The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured grids using a spatially-elliptic, 2nd-order accurate, cell-centered, finite-volume method has been recently implemented in the VULCAN-CFD code. This paper describes the key numerical methods and techniques that were found to be required to robustly obtain accurate solutions to hypersonic flows on non-hex-dominant unstructured grids. The methods and techniques described include: an augmented stencil, weighted linear least squares, cell-average gradient method, a robust multidimensional cell-average gradient-limiter process that is consistent with the augmented stencil of the cell-average gradient method and a cell-face gradient method that contains a cell skewness sensitive damping term derived using hyperbolic diffusion based concepts. A data-parallel matrix-based symmetric Gauss-Seidel point-implicit scheme, used to solve the governing equations, is described and shown to be more robust and efficient than a matrix-free alternative. In addition, a y+ adaptive turbulent wall boundary condition methodology is presented. This boundary condition methodology is deigned to automatically switch between a solve-to-the-wall and a wall-matching-function boundary condition based on the local y+ of the 1st cell center off the wall. The aforementioned methods and techniques are then applied to a series of hypersonic and supersonic turbulent flat plate unit tests to examine the efficiency, robustness and convergence behavior of the implicit scheme and to determine the ability of the solve-to-the-wall and y+ adaptive turbulent wall boundary conditions to reproduce the turbulent law-of-the-wall. Finally, the thermally perfect, chemically frozen, Mach 7.8 turbulent flow of air through a scramjet flow-path is computed and compared with experimental data to demonstrate the robustness, accuracy and convergence behavior of the unstructured-grid solver for a realistic 3-D geometry on a non-hex-dominant grid.
Preparing CAM-SE for Multi-Tracer Applications: CAM-SE-Cslam
NASA Astrophysics Data System (ADS)
Lauritzen, P. H.; Taylor, M.; Goldhaber, S.
2014-12-01
The NCAR-DOE spectral element (SE) dynamical core comes from the HOMME (High-Order Modeling Environment; Dennis et al., 2012) and it is available in CAM. The CAM-SE dynamical core is designed with intrinsic mimetic properties guaranteeing total energy conservation (to time-truncation errors) and mass-conservation, and has demonstrated excellent scalability on massively parallel compute platforms (Taylor, 2011). For applications involving many tracers such as chemistry and biochemistry modeling, CAM-SE has been found to be significantly more computationally costly than the current "workhorse" model CAM-FV (Finite-Volume; Lin 2004). Hence a multi-tracer efficient scheme, called the CSLAM (Conservative Semi-Lagrangian Multi-tracer; Lauritzen et al., 2011) scheme, has been implemented in the HOMME (Erath et al., 2012). The CSLAM scheme has recently been cast in flux-form in HOMME so that it can be coupled to the SE dynamical core through conventional flux-coupling methods where the SE dynamical core provides background air mass fluxes to CSLAM. Since the CSLAM scheme makes use of a finite-volume gnomonic cubed-sphere grid and hence does not operate on the SE quadrature grid, the capability of running tracer advection, the physical parameterization suite and dynamics on separate grids has been implemented in CAM-SE. The default CAM-SE-CSLAM setup is to run physics on the quasi-equal area CSLAM grid. The capability of running physics on a different grid than the SE dynamical core may provide a more consistent coupling since the physics grid option operates with quasi-equal-area cell average values rather than non-equi-distant grid-point (SE quadrature point) values. Preliminary results on the performance of CAM-SE-CSLAM will be presented.
Light and dark matter in the universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This simulation follows the growth of density perturbations in both gas and dark matter components in a volume 1 billion light years on a side beginning shortly after the Big Bang and evolved to half the present age of the universe. It calculates the gravitational clumping of intergalactic gas and dark matter modeled using a computational grid of 64 billion cells and 64 billion dark matter particles. The simulation uses a computational grid of 4096^3 cells and took over 4,000,000 CPU hours to complete. Read more: http://www.anl.gov/Media_Center/News/2010/news100104.html. Credits: Science: Michael L. Norman, Robert Harkness, Pascal Paschos and Rick Wagner Visualization:more » Mark Herald, Joseph A. Insley, Eric C. Olson and Michael E. Papka« less
Occupancy change detection system and method
Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID
2009-09-01
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for producing an occupancy grid map of an environment around the robot, scanning the environment to generate a current obstacle map relative to a current robot position, and converting the current obstacle map to a current occupancy grid map. The instructions also include processing each grid cell in the occupancy grid map. Within the processing of each grid cell, the instructions include comparing each grid cell in the occupancy grid map to a corresponding grid cell in the current occupancy grid map. For grid cells with a difference, the instructions include defining a change vector for each changed grid cell, wherein the change vector includes a direction from the robot to the changed grid cell and a range from the robot to the changed grid cell.
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel; Wang, Z. J.
2004-01-01
A three-dimensional, high-order, conservative, and efficient discontinuous spectral volume (SV) method for the solutions of Maxwell's equations on unstructured grids is presented. The concept of discontinuous 2nd high-order loca1 representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) method, but instead of using a Galerkin finite-element formulation, the SV method is based on a finite-volume approach to attain a simpler formulation. Conventional unstructured finite-volume methods require data reconstruction based on the least-squares formulation using neighboring cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In the SV method, one starts with a relatively coarse grid of triangles or tetrahedra, called spectral volumes (SVs), and partition each SV into a number of structured subcells, called control volumes (CVs), that support a polynomial expansion of a desired degree of precision. The unknowns are cell averages over CVs. If all the SVs are partitioned in a geometrically similar manner, the reconstruction becomes universal as a weighted sum of unknowns, and only a few universal coefficients need to be stored for the surface integrals over CV faces. Since the solution is discontinuous across the SV boundaries, a Riemann solver is thus necessary to maintain conservation. In the paper, multi-parameter and symmetric SV partitions, up to quartic for triangle and cubic for tetrahedron, are first presented. The corresponding weight coefficients for CV face integrals in terms of CV cell averages for each partition are analytically determined. These discretization formulas are then applied to the integral form of the Maxwell equations. All numerical procedures for outer boundary, material interface, zonal interface, and interior SV face are unified with a single characteristic formulation. The load balancing in a massive parallel computing environment is therefore easier to achieve. A parameter is introduced in the Riemann solver to control the strength of the smoothing term. Important aspects of the data structure and its effects to communication and the optimum use of cache memory are discussed. Results will be presented for plane TE and TM waves incident on a perfectly conducting cylinder for up to fifth order of accuracy, and a plane wave incident on a perfectly conducting sphere for up to fourth order of accuracy. Comparisons are made with exact solutions for these cases.
Rapid Airplane Parametric Input Design (RAPID)
NASA Technical Reports Server (NTRS)
Smith, Robert E.
1995-01-01
RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool ADIFOR to the grid generation program. The output of ADIFOR is a new source code containing the old code plus expressions for derivatives of specified dependent variables (grid coordinates) with respect to specified independent variables (design parameters). The RAPID methodology and software provide a means of rapidly defining numerical prototypes, grids, and grid sensitivity of a class of airplane configurations. This technology and software is highly useful for CFD research for preliminary design and optimization processes.
Correlation of live-cell imaging with volume scanning electron microscopy.
Lucas, Miriam S; Günthert, Maja; Bittermann, Anne Greet; de Marco, Alex; Wepf, Roger
2017-01-01
Live-cell imaging is one of the most widely applied methods in live science. Here we describe two setups for live-cell imaging, which can easily be combined with volume SEM for correlative studies. The first procedure applies cell culture dishes with a gridded glass support, which can be used for any light microscopy modality. The second approach is a flow-chamber setup based on Ibidi μ-slides. Both live-cell imaging strategies can be followed up with serial blockface- or focused ion beam-scanning electron microscopy. Two types of resin embedding after heavy metal staining and dehydration are presented making best use of the particular advantages of each imaging modality: classical en-bloc embedding and thin-layer plastification. The latter can be used only for focused ion beam-scanning electron microscopy, but is advantageous for studying cell-interactions with specific substrates, or when the substrate cannot be removed. En-bloc embedding has diverse applications and can be applied for both described volume scanning electron microscopy techniques. Finally, strategies for relocating the cell of interest are discussed for both embedding approaches and in respect to the applied light and scanning electron microscopy methods. Copyright © 2017 Elsevier Inc. All rights reserved.
Further Improvement in 3DGRAPE
NASA Technical Reports Server (NTRS)
Alter, Stephen
2004-01-01
3DGRAPE/AL:V2 denotes version 2 of the Three-Dimensional Grids About Anything by Poisson's Equation with Upgrades from Ames and Langley computer program. The preceding version, 3DGRAPE/AL, was described in Improved 3DGRAPE (ARC-14069) NASA Tech Briefs, Vol. 21, No. 5 (May 1997), page 66. These programs are so named because they generate volume grids by iteratively solving Poisson's Equation in three dimensions. The grids generated by the various versions of 3DGRAPE have been used in computational fluid dynamics (CFD). The main novel feature of 3DGRAPE/AL:V2 is the incorporation of an optional scheme in which anisotropic Lagrange-based trans-finite interpolation (ALBTFI) is coupled with exponential decay functions to compute and blend interior source terms. In the input to 3DGRAPE/AL:V2 the user can specify whether or not to invoke ALBTFI in combination with exponential-decay controls, angles, and cell size for controlling the character of grid lines. Of the known programs that solve elliptic partial differential equations for generating grids, 3DGRAPE/AL:V2 is the only code that offers a combination of speed and versatility with most options for controlling the densities and other characteristics of grids for CFD.
Notes on Accuracy of Finite-Volume Discretization Schemes on Irregular Grids
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2011-01-01
Truncation-error analysis is a reliable tool in predicting convergence rates of discretization errors on regular smooth grids. However, it is often misleading in application to finite-volume discretization schemes on irregular (e.g., unstructured) grids. Convergence of truncation errors severely degrades on general irregular grids; a design-order convergence can be achieved only on grids with a certain degree of geometric regularity. Such degradation of truncation-error convergence does not necessarily imply a lower-order convergence of discretization errors. In these notes, irregular-grid computations demonstrate that the design-order discretization-error convergence can be achieved even when truncation errors exhibit a lower-order convergence or, in some cases, do not converge at all.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Møyner, Olav, E-mail: olav.moyner@sintef.no; Lie, Knut-Andreas, E-mail: knut-andreas.lie@sintef.no
2016-01-01
A wide variety of multiscale methods have been proposed in the literature to reduce runtime and provide better scaling for the solution of Poisson-type equations modeling flow in porous media. We present a new multiscale restricted-smoothed basis (MsRSB) method that is designed to be applicable to both rectilinear grids and unstructured grids. Like many other multiscale methods, MsRSB relies on a coarse partition of the underlying fine grid and a set of local prolongation operators (multiscale basis functions) that map unknowns associated with the fine grid cells to unknowns associated with blocks in the coarse partition. These mappings are constructedmore » by restricted smoothing: Starting from a constant, a localized iterative scheme is applied directly to the fine-scale discretization to compute prolongation operators that are consistent with the local properties of the differential operators. The resulting method has three main advantages: First of all, both the coarse and the fine grid can have general polyhedral geometry and unstructured topology. This means that partitions and good prolongation operators can easily be constructed for complex models involving high media contrasts and unstructured cell connections introduced by faults, pinch-outs, erosion, local grid refinement, etc. In particular, the coarse partition can be adapted to geological or flow-field properties represented on cells or faces to improve accuracy. Secondly, the method is accurate and robust when compared to existing multiscale methods and does not need expensive recomputation of local basis functions to account for transient behavior: Dynamic mobility changes are incorporated by continuing to iterate a few extra steps on existing basis functions. This way, the cost of updating the prolongation operators becomes proportional to the amount of change in fluid mobility and one reduces the need for expensive, tolerance-based updates. Finally, since the MsRSB method is formulated on top of a cell-centered, conservative, finite-volume method, it is applicable to any flow model in which one can isolate a pressure equation. Herein, we only discuss single and two-phase incompressible models. Compressible flow, e.g., as modeled by the black-oil equations, is discussed in a separate paper.« less
NASA Astrophysics Data System (ADS)
Diggs, Angela; Balachandar, Sivaramakrishnan
2015-06-01
The present work addresses the numerical methods required for particle-gas and particle-particle interactions in Eulerian-Lagrangian simulations of multiphase flow. Local volume fraction as seen by each particle is the quantity of foremost importance in modeling and evaluating such interactions. We consider a general multiphase flow with a distribution of particles inside a fluid flow discretized on an Eulerian grid. Particle volume fraction is needed both as a Lagrangian quantity associated with each particle and also as an Eulerian quantity associated with the flow. In Eulerian Projection (EP) methods, the volume fraction is first obtained within each cell as an Eulerian quantity and then interpolated to each particle. In Lagrangian Projection (LP) methods, the particle volume fraction is obtained at each particle and then projected onto the Eulerian grid. Traditionally, EP methods are used in multiphase flow, but sub-grid resolution can be obtained through use of LP methods. By evaluating the total error and its components we compare the performance of EP and LP methods. The standard von Neumann error analysis technique has been adapted for rigorous evaluation of rate of convergence. The methods presented can be extended to obtain accurate field representations of other Lagrangian quantities. Most importantly, we will show that such careful attention to numerical methodologies is needed in order to capture complex shock interaction with a bed of particles. Supported by U.S. Department of Defense SMART Program and the U.S. Department of Energy PSAAP-II program under Contract No. DE-NA0002378.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beddhu, M.; Jiang, M.Y.; Whitfield, D.L.
The original intention for this work was to impart the technology that was developed in the field of computational aeronautics to the field of computational physical oceanography. This technology transfer involved grid generation techniques and solution procedures to solve the governing equations over the grids thus generated. Specifically, boundary fitting non-orthogonal grids would be generated over a sphere taking into account the topography of the ocean floor and the topography of the continents. The solution methodology to be employed involved the application of an upwind, finite volume discretization procedure that uses higher order numerical fluxes at the cell faces tomore » discretize the governing equations and an implicit Newton relaxation technique to solve the discretized equations. This report summarizes the efforts put forth during the past three years to achieve these goals and indicates the future direction of this work as it is still an ongoing effort.« less
Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldhaber, Steve; Holland, Marika
The major goal of this project was to contribute improvements to the infrastructure of an Earth System Model in order to support research in the Multiscale Methods for Accurate, Efficient, and Scale-Aware models of the Earth System project. In support of this, the NCAR team accomplished two main tasks: improving input/output performance of the model and improving atmospheric model simulation quality. Improvement of the performance and scalability of data input and diagnostic output within the model required a new infrastructure which can efficiently handle the unstructured grids common in multiscale simulations. This allows for a more computationally efficient model, enablingmore » more years of Earth System simulation. The quality of the model simulations was improved by reducing grid-point noise in the spectral element version of the Community Atmosphere Model (CAM-SE). This was achieved by running the physics of the model using grid-cell data on a finite-volume grid.« less
A Grid Sourcing and Adaptation Study Using Unstructured Grids for Supersonic Boom Prediction
NASA Technical Reports Server (NTRS)
Carter, Melissa B.; Deere, Karen A.
2008-01-01
NASA created the Supersonics Project as part of the NASA Fundamental Aeronautics Program to advance technology that will make a supersonic flight over land viable. Computational flow solvers have lacked the ability to accurately predict sonic boom from the near to far field. The focus of this investigation was to establish gridding and adaptation techniques to predict near-to-mid-field (<10 body lengths below the aircraft) boom signatures at supersonic speeds using the USM3D unstructured grid flow solver. The study began by examining sources along the body the aircraft, far field sourcing and far field boundaries. The study then examined several techniques for grid adaptation. During the course of the study, volume sourcing was introduced as a new way to source grids using the grid generation code VGRID. Two different methods of using the volume sources were examined. The first method, based on manual insertion of the numerous volume sources, made great improvements in the prediction capability of USM3D for boom signatures. The second method (SSGRID), which uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid and pressure waves, showed similar results with a more automated approach. Due to SSGRID s results and ease of use, the rest of the study focused on developing a best practice using SSGRID. The best practice created by this study for boom predictions using the CFD code USM3D involved: 1) creating a small cylindrical outer boundary either 1 or 2 body lengths in diameter (depending on how far below the aircraft the boom prediction is required), 2) using a single volume source under the aircraft, and 3) using SSGRID to stretch and shear the grid to the desired length.
The self-organization of grid cells in 3D
Stella, Federico; Treves, Alessandro
2015-01-01
Do we expect periodic grid cells to emerge in bats, or perhaps dolphins, exploring a three-dimensional environment? How long will it take? Our self-organizing model, based on ring-rate adaptation, points at a complex answer. The mathematical analysis leads to asymptotic states resembling face centered cubic (FCC) and hexagonal close packed (HCP) crystal structures, which are calculated to be very close to each other in terms of cost function. The simulation of the full model, however, shows that the approach to such asymptotic states involves several sub-processes over distinct time scales. The smoothing of the initially irregular multiple fields of individual units and their arrangement into hexagonal grids over certain best planes are observed to occur relatively quickly, even in large 3D volumes. The correct mutual orientation of the planes, though, and the coordinated arrangement of different units, take a longer time, with the network showing no sign of convergence towards either a pure FCC or HCP ordering. DOI: http://dx.doi.org/10.7554/eLife.05913.001 PMID:25821989
Sinter of uniform, predictable, blemish-free nickel plaque for large aerospace nickel cadmium cells
NASA Technical Reports Server (NTRS)
Seiger, H. N.
1975-01-01
A series of nickel slurry compositions were tested. Important slurry parameters were found to be the nature of the binder, a pore former and the method of mixing. A slow roll mixing which is non-turbulent successfully eliminated entrapped air so that bubbles and pockets were avoided in the sinter. A slurry applicator was developed which enabled an equal quantity of slurry to be applied to both sides of the grid. Sintering in a furnace having a graded atmosphere characteristic, ranging from oxidizing to strongly reducing, improved adhesion of porous sinter to grid and resulted in a uniform welding of nickel particles to each other throughout the plaque. Sintering was carried out in a horizontal furnace having three heating zones and 16 heating control circuits. Tests used for plaque evaluation include (1) appearance, (2) grid location and adhesion, (3) mechanical strength, (4) thickness, (5) weight per unit area, (6) void volume per unit area, (7) surface area and (8) electrical resistance. Plaque material was impregnated using Heliotek proprietary processes and 100 AH cells were fabricated.
Probabilistic Learning by Rodent Grid Cells
Cheung, Allen
2016-01-01
Mounting evidence shows mammalian brains are probabilistic computers, but the specific cells involved remain elusive. Parallel research suggests that grid cells of the mammalian hippocampal formation are fundamental to spatial cognition but their diverse response properties still defy explanation. No plausible model exists which explains stable grids in darkness for twenty minutes or longer, despite being one of the first results ever published on grid cells. Similarly, no current explanation can tie together grid fragmentation and grid rescaling, which show very different forms of flexibility in grid responses when the environment is varied. Other properties such as attractor dynamics and grid anisotropy seem to be at odds with one another unless additional properties are assumed such as a varying velocity gain. Modelling efforts have largely ignored the breadth of response patterns, while also failing to account for the disastrous effects of sensory noise during spatial learning and recall, especially in darkness. Here, published electrophysiological evidence from a range of experiments are reinterpreted using a novel probabilistic learning model, which shows that grid cell responses are accurately predicted by a probabilistic learning process. Diverse response properties of probabilistic grid cells are statistically indistinguishable from rat grid cells across key manipulations. A simple coherent set of probabilistic computations explains stable grid fields in darkness, partial grid rescaling in resized arenas, low-dimensional attractor grid cell dynamics, and grid fragmentation in hairpin mazes. The same computations also reconcile oscillatory dynamics at the single cell level with attractor dynamics at the cell ensemble level. Additionally, a clear functional role for boundary cells is proposed for spatial learning. These findings provide a parsimonious and unified explanation of grid cell function, and implicate grid cells as an accessible neuronal population readout of a set of probabilistic spatial computations. PMID:27792723
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnack, D.D.; Lottati, I.; Mikic, Z.
The authors describe TRIM, a MHD code which uses finite volume discretization of the MHD equations on an unstructured adaptive grid of triangles in the poloidal plane. They apply it to problems related to modeling tokamak toroidal plasmas. The toroidal direction is treated by a pseudospectral method. Care was taken to center variables appropriately on the mesh and to construct a self adjoint diffusion operator for cell centered variables.
During running in place, grid cells integrate elapsed time and distance run
Kraus, Benjamin J.; Brandon, Mark P.; Robinson, Robert J.; Connerney, Michael A.; Hasselmo, Michael E.; Eichenbaum, Howard
2015-01-01
Summary The spatial scale of grid cells may be provided by self-generated motion information or by external sensory information from environmental cues. To determine whether grid cell activity reflects distance traveled or elapsed time independent of external information, we recorded grid cells as animals ran in place on a treadmill. Grid cell activity was only weakly influenced by location but most grid cells and other neurons recorded from the same electrodes strongly signaled a combination of distance and time, with some signaling only distance or time. Grid cells were more sharply tuned to time and distance than non-grid cells. Many grid cells exhibited multiple firing fields during treadmill running, parallel to the periodic firing fields observed in open fields, suggesting a common mode of information processing. These observations indicate that, in the absence of external dynamic cues, grid cells integrate self-generated distance and time information to encode a representation of experience. PMID:26539893
NASA Astrophysics Data System (ADS)
Simpson, J. J.; Taflove, A.
2005-12-01
We report a finite-difference time-domain (FDTD) computational solution of Maxwell's equations [1] that models the possibility of detecting and characterizing ionospheric disturbances above seismic regions. Specifically, we study anomalies in Schumann resonance spectra in the extremely low frequency (ELF) range below 30 Hz as observed in Japan caused by a hypothetical cylindrical ionospheric disturbance above Taiwan. We consider excitation of the global Earth-ionosphere waveguide by lightning in three major thunderstorm regions of the world: Southeast Asia, South America (Amazon region), and Africa. Furthermore, we investigate varying geometries and characteristics of the ionospheric disturbance above Taiwan. The FDTD technique used in this study enables a direct, full-vector, three-dimensional (3-D) time-domain Maxwell's equations calculation of round-the-world ELF propagation accounting for arbitrary horizontal as well as vertical geometrical and electrical inhomogeneities and anisotropies of the excitation, ionosphere, lithosphere, and oceans. Our entire-Earth model grids the annular lithosphere-atmosphere volume within 100 km of sea level, and contains over 6,500,000 grid-points (63 km laterally between adjacent grid points, 5 km radial resolution). We use our recently developed spherical geodesic gridding technique having a spatial discretization best described as resembling the surface of a soccer ball [2]. The grid is comprised entirely of hexagonal cells except for a small fixed number of pentagonal cells needed for completion. Grid-cell areas and locations are optimized to yield a smoothly varying area difference between adjacent cells, thereby maximizing numerical convergence. We compare our calculated results with measured data prior to the Chi-Chi earthquake in Taiwan as reported by Hayakawa et. al. [3]. Acknowledgement This work was suggested by Dr. Masashi Hayakawa, University of Electro-Communications, Chofugaoka, Chofu Tokyo. References [1] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method, 3rd. ed. Norwood, MA: Artech House, 2005. [2] M. Hayakawa, K. Ohta, A. P. Nickolaenko, and Y. Ando, "Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-Chi earthquake in Taiwan," Ann. Geophysicae, in press. [3] J. J. Simpson and A. Taflove, "3-D FDTD modeling of ULF/ELF propagation within the global Earth-ionosphere cavity using an optimized geodesic grid," Proc. IEEE AP-S International Symposium, Washington, D.C., July 2005.
NASA Astrophysics Data System (ADS)
Schwing, Alan Michael
For computational fluid dynamics, the governing equations are solved on a discretized domain of nodes, faces, and cells. The quality of the grid or mesh can be a driving source for error in the results. While refinement studies can help guide the creation of a mesh, grid quality is largely determined by user expertise and understanding of the flow physics. Adaptive mesh refinement is a technique for enriching the mesh during a simulation based on metrics for error, impact on important parameters, or location of important flow features. This can offload from the user some of the difficult and ambiguous decisions necessary when discretizing the domain. This work explores the implementation of adaptive mesh refinement in an implicit, unstructured, finite-volume solver. Consideration is made for applying modern computational techniques in the presence of hanging nodes and refined cells. The approach is developed to be independent of the flow solver in order to provide a path for augmenting existing codes. It is designed to be applicable for unsteady simulations and refinement and coarsening of the grid does not impact the conservatism of the underlying numerics. The effect on high-order numerical fluxes of fourth- and sixth-order are explored. Provided the criteria for refinement is appropriately selected, solutions obtained using adapted meshes have no additional error when compared to results obtained on traditional, unadapted meshes. In order to leverage large-scale computational resources common today, the methods are parallelized using MPI. Parallel performance is considered for several test problems in order to assess scalability of both adapted and unadapted grids. Dynamic repartitioning of the mesh during refinement is crucial for load balancing an evolving grid. Development of the methods outlined here depend on a dual-memory approach that is described in detail. Validation of the solver developed here against a number of motivating problems shows favorable comparisons across a range of regimes. Unsteady and steady applications are considered in both subsonic and supersonic flows. Inviscid and viscous simulations achieve similar results at a much reduced cost when employing dynamic mesh adaptation. Several techniques for guiding adaptation are compared. Detailed analysis of statistics from the instrumented solver enable understanding of the costs associated with adaptation. Adaptive mesh refinement shows promise for the test cases presented here. It can be considerably faster than using conventional grids and provides accurate results. The procedures for adapting the grid are light-weight enough to not require significant computational time and yield significant reductions in grid size.
Grid generation about complex three-dimensional aircraft configurations
NASA Technical Reports Server (NTRS)
Klopfer, Goetz H.
1991-01-01
The problem of obtaining three dimensional grids with sufficient resolution to resolve all the flow or other physical features of interest is addressed. The generation of a computational grid involves a series of compromises to resolve several conflicting requirements. On one hand, one would like the grid to be fine enough and not too skewed to reduce the numerical errors and to adequately resolve the pertinent physical features of the flow field about the aircraft. On the other hand, the capabilities of present or even future supercomputers are finite and the number of mesh points must be limited to a reasonable number: one which is usually much less than desired for numerical accuracy. One technique to overcome this limitation is the 'zonal' grid approach. In this method, the overall field is subdivided into smaller zones or blocks in each of which an independent grid is generated with enough grid density to resolve the flow features in that zone. The zonal boundaries or interfaces require special boundary conditions such that the conservation properties of the governing equations are observed. Much work was done in 3-D zonal approaches with nonconservative zonal interfaces. A 3-D zonal conservative interfacing method that is efficient and easy to implement was developed during the past year. During the course of the work, it became apparent that it would be much more feasible to do the conservative interfacing with cell-centered finite volume codes instead of the originally planned finite difference codes. Accordingly, the CNS code was converted to finite volume form. This new version of the code is named CNSFV. The original multi-zonal interfacing capability of the CNS code was enhanced by generalizing the procedure to allow for completely arbitrarily shaped zones with no mesh continuity between the zones. While this zoning capability works well for most flow situations, it is, however, still nonconservative. The conservative interface algorithm was also implemented but was not completely validated.
NASA Technical Reports Server (NTRS)
Gedney, Stephen D.; Lansing, Faiza
1993-01-01
The generalized Yee-algorithm is presented for the temporal full-wave analysis of planar microstrip devices. This algorithm has the significant advantage over the traditional Yee-algorithm in that it is based on unstructured and irregular grids. The robustness of the generalized Yee-algorithm is that structures that contain curved conductors or complex three-dimensional geometries can be more accurately, and much more conveniently modeled using standard automatic grid generation techniques. This generalized Yee-algorithm is based on the the time-marching solution of the discrete form of Maxwell's equations in their integral form. To this end, the electric and magnetic fields are discretized over a dual, irregular, and unstructured grid. The primary grid is assumed to be composed of general fitted polyhedra distributed throughout the volume. The secondary grid (or dual grid) is built up of the closed polyhedra whose edges connect the centroid's of adjacent primary cells, penetrating shared faces. Faraday's law and Ampere's law are used to update the fields normal to the primary and secondary grid faces, respectively. Subsequently, a correction scheme is introduced to project the normal fields onto the grid edges. It is shown that this scheme is stable, maintains second-order accuracy, and preserves the divergenceless nature of the flux densities. Finally, for computational efficiency the algorithm is structured as a series of sparse matrix-vector multiplications. Based on this scheme, the generalized Yee-algorithm has been implemented on vector and parallel high performance computers in a highly efficient manner.
NASA Astrophysics Data System (ADS)
Smith, Katharine A.; Schlag, Zachary; North, Elizabeth W.
2018-07-01
Coupled three-dimensional circulation and biogeochemical models predict changes in water properties that can be used to define fish habitat, including physiologically important parameters such as temperature, salinity, and dissolved oxygen. However, methods for calculating the volume of habitat defined by the intersection of multiple water properties are not well established for coupled three-dimensional models. The objectives of this research were to examine multiple methods for calculating habitat volume from three-dimensional model predictions, select the most robust approach, and provide an example application of the technique. Three methods were assessed: the "Step," "Ruled Surface", and "Pentahedron" methods, the latter of which was developed as part of this research. Results indicate that the analytical Pentahedron method is exact, computationally efficient, and preserves continuity in water properties between adjacent grid cells. As an example application, the Pentahedron method was implemented within the Habitat Volume Model (HabVol) using output from a circulation model with an Arakawa C-grid and physiological tolerances of juvenile striped bass (Morone saxatilis). This application demonstrates that the analytical Pentahedron method can be successfully applied to calculate habitat volume using output from coupled three-dimensional circulation and biogeochemical models, and it indicates that the Pentahedron method has wide application to aquatic and marine systems for which these models exist and physiological tolerances of organisms are known.
NASA Astrophysics Data System (ADS)
Haller, John W.; Botteron, K.; Brunsden, Barry S.; Sheline, Yvette I.; Walkup, Ronald K.; Black, Kevin J.; Gado, Mokhtar; Vannier, Michael W.
1994-09-01
Goal: To estimate hippocampal volumes from in vivo 3D magnetic resonance (MR) brain images and determine inter-rater and intra- rater repeatability. Objective: The precision and repeatability of hippocampal volume estimates using stereologic measurement methods is sought. Design: Five normal control and five schizophrenic subjects were MR scanned using a MPRAGE protocol. Fixed grid stereologic methods were used to estimate hippocampal volumes on a graphics workstation. The images were preprocessed using histogram analysis to standardize 3D MR image scaling from 16 to 8 bits and image volumes were interpolated to 0.5 mm3 isotropic voxels. The following variables were constant for the repeated stereologic measures: grid size, inter-slice distance (1.5 mm), voxel dimensions (0.5 mm3), number of hippocampi measured (10), total number of measurements per rater (40), and number of raters (5). Two grid sizes were tested to determine the coefficient of error associated with the number of sampled 'hits' (approximately 140 and 280) on the hippocampus. Starting slice and grid position were randomly varied to assure unbiased volume estimates. Raters were blind to subject identity, diagnosis, and side of the brain from which the image volumes were extracted and the order of subject presentation was randomized for each of the raters. Inter- and intra-rater intraclass correlation coefficients (ICC) were determined. Results: The data indicate excellent repeatability of fixed grid stereologic hippocampal volume measures when using an inter-slice distance of 1.5 mm and a 6.25 mm2 grid (inter-rater ICCs equals 0.86 - 0.97, intra- rater ICCs equals 0.85 - 0.97). One major advantage of the current study was the use of 3D MR data which significantly improved visualization of hippocampal boundaries by providing the ability to access simultaneous orthogonal views while counting stereological marks within the hippocampus. Conclusion: Stereological estimates of 3D volumes from 2D MR sections provide an inexpensive, unbiased and efficient way of determining brain structural volumes. The high precision and repeatability demonstrated with stereological MR volumetry suggest that these methods may be efficiently used to measure small volume reductions associated with schizophrenia and other brain disorders.
A Cartesian grid approach with hierarchical refinement for compressible flows
NASA Technical Reports Server (NTRS)
Quirk, James J.
1994-01-01
Many numerical studies of flows that involve complex geometries are limited by the difficulties in generating suitable grids. We present a Cartesian boundary scheme for two-dimensional, compressible flows that is unfettered by the need to generate a computational grid and so it may be used, routinely, even for the most awkward of geometries. In essence, an arbitrary-shaped body is allowed to blank out some region of a background Cartesian mesh and the resultant cut-cells are singled out for special treatment. This is done within a finite-volume framework and so, in principle, any explicit flux-based integration scheme can take advantage of this method for enforcing solid boundary conditions. For best effect, the present Cartesian boundary scheme has been combined with a sophisticated, local mesh refinement scheme, and a number of examples are shown in order to demonstrate the efficacy of the combined algorithm for simulations of shock interaction phenomena.
Assessment of an Unstructured-Grid Method for Predicting 3-D Turbulent Viscous Flows
NASA Technical Reports Server (NTRS)
Frink, Neal T.
1996-01-01
A method Is presented for solving turbulent flow problems on three-dimensional unstructured grids. Spatial discretization Is accomplished by a cell-centered finite-volume formulation using an accurate lin- ear reconstruction scheme and upwind flux differencing. Time is advanced by an implicit backward- Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the sublayer region of the boundary layer. A systematic assessment of the method is presented to devise guidelines for more strategic application of the technology to complex problems. The assessment includes the accuracy In predictions of skin-friction coefficient, law-of-the-wall behavior, and surface pressure for a flat-plate turbulent boundary layer, and for the ONERA M6 wing under a high Reynolds number, transonic, separated flow condition.
Assessment of an Unstructured-Grid Method for Predicting 3-D Turbulent Viscous Flows
NASA Technical Reports Server (NTRS)
Frink, Neal T.
1996-01-01
A method is presented for solving turbulent flow problems on three-dimensional unstructured grids. Spatial discretization is accomplished by a cell-centered finite-volume formulation using an accurate linear reconstruction scheme and upwind flux differencing. Time is advanced by an implicit backward-Euler time-stepping scheme. Flow turbulence effects are modeled by the Spalart-Allmaras one-equation model, which is coupled with a wall function to reduce the number of cells in the sublayer region of the boundary layer. A systematic assessment of the method is presented to devise guidelines for more strategic application of the technology to complex problems. The assessment includes the accuracy in predictions of skin-friction coefficient, law-of-the-wall behavior, and surface pressure for a flat-plate turbulent boundary layer, and for the ONERA M6 wing under a high Reynolds number, transonic, separated flow condition.
Nyx: Adaptive mesh, massively-parallel, cosmological simulation code
NASA Astrophysics Data System (ADS)
Almgren, Ann; Beckner, Vince; Friesen, Brian; Lukic, Zarija; Zhang, Weiqun
2017-12-01
Nyx code solves equations of compressible hydrodynamics on an adaptive grid hierarchy coupled with an N-body treatment of dark matter. The gas dynamics in Nyx use a finite volume methodology on an adaptive set of 3-D Eulerian grids; dark matter is represented as discrete particles moving under the influence of gravity. Particles are evolved via a particle-mesh method, using Cloud-in-Cell deposition/interpolation scheme. Both baryonic and dark matter contribute to the gravitational field. In addition, Nyx includes physics for accurately modeling the intergalactic medium; in optically thin limits and assuming ionization equilibrium, the code calculates heating and cooling processes of the primordial-composition gas in an ionizing ultraviolet background radiation field.
Single block three-dimensional volume grids about complex aerodynamic vehicles
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Weilmuenster, K. James
1993-01-01
This paper presents an alternate approach for the generation of volumetric grids for supersonic and hypersonic flows about complex configurations. The method uses parametric two dimensional block face grid definition within the framework of GRIDGEN2D. The incorporation of face decomposition reduces complex surfaces to simple shapes. These simple shapes are combined to obtain the final face definition. The advantages of this method include the reduction of overall grid generation time through the use of vectorized computer code, the elimination of the need to generate matching block faces, and the implementation of simplified boundary conditions. A simple axisymmetric grid is used to illustrate this method. In addition, volume grids for two complex configurations, the Langley Lifting Body (HL-20) and the Space Shuttle Orbiter, are shown.
Treatment of internal sources in the finite-volume ELLAM
Healy, R.W.; ,; ,; ,; ,; ,
2000-01-01
The finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) is a mass-conservative approach for solving the advection-dispersion equation. The method has been shown to be accurate and efficient for solving advection-dominated problems of solute transport in ground water in 1, 2, and 3 dimensions. Previous implementations of FVELLAM have had difficulty in representing internal sources because the standard assumption of lowest order Raviart-Thomas velocity field does not hold for source cells. Therefore, tracking of particles within source cells is problematic. A new approach has been developed to account for internal sources in FVELLAM. It is assumed that the source is uniformly distributed across a grid cell and that instantaneous mixing takes place within the cell, such that concentration is uniform across the cell at any time. Sub-time steps are used in the time-integration scheme to track mass outflow from the edges of the source cell. This avoids the need for tracking within the source cell. We describe the new method and compare results for a test problem with a wide range of cell Peclet numbers.
NASA Astrophysics Data System (ADS)
Pathak, Harshavardhana S.; Shukla, Ratnesh K.
2016-08-01
A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen; Eichman, Joshua D; Kurtz, Jennifer M
This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenuemore » for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.« less
Grid generation and adaptation via Monge-Kantorovich optimization in 2D and 3D
NASA Astrophysics Data System (ADS)
Delzanno, Gian Luca; Chacon, Luis; Finn, John M.
2008-11-01
In a recent paper [1], Monge-Kantorovich (MK) optimization was proposed as a method of grid generation/adaptation in two dimensions (2D). The method is based on the minimization of the L2 norm of grid point displacement, constrained to producing a given positive-definite cell volume distribution (equidistribution constraint). The procedure gives rise to the Monge-Amp'ere (MA) equation: a single, non-linear scalar equation with no free-parameters. The MA equation was solved in Ref. [1] with the Jacobian Free Newton-Krylov technique and several challenging test cases were presented in squared domains in 2D. Here, we extend the work of Ref. [1]. We first formulate the MK approach in physical domains with curved boundary elements and in 3D. We then show the results of applying it to these more general cases. We show that MK optimization produces optimal grids in which the constraint is satisfied numerically to truncation error. [1] G.L. Delzanno, L. Chac'on, J.M. Finn, Y. Chung, G. Lapenta, A new, robust equidistribution method for two-dimensional grid generation, submitted to Journal of Computational Physics (2008).
An interactive multi-block grid generation system
NASA Technical Reports Server (NTRS)
Kao, T. J.; Su, T. Y.; Appleby, Ruth
1992-01-01
A grid generation procedure combining interactive and batch grid generation programs was put together to generate multi-block grids for complex aircraft configurations. The interactive section provides the tools for 3D geometry manipulation, surface grid extraction, boundary domain construction for 3D volume grid generation, and block-block relationships and boundary conditions for flow solvers. The procedure improves the flexibility and quality of grid generation to meet the design/analysis requirements.
Peng, Valery; Suchowerska, Natalka; Rogers, Linda; Claridge Mackonis, Elizabeth; Oakes, Samantha; McKenzie, David R
2017-08-01
In microbeam radiotherapy (MRT), parallel arrays of high-intensity synchrotron x-ray beams achieve normal tissue sparing without compromising tumor control. Grid-therapy using clinical linacs has spatial modulation on a larger scale and achieves promising results for palliative treatments of bulky tumors. The availability of high definition multileaf collimators (HDMLCs) with 2.5 mm leaves provides an opportunity for grid-therapy to more closely approach MRT. However, challenges to the wider implementation of grid-therapy remain because spatial modulation of the target volume runs counter to current radiotherapy practice and mechanisms for the beneficial effects of MRT are not fully understood. Without more knowledge of cell dose responses, a quantitative basis for planning treatments is difficult. The aim of this study is to determine if therapeutic benefits of MRT can be achieved using a linac with HDMLCs and if so, to develop a predictive model to support treatment planning. HD120-MLCs of a Varian Novalis TX TM were used to generate grid patterns of 2.5 and 5.0 mm spacing, which were characterized dosimetrically using Gafchromic TM EBT3 film. Clonogenic survival of normal (HUVEC) and cancer (NCI-H460, HCC-1954) cell lines following irradiation under the grid and open fields using a 6 MV photon beam were compared in-vitro for the same average dose. Relative to an open field, survival of normal cells in a 2.5 mm striped field was the same, while the survival of both cancer cell lines was significantly lower. A mathematical model was developed to incorporate dose gradients of the spatial modulation into the standard linear quadratic model. Our new bystander extended LQ model assumes spatial gradients drive the diffusion of soluble factors that influence survival through bystander effects, successfully predicting the experimental results that show an increased therapeutic ratio. Our results challenge conventional radiotherapy practice and propose that additional gain can be realized by prescribing spatially modulated treatments to harness the bystander effect.
An engineering closure for heavily under-resolved coarse-grid CFD in large applications
NASA Astrophysics Data System (ADS)
Class, Andreas G.; Yu, Fujiang; Jordan, Thomas
2016-11-01
Even though high performance computation allows very detailed description of a wide range of scales in scientific computations, engineering simulations used for design studies commonly merely resolve the large scales thus speeding up simulation time. The coarse-grid CFD (CGCFD) methodology is developed for flows with repeated flow patterns as often observed in heat exchangers or porous structures. It is proposed to use inviscid Euler equations on a very coarse numerical mesh. This coarse mesh needs not to conform to the geometry in all details. To reinstall physics on all smaller scales cheap subgrid models are employed. Subgrid models are systematically constructed by analyzing well-resolved generic representative simulations. By varying the flow conditions in these simulations correlations are obtained. These comprehend for each individual coarse mesh cell a volume force vector and volume porosity. Moreover, for all vertices, surface porosities are derived. CGCFD is related to the immersed boundary method as both exploit volume forces and non-body conformal meshes. Yet, CGCFD differs with respect to the coarser mesh and the use of Euler equations. We will describe the methodology based on a simple test case and the application of the method to a 127 pin wire-wrap fuel bundle.
Pilly, Praveen K.; Grossberg, Stephen
2013-01-01
Medial entorhinal grid cells and hippocampal place cells provide neural correlates of spatial representation in the brain. A place cell typically fires whenever an animal is present in one or more spatial regions, or places, of an environment. A grid cell typically fires in multiple spatial regions that form a regular hexagonal grid structure extending throughout the environment. Different grid and place cells prefer spatially offset regions, with their firing fields increasing in size along the dorsoventral axes of the medial entorhinal cortex and hippocampus. The spacing between neighboring fields for a grid cell also increases along the dorsoventral axis. This article presents a neural model whose spiking neurons operate in a hierarchy of self-organizing maps, each obeying the same laws. This spiking GridPlaceMap model simulates how grid cells and place cells may develop. It responds to realistic rat navigational trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with one or more firing fields that match neurophysiological data about these cells and their development in juvenile rats. The place cells represent much larger spaces than the grid cells, which enable them to support navigational behaviors. Both self-organizing maps amplify and learn to categorize the most frequent and energetic co-occurrences of their inputs. The current results build upon a previous rate-based model of grid and place cell learning, and thus illustrate a general method for converting rate-based adaptive neural models, without the loss of any of their analog properties, into models whose cells obey spiking dynamics. New properties of the spiking GridPlaceMap model include the appearance of theta band modulation. The spiking model also opens a path for implementation in brain-emulating nanochips comprised of networks of noisy spiking neurons with multiple-level adaptive weights for controlling autonomous adaptive robots capable of spatial navigation. PMID:23577130
Li, Yi-Fan [Canadian Global Emissions Inventory Centre, Downsview, Ontario (Canada); Brenkert, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
1996-01-01
This data base contains gridded (one degree by one degree) information on the world-wide distribution of the population for 1990 and country-specific information on the percentage of the country's population present in each grid cell (Li, 1996a). Secondly, the data base contains the percentage of a country's total area in a grid cell and the country's percentage of the grid cell that is terrestrial (Li, 1996b). Li (1996b) also developed an indicator signifying how many countries are represented in a grid cell and if a grid cell is part of the sea; this indicator is only relevant for the land, countries, and sea-partitioning information of the grid cell. Thirdly, the data base includes the latitude and longitude coordinates of each grid cell; a grid code number, which is a translation of the latitude/longitude value and is used in the Global Emission Inventory Activity (GEIA) data bases; the country or region's name; and the United Nations three-digit country code that represents that name.
Updates to Multi-Dimensional Flux Reconstruction for Hypersonic Simulations on Tetrahedral Grids
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2010-01-01
The quality of simulated hypersonic stagnation region heating with tetrahedral meshes is investigated by using an updated three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. An earlier implementation of this algorithm provided improved symmetry characteristics on tetrahedral grids compared to conventional reconstruction methods. The original formulation however displayed quantitative differences in heating and shear that were as large as 25% compared to a benchmark, structured-grid solution. The primary cause of this discrepancy is found to be an inherent inconsistency in the formulation of the flux limiter. The inconsistency is removed by employing a Green-Gauss formulation of primitive gradients at nodes to replace the previous Gram-Schmidt algorithm. Current results are now in good agreement with benchmark solutions for two challenge problems: (1) hypersonic flow over a three-dimensional cylindrical section with special attention to the uniformity of the solution in the spanwise direction and (2) hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problems provide a sensitive indicator for algorithmic effects on heating. Additional simulations on a sharp, double cone and the shuttle orbiter are then presented to demonstrate the capabilities of the new algorithm on more geometrically complex flows with tetrahedral grids. These results provide the first indication that pure tetrahedral elements utilizing the updated, three-dimensional, upwind reconstruction algorithm may be used for the simulation of heating and shear in hypersonic flows in upwind, finite volume formulations.
Development of a Flexible Framework for Hypersonic Navier-Stoke Space Shuttle Orbiter Meshes
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Reuthler, James J.; McDaniel, Ryan D.
2004-01-01
A flexible framework constructing block structured volume grids for hypersonic Navier-Strokes flow simulations was developed for the analysis of the Shuttle Orbiter Columbia. The development of the framework, which was partially basedon the requirements of the primary flow solvers used resulted in an ability to directly correlate solutions contributed by participating groups on a common surface mesh. A foundation was built through the assessment of differences between differnt solvers, which provided confidence for independent assessment of other damage scenarios by team members. The framework draws on the experience of NASA Langley and NASA Ames Research Centers in structured grid generation, and consists of a grid generation, and consist of a grid generation process implemented through a division of responsibilities. The nominal division of labor consisted of NASA Johnson Space Center coordinating the damage scenarios to be analyzed by the Aerothermodynamics Columbia Accident Investigation (ACAI) team, Ames developing the surface grids that described the computational volume about the Orbiter, and Langley improving grid quality of Ames generated data and constructing the final computational volume grids. Distributing the work among the participant in th ACAI team resulted in significantl less time required to construct complete meshes than possible by any individual participant. The approach demonstrated that the One-NASA grid generation team could sustain the demand of for five new meshes to explore new damage scenarios within an aggressive time-line.
Sampling Scattered Data Onto Rectangular Grids for Volume Visualization
1989-12-01
30 4.4 Building A Rectangular Grid ..... ................ 30 4.5 Sampling Methds ...... ...................... 34 4.6...dimensional data have been developed recently. In computational fluid flow analysis, methods for constructing three dimen- sional numerical grids are...structure of rectangular grids. Because finite element analysis is useful in fields other than fluid flow analysis and the numerical grid has promising
NASA Astrophysics Data System (ADS)
Zapata, M. A. Uh; Van Bang, D. Pham; Nguyen, K. D.
2016-05-01
This paper presents a parallel algorithm for the finite-volume discretisation of the Poisson equation on three-dimensional arbitrary geometries. The proposed method is formulated by using a 2D horizontal block domain decomposition and interprocessor data communication techniques with message passing interface. The horizontal unstructured-grid cells are reordered according to the neighbouring relations and decomposed into blocks using a load-balanced distribution to give all processors an equal amount of elements. In this algorithm, two parallel successive over-relaxation methods are presented: a multi-colour ordering technique for unstructured grids based on distributed memory and a block method using reordering index following similar ideas of the partitioning for structured grids. In all cases, the parallel algorithms are implemented with a combination of an acceleration iterative solver. This solver is based on a parabolic-diffusion equation introduced to obtain faster solutions of the linear systems arising from the discretisation. Numerical results are given to evaluate the performances of the methods showing speedups better than linear.
NASA Technical Reports Server (NTRS)
Alter, Stephen J.; Reuthler, James J.; McDaniel, Ryan D.
2003-01-01
A flexible framework for the development of block structured volume grids for hypersonic Navier-Stokes flow simulations was developed for analysis of the Shuttle Orbiter Columbia. The development of the flexible framework, resulted in an ability to quickly generate meshes to directly correlate solutions contributed by participating groups on a common surface mesh, providing confidence for the extension of the envelope of solutions and damage scenarios. The framework draws on the experience of NASA Langely and NASA Ames Research Centers in structured grid generation, and consists of a grid generation process that is implemented through a division of responsibilities. The nominal division of labor consisted of NASA Johnson Space Center coordinating the damage scenarios to be analyzed by the Aerothermodynamics Columbia Accident Investigation (CAI) team, Ames developing the surface grids that described the computational volume about the orbiter, and Langely improving grid quality of Ames generated data and constructing the final volume grids. Distributing the work among the participants in the Aerothermodynamic CIA team resulted in significantly less time required to construct complete meshes than possible by any individual participant. The approach demonstrated that the One-NASA grid generation team could sustain the demand for new meshes to explore new damage scenarios within a aggressive timeline.
Efficient Development of High Fidelity Structured Volume Grids for Hypersonic Flow Simulations
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
2003-01-01
A new technique for the control of grid line spacing and intersection angles of a structured volume grid, using elliptic partial differential equations (PDEs) is presented. Existing structured grid generation algorithms make use of source term hybridization to provide control of grid lines, imposing orthogonality implicitly at the boundary and explicitly on the interior of the domain. A bridging function between the two types of grid line control is typically used to blend the different orthogonality formulations. It is shown that utilizing such a bridging function with source term hybridization can result in the excessive use of computational resources and diminishes robustness. A new approach, Anisotropic Lagrange Based Trans-Finite Interpolation (ALBTFI), is offered as a replacement to source term hybridization. The ALBTFI technique captures the essence of the desired grid controls while improving the convergence rate of the elliptic PDEs when compared with source term hybridization. Grid generation on a blunt cone and a Shuttle Orbiter is used to demonstrate and assess the ALBTFI technique, which is shown to be as much as 50% faster, more robust, and produces higher quality grids than source term hybridization.
European Science Notes Information Bulletin Reports on Current European/ Middle Eastern Science
1991-06-01
particularly those that involve shock wave/boundary layer cell-centered, finite-volume, explicit, Runge-Kutta interactions , still prov;de considerble...aircraft configuration attributed to using an interactive vcual grid generation was provided by A. Bocci and A. Baxendale, the Aircraft system developed...the surface pressure the complex problem of wing/body/pylon/store distributions with and without the mass flow through the interaction . Reasonable
Sensitivity Analysis and Optimization of Aerodynamic Configurations with Blend Surfaces
NASA Technical Reports Server (NTRS)
Thomas, A. M.; Tiwari, S. N.
1997-01-01
A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. A graphic interface software is developed which dynamically changes the surface of the airplane configuration with the change in input design variable. The software is made user friendly and is targeted towards the initial conceptual development of any aerodynamic configurations. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an Automatic Differentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of the complete aircraft with twenty four design variables is performed. Unstructured and structured volume grids and Euler solutions are obtained with standard software to demonstrate the feasibility of the new surface definition.
NASA Technical Reports Server (NTRS)
1998-01-01
Pointwise Inc.'s, Gridgen Software is a system for the generation of 3D (three dimensional) multiple block, structured grids. Gridgen is a visually-oriented, graphics-based interactive code used to decompose a 3D domain into blocks, distribute grid points on curves, initialize and refine grid points on surfaces and initialize volume grid points. Gridgen is available to U.S. citizens and American-owned companies by license.
NASA Astrophysics Data System (ADS)
Dumbser, Michael; Loubère, Raphaël
2016-08-01
In this paper we propose a simple, robust and accurate nonlinear a posteriori stabilization of the Discontinuous Galerkin (DG) finite element method for the solution of nonlinear hyperbolic PDE systems on unstructured triangular and tetrahedral meshes in two and three space dimensions. This novel a posteriori limiter, which has been recently proposed for the simple Cartesian grid case in [62], is able to resolve discontinuities at a sub-grid scale and is substantially extended here to general unstructured simplex meshes in 2D and 3D. It can be summarized as follows: At the beginning of each time step, an approximation of the local minimum and maximum of the discrete solution is computed for each cell, taking into account also the vertex neighbors of an element. Then, an unlimited discontinuous Galerkin scheme of approximation degree N is run for one time step to produce a so-called candidate solution. Subsequently, an a posteriori detection step checks the unlimited candidate solution at time t n + 1 for positivity, absence of floating point errors and whether the discrete solution has remained within or at least very close to the bounds given by the local minimum and maximum computed in the first step. Elements that do not satisfy all the previously mentioned detection criteria are flagged as troubled cells. For these troubled cells, the candidate solution is discarded as inappropriate and consequently needs to be recomputed. Within these troubled cells the old discrete solution at the previous time tn is scattered onto small sub-cells (Ns = 2 N + 1 sub-cells per element edge), in order to obtain a set of sub-cell averages at time tn. Then, a more robust second order TVD finite volume scheme is applied to update the sub-cell averages within the troubled DG cells from time tn to time t n + 1. The new sub-grid data at time t n + 1 are finally gathered back into a valid cell-centered DG polynomial of degree N by using a classical conservative and higher order accurate finite volume reconstruction technique. Consequently, if the number Ns is sufficiently large (Ns ≥ N + 1), the subscale resolution capability of the DG scheme is fully maintained, while preserving at the same time an essentially non-oscillatory behavior of the solution at discontinuities. Many standard DG limiters only adjust the discrete solution in troubled cells, based on the limiting of higher order moments or by applying a nonlinear WENO/HWENO reconstruction on the data at the new time t n + 1. Instead, our new DG limiter entirely recomputes the troubled cells by solving the governing PDE system again starting from valid data at the old time level tn, but using this time a more robust scheme on the sub-grid level. In other words, the piecewise polynomials produced by the new limiter are the result of a more robust solution of the PDE system itself, while most standard DG limiters are simply based on a mere nonlinear data post-processing of the discrete solution. Technically speaking, the new method corresponds to an element-wise checkpointing and restarting of the solver, using a lower order scheme on the sub-grid. As a result, the present DG limiter is even able to cure floating point errors like NaN values that have occurred after divisions by zero or after the computation of roots from negative numbers. This is a unique feature of our new algorithm among existing DG limiters. The new a posteriori sub-cell stabilization approach is developed within a high order accurate one-step ADER-DG framework on multidimensional unstructured meshes for hyperbolic systems of conservation laws as well as for hyperbolic PDE with non-conservative products. The method is applied to the Euler equations of compressible gas dynamics, to the ideal magneto-hydrodynamics equations (MHD) as well as to the seven-equation Baer-Nunziato model of compressible multi-phase flows. A large set of standard test problems is solved in order to assess the accuracy and robustness of the new limiter.
Optimizing solar-cell grid geometry
NASA Technical Reports Server (NTRS)
Crossley, A. P.
1969-01-01
Trade-off analysis and mathematical expressions calculate optimum grid geometry in terms of various cell parameters. Determination of the grid geometry provides proper balance between grid resistance and cell output to optimize the energy conversion process.
Efficient high-quality volume rendering of SPH data.
Fraedrich, Roland; Auer, Stefan; Westermann, Rüdiger
2010-01-01
High quality volume rendering of SPH data requires a complex order-dependent resampling of particle quantities along the view rays. In this paper we present an efficient approach to perform this task using a novel view-space discretization of the simulation domain. Our method draws upon recent work on GPU-based particle voxelization for the efficient resampling of particles into uniform grids. We propose a new technique that leverages a perspective grid to adaptively discretize the view-volume, giving rise to a continuous level-of-detail sampling structure and reducing memory requirements compared to a uniform grid. In combination with a level-of-detail representation of the particle set, the perspective grid allows effectively reducing the amount of primitives to be processed at run-time. We demonstrate the quality and performance of our method for the rendering of fluid and gas dynamics SPH simulations consisting of many millions of particles.
The functional micro-organization of grid cells revealed by cellular-resolution imaging
Heys, James G.; Rangarajan, Krsna V.; Dombeck, Daniel A.
2015-01-01
Summary Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater micro-circuit level understanding of the brain’s representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to non-grid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: The similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a “Mexican Hat” shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. PMID:25467986
Finite volume solution of the compressible boundary-layer equations
NASA Technical Reports Server (NTRS)
Loyd, B.; Murman, E. M.
1986-01-01
A box-type finite volume discretization is applied to the integral form of the compressible boundary layer equations. Boundary layer scaling is introduced through the grid construction: streamwise grid lines follow eta = y/h = const., where y is the normal coordinate and h(x) is a scale factor proportional to the boundary layer thickness. With this grid, similarity can be applied explicity to calculate initial conditions. The finite volume method preserves the physical transparency of the integral equations in the discrete approximation. The resulting scheme is accurate, efficient, and conceptually simple. Computations for similar and non-similar flows show excellent agreement with tabulated results, solutions computed with Keller's Box scheme, and experimental data.
Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.
Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert
2018-03-01
Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm-wide beam elements. With the single-grid irradiation setup, the VPDRs were close to 1.0 already at a distance of several cm from the target. The valley doses given to the normal tissue at 0.5 cm distance from the target volume could be limited to less than 10% of the mean target dose if a crossfiring setup with four interlaced grids was used. The dose distributions produced by grids containing 0.5- and 3.0-mm wide beam elements had characteristics which could be useful for grid therapy. Grids containing mm-wide carbon-ion beam elements could be advantageous due to the technical ease with which these beams can be produced and delivered, despite the reduced threshold doses observed for early and late responding normal tissue for beams of millimeter width, compared to submillimetric beams. The treatment simulations showed that nearly homogeneous dose distributions could be created inside the target volumes, combined with low valley doses in the normal tissue located close to the target volume, if the carbon-ion beam grids were crossfired in an interlaced manner with optimally selected beam-element separations. The formulated selection criterion was found useful for the quantitative evaluation of the dose distributions produced by the different irradiation setups. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Efficient discretization in finite difference method
NASA Astrophysics Data System (ADS)
Rozos, Evangelos; Koussis, Antonis; Koutsoyiannis, Demetris
2015-04-01
Finite difference method (FDM) is a plausible and simple method for solving partial differential equations. The standard practice is to use an orthogonal discretization to form algebraic approximate formulations of the derivatives of the unknown function and a grid, much like raster maps, to represent the properties of the function domain. For example, for the solution of the groundwater flow equation, a raster map is required for the characterization of the discretization cells (flow cell, no-flow cell, boundary cell, etc.), and two raster maps are required for the hydraulic conductivity and the storage coefficient. Unfortunately, this simple approach to describe the topology comes along with the known disadvantages of the FDM (rough representation of the geometry of the boundaries, wasted computational resources in the unavoidable expansion of the grid refinement in all cells of the same column and row, etc.). To overcome these disadvantages, Hunt has suggested an alternative approach to describe the topology, the use of an array of neighbours. This limits the need for discretization nodes only for the representation of the boundary conditions and the flow domain. Furthermore, the geometry of the boundaries is described more accurately using a vector representation. Most importantly, graded meshes can be employed, which are capable of restricting grid refinement only in the areas of interest (e.g. regions where hydraulic head varies rapidly, locations of pumping wells, etc.). In this study, we test the Hunt approach against MODFLOW, a well established finite difference model, and the Finite Volume Method with Simplified Integration (FVMSI). The results of this comparison are examined and critically discussed.
DRACO development for 3D simulations
NASA Astrophysics Data System (ADS)
Fatenejad, Milad; Moses, Gregory
2006-10-01
The DRACO (r-z) lagrangian radiation-hydrodynamics laser fusion simulation code is being extended to model 3D hydrodynamics in (x-y-z) coordinates with hexahedral cells on a structured grid. The equation of motion is solved with a lagrangian update with optional rezoning. The fluid equations are solved using an explicit scheme based on (Schulz, 1964) while the SALE-3D algorithm (Amsden, 1981) is used as a template for computing cell volumes and other quantities. A second order rezoner has been added which uses linear interpolation of the underlying continuous functions to preserve accuracy (Van Leer, 1976). Artificial restoring force terms and smoothing algorithms are used to avoid grid distortion in high aspect ratio cells. These include alternate node couplers along with a rotational restoring force based on the Tensor Code (Maenchen, 1964). Electron and ion thermal conduction is modeled using an extension of Kershaw's method (Kershaw, 1981) to 3D geometry. Test problem simulations will be presented to demonstrate the applicability of this new version of DRACO to the study of fluid instabilities in three dimensions.
The fundamentals of adaptive grid movement
NASA Technical Reports Server (NTRS)
Eiseman, Peter R.
1990-01-01
Basic grid point movement schemes are studied. The schemes are referred to as adaptive grids. Weight functions and equidistribution in one dimension are treated. The specification of coefficients in the linear weight, attraction to a given grid or a curve, and evolutionary forces are considered. Curve by curve and finite volume methods are described. The temporal coupling of partial differential equations solvers and grid generators was discussed.
A single-cell spiking model for the origin of grid-cell patterns
Kempter, Richard
2017-01-01
Spatial cognition in mammals is thought to rely on the activity of grid cells in the entorhinal cortex, yet the fundamental principles underlying the origin of grid-cell firing are still debated. Grid-like patterns could emerge via Hebbian learning and neuronal adaptation, but current computational models remained too abstract to allow direct confrontation with experimental data. Here, we propose a single-cell spiking model that generates grid firing fields via spike-rate adaptation and spike-timing dependent plasticity. Through rigorous mathematical analysis applicable in the linear limit, we quantitatively predict the requirements for grid-pattern formation, and we establish a direct link to classical pattern-forming systems of the Turing type. Our study lays the groundwork for biophysically-realistic models of grid-cell activity. PMID:28968386
A new estimate of the volume and distribution of gas hydrate in the northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Majumdar, U.; Cook, A.
2016-12-01
In spite of the wealth of information gained over the last several decades about gas hydrate in the northern Gulf of Mexico, there is still considerable uncertainty about the distribution and volume of gas hydrate. In our assessment we build a dataset of basin-wide gas hydrate distribution and thickness, as appraised from publicly available petroleum industry well logs within the gas hydrate stability zone (HSZ), and subsequently develop a Monte Carlo to determine the volumetric estimate of gas hydrate using the dataset. We evaluate the presence of gas hydrate from electrical resistivity well logs, and categorized possible reservoir type (either sand or clay) based on the gamma ray response and resistivity curve characteristics. Out of the 798 wells with resistivity well log data within the HSZ we analyzed, we found evidence of gas hydrate in 124 wells. In this research we present a new stochastic estimate of the gas hydrate volume in the northern Gulf of Mexico guided by our well log dataset. For our Monte Carlo simulation, we divided our assessment area of 200,000 km2 into 1 km2 grid cells. Our volume assessment model incorporates variables unique to our well log dataset such as the likelihood of gas hydrate occurrence, fraction of the HSZ occupied by gas hydrate, reservoir type, and gas hydrate saturation depending on the reservoir, in each grid cell, in addition to other basic variables such as HSZ thickness and porosity. Preliminary results from our model suggests that the total volume of gas at standard temperature and pressure in gas hydrate in the northern Gulf of Mexico is in the range of 430 trillion cubic feet (TCF) to 730 TCF, with a mean volume of 585 TCF. While the reservoir distribution from our well log dataset found gas hydrate in sand reservoirs in 30 wells out of the 124 wells with evidence of gas hydrate ( 24%), we find sand reservoirs contain over half of the total volume of gas hydrate in the Gulf of Mexico, as a result of the relatively high gas hydrate saturation in sand.
OVERGRID: A Unified Overset Grid Generation Graphical Interface
NASA Technical Reports Server (NTRS)
Chan, William M.; Akien, Edwin W. (Technical Monitor)
1999-01-01
This paper presents a unified graphical interface and gridding strategy for performing overset grid generation. The interface called OVERGRID has been specifically designed to follow an efficient overset gridding strategy, and contains general grid manipulation capabilities as well as modules that are specifically suited for overset grids. General grid utilities include functions for grid redistribution, smoothing, concatenation, extraction, extrapolation, projection, and many others. Modules specially tailored for overset grids include a seam curve extractor, hyperbolic and algebraic surface grid generators, a hyperbolic volume grid generator, and a Cartesian box grid generator, Grid visualization is achieved using OpenGL while widgets are constructed with Tcl/Tk. The software is portable between various platforms from UNIX workstations to personal computers.
Rapid Decimation for Direct Volume Rendering
NASA Technical Reports Server (NTRS)
Gibbs, Jonathan; VanGelder, Allen; Verma, Vivek; Wilhelms, Jane
1997-01-01
An approach for eliminating unnecessary portions of a volume when producing a direct volume rendering is described. This reduction in volume size sacrifices some image quality in the interest of rendering speed. Since volume visualization is often used as an exploratory visualization technique, it is important to reduce rendering times, so the user can effectively explore the volume. The methods presented can speed up rendering by factors of 2 to 3 with minor image degradation. A family of decimation algorithms to reduce the number of primitives in the volume without altering the volume's grid in any way is introduced. This allows the decimation to be computed rapidly, making it easier to change decimation levels on the fly. Further, because very little extra space is required, this method is suitable for the very large volumes that are becoming common. The method is also grid-independent, so it is suitable for multiple overlapping curvilinear and unstructured, as well as regular, grids. The decimation process can proceed automatically, or can be guided by the user so that important regions of the volume are decimated less than unimportant regions. A formal error measure is described based on a three-dimensional analog of the Radon transform. Decimation methods are evaluated based on this metric and on direct comparison with reference images.
Accuracy Analysis for Finite-Volume Discretization Schemes on Irregular Grids
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2010-01-01
A new computational analysis tool, downscaling test, is introduced and applied for studying the convergence rates of truncation and discretization errors of nite-volume discretization schemes on general irregular (e.g., unstructured) grids. The study shows that the design-order convergence of discretization errors can be achieved even when truncation errors exhibit a lower-order convergence or, in some cases, do not converge at all. The downscaling test is a general, efficient, accurate, and practical tool, enabling straightforward extension of verification and validation to general unstructured grid formulations. It also allows separate analysis of the interior, boundaries, and singularities that could be useful even in structured-grid settings. There are several new findings arising from the use of the downscaling test analysis. It is shown that the discretization accuracy of a common node-centered nite-volume scheme, known to be second-order accurate for inviscid equations on triangular grids, degenerates to first order for mixed grids. Alternative node-centered schemes are presented and demonstrated to provide second and third order accuracies on general mixed grids. The local accuracy deterioration at intersections of tangency and in flow/outflow boundaries is demonstrated using the DS tests tailored to examining the local behavior of the boundary conditions. The discretization-error order reduction within inviscid stagnation regions is demonstrated. The accuracy deterioration is local, affecting mainly the velocity components, but applies to any order scheme.
Grid scale drives the scale and long-term stability of place maps
Mallory, Caitlin S; Hardcastle, Kiah; Bant, Jason S; Giocomo, Lisa M
2018-01-01
Medial entorhinal cortex (MEC) grid cells fire at regular spatial intervals and project to the hippocampus, where place cells are active in spatially restricted locations. One feature of the grid population is the increase in grid spatial scale along the dorsal-ventral MEC axis. However, the difficulty in perturbing grid scale without impacting the properties of other functionally-defined MEC cell types has obscured how grid scale influences hippocampal coding and spatial memory. Here, we use a targeted viral approach to knock out HCN1 channels selectively in MEC, causing grid scale to expand while leaving other MEC spatial and velocity signals intact. Grid scale expansion resulted in place scale expansion in fields located far from environmental boundaries, reduced long-term place field stability and impaired spatial learning. These observations, combined with simulations of a grid-to-place cell model and position decoding of place cells, illuminate how grid scale impacts place coding and spatial memory. PMID:29335607
Framing the grid: effect of boundaries on grid cells and navigation.
Krupic, Julija; Bauza, Marius; Burton, Stephen; O'Keefe, John
2016-11-15
Cells in the mammalian hippocampal formation subserve neuronal representations of environmental location and support navigation in familiar environments. Grid cells constitute one of the main cell types in the hippocampal formation and are widely believed to represent a universal metric of space independent of external stimuli. Recent evidence showing that grid symmetry is distorted in non-symmetrical environments suggests that a re-examination of this hypothesis is warranted. In this review we will discuss behavioural and physiological evidence for how environmental shape and in particular enclosure boundaries influence grid cell firing properties. We propose that grid cells encode the geometric layout of enclosures. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
NASA Astrophysics Data System (ADS)
Boscheri, Walter; Dumbser, Michael; Loubère, Raphaël; Maire, Pierre-Henri
2018-04-01
In this paper we develop a conservative cell-centered Lagrangian finite volume scheme for the solution of the hydrodynamics equations on unstructured multidimensional grids. The method is derived from the Eucclhyd scheme discussed in [47,43,45]. It is second-order accurate in space and is combined with the a posteriori Multidimensional Optimal Order Detection (MOOD) limiting strategy to ensure robustness and stability at shock waves. Second-order of accuracy in time is achieved via the ADER (Arbitrary high order schemes using DERivatives) approach. A large set of numerical test cases is proposed to assess the ability of the method to achieve effective second order of accuracy on smooth flows, maintaining an essentially non-oscillatory behavior on discontinuous profiles, general robustness ensuring physical admissibility of the numerical solution, and precision where appropriate.
Methodological Caveats in the Detection of Coordinated Replay between Place Cells and Grid Cells.
Trimper, John B; Trettel, Sean G; Hwaun, Ernie; Colgin, Laura Lee
2017-01-01
At rest, hippocampal "place cells," neurons with receptive fields corresponding to specific spatial locations, reactivate in a manner that reflects recently traveled trajectories. These "replay" events have been proposed as a mechanism underlying memory consolidation, or the transfer of a memory representation from the hippocampus to neocortical regions associated with the original sensory experience. Accordingly, it has been hypothesized that hippocampal replay of a particular experience should be accompanied by simultaneous reactivation of corresponding representations in the neocortex and in the entorhinal cortex, the primary interface between the hippocampus and the neocortex. Recent studies have reported that coordinated replay may occur between hippocampal place cells and medial entorhinal cortex grid cells, cells with multiple spatial receptive fields. Assessing replay in grid cells is problematic, however, as the cells exhibit regularly spaced spatial receptive fields in all environments and, therefore, coordinated replay between place cells and grid cells may be detected by chance. In the present report, we adapted analytical approaches utilized in recent studies of grid cell and place cell replay to determine the extent to which coordinated replay is spuriously detected between grid cells and place cells recorded from separate rats. For a subset of the employed analytical methods, coordinated replay was detected spuriously in a significant proportion of cases in which place cell replay events were randomly matched with grid cell firing epochs of equal duration. More rigorous replay evaluation procedures and minimum spike count requirements greatly reduced the amount of spurious findings. These results provide insights into aspects of place cell and grid cell activity during rest that contribute to false detection of coordinated replay. The results further emphasize the need for careful controls and rigorous methods when testing the hypothesis that place cells and grid cells exhibit coordinated replay.
Membrane potential dynamics of grid cells
Domnisoru, Cristina; Kinkhabwala, Amina A.; Tank, David W.
2014-01-01
During navigation, grid cells increase their spike rates in firing fields arranged on a strikingly regular triangular lattice, while their spike timing is often modulated by theta oscillations. Oscillatory interference models of grid cells predict theta amplitude modulations of membrane potential during firing field traversals, while competing attractor network models predict slow depolarizing ramps. Here, using in-vivo whole-cell recordings, we tested these models by directly measuring grid cell intracellular potentials in mice running along linear tracks in virtual reality. Grid cells had large and reproducible ramps of membrane potential depolarization that were the characteristic signature tightly correlated with firing fields. Grid cells also exhibited intracellular theta oscillations that influenced their spike timing. However, the properties of theta amplitude modulations were not consistent with the view that they determine firing field locations. Our results support cellular and network mechanisms in which grid fields are produced by slow ramps, as in attractor models, while theta oscillations control spike timing. PMID:23395984
Grid-Optimization Program for Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Daniel, R. E.; Lee, T. S.
1986-01-01
CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.
Modelling effects on grid cells of sensory input during self‐motion
Raudies, Florian; Hinman, James R.
2016-01-01
Abstract The neural coding of spatial location for memory function may involve grid cells in the medial entorhinal cortex, but the mechanism of generating the spatial responses of grid cells remains unclear. This review describes some current theories and experimental data concerning the role of sensory input in generating the regular spatial firing patterns of grid cells, and changes in grid cell firing fields with movement of environmental barriers. As described here, the influence of visual features on spatial firing could involve either computations of self‐motion based on optic flow, or computations of absolute position based on the angle and distance of static visual cues. Due to anatomical selectivity of retinotopic processing, the sensory features on the walls of an environment may have a stronger effect on ventral grid cells that have wider spaced firing fields, whereas the sensory features on the ground plane may influence the firing of dorsal grid cells with narrower spacing between firing fields. These sensory influences could contribute to the potential functional role of grid cells in guiding goal‐directed navigation. PMID:27094096
Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse.
Chen, Guifen; Manson, Daniel; Cacucci, Francesca; Wills, Thomas Joseph
2016-09-12
Grid cells are spatially modulated neurons within the medial entorhinal cortex whose firing fields are arranged at the vertices of tessellating equilateral triangles [1]. The exquisite periodicity of their firing has led to the suggestion that they represent a path integration signal, tracking the organism's position by integrating speed and direction of movement [2-10]. External sensory inputs are required to reset any errors that the path integrator would inevitably accumulate. Here we probe the nature of the external sensory inputs required to sustain grid firing, by recording grid cells as mice explore familiar environments in complete darkness. The absence of visual cues results in a significant disruption of grid cell firing patterns, even when the quality of the directional information provided by head direction cells is largely preserved. Darkness alters the expression of velocity signaling within the entorhinal cortex, with changes evident in grid cell firing rate and the local field potential theta frequency. Short-term (<1.5 s) spike timing relationships between grid cell pairs are preserved in the dark, indicating that network patterns of excitatory and inhibitory coupling between grid cells exist independently of visual input and of spatially periodic firing. However, we find no evidence of preserved hexagonal symmetry in the spatial firing of single grid cells at comparable short timescales. Taken together, these results demonstrate that visual input is required to sustain grid cell periodicity and stability in mice and suggest that grid cells in mice cannot perform accurate path integration in the absence of reliable visual cues. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Comparison of three explicit multigrid methods for the Euler and Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.; Turkel, Eli; Schaffer, Steve
1987-01-01
Three explicit multigrid methods, Ni's method, Jameson's finite-volume method, and a finite-difference method based on Brandt's work, are described and compared for two model problems. All three methods use an explicit multistage Runge-Kutta scheme on the fine grid, and this scheme is also described. Convergence histories for inviscid flow over a bump in a channel for the fine-grid scheme alone show that convergence rate is proportional to Courant number and that implicit residual smoothing can significantly accelerate the scheme. Ni's method was slightly slower than the implicitly-smoothed scheme alone. Brandt's and Jameson's methods are shown to be equivalent in form but differ in their node versus cell-centered implementations. They are about 8.5 times faster than Ni's method in terms of CPU time. Results for an oblique shock/boundary layer interaction problem verify the accuracy of the finite-difference code. All methods slowed considerably on the stretched viscous grid but Brandt's method was still 2.1 times faster than Ni's method.
NASA Astrophysics Data System (ADS)
Lee, Euntaek; Ahn, Hyung Taek; Luo, Hong
2018-02-01
We apply a hyperbolic cell-centered finite volume method to solve a steady diffusion equation on unstructured meshes. This method, originally proposed by Nishikawa using a node-centered finite volume method, reformulates the elliptic nature of viscous fluxes into a set of augmented equations that makes the entire system hyperbolic. We introduce an efficient and accurate solution strategy for the cell-centered finite volume method. To obtain high-order accuracy for both solution and gradient variables, we use a successive order solution reconstruction: constant, linear, and quadratic (k-exact) reconstruction with an efficient reconstruction stencil, a so-called wrapping stencil. By the virtue of the cell-centered scheme, the source term evaluation was greatly simplified regardless of the solution order. For uniform schemes, we obtain the same order of accuracy, i.e., first, second, and third orders, for both the solution and its gradient variables. For hybrid schemes, recycling the gradient variable information for solution variable reconstruction makes one order of additional accuracy, i.e., second, third, and fourth orders, possible for the solution variable with less computational work than needed for uniform schemes. In general, the hyperbolic method can be an effective solution technique for diffusion problems, but instability is also observed for the discontinuous diffusion coefficient cases, which brings necessity for further investigation about the monotonicity preserving hyperbolic diffusion method.
Grossberg, Stephen; Pilly, Praveen K
2014-02-05
A neural model proposes how entorhinal grid cells and hippocampal place cells may develop as spatial categories in a hierarchy of self-organizing maps (SOMs). The model responds to realistic rat navigational trajectories by learning both grid cells with hexagonal grid firing fields of multiple spatial scales, and place cells with one or more firing fields, that match neurophysiological data about their development in juvenile rats. Both grid and place cells can develop by detecting, learning and remembering the most frequent and energetic co-occurrences of their inputs. The model's parsimonious properties include: similar ring attractor mechanisms process linear and angular path integration inputs that drive map learning; the same SOM mechanisms can learn grid cell and place cell receptive fields; and the learning of the dorsoventral organization of multiple spatial scale modules through medial entorhinal cortex to hippocampus (HC) may use mechanisms homologous to those for temporal learning through lateral entorhinal cortex to HC ('neural relativity'). The model clarifies how top-down HC-to-entorhinal attentional mechanisms may stabilize map learning, simulates how hippocampal inactivation may disrupt grid cells, and explains data about theta, beta and gamma oscillations. The article also compares the three main types of grid cell models in the light of recent data.
The functional micro-organization of grid cells revealed by cellular-resolution imaging.
Heys, James G; Rangarajan, Krsna V; Dombeck, Daniel A
2014-12-03
Establishing how grid cells are anatomically arranged, on a microscopic scale, in relation to their firing patterns in the environment would facilitate a greater microcircuit-level understanding of the brain's representation of space. However, all previous grid cell recordings used electrode techniques that provide limited descriptions of fine-scale organization. We therefore developed a technique for cellular-resolution functional imaging of medial entorhinal cortex (MEC) neurons in mice navigating a virtual linear track, enabling a new experimental approach to study MEC. Using these methods, we show that grid cells are physically clustered in MEC compared to nongrid cells. Additionally, we demonstrate that grid cells are functionally micro-organized: the similarity between the environment firing locations of grid cell pairs varies as a function of the distance between them according to a "Mexican hat"-shaped profile. This suggests that, on average, nearby grid cells have more similar spatial firing phases than those further apart. Copyright © 2014 Elsevier Inc. All rights reserved.
Diehl, Geoffrey W.; Hon, Olivia J.; Leutgeb, Stefan; Leutgeb, Jill K.
2017-01-01
Summary The medial entorhinal cortex (mEC) has been identified as a hub for spatial information processing by the discovery of grid, border, and head-direction cells. Here we find that in addition to these well characterized classes, nearly all of the remaining two thirds of mEC cells can be categorized as spatially selective. We refer to these cells as non-grid spatial cells and confirmed that their spatial firing patterns were unrelated to running speed and highly reproducible within the same environment. However, in response to manipulations of environmental features, such as box shape or box color, non-grid spatial cells completely reorganized their spatial firing patterns. At the same time, grid cells retained their spatial alignment and predominantly responded with redistributed firing rates across their grid fields. Thus, mEC contains a joint representation of both spatial and environmental feature content, with specialized cell types showing different types of integrated coding of multimodal information. PMID:28343867
A finite difference method for a coupled model of wave propagation in poroelastic materials.
Zhang, Yang; Song, Limin; Deffenbaugh, Max; Toksöz, M Nafi
2010-05-01
A computational method for time-domain multi-physics simulation of wave propagation in a poroelastic medium is presented. The medium is composed of an elastic matrix saturated with a Newtonian fluid, and the method operates on a digital representation of the medium where a distinct material phase and properties are specified at each volume cell. The dynamic response to an acoustic excitation is modeled mathematically with a coupled system of equations: elastic wave equation in the solid matrix and linearized Navier-Stokes equation in the fluid. Implementation of the solution is simplified by introducing a common numerical form for both solid and fluid cells and using a rotated-staggered-grid which allows stable solutions without explicitly handling the fluid-solid boundary conditions. A stability analysis is presented which can be used to select gridding and time step size as a function of material properties. The numerical results are shown to agree with the analytical solution for an idealized porous medium of periodically alternating solid and fluid layers.
Dordek, Yedidyah; Soudry, Daniel; Meir, Ron; Derdikman, Dori
2016-01-01
Many recent models study the downstream projection from grid cells to place cells, while recent data have pointed out the importance of the feedback projection. We thus asked how grid cells are affected by the nature of the input from the place cells. We propose a single-layer neural network with feedforward weights connecting place-like input cells to grid cell outputs. Place-to-grid weights are learned via a generalized Hebbian rule. The architecture of this network highly resembles neural networks used to perform Principal Component Analysis (PCA). Both numerical results and analytic considerations indicate that if the components of the feedforward neural network are non-negative, the output converges to a hexagonal lattice. Without the non-negativity constraint, the output converges to a square lattice. Consistent with experiments, grid spacing ratio between the first two consecutive modules is −1.4. Our results express a possible linkage between place cell to grid cell interactions and PCA. DOI: http://dx.doi.org/10.7554/eLife.10094.001 PMID:26952211
Anisotropic encoding of three-dimensional space by place cells and grid cells
Hayman, R.; Verriotis, M.; Jovalekic, A.; Fenton, A.A.; Jeffery, K.J.
2011-01-01
The subjective sense of space may result in part from the combined activity of place cells, in the hippocampus, and grid cells in posterior cortical regions such as entorhinal cortex and pre/parasubiculum. In horizontal planar environments, place cells provide focal positional information while grid cells supply odometric (distance-measuring) information. How these cells operate in three dimensions is unknown, even though the real world is three–dimensional. The present study explored this issue in rats exploring two different kinds of apparatus, a climbing wall (the “pegboard”) and a helix. Place and grid cell firing fields had normal horizontal characteristics but were elongated vertically, with grid fields forming stripes. It appears that grid cell odometry (and by implication path integration) is impaired/absent in the vertical domain, at least when the animal itself remains horizontal. These findings suggest that the mammalian encoding of three-dimensional space is anisotropic. PMID:21822271
The abrupt development of adult-like grid cell firing in the medial entorhinal cortex
Wills, Thomas J.; Barry, Caswell; Cacucci, Francesca
2012-01-01
Understanding the development of the neural circuits subserving specific cognitive functions such as navigation remains a central problem in neuroscience. Here, we characterize the development of grid cells in the medial entorhinal cortex, which, by nature of their regularly spaced firing fields, are thought to provide a distance metric to the hippocampal neural representation of space. Grid cells emerge at the time of weaning in the rat, at around 3 weeks of age. We investigated whether grid cells in young rats are functionally equivalent to those observed in the adult as soon as they appear, or if instead they follow a gradual developmental trajectory. We find that, from the very youngest ages at which reproducible grid firing is observed (postnatal day 19): grid cells display adult-like firing fields that tessellate to form a coherent map of the local environment; that this map is universal, maintaining its internal structure across different environments; and that grid cells in young rats, as in adults, also encode a representation of direction and speed. To further investigate the developmental processes leading up to the appearance of grid cells, we present data from individual medial entorhinal cortex cells recorded across more than 1 day, spanning the period before and after the grid firing pattern emerged. We find that increasing spatial stability of firing was correlated with increasing gridness. PMID:22557949
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, C; Schultheiss, T
Purpose: In this study, we aim to evaluate the effect of dose grid size on the accuracy of calculated dose for small lesions in intracranial stereotactic radiosurgery (SRS), and to verify dose calculation accuracy with radiochromic film dosimetry. Methods: 15 intracranial lesions from previous SRS patients were retrospectively selected for this study. The planning target volume (PTV) ranged from 0.17 to 2.3 cm{sup 3}. A commercial treatment planning system was used to generate SRS plans using the volumetric modulated arc therapy (VMAT) technique using two arc fields. Two convolution-superposition-based dose calculation algorithms (Anisotropic Analytical Algorithm and Acuros XB algorithm) weremore » used to calculate volume dose distribution with dose grid size ranging from 1 mm to 3 mm with 0.5 mm step size. First, while the plan monitor units (MU) were kept constant, PTV dose variations were analyzed. Second, with 95% of the PTV covered by the prescription dose, variations of the plan MUs as a function of dose grid size were analyzed. Radiochomic films were used to compare the delivered dose and profile with the calculated dose distribution with different dose grid sizes. Results: The dose to the PTV, in terms of the mean dose, maximum, and minimum dose, showed steady decrease with increasing dose grid size using both algorithms. With 95% of the PTV covered by the prescription dose, the total MU increased with increasing dose grid size in most of the plans. Radiochromic film measurements showed better agreement with dose distributions calculated with 1-mm dose grid size. Conclusion: Dose grid size has significant impact on calculated dose distribution in intracranial SRS treatment planning with small target volumes. Using the default dose grid size could lead to under-estimation of delivered dose. A small dose grid size should be used to ensure calculation accuracy and agreement with QA measurements.« less
An Application of Cartesian-Grid and Volume-of-Fluid Methods to Numerical Ship Hydrodynamics
2007-10-01
water-particle ve- locity is discontinuous across the air-water interface, and where CiEA is the Levi - Civita function. rj is the moment the vertical...methods and volume-of- immersed- body and volume-of-fluid (VOF) methods. fluid methods is used to simulate breaking waves around The governing equations are...of a ship hull is used as input to automat- body -fitted grids. The sole geometric input into NFA ically generate an immersed-boundary representation of
Estimation of the fractional coverage of rainfall in climate models
NASA Technical Reports Server (NTRS)
Eltahir, E. A. B.; Bras, R. L.
1993-01-01
The fraction of the grid cell area covered by rainfall, mu, is an essential parameter in descriptions of land surface hydrology in climate models. A simple procedure is presented for estimating this fraction, based on extensive observations of storm areas and rainfall volumes. Storm area and rainfall volume are often linearly related; this relation can be used to compute the storm area from the volume of rainfall simulated by a climate model. A formula is developed for computing mu, which describes the dependence of the fractional coverage of rainfall on the season of the year, the geographical region, rainfall volume, and the spatial and temporal resolution of the model. The new formula is applied in computing mu over the Amazon region. Significant temporal variability in the fractional coverage of rainfall is demonstrated. The implications of this variability for the modeling of land surface hydrology in climate models are discussed.
Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2012-01-01
The effects of mesh irregularities on accuracy of unstructured node-centered finite-volume discretizations are considered. The focus is on an edge-based approach that uses unweighted least-squares gradient reconstruction with a quadratic fit. For inviscid fluxes, the discretization is nominally third order accurate on general triangular meshes. For viscous fluxes, the scheme is an average-least-squares formulation that is nominally second order accurate and contrasted with a common Green-Gauss discretization scheme. Gradient errors, truncation errors, and discretization errors are separately studied according to a previously introduced comprehensive methodology. The methodology considers three classes of grids: isotropic grids in a rectangular geometry, anisotropic grids typical of adapted grids, and anisotropic grids over a curved surface typical of advancing layer grids. The meshes within the classes range from regular to extremely irregular including meshes with random perturbation of nodes. Recommendations are made concerning the discretization schemes that are expected to be least sensitive to mesh irregularities in applications to turbulent flows in complex geometries.
Using Minimum-Surface Bodies for Iteration Space Partitioning
NASA Technical Reports Server (NTRS)
Frumlin, Michael; VanderWijngaart, Rob F.; Biegel, Bryan (Technical Monitor)
2001-01-01
A number of known techniques for improving cache performance in scientific computations involve the reordering of the iteration space. Some of these reorderings can be considered as coverings of the iteration space with the sets having good surface-to-volume ratio. Use of such sets reduces the number of cache misses in computations of local operators having the iteration space as a domain. We study coverings of iteration spaces represented by structured and unstructured grids. For structured grids we introduce a covering based on successive minima tiles of the interference lattice of the grid. We show that the covering has good surface-to-volume ratio and present a computer experiment showing actual reduction of the cache misses achieved by using these tiles. For unstructured grids no cache efficient covering can be guaranteed. We present a triangulation of a 3-dimensional cube such that any local operator on the corresponding grid has significantly larger number of cache misses than a similar operator on a structured grid.
Raudies, Florian; Hasselmo, Michael E.
2015-01-01
Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432
Chromosomal aberrations in Sigmodon hispidus from a Superfund site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, B.; McBee, K.; Lochmiller, R.
1995-12-31
Cotton rats (Sigmodon hispidus) were collected from an EPA Superfund site located on an abandoned oil refinery. Three trapping grids were located on the refinery and three similar grids were located at uncontaminated localities which served as reference sites. Bone marrow metaphase chromosome preparations were examined for chromosomal damage. For each individual, 50 cells were scored for six classes of chromosomal lesions. For the fall 1991 trapping period, mean number of aberrant cells per individual was 2.33, 0.85, and 1.50 for the three Superfund grids., Mean number of aberrant cells per individual was 2.55, 2.55, and 2.12 from the referencemore » grids. Mean number of lesions per cell was 2.77, 0.86, and 1.9 from the Superfund grids, and 3.55, 2.77, and 2.50 from the reference grids. For the spring 1992 trapping period, more damage was observed in animals from both Superfund and reference sites; however, animals from Superfund grids had more damage than animals from reference grids. Mean number of aberrant cells per individual was 3.50, 3.25, and 3.70 from the Superfund grids, and 2.40, 2.11, and 1.40 from the reference grids. Mean number of lesions per cell was 4.80, 4.25, and 5.50 from the Superfund grids, and 2.60, 2.33, and 1.50 from the reference grids. These data suggest animals may be more susceptible to chromosomal damage during winter months, and animals from the Superfund grids appear to be more severely affected than animals from reference grids.« less
Impact of tip-gap size and periodicity on turbulent transition
NASA Astrophysics Data System (ADS)
Pogorelov, Alexej; Meinke, Matthias; Schroeder, Wolfgang
2015-11-01
Large-Eddy Simulations of the flow field in an axial fan are performed at a Reynolds number of 936.000 based on the diameter and the rotational speed of the casing wall. A finite-volume flow solver based on a conservative Cartesian cut-cell method is used to solve the unsteady compressible Navier-Stokes equations. Computations are performed at a flow rate coefficient of 0.165 and a tip-gap size of s/D =0.01, for a 72 degrees fan section resolving only one out of five blades and a full fan resolving all five blades to investigate the impact of the periodic boundary condition. Furthermore, a grid convergence study is performed using four computational grids. Results of the flow field are analyzed for the computational grid with 1 billion cells. An interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, is observed, which leads to a cyclic transition with high pressure fluctuations on the suction side of the blade. Two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level such that their physical origin is explained. A variation of the tip-gap size alters the transition on the suction side, i.e., no cyclic transition is observed.
Grid Computing in K-12 Schools. Soapbox Digest. Volume 3, Number 2, Fall 2004
ERIC Educational Resources Information Center
AEL, 2004
2004-01-01
Grid computing allows large groups of computers (either in a lab, or remote and connected only by the Internet) to extend extra processing power to each individual computer to work on components of a complex request. Grid middleware, recognizing priorities set by systems administrators, allows the grid to identify and use this power without…
Minimizing Cache Misses Using Minimum-Surface Bodies
NASA Technical Reports Server (NTRS)
Frumkin, Michael; VanderWijngaart, Rob; Biegel, Bryan (Technical Monitor)
2002-01-01
A number of known techniques for improving cache performance in scientific computations involve the reordering of the iteration space. Some of these reorderings can be considered as coverings of the iteration space with the sets having good surface-to-volume ratio. Use of such sets reduces the number of cache misses in computations of local operators having the iteration space as a domain. First, we derive lower bounds which any algorithm must suffer while computing a local operator on a grid. Then we explore coverings of iteration spaces represented by structured and unstructured grids which allow us to approach these lower bounds. For structured grids we introduce a covering by successive minima tiles of the interference lattice of the grid. We show that the covering has low surface-to-volume ratio and present a computer experiment showing actual reduction of the cache misses achieved by using these tiles. For planar unstructured grids we show existence of a covering which reduces the number of cache misses to the level of structured grids. On the other hand, we present a triangulation of a 3-dimensional cube such that any local operator on the corresponding grid has significantly larger number of cache misses than a similar operator on a structured grid.
Optimizing Grid Patterns on Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Burger, D. R.
1984-01-01
CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.
Volume change and energy exchange: How they affect symmetry in the Noh problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vachal, Pavel; Wendroff, Burton
The edge viscosity of Caramana, Shashkov and Whalen is known to fail on the Noh problem in an initially rectangular grid. In this paper, we present a simple change that significantly improves the behavior in that case. We also show that added energy exchange between cells improves the symmetry of both edge viscosity and the tensor viscosity of Campbell and Shashkov. Finally, as suggested by Noh, this addition also reduces the wall heating effect.
Volume change and energy exchange: How they affect symmetry in the Noh problem
Vachal, Pavel; Wendroff, Burton
2018-03-14
The edge viscosity of Caramana, Shashkov and Whalen is known to fail on the Noh problem in an initially rectangular grid. In this paper, we present a simple change that significantly improves the behavior in that case. We also show that added energy exchange between cells improves the symmetry of both edge viscosity and the tensor viscosity of Campbell and Shashkov. Finally, as suggested by Noh, this addition also reduces the wall heating effect.
NASA Astrophysics Data System (ADS)
Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.
2017-11-01
Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
NASA Technical Reports Server (NTRS)
Chan, William M.
1993-01-01
An enhanced grid system for the Space Shuttle Orbiter was built by integrating CAD definitions from several sources and then generating the surface and volume grids. The new grid system contains geometric components not modeled previously plus significant enhancements on geometry that has been modeled in the old grid system. The new orbiter grids were then integrated with new grids for the rest of the launch vehicle. Enhancements were made to the hyperbolic grid generator HYPGEN and new tools for grid projection, manipulation, and modification, Cartesian box grid and far field grid generation and post-processing of flow solver data were developed.
Shape functions for velocity interpolation in general hexahedral cells
Naff, R.L.; Russell, T.F.; Wilson, J.D.
2002-01-01
Numerical methods for grids with irregular cells require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element (CVMFE) methods, vector shape functions approximate velocities and vector test functions enforce a discrete form of Darcy's law. In this paper, a new vector shape function is developed for use with irregular, hexahedral cells (trilinear images of cubes). It interpolates velocities and fluxes quadratically, because as shown here, the usual Piola-transformed shape functions, which interpolate linearly, cannot match uniform flow on general hexahedral cells. Truncation-error estimates for the shape function are demonstrated. CVMFE simulations of uniform and non-uniform flow with irregular meshes show first- and second-order convergence of fluxes in the L2 norm in the presence and absence of singularities, respectively.
Methodological Caveats in the Detection of Coordinated Replay between Place Cells and Grid Cells
Trimper, John B.; Trettel, Sean G.; Hwaun, Ernie; Colgin, Laura Lee
2017-01-01
At rest, hippocampal “place cells,” neurons with receptive fields corresponding to specific spatial locations, reactivate in a manner that reflects recently traveled trajectories. These “replay” events have been proposed as a mechanism underlying memory consolidation, or the transfer of a memory representation from the hippocampus to neocortical regions associated with the original sensory experience. Accordingly, it has been hypothesized that hippocampal replay of a particular experience should be accompanied by simultaneous reactivation of corresponding representations in the neocortex and in the entorhinal cortex, the primary interface between the hippocampus and the neocortex. Recent studies have reported that coordinated replay may occur between hippocampal place cells and medial entorhinal cortex grid cells, cells with multiple spatial receptive fields. Assessing replay in grid cells is problematic, however, as the cells exhibit regularly spaced spatial receptive fields in all environments and, therefore, coordinated replay between place cells and grid cells may be detected by chance. In the present report, we adapted analytical approaches utilized in recent studies of grid cell and place cell replay to determine the extent to which coordinated replay is spuriously detected between grid cells and place cells recorded from separate rats. For a subset of the employed analytical methods, coordinated replay was detected spuriously in a significant proportion of cases in which place cell replay events were randomly matched with grid cell firing epochs of equal duration. More rigorous replay evaluation procedures and minimum spike count requirements greatly reduced the amount of spurious findings. These results provide insights into aspects of place cell and grid cell activity during rest that contribute to false detection of coordinated replay. The results further emphasize the need for careful controls and rigorous methods when testing the hypothesis that place cells and grid cells exhibit coordinated replay. PMID:28824388
Selforganization of modular activity of grid cells
Urdapilleta, Eugenio; Si, Bailu
2017-01-01
Abstract A unique topographical representation of space is found in the concerted activity of grid cells in the rodent medial entorhinal cortex. Many among the principal cells in this region exhibit a hexagonal firing pattern, in which each cell expresses its own set of place fields (spatial phases) at the vertices of a triangular grid, the spacing and orientation of which are typically shared with neighboring cells. Grid spacing, in particular, has been found to increase along the dorso‐ventral axis of the entorhinal cortex but in discrete steps, that is, with a modular structure. In this study, we show that such a modular activity may result from the self‐organization of interacting units, which individually would not show discrete but rather continuously varying grid spacing. Within our “adaptation” network model, the effect of a continuously varying time constant, which determines grid spacing in the isolated cell model, is modulated by recurrent collateral connections, which tend to produce a few subnetworks, akin to magnetic domains, each with its own grid spacing. In agreement with experimental evidence, the modular structure is tightly defined by grid spacing, but also involves grid orientation and distortion, due to interactions across modules. Thus, our study sheds light onto a possible mechanism, other than simply assuming separate networks a priori, underlying the formation of modular grid representations. PMID:28768062
Purely Translational Realignment in Grid Cell Firing Patterns Following Nonmetric Context Change
Marozzi, Elizabeth; Ginzberg, Lin Lin; Alenda, Andrea; Jeffery, Kate J.
2015-01-01
Grid cells in entorhinal and parahippocampal cortices contribute to a network, centered on the hippocampal place cell system, that constructs a representation of spatial context for use in navigation and memory. In doing so, they use metric cues such as the distance and direction of nearby boundaries to position and orient their firing field arrays (grids). The present study investigated whether they also use purely nonmetric “context” information such as color and odor of the environment. We found that, indeed, purely nonmetric cues—sufficiently salient to cause changes in place cell firing patterns—can regulate grid positioning; they do so independently of orientation, and thus interact with linear but not directional spatial inputs. Grid cells responded homogeneously to context changes. We suggest that the grid and place cell networks receive context information directly and also from each other; the information is used by place cells to compute the final decision of the spatial system about which context the animal is in, and by grid cells to help inform the system about where the animal is within it. PMID:26048956
Grid cells form a global representation of connected environments.
Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell
2015-05-04
The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5-8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9-11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Grid Cells Form a Global Representation of Connected Environments
Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell
2015-01-01
Summary The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5–8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9–11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. PMID:25913404
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Newman, James C., III; Barnwell, Richard W.
1997-01-01
A three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed and is extended to model geometrically complex configurations. The advantage of unstructured grids (when compared with a structured-grid approach) is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional geometry and a Gauss-Seidel algorithm for the three-dimensional; similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Simple parameterization techniques are utilized for demonstrative purposes. Once the surface has been deformed, the unstructured grid is adapted by considering the mesh as a system of interconnected springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR (which is an advanced automatic-differentiation software tool). To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for a two-dimensional high-lift multielement airfoil and for a three-dimensional Boeing 747-200 aircraft.
Best Practices In Overset Grid Generation
NASA Technical Reports Server (NTRS)
Chan, William M.; Gomez, Reynaldo J., III; Rogers, Stuart E.; Buning, Pieter G.; Kwak, Dochan (Technical Monitor)
2002-01-01
Grid generation for overset grids on complex geometry can be divided into four main steps: geometry processing, surface grid generation, volume grid generation and domain connectivity. For each of these steps, the procedures currently practiced by experienced users are described. Typical problems encountered are also highlighted and discussed. Most of the guidelines are derived from experience on a variety of problems including space launch and return vehicles, subsonic transports with propulsion and high lift devices, supersonic vehicles, rotorcraft vehicles, and turbomachinery.
The goal of achieving verisimilitude of air quality simulations to observations is problematic. Chemical transport models such as the Community Multi-Scale Air Quality (CMAQ) modeling system produce volume averages of pollutant concentration fields. When grid sizes are such tha...
a Cell Vertex Algorithm for the Incompressible Navier-Stokes Equations on Non-Orthogonal Grids
NASA Astrophysics Data System (ADS)
Jessee, J. P.; Fiveland, W. A.
1996-08-01
The steady, incompressible Navier-Stokes (N-S) equations are discretized using a cell vertex, finite volume method. Quadrilateral and hexahedral meshes are used to represent two- and three-dimensional geometries respectively. The dependent variables include the Cartesian components of velocity and pressure. Advective fluxes are calculated using bounded, high-resolution schemes with a deferred correction procedure to maintain a compact stencil. This treatment insures bounded, non-oscillatory solutions while maintaining low numerical diffusion. The mass and momentum equations are solved with the projection method on a non-staggered grid. The coupling of the pressure and velocity fields is achieved using the Rhie and Chow interpolation scheme modified to provide solutions independent of time steps or relaxation factors. An algebraic multigrid solver is used for the solution of the implicit, linearized equations.A number of test cases are anlaysed and presented. The standard benchmark cases include a lid-driven cavity, flow through a gradual expansion and laminar flow in a three-dimensional curved duct. Predictions are compared with data, results of other workers and with predictions from a structured, cell-centred, control volume algorithm whenever applicable. Sensitivity of results to the advection differencing scheme is investigated by applying a number of higher-order flux limiters: the MINMOD, MUSCL, OSHER, CLAM and SMART schemes. As expected, studies indicate that higher-order schemes largely mitigate the diffusion effects of first-order schemes but also shown no clear preference among the higher-order schemes themselves with respect to accuracy. The effect of the deferred correction procedure on global convergence is discussed.
Stable Artificial Dissipation Operators for Finite Volume Schemes on Unstructured Grids
NASA Technical Reports Server (NTRS)
Svard, Magnus; Gong, Jing; Nordstrom, Jan
2006-01-01
Our objective is to derive stable first-, second- and fourth-order artificial dissipation operators for node based finite volume schemes. Of particular interest are general unstructured grids where the strength of the finite volume method is fully utilized. A commonly used finite volume approximation of the Laplacian will be the basis in the construction of the artificial dissipation. Both a homogeneous dissipation acting in all directions with equal strength and a modification that allows different amount of dissipation in different directions are derived. Stability and accuracy of the new operators are proved and the theoretical results are supported by numerical computations.
NASA Astrophysics Data System (ADS)
Re, B.; Dobrzynski, C.; Guardone, A.
2017-07-01
A novel strategy to solve the finite volume discretization of the unsteady Euler equations within the Arbitrary Lagrangian-Eulerian framework over tetrahedral adaptive grids is proposed. The volume changes due to local mesh adaptation are treated as continuous deformations of the finite volumes and they are taken into account by adding fictitious numerical fluxes to the governing equation. This peculiar interpretation enables to avoid any explicit interpolation of the solution between different grids and to compute grid velocities so that the Geometric Conservation Law is automatically fulfilled also for connectivity changes. The solution on the new grid is obtained through standard ALE techniques, thus preserving the underlying scheme properties, such as conservativeness, stability and monotonicity. The adaptation procedure includes node insertion, node deletion, edge swapping and points relocation and it is exploited both to enhance grid quality after the boundary movement and to modify the grid spacing to increase solution accuracy. The presented approach is assessed by three-dimensional simulations of steady and unsteady flow fields. The capability of dealing with large boundary displacements is demonstrated by computing the flow around the translating infinite- and finite-span NACA 0012 wing moving through the domain at the flight speed. The proposed adaptive scheme is applied also to the simulation of a pitching infinite-span wing, where the bi-dimensional character of the flow is well reproduced despite the three-dimensional unstructured grid. Finally, the scheme is exploited in a piston-induced shock-tube problem to take into account simultaneously the large deformation of the domain and the shock wave. In all tests, mesh adaptation plays a crucial role.
Merritt, Michael L.; Konikow, Leonard F.
2000-01-01
Heads and flow patterns in surficial aquifers can be strongly influenced by the presence of stationary surface-water bodies (lakes) that are in direct contact, vertically and laterally, with the aquifer. Conversely, lake stages can be significantly affected by the volume of water that seeps through the lakebed that separates the lake from the aquifer. For these reasons, a set of computer subroutines called the Lake Package (LAK3) was developed to represent lake/aquifer interaction in numerical simulations using the U.S. Geological Survey three-dimensional, finite-difference, modular ground-water flow model MODFLOW and the U.S. Geological Survey three-dimensional method-of-characteristics solute-transport model MOC3D. In the Lake Package described in this report, a lake is represented as a volume of space within the model grid which consists of inactive cells extending downward from the upper surface of the grid. Active model grid cells bordering this space, representing the adjacent aquifer, exchange water with the lake at a rate determined by the relative heads and by conductances that are based on grid cell dimensions, hydraulic conductivities of the aquifer material, and user-specified leakance distributions that represent the resistance to flow through the material of the lakebed. Parts of the lake may become ?dry? as upper layers of the model are dewatered, with a concomitant reduction in lake surface area, and may subsequently rewet when aquifer heads rise. An empirical approximation has been encoded to simulate the rewetting of a lake that becomes completely dry. The variations of lake stages are determined by independent water budgets computed for each lake in the model grid. This lake budget process makes the package a simulator of the response of lake stage to hydraulic stresses applied to the aquifer. Implementation of a lake water budget requires input of parameters including those representing the rate of lake atmospheric recharge and evaporation, overland runoff, and the rate of any direct withdrawal from, or augmentation of, the lake volume. The lake/aquifer interaction may be simulated in both transient and steady-state flow conditions, and the user may specify that lake stages be computed explicitly, semi-implicitly, or fully-implicitly in transient simulations. The lakes, and all sources of water entering the lakes, may have solute concentrations associated with them for use in solute-transport simulations using MOC3D. The Stream Package of MODFLOW-2000 and MOC3D represents stream connections to lakes, either as inflows or outflows. Because lakes with irregular bathymetry can exist as separate pools of water at lower stages, that coalesce to become a single body of water at higher stages, logic was added to the Lake Package to allow the representation of this process as a user option. If this option is selected, a system of linked pools (sublakes) is identified in each time step and stages are equalized based on current relative sublake surface areas.
Nuclear reactor spacer grid and ductless core component
Christiansen, David W.; Karnesky, Richard A.
1989-01-01
The invention relates to a nuclear reactor spacer grid member for use in a liquid cooled nuclear reactor and to a ductless core component employing a plurality of these spacer grid members. The spacer grid member is of the egg-shell type and is constructed so that the walls of the cell members of the grid member are formed of a single thickness of metal to avoid tolerance problems. Within each cell member is a hydraulic spring which laterally constrains the nuclear material bearing rod which passes through each cell member against a hardstop in response to coolant flow through the cell member. This hydraulic spring is also suitable for use in a water cooled nuclear reactor. A core component constructed of, among other components, a plurality of these spacer grid members, avoids the use of a full length duct by providing spacer sleeves about the sodium tubes passing through the spacer grid members at locations between the grid members, thereby maintaining a predetermined space between adjacent grid members.
Method of making a back contacted solar cell
Gee, James M.
1995-01-01
A back-contacted solar cell having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell.
Turbulent Bubbly Flow in a Vertical Pipe Computed By an Eddy-Resolving Reynolds Stress Model
2014-09-19
the numerical code OpenFOAM R©. 1 Introduction Turbulent bubbly flows are encountered in many industrially relevant applications, such as chemical in...performed using the OpenFOAM -2.2.2 computational code utilizing a cell- center-based finite volume method on an unstructured numerical grid. The...the mean Courant number is always below 0.4. The utilized turbulence models were implemented into the so-called twoPhaseEulerFoam solver in OpenFOAM , to
Moving and adaptive grid methods for compressible flows
NASA Technical Reports Server (NTRS)
Trepanier, Jean-Yves; Camarero, Ricardo
1995-01-01
This paper describes adaptive grid methods developed specifically for compressible flow computations. The basic flow solver is a finite-volume implementation of Roe's flux difference splitting scheme or arbitrarily moving unstructured triangular meshes. The grid adaptation is performed according to geometric and flow requirements. Some results are included to illustrate the potential of the methodology.
HELP - A Multimaterial Eulerian Program in Two Space Dimensions and Time
1976-04-01
ASSUMPTIONS 3-1 3.2 STRENGTH PHASE (SPHASE) 3-1 3.2.1 Definition of Strain Rate Derivatives for Cells at a Grid Boundary 3-3 3.2.2 Definition...of Interpolated Strain Rates and Stresses for Cells at a Grid Boundary 3-4 3.2.3 Definition of Velocities and Deviator Stresses at Grid Boundaries...Grid Boundaries 3-9 3.4.2 Change of Momentum for Cells at Reflective Grid Boundaries in TPHASE.. 3-10 3.4.3 Correction to Theoretical Energy for
Nonlinear Conservation Laws and Finite Volume Methods
NASA Astrophysics Data System (ADS)
Leveque, Randall J.
Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References
Optimal configurations of spatial scale for grid cell firing under noise and uncertainty
Towse, Benjamin W.; Barry, Caswell; Bush, Daniel; Burgess, Neil
2014-01-01
We examined the accuracy with which the location of an agent moving within an environment could be decoded from the simulated firing of systems of grid cells. Grid cells were modelled with Poisson spiking dynamics and organized into multiple ‘modules’ of cells, with firing patterns of similar spatial scale within modules and a wide range of spatial scales across modules. The number of grid cells per module, the spatial scaling factor between modules and the size of the environment were varied. Errors in decoded location can take two forms: small errors of precision and larger errors resulting from ambiguity in decoding periodic firing patterns. With enough cells per module (e.g. eight modules of 100 cells each) grid systems are highly robust to ambiguity errors, even over ranges much larger than the largest grid scale (e.g. over a 500 m range when the maximum grid scale is 264 cm). Results did not depend strongly on the precise organization of scales across modules (geometric, co-prime or random). However, independent spatial noise across modules, which would occur if modules receive independent spatial inputs and might increase with spatial uncertainty, dramatically degrades the performance of the grid system. This effect of spatial uncertainty can be mitigated by uniform expansion of grid scales. Thus, in the realistic regimes simulated here, the optimal overall scale for a grid system represents a trade-off between minimizing spatial uncertainty (requiring large scales) and maximizing precision (requiring small scales). Within this view, the temporary expansion of grid scales observed in novel environments may be an optimal response to increased spatial uncertainty induced by the unfamiliarity of the available spatial cues. PMID:24366144
Method of making a back contacted solar cell
Gee, J.M.
1995-11-21
A back-contacted solar cell is described having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell. 2 figs.
Grid cell spatial tuning reduced following systemic muscarinic receptor blockade
Newman, Ehren L.; Climer, Jason R.; Hasselmo, Michael E.
2014-01-01
Grid cells of the medial entorhinal cortex exhibit a periodic and stable pattern of spatial tuning that may reflect the output of a path integration system. This grid pattern has been hypothesized to serve as a spatial coordinate system for navigation and memory function. The mechanisms underlying the generation of this characteristic tuning pattern remain poorly understood. Systemic administration of the muscarinic antagonist scopolamine flattens the typically positive correlation between running speed and entorhinal theta frequency in rats. The loss of this neural correlate of velocity, an important signal for the calculation of path integration, raises the question of what influence scopolamine has on the grid cell tuning as a read out of the path integration system. To test this, the spatial tuning properties of grid cells were compared before and after systemic administration of scopolamine as rats completed laps on a circle track for food rewards. The results show that the spatial tuning of the grid cells was reduced following scopolamine administration. The tuning of head direction cells, in contrast, was not reduced by scopolamine. This is the first report to demonstrate a link between cholinergic function and grid cell tuning. This work suggests that the loss of tuning in the grid cell network may underlie the navigational disorientation observed in Alzheimer's patients and elderly individuals with reduced cholinergic tone. PMID:24493379
Vascularized networks with two optimized channel sizes
NASA Astrophysics Data System (ADS)
Wang, K.-M.; Lorente, S.; Bejan, A.
2006-07-01
This paper reports the development of optimal vascularization for supplying self-healing smart materials with liquid that fills and seals the cracks that may occur throughout their volume. The vascularization consists of two-dimensional grids of interconnected orthogonal channels with two hydraulic diameters (D1, D2). The smallest square loop is designed to match the size (d) of the smallest crack. The network is sealed with respect to the outside and is filled with pressurized liquid. In this work, the crack site is modelled as a small spherical volume of diameter d. When a crack is formed, fluid flows from neighbouring channels to the crack site. This volume-to-point flow is optimized using two formulations: (1) incompressible liquid from steady constant-strength sources located in every node of the grid and from sources located equidistantly on the perimeter of the vascularized body of length scale L and (2) slightly compressible liquid from an initially pressurized grid discharging in time-dependent fashion into one crack site. The flow in every channel is laminar and fully developed. The objectives are (a) to minimize the global resistance to the flow from the grid to the crack site and (b) to minimize the time of discharge from the pressurized grid to the crack site. It is shown that methods (a) and (b) yield similar results. There is an optimal ratio of channel diameters D2/D1 < 1, and it decreases as the grid fineness (L/d) increases. The global flow resistance of the grid with optimized ratio of diameters is approximately half of the resistance of the corresponding grid with one channel size (D1 = D2). The optimized ratio of diameters and the minimized global resistance depend on how the grid intersects the crack site: this effect is minor and stresses the robustness of the vascularized design.
Asur, Rajalakshmi S.; Sharma, Sunil; Chang, Ching-Wei; Penagaricano, Jose; Kommuru, Indira M.; Moros, Eduardo G.; Corry, Peter M.; Griffin, Robert J.
2012-01-01
Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied. The occurrence of GRID-induced bystander gene expression changes in significant numbers of DNA damage and cellular stress response signaling genes, providing molecular evidence for possible mechanisms of bystander cell killing. PMID:22559204
Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex.
Winter, Shawn S; Mehlman, Max L; Clark, Benjamin J; Taube, Jeffrey S
2015-10-05
Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal's movements. These signals include grid cells, which fire at multiple locations, forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz electroencephalogram (EEG) oscillation that is modulated by the animals' movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall head-direction (HD) cell characteristics, but abolished both velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity, which may be used as a speed signal to generate the repeating pattern of grid cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex
Winter, Shawn S.; Mehlman, Max L.; Clark, Benjamin J.; Taube, Jeffrey S.
2015-01-01
Summary Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal’s movements. These signals include grid cells, which fire at multiple locations forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz EEG oscillation that is modulated by the animals’ movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall HD cell characteristics, and abolished velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity. Velocity modulation of theta may be used as a speed signal to generate the repeating pattern of grid cells. PMID:26387719
An Adaptive Unstructured Grid Method by Grid Subdivision, Local Remeshing, and Grid Movement
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
1999-01-01
An unstructured grid adaptation technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The approach is based on a combination of grid subdivision, local remeshing, and grid movement. For solution adaptive grids, the surface triangulation is locally refined by grid subdivision, and the tetrahedral grid in the field is partially remeshed at locations of dominant flow features. A grid redistribution strategy is employed for geometric adaptation of volume grids to moving or deforming surfaces. The method is automatic and fast and is designed for modular coupling with different solvers. Several steady state test cases with different inviscid flow features were tested for grid/solution adaptation. In all cases, the dominant flow features, such as shocks and vortices, were accurately and efficiently predicted with the present approach. A new and robust method of moving tetrahedral "viscous" grids is also presented and demonstrated on a three-dimensional example.
Grid cells on steeply sloping terrain: evidence for planar rather than volumetric encoding
Hayman, Robin M. A.; Casali, Giulio; Wilson, Jonathan J.; Jeffery, Kate J.
2015-01-01
Neural encoding of navigable space involves a network of structures centered on the hippocampus, whose neurons –place cells – encode current location. Input to the place cells includes afferents from the entorhinal cortex, which contains grid cells. These are neurons expressing spatially localized activity patches, or firing fields, that are evenly spaced across the floor in a hexagonal close-packed array called a grid. It is thought that grids function to enable the calculation of distances. The question arises as to whether this odometry process operates in three dimensions, and so we queried whether grids permeate three-dimensional (3D) space – that is, form a lattice – or whether they simply follow the environment surface. If grids form a 3D lattice then this lattice would ordinarily be aligned horizontally (to explain the usual hexagonal pattern observed). A tilted floor would transect several layers of this putative lattice, resulting in interruption of the hexagonal pattern. We model this prediction with simulated grid lattices, and show that the firing of a grid cell on a 40°-tilted surface should cover proportionally less of the surface, with smaller field size, fewer fields, and reduced hexagonal symmetry. However, recording of real grid cells as animals foraged on a 40°-tilted surface found that firing of grid cells was almost indistinguishable, in pattern or rate, from that on the horizontal surface, with if anything increased coverage and field number, and preserved field size. It thus appears unlikely that the sloping surface transected a lattice. However, grid cells on the slope displayed slightly degraded firing patterns, with reduced coherence and slightly reduced symmetry. These findings collectively suggest that the grid cell component of the metric representation of space is not fixed in absolute 3D space but is influenced both by the surface the animal is on and by the relationship of this surface to the horizontal, supporting the hypothesis that the neural map of space is “multi-planar” rather than fully volumetric. PMID:26236245
Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Liou, M. S.; Povinelli, L. A.
1993-01-01
A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping, and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results shown are a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.
Development of an explicit multiblock/multigrid flow solver for viscous flows in complex geometries
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Liou, M.-S.; Povinelli, L. A.
1993-01-01
A new computer program is being developed for doing accurate simulations of compressible viscous flows in complex geometries. The code employs the full compressible Navier-Stokes equations. The eddy viscosity model of Baldwin and Lomax is used to model the effects of turbulence on the flow. A cell centered finite volume discretization is used for all terms in the governing equations. The Advection Upwind Splitting Method (AUSM) is used to compute the inviscid fluxes, while central differencing is used for the diffusive fluxes. A four-stage Runge-Kutta time integration scheme is used to march solutions to steady state, while convergence is enhanced by a multigrid scheme, local time-stepping and implicit residual smoothing. To enable simulations of flows in complex geometries, the code uses composite structured grid systems where all grid lines are continuous at block boundaries (multiblock grids). Example results are shown a flow in a linear cascade, a flow around a circular pin extending between the main walls in a high aspect-ratio channel, and a flow of air in a radial turbine coolant passage.
Definition of NASTRAN sets by use of parametric geometry
NASA Technical Reports Server (NTRS)
Baughn, Terry V.; Tiv, Mehran
1989-01-01
Many finite element preprocessors describe finite element model geometry with points, lines, surfaces and volumes. One method for describing these basic geometric entities is by use of parametric cubics which are useful for representing complex shapes. The lines, surfaces and volumes may be discretized for follow on finite element analysis. The ability to limit or selectively recover results from the finite element model is extremely important to the analyst. Equally important is the ability to easily apply boundary conditions. Although graphical preprocessors have made these tasks easier, model complexity may not lend itself to easily identify a group of grid points desired for data recovery or application of constraints. A methodology is presented which makes use of the assignment of grid point locations in parametric coordinates. The parametric coordinates provide a convenient ordering of the grid point locations and a method for retrieving the grid point ID's from the parent geometry. The selected grid points may then be used for the generation of the appropriate set and constraint cards.
Three-dimensional hybrid grid generation using advancing front techniques
NASA Technical Reports Server (NTRS)
Steinbrenner, John P.; Noack, Ralph W.
1995-01-01
A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.
Unstructured viscous grid generation by advancing-front method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar
1993-01-01
A new method of generating unstructured triangular/tetrahedral grids with high-aspect-ratio cells is proposed. The method is based on new grid-marching strategy referred to as 'advancing-layers' for construction of highly stretched cells in the boundary layer and the conventional advancing-front technique for generation of regular, equilateral cells in the inviscid-flow region. Unlike the existing semi-structured viscous grid generation techniques, the new procedure relies on a totally unstructured advancing-front grid strategy resulting in a substantially enhanced grid flexibility and efficiency. The method is conceptually simple but powerful, capable of producing high quality viscous grids for complex configurations with ease. A number of two-dimensional, triangular grids are presented to demonstrate the methodology. The basic elements of the method, however, have been primarily designed with three-dimensional problems in mind, making it extendible for tetrahedral, viscous grid generation.
OxfordGrid: a web interface for pairwise comparative map views.
Yang, Hongyu; Gingle, Alan R
2005-12-01
OxfordGrid is a web application and database schema for storing and interactively displaying genetic map data in a comparative, dot-plot, fashion. Its display is composed of a matrix of cells, each representing a pairwise comparison of mapped probe data for two linkage groups or chromosomes. These are arranged along the axes with one forming grid columns and the other grid rows with the degree and pattern of synteny/colinearity between the two linkage groups manifested in the cell's dot density and structure. A mouse click over the selected grid cell launches an image map-based display for the selected cell. Both individual and linear groups of mapped probes can be selected and displayed. Also, configurable links can be used to access other web resources for mapped probe information. OxfordGrid is implemented in C#/ASP.NET and the package, including MySQL schema creation scripts, is available at ftp://cggc.agtec.uga.edu/OxfordGrid/.
High resolution global flood hazard map from physically-based hydrologic and hydraulic models.
NASA Astrophysics Data System (ADS)
Begnudelli, L.; Kaheil, Y.; McCollum, J.
2017-12-01
The global flood map published online at http://www.fmglobal.com/research-and-resources/global-flood-map at 90m resolution is being used worldwide to understand flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs. The modeling system is based on a physically-based hydrologic model to simulate river discharges, and 2D shallow-water hydrodynamic model to simulate inundation. The model can be applied to large-scale flood hazard mapping thanks to several solutions that maximize its efficiency and the use of parallel computing. The hydrologic component of the modeling system is the Hillslope River Routing (HRR) hydrologic model. HRR simulates hydrological processes using a Green-Ampt parameterization, and is calibrated against observed discharge data from several publicly-available datasets. For inundation mapping, we use a 2D Finite-Volume Shallow-Water model with wetting/drying. We introduce here a grid Up-Scaling Technique (UST) for hydraulic modeling to perform simulations at higher resolution at global scale with relatively short computational times. A 30m SRTM is now available worldwide along with higher accuracy and/or resolution local Digital Elevation Models (DEMs) in many countries and regions. UST consists of aggregating computational cells, thus forming a coarser grid, while retaining the topographic information from the original full-resolution mesh. The full-resolution topography is used for building relationships between volume and free surface elevation inside cells and computing inter-cell fluxes. This approach almost achieves computational speed typical of the coarse grids while preserving, to a significant extent, the accuracy offered by the much higher resolution available DEM. The simulations are carried out along each river of the network by forcing the hydraulic model with the streamflow hydrographs generated by HRR. Hydrographs are scaled so that the peak corresponds to the return period corresponding to the hazard map being produced (e.g. 100 years, 500 years). Each numerical simulation models one river reach, except for the longest reaches which are split in smaller parts. Here we show results for selected river basins worldwide.
Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems
NASA Technical Reports Server (NTRS)
Morris, C. I.
2013-01-01
The last two decades have witnessed tremendous growth in computational power, the development of computational fluid dynamics (CFD) codes which scale well over thousands of processors, and the refinement of unstructured grid-generation tools which facilitate rapid surface and volume gridding of complex geometries. Thus, engineering calculations of 10(exp 7) - 10(exp 8) finite-volume cells have become routine for some types of problems. Although the Reynolds Averaged Navier Stokes (RANS) approach to modeling turbulence is still in extensive and wide use, increasingly large-eddy simulation (LES) and hybrid RANS-LES approaches are being applied to resolve the largest scales of turbulence in many engineering problems. However, it has also become evident that LES places different requirements on the numerical approaches for both the spatial and temporal discretization of the Navier Stokes equations than does RANS. In particular, LES requires high time accuracy and minimal intrinsic numerical dispersion and dissipation over a wide spectral range. In this paper, the performance of both central-difference and upwind-biased spatial discretizations is examined for a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem, and the turbulent channel fl ow problem.
Studies of Inviscid Flux Schemes for Acoustics and Turbulence Problems
NASA Technical Reports Server (NTRS)
Morris, Christopher I.
2013-01-01
The last two decades have witnessed tremendous growth in computational power, the development of computational fluid dynamics (CFD) codes which scale well over thousands of processors, and the refinement of unstructured grid-generation tools which facilitate rapid surface and volume gridding of complex geometries. Thus, engineering calculations of 10(exp 7) - 10(exp 8) finite-volume cells have become routine for some types of problems. Although the Reynolds Averaged Navier Stokes (RANS) approach to modeling turbulence is still in extensive and wide use, increasingly large-eddy simulation (LES) and hybrid RANS-LES approaches are being applied to resolve the largest scales of turbulence in many engineering problems. However, it has also become evident that LES places different requirements on the numerical approaches for both the spatial and temporal discretization of the Navier Stokes equations than does RANS. In particular, LES requires high time accuracy and minimal intrinsic numerical dispersion and dissipation over a wide spectral range. In this paper, the performance of both central-difference and upwind-biased spatial discretizations is examined for a one-dimensional acoustic standing wave problem, the Taylor-Green vortex problem, and the turbulent channel ow problem.
High-resolution subgrid models: background, grid generation, and implementation
NASA Astrophysics Data System (ADS)
Sehili, Aissa; Lang, Günther; Lippert, Christoph
2014-04-01
The basic idea of subgrid models is the use of available high-resolution bathymetric data at subgrid level in computations that are performed on relatively coarse grids allowing large time steps. For that purpose, an algorithm that correctly represents the precise mass balance in regions where wetting and drying occur was derived by Casulli (Int J Numer Method Fluids 60:391-408, 2009) and Casulli and Stelling (Int J Numer Method Fluids 67:441-449, 2010). Computational grid cells are permitted to be wet, partially wet, or dry, and no drying threshold is needed. Based on the subgrid technique, practical applications involving various scenarios were implemented including an operational forecast model for water level, salinity, and temperature of the Elbe Estuary in Germany. The grid generation procedure allows a detailed boundary fitting at subgrid level. The computational grid is made of flow-aligned quadrilaterals including few triangles where necessary. User-defined grid subdivision at subgrid level allows a correct representation of the volume up to measurement accuracy. Bottom friction requires a particular treatment. Based on the conveyance approach, an appropriate empirical correction was worked out. The aforementioned features make the subgrid technique very efficient, robust, and accurate. Comparison of predicted water levels with the comparatively highly resolved classical unstructured grid model shows very good agreement. The speedup in computational performance due to the use of the subgrid technique is about a factor of 20. A typical daily forecast can be carried out in less than 10 min on a standard PC-like hardware. The subgrid technique is therefore a promising framework to perform accurate temporal and spatial large-scale simulations of coastal and estuarine flow and transport processes at low computational cost.
NASA Astrophysics Data System (ADS)
Bogdanov, Alexander; Degtyarev, Alexander; Khramushin, Vasily; Shichkina, Yulia
2018-02-01
Stages of direct computational experiments in hydromechanics based on tensor mathematics tools are represented by conditionally independent mathematical models for calculations separation in accordance with physical processes. Continual stage of numerical modeling is constructed on a small time interval in a stationary grid space. Here coordination of continuity conditions and energy conservation is carried out. Then, at the subsequent corpuscular stage of the computational experiment, kinematic parameters of mass centers and surface stresses at the boundaries of the grid cells are used in modeling of free unsteady motions of volume cells that are considered as independent particles. These particles can be subject to vortex and discontinuous interactions, when restructuring of free boundaries and internal rheological states has place. Transition from one stage to another is provided by interpolation operations of tensor mathematics. Such interpolation environment formalizes the use of physical laws for mechanics of continuous media modeling, provides control of rheological state and conditions for existence of discontinuous solutions: rigid and free boundaries, vortex layers, their turbulent or empirical generalizations.
NASA Astrophysics Data System (ADS)
Bhalla, Amneet Pal Singh; Johansen, Hans; Graves, Dan; Martin, Dan; Colella, Phillip; Applied Numerical Algorithms Group Team
2017-11-01
We present a consistent cell-averaged discretization for incompressible Navier-Stokes equations on complex domains using embedded boundaries. The embedded boundary is allowed to freely cut the locally-refined background Cartesian grid. Implicit-function representation is used for the embedded boundary, which allows us to convert the required geometric moments in the Taylor series expansion (upto arbitrary order) of polynomials into an algebraic problem in lower dimensions. The computed geometric moments are then used to construct stencils for various operators like the Laplacian, divergence, gradient, etc., by solving a least-squares system locally. We also construct the inter-level data-transfer operators like prolongation and restriction for multi grid solvers using the same least-squares system approach. This allows us to retain high-order of accuracy near coarse-fine interface and near embedded boundaries. Canonical problems like Taylor-Green vortex flow and flow past bluff bodies will be presented to demonstrate the proposed method. U.S. Department of Energy, Office of Science, ASCR (Award Number DE-AC02-05CH11231).
NASA Astrophysics Data System (ADS)
van der Graaf, Harry
2009-07-01
The Gossip detector, being a GridPix TPC equipped with a thin layer of gas, is a promising alternative for Si tracking detectors. In addition, GridPix would be an interesting way to read out the gaseous phase volume of bi-phase Liquid Xe cryostats of v-less double beta decay and rare event (i.e. WIMP) search experiments.
Two-way coupled SPH and particle level set fluid simulation.
Losasso, Frank; Talton, Jerry; Kwatra, Nipun; Fedkiw, Ronald
2008-01-01
Grid-based methods have difficulty resolving features on or below the scale of the underlying grid. Although adaptive methods (e.g. RLE, octrees) can alleviate this to some degree, separate techniques are still required for simulating small-scale phenomena such as spray and foam, especially since these more diffuse materials typically behave quite differently than their denser counterparts. In this paper, we propose a two-way coupled simulation framework that uses the particle level set method to efficiently model dense liquid volumes and a smoothed particle hydrodynamics (SPH) method to simulate diffuse regions such as sprays. Our novel SPH method allows us to simulate both dense and diffuse water volumes, fully incorporates the particles that are automatically generated by the particle level set method in under-resolved regions, and allows for two way mixing between dense SPH volumes and grid-based liquid representations.
Framing of grid cells within and beyond navigation boundaries
Savelli, Francesco; Luck, JD; Knierim, James J
2017-01-01
Grid cells represent an ideal candidate to investigate the allocentric determinants of the brain’s cognitive map. Most studies of grid cells emphasized the roles of geometric boundaries within the navigational range of the animal. Behaviors such as novel route-taking between local environments indicate the presence of additional inputs from remote cues beyond the navigational borders. To investigate these influences, we recorded grid cells as rats explored an open-field platform in a room with salient, remote cues. The platform was rotated or translated relative to the room frame of reference. Although the local, geometric frame of reference often exerted the strongest control over the grids, the remote cues demonstrated a consistent, sometimes dominant, countervailing influence. Thus, grid cells are controlled by both local geometric boundaries and remote spatial cues, consistent with prior studies of hippocampal place cells and providing a rich representational repertoire to support complex navigational (and perhaps mnemonic) processes. DOI: http://dx.doi.org/10.7554/eLife.21354.001 PMID:28084992
Refinement Of Hexahedral Cells In Euler Flow Computations
NASA Technical Reports Server (NTRS)
Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.
1996-01-01
Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.
Asbestos Air Monitoring Results at Eleven Family Housing Areas throughout the United States.
1991-05-23
limits varied depending on sampling volumes and grid openings scanned. Therefore, the detection limits presented in the results summary tables vary...1 f/10 grid squares) (855 mm 2) (1 liter) = 3054 liters (0.005 f/cc) (0.0056 mm 2) (1000 cc) Where: * 1 f/10 grid squares (the maximum recommended...diameter filter. * 0.0056 mm 2 is the area of each grid square (75 /Jm per side) in a 200 mesh electron microscope grid . This value will vary from 0.0056
Short-circuit current improvement in thin cells with a gridded back contact
NASA Technical Reports Server (NTRS)
Giuliano, M.; Wohlgemuth, J.
1980-01-01
The use of gridded back contact on thin silicon solar cells 50 micrometers was investigated. An unexpected increase in short circuit current of almost 10 percent was experienced for 2 cm x 2 cm cells. Control cells with the standard continuous contact metallization were fabricated at the same time as the gridded back cells with all processes identical up to the formation of the back contact. The gridded back contact pattern was delineated by evaporation of Ti-Pd over a photo-resist mask applied to the back of the wafer; the Ti-Pd film on the controls was applied in the standard fashion in a continuous layer over the back of the cell. The Ti-Pd contacts were similarly applied to the front of the wafer, and the grid pattern on both sides of the cell was electroplated with 8-10 micrometers of silver.
"Tools For Analysis and Visualization of Large Time- Varying CFD Data Sets"
NASA Technical Reports Server (NTRS)
Wilhelms, Jane; vanGelder, Allen
1999-01-01
During the four years of this grant (including the one year extension), we have explored many aspects of the visualization of large CFD (Computational Fluid Dynamics) datasets. These have included new direct volume rendering approaches, hierarchical methods, volume decimation, error metrics, parallelization, hardware texture mapping, and methods for analyzing and comparing images. First, we implemented an extremely general direct volume rendering approach that can be used to render rectilinear, curvilinear, or tetrahedral grids, including overlapping multiple zone grids, and time-varying grids. Next, we developed techniques for associating the sample data with a k-d tree, a simple hierarchial data model to approximate samples in the regions covered by each node of the tree, and an error metric for the accuracy of the model. We also explored a new method for determining the accuracy of approximate models based on the light field method described at ACM SIGGRAPH (Association for Computing Machinery Special Interest Group on Computer Graphics) '96. In our initial implementation, we automatically image the volume from 32 approximately evenly distributed positions on the surface of an enclosing tessellated sphere. We then calculate differences between these images under different conditions of volume approximation or decimation.
Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step
NASA Astrophysics Data System (ADS)
Jayakumar, J. S.; Kumar, Inder; Eswaran, V.
2010-12-01
Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.
Grid orthogonality effects on predicted turbine midspan heat transfer and performance
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Ameri, A. A.
1995-01-01
The effect of five different C type grid geometries on the predicted heat transfer and aerodynamic performance of a turbine stator is examined. Predictions were obtained using two flow analysis codes. One was a finite difference analysis, and the other was a finite volume analysis. Differences among the grids in terms of heat transfer and overall performance were small. The most significant difference among the five grids occurred in the prediction of pitchwise variation in total pressure. There was consistency between results obtained with each of the flow analysis codes when the same grid was used. A grid generating procedure in which the viscous grid is embedded within an inviscid type grid resulted in the best overall performance.
Software Surface Modeling and Grid Generation Steering Committee
NASA Technical Reports Server (NTRS)
Smith, Robert E. (Editor)
1992-01-01
It is a NASA objective to promote improvements in the capability and efficiency of computational fluid dynamics. Grid generation, the creation of a discrete representation of the solution domain, is an essential part of computational fluid dynamics. However, grid generation about complex boundaries requires sophisticated surface-model descriptions of the boundaries. The surface modeling and the associated computation of surface grids consume an extremely large percentage of the total time required for volume grid generation. Efficient and user friendly software systems for surface modeling and grid generation are critical for computational fluid dynamics to reach its potential. The papers presented here represent the state-of-the-art in software systems for surface modeling and grid generation. Several papers describe improved techniques for grid generation.
PNNL Future Power Grid Initiative-developed GridOPTICS Software System (GOSS)
None
2018-01-16
The power grid is changing and evolving. One aspect of this change is the growing use of smart meters and other devices, which are producing large volumes of useful data. However, in many cases, the data canât be translated quickly into actionable guidance to improve grid performance. There's a need for innovative tools. The GridOPTICS(TM) Software System, or GOSS, developed through PNNL's Future Power Grid Initiative, is open source and became publicly available in spring 2014. The value of this middleware is that it easily integrates grid applications with sources of data and facilitates communication between them. Such a capability provides a foundation for developing a range of applications to improve grid management.
Spatial Convergence of Three Dimensional Turbulent Flows
NASA Technical Reports Server (NTRS)
Park, Michael A.; Anderson, W. Kyle
2016-01-01
Finite-volume and finite-element schemes, both implemented within the FUN3D flow solver, are evaluated for several test cases described on the Turbulence-Modeling Resource (TMR) web site. The cases include subsonic flow over a hemisphere cylinder, subsonic flow over a swept bump configuration, and supersonic flow in a square duct. The finite- volume and finite-element schemes are both used to obtain solutions for the first two cases, whereas only the finite-volume scheme is used for the supersonic duct. For the hemisphere cylinder, finite-element solutions obtained on tetrahedral meshes are compared with finite- volume solutions on mixed-element meshes. For the swept bump, finite-volume solutions have been obtained for both hexahedral and tetrahedral meshes and are compared with finite-element solutions obtained on tetrahedral meshes. For the hemisphere cylinder and the swept bump, solutions are obtained on a series of meshes with varying grid density and comparisons are made between drag coefficients, pressure distributions, velocity profiles, and profiles of the turbulence working variable. The square duct shows small variation due to element type or the spatial accuracy of turbulence model convection. It is demonstrated that the finite-element scheme on tetrahedral meshes yields similar accuracy as the finite- volume scheme on mixed-element and hexahedral grids, and demonstrates less sensitivity to the mesh topology (biased tetrahedral grids) than the finite-volume scheme.
A Mixed Finite Volume Element Method for Flow Calculations in Porous Media
NASA Technical Reports Server (NTRS)
Jones, Jim E.
1996-01-01
A key ingredient in the simulation of flow in porous media is the accurate determination of the velocities that drive the flow. The large scale irregularities of the geology, such as faults, fractures, and layers suggest the use of irregular grids in the simulation. Work has been done in applying the finite volume element (FVE) methodology as developed by McCormick in conjunction with mixed methods which were developed by Raviart and Thomas. The resulting mixed finite volume element discretization scheme has the potential to generate more accurate solutions than standard approaches. The focus of this paper is on a multilevel algorithm for solving the discrete mixed FVE equations. The algorithm uses a standard cell centered finite difference scheme as the 'coarse' level and the more accurate mixed FVE scheme as the 'fine' level. The algorithm appears to have potential as a fast solver for large size simulations of flow in porous media.
Linear Look-Ahead in Conjunctive Cells: An Entorhinal Mechanism for Vector-Based Navigation
Kubie, John L.; Fenton, André A.
2012-01-01
The crisp organization of the “firing bumps” of entorhinal grid cells and conjunctive cells leads to the notion that the entorhinal cortex may compute linear navigation routes. Specifically, we propose a process, termed “linear look-ahead,” by which a stationary animal could compute a series of locations in the direction it is facing. We speculate that this computation could be achieved through learned patterns of connection strengths among entorhinal neurons. This paper has three sections. First, we describe the minimal grid cell properties that will be built into our network. Specifically, the network relies on “rigid modules” of neurons, where all members have identical grid scale and orientation, but differ in spatial phase. Additionally, these neurons must be densely interconnected with synapses that are modifiable early in the animal’s life. Second, we investigate whether plasticity during short bouts of locomotion could induce patterns of connections amongst grid cells or conjunctive cells. Finally, we run a simulation to test whether the learned connection patterns can exhibit linear look-ahead. Our results are straightforward. A simulated 30-min walk produces weak strengthening of synapses between grid cells that do not support linear look-ahead. Similar training in a conjunctive cell module produces a small subset of very strong connections between cells. These strong pairs have three properties: the pre- and post-synaptic cells have similar heading direction. The cell pairs have neighboring grid bumps. Finally, the spatial offset of firing bumps of the cell pair is in the direction of the common heading preference. Such a module can produce strong and accurate linear look-ahead starting in any location and extending in any direction. We speculate that this process may: (1) compute linear paths to goals; (2) update grid cell firing during navigation; and (3) stabilize the rigid modules of grid cells and conjunctive cells. PMID:22557948
NASA Technical Reports Server (NTRS)
Rosenfeld, Moshe; Kwak, Dochan; Vinokur, Marcel
1992-01-01
A fractional step method is developed for solving the time-dependent three-dimensional incompressible Navier-Stokes equations in generalized coordinate systems. The primitive variable formulation uses the pressure, defined at the center of the computational cell, and the volume fluxes across the faces of the cells as the dependent variables, instead of the Cartesian components of the velocity. This choice is equivalent to using the contravariant velocity components in a staggered grid multiplied by the volume of the computational cell. The governing equations are discretized by finite volumes using a staggered mesh system. The solution of the continuity equation is decoupled from the momentum equations by a fractional step method which enforces mass conservation by solving a Poisson equation. This procedure, combined with the consistent approximations of the geometric quantities, is done to satisfy the discretized mass conservation equation to machine accuracy, as well as to gain the favorable convergence properties of the Poisson solver. The momentum equations are solved by an approximate factorization method, and a novel ZEBRA scheme with four-color ordering is devised for the efficient solution of the Poisson equation. Several two- and three-dimensional laminar test cases are computed and compared with other numerical and experimental results to validate the solution method. Good agreement is obtained in all cases.
Design and evaluation of a grid reciprocation scheme for use in digital breast tomosynthesis
NASA Astrophysics Data System (ADS)
Patel, Tushita; Sporkin, Helen; Peppard, Heather; Williams, Mark B.
2016-03-01
This work describes a methodology for efficient removal of scatter radiation during digital breast tomosynthesis (DBT). The goal of this approach is to enable grid image obscuration without a large increase in radiation dose by minimizing misalignment of the grid focal point (GFP) and x-ray focal spot (XFS) during grid reciprocation. Hardware for the motion scheme was built and tested on the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis (MBT) on a single gantry. The DMT scanner uses fully isocentric rotation of tube and x-ray detector for maintaining a fixed tube-detector alignment during DBT imaging. A cellular focused copper prototype grid with 80 cm focal length, 3.85 mm height, 0.1 mm thick lamellae, and 1.1 mm hole pitch was tested. Primary transmission of the grid at 28 kV tube voltage was on average 74% with the grid stationary and aligned for maximum transmission. It fell to 72% during grid reciprocation by the proposed method. Residual grid line artifacts (GLAs) in projection views and reconstructed DBT images are characterized and methods for reducing the visibility of GLAs in the reconstructed volume through projection image flat-field correction and spatial frequency-based filtering of the DBT slices are described and evaluated. The software correction methods reduce the visibility of these artifacts in the reconstructed volume, making them imperceptible both in the reconstructed DBT images and their Fourier transforms.
NASA Astrophysics Data System (ADS)
Jin, G.
2012-12-01
Multiphase flow modeling is an important numerical tool for a better understanding of transport processes in the fields including, but not limited to, petroleum reservoir engineering, remedy of ground water contamination, and risk evaluation of greenhouse gases such as CO2 injected into deep saline reservoirs. However, accurate numerical modeling for multiphase flow remains many challenges that arise from the inherent tight coupling and strong non-linear nature of the governing equations and the highly heterogeneous media. The existence of counter current flow which is caused by the effect of adverse relative mobility contrast and gravitational and capillary forces will introduce additional numerical instability. Recently multipoint flux approximation (MPFA) has become a subject of extensive research and has been demonstrated with great success in reducing considerable grid orientation effects compared to the conventional single point upstream (SPU) weighting scheme, especially in higher dimensions. However, the present available MPFA schemes are mathematically targeted to certain types of grids in two dimensions, a more general form of MPFA scheme is needed for both 2-D and 3-D problems. In this work a new upstream weighting scheme based on multipoint directional incoming fluxes is proposed which incorporates full permeability tensor to account for the heterogeneity of the porous media. First, the multiphase governing equations are decoupled into an elliptic pressure equation and a hyperbolic or parabolic saturation depends on whether the gravitational and capillary pressures are presented or not. Next, a dual secondary grid (called finite volume grid) is formulated from a primary grid (called finite element grid) to create interaction regions for each grid cell over the entire simulation domain. Such a discretization must ensure the conservation of mass and maintain the continuity of the Darcy velocity across the boundaries between neighboring interaction regions. The pressure field is then implicitly calculated from the pressure equation, which in turn results in the derived velocity field for directional flux calculation at each grid node. Directional flux at the center of each interaction surface is also calculated by interpolation from the element nodal fluxes using shape functions. The MPFA scheme is performed by a specific linear combination of all incoming fluxes into the upstream cell represented by either nodal fluxes or interpolated surface boundary fluxes to produce an upwind directional fluxed weighted relative mobility at the center of the interaction region boundary. Such an upwind weighted relative mobility is then used for calculating the saturations of each fluid phase explicitly. The proposed upwind weighting scheme has been implemented into a mixed finite element-finite volume (FE-FV) method, which allows for handling complex reservoir geometry with second-order accuracies in approximating primary variables. The numerical solver has been tested with several bench mark test problems. The application of the proposed scheme to migration path analysis of CO2 injected into deep saline reservoirs in 3-D has demonstrated its ability and robustness in handling multiphase flow with adverse mobility contrast in highly heterogeneous porous media.
Integrated geometry and grid generation system for complex configurations
NASA Technical Reports Server (NTRS)
Akdag, Vedat; Wulf, Armin
1992-01-01
A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle.
Interactive grid generation for turbomachinery flow field simulations
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Eiseman, Peter R.; Reno, Charles
1988-01-01
The control point form of algebraic grid generation presented provides the means that are needed to generate well structured grids for turbomachinery flow simulations. It uses a sparse collection of control points distributed over the flow domain. The shape and position of coordinate curves can be adjusted from these control points while the grid conforms precisely to all boundaries. An interactive program called TURBO, which uses the control point form, is being developed. Basic features of the code are discussed and sample grids are presented. A finite volume LU implicit scheme is used to simulate flow in a turbine cascade on the grid generated by the program.
Interactive grid generation for turbomachinery flow field simulations
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Reno, Charles; Eiseman, Peter R.
1988-01-01
The control point form of algebraic grid generation presented provides the means that are needed to generate well structured grids of turbomachinery flow simulations. It uses a sparse collection of control points distributed over the flow domain. The shape and position of coordinate curves can be adjusted from these control points while the grid conforms precisely to all boundaries. An interactive program called TURBO, which uses the control point form, is being developed. Basic features of the code are discussed and sample grids are presented. A finite volume LU implicit scheme is used to simulate flow in a turbine cascade on the grid generated by the program.
Calculations of Flowfield About Indented Nosetips,
1982-08-23
agreement is good. UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAOE(ft,. Date E -t. , - NSWC TR 82-286 FOREWORD A finite difference computer program has been...Specific heat at constant pressure and volume respectively e Total energy per unit volume E ,F,H,R,S,T Functions of U AHT, HT Error in total enthalpy and...total enthalpy respectively ijGrid index in E and n directions respectively SI Identity matrix J,K Maximum grid point in E and n directions respectively
Program EAGLE User’s Manual. Volume 3. Grid Generation Code
1988-09-01
15 1. ompps.te Grid Structure ..... .. .................. . 15 2. Block Interfaces ......... ...................... . 18 3. Fundmental ...in principle it is possible to establish a correspondence between any physical region and a single empty rectangular block for general three...differences. Since this second surrounding layer is not involved in the grid generation, no further account will be taken of its presence in the present
An analysis of finite-difference and finite-volume formulations of conservation laws
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1986-01-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
An analysis of finite-difference and finite-volume formulations of conservation laws
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1989-01-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
From grid cells to place cells with realistic field sizes
2017-01-01
While grid cells in the medial entorhinal cortex (MEC) of rodents have multiple, regularly arranged firing fields, place cells in the cornu ammonis (CA) regions of the hippocampus mostly have single spatial firing fields. Since there are extensive projections from MEC to the CA regions, many models have suggested that a feedforward network can transform grid cell firing into robust place cell firing. However, these models generate place fields that are consistently too small compared to those recorded in experiments. Here, we argue that it is implausible that grid cell activity alone can be transformed into place cells with robust place fields of realistic size in a feedforward network. We propose two solutions to this problem. Firstly, weakly spatially modulated cells, which are abundant throughout EC, provide input to downstream place cells along with grid cells. This simple model reproduces many place cell characteristics as well as results from lesion studies. Secondly, the recurrent connections between place cells in the CA3 network generate robust and realistic place fields. Both mechanisms could work in parallel in the hippocampal formation and this redundancy might account for the robustness of place cell responses to a range of disruptions of the hippocampal circuitry. PMID:28750005
Borazjani, Iman; Ge, Liang; Le, Trung; Sotiropoulos, Fotis
2013-01-01
We develop an overset-curvilinear immersed boundary (overset-CURVIB) method in a general non-inertial frame of reference to simulate a wide range of challenging biological flow problems. The method incorporates overset-curvilinear grids to efficiently handle multi-connected geometries and increase the resolution locally near immersed boundaries. Complex bodies undergoing arbitrarily large deformations may be embedded within the overset-curvilinear background grid and treated as sharp interfaces using the curvilinear immersed boundary (CURVIB) method (Ge and Sotiropoulos, Journal of Computational Physics, 2007). The incompressible flow equations are formulated in a general non-inertial frame of reference to enhance the overall versatility and efficiency of the numerical approach. Efficient search algorithms to identify areas requiring blanking, donor cells, and interpolation coefficients for constructing the boundary conditions at grid interfaces of the overset grid are developed and implemented using efficient parallel computing communication strategies to transfer information among sub-domains. The governing equations are discretized using a second-order accurate finite-volume approach and integrated in time via an efficient fractional-step method. Various strategies for ensuring globally conservative interpolation at grid interfaces suitable for incompressible flow fractional step methods are implemented and evaluated. The method is verified and validated against experimental data, and its capabilities are demonstrated by simulating the flow past multiple aquatic swimmers and the systolic flow in an anatomic left ventricle with a mechanical heart valve implanted in the aortic position. PMID:23833331
On-site fuel cell field test support program
NASA Astrophysics Data System (ADS)
Staniunas, J. W.; Merten, G. P.
1982-01-01
In order to assess the impact of grid connection on the potential market for fuel cell service, applications studies were conducted to identify the fuel cell operating modes and corresponding fuel cell sizing criteria which offer the most potential for initial commercial service. The market for grid-connected fuel cell service was quantified using United's market analysis program and computerized building data base. Electric and gas consumption data for 268 buildings was added to our surveyed building data file, bringing the total to 407 buildings. These buildings were analyzed for grid-isolated and grid-connected fuel cell service. The results of the analyses indicated that the nursing home, restaurant and health club building sectors offer significant potential for fuel cell service.
A machine learning approach for efficient uncertainty quantification using multiscale methods
NASA Astrophysics Data System (ADS)
Chan, Shing; Elsheikh, Ahmed H.
2018-02-01
Several multiscale methods account for sub-grid scale features using coarse scale basis functions. For example, in the Multiscale Finite Volume method the coarse scale basis functions are obtained by solving a set of local problems over dual-grid cells. We introduce a data-driven approach for the estimation of these coarse scale basis functions. Specifically, we employ a neural network predictor fitted using a set of solution samples from which it learns to generate subsequent basis functions at a lower computational cost than solving the local problems. The computational advantage of this approach is realized for uncertainty quantification tasks where a large number of realizations has to be evaluated. We attribute the ability to learn these basis functions to the modularity of the local problems and the redundancy of the permeability patches between samples. The proposed method is evaluated on elliptic problems yielding very promising results.
NASA Astrophysics Data System (ADS)
1982-02-01
Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.
The terminal area simulation system. Volume 1: Theoretical formulation
NASA Technical Reports Server (NTRS)
Proctor, F. H.
1987-01-01
A three-dimensional numerical cloud model was developed for the general purpose of studying convective phenomena. The model utilizes a time splitting integration procedure in the numerical solution of the compressible nonhydrostatic primitive equations. Turbulence closure is achieved by a conventional first-order diagnostic approximation. Open lateral boundaries are incorporated which minimize wave reflection and which do not induce domain-wide mass trends. Microphysical processes are governed by prognostic equations for potential temperature water vapor, cloud droplets, ice crystals, rain, snow, and hail. Microphysical interactions are computed by numerous Orville-type parameterizations. A diagnostic surface boundary layer is parameterized assuming Monin-Obukhov similarity theory. The governing equation set is approximated on a staggered three-dimensional grid with quadratic-conservative central space differencing. Time differencing is approximated by the second-order Adams-Bashforth method. The vertical grid spacing may be either linear or stretched. The model domain may translate along with a convective cell, even at variable speeds.
A general multiblock Euler code for propulsion integration. Volume 1: Theory document
NASA Technical Reports Server (NTRS)
Chen, H. C.; Su, T. Y.; Kao, T. J.
1991-01-01
A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.
NASA Astrophysics Data System (ADS)
Burger, D. R.
1983-11-01
Progress of a photovoltaic (PV) device from a research concept to a competitive power-generation source requires an increasing concern with current collection. The initial metallization focus is usually on contact resistance, since a good ohmic contact is desirable for accurate device characterization measurements. As the device grows in size, sheet resistance losses become important and a metal grid is usually added to reduce the effective sheet resistance. Later, as size and conversion efficiency continue to increase, grid-line resistance and cell shadowing must be considered simultaneously, because grid-line resistance is inversely related to total grid-line area and cell shadowing is directly related. A PV cell grid design must consider the five power-loss phenomena mentioned above: sheet resistance, contact resistance, grid resistance, bus-bar resistance and cell shadowing. Although cost, reliability and usage are important factors in deciding upon the best metallization system, this paper will focus only upon grid-line design and substrate material problems for flat-plate solar arrays.
Pastoll, Hugh; Ramsden, Helen L.; Nolan, Matthew F.
2012-01-01
The medial entorhinal cortex (MEC) is an increasingly important focus for investigation of mechanisms for spatial representation. Grid cells found in layer II of the MEC are likely to be stellate cells, which form a major projection to the dentate gyrus. Entorhinal stellate cells are distinguished by distinct intrinsic electrophysiological properties, but how these properties contribute to representation of space is not yet clear. Here, we review the ionic conductances, synaptic, and excitable properties of stellate cells, and examine their implications for models of grid firing fields. We discuss why existing data are inconsistent with models of grid fields that require stellate cells to generate periodic oscillations. An alternative possibility is that the intrinsic electrophysiological properties of stellate cells are tuned specifically to control integration of synaptic input. We highlight recent evidence that the dorsal-ventral organization of synaptic integration by stellate cells, through differences in currents mediated by HCN and leak potassium channels, influences the corresponding organization of grid fields. Because accurate cellular data will be important for distinguishing mechanisms for generation of grid fields, we introduce new data comparing properties measured with whole-cell and perforated patch-clamp recordings. We find that clustered patterns of action potential firing and the action potential after-hyperpolarization (AHP) are particularly sensitive to recording condition. Nevertheless, with both methods, these properties, resting membrane properties and resonance follow a dorsal-ventral organization. Further investigation of the molecular basis for synaptic integration by stellate cells will be important for understanding mechanisms for generation of grid fields. PMID:22536175
Advanced Concepts for Composite Structure Joints and Attachment Fittings. Volume 2. Design Guide
1981-11-01
500 3CC000 .loo 310- GRID 11040 100 M250 30.0000 .0 3311- GRID 11041 100 .2OO 15.COCO .5000 332- GRID 13042 ILO .2500 15.0000 .4000 313- GRID 11043...b~ l ( 115K -. 1 2 It e l t 1 1 A N A I 1 1 CARO 1 L~uNI 4 ... * ’ * 9.. 6 . p. . . 0 h0t- 91’ S 193 1001% 109 1016 402- SPl 9 123 10004 10006
Effect of grid resolution on large eddy simulation of wall-bounded turbulence
NASA Astrophysics Data System (ADS)
Rezaeiravesh, S.; Liefvendahl, M.
2018-05-01
The effect of grid resolution on a large eddy simulation (LES) of a wall-bounded turbulent flow is investigated. A channel flow simulation campaign involving a systematic variation of the streamwise (Δx) and spanwise (Δz) grid resolution is used for this purpose. The main friction-velocity-based Reynolds number investigated is 300. Near the walls, the grid cell size is determined by the frictional scaling, Δx+ and Δz+, and strongly anisotropic cells, with first Δy+ ˜ 1, thus aiming for the wall-resolving LES. Results are compared to direct numerical simulations, and several quality measures are investigated, including the error in the predicted mean friction velocity and the error in cross-channel profiles of flow statistics. To reduce the total number of channel flow simulations, techniques from the framework of uncertainty quantification are employed. In particular, a generalized polynomial chaos expansion (gPCE) is used to create metamodels for the errors over the allowed parameter ranges. The differing behavior of the different quality measures is demonstrated and analyzed. It is shown that friction velocity and profiles of the velocity and Reynolds stress tensor are most sensitive to Δz+, while the error in the turbulent kinetic energy is mostly influenced by Δx+. Recommendations for grid resolution requirements are given, together with the quantification of the resulting predictive accuracy. The sensitivity of the results to the subgrid-scale (SGS) model and varying Reynolds number is also investigated. All simulations are carried out with second-order accurate finite-volume-based solver OpenFOAM. It is shown that the choice of numerical scheme for the convective term significantly influences the error portraits. It is emphasized that the proposed methodology, involving the gPCE, can be applied to other modeling approaches, i.e., other numerical methods and the choice of SGS model.
Mosheiff, Noga; Agmon, Haggai; Moriel, Avraham; Burak, Yoram
2017-06-01
Grid cells in the entorhinal cortex encode the position of an animal in its environment with spatially periodic tuning curves with different periodicities. Recent experiments established that these cells are functionally organized in discrete modules with uniform grid spacing. Here we develop a theory for efficient coding of position, which takes into account the temporal statistics of the animal's motion. The theory predicts a sharp decrease of module population sizes with grid spacing, in agreement with the trend seen in the experimental data. We identify a simple scheme for readout of the grid cell code by neural circuitry, that can match in accuracy the optimal Bayesian decoder. This readout scheme requires persistence over different timescales, depending on the grid cell module. Thus, we propose that the brain may employ an efficient representation of position which takes advantage of the spatiotemporal statistics of the encoded variable, in similarity to the principles that govern early sensory processing.
Mosheiff, Noga; Agmon, Haggai; Moriel, Avraham
2017-01-01
Grid cells in the entorhinal cortex encode the position of an animal in its environment with spatially periodic tuning curves with different periodicities. Recent experiments established that these cells are functionally organized in discrete modules with uniform grid spacing. Here we develop a theory for efficient coding of position, which takes into account the temporal statistics of the animal’s motion. The theory predicts a sharp decrease of module population sizes with grid spacing, in agreement with the trend seen in the experimental data. We identify a simple scheme for readout of the grid cell code by neural circuitry, that can match in accuracy the optimal Bayesian decoder. This readout scheme requires persistence over different timescales, depending on the grid cell module. Thus, we propose that the brain may employ an efficient representation of position which takes advantage of the spatiotemporal statistics of the encoded variable, in similarity to the principles that govern early sensory processing. PMID:28628647
NASA Technical Reports Server (NTRS)
Sorenson, R. L.; Steger, J. L.
1980-01-01
A method for generating boundary-fitted, curvilinear, two dimensional grids by the use of the Poisson equations is presented. Grids of C-type and O-type were made about airfoils and other shapes, with circular, rectangular, cascade-type, and other outer boundary shapes. Both viscous and inviscid spacings were used. In all cases, two important types of grid control can be exercised at both inner and outer boundaries. First is arbitrary control of the distances between the boundaries and the adjacent lines of the same coordinate family, i.e., stand-off distances. Second is arbitrary control of the angles with which lines of the opposite coordinate family intersect the boundaries. Thus, both grid cell size (or aspect ratio) and grid cell skewness are controlled at boundaries. Reasonable cell size and shape are ensured even in cases wherein extreme boundary shapes would tend to cause skewness or poorly controlled grid spacing. An inherent feature of the Poisson equations is that lines in the interior of the grid smoothly connect the boundary points (the grid mapping functions are second order differentiable).
Need for speed: An optimized gridding approach for spatially explicit disease simulations.
Sellman, Stefan; Tsao, Kimberly; Tildesley, Michael J; Brommesson, Peter; Webb, Colleen T; Wennergren, Uno; Keeling, Matt J; Lindström, Tom
2018-04-01
Numerical models for simulating outbreaks of infectious diseases are powerful tools for informing surveillance and control strategy decisions. However, large-scale spatially explicit models can be limited by the amount of computational resources they require, which poses a problem when multiple scenarios need to be explored to provide policy recommendations. We introduce an easily implemented method that can reduce computation time in a standard Susceptible-Exposed-Infectious-Removed (SEIR) model without introducing any further approximations or truncations. It is based on a hierarchical infection process that operates on entire groups of spatially related nodes (cells in a grid) in order to efficiently filter out large volumes of susceptible nodes that would otherwise have required expensive calculations. After the filtering of the cells, only a subset of the nodes that were originally at risk are then evaluated for actual infection. The increase in efficiency is sensitive to the exact configuration of the grid, and we describe a simple method to find an estimate of the optimal configuration of a given landscape as well as a method to partition the landscape into a grid configuration. To investigate its efficiency, we compare the introduced methods to other algorithms and evaluate computation time, focusing on simulated outbreaks of foot-and-mouth disease (FMD) on the farm population of the USA, the UK and Sweden, as well as on three randomly generated populations with varying degree of clustering. The introduced method provided up to 500 times faster calculations than pairwise computation, and consistently performed as well or better than other available methods. This enables large scale, spatially explicit simulations such as for the entire continental USA without sacrificing realism or predictive power.
Need for speed: An optimized gridding approach for spatially explicit disease simulations
Tildesley, Michael J.; Brommesson, Peter; Webb, Colleen T.; Wennergren, Uno; Lindström, Tom
2018-01-01
Numerical models for simulating outbreaks of infectious diseases are powerful tools for informing surveillance and control strategy decisions. However, large-scale spatially explicit models can be limited by the amount of computational resources they require, which poses a problem when multiple scenarios need to be explored to provide policy recommendations. We introduce an easily implemented method that can reduce computation time in a standard Susceptible-Exposed-Infectious-Removed (SEIR) model without introducing any further approximations or truncations. It is based on a hierarchical infection process that operates on entire groups of spatially related nodes (cells in a grid) in order to efficiently filter out large volumes of susceptible nodes that would otherwise have required expensive calculations. After the filtering of the cells, only a subset of the nodes that were originally at risk are then evaluated for actual infection. The increase in efficiency is sensitive to the exact configuration of the grid, and we describe a simple method to find an estimate of the optimal configuration of a given landscape as well as a method to partition the landscape into a grid configuration. To investigate its efficiency, we compare the introduced methods to other algorithms and evaluate computation time, focusing on simulated outbreaks of foot-and-mouth disease (FMD) on the farm population of the USA, the UK and Sweden, as well as on three randomly generated populations with varying degree of clustering. The introduced method provided up to 500 times faster calculations than pairwise computation, and consistently performed as well or better than other available methods. This enables large scale, spatially explicit simulations such as for the entire continental USA without sacrificing realism or predictive power. PMID:29624574
Multiresolution Iterative Reconstruction in High-Resolution Extremity Cone-Beam CT
Cao, Qian; Zbijewski, Wojciech; Sisniega, Alejandro; Yorkston, John; Siewerdsen, Jeffrey H; Stayman, J Webster
2016-01-01
Application of model-based iterative reconstruction (MBIR) to high resolution cone-beam CT (CBCT) is computationally challenging because of the very fine discretization (voxel size <100 µm) of the reconstructed volume. Moreover, standard MBIR techniques require that the complete transaxial support for the acquired projections is reconstructed, thus precluding acceleration by restricting the reconstruction to a region-of-interest. To reduce the computational burden of high resolution MBIR, we propose a multiresolution Penalized-Weighted Least Squares (PWLS) algorithm, where the volume is parameterized as a union of fine and coarse voxel grids as well as selective binning of detector pixels. We introduce a penalty function designed to regularize across the boundaries between the two grids. The algorithm was evaluated in simulation studies emulating an extremity CBCT system and in a physical study on a test-bench. Artifacts arising from the mismatched discretization of the fine and coarse sub-volumes were investigated. The fine grid region was parameterized using 0.15 mm voxels and the voxel size in the coarse grid region was varied by changing a downsampling factor. No significant artifacts were found in either of the regions for downsampling factors of up to 4×. For a typical extremities CBCT volume size, this downsampling corresponds to an acceleration of the reconstruction that is more than five times faster than a brute force solution that applies fine voxel parameterization to the entire volume. For certain configurations of the coarse and fine grid regions, in particular when the boundary between the regions does not cross high attenuation gradients, downsampling factors as high as 10× can be used without introducing artifacts, yielding a ~50× speedup in PWLS. The proposed multiresolution algorithm significantly reduces the computational burden of high resolution iterative CBCT reconstruction and can be extended to other applications of MBIR where computationally expensive, high-fidelity forward models are applied only to a sub-region of the field-of-view. PMID:27694701
An optimized top contact design for solar cell concentrators
NASA Technical Reports Server (NTRS)
Desalvo, Gregory C.; Barnett, Allen M.
1985-01-01
A new grid optimization scheme is developed for point focus solar cell concentrators which employs a separated grid and busbar concept. Ideally, grid lines act as the primary current collectors and receive all of the current from the semiconductor region. Busbars are the secondary collectors which pick up current from the grids and carry it out of the active region of the solar cell. This separation of functions leads to a multithickness metallization design, where the busbars are made larger in cross section than the grids. This enables the busbars to carry more current per unit area of shading, which is advantageous under high solar concentration where large current densities are generated. Optimized grid patterns using this multilayer concept can provide a 1.6 to 20 percent increase in output power efficiency over optimized single thickness grids.
Vector-based navigation using grid-like representations in artificial agents.
Banino, Andrea; Barry, Caswell; Uria, Benigno; Blundell, Charles; Lillicrap, Timothy; Mirowski, Piotr; Pritzel, Alexander; Chadwick, Martin J; Degris, Thomas; Modayil, Joseph; Wayne, Greg; Soyer, Hubert; Viola, Fabio; Zhang, Brian; Goroshin, Ross; Rabinowitz, Neil; Pascanu, Razvan; Beattie, Charlie; Petersen, Stig; Sadik, Amir; Gaffney, Stephen; King, Helen; Kavukcuoglu, Koray; Hassabis, Demis; Hadsell, Raia; Kumaran, Dharshan
2018-05-01
Deep neural networks have achieved impressive successes in fields ranging from object recognition to complex games such as Go 1,2 . Navigation, however, remains a substantial challenge for artificial agents, with deep neural networks trained by reinforcement learning 3-5 failing to rival the proficiency of mammalian spatial behaviour, which is underpinned by grid cells in the entorhinal cortex 6 . Grid cells are thought to provide a multi-scale periodic representation that functions as a metric for coding space 7,8 and is critical for integrating self-motion (path integration) 6,7,9 and planning direct trajectories to goals (vector-based navigation) 7,10,11 . Here we set out to leverage the computational functions of grid cells to develop a deep reinforcement learning agent with mammal-like navigational abilities. We first trained a recurrent network to perform path integration, leading to the emergence of representations resembling grid cells, as well as other entorhinal cell types 12 . We then showed that this representation provided an effective basis for an agent to locate goals in challenging, unfamiliar, and changeable environments-optimizing the primary objective of navigation through deep reinforcement learning. The performance of agents endowed with grid-like representations surpassed that of an expert human and comparison agents, with the metric quantities necessary for vector-based navigation derived from grid-like units within the network. Furthermore, grid-like representations enabled agents to conduct shortcut behaviours reminiscent of those performed by mammals. Our findings show that emergent grid-like representations furnish agents with a Euclidean spatial metric and associated vector operations, providing a foundation for proficient navigation. As such, our results support neuroscientific theories that see grid cells as critical for vector-based navigation 7,10,11 , demonstrating that the latter can be combined with path-based strategies to support navigation in challenging environments.
An incompressible two-dimensional multiphase particle-in-cell model for dense particle flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snider, D.M.; O`Rourke, P.J.; Andrews, M.J.
1997-06-01
A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented for dense particle flows. The numerical technique solves the governing equations of the fluid phase using a continuum model and those of the particle phase using a Lagrangian model. Difficulties associated with calculating interparticle interactions for dense particle flows with volume fractions above 5% have been eliminated by mapping particle properties to a Eulerian grid and then mapping back computed stress tensors to particle positions. This approach utilizes the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The solution scheme allows for distributions of types, sizes, and density of particles,more » with no numerical diffusion from the Lagrangian particle calculations. The computational method is implicit with respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant limits on computational time advancement. MP-PIC simulations are compared with one-dimensional problems that have analytical solutions and with two-dimensional problems for which there are experimental data.« less
Use of upscaled elevation and surface roughness data in two-dimensional surface water models
Hughes, J.D.; Decker, J.D.; Langevin, C.D.
2011-01-01
In this paper, we present an approach that uses a combination of cell-block- and cell-face-averaging of high-resolution cell elevation and roughness data to upscale hydraulic parameters and accurately simulate surface water flow in relatively low-resolution numerical models. The method developed allows channelized features that preferentially connect large-scale grid cells at cell interfaces to be represented in models where these features are significantly smaller than the selected grid size. The developed upscaling approach has been implemented in a two-dimensional finite difference model that solves a diffusive wave approximation of the depth-integrated shallow surface water equations using preconditioned Newton–Krylov methods. Computational results are presented to show the effectiveness of the mixed cell-block and cell-face averaging upscaling approach in maintaining model accuracy, reducing model run-times, and how decreased grid resolution affects errors. Application examples demonstrate that sub-grid roughness coefficient variations have a larger effect on simulated error than sub-grid elevation variations.
Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex.
Mhatre, Himanshu; Gorchetchnikov, Anatoli; Grossberg, Stephen
2012-02-01
Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. It has previously been shown how a self-organizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? This article describes a simple and general mathematical property of the trigonometry of spatial navigation which favors hexagonal patterns. The article also develops a neural model that can learn to exploit this trigonometric relationship. This GRIDSmap self-organizing map model converts path integration signals into hexagonal grid cell patterns of multiple scales. GRIDSmap creates only grid cell firing patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support an emerging unified computational framework based on a hierarchy of self-organizing maps for explaining how entorhinal-hippocampal interactions support spatial navigation. Copyright © 2010 Wiley Periodicals, Inc.
Roxo, Sónia; de Almeida, José António; Matias, Filipa Vieira; Mata-Lima, Herlander; Barbosa, Sofia
2016-03-01
This paper proposes a multistep approach for creating a 3D stochastic model of total petroleum hydrocarbon (TPH) grade in potentially polluted soils of a deactivated oil storage site by using chemical analysis results as primary or hard data and classes of sensory perception variables as secondary or soft data. First, the statistical relationship between the sensory perception variables (e.g. colour, odour and oil-water reaction) and TPH grade is analysed, after which the sensory perception variable exhibiting the highest correlation is selected (oil-water reaction in this case study). The probabilities of cells belonging to classes of oil-water reaction are then estimated for the entire soil volume using indicator kriging. Next, local histograms of TPH grade for each grid cell are computed, combining the probabilities of belonging to a specific sensory perception indicator class and conditional to the simulated values of TPH grade. Finally, simulated images of TPH grade are generated by using the P-field simulation algorithm, utilising the local histograms of TPH grade for each grid cell. The set of simulated TPH values allows several calculations to be performed, such as average values, local uncertainties and the probability of the TPH grade of the soil exceeding a specific threshold value.
NASA Astrophysics Data System (ADS)
Hoffrichter, André; Barrios, Hans; Massmann, Janek; Venkataramanachar, Bhavasagar; Schnettler, Armin
2018-02-01
The structural changes in the European energy system lead to an increase of renewable energy sources that are primarily connected to the distribution grid. Hence the stationary analysis of the transmission grid and the regionalization of generation capacities are strongly influenced by subordinate grid structures. To quantify the impact on the congestion management in the German transmission grid, a 110 kV grid model is derived using publicly available data delivered by Open Street Map and integrated into an existing model of the European transmission grid. Power flow and redispatch simulations are performed for three different regionalization methods and grid configurations. The results show a significant impact of the 110 kV system and prove an overestimation of power flows in the transmission grid when neglecting subordinate grids. Thus, the redispatch volume in Germany to dissolve bottlenecks in case of N-1 contingencies decreases by 38 % when considering the 110 kV grid.
Using Micro-Synchrophasor Data for Advanced Distribution Grid Planning and Operations Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Emma; Kiliccote, Sila; McParland, Charles
2014-07-01
This report reviews the potential for distribution-grid phase-angle data that will be available from new micro-synchrophasors (µPMUs) to be utilized in existing distribution-grid planning and operations analysis. This data could augment the current diagnostic capabilities of grid analysis software, used in both planning and operations for applications such as fault location, and provide data for more accurate modeling of the distribution system. µPMUs are new distribution-grid sensors that will advance measurement and diagnostic capabilities and provide improved visibility of the distribution grid, enabling analysis of the grid’s increasingly complex loads that include features such as large volumes of distributed generation.more » Large volumes of DG leads to concerns on continued reliable operation of the grid, due to changing power flow characteristics and active generation, with its own protection and control capabilities. Using µPMU data on change in voltage phase angle between two points in conjunction with new and existing distribution-grid planning and operational tools is expected to enable model validation, state estimation, fault location, and renewable resource/load characterization. Our findings include: data measurement is outstripping the processing capabilities of planning and operational tools; not every tool can visualize a voltage phase-angle measurement to the degree of accuracy measured by advanced sensors, and the degree of accuracy in measurement required for the distribution grid is not defined; solving methods cannot handle the high volumes of data generated by modern sensors, so new models and solving methods (such as graph trace analysis) are needed; standardization of sensor-data communications platforms in planning and applications tools would allow integration of different vendors’ sensors and advanced measurement devices. In addition, data from advanced sources such as µPMUs could be used to validate models to improve/ensure accuracy, providing information on normally estimated values such as underground conductor impedance, and characterization of complex loads. Although the input of high-fidelity data to existing tools will be challenging, µPMU data on phase angle (as well as other data from advanced sensors) will be useful for basic operational decisions that are based on a trend of changing data.« less
NASA Astrophysics Data System (ADS)
Benedek, Judit; Papp, Gábor; Kalmár, János
2018-04-01
Beyond rectangular prism polyhedron, as a discrete volume element, can also be used to model the density distribution inside 3D geological structures. The calculation of the closed formulae given for the gravitational potential and its higher-order derivatives, however, needs twice more runtime than that of the rectangular prism computations. Although the more detailed the better principle is generally accepted it is basically true only for errorless data. As soon as errors are present any forward gravitational calculation from the model is only a possible realization of the true force field on the significance level determined by the errors. So if one really considers the reliability of input data used in the calculations then sometimes the "less" can be equivalent to the "more" in statistical sense. As a consequence the processing time of the related complex formulae can be significantly reduced by the optimization of the number of volume elements based on the accuracy estimates of the input data. New algorithms are proposed to minimize the number of model elements defined both in local and in global coordinate systems. Common gravity field modelling programs generate optimized models for every computation points ( dynamic approach), whereas the static approach provides only one optimized model for all. Based on the static approach two different algorithms were developed. The grid-based algorithm starts with the maximum resolution polyhedral model defined by 3-3 points of each grid cell and generates a new polyhedral surface defined by points selected from the grid. The other algorithm is more general; it works also for irregularly distributed data (scattered points) connected by triangulation. Beyond the description of the optimization schemes some applications of these algorithms in regional and local gravity field modelling are presented too. The efficiency of the static approaches may provide even more than 90% reduction in computation time in favourable situation without the loss of reliability of the calculated gravity field parameters.
A 3-D Finite-Volume Non-hydrostatic Icosahedral Model (NIM)
NASA Astrophysics Data System (ADS)
Lee, Jin
2014-05-01
The Nonhydrostatic Icosahedral Model (NIM) formulates the latest numerical innovation of the three-dimensional finite-volume control volume on the quasi-uniform icosahedral grid suitable for ultra-high resolution simulations. NIM's modeling goal is to improve numerical accuracy for weather and climate simulations as well as to utilize the state-of-art computing architecture such as massive parallel CPUs and GPUs to deliver routine high-resolution forecasts in timely manner. NIM dynamic corel innovations include: * A local coordinate system remapped spherical surface to plane for numerical accuracy (Lee and MacDonald, 2009), * Grid points in a table-driven horizontal loop that allow any horizontal point sequence (A.E. MacDonald, et al., 2010), * Flux-Corrected Transport formulated on finite-volume operators to maintain conservative positive definite transport (J.-L, Lee, ET. Al., 2010), *Icosahedral grid optimization (Wang and Lee, 2011), * All differentials evaluated as three-dimensional finite-volume integrals around the control volume. The three-dimensional finite-volume solver in NIM is designed to improve pressure gradient calculation and orographic precipitation over complex terrain. NIM dynamical core has been successfully verified with various non-hydrostatic benchmark test cases such as internal gravity wave, and mountain waves in Dynamical Cores Model Inter-comparisons Projects (DCMIP). Physical parameterizations suitable for NWP are incorporated into NIM dynamical core and successfully tested with multimonth aqua-planet simulations. Recently, NIM has started real data simulations using GFS initial conditions. Results from the idealized tests as well as real-data simulations will be shown in the conference.
Semi-Analytic Reconstruction of Flux in Finite Volume Formulations
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2006-01-01
Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.
Accurate path integration in continuous attractor network models of grid cells.
Burak, Yoram; Fiete, Ila R
2009-02-01
Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.
The National Grid Project: A system overview
NASA Technical Reports Server (NTRS)
Gaither, Adam; Gaither, Kelly; Jean, Brian; Remotigue, Michael; Whitmire, John; Soni, Bharat; Thompson, Joe; Dannenhoffer,, John; Weatherill, Nigel
1995-01-01
The National Grid Project (NGP) is a comprehensive numerical grid generation software system that is being developed at the National Science Foundation (NSF) Engineering Research Center (ERC) for Computational Field Simulation (CFS) at Mississippi State University (MSU). NGP is supported by a coalition of U.S. industries and federal laboratories. The objective of the NGP is to significantly decrease the amount of time it takes to generate a numerical grid for complex geometries and to increase the quality of these grids to enable computational field simulations for applications in industry. A geometric configuration can be discretized into grids (or meshes) that have two fundamental forms: structured and unstructured. Structured grids are formed by intersecting curvilinear coordinate lines and are composed of quadrilateral (2D) and hexahedral (3D) logically rectangular cells. The connectivity of a structured grid provides for trivial identification of neighboring points by incrementing coordinate indices. Unstructured grids are composed of cells of any shape (commonly triangles, quadrilaterals, tetrahedra and hexahedra), but do not have trivial identification of neighbors by incrementing an index. For unstructured grids, a set of points and an associated connectivity table is generated to define unstructured cell shapes and neighboring points. Hybrid grids are a combination of structured grids and unstructured grids. Chimera (overset) grids are intersecting or overlapping structured grids. The NGP system currently provides a user interface that integrates both 2D and 3D structured and unstructured grid generation, a solid modeling topology data management system, an internal Computer Aided Design (CAD) system based on Non-Uniform Rational B-Splines (NURBS), a journaling language, and a grid/solution visualization system.
Mitsuda, Minoru; Yamaguchi, Masayuki; Furuta, Toshihiro; Nabetani, Akira; Hirayama, Akira; Nozaki, Atsushi; Niitsu, Mamoru; Fujii, Hirofumi
2011-01-01
Multiple small-animal magnetic resonance (MR) imaging to measure tumor volume may increase the throughput of preclinical cancer research assessing tumor response to novel therapies. We used a clinical scanner and multi-channel coil to evaluate the usefulness of this imaging to assess experimental tumor volume in mice. We performed a phantom study to assess 2-dimensional (2D) geometric distortion using 9-cm spherical and 32-cell (8×4 one-cm(2) grids) phantoms using a 3-tesla clinical MR scanner and dedicated multi-channel coil composed of 16 5-cm circular coils. Employing the multi-channel coil, we simultaneously scanned 6 or 8 mice bearing sarcoma 180 tumors. We estimated tumor volume from the sum of the product of tumor area and slice thickness on 2D spin-echo images (repetition time/echo time, 3500/16 ms; in-plane resolution, 0.195×0.195×1 mm(3)). After MR acquisition, we excised and weighed tumors, calculated reference tumor volumes from actual tumor weight assuming a density of 1.05 g/cm(3), and assessed the correlation between the estimated and reference volumes using Pearson's test. Two-dimensional geometric distortion was acceptable below 5% in the 9-cm spherical phantom and in every cell in the 32-cell phantom. We scanned up to 8 mice simultaneously using the multi-channel coil and found 11 tumors larger than 0.1 g in 12 mice. Tumor volumes were 1.04±0.73 estimated by MR imaging and 1.04±0.80 cm(3) by reference volume (average±standard deviation) and highly correlated (correlation coefficient, 0.995; P<0.01, Pearson's test). Use of multiple small-animal MR imaging employing a clinical scanner and multi-channel coil enabled accurate assessment of experimental tumor volume in a large number of mice and may facilitate high throughput monitoring of tumor response to therapy in preclinical research.
NASA Astrophysics Data System (ADS)
Thuburn, J.; Cotter, C. J.; Dubos, T.
2013-12-01
A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank-Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV). The algorithm is implemented and tested on two families of grids: hexagonal-icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.
NASA Astrophysics Data System (ADS)
Thuburn, J.; Cotter, C. J.; Dubos, T.
2014-05-01
A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank-Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV). The algorithm is implemented and tested on two families of grids: hexagonal-icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed-sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.
Fu, Hongjun; Rodriguez, Gustavo A.; Herman, Mathieu; Emrani, Sheina; Nahmani, Eden; Barrett, Geoffrey; Figueroa, Helen Y.; Goldberg, Eliana
2017-01-01
Summary The earliest stages of Alzheimer's disease (AD) are characterized by the formation of mature tangles in the entorhinal cortex and disorientation and confusion navigating familiar places. The medial entorhinal cortex (MEC) contains specialized neurons called grid cells that form part of the spatial navigation system. Here we show in a transgenic mouse model expressing mutant human tau predominantly in the EC that the formation of mature tangles in old mice was associated with excitatory cell loss and deficits in grid cell function, including destabilized grid fields and reduced firing rates, as well as altered network activity. Overt tau pathology in the aged mice was accompanied by spatial memory deficits. Therefore, tau pathology initiated in the entorhinal cortex could lead to deficits in grid cell firing and underlie the deterioration of spatial cognition seen in human AD. PMID:28111080
Hasselmo, Michael E.
2008-01-01
The spiking activity of hippocampal neurons during REM sleep exhibits temporally structured replay of spiking occurring during previously experienced trajectories (Louie and Wilson, 2001). Here, temporally structured replay of place cell activity during REM sleep is modeled in a large-scale network simulation of grid cells, place cells and head direction cells. During simulated waking behavior, the movement of the simulated rat drives activity of a population of head direction cells that updates the activity of a population of entorhinal grid cells. The population of grid cells drives the activity of place cells coding individual locations. Associations between location and movement direction are encoded by modification of excitatory synaptic connections from place cells to speed modulated head direction cells. During simulated REM sleep, the population of place cells coding an experienced location activates the head direction cells coding the associated movement direction. Spiking of head direction cells then causes frequency shifts within the population of entorhinal grid cells to update a phase representation of location. Spiking grid cells then activate new place cells that drive new head direction activity. In contrast to models that perform temporally compressed sequence retrieval similar to sharp wave activity, this model can simulate data on temporally structured replay of hippocampal place cell activity during REM sleep at time scales similar to those observed during waking. These mechanisms could be important for episodic memory of trajectories. PMID:18973557
Extension of local front reconstruction method with controlled coalescence model
NASA Astrophysics Data System (ADS)
Rajkotwala, A. H.; Mirsandi, H.; Peters, E. A. J. F.; Baltussen, M. W.; van der Geld, C. W. M.; Kuerten, J. G. M.; Kuipers, J. A. M.
2018-02-01
The physics of droplet collisions involves a wide range of length scales. This poses a challenge to accurately simulate such flows with standard fixed grid methods due to their inability to resolve all relevant scales with an affordable number of computational grid cells. A solution is to couple a fixed grid method with subgrid models that account for microscale effects. In this paper, we improved and extended the Local Front Reconstruction Method (LFRM) with a film drainage model of Zang and Law [Phys. Fluids 23, 042102 (2011)]. The new framework is first validated by (near) head-on collision of two equal tetradecane droplets using experimental film drainage times. When the experimental film drainage times are used, the LFRM method is better in predicting the droplet collisions, especially at high velocity in comparison with other fixed grid methods (i.e., the front tracking method and the coupled level set and volume of fluid method). When the film drainage model is invoked, the method shows a good qualitative match with experiments, but a quantitative correspondence of the predicted film drainage time with the experimental drainage time is not obtained indicating that further development of film drainage model is required. However, it can be safely concluded that the LFRM coupled with film drainage models is much better in predicting the collision dynamics than the traditional methods.
Sparse grid techniques for particle-in-cell schemes
NASA Astrophysics Data System (ADS)
Ricketson, L. F.; Cerfon, A. J.
2017-02-01
We propose the use of sparse grids to accelerate particle-in-cell (PIC) schemes. By using the so-called ‘combination technique’ from the sparse grids literature, we are able to dramatically increase the size of the spatial cells in multi-dimensional PIC schemes while paying only a slight penalty in grid-based error. The resulting increase in cell size allows us to reduce the statistical noise in the simulation without increasing total particle number. We present initial proof-of-principle results from test cases in two and three dimensions that demonstrate the new scheme’s efficiency, both in terms of computation time and memory usage.
A Radiation Solver for the National Combustion Code
NASA Technical Reports Server (NTRS)
Sockol, Peter M.
2015-01-01
A methodology is given that converts an existing finite volume radiative transfer method that requires input of local absorption coefficients to one that can treat a mixture of combustion gases and compute the coefficients on the fly from the local mixture properties. The Full-spectrum k-distribution method is used to transform the radiative transfer equation (RTE) to an alternate wave number variable, g . The coefficients in the transformed equation are calculated at discrete temperatures and participating species mole fractions that span the values of the problem for each value of g. These results are stored in a table and interpolation is used to find the coefficients at every cell in the field. Finally, the transformed RTE is solved for each g and Gaussian quadrature is used to find the radiant heat flux throughout the field. The present implementation is in an existing cartesian/cylindrical grid radiative transfer code and the local mixture properties are given by a solution of the National Combustion Code (NCC) on the same grid. Based on this work the intention is to apply this method to an existing unstructured grid radiation code which can then be coupled directly to NCC.
A new method for estimating carbon dioxide emissions from transportation at fine spatial scales
Shu, Yuqin; Reams, Margaret
2016-01-01
Detailed estimates of carbon dioxide (CO2) emissions at fine spatial scales are useful to both modelers and decision makers who are faced with the problem of global warming and climate change. Globally, transport related emissions of carbon dioxide are growing. This letter presents a new method based on the volume-preserving principle in the areal interpolation literature to disaggregate transportation-related CO2 emission estimates from the county-level scale to a 1 km2 grid scale. The proposed volume-preserving interpolation (VPI) method, together with the distance-decay principle, were used to derive emission weights for each grid based on its proximity to highways, roads, railroads, waterways, and airports. The total CO2 emission value summed from the grids within a county is made to be equal to the original county-level estimate, thus enforcing the volume-preserving property. The method was applied to downscale the transportation-related CO2 emission values by county (i.e. parish) for the state of Louisiana into 1 km2 grids. The results reveal a more realistic spatial pattern of CO2 emission from transportation, which can be used to identify the emission ‘hot spots’. Of the four highest transportation-related CO2 emission hotspots in Louisiana, high-emission grids literally covered the entire East Baton Rouge Parish and Orleans Parish, whereas CO2 emission in Jefferson Parish (New Orleans suburb) and Caddo Parish (city of Shreveport) were more unevenly distributed. We argue that the new method is sound in principle, flexible in practice, and the resultant estimates are more accurate than previous gridding approaches. PMID:26997973
Ostracod Body Size Change Across Space and Time
NASA Astrophysics Data System (ADS)
Nolen, L.; Llarena, L. A.; Saux, J.; Heim, N. A.; Payne, J.
2014-12-01
Many factors drive evolution, although it is not always clear which factors are more influential. Miller et al. (2009) found that there is a change in geographic disparity in diversity in marine biotas over time. We tested if there was also geographic disparity in body size during different epochs. We used marine ostracods, which are tiny crustaceans, as a study group for this analysis. We also studied which factor is more influential in body size change: distance or time. We compared the mean body size from different geologic time intervals as well as the mean body size from different locations for each epoch. We grouped ostracod occurrences from the Paleobiology Database into 10º x 10º grid cells on a paleogeographic map. Then we calculated the difference in mean size and the distance between the grid cells containing specimens. Our size data came from the Ellis & Messina"Catalogue of Ostracod" as well as the"Treatise on Invertebrate Paleontology". Sizes were calculated by applying the formula for the volume of an ellipsoid to three linear dimensions of the ostracod carapace (anteroposterior, dorsoventral, and right-left lengths). Throughout this analysis we have come to the realization that there is a trend in ostracods towards smaller size over time. Therefore there is also a trend through time of decreasing difference in size between occurrences in different grid cells. However, if time is not taken into account, there is no correlation between size and geographic distance. This may be attributed to the fact that one might not expect a big size difference between locations that are far apart but still at a similar latitude (for example, at the equator). This analysis suggests that distance alone is not the main factor in driving changes in ostracod size over time.
NASA Technical Reports Server (NTRS)
Wellck, R. E.; Pearce, M. L.
1976-01-01
As part of the SEASAT program of NASA, a set of four hemispheric, atmospheric prediction models were developed. The models, which use a polar stereographic grid in the horizontal and a sigma coordinate in the vertical, are: (1) PECHCV - five sigma layers and a 63 x 63 horizontal grid, (2) PECHFV - ten sigma layers and a 63 x 63 horizontal grid, (3) PEFHCV - five sigma layers and a 187 x 187 horizontal grid, and (4) PEFHFV - ten sigma layers and a 187 x 187 horizontal grid. The models and associated computer programs are described.
Streamline integration as a method for two-dimensional elliptic grid generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at; Held, M.; Einkemmer, L.
We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metricsmore » we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.« less
Possible role of acetylcholine in regulating spatial novelty effects on theta rhythm and grid cells
Barry, Caswell; Heys, James G.; Hasselmo, Michael E.
2012-01-01
Existing pharmacological and lesion data indicate that acetylcholine plays an important role in memory formation. For example, increased levels of acetylcholine in the hippocampal formation are known to be associated with successful encoding while disruption of the cholinergic system leads to impairments on a range of mnemonic tasks. However, cholinergic signaling from the medial septum also plays a central role in generating and pacing theta-band oscillations throughout the hippocampal formation. Recent experimental results suggest a potential link between these distinct phenomena. Environmental novelty, a condition associated with strong cholinergic drive, has been shown to induce an expansion in the firing pattern of entorhinal grid cells and a reduction in the frequency of theta measured from the LFP. Computational modeling suggests the spatial activity of grid cells is produced by interference between neuronal oscillators; scale being determined by theta-band oscillations impinging on entorhinal stellate cells, the frequency of which is modulated by acetylcholine. Here we propose that increased cholinergic signaling in response to environmental novelty triggers grid expansion by reducing the frequency of the oscillations. Furthermore, we argue that cholinergic induced grid expansion may enhance, or even induce, encoding by producing a mismatch between expanded grid cells and other spatial inputs to the hippocampus, such as boundary vector cells. Indeed, a further source of mismatch is likely to occur between grid cells of different native scales which may expand by different relative amounts. PMID:22363266
A principle of economy predicts the functional architecture of grid cells.
Wei, Xue-Xin; Prentice, Jason; Balasubramanian, Vijay
2015-09-03
Grid cells in the brain respond when an animal occupies a periodic lattice of 'grid fields' during navigation. Grids are organized in modules with different periodicity. We propose that the grid system implements a hierarchical code for space that economizes the number of neurons required to encode location with a given resolution across a range equal to the largest period. This theory predicts that (i) grid fields should lie on a triangular lattice, (ii) grid scales should follow a geometric progression, (iii) the ratio between adjacent grid scales should be √e for idealized neurons, and lie between 1.4 and 1.7 for realistic neurons, (iv) the scale ratio should vary modestly within and between animals. These results explain the measured grid structure in rodents. We also predict optimal organization in one and three dimensions, the number of modules, and, with added assumptions, the ratio between grid periods and field widths.
Continuous Attractor Network Model for Conjunctive Position-by-Velocity Tuning of Grid Cells
Si, Bailu; Romani, Sandro; Tsodyks, Misha
2014-01-01
The spatial responses of many of the cells recorded in layer II of rodent medial entorhinal cortex (MEC) show a triangular grid pattern, which appears to provide an accurate population code for animal spatial position. In layer III, V and VI of the rat MEC, grid cells are also selective to head-direction and are modulated by the speed of the animal. Several putative mechanisms of grid-like maps were proposed, including attractor network dynamics, interactions with theta oscillations or single-unit mechanisms such as firing rate adaptation. In this paper, we present a new attractor network model that accounts for the conjunctive position-by-velocity selectivity of grid cells. Our network model is able to perform robust path integration even when the recurrent connections are subject to random perturbations. PMID:24743341
NASA Astrophysics Data System (ADS)
Gilgen, H.; Roesch, A.; Wild, M.; Ohmura, A.
2009-05-01
Decadal changes in shortwave irradiance at the Earth's surface are estimated for the period from approximately 1960 through to 2000 from pyranometer records stored in the Global Energy Balance Archive. For this observational period, estimates could be calculated for a total of 140 cells of the International Satellite Cloud Climatology Project grid (an equal area 2.5° × 2.5° grid at the equator) using regression models allowing for station effects. In large regions worldwide, shortwave irradiance decreases in the first half of the observational period, recovers from the decrease in the 1980s, and thereafter increases, in line with previous reports. Years of trend reversals are determined for the grid cells which are best described with a second-order polynomial model. This reversal of the trend is observed in the majority of the grid cells in the interior of Europe and in Japan. In China, shortwave irradiance recovers during the 1990s in the majority of the grid cells in the southeast and northeast from the decrease observed in the period from 1960 through to 1990. A reversal of the trend in the 1980s or early 1990s is also observed for two grid cells in North America, and for the grid cells containing the Kuala Lumpur (Malaysia), Singapore, Casablanca (Morocco), Valparaiso (Chile) sites, and, noticeably, the remote South Pole and American Samoa sites. Negative trends persist, i.e., shortwave radiation decreases, for the observational period 1960 through to 2000 at the European coasts, in central and northwest China, and for three grid cells in India and two in Africa.
Advanced electric propulsion research - 1990
NASA Technical Reports Server (NTRS)
Monheiser, Jeffery M.; Wilbur, Paul J.
1991-01-01
An experimental study of impingement current collection on the accelerator grid of an ion thruster is presented. The equipment, instruments, and procedures being used to conduct the study are discussed. The contribution to this current due to charge-exchange ions produced close to the grid is determined using a volume-integration procedure and measured ion beam current design, computed neutral atom density and measured beam plasma potential data. This current, which is expected to be almost equal to that measured directly, is found to be an order of magnitude less. The impingement current determined by integrating the current density of ambient ions in the beam plasma close to the grid is found to agree with the directly measured impingement current. Possible reasons for the disagreement between the directly measured and volume integrated impingement currents are discussed.
Context-dependent spatially periodic activity in the human entorhinal cortex
Nguyen, T. Peter; Török, Ágoston; Shen, Jason Y.; Briggs, Deborah E.; Modur, Pradeep N.; Buchanan, Robert J.
2017-01-01
The spatially periodic activity of grid cells in the entorhinal cortex (EC) of the rodent, primate, and human provides a coordinate system that, together with the hippocampus, informs an individual of its location relative to the environment and encodes the memory of that location. Among the most defining features of grid-cell activity are the 60° rotational symmetry of grids and preservation of grid scale across environments. Grid cells, however, do display a limited degree of adaptation to environments. It remains unclear if this level of environment invariance generalizes to human grid-cell analogs, where the relative contribution of visual input to the multimodal sensory input of the EC is significantly larger than in rodents. Patients diagnosed with nontractable epilepsy who were implanted with entorhinal cortical electrodes performing virtual navigation tasks to memorized locations enabled us to investigate associations between grid-like patterns and environment. Here, we report that the activity of human entorhinal cortical neurons exhibits adaptive scaling in grid period, grid orientation, and rotational symmetry in close association with changes in environment size, shape, and visual cues, suggesting scale invariance of the frequency, rather than the wavelength, of spatially periodic activity. Our results demonstrate that neurons in the human EC represent space with an enhanced flexibility relative to neurons in rodents because they are endowed with adaptive scalability and context dependency. PMID:28396399
A computer program for converting rectangular coordinates to latitude-longitude coordinates
Rutledge, A.T.
1989-01-01
A computer program was developed for converting the coordinates of any rectangular grid on a map to coordinates on a grid that is parallel to lines of equal latitude and longitude. Using this program in conjunction with groundwater flow models, the user can extract data and results from models with varying grid orientations and place these data into grid structure that is oriented parallel to lines of equal latitude and longitude. All cells in the rectangular grid must have equal dimensions, and all cells in the latitude-longitude grid measure one minute by one minute. This program is applicable if the map used shows lines of equal latitude as arcs and lines of equal longitude as straight lines and assumes that the Earth 's surface can be approximated as a sphere. The program user enters the row number , column number, and latitude and longitude of the midpoint of the cell for three test cells on the rectangular grid. The latitude and longitude of boundaries of the rectangular grid also are entered. By solving sets of simultaneous linear equations, the program calculates coefficients that are used for making the conversion. As an option in the program, the user may build a groundwater model file based on a grid that is parallel to lines of equal latitude and longitude. The program reads a data file based on the rectangular coordinates and automatically forms the new data file. (USGS)
Bayesian Non-Stationary Index Gauge Modeling of Gridded Precipitation Extremes
NASA Astrophysics Data System (ADS)
Verdin, A.; Bracken, C.; Caldwell, J.; Balaji, R.; Funk, C. C.
2017-12-01
We propose a Bayesian non-stationary model to generate watershed scale gridded estimates of extreme precipitation return levels. The Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset is used to obtain gridded seasonal precipitation extremes over the Taylor Park watershed in Colorado for the period 1981-2016. For each year, grid cells within the Taylor Park watershed are aggregated to a representative "index gauge," which is input to the model. Precipitation-frequency curves for the index gauge are estimated for each year, using climate variables with significant teleconnections as proxies. Such proxies enable short-term forecasting of extremes for the upcoming season. Disaggregation ratios of the index gauge to the grid cells within the watershed are computed for each year and preserved to translate the index gauge precipitation-frequency curve to gridded precipitation-frequency maps for select return periods. Gridded precipitation-frequency maps are of the same spatial resolution as CHIRPS (0.05° x 0.05°). We verify that the disaggregation method preserves spatial coherency of extremes in the Taylor Park watershed. Validation of the index gauge extreme precipitation-frequency method consists of ensuring extreme value statistics are preserved on a grid cell basis. To this end, a non-stationary extreme precipitation-frequency analysis is performed on each grid cell individually, and the resulting frequency curves are compared to those produced by the index gauge disaggregation method.
A CLASS OF RECONSTRUCTED DISCONTINUOUS GALERKIN METHODS IN COMPUTATIONAL FLUID DYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong Luo; Yidong Xia; Robert Nourgaliev
2011-05-01
A class of reconstructed discontinuous Galerkin (DG) methods is presented to solve compressible flow problems on arbitrary grids. The idea is to combine the efficiency of the reconstruction methods in finite volume methods and the accuracy of the DG methods to obtain a better numerical algorithm in computational fluid dynamics. The beauty of the resulting reconstructed discontinuous Galerkin (RDG) methods is that they provide a unified formulation for both finite volume and DG methods, and contain both classical finite volume and standard DG methods as two special cases of the RDG methods, and thus allow for a direct efficiency comparison.more » Both Green-Gauss and least-squares reconstruction methods and a least-squares recovery method are presented to obtain a quadratic polynomial representation of the underlying linear discontinuous Galerkin solution on each cell via a so-called in-cell reconstruction process. The devised in-cell reconstruction is aimed to augment the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. These three reconstructed discontinuous Galerkin methods are used to compute a variety of compressible flow problems on arbitrary meshes to assess their accuracy. The numerical experiments demonstrate that all three reconstructed discontinuous Galerkin methods can significantly improve the accuracy of the underlying second-order DG method, although the least-squares reconstructed DG method provides the best performance in terms of both accuracy, efficiency, and robustness.« less
Uncertainty in gridded CO 2 emissions estimates
Hogue, Susannah; Marland, Eric; Andres, Robert J.; ...
2016-05-19
We are interested in the spatial distribution of fossil-fuel-related emissions of CO 2 for both geochemical and geopolitical reasons, but it is important to understand the uncertainty that exists in spatially explicit emissions estimates. Working from one of the widely used gridded data sets of CO 2 emissions, we examine the elements of uncertainty, focusing on gridded data for the United States at the scale of 1° latitude by 1° longitude. Uncertainty is introduced in the magnitude of total United States emissions, the magnitude and location of large point sources, the magnitude and distribution of non-point sources, and from themore » use of proxy data to characterize emissions. For the United States, we develop estimates of the contribution of each component of uncertainty. At 1° resolution, in most grid cells, the largest contribution to uncertainty comes from how well the distribution of the proxy (in this case population density) represents the distribution of emissions. In other grid cells, the magnitude and location of large point sources make the major contribution to uncertainty. Uncertainty in population density can be important where a large gradient in population density occurs near a grid cell boundary. Uncertainty is strongly scale-dependent with uncertainty increasing as grid size decreases. In conclusion, uncertainty for our data set with 1° grid cells for the United States is typically on the order of ±150%, but this is perhaps not excessive in a data set where emissions per grid cell vary over 8 orders of magnitude.« less
Comparison of local grid refinement methods for MODFLOW
Mehl, S.; Hill, M.C.; Leake, S.A.
2006-01-01
Many ground water modeling efforts use a finite-difference method to solve the ground water flow equation, and many of these models require a relatively fine-grid discretization to accurately represent the selected process in limited areas of interest. Use of a fine grid over the entire domain can be computationally prohibitive; using a variably spaced grid can lead to cells with a large aspect ratio and refinement in areas where detail is not needed. One solution is to use local-grid refinement (LGR) whereby the grid is only refined in the area of interest. This work reviews some LGR methods and identifies advantages and drawbacks in test cases using MODFLOW-2000. The first test case is two dimensional and heterogeneous; the second is three dimensional and includes interaction with a meandering river. Results include simulations using a uniform fine grid, a variably spaced grid, a traditional method of LGR without feedback, and a new shared node method with feedback. Discrepancies from the solution obtained with the uniform fine grid are investigated. For the models tested, the traditional one-way coupled approaches produced discrepancies in head up to 6.8% and discrepancies in cell-to-cell fluxes up to 7.1%, while the new method has head and cell-to-cell flux discrepancies of 0.089% and 0.14%, respectively. Additional results highlight the accuracy, flexibility, and CPU time trade-off of these methods and demonstrate how the new method can be successfully implemented to model surface water-ground water interactions. Copyright ?? 2006 The Author(s).
The Overgrid Interface for Computational Simulations on Overset Grids
NASA Technical Reports Server (NTRS)
Chan, William M.; Kwak, Dochan (Technical Monitor)
2002-01-01
Computational simulations using overset grids typically involve multiple steps and a variety of software modules. A graphical interface called OVERGRID has been specially designed for such purposes. Data required and created by the different steps include geometry, grids, domain connectivity information and flow solver input parameters. The interface provides a unified environment for the visualization, processing, generation and diagnosis of such data. General modules are available for the manipulation of structured grids and unstructured surface triangulations. Modules more specific for the overset approach include surface curve generators, hyperbolic and algebraic surface grid generators, a hyperbolic volume grid generator, Cartesian box grid generators, and domain connectivity: pre-processing tools. An interface provides automatic selection and viewing of flow solver boundary conditions, and various other flow solver inputs. For problems involving multiple components in relative motion, a module is available to build the component/grid relationships and to prescribe and animate the dynamics of the different components.
Homogeneity and EPR metrics for assessment of regular grids used in CW EPR powder simulations.
Crăciun, Cora
2014-08-01
CW EPR powder spectra may be approximated numerically using a spherical grid and a Voronoi tessellation-based cubature. For a given spin system, the quality of simulated EPR spectra depends on the grid type, size, and orientation in the molecular frame. In previous work, the grids used in CW EPR powder simulations have been compared mainly from geometric perspective. However, some grids with similar homogeneity degree generate different quality simulated spectra. This paper evaluates the grids from EPR perspective, by defining two metrics depending on the spin system characteristics and the grid Voronoi tessellation. The first metric determines if the grid points are EPR-centred in their Voronoi cells, based on the resonance magnetic field variations inside these cells. The second metric verifies if the adjacent Voronoi cells of the tessellation are EPR-overlapping, by computing the common range of their resonance magnetic field intervals. Beside a series of well known regular grids, the paper investigates a modified ZCW grid and a Fibonacci spherical code, which are new in the context of EPR simulations. For the investigated grids, the EPR metrics bring more information than the homogeneity quantities and are better related to the grids' EPR behaviour, for different spin system symmetries. The metrics' efficiency and limits are finally verified for grids generated from the initial ones, by using the original or magnetic field-constraint variants of the Spherical Centroidal Voronoi Tessellation method. Copyright © 2014 Elsevier Inc. All rights reserved.
Application of spatially gridded temperature and land cover data sets for urban heat island analysis
Gallo, Kevin; Xian, George Z.
2014-01-01
Two gridded data sets that included (1) daily mean temperatures from 2006 through 2011 and (2) satellite-derived impervious surface area, were combined for a spatial analysis of the urban heat-island effect within the Dallas-Ft. Worth Texas region. The primary advantage of using these combined datasets included the capability to designate each 1 × 1 km grid cell of available temperature data as urban or rural based on the level of impervious surface area within the grid cell. Generally, the observed differences in urban and rural temperature increased as the impervious surface area thresholds used to define an urban grid cell were increased. This result, however, was also dependent on the size of the sample area included in the analysis. As the spatial extent of the sample area increased and included a greater number of rural defined grid cells, the observed urban and rural differences in temperature also increased. A cursory comparison of the spatially gridded temperature observations with observations from climate stations suggest that the number and location of stations included in an urban heat island analysis requires consideration to assure representative samples of each (urban and rural) environment are included in the analysis.
Denimal, Emmanuel; Marin, Ambroise; Guyot, Stéphane; Journaux, Ludovic; Molin, Paul
2015-08-01
In biology, hemocytometers such as Malassez slides are widely used and are effective tools for counting cells manually. In a previous work, a robust algorithm was developed for grid extraction in Malassez slide images. This algorithm was evaluated on a set of 135 images and grids were accurately detected in most cases, but there remained failures for the most difficult images. In this work, we present an optimization of this algorithm that allows for 100% grid detection and a 25% improvement in grid positioning accuracy. These improvements make the algorithm fully reliable for grid detection. This optimization also allows complete erasing of the grid without altering the cells, which eases their segmentation.
Numerical computation of diffusion on a surface.
Schwartz, Peter; Adalsteinsson, David; Colella, Phillip; Arkin, Adam Paul; Onsum, Matthew
2005-08-09
We present a numerical method for computing diffusive transport on a surface derived from image data. Our underlying discretization method uses a Cartesian grid embedded boundary method for computing the volume transport in a region consisting of all points a small distance from the surface. We obtain a representation of this region from image data by using a front propagation computation based on level set methods for solving the Hamilton-Jacobi and eikonal equations. We demonstrate that the method is second-order accurate in space and time and is capable of computing solutions on complex surface geometries obtained from image data of cells.
Recent enhancements to the GRIDGEN structured grid generation system
NASA Technical Reports Server (NTRS)
Steinbrenner, John P.; Chawner, John R.
1992-01-01
Significant enhancements are being implemented into the GRIDGEN3D, multiple block, structured grid generation software. Automatic, point-to-point, interblock connectivity will be possible through the addition of the domain entity to GRIDBLOCK's block construction process. Also, the unification of GRIDGEN2D and GRIDBLOCK has begun with the addition of edge grid point distribution capability to GRIDBLOCK. The geometric accuracy of surface grids and the ease with which databases may be obtained is being improved by adding support for standard computer-aided design formats (e.g., PATRAN Neutral and IGES files). Finally, volume grid quality was improved through addition of new SOR algorithm features and the new hybrid control function type to GRIDGEN3D.
A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
White, J. A.; Morrison, J. H.
1999-01-01
A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.
Navier-Stokes solution of transonic cascade flows using nonperiodic C-type grids
NASA Technical Reports Server (NTRS)
Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.
1992-01-01
A new kind of C-type grid is proposed, this grid is non-periodic on the wake and allows minimum skewness for cascades with high turning and large camber. Reynolds-averaged Navier-Stokes equations are solved on this type of grid using a finite volume discretization and a full multigrid method which uses Runge-Kutta stepping as the driving scheme. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. A detailed numerical study is proposed for a highly loaded transonic blade. A grid independence analysis is presented in terms of pressure distribution, exit flow angles, and loss coefficient. Comparison with experiments clearly demonstrates the capability of the proposed procedure.
NASA Technical Reports Server (NTRS)
Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert
2005-01-01
Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.
Transonic cascade flow calculations using non-periodic C-type grids
NASA Technical Reports Server (NTRS)
Arnone, Andrea; Liou, Meng-Sing; Povinelli, Louis A.
1991-01-01
A new kind of C-type grid is proposed for turbomachinery flow calculations. This grid is nonperiodic on the wake and results in minimum skewness for cascades with high turning and large camber. Euler and Reynolds averaged Navier-Stokes equations are discretized on this type of grid using a finite volume approach. The Baldwin-Lomax eddy-viscosity model is used for turbulence closure. Jameson's explicit Runge-Kutta scheme is adopted for the integration in time, and computational efficiency is achieved through accelerating strategies such as multigriding and residual smoothing. A detailed numerical study was performed for a turbine rotor and for a vane. A grid dependence analysis is presented and the effect of artificial dissipation is also investigated. Comparison of calculations with experiments clearly demonstrates the advantage of the proposed grid.
A principle of economy predicts the functional architecture of grid cells
Wei, Xue-Xin; Prentice, Jason; Balasubramanian, Vijay
2015-01-01
Grid cells in the brain respond when an animal occupies a periodic lattice of ‘grid fields’ during navigation. Grids are organized in modules with different periodicity. We propose that the grid system implements a hierarchical code for space that economizes the number of neurons required to encode location with a given resolution across a range equal to the largest period. This theory predicts that (i) grid fields should lie on a triangular lattice, (ii) grid scales should follow a geometric progression, (iii) the ratio between adjacent grid scales should be √e for idealized neurons, and lie between 1.4 and 1.7 for realistic neurons, (iv) the scale ratio should vary modestly within and between animals. These results explain the measured grid structure in rodents. We also predict optimal organization in one and three dimensions, the number of modules, and, with added assumptions, the ratio between grid periods and field widths. DOI: http://dx.doi.org/10.7554/eLife.08362.001 PMID:26335200
Modular Multi-Sensor Display System Design Study. Volume 2. Detail Design and Application Analysis
1974-08-01
control grid . 2. Horizontal AFC/Deflection Module - Generates horizontal sweep signals from input syncs to provide 525 to 1023 line television raster...separation, and gener- ate composite blanking for the CRT control grid . Signal Number of Lines Signal Type Characteristics Input Interface Composite...SEPERATOR DC RESTORA- TION l_i BLANKING VERT DRIVE ■♦ Bl" CRT " CATHODE * _fc> BRIGHTNESS ^ (FRONT PANEL) .CRT GRID ■♦• COMP SYNC Figure
NASA Astrophysics Data System (ADS)
Horstmann, Jan Tobias; Le Garrec, Thomas; Mincu, Daniel-Ciprian; Lévêque, Emmanuel
2017-11-01
Despite the efficiency and low dissipation of the stream-collide scheme of the discrete-velocity Boltzmann equation, which is nowadays implemented in many lattice Boltzmann solvers, a major drawback exists over alternative discretization schemes, i.e. finite-volume or finite-difference, that is the limitation to Cartesian uniform grids. In this paper, an algorithm is presented that combines the positive features of each scheme in a hybrid lattice Boltzmann method. In particular, the node-based streaming of the distribution functions is coupled with a second-order finite-volume discretization of the advection term of the Boltzmann equation under the Bhatnagar-Gross-Krook approximation. The algorithm is established on a multi-domain configuration, with the individual schemes being solved on separate sub-domains and connected by an overlapping interface of at least 2 grid cells. A critical parameter in the coupling is the CFL number equal to unity, which is imposed by the stream-collide algorithm. Nevertheless, a semi-implicit treatment of the collision term in the finite-volume formulation allows us to obtain a stable solution for this condition. The algorithm is validated in the scope of three different test cases on a 2D periodic mesh. It is shown that the accuracy of the combined discretization schemes agrees with the order of each separate scheme involved. The overall numerical error of the hybrid algorithm in the macroscopic quantities is contained between the error of the two individual algorithms. Finally, we demonstrate how such a coupling can be used to adapt to anisotropic flows with some gradual mesh refinement in the FV domain.
Therapeutic benefits in grid irradiation on Tomotherapy for bulky, radiation-resistant tumors.
Narayanasamy, Ganesh; Zhang, Xin; Meigooni, Ali; Paudel, Nava; Morrill, Steven; Maraboyina, Sanjay; Peacock, Loverd; Penagaricano, Jose
2017-08-01
Spatially fractionated radiation therapy (SFRT or grid therapy) has proven to be effective in management of bulky tumors. The aim of this project is to study the therapeutic ratio (TR) of helical Tomotherapy (HT)-based grid therapy using linear-quadratic cell survival model. HT-based grid (or HT-GRID) plan was generated using a patient-specific virtual grid pattern of high-dose cylindrical regions using MLCs. TR was defined as the ratio of normal tissue surviving fraction (SF) under HT-GRID irradiation to an open debulking field of an equivalent dose that result in the same tumor cell SF. TR was estimated from DVH data on ten HT-GRID patient plans with deep seated, bulky tumor. Dependence of the TR values on radiosensitivity of the tumor cells and prescription dose was analyzed. The mean ± standard deviation (SD) of TR was 4.0 ± 0.7 (range: 3.1-5.5) for the 10 patients with single fraction maximum dose of 20 Gy to GTV assuming a tumor cell SF at 2 Gy (SF2 t ) value of 0·5. In addition, the mean ± SD of TR values for SF2 t values of 0.3 and 0.7 were found to be 1 ± 0.1 and 18.0 ± 5.1, respectively. Reducing the prescription dose to 15 and 10 Gy lowered the respective TR values to 2.0 ± 0.2 and 1.2 ± 0.04 for a SF2 t value of 0.5. HT-GRID therapy demonstrates a significant therapeutic advantage over uniform dose from an open field irradiation for the same tumor cell kill. TR increases with the radioresistance of the tumor cells and with prescription dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, S; Das, I; Indiana University Health Methodist Hospital, Indianapolis, IN
2014-06-01
Purpose: IMRT has become standard of care for complex treatments to optimize dose to target and spare normal tissues. However, the impact of calculation grid size is not widely known especially dose distribution, tumor control probability (TCP) and normal tissue complication probability (NTCP) which is investigated in this study. Methods: Ten head and neck IMRT patients treated with 6 MV photons were chosen for this study. Using Eclipse TPS, treatment plans were generated for different grid sizes in the range 1–5 mm for the same optimization criterion with specific dose-volume constraints. The dose volume histogram (DVH) was calculated for allmore » IMRT plans and dosimetric data were compared. ICRU-83 dose points such as D2%, D50%, D98%, as well as the homogeneity and conformity indices (HI, CI) were calculated. In addition, TCP and NTCP were calculated from DVH data. Results: The PTV mean dose and TCP decreases with increasing grid size with an average decrease in mean dose by 2% and TCP by 3% respectively. Increasing grid size from 1–5 mm grid size, the average mean dose and NTCP for left parotid was increased by 6.0% and 8.0% respectively. Similar patterns were observed for other OARs such as cochlea, parotids and spinal cord. The HI increases up to 60% and CI decreases on average by 3.5% between 1 and 5 mm grid that resulted in decreased TCP and increased NTCP values. The number of points meeting the gamma criteria of ±3% dose difference and ±3mm DTA was higher with a 1 mm on average (97.2%) than with a 5 mm grid (91.3%). Conclusion: A smaller calculation grid provides superior dosimetry with improved TCP and reduced NTCP values. The effect is more pronounced for smaller OARs. Thus, the smallest possible grid size should be used for accurate dose calculation especially in H and N planning.« less
NASA Astrophysics Data System (ADS)
Li, Chang; Wang, Qing; Shi, Wenzhong; Zhao, Sisi
2018-05-01
The accuracy of earthwork calculations that compute terrain volume is critical to digital terrain analysis (DTA). The uncertainties in volume calculations (VCs) based on a DEM are primarily related to three factors: 1) model error (ME), which is caused by an adopted algorithm for a VC model, 2) discrete error (DE), which is usually caused by DEM resolution and terrain complexity, and 3) propagation error (PE), which is caused by the variables' error. Based on these factors, the uncertainty modelling and analysis of VCs based on a regular grid DEM are investigated in this paper. Especially, how to quantify the uncertainty of VCs is proposed by a confidence interval based on truncation error (TE). In the experiments, the trapezoidal double rule (TDR) and Simpson's double rule (SDR) were used to calculate volume, where the TE is the major ME, and six simulated regular grid DEMs with different terrain complexity and resolution (i.e. DE) were generated by a Gauss synthetic surface to easily obtain the theoretical true value and eliminate the interference of data errors. For PE, Monte-Carlo simulation techniques and spatial autocorrelation were used to represent DEM uncertainty. This study can enrich uncertainty modelling and analysis-related theories of geographic information science.
Stabilized Finite Elements in FUN3D
NASA Technical Reports Server (NTRS)
Anderson, W. Kyle; Newman, James C.; Karman, Steve L.
2017-01-01
A Streamlined Upwind Petrov-Galerkin (SUPG) stabilized finite-element discretization has been implemented as a library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given, details of the implementation are provided, and the discretization for the interior scheme is verified for linear and quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing shocks, and simulation results are compared to the finite-volume formulation that is currently the primary method employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has been made to date to optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of computer time to reach convergence.
Velocity field calculation for non-orthogonal numerical grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G. P.
2015-03-01
Computational grids containing cell faces that do not align with an orthogonal (e.g. Cartesian, cylindrical) coordinate system are routinely encountered in porous-medium numerical simulations. Such grids are referred to in this study as non-orthogonal grids because some cell faces are not orthogonal to a coordinate system plane (e.g. xy, yz or xz plane in Cartesian coordinates). Non-orthogonal grids are routinely encountered at the Savannah River Site in porous-medium flow simulations for Performance Assessments and groundwater flow modeling. Examples include grid lines that conform to the sloping roof of a waste tank or disposal unit in a 2D Performance Assessment simulation,more » and grid surfaces that conform to undulating stratigraphic surfaces in a 3D groundwater flow model. Particle tracking is routinely performed after a porous-medium numerical flow simulation to better understand the dynamics of the flow field and/or as an approximate indication of the trajectory and timing of advective solute transport. Particle tracks are computed by integrating the velocity field from cell to cell starting from designated seed (starting) positions. An accurate velocity field is required to attain accurate particle tracks. However, many numerical simulation codes report only the volumetric flowrate (e.g. PORFLOW) and/or flux (flowrate divided by area) crossing cell faces. For an orthogonal grid, the normal flux at a cell face is a component of the Darcy velocity vector in the coordinate system, and the pore velocity for particle tracking is attained by dividing by water content. For a non-orthogonal grid, the flux normal to a cell face that lies outside a coordinate plane is not a true component of velocity with respect to the coordinate system. Nonetheless, normal fluxes are often taken as Darcy velocity components, either naively or with accepted approximation. To enable accurate particle tracking or otherwise present an accurate depiction of the velocity field for a non-orthogonal grid, Darcy velocity components are rigorously derived in this study from normal fluxes to cell faces, which are assumed to be provided by or readily computed from porous-medium simulation code output. The normal fluxes are presumed to satisfy mass balances for every computational cell, and if so, the derived velocity fields are consistent with these mass balances. Derivations are provided for general two-dimensional quadrilateral and three-dimensional hexagonal systems, and for the commonly encountered special cases of perfectly vertical side faces in 2D and 3D and a rectangular footprint in 3D.« less
Documentation for the MODFLOW 6 Groundwater Flow Model
Langevin, Christian D.; Hughes, Joseph D.; Banta, Edward R.; Niswonger, Richard G.; Panday, Sorab; Provost, Alden M.
2017-08-10
This report documents the Groundwater Flow (GWF) Model for a new version of MODFLOW called MODFLOW 6. The GWF Model for MODFLOW 6 is based on a generalized control-volume finite-difference approach in which a cell can be hydraulically connected to any number of surrounding cells. Users can define the model grid using one of three discretization packages, including (1) a structured discretization package for defining regular MODFLOW grids consisting of layers, rows, and columns, (2) a discretization by vertices package for defining layered unstructured grids consisting of layers and cells, and (3) a general unstructured discretization package for defining flexible grids comprised of cells and their connection properties. For layered grids, a new capability is available for removing thin cells and vertically connecting cells overlying and underlying the thin cells. For complex problems involving water-table conditions, an optional Newton-Raphson formulation, based on the formulations in MODFLOW-NWT and MODFLOW-USG, can be activated. Use of the Newton-Raphson formulation will often improve model convergence and allow solutions to be obtained for difficult problems that cannot be solved using the traditional wetting and drying approach. The GWF Model is divided into “packages,” as was done in previous MODFLOW versions. A package is the part of the model that deals with a single aspect of simulation. Packages included with the GWF Model include those related to internal calculations of groundwater flow (discretization, initial conditions, hydraulic conductance, and storage), stress packages (constant heads, wells, recharge, rivers, general head boundaries, drains, and evapotranspiration), and advanced stress packages (streamflow routing, lakes, multi-aquifer wells, and unsaturated zone flow). An additional package is also available for moving water available in one package into the individual features of the advanced stress packages. The GWF Model also has packages for obtaining and controlling output from the model. This report includes detailed explanations of physical and mathematical concepts on which the GWF Model and its packages are based.Like its predecessors, MODFLOW 6 is based on a highly modular structure; however, this structure has been extended into an object-oriented framework. The framework includes a robust and generalized numerical solution object, which can be used to solve many different types of models. The numerical solution object has several different matrix preconditioning options as well as several methods for solving the linear system of equations. In this new framework, the GWF Model itself is an object as are each of the GWF Model packages. A benefit of the object-oriented structure is that multiple objects of the same type can be used in a single simulation. Thus, a single forward run with MODFLOW 6 may contain multiple GWF Models. GWF Models can be hydraulically connected using GWF-GWF Exchange objects. Connecting GWF models in different ways permits the user to utilize a local grid refinement strategy consisting of parent and child models or to couple adjacent GWF Models. An advantage of the approach implemented in MODFLOW 6 is that multiple models and their exchanges can be incorporated into a single numerical solution object. With this design, models can be tightly coupled at the matrix level.
The multidimensional Self-Adaptive Grid code, SAGE, version 2
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1995-01-01
This new report on Version 2 of the SAGE code includes all the information in the original publication plus all upgrades and changes to the SAGE code since that time. The two most significant upgrades are the inclusion of a finite-volume option and the ability to adapt and manipulate zonal-matching multiple-grid files. In addition, the original SAGE code has been upgraded to Version 1.1 and includes all options mentioned in this report, with the exception of the multiple grid option and its associated features. Since Version 2 is a larger and more complex code, it is suggested (but not required) that Version 1.1 be used for single-grid applications. This document contains all the information required to run both versions of SAGE. The formulation of the adaption method is described in the first section of this document. The second section is presented in the form of a user guide that explains the input and execution of the code. The third section provides many examples. Successful application of the SAGE code in both two and three dimensions for the solution of various flow problems has proven the code to be robust, portable, and simple to use. Although the basic formulation follows the method of Nakahashi and Deiwert, many modifications have been made to facilitate the use of the self-adaptive grid method for complex grid structures. Modifications to the method and the simple but extensive input options make this a flexible and user-friendly code. The SAGE code can accommodate two-dimensional and three-dimensional, finite-difference and finite-volume, single grid, and zonal-matching multiple grid flow problems.
Tools for Analysis and Visualization of Large Time-Varying CFD Data Sets
NASA Technical Reports Server (NTRS)
Wilhelms, Jane; VanGelder, Allen
1997-01-01
In the second year, we continued to built upon and improve our scanline-based direct volume renderer that we developed in the first year of this grant. This extremely general rendering approach can handle regular or irregular grids, including overlapping multiple grids, and polygon mesh surfaces. It runs in parallel on multi-processors. It can also be used in conjunction with a k-d tree hierarchy, where approximate models and error terms are stored in the nodes of the tree, and approximate fast renderings can be created. We have extended our software to handle time-varying data where the data changes but the grid does not. We are now working on extending it to handle more general time-varying data. We have also developed a new extension of our direct volume renderer that uses automatic decimation of the 3D grid, as opposed to an explicit hierarchy. We explored this alternative approach as being more appropriate for very large data sets, where the extra expense of a tree may be unacceptable. We also describe a new approach to direct volume rendering using hardware 3D textures and incorporates lighting effects. Volume rendering using hardware 3D textures is extremely fast, and machines capable of using this technique are becoming more moderately priced. While this technique, at present, is limited to use with regular grids, we are pursuing possible algorithms extending the approach to more general grid types. We have also begun to explore a new method for determining the accuracy of approximate models based on the light field method described at ACM SIGGRAPH '96. In our initial implementation, we automatically image the volume from 32 equi-distant positions on the surface of an enclosing tessellated sphere. We then calculate differences between these images under different conditions of volume approximation or decimation. We are studying whether this will give a quantitative measure of the effects of approximation. We have created new tools for exploring the differences between images produced by various rendering methods. Images created by our software can be stored in the SGI RGB format. Our idtools software reads in pair of images and compares them using various metrics. The differences of the images using the RGB, HSV, and HSL color models can be calculated and shown. We can also calculate the auto-correlation function and the Fourier transform of the image and image differences. We will explore how these image differences compare in order to find useful metrics for quantifying the success of various visualization approaches. In general, progress was consistent with our research plan for the second year of the grant.
An Adaptive Flow Solver for Air-Borne Vehicles Undergoing Time-Dependent Motions/Deformations
NASA Technical Reports Server (NTRS)
Singh, Jatinder; Taylor, Stephen
1997-01-01
This report describes a concurrent Euler flow solver for flows around complex 3-D bodies. The solver is based on a cell-centered finite volume methodology on 3-D unstructured tetrahedral grids. In this algorithm, spatial discretization for the inviscid convective term is accomplished using an upwind scheme. A localized reconstruction is done for flow variables which is second order accurate. Evolution in time is accomplished using an explicit three-stage Runge-Kutta method which has second order temporal accuracy. This is adapted for concurrent execution using another proven methodology based on concurrent graph abstraction. This solver operates on heterogeneous network architectures. These architectures may include a broad variety of UNIX workstations and PCs running Windows NT, symmetric multiprocessors and distributed-memory multi-computers. The unstructured grid is generated using commercial grid generation tools. The grid is automatically partitioned using a concurrent algorithm based on heat diffusion. This results in memory requirements that are inversely proportional to the number of processors. The solver uses automatic granularity control and resource management techniques both to balance load and communication requirements, and deal with differing memory constraints. These ideas are again based on heat diffusion. Results are subsequently combined for visualization and analysis using commercial CFD tools. Flow simulation results are demonstrated for a constant section wing at subsonic, transonic, and a supersonic case. These results are compared with experimental data and numerical results of other researchers. Performance results are under way for a variety of network topologies.
Numerical Solution of Incompressible Navier-Stokes Equations Using a Fractional-Step Approach
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Kwak, Dochan
1999-01-01
A fractional step method for the solution of steady and unsteady incompressible Navier-Stokes equations is outlined. The method is based on a finite volume formulation and uses the pressure in the cell center and the mass fluxes across the faces of each cell as dependent variables. Implicit treatment of convective and viscous terms in the momentum equations enables the numerical stability restrictions to be relaxed. The linearization error in the implicit solution of momentum equations is reduced by using three subiterations in order to achieve second order temporal accuracy for time-accurate calculations. In spatial discretizations of the momentum equations, a high-order (3rd and 5th) flux-difference splitting for the convective terms and a second-order central difference for the viscous terms are used. The resulting algebraic equations are solved with a line-relaxation scheme which allows the use of large time step. A four color ZEBRA scheme is employed after the line-relaxation procedure in the solution of the Poisson equation for pressure. This procedure is applied to a Couette flow problem using a distorted computational grid to show that the method minimizes grid effects. Additional benchmark cases include the unsteady laminar flow over a circular cylinder for Reynolds Numbers of 200, and a 3-D, steady, turbulent wingtip vortex wake propagation study. The solution algorithm does a very good job in resolving the vortex core when 5th-order upwind differencing and a modified production term in the Baldwin-Barth one-equation turbulence model are used with adequate grid resolution.
NASA Astrophysics Data System (ADS)
Verma, Shashi Kant; Sinha, S. L.; Chandraker, D. K.
2018-05-01
Numerical simulation has been carried out for the study of natural mixing of a Tracer (Passive scalar) to describe the development of turbulent diffusion in an injected sub-channel and, afterwards on, cross-mixing between adjacent sub-channels. In this investigation, post benchmark evaluation of the inter-subchannel mixing was initiated to test the ability of state-of-the-art Computational Fluid Dynamics (CFD) codes to numerically predict the important turbulence parameters downstream of a ring type spacer grid in a rod-bundle. A three-dimensional Computational Fluid Dynamics (CFD) tool (STAR-CCM+) was used to model the single phase flow through a 30° segment or 1/12th of the cross segment of a 54-rod bundle with a ring shaped spacer grid. Polyhedrons were used to discretize the computational domain, along with prismatic cells near the walls, with an overall mesh count of 5.2 M cell volumes. The Reynolds Stress Models (RSM) was tested because of RSM accounts for the turbulence anisotropy, to assess their capability in predicting the velocities as well as mass fraction of potassium nitrate measured in the experiment. In this way, the line probes are located in the different position of subchannels which could be used to characterize the progress of the mixing along the flow direction, and the degree of cross-mixing assessed using the quantity of tracer arriving in the neighbouring sub-channels. The predicted dimensionless mixing scalar along the length, however, was in good agreement with the measurements downstream of spacers.
Shay, Christopher F.; Ferrante, Michele; Chapman, G. William; Hasselmo, Michael E.
2015-01-01
Rebound spiking properties of medial entorhinal cortex (mEC) stellate cells induced by inhibition may underlie their functional properties in awake behaving rats, including the temporal phase separation of distinct grid cells and differences in grid cell firing properties. We investigated rebound spiking properties using whole cell patch recording in entorhinal slices, holding cells near spiking threshold and delivering sinusoidal inputs, superimposed with realistic inhibitory synaptic inputs to test the capacity of cells to selectively respond to specific phases of inhibitory input. Stellate cells showed a specific phase range of hyperpolarizing inputs that elicited spiking, but non-stellate cells did not show phase specificity. In both cell types, the phase range of spiking output occurred between the peak and subsequent descending zero crossing of the sinusoid. The phases of inhibitory inputs that induced spikes shifted earlier as the baseline sinusoid frequency increased, while spiking output shifted to later phases. Increases in magnitude of the inhibitory inputs shifted the spiking output to earlier phases. Pharmacological blockade of h-current abolished the phase selectivity of hyperpolarizing inputs eliciting spikes. A network computational model using cells possessing similar rebound properties as found in vitro produces spatially periodic firing properties resembling grid cell firing when a simulated animal moves along a linear track. These results suggest that the ability of mEC stellate cells to fire rebound spikes in response to a specific range of phases of inhibition could support complex attractor dynamics that provide completion and separation to maintain spiking activity of specific grid cell populations. PMID:26385258
Obstacle-avoiding navigation system
Borenstein, Johann; Koren, Yoram; Levine, Simon P.
1991-01-01
A system for guiding an autonomous or semi-autonomous vehicle through a field of operation having obstacles thereon to be avoided employs a memory for containing data which defines an array of grid cells which correspond to respective subfields in the field of operation of the vehicle. Each grid cell in the memory contains a value which is indicative of the likelihood, or probability, that an obstacle is present in the respectively associated subfield. The values in the grid cells are incremented individually in response to each scan of the subfields, and precomputation and use of a look-up table avoids complex trigonometric functions. A further array of grid cells is fixed with respect to the vehicle form a conceptual active window which overlies the incremented grid cells. Thus, when the cells in the active window overly grid cell having values which are indicative of the presence of obstacles, the value therein is used as a multiplier of the precomputed vectorial values. The resulting plurality of vectorial values are summed vectorially in one embodiment of the invention to produce a virtual composite repulsive vector which is then summed vectorially with a target-directed vector for producing a resultant vector for guiding the vehicle. In an alternative embodiment, a plurality of vectors surrounding the vehicle are computed, each having a value corresponding to obstacle density. In such an embodiment, target location information is used to select between alternative directions of travel having low associated obstacle densities.
1976-03-01
atmosphere,as well as very fine grid cloud models and cloud probability models. Some of the new requirements that will be supported with this system are a...including the Advanced Prediction Model for the global atmosphere, as well as very fine grid cloud models and cloud proba- bility models. Some of the new...with the mapping and gridding function (imput and output)? Should the capability exist to interface raw ungridded data with the SID interface
NASA Astrophysics Data System (ADS)
Kiaghadi, A.; Rifai, H. S.
2016-12-01
This study investigated the feasibility of harnessing geothermal energy from retrofitted oil and gas decommissioned wells to power desalination units and overcome the produced water treatment energy barrier. Previous studies using heat transfer models have indicated that well depth, geothermal gradient, formation heat conductivity, and produced water salt levels were the most important constraints that affect the achievable volume of treated water. Thus, the challenge of identifying which wells would be best suited for retrofit as geothermal wells was addressed by defining an Appropriateness of Decommissioned Wells Index (ADWI) using a 25 km x 25 km grid over Texas. Heat transfer modeling combined with fuzzy logic methodology were used to estimate the ADWI at each grid cell using the scale of Very Poor, Poor, Average, Good and Excellent. Values for each of the four constraints were extracted from existing databases and were used to select 20 representative values that covered the full range of the data. A heat transfer model was run for all the 160,000 possible combination scenarios and the results were regressed to estimate weighting coefficients that indicate the relative effect of well depth, geothermal gradient, heat conductivity, and produced water salt levels on the volume of treated water in Texas. The results indicated that wells located in cells with ADWI of "Average", "Good" or "Excellent" can potentially deliver 35,000, 106,000, or 240,000 L/day of treated water, respectively. Almost 98% of the cells in the Granite Wash, 97% in Eagle Ford Shale, 90% in Haynesville Shale, 79% in Permian Basin, and 78% in Barnett Shale were identified as better than "Average" locations; whereas, south of the Eagle Ford, southwestern Permian Basin, and the center of Granite Wash were "Excellent". Importantly, most of the locations with better than "Average" ADWI are within drought prone agricultural regions that would benefit from this resilient source of clean water.
Crystal defects in solar cells produced by the method of thermomigration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lozovskii, V. N.; Lomov, A. A.; Lunin, L. S.
2017-03-15
The results of studying the crystal structure of regions in silicon, recrystallized during the course of thermomigration of the liquid Si–Al zone in the volume of the silicon substrate, are reported (similar regions doped with an acceptor impurity are used to obtain high-voltage solar cells). X-ray methods (including measurements of both diffraction-reflection curves and topograms) and also high-resolution electron microscopy indicate that single-crystal regions in the form of a series of thin strips or rectangular grids are formed as a result of the thermomigration of liquid zones. Dislocation half-loops are detected in the surface layers of the front and backmore » surfaces of the substrate. (311)-type defects are observed in the recrystallized regions.« less
Optimizing "self-wicking" nanowire grids.
Wei, Hui; Dandey, Venkata P; Zhang, Zhening; Raczkowski, Ashleigh; Rice, Willam J; Carragher, Bridget; Potter, Clinton S
2018-05-01
We have developed a self-blotting TEM grid for use with a novel instrument for vitrifying samples for cryo-electron microscopy (cryoEM). Nanowires are grown on the copper surface of the grid using a simple chemical reaction and the opposite smooth side is used to adhere to a holey sample substrate support, for example carbon or gold. When small volumes of sample are applied to the nanowire grids the wires effectively act as blotting paper to rapidly wick away the liquid, leaving behind a thin film. In this technical note, we present a detailed description of how we make these grids using a variety of substrates fenestrated with either lacey or regularly spaced holes. We explain how we characterize the quality of the grids and we describe their behavior under a variety of conditions. Copyright © 2018 Elsevier Inc. All rights reserved.
Ray tracing a three dimensional scene using a grid
Wald, Ingo; Ize, Santiago; Parker, Steven G; Knoll, Aaron
2013-02-26
Ray tracing a three-dimensional scene using a grid. One example embodiment is a method for ray tracing a three-dimensional scene using a grid. In this example method, the three-dimensional scene is made up of objects that are spatially partitioned into a plurality of cells that make up the grid. The method includes a first act of computing a bounding frustum of a packet of rays, and a second act of traversing the grid slice by slice along a major traversal axis. Each slice traversal includes a first act of determining one or more cells in the slice that are overlapped by the frustum and a second act of testing the rays in the packet for intersection with any objects at least partially bounded by the one or more cells overlapped by the frustum.
Semantic 3d City Model to Raster Generalisation for Water Run-Off Modelling
NASA Astrophysics Data System (ADS)
Verbree, E.; de Vries, M.; Gorte, B.; Oude Elberink, S.; Karimlou, G.
2013-09-01
Water run-off modelling applied within urban areas requires an appropriate detailed surface model represented by a raster height grid. Accurate simulations at this scale level have to take into account small but important water barriers and flow channels given by the large-scale map definitions of buildings, street infrastructure, and other terrain objects. Thus, these 3D features have to be rasterised such that each cell represents the height of the object class as good as possible given the cell size limitations. Small grid cells will result in realistic run-off modelling but with unacceptable computation times; larger grid cells with averaged height values will result in less realistic run-off modelling but fast computation times. This paper introduces a height grid generalisation approach in which the surface characteristics that most influence the water run-off flow are preserved. The first step is to create a detailed surface model (1:1.000), combining high-density laser data with a detailed topographic base map. The topographic map objects are triangulated to a set of TIN-objects by taking into account the semantics of the different map object classes. These TIN objects are then rasterised to two grids with a 0.5m cell-spacing: one grid for the object class labels and the other for the TIN-interpolated height values. The next step is to generalise both raster grids to a lower resolution using a procedure that considers the class label of each cell and that of its neighbours. The results of this approach are tested and validated by water run-off model runs for different cellspaced height grids at a pilot area in Amersfoort (the Netherlands). Two national datasets were used in this study: the large scale Topographic Base map (BGT, map scale 1:1.000), and the National height model of the Netherlands AHN2 (10 points per square meter on average). Comparison between the original AHN2 height grid and the semantically enriched and then generalised height grids shows that water barriers are better preserved with the new method. This research confirms the idea that topographical information, mainly the boundary locations and object classes, can enrich the height grid for this hydrological application.
Elliptic generation of composite three-dimensional grids about realistic aircraft
NASA Technical Reports Server (NTRS)
Sorenson, R. L.
1986-01-01
An elliptic method for generating composite grids about realistic aircraft is presented. A body-conforming grid is first generated about the entire aircraft by the solution of Poisson's differential equation. This grid has relatively coarse spacing, and it covers the entire physical domain. At boundary surfaces, cell size is controlled and cell skewness is nearly eliminated by inhomogeneous terms, which are found automatically by the program. Certain regions of the grid in which high gradients are expected, and which map into rectangular solids in the computational domain, are then designated for zonal refinement. Spacing in the zonal grids is reduced by adding points with a simple, algebraic scheme. Details of the grid generation method are presented along with results of the present application, a wing-body configuration based on the F-16 fighter aircraft.
A 'digital' technique for manual extraction of data from aerial photography
NASA Technical Reports Server (NTRS)
Istvan, L. B.; Bondy, M. T.
1977-01-01
The interpretation procedure described uses a grid cell approach. In addition, a random point is located in each cell. The procedure required that the cell/point grid be established on a base map, and identical grids be made to precisely match the scale of the photographic frames. The grid is then positioned on the photography by visual alignment to obvious features. Several alignments on one frame are sometimes required to make a precise match of all points to be interpreted. This system inherently corrects for distortions in the photography. Interpretation is then done cell by cell. In order to meet the time constraints, first order interpretation should be maintained. The data is put onto coding forms, along with other appropriate data, if desired. This 'digital' manual interpretation technique has proven to be efficient, and time and cost effective, while meeting strict requirements for data format and accuracy.
Correlations and Functional Connections in a Population of Grid Cells
Roudi, Yasser
2015-01-01
We study the statistics of spike trains of simultaneously recorded grid cells in freely behaving rats. We evaluate pairwise correlations between these cells and, using a maximum entropy kinetic pairwise model (kinetic Ising model), study their functional connectivity. Even when we account for the covariations in firing rates due to overlapping fields, both the pairwise correlations and functional connections decay as a function of the shortest distance between the vertices of the spatial firing pattern of pairs of grid cells, i.e. their phase difference. They take positive values between cells with nearby phases and approach zero or negative values for larger phase differences. We find similar results also when, in addition to correlations due to overlapping fields, we account for correlations due to theta oscillations and head directional inputs. The inferred connections between neurons in the same module and those from different modules can be both negative and positive, with a mean close to zero, but with the strongest inferred connections found between cells of the same module. Taken together, our results suggest that grid cells in the same module do indeed form a local network of interconnected neurons with a functional connectivity that supports a role for attractor dynamics in the generation of grid pattern. PMID:25714908
Gupta, Kishan; Beer, Nathan J.; Keller, Lauren A.; Hasselmo, Michael E.
2014-01-01
Prior studies of head direction (HD) cells indicate strong landmark control over the preferred firing direction of these cells, with few studies exhibiting shifts away from local reference frames over time. We recorded spiking activity of grid and HD cells in the medial entorhinal cortex of rats, testing correlations of local environmental cues with the spatial tuning curves of these cells' firing fields as animals performed continuous spatial alternation on a T-maze that shared the boundaries of an open-field arena. The environment was rotated into configurations the animal had either seen or not seen in the past recording week. Tuning curves of both cell types demonstrated commensurate shifts of tuning with T-maze rotations during less recent rotations, more so than recent rotations. This strongly suggests that animals are shifting their reference frame away from the local environmental cues over time, learning to use a different reference frame more likely reliant on distal or idiothetic cues. In addition, grid fields demonstrated varying levels of “fragmentation” on the T-maze. The propensity for fragmentation does not depend on grid spacing and grid score, nor animal trajectory, indicating the cognitive treatment of environmental subcompartments is likely driven by task demands. PMID:23382518
Implicit schemes and parallel computing in unstructured grid CFD
NASA Technical Reports Server (NTRS)
Venkatakrishnam, V.
1995-01-01
The development of implicit schemes for obtaining steady state solutions to the Euler and Navier-Stokes equations on unstructured grids is outlined. Applications are presented that compare the convergence characteristics of various implicit methods. Next, the development of explicit and implicit schemes to compute unsteady flows on unstructured grids is discussed. Next, the issues involved in parallelizing finite volume schemes on unstructured meshes in an MIMD (multiple instruction/multiple data stream) fashion are outlined. Techniques for partitioning unstructured grids among processors and for extracting parallelism in explicit and implicit solvers are discussed. Finally, some dynamic load balancing ideas, which are useful in adaptive transient computations, are presented.
NASA Technical Reports Server (NTRS)
Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.
1995-01-01
This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.
Curvilinear grids for WENO methods in astrophysical simulations
NASA Astrophysics Data System (ADS)
Grimm-Strele, H.; Kupka, F.; Muthsam, H. J.
2014-03-01
We investigate the applicability of curvilinear grids in the context of astrophysical simulations and WENO schemes. With the non-smooth mapping functions from Calhoun et al. (2008), we can tackle many astrophysical problems which were out of scope with the standard grids in numerical astrophysics. We describe the difficulties occurring when implementing curvilinear coordinates into our WENO code, and how we overcome them. We illustrate the theoretical results with numerical data. The WENO finite difference scheme works only for high Mach number flows and smooth mapping functions, whereas the finite volume scheme gives accurate results even for low Mach number flows and on non-smooth grids.
Bergstrom, Paul M.; Daly, Thomas P.; Moses, Edward I.; Patterson, Jr., Ralph W.; Schach von Wittenau, Alexis E.; Garrett, Dewey N.; House, Ronald K.; Hartmann-Siantar, Christine L.; Cox, Lawrence J.; Fujino, Donald H.
2000-01-01
A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.
The Art of Grid Fields: Geometry of Neuronal Time
Shilnikov, Andrey L.; Maurer, Andrew Porter
2016-01-01
The discovery of grid cells in the entorhinal cortex has both elucidated our understanding of spatial representations in the brain, and germinated a large number of theoretical models regarding the mechanisms of these cells’ striking spatial firing characteristics. These models cross multiple neurobiological levels that include intrinsic membrane resonance, dendritic integration, after hyperpolarization characteristics and attractor dynamics. Despite the breadth of the models, to our knowledge, parallels can be drawn between grid fields and other temporal dynamics observed in nature, much of which was described by Art Winfree and colleagues long before the initial description of grid fields. Using theoretical and mathematical investigations of oscillators, in a wide array of mediums far from the neurobiology of grid cells, Art Winfree has provided a substantial amount of research with significant and profound similarities. These theories provide specific inferences into the biological mechanisms and extraordinary resemblances across phenomenon. Therefore, this manuscript provides a novel interpretation on the phenomenon of grid fields, from the perspective of coupled oscillators, postulating that grid fields are the spatial representation of phase resetting curves in the brain. In contrast to prior models of gird cells, the current manuscript provides a sketch by which a small network of neurons, each with oscillatory components can operate to form grid cells, perhaps providing a unique hybrid between the competing attractor neural network and oscillatory interference models. The intention of this new interpretation of the data is to encourage novel testable hypotheses. PMID:27013981
Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells
Sun, Chen; Kitamura, Takashi; Yamamoto, Jun; Martin, Jared; Pignatelli, Michele; Kitch, Lacey J.; Schnitzer, Mark J.; Tonegawa, Susumu
2015-01-01
Entorhinal–hippocampal circuits in the mammalian brain are crucial for an animal’s spatial and episodic experience, but the neural basis for different spatial computations remain unknown. Medial entorhinal cortex layer II contains pyramidal island and stellate ocean cells. Here, we performed cell type-specific Ca2+ imaging in freely exploring mice using cellular markers and a miniature head-mounted fluorescence microscope. We found that both oceans and islands contain grid cells in similar proportions, but island cell activity, including activity in a proportion of grid cells, is significantly more speed modulated than ocean cell activity. We speculate that this differential property reflects island cells’ and ocean cells’ contribution to different downstream functions: island cells may contribute more to spatial path integration, whereas ocean cells may facilitate contextual representation in downstream circuits. PMID:26170279
Spatial cell firing during virtual navigation of open arenas by head-restrained mice.
Chen, Guifen; King, John Andrew; Lu, Yi; Cacucci, Francesca; Burgess, Neil
2018-06-18
We present a mouse virtual reality (VR) system which restrains head-movements to horizontal rotations, compatible with multi-photon imaging. This system allows expression of the spatial navigation and neuronal firing patterns characteristic of real open arenas (R). Comparing VR to R: place and grid, but not head-direction, cell firing had broader spatial tuning; place, but not grid, cell firing was more directional; theta frequency increased less with running speed; whereas increases in firing rates with running speed and place and grid cells' theta phase precession were similar. These results suggest that the omni-directional place cell firing in R may require local-cues unavailable in VR, and that the scale of grid and place cell firing patterns, and theta frequency, reflect translational motion inferred from both virtual (visual and proprioceptive) and real (vestibular translation and extra-maze) cues. By contrast, firing rates and theta phase precession appear to reflect visual and proprioceptive cues alone. © 2018, Chen et al.
Validation of Land-Surface Mosaic Heterogeneity in the GEOS DAS
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Molod, Andrea; Houser, Paul R.; Schubert, Siegfried
1999-01-01
The Mosaic Land-surface Model (LSM) has been included into the current GEOS Data Assimilation System (DAS). The LSM uses a more advanced representation of physical processes than previous versions of the GEOS DAS, including the representation of sub-grid heterogeneity of the land-surface through the Mosaic approach. As a first approximation, Mosaic assumes that all similar surface types within a grid-cell can be lumped together as a single'tile'. Within one GCM grid-cell, there might be 1 - 5 different tiles or surface types. All tiles are subjected to the grid-scale forcing (radiation, air temperature and specific humidity, and precipitation), and the sub-grid variability is a function of the tile characteristics. In this paper, we validate the LSM sub-grid scale variability (tiles) using a variety of surface observing stations from the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement (ARM) Program. One of the primary goals of SGP ARM is to study the variability of atmospheric radiation within a G,CM grid-cell. Enough surface data has been collected by ARM to extend this goal to sub-grid variability of the land-surface energy and water budgets. The time period of this study is the Summer of 1998 (June I - September 1). The ARM site data consists of surface meteorology, energy flux (eddy correlation and bowen ratio), soil water observations spread over an area similar to the size of a G-CM grid-cell. Various ARM stations are described as wheat and alfalfa crops, pasture and range land. The LSM tiles considered at the grid-space (2 x 2.5) nearest the ARM site include, grassland, deciduous forests, bare soil and dwarf trees. Surface energy and water balances for each tile type are compared with observations. Furthermore, we will discuss the land-surface sub-grid variability of both the ARM observations and the DAS.
Solving Navigational Uncertainty Using Grid Cells on Robots
Milford, Michael J.; Wiles, Janet; Wyeth, Gordon F.
2010-01-01
To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments. PMID:21085643
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayanasamy, G; Zhang, X; Paudel, N
Purpose: The aim of this project is to study the therapeutic ratio (TR) for helical Tomotherapy (HT) based spatially fractionated radiotherapy (GRID). Estimation of TR was based on the linear-quadratic cell survival model by comparing the normal cell survival in a HT GRID to that of a uniform dose delivery in an open-field for the same tumor survival. Methods: HT GRID plan was generated using a patient specific virtual GRID block pattern of non-divergent, cylinder shaped holes using MLCs. TR was defined as the ratio of normal tissue surviving fraction (SF) under HT GRID irradiation to an open field irradiationmore » with an equivalent dose that result in the same tumor cell SF. The ratio was estimated from DVH data on ten patient plans with deep seated, bulky tumor approved by the treating radiation oncologist. Dependence of the TR values on radio-sensitivity of the tumor cells and prescription dose were also analyzed. Results: The mean ± standard deviation (SD) of TR was 4.0±0.7 (range: 3.1 to 5.5) for the 10 patients with single fraction dose of 20 Gy and tumor cell SF of 0.5 at 2 Gy. In addition, mean±SD of TR = 1±0.1 and 18.0±5.1 were found for tumor with SF of 0.3 and 0.7, respectively. Reducing the prescription dose to 15 and 10 Gy lowered the TR to 2.0±0.2 and 1.2±0.04 for a tumor cell SF of 0.5 at 2 Gy. In this study, the SF of normal cells was assumed to be 0.5 at 2 Gy. Conclusion: HT GRID displayed a significant therapeutic advantage over uniform dose from an open field irradiation. TR increases with the radioresistance of the tumor cells and with prescription dose.« less
NASA Astrophysics Data System (ADS)
Gan, Chee Kwan; Challacombe, Matt
2003-05-01
Recently, early onset linear scaling computation of the exchange-correlation matrix has been achieved using hierarchical cubature [J. Chem. Phys. 113, 10037 (2000)]. Hierarchical cubature differs from other methods in that the integration grid is adaptive and purely Cartesian, which allows for a straightforward domain decomposition in parallel computations; the volume enclosing the entire grid may be simply divided into a number of nonoverlapping boxes. In our data parallel approach, each box requires only a fraction of the total density to perform the necessary numerical integrations due to the finite extent of Gaussian-orbital basis sets. This inherent data locality may be exploited to reduce communications between processors as well as to avoid memory and copy overheads associated with data replication. Although the hierarchical cubature grid is Cartesian, naive boxing leads to irregular work loads due to strong spatial variations of the grid and the electron density. In this paper we describe equal time partitioning, which employs time measurement of the smallest sub-volumes (corresponding to the primitive cubature rule) to load balance grid-work for the next self-consistent-field iteration. After start-up from a heuristic center of mass partitioning, equal time partitioning exploits smooth variation of the density and grid between iterations to achieve load balance. With the 3-21G basis set and a medium quality grid, equal time partitioning applied to taxol (62 heavy atoms) attained a speedup of 61 out of 64 processors, while for a 110 molecule water cluster at standard density it achieved a speedup of 113 out of 128. The efficiency of equal time partitioning applied to hierarchical cubature improves as the grid work per processor increases. With a fine grid and the 6-311G(df,p) basis set, calculations on the 26 atom molecule α-pinene achieved a parallel efficiency better than 99% with 64 processors. For more coarse grained calculations, superlinear speedups are found to result from reduced computational complexity associated with data parallelism.
Numerical simulation of weakly ionized hypersonic flow over reentry capsules
NASA Astrophysics Data System (ADS)
Scalabrin, Leonardo C.
The mathematical and numerical formulation employed in the development of a new multi-dimensional Computational Fluid Dynamics (CFD) code for the simulation of weakly ionized hypersonic flows in thermo-chemical non-equilibrium over reentry configurations is presented. The flow is modeled using the Navier-Stokes equations modified to include finite-rate chemistry and relaxation rates to compute the energy transfer between different energy modes. The set of equations is solved numerically by discretizing the flowfield using unstructured grids made of any mixture of quadrilaterals and triangles in two-dimensions or hexahedra, tetrahedra, prisms and pyramids in three-dimensions. The partial differential equations are integrated on such grids using the finite volume approach. The fluxes across grid faces are calculated using a modified form of the Steger-Warming Flux Vector Splitting scheme that has low numerical dissipation inside boundary layers. The higher order extension of inviscid fluxes in structured grids is generalized in this work to be used in unstructured grids. Steady state solutions are obtained by integrating the solution over time implicitly. The resulting sparse linear system is solved by using a point implicit or by a line implicit method in which a tridiagonal matrix is assembled by using lines of cells that are formed starting at the wall. An algorithm that assembles these lines using completely general unstructured grids is developed. The code is parallelized to allow simulation of computationally demanding problems. The numerical code is successfully employed in the simulation of several hypersonic entry flows over space capsules as part of its validation process. Important quantities for the aerothermodynamics design of capsules such as aerodynamic coefficients and heat transfer rates are compared to available experimental and flight test data and other numerical results yielding very good agreement. A sensitivity analysis of predicted radiative heating of a space capsule to several thermo-chemical non-equilibrium models is also performed.
Persistence of Rift Valley fever virus in East Africa
NASA Astrophysics Data System (ADS)
Gachohi, J.; Hansen, F.; Bett, B.; Kitala, P.
2012-04-01
Rift Valley fever virus (RVFv) is a mosquito-borne pathogen of livestock, wildlife and humans that causes severe outbreaks in intervals of several years. One of the open questions is how the virus persists between outbreaks. We developed a spatially-explicit, individual-based simulation model of the RVFv transmission dynamics to investigate this question. The model, is based on livestock and mosquito population dynamics. Spatial aspects are explicitly represented by a set of grid cells that represent mosquito breeding sites. A grid cell measures 500 by 500m and the model considers a grid of 100 by 100 grid cells; the model thus operates on the regional scale of 2500km2. Livestock herds move between grid cells, and provide connectivity between the cells. The model is used to explore the spatio-temporal dynamics of RVFv persistence in absence of a wildlife reservoir in an east African semi-arid context. Specifically, the model assesses the importance of local virus persistence in mosquito breeding sites relative to global virus persistence mitigated by movement of hosts. Local persistence is determined by the length of time the virus remains in a mosquito breeding site once introduced. In the model, this is a function of the number of mosquitoes that emerge infected and their lifespan. Global persistence is determined by the level of connectivity between isolated grid cells. Our work gives insights into the ecological and epidemiological conditions under which RVFv persists. The implication for disease surveillance and management are discussed.
Self-similar grid patterns in free-space shuffle-exchange networks
NASA Astrophysics Data System (ADS)
Haney, Michael W.
1993-12-01
Self-similar grid patterns are proposed as an alternative to rectangular grid, array optoelectronic sources, and detectors of smart pixels. For shuffle based multistage interconnection networks, it is suggested that smart pixel should not be arrayed on a rectangular grid and that smart pixel unit cell should be the kernel of a self-similar grid pattern.
Shearing-induced asymmetry in entorhinal grid cells.
Stensola, Tor; Stensola, Hanne; Moser, May-Britt; Moser, Edvard I
2015-02-12
Grid cells are neurons with periodic spatial receptive fields (grids) that tile two-dimensional space in a hexagonal pattern. To provide useful information about location, grids must be stably anchored to an external reference frame. The mechanisms underlying this anchoring process have remained elusive. Here we show in differently sized familiar square enclosures that the axes of the grids are offset from the walls by an angle that minimizes symmetry with the borders of the environment. This rotational offset is invariably accompanied by an elliptic distortion of the grid pattern. Reversing the ellipticity analytically by a shearing transformation removes the angular offset. This, together with the near-absence of rotation in novel environments, suggests that the rotation emerges through non-coaxial strain as a function of experience. The systematic relationship between rotation and distortion of the grid pattern points to shear forces arising from anchoring to specific geometric reference points as key elements of the mechanism for alignment of grid patterns to the external world.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji
2017-01-01
In the multi-dimensional space-time conservation element and solution element16 (CESE) method, triangles and tetrahedral mesh elements turn out to be the most natural building blocks for 2D and 3D spatial grids, respectively. As such, the CESE method is naturally compatible with the simplest 2D and 3D unstructured grids and thus can be easily applied to solve problems with complex geometries. However, because (a) accurate solution of a high-Reynolds number flow field near a solid wall requires that the grid intervals along the direction normal to the wall be much finer than those in a direction parallel to the wall and, as such, the use of grid cells with extremely high aspect ratio (103 to 106) may become mandatory, and (b) unlike quadrilateral hexahedral grids, it is well-known that accuracy of gradient computations involving triangular tetrahedral grids tends to deteriorate rapidly as cell aspect ratio increases. As a result, the use of triangular tetrahedral grid cells near a solid wall has long been deemed impractical by CFD researchers. In view of (a) the critical role played by triangular tetrahedral grids in the CESE development, and (b) the importance of accurate resolution of high-Reynolds number flow field near a solid wall, as will be presented in the main paper, a comprehensive and rigorous mathematical framework that clearly identifies the reasons behind the accuracy deterioration as described above has been developed for the 2D case involving triangular cells. By avoiding the pitfalls identified by the 2D framework, and its 3D extension, it has been shown numerically.
Land Cover Change Detection using Neural Network and Grid Cells Techniques
NASA Astrophysics Data System (ADS)
Bagan, H.; Li, Z.; Tangud, T.; Yamagata, Y.
2017-12-01
In recent years, many advanced neural network methods have been applied in land cover classification, each of which has both strengths and limitations. In which, the self-organizing map (SOM) neural network method have been used to solve remote sensing data classification problems and have shown potential for efficient classification of remote sensing data. In SOM, both the distribution and the topology of features of the input layer are identified by using an unsupervised, competitive, neighborhood learning method. The high-dimensional data are then projected onto a low-dimensional map (competitive layer), usually as a two-dimensional map. The neurons (nodes) in the competitive layer are arranged by topological order in the input space. Spatio-temporal analyses of land cover change based on grid cells have demonstrated that gridded data are useful for obtaining spatial and temporal information about areas that are smaller than municipal scale and are uniform in size. Analysis based on grid cells has many advantages: grid cells all have the same size allowing for easy comparison; grids integrate easily with other scientific data; grids are stable over time and thus facilitate the modelling and analysis of very large multivariate spatial data sets. This study chose time-series MODIS and Landsat images as data sources, applied SOM neural network method to identify the land utilization in Inner Mongolia Autonomous Region of China. Then the results were integrated into grid cell to get the dynamic change maps. Land cover change using MODIS data in Inner Mongolia showed that urban area increased more than fivefold in recent 15 years, along with the growth of mining area. In terms of geographical distribution, the most obvious place of urban expansion is Ordos in southwest Inner Mongolia. The results using Landsat images from 1986 to 2014 in northeastern part of the Inner Mongolia show degradation in grassland from 1986 to 2014. Grid-cell-based spatial correlation analysis also confirmed a strong negative correlation between grassland and barren land, indicating that grassland degradation in this region is due to the urbanization and coal mining activities over the past three decades.
Domain Decomposition By the Advancing-Partition Method for Parallel Unstructured Grid Generation
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.; Zagaris, George
2009-01-01
A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.
Efficient Cache use for Stencil Operations on Structured Discretization Grids
NASA Technical Reports Server (NTRS)
Frumkin, Michael; VanderWijngaart, Rob F.
2001-01-01
We derive tight bounds on the cache misses for evaluation of explicit stencil operators on structured grids. Our lower bound is based on the isoperimetrical property of the discrete octahedron. Our upper bound is based on a good surface to volume ratio of a parallelepiped spanned by a reduced basis of the interference lattice of a grid. Measurements show that our algorithm typically reduces the number of cache misses by a factor of three, relative to a compiler optimized code. We show that stencil calculations on grids whose interference lattice have a short vector feature abnormally high numbers of cache misses. We call such grids unfavorable and suggest to avoid these in computations by appropriate padding. By direct measurements on a MIPS R10000 processor we show a good correlation between abnormally high numbers of cache misses and unfavorable three-dimensional grids.
NASA Astrophysics Data System (ADS)
Obara, Shin'ya
A micro-grid with the capacity for sustainable energy is expected to be a distributed energy system that exhibits quite a small environmental impact. In an independent micro-grid, “green energy,” which is typically thought of as unstable, can be utilized effectively by introducing a battery. In the past study, the production-of-electricity prediction algorithm (PAS) of the solar cell was developed. In PAS, a layered neural network is made to learn based on past weather data and the operation plan of the compound system of a solar cell and other energy systems was examined using this prediction algorithm. In this paper, a dynamic operational scheduling algorithm is developed using a neural network (PAS) and a genetic algorithm (GA) to provide predictions for solar cell power output. We also do a case study analysis in which we use this algorithm to plan the operation of a system that connects nine houses in Sapporo to a micro-grid composed of power equipment and a polycrystalline silicon solar cell. In this work, the relationship between the accuracy of output prediction of the solar cell and the operation plan of the micro-grid was clarified. Moreover, we found that operating the micro-grid according to the plan derived with PAS was far superior, in terms of equipment hours of operation, to that using past average weather data.
Satellite radar altimetry over ice. Volume 2: Users' guide for Greenland elevation data from Seasat
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.; Bindschadler, Robert A.; Martin, Thomas V.
1990-01-01
A gridded surface-elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Antarctica are described. It is intended to be a user's guide to accompany the data provided to data centers and other users. The grid points are on a polar stereographic projection with a nominal spacing of 20 km. The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating smaller-scale contour maps, and examining individual elevation measurements in specific geographic areas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape.
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.; Lytle, John K.
1989-01-01
An algebraic adaptive grid scheme based on the concept of arc equidistribution is presented. The scheme locally adjusts the grid density based on gradients of selected flow variables from either finite difference or finite volume calculations. A user-prescribed grid stretching can be specified such that control of the grid spacing can be maintained in areas of known flowfield behavior. For example, the grid can be clustered near a wall for boundary layer resolution and made coarse near the outer boundary of an external flow. A grid smoothing technique is incorporated into the adaptive grid routine, which is found to be more robust and efficient than the weight function filtering technique employed by other researchers. Since the present algebraic scheme requires no iteration or solution of differential equations, the computer time needed for grid adaptation is trivial, making the scheme useful for three-dimensional flow problems. Applications to two- and three-dimensional flow problems show that a considerable improvement in flowfield resolution can be achieved by using the proposed adaptive grid scheme. Although the scheme was developed with steady flow in mind, it is a good candidate for unsteady flow computations because of its efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, W.N.; Nellums, R.O.
1979-08-01
The A.T. Kearney and Alcoa economic studies are two independent attempts to assess the installed costs of a series of six Darrieus vertical axis wind turbine designs. The designs cover a range of sizes with peak outputs from 10 to 1600 kW. All are designed to produce utility grid electrical power. Volume IV of this report summarizes, compares, and analyzes the results of these studies. The Kearney and Alcoa final reports are included in the Appendices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, W.N.; Nellums, R.O.
1979-08-01
The A. T. Kearney and Alcoa economic studies are two independent attempts to assess the installed costs of a series of six Darrieus vertical axis wind turbine designs. The designs cover a range of sizes with peak outputs from 10 to 1600 kW. All are designed to produce utility grid electrical power. Volume IV of this report summarizes, compares, and analyzes the results of these studies. The Kearney and Alcoa final reports are included in the Appendices.
NASA Technical Reports Server (NTRS)
Sorenson, R. L.; Steger, J. L.
1983-01-01
An algorithm for generating computational grids about arbitrary three-dimensional bodies is developed. The elliptic partial differential equation (PDE) approach developed by Steger and Sorenson and used in the NASA computer program GRAPE is extended from two to three dimensions. Forcing functions which are found automatically by the algorithm give the user the ability to control mesh cell size and skewness at boundary surfaces. This algorithm, as is typical of PDE grid generators, gives smooth grid lines and spacing in the interior of the grid. The method is applied to a rectilinear wind-tunnel case and to two body shapes in spherical coordinates.
NASA Astrophysics Data System (ADS)
Hong, Bo; Jiang, Liangxing; Hao, Ketao; Liu, Fangyang; Yu, Xiaoying; Xue, Haitao; Li, Jie; Liu, Yexiang
2014-06-01
In this paper, a lightweight Pb plated Al (Al/Pb) grid was prepared by molten salt electroless plating. The SEM and bonding strength test show that the lead coating is deposited with a smooth surface and firm combination. CV test shows that the electrochemical properties of Al/Pb electrodes are stable. 2.0 V single-cell flooded lead-acid batteries with Al/Pb grids as negative collectors are assembled and the performances including 20 h capacity, rate capacity, cycle life, internal resistance are investigated. The results show that the cycle life of Al/Pb-grid cells is about 475 cycles and can meet the requirement of lead-acid batteries. Al/Pb grids are conducive to the refinement of PbSO4 grain, and thereby reduce the internal resistance of battery and advance the utilization of active mass. Moreover, weight of Al/Pb grid is only 55.4% of the conventional-grid. In this way, mass specific capacity of Al/Pb-grid negatives is 17.8% higher and the utilization of active mass is 6.5% higher than conventional-grid negatives.
Xie, Kun; Ozbay, Kaan; Kurkcu, Abdullah; Yang, Hong
2017-08-01
This study aims to explore the potential of using big data in advancing the pedestrian risk analysis including the investigation of contributing factors and the hotspot identification. Massive amounts of data of Manhattan from a variety of sources were collected, integrated, and processed, including taxi trips, subway turnstile counts, traffic volumes, road network, land use, sociodemographic, and social media data. The whole study area was uniformly split into grid cells as the basic geographical units of analysis. The cell-structured framework makes it easy to incorporate rich and diversified data into risk analysis. The cost of each crash, weighted by injury severity, was assigned to the cells based on the relative distance to the crash site using a kernel density function. A tobit model was developed to relate grid-cell-specific contributing factors to crash costs that are left-censored at zero. The potential for safety improvement (PSI) that could be obtained by using the actual crash cost minus the cost of "similar" sites estimated by the tobit model was used as a measure to identify and rank pedestrian crash hotspots. The proposed hotspot identification method takes into account two important factors that are generally ignored, i.e., injury severity and effects of exposure indicators. Big data, on the one hand, enable more precise estimation of the effects of risk factors by providing richer data for modeling, and on the other hand, enable large-scale hotspot identification with higher resolution than conventional methods based on census tracts or traffic analysis zones. © 2017 Society for Risk Analysis.
1993-04-30
There are alternative methods to MBB’s, based on decomposition of space into disjoint cells. These include uniform grid method [Fr84], quadtree-based...space. The IIn grid and quadtree methods there is a trade off between the resolution of the cells (and thus quantity of the cells) and the effectiveness...Mathematics, 13, pp. 221-229, 1983. 9 IFr84] W.R. Franklin, Adaptive grids for geometric operations, Cartographica 21, 2 g 3, pp. 160-167, 1984. (Gun87
Coarse-grained hydrodynamics from correlation functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, Bruce
This paper will describe a formalism for using correlation functions between different grid cells as the basis for determining coarse-grained hydrodynamic equations for modeling the behavior of mesoscopic fluid systems. Configuration from a molecular dynamics simulation are projected onto basis functions representing grid cells in a continuum hydrodynamic simulation. Equilbrium correlation functions between different grid cells are evaluated from the molecular simulation and used to determine the evolution operator for the coarse-grained hydrodynamic system. The formalism is applied to some simple hydrodynamic cases to determine the feasibility of applying this to realistic nanoscale systems.
Grid-cell representations in mental simulation
Bellmund, Jacob LS; Deuker, Lorena; Navarro Schröder, Tobias; Doeller, Christian F
2016-01-01
Anticipating the future is a key motif of the brain, possibly supported by mental simulation of upcoming events. Rodent single-cell recordings suggest the ability of spatially tuned cells to represent subsequent locations. Grid-like representations have been observed in the human entorhinal cortex during virtual and imagined navigation. However, hitherto it remains unknown if grid-like representations contribute to mental simulation in the absence of imagined movement. Participants imagined directions between building locations in a large-scale virtual-reality city while undergoing fMRI without re-exposure to the environment. Using multi-voxel pattern analysis, we provide evidence for representations of absolute imagined direction at a resolution of 30° in the parahippocampal gyrus, consistent with the head-direction system. Furthermore, we capitalize on the six-fold rotational symmetry of grid-cell firing to demonstrate a 60° periodic pattern-similarity structure in the entorhinal cortex. Our findings imply a role of the entorhinal grid-system in mental simulation and future thinking beyond spatial navigation. DOI: http://dx.doi.org/10.7554/eLife.17089.001 PMID:27572056
Radiation detector based on a matrix of crossed wavelength-shifting fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kross, Brian J.; Weisenberger, Andrew; Zorn, Carl
A radiation detection system comprising a detection grid of wavelength shifting fibers with a volume of scintillating material at the intersecting points of the fibers. Light detectors, preferably Silicon Photomultipliers, are positioned at the ends of the fibers. The position of radiation is determined from data obtained from the detection grid. The system is easily scalable, customizable, and also suitable for use in soil and underground applications. An alternate embodiment employs a fiber grid sheet or layer which is comprised of multiple fibers secured to one another within the same plane. This embodiment further includes shielding in order to preventmore » radiation cross-talk within the grid layer.« less
PEGASUS 5: An Automated Pre-Processor for Overset-Grid CFD
NASA Technical Reports Server (NTRS)
Rogers, Stuart E.; Suhs, Norman; Dietz, William; Rogers, Stuart; Nash, Steve; Chan, William; Tramel, Robert; Onufer, Jeff
2006-01-01
This viewgraph presentation reviews the use and requirements of Pegasus 5. PEGASUS 5 is a code which performs a pre-processing step for the Overset CFD method. The code prepares the overset volume grids for the flow solver by computing the domain connectivity database, and blanking out grid points which are contained inside a solid body. PEGASUS 5 successfully automates most of the overset process. It leads to dramatic reduction in user input over previous generations of overset software. It also can lead to an order of magnitude reduction in both turn-around time and user expertise requirements. It is also however not a "black-box" procedure; care must be taken to examine the resulting grid system.
Zoellner, Hans; Paknejad, Navid; Manova, Katia; Moore, Malcolm
2016-01-01
Differing stimuli affect cell-stiffness while cancer metastasis further relates to cell-stiffness. Cell-stiffness determined by atomic Force Microscopy (AFM) has been limited by measurement over nuclei to avoid spurious substratum effects in thin cytoplasmic domains, and we sought to develop a more complete approach including cytoplasmic areas. 90 μm square fields were recorded from 10 sites of cultured Human Dermal Fibroblasts (HDF), and 3 sites each for melanoma (MM39, WM175, MeIRMu), osteosarcoma (SAOS-2, U2OS), and ovarian carcinoma (COLO316, PEO4) cell lines, each site providing 1,024 measurements as 32x32 square grids. Stiffness recorded below 0.8 μm height was occasionally influenced by substratum, so only stiffness recorded above 0.8 μm was analyzed, but all sites were included for height and volume analysis. COLO316 had the lowest cell height and volume, followed by HDF (p<0.0001), and then PEO4, SAOS-2, MeIRMu, WM175, U2OS, and MM39. HDF were more stiff than all other cells (p < 0.0001), while in descending order of stiffness were PEO4, COLO316, WM175, SAOS-2, U2OS, MM39, and MeIRMu (p < 0.02). Stiffness-fingerprints comprised scattergrams of stiffness values plotted against the height at which each stiffness value was recorded, and appeared unique for each cell type studied, although in most cases the overall form of fingerprints was similar, with maximum stiffness at low height measurements and a second lower peak occurring at high height levels. We suggest our stiffness-fingerprint analytical method provides a more nuanced description than previously reported, and will facilitate study of the stiffness response to cell stimulation. PMID:26357955
Eisele, Thomas P; Keating, Joseph; Swalm, Chris; Mbogo, Charles M; Githeko, Andrew K; Regens, James L; Githure, John I; Andrews, Linda; Beier, John C
2003-12-10
BACKGROUND: Remote sensing technology provides detailed spectral and thermal images of the earth's surface from which surrogate ecological indicators of complex processes can be measured. METHODS: Remote sensing data were overlaid onto georeferenced entomological and human ecological data randomly sampled during April and May 2001 in the cities of Kisumu (population asymptotically equal to 320,000) and Malindi (population asymptotically equal to 81,000), Kenya. Grid cells of 270 meters x 270 meters were used to generate spatial sampling units for each city for the collection of entomological and human ecological field-based data. Multispectral Thermal Imager (MTI) satellite data in the visible spectrum at five meter resolution were acquired for Kisumu and Malindi during February and March 2001, respectively. The MTI data were fit and aggregated to the 270 meter x 270 meter grid cells used in field-based sampling using a geographic information system. The normalized difference vegetation index (NDVI) was calculated and scaled from MTI data for selected grid cells. Regression analysis was used to assess associations between NDVI values and entomological and human ecological variables at the grid cell level. RESULTS: Multivariate linear regression showed that as household density increased, mean grid cell NDVI decreased (global F-test = 9.81, df 3,72, P-value = <0.01; adjusted R2 = 0.26). Given household density, the number of potential anopheline larval habitats per grid cell also increased with increasing values of mean grid cell NDVI (global F-test = 14.29, df 3,36, P-value = <0.01; adjusted R2 = 0.51). CONCLUSIONS: NDVI values obtained from MTI data were successfully overlaid onto georeferenced entomological and human ecological data spatially sampled at a scale of 270 meters x 270 meters. Results demonstrate that NDVI at such a scale was sufficient to describe variations in entomological and human ecological parameters across both cities.
Conceptual Design of the Everglades Depth Estimation Network (EDEN) Grid
Jones, John W.; Price, Susan D.
2007-01-01
INTRODUCTION The Everglades Depth Estimation Network (EDEN) offers a consistent and documented dataset that can be used to guide large-scale field operations, to integrate hydrologic and ecological responses, and to support biological and ecological assessments that measure ecosystem responses to the Comprehensive Everglades Restoration Plan (Telis, 2006). Ground elevation data for the greater Everglades and the digital ground elevation models derived from them form the foundation for all EDEN water depth and associated ecologic/hydrologic modeling (Jones, 2004, Jones and Price, 2007). To use EDEN water depth and duration information most effectively, it is important to be able to view and manipulate information on elevation data quality and other land cover and habitat characteristics across the Everglades region. These requirements led to the development of the geographic data layer described in this techniques and methods report. Relying on extensive experience in GIS data development, distribution, and analysis, a great deal of forethought went into the design of the geographic data layer used to index elevation and other surface characteristics for the Greater Everglades region. To allow for simplicity of design and use, the EDEN area was broken into a large number of equal-sized rectangles ('Cells') that in total are referred to here as the 'grid'. Some characteristics of this grid, such as the size of its cells, its origin, the area of Florida it is designed to represent, and individual grid cell identifiers, could not be changed once the grid database was developed. Therefore, these characteristics were selected to design as robust a grid as possible and to ensure the grid's long-term utility. It is desirable to include all pertinent information known about elevation and elevation data collection as grid attributes. Also, it is very important to allow for efficient grid post-processing, sub-setting, analysis, and distribution. This document details the conceptual design of the EDEN grid spatial parameters and cell attribute-table content.
Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST/MIRI
NASA Astrophysics Data System (ADS)
Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay; Glasse, Alistair
2017-05-01
The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope (JWST) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer-IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST/MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.
ERIC Educational Resources Information Center
RESNA: Association for the Advancement of Rehabilitation Technology, Arlington, VA.
The third volume in a series of three resource guides, this volume provides an explanation of domains of anticipated assistive technology impact across functional areas of an individual's life. A matrix grid of functional categories affected by assistive technology is provided to serve as a developmental step toward the creation of guidelines for…
NASA Technical Reports Server (NTRS)
Kathong, Monchai; Tiwari, Surendra N.
1988-01-01
In the computation of flowfields about complex configurations, it is very difficult to construct a boundary-fitted coordinate system. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach; its applications are investigated. The method conservative providing conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-stage Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Steady state solutions of the Euler equations are presented and discussed. The solutions include: low speed flow over a sphere, high speed flow over a slender body, supersonic flow through a duct, and supersonic internal/external flow interaction for an aircraft configuration at various angles of attack. The results demonstrate that the multiple grids approach along with the conservative interfacing is capable of computing the flows about the complex configurations where the use of a single grid system is not possible.
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Soh, Woo-Yung; Yoon, Seokkwan
1989-01-01
A finite-volume lower-upper (LU) implicit scheme is used to simulate an inviscid flow in a tubine cascade. This approximate factorization scheme requires only the inversion of sparse lower and upper triangular matrices, which can be done efficiently without extensive storage. As an implicit scheme it allows a large time step to reach the steady state. An interactive grid generation program (TURBO), which is being developed, is used to generate grids. This program uses the control point form of algebraic grid generation which uses a sparse collection of control points from which the shape and position of coordinate curves can be adjusted. A distinct advantage of TURBO compared with other grid generation programs is that it allows the easy change of local mesh structure without affecting the grid outside the domain of independence. Sample grids are generated by TURBO for a compressor rotor blade and a turbine cascade. The turbine cascade flow is simulated by using the LU implicit scheme on the grid generated by TURBO.
Metal nano-grids for transparent conduction in solar cells
Muzzillo, Christopher P.
2017-05-11
A general procedure for predicting metal grid performance in solar cells was developed. Unlike transparent conducting oxides (TCOs) or other homogeneous films, metal grids induce more resistance in the neighbor layer. The resulting balance of transmittance, neighbor and grid resistance was explored in light of cheap lithography advances that have enabled metal nano-grid (MNG) fabrication. The patterned MNGs have junction resistances and degradation rates that are more favorable than solution-synthesized metal nanowires. Neighbor series resistance was simulated by the finite element method, although a simpler analytical model was sufficient in most cases. Finite-difference frequency-domain transmittance simulations were performed for MNGsmore » with minimum wire width (w) of 50 nm, but deviations from aperture transmittance were small in magnitude. Depending on the process, MNGs can exhibit increased series resistance as w is decreased. However, numerous experimental reports have already achieved transmittance-MNG sheet resistance trade-offs comparable to TCOs. The transmittance, neighbor and MNG series resistances were used to parameterize a grid fill factor for a solar cell. In conclusion, this new figure of merit was used to demonstrate that although MNGs have only been employed in low efficiency solar cells, substantial gains in performance are predicted for decreased w in all high efficiency absorber technologies.« less
Metal nano-grids for transparent conduction in solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzillo, Christopher P.
A general procedure for predicting metal grid performance in solar cells was developed. Unlike transparent conducting oxides (TCOs) or other homogeneous films, metal grids induce more resistance in the neighbor layer. The resulting balance of transmittance, neighbor and grid resistance was explored in light of cheap lithography advances that have enabled metal nano-grid (MNG) fabrication. The patterned MNGs have junction resistances and degradation rates that are more favorable than solution-synthesized metal nanowires. Neighbor series resistance was simulated by the finite element method, although a simpler analytical model was sufficient in most cases. Finite-difference frequency-domain transmittance simulations were performed for MNGsmore » with minimum wire width (w) of 50 nm, but deviations from aperture transmittance were small in magnitude. Depending on the process, MNGs can exhibit increased series resistance as w is decreased. However, numerous experimental reports have already achieved transmittance-MNG sheet resistance trade-offs comparable to TCOs. The transmittance, neighbor and MNG series resistances were used to parameterize a grid fill factor for a solar cell. In conclusion, this new figure of merit was used to demonstrate that although MNGs have only been employed in low efficiency solar cells, substantial gains in performance are predicted for decreased w in all high efficiency absorber technologies.« less
Entorhinal cortex receptive fields are modulated by spatial attention, even without movement
König, Peter; König, Seth; Buffalo, Elizabeth A
2018-01-01
Grid cells in the entorhinal cortex allow for the precise decoding of position in space. Along with potentially playing an important role in navigation, grid cells have recently been hypothesized to make a general contribution to mental operations. A prerequisite for this hypothesis is that grid cell activity does not critically depend on physical movement. Here, we show that movement of covert attention, without any physical movement, also elicits spatial receptive fields with a triangular tiling of space. In monkeys trained to maintain central fixation while covertly attending to a stimulus moving in the periphery we identified a significant population (20/141, 14% neurons at a FDR <5%) of entorhinal cells with spatially structured receptive fields. This contrasts with recordings obtained in the hippocampus, where grid-like representations were not observed. Our results provide evidence that neurons in macaque entorhinal cortex do not rely on physical movement. PMID:29537964
NASA Astrophysics Data System (ADS)
Dubarry, Matthieu; Devie, Arnaud; McKenzie, Katherine
2017-08-01
Vehicle-to-grid and Grid-to-vehicle strategies are often cited as promising to mitigate the intermittency of renewable energy on electric power grids. However, their impact on the vehicle battery degradation has not been investigated in detail. The aim of this work is to understand the impact of bidirectional charging on commercial Li-ion cells used in electric vehicles today. Results show that additional cycling to discharge vehicle batteries to the power grid, even at constant power, is detrimental to cell performance. This additional use of the battery packs could shorten the lifetime for vehicle use to less than five years. By contrast, the impact of delaying the charge in order to reduce the impact on the power grid is found to be negligible at room temperature, but could be significant in warmer climates.
A multigrid method for steady Euler equations on unstructured adaptive grids
NASA Technical Reports Server (NTRS)
Riemslagh, Kris; Dick, Erik
1993-01-01
A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.
Solid state laser applications in photovoltaics manufacturing
NASA Astrophysics Data System (ADS)
Dunsky, Corey; Colville, Finlay
2008-02-01
Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by increasing government and societal pressure to use renewable energy as part of an overall strategy to address global warming attributed to greenhouse gas emissions. Initially supported in several countries by generous tax subsidies, solar cell manufacturers are relentlessly pushing the performance/cost ratio of these devices in a quest to reach true cost parity with grid electricity. Clearly this eventual goal will result in further acceleration in the overall market growth. Silicon wafer based solar cells are currently the mainstay of solar end-user installations with a cost up to three times grid electricity. But next-generation technology in the form of thin-film devices promises streamlined, high-volume manufacturing and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. Notwithstanding the modest conversion efficiency of thin-film devices compared to wafered silicon products (around 6-10% versus 15-20%), this cost reduction is driving existing and start-up solar manufacturers to switch to thin-film production. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. Lasers are the technology of choice for these processes, delivering the desired combination of high throughput and narrow, clean scribes. This paper examines these processes and discusses the optimization of industrial lasers to meet their specific needs.
Software Design Document SAF Simulation Host CSCI (8). Volume 1, Sections 1.0 - 2.7
1991-06-01
list for the patch, testing edges matching grid-loc-woni for intervisibility blocks. Calls Function IWhere Described Icheck edges Sec. 2.6.7.1.8 Table...edges matching grid-loc-word for intervisibility blocks. Calls Function Where Described check box Sec. 2.6.7.1.31 treelines Sec. 2.6.7.1.16 Icheck edges
NASA Technical Reports Server (NTRS)
Putman, William M.
2010-01-01
The Goddard Earth Observing System Model (GEOS-S), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-S from irs standard 72-level 27-km resolution (approx.5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (approx. 3.6 billion cells).
NASA Astrophysics Data System (ADS)
Greer, A. T.; Woodson, C. B.
2016-02-01
Because of the complexity and extremely large size of marine ecosystems, research attention has a strong focus on modelling the system through space and time to elucidate processes driving ecosystem state. One of the major weaknesses of current modelling approaches is the reliance on a particular grid cell size (usually 10's of km in the horizontal & water column mean) to capture the relevant processes, even though empirical research has shown that marine systems are highly structured on fine scales, and this structure can persist over relatively long time scales (days to weeks). Fine-scale features can have a strong influence on the predator-prey interactions driving trophic transfer. Here we apply a statistic, the AB ratio, used to quantify increased predator production due to predator-prey overlap on fine scales in a manner that is computationally feasible for larger scale models. We calculated the AB ratio for predator-prey distributions throughout the scientific literature, as well as for data obtained with a towed plankton imaging system, demonstrating that averaging across a typical model grid cell neglects the fine-scale predator-prey overlap that is an essential component of ecosystem productivity. Organisms from a range of trophic levels and oceanographic regions tended to overlap with their prey both in the horizontal and vertical dimensions. When predator swimming over a diel cycle was incorporated, the amount of production indicated by the AB ratio increased substantially. For the plankton image data, the AB ratio was higher with increasing sampling resolution, especially when prey were highly aggregated. We recommend that ecosystem models incorporate more fine-scale information both to more accurately capture trophic transfer processes and to capitalize on the increasing sampling resolution and data volume from empirical studies.
The Impact of Sika Deer on Vegetation in Japan: Setting Management Priorities on a National Scale
NASA Astrophysics Data System (ADS)
Ohashi, Haruka; Yoshikawa, Masato; Oono, Keiichi; Tanaka, Norihisa; Hatase, Yoriko; Murakami, Yuhide
2014-09-01
Irreversible shifts in ecosystems caused by large herbivores are becoming widespread around the world. We analyzed data derived from the 2009-2010 Sika Deer Impact Survey, which assessed the geographical distribution of deer impacts on vegetation through a questionnaire, on a scale of 5-km grid-cells. Our aim was to identify areas facing irreversible ecosystem shifts caused by deer overpopulation and in need of management prioritization. Our results demonstrated that the areas with heavy impacts on vegetation were widely distributed across Japan from north to south and from the coastal to the alpine areas. Grid-cells with heavy impacts are especially expanding in the southwestern part of the Pacific side of Japan. The intensity of deer impacts was explained by four factors: (1) the number of 5-km grid-cells with sika deer in neighboring 5 km-grid-cells in 1978 and 2003, (2) the year sika deer were first recorded in a grid-cell, (3) the number of months in which maximum snow depth exceeded 50 cm, and (4) the proportion of urban areas in a particular grid-cell. Based on our model, areas with long-persistent deer populations, short snow periods, and fewer urban areas were predicted to be the most vulnerable to deer impact. Although many areas matching these criteria already have heavy deer impact, there are some areas that remain only slightly impacted. These areas may need to be designated as having high management priority because of the possibility of a rapid intensification of deer impact.
The impact of Sika deer on vegetation in Japan: setting management priorities on a national scale.
Ohashi, Haruka; Yoshikawa, Masato; Oono, Keiichi; Tanaka, Norihisa; Hatase, Yoriko; Murakami, Yuhide
2014-09-01
Irreversible shifts in ecosystems caused by large herbivores are becoming widespread around the world. We analyzed data derived from the 2009-2010 Sika Deer Impact Survey, which assessed the geographical distribution of deer impacts on vegetation through a questionnaire, on a scale of 5-km grid-cells. Our aim was to identify areas facing irreversible ecosystem shifts caused by deer overpopulation and in need of management prioritization. Our results demonstrated that the areas with heavy impacts on vegetation were widely distributed across Japan from north to south and from the coastal to the alpine areas. Grid-cells with heavy impacts are especially expanding in the southwestern part of the Pacific side of Japan. The intensity of deer impacts was explained by four factors: (1) the number of 5-km grid-cells with sika deer in neighboring 5 km-grid-cells in 1978 and 2003, (2) the year sika deer were first recorded in a grid-cell, (3) the number of months in which maximum snow depth exceeded 50 cm, and (4) the proportion of urban areas in a particular grid-cell. Based on our model, areas with long-persistent deer populations, short snow periods, and fewer urban areas were predicted to be the most vulnerable to deer impact. Although many areas matching these criteria already have heavy deer impact, there are some areas that remain only slightly impacted. These areas may need to be designated as having high management priority because of the possibility of a rapid intensification of deer impact.
FUN3D Grid Refinement and Adaptation Studies for the Ares Launch Vehicle
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Vasta, Veer; Carlson, Jan-Renee; Park, Mike; Mineck, Raymond E.
2010-01-01
This paper presents grid refinement and adaptation studies performed in conjunction with computational aeroelastic analyses of the Ares crew launch vehicle (CLV). The unstructured grids used in this analysis were created with GridTool and VGRID while the adaptation was performed using the Computational Fluid Dynamic (CFD) code FUN3D with a feature based adaptation software tool. GridTool was developed by ViGYAN, Inc. while the last three software suites were developed by NASA Langley Research Center. The feature based adaptation software used here operates by aligning control volumes with shock and Mach line structures and by refining/de-refining where necessary. It does not redistribute node points on the surface. This paper assesses the sensitivity of the complex flow field about a launch vehicle to grid refinement. It also assesses the potential of feature based grid adaptation to improve the accuracy of CFD analysis for a complex launch vehicle configuration. The feature based adaptation shows the potential to improve the resolution of shocks and shear layers. Further development of the capability to adapt the boundary layer and surface grids of a tetrahedral grid is required for significant improvements in modeling the flow field.
NASA Technical Reports Server (NTRS)
Moitra, Anutosh
1989-01-01
A fast and versatile procedure for algebraically generating boundary conforming computational grids for use with finite-volume Euler flow solvers is presented. A semi-analytic homotopic procedure is used to generate the grids. Grids generated in two-dimensional planes are stacked to produce quasi-three-dimensional grid systems. The body surface and outer boundary are described in terms of surface parameters. An interpolation scheme is used to blend between the body surface and the outer boundary in order to determine the field points. The method, albeit developed for analytically generated body geometries is equally applicable to other classes of geometries. The method can be used for both internal and external flow configurations, the only constraint being that the body geometries be specified in two-dimensional cross-sections stationed along the longitudinal axis of the configuration. Techniques for controlling various grid parameters, e.g., clustering and orthogonality are described. Techniques for treating problems arising in algebraic grid generation for geometries with sharp corners are addressed. A set of representative grid systems generated by this method is included. Results of flow computations using these grids are presented for validation of the effectiveness of the method.
Hippocampal Remapping Is Constrained by Sparseness rather than Capacity
Kammerer, Axel; Leibold, Christian
2014-01-01
Grid cells in the medial entorhinal cortex encode space with firing fields that are arranged on the nodes of spatial hexagonal lattices. Potential candidates to read out the space information of this grid code and to combine it with other sensory cues are hippocampal place cells. In this paper, we investigate a population of grid cells providing feed-forward input to place cells. The capacity of the underlying synaptic transformation is determined by both spatial acuity and the number of different spatial environments that can be represented. The codes for different environments arise from phase shifts of the periodical entorhinal cortex patterns that induce a global remapping of hippocampal place fields, i.e., a new random assignment of place fields for each environment. If only a single environment is encoded, the grid code can be read out at high acuity with only few place cells. A surplus in place cells can be used to store a space code for more environments via remapping. The number of stored environments can be increased even more efficiently by stronger recurrent inhibition and by partitioning the place cell population such that learning affects only a small fraction of them in each environment. We find that the spatial decoding acuity is much more resilient to multiple remappings than the sparseness of the place code. Since the hippocampal place code is sparse, we thus conclude that the projection from grid cells to the place cells is not using its full capacity to transfer space information. Both populations may encode different aspects of space. PMID:25474570
Modeling dam-break flows using finite volume method on unstructured grid
USDA-ARS?s Scientific Manuscript database
Two-dimensional shallow water models based on unstructured finite volume method and approximate Riemann solvers for computing the intercell fluxes have drawn growing attention because of their robustness, high adaptivity to complicated geometry and ability to simulate flows with mixed regimes and di...
Energy Transitions | Integrated Energy Solutions | NREL
clean energy access to remote populations across West Africa. NREL Supports Effort to Take Distributed develops and implements pilot projects to accelerate the development of distributed photovoltaics Renewable Energy into India's Electric Grid Volume 1 Volume 2 Designing Distributed Generation in Mexico
An assessment of unstructured grid technology for timely CFD analysis
NASA Technical Reports Server (NTRS)
Kinard, Tom A.; Schabowski, Deanne M.
1995-01-01
An assessment of two unstructured methods is presented in this paper. A tetrahedral unstructured method USM3D, developed at NASA Langley Research Center is compared to a Cartesian unstructured method, SPLITFLOW, developed at Lockheed Fort Worth Company. USM3D is an upwind finite volume solver that accepts grids generated primarily from the Vgrid grid generator. SPLITFLOW combines an unstructured grid generator with an implicit flow solver in one package. Both methods are exercised on three test cases, a wing, and a wing body, and a fully expanded nozzle. The results for the first two runs are included here and compared to the structured grid method TEAM and to available test data. On each test case, the set up procedure are described, including any difficulties that were encountered. Detailed descriptions of the solvers are not included in this paper.
Unstructured Cartesian/prismatic grid generation for complex geometries
NASA Technical Reports Server (NTRS)
Karman, Steve L., Jr.
1995-01-01
The generation of a hybrid grid system for discretizing complex three dimensional (3D) geometries is described. The primary grid system is an unstructured Cartesian grid automatically generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements, may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies. This paper describes the grid generation processes used to generate each grid type. Several example grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little pre-processing required by the user.
Standardized UXO Technology Demonstration Site, Scoring Record No. 943
2014-08-01
COLLERAN ROAD ABERDEEN PROVING GROUND, MARYLAND 21005-5059 Printed on Recycled Paper TEDT-AT-SL-M MEMORANDUM FOR Program Manager – SERDP...equipment. Small munitions grid Contains 300 grid cells . The center of each grid cell contains either munitions, clutter, or nothing with a portion...weather was warm and the field dry throughout the survey period for Battelle. 12 3.3.3 Soil Moisture Three soil probes were placed at various
NASA Technical Reports Server (NTRS)
Chan, William M.; Akien, Edwin (Technical Monitor)
2002-01-01
For many years, generation of overset grids for complex configurations has required the use of a number of different independently developed software utilities. Results created by each step were then visualized using a separate visualization tool before moving on to the next. A new software tool called OVERGRID was developed which allows the user to perform all the grid generation steps and visualization under one environment. OVERGRID provides grid diagnostic functions such as surface tangent and normal checks as well as grid manipulation functions such as extraction, extrapolation, concatenation, redistribution, smoothing, and projection. Moreover, it also contains hyperbolic surface and volume grid generation modules that are specifically suited for overset grid generation. It is the first time that such a unified interface existed for the creation of overset grids for complex geometries. New concepts on automatic overset surface grid generation around surface discontinuities will also be briefly presented. Special control curves on the surface such as intersection curves, sharp edges, open boundaries, are called seam curves. The seam curves are first automatically extracted from a multiple panel network description of the surface. Points where three or more seam curves meet are automatically identified and are called seam corners. Seam corner surface grids are automatically generated using a singular axis topology. Hyperbolic surface grids are then grown from the seam curves that are automatically trimmed away from the seam corners.
Schnek: A C++ library for the development of parallel simulation codes on regular grids
NASA Astrophysics Data System (ADS)
Schmitz, Holger
2018-05-01
A large number of algorithms across the field of computational physics are formulated on grids with a regular topology. We present Schnek, a library that enables fast development of parallel simulations on regular grids. Schnek contains a number of easy-to-use modules that greatly reduce the amount of administrative code for large-scale simulation codes. The library provides an interface for reading simulation setup files with a hierarchical structure. The structure of the setup file is translated into a hierarchy of simulation modules that the developer can specify. The reader parses and evaluates mathematical expressions and initialises variables or grid data. This enables developers to write modular and flexible simulation codes with minimal effort. Regular grids of arbitrary dimension are defined as well as mechanisms for defining physical domain sizes, grid staggering, and ghost cells on these grids. Ghost cells can be exchanged between neighbouring processes using MPI with a simple interface. The grid data can easily be written into HDF5 files using serial or parallel I/O.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen; Eichman, Josh; Kurtz, Jennifer
This National Renewable Energy Laboratory industry-inspired Laboratory Directed Research and Development project evaluates the feasibility and economics of using fuel cell backup power systems in cell towers to provide grid services (e.g., balancing, ancillary services, demand response). The work is intended to evaluate the integration of thousands of under-utilized, clean, efficient, and reliable fuel cell systems that are already installed in cell towers for potential grid and ancillary services.
A high-order spatial filter for a cubed-sphere spectral element model
NASA Astrophysics Data System (ADS)
Kang, Hyun-Gyu; Cheong, Hyeong-Bin
2017-04-01
A high-order spatial filter is developed for the spectral-element-method dynamical core on the cubed-sphere grid which employs the Gauss-Lobatto Lagrange interpolating polynomials (GLLIP) as orthogonal basis functions. The filter equation is the high-order Helmholtz equation which corresponds to the implicit time-differencing of a diffusion equation employing the high-order Laplacian. The Laplacian operator is discretized within a cell which is a building block of the cubed sphere grid and consists of the Gauss-Lobatto grid. When discretizing a high-order Laplacian, due to the requirement of C0 continuity along the cell boundaries the grid-points in neighboring cells should be used for the target cell: The number of neighboring cells is nearly quadratically proportional to the filter order. Discrete Helmholtz equation yields a huge-sized and highly sparse matrix equation whose size is N*N with N the number of total grid points on the globe. The number of nonzero entries is also almost in quadratic proportion to the filter order. Filtering is accomplished by solving the huge-matrix equation. While requiring a significant computing time, the solution of global matrix provides the filtered field free of discontinuity along the cell boundaries. To achieve the computational efficiency and the accuracy at the same time, the solution of the matrix equation was obtained by only accounting for the finite number of adjacent cells. This is called as a local-domain filter. It was shown that to remove the numerical noise near the grid-scale, inclusion of 5*5 cells for the local-domain filter was found sufficient, giving the same accuracy as that obtained by global domain solution while reducing the computing time to a considerably lower level. The high-order filter was evaluated using the standard test cases including the baroclinic instability of the zonal flow. Results indicated that the filter performs better on the removal of grid-scale numerical noises than the explicit high-order viscosity. It was also presented that the filter can be easily implemented on the distributed-memory parallel computers with a desirable scalability.
Diffraction Analysis of Antennas With Mesh Surfaces
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya
1987-01-01
Strip-aperture model replaces wire-grid model. Far-field radiation pattern of antenna with mesh reflector calculated more accurately with new strip-aperture model than with wire-grid model of reflector surface. More adaptable than wire-grid model to variety of practical configurations and decidedly superior for reflectors in which mesh-cell width exceeds mesh thickness. Satisfies reciprocity theorem. Applied where mesh cells are no larger than tenth of wavelength. Small cell size permits use of simplifying approximation that reflector-surface current induced by electromagnetic field is present even in apertures. Approximation useful in calculating far field.
NASA Technical Reports Server (NTRS)
Seth, Anji; Giorgi, Filippo; Dickinson, Robert E.
1994-01-01
A vectorized version of the biosphere-atmosphere transfer scheme (VBATS) is used to study moisture, energy, and momentum fluxes from heterogeneous land surfaces st the scale of an atmospheric model (AM) grid cells. To incorporate subgrid scale inhomogeneity, VBATS includes two important features: (1) characterization of the land surface (vegetation and soil parameters) at N subgrid points within an AM grid cell and (2) explicit distribution of climate forcing (precipitation, clouds, etc.) over the subgrid. In this study, VBATS is used in stand-alone mode to simulate a single AM grid cell and to evaluate the effects of subgrid scale vegetation and climate specification on the surface fluxes and hydrology. It is found that the partitioning of energy can be affected by up to 30%, runoff by 50%, and surface stress in excess of 60%. Distributing climate forcing over the AM grid cell increases the Bowen ratio, as a result of enhanced sensible heat flux and reduced latent heat flux. The combined effect of heterogeneous vegetation and distribution of climate is found to be dependent on the dominat vegetation class in the AM grid cell. Development of this method is part of a larger program to explore the importance of subgrid scale processes in regional and global climate simulations.
Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 1: January
NASA Astrophysics Data System (ADS)
Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.
1989-07-01
The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of January. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Mean density standard deviation (all for 13 levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.
Demonstration Of Ultra HI-FI (UHF) Methods
NASA Technical Reports Server (NTRS)
Dyson, Rodger W.
2004-01-01
Computational aero-acoustics (CAA) requires efficient, high-resolution simulation tools. Most current techniques utilize finite-difference approaches because high order accuracy is considered too difficult or expensive to achieve with finite volume or finite element methods. However, a novel finite volume approach (Ultra HI-FI or UHF) which utilizes Hermite fluxes is presented which can achieve both arbitrary accuracy and fidelity in space and time. The technique can be applied to unstructured grids with some loss of fidelity or with multi-block structured grids for maximum efficiency and resolution. In either paradigm, it is possible to resolve ultra-short waves (less than 2 PPW). This is demonstrated here by solving the 4th CAA workshop Category 1 Problem 1.
Environmental boundaries as a mechanism for correcting and anchoring spatial maps
2016-01-01
Abstract Ubiquitous throughout the animal kingdom, path integration‐based navigation allows an animal to take a circuitous route out from a home base and using only self‐motion cues, calculate a direct vector back. Despite variation in an animal's running speed and direction, medial entorhinal grid cells fire in repeating place‐specific locations, pointing to the medial entorhinal circuit as a potential neural substrate for path integration‐based spatial navigation. Supporting this idea, grid cells appear to provide an environment‐independent metric representation of the animal's location in space and preserve their periodic firing structure even in complete darkness. However, a series of recent experiments indicate that spatially responsive medial entorhinal neurons depend on environmental cues in a more complex manner than previously proposed. While multiple types of landmarks may influence entorhinal spatial codes, environmental boundaries have emerged as salient landmarks that both correct error in entorhinal grid cells and bind internal spatial representations to the geometry of the external spatial world. The influence of boundaries on error correction and grid symmetry points to medial entorhinal border cells, which fire at a high rate only near environmental boundaries, as a potential neural substrate for landmark‐driven control of spatial codes. The influence of border cells on other entorhinal cell populations, such as grid cells, could depend on plasticity, raising the possibility that experience plays a critical role in determining how external cues influence internal spatial representations. PMID:26563618
Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu
1995-01-01
As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image composing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.
A general multiblock Euler code for propulsion integration. Volume 3: User guide for the Euler code
NASA Technical Reports Server (NTRS)
Chen, H. C.; Su, T. Y.; Kao, T. J.
1991-01-01
This manual explains the procedures for using the general multiblock Euler (GMBE) code developed under NASA contract NAS1-18703. The code was developed for the aerodynamic analysis of geometrically complex configurations in either free air or wind tunnel environments (vol. 1). The complete flow field is divided into a number of topologically simple blocks within each of which surface fitted grids and efficient flow solution algorithms can easily be constructed. The multiblock field grid is generated with the BCON procedure described in volume 2. The GMBE utilizes a finite volume formulation with an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. This user guide provides information on the GMBE code, including input data preparations with sample input files and a sample Unix script for program execution in the UNICOS environment.
NASA Astrophysics Data System (ADS)
Newman, James Charles, III
1997-10-01
The first two steps in the development of an integrated multidisciplinary design optimization procedure capable of analyzing the nonlinear fluid flow about geometrically complex aeroelastic configurations have been accomplished in the present work. For the first step, a three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed. The advantage of unstructured grids, when compared with a structured-grid approach, is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the time-dependent, nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional cases and a Gauss-Seidel algorithm for the three-dimensional; at steady-state, similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Various surface parameterization techniques have been employed in the current study to control the shape of the design surface. Once this surface has been deformed, the interior volume of the unstructured grid is adapted by considering the mesh as a system of interconnected tension springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR, an advanced automatic-differentiation software tool. To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for several two- and three-dimensional cases. In twodimensions, an initially symmetric NACA-0012 airfoil and a high-lift multielement airfoil were examined. For the three-dimensional configurations, an initially rectangular wing with uniform NACA-0012 cross-sections was optimized; in addition, a complete Boeing 747-200 aircraft was studied. Furthermore, the current study also examines the effect of inconsistency in the order of spatial accuracy between the nonlinear fluid and linear shape sensitivity equations. The second step was to develop a computationally efficient, high-fidelity, integrated static aeroelastic analysis procedure. To accomplish this, a structural analysis code was coupled with the aforementioned unstructured grid aerodynamic analysis solver. The use of an unstructured grid scheme for the aerodynamic analysis enhances the interaction compatibility with the wing structure. The structural analysis utilizes finite elements to model the wing so that accurate structural deflections may be obtained. In the current work, parameters have been introduced to control the interaction of the computational fluid dynamics and structural analyses; these control parameters permit extremely efficient static aeroelastic computations. To demonstrate and evaluate this procedure, static aeroelastic analysis results for a flexible wing in low subsonic, high subsonic (subcritical), transonic (supercritical), and supersonic flow conditions are presented.
A finite volume method for trace element diffusion and partitioning during crystal growth
NASA Astrophysics Data System (ADS)
Hesse, Marc A.
2012-09-01
A finite volume method on a uniform grid is presented to compute the polythermal diffusion and partitioning of a trace element during the growth of a porphyroblast crystal in a uniform matrix and in linear, cylindrical and spherical geometry. The motion of the crystal-matrix interface and the thermal evolution are prescribed functions of time. The motion of the interface is discretized and it advances from one cell boundary to next as the prescribed interface position passes the cell center. The appropriate conditions for the flux across the crystal-matrix interface are derived from discrete mass conservation. Numerical results are benchmarked against steady and transient analytic solutions for isothermal diffusion with partitioning and growth. Two applications illustrate the ability of the model to reproduce observed rare-earth element patterns in garnets (Skora et al., 2006) and water concentration profiles around spherulites in obsidian (Watkins et al., 2009). Simulations with diffusion inside the growing crystal show complex concentration evolutions for trace elements with high diffusion coefficients, such as argon or hydrogen, but demonstrate that rare-earth element concentrations in typical metamorphic garnets are not affected by intracrystalline diffusion.
The Finite-Surface Method for incompressible flow: a step beyond staggered grid
NASA Astrophysics Data System (ADS)
Hokpunna, Arpiruk; Misaka, Takashi; Obayashi, Shigeru
2017-11-01
We present a newly developed higher-order finite surface method for the incompressible Navier-Stokes equations (NSE). This method defines the velocities as a surface-averaged value on the surfaces of the pressure cells. Consequently, the mass conservation on the pressure cells becomes an exact equation. The only things left to approximate is the momentum equation and the pressure at the new time step. At certain conditions, the exact mass conservation enables the explicit n-th order accurate NSE solver to be used with the pressure treatment that is two or four order less accurate without loosing the apparent convergence rate. This feature was not possible with finite volume of finite difference methods. We use Fourier analysis with a model spectrum to determine the condition and found that the range covers standard boundary layer flows. The formal convergence and the performance of the proposed scheme is compared with a sixth-order finite volume method. Finally, the accuracy and performance of the method is evaluated in turbulent channel flows. This work is partially funded by a research colloaboration from IFS, Tohoku university and ASEAN+3 funding scheme from CMUIC, Chiang Mai University.
1994-04-01
measure RRI - Rapid Response Initiative RT - retention time s - seconds SDG - sample delivery group I SI - site investigation SMCLS - secondary maximum...tape and a compass and each grid node was marked with a wooden stake or fluorescent orange paint. At least one point on the grid was surveyed so the
New ghost-node method for linking different models with varied grid refinement
James, S.C.; Dickinson, J.E.; Mehl, S.W.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Eddebbarh, A.-A.
2006-01-01
A flexible, robust method for linking grids of locally refined ground-water flow models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined "child" model that is contained within a larger and coarser "parent" model that is based on the iterative method of Steffen W. Mehl and Mary C. Hill (2002, Advances in Water Res., 25, p. 497-511; 2004, Advances in Water Res., 27, p. 899-912). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has matching grids (parent cells border an integer number of child cells) or nonmatching grids. The coupled grids are simulated by using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child-cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models. When the grids are nonmatching, model accuracy is slightly increased compared to that for matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to couple distinct models because the overall head and flow errors relative to the analytical solution are less than if only the regional coarse-grid model was used to simulate flow in the child model's domain.
Flow solution on a dual-block grid around an airplane
NASA Technical Reports Server (NTRS)
Eriksson, Lars-Erik
1987-01-01
The compressible flow around a complex fighter-aircraft configuration (fuselage, cranked delta wing, canard, and inlet) is simulated numerically using a novel grid scheme and a finite-volume Euler solver. The patched dual-block grid is generated by an algebraic procedure based on transfinite interpolation, and the explicit Runge-Kutta time-stepping Euler solver is implemented with a high degree of vectorization on a Cyber 205 processor. Results are presented in extensive graphs and diagrams and characterized in detail. The concentration of grid points near the wing apex in the present scheme is shown to facilitate capture of the vortex generated by the leading edge at high angles of attack and modeling of its interaction with the canard wake.
A Note on Multigrid Theory for Non-nested Grids and/or Quadrature
NASA Technical Reports Server (NTRS)
Douglas, C. C.; Douglas, J., Jr.; Fyfe, D. E.
1996-01-01
We provide a unified theory for multilevel and multigrid methods when the usual assumptions are not present. For example, we do not assume that the solution spaces or the grids are nested. Further, we do not assume that there is an algebraic relationship between the linear algebra problems on different levels. What we provide is a computationally useful theory for adaptively changing levels. Theory is provided for multilevel correction schemes, nested iteration schemes, and one way (i.e., coarse to fine grid with no correction iterations) schemes. We include examples showing the applicability of this theory: finite element examples using quadrature in the matrix assembly and finite volume examples with non-nested grids. Our theory applies directly to other discretizations as well.
A decision support system using combined-classifier for high-speed data stream in smart grid
NASA Astrophysics Data System (ADS)
Yang, Hang; Li, Peng; He, Zhian; Guo, Xiaobin; Fong, Simon; Chen, Huajun
2016-11-01
Large volume of high-speed streaming data is generated by big power grids continuously. In order to detect and avoid power grid failure, decision support systems (DSSs) are commonly adopted in power grid enterprises. Among all the decision-making algorithms, incremental decision tree is the most widely used one. In this paper, we propose a combined classifier that is a composite of a cache-based classifier (CBC) and a main tree classifier (MTC). We integrate this classifier into a stream processing engine on top of the DSS such that high-speed steaming data can be transformed into operational intelligence efficiently. Experimental results show that our proposed classifier can return more accurate answers than other existing ones.
A Study of ATLAS Grid Performance for Distributed Analysis
NASA Astrophysics Data System (ADS)
Panitkin, Sergey; Fine, Valery; Wenaus, Torre
2012-12-01
In the past two years the ATLAS Collaboration at the LHC has collected a large volume of data and published a number of ground breaking papers. The Grid-based ATLAS distributed computing infrastructure played a crucial role in enabling timely analysis of the data. We will present a study of the performance and usage of the ATLAS Grid as platform for physics analysis in 2011. This includes studies of general properties as well as timing properties of user jobs (wait time, run time, etc). These studies are based on mining of data archived by the PanDA workload management system.
Interlocking egg-crate type grid assembly
Kast, Steven J.
1987-01-01
Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120.degree. at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking and interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.
Interlocking egg-crate type grid assembly
Kast, S.J.
1985-03-15
Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120/sup 0/ at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.
Continuous attractor network models of grid cell firing based on excitatory–inhibitory interactions
Shipston‐Sharman, Oliver; Solanka, Lukas
2016-01-01
Abstract Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid‐like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactions between excitatory and inhibitory cells. These models assume that grid‐like firing patterns are the result of computation of location from velocity inputs, with additional spatial input required to oppose drift in the attractor state. We focus on properties of continuous attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons, their connectivity and their membrane potential dynamics. Models at this level of detail can account for theta‐nested gamma oscillations as well as grid firing, predict spatial firing of interneurons as well as excitatory cells, show how gamma oscillations can be modulated independently from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a subset of excitatory cells in a network need have grid‐like firing fields. Evaluating experimental data against predictions from detailed network models will be important for establishing the mechanisms mediating grid firing. PMID:27870120
CdS thin film solar cells for terrestrial power
NASA Technical Reports Server (NTRS)
Shirland, F. A.
1975-01-01
The development of very low cost long lived Cu2S/CdS thin film solar cells for large scale energy conversion is reported. Excellent evaporated metal grid patterns were obtained using a specially designed aperture mask. Vacuum evaporated gold and copper grids of 50 lines per inch and 1 micron thickness were adequate electrically for the fine mesh contacting grid. Real time roof top sunlight exposure tests of encapsulated CdS cells showed no loss in output after 5 months. Accelerated life testing of encapsulated cells showed no loss of output power after 6 months of 12 hour dark-12 hour AMI illumination cycles at 40 C, 60 C, 80 C and 100 C temperatures. However, the cells changed their basic parameters, such as series and shunt resistance and junction capacitance.
NASA Technical Reports Server (NTRS)
Takacs, Lawrence L.; Sawyer, William; Suarez, Max J. (Editor); Fox-Rabinowitz, Michael S.
1999-01-01
This report documents the techniques used to filter quantities on a stretched grid general circulation model. Standard high-latitude filtering techniques (e.g., using an FFT (Fast Fourier Transformations) to decompose and filter unstable harmonics at selected latitudes) applied on a stretched grid are shown to produce significant distortions of the prognostic state when used to control instabilities near the pole. A new filtering technique is developed which accurately accounts for the non-uniform grid by computing the eigenvectors and eigenfrequencies associated with the stretching. A filter function, constructed to selectively damp those modes whose associated eigenfrequencies exceed some critical value, is used to construct a set of grid-spaced weights which are shown to effectively filter without distortion. Both offline and GCM (General Circulation Model) experiments are shown using the new filtering technique. Finally, a brief examination is also made on the impact of applying the Shapiro filter on the stretched grid.
NASA Astrophysics Data System (ADS)
Bosman, Peter A. N.; Alderliesten, Tanja
2016-03-01
We recently demonstrated the strong potential of using dual-dynamic transformation models when tackling deformable image registration problems involving large anatomical differences. Dual-dynamic transformation models employ two moving grids instead of the common single moving grid for the target image (and single fixed grid for the source image). We previously employed powerful optimization algorithms to make use of the additional flexibility offered by a dual-dynamic transformation model with good results, directly obtaining insight into the trade-off between important registration objectives as a result of taking a multi-objective approach to optimization. However, optimization has so far been initialized using two regular grids, which still leaves a great potential of dual-dynamic transformation models untapped: a-priori grid alignment with image structures/areas that are expected to deform more. This allows (far) less grid points to be used, compared to using a sufficiently refined regular grid, leading to (far) more efficient optimization, or, equivalently, more accurate results using the same number of grid points. We study the implications of exploiting this potential by experimenting with two new smart grid initialization procedures: one manual expert-based and one automated image-feature-based. We consider a CT test case with large differences in bladder volume with and without a multi-resolution scheme and find a substantial benefit of using smart grid initialization.
Zhao, Longshan; Wu, Faqi
2015-01-01
In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (v m) and ponding time of depression (t p), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (l i) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (v i) was derived from the upstream flow accumulation area using v m. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of l i/v i) and t p. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs. PMID:26103635
Zhao, Longshan; Wu, Faqi
2015-01-01
In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (vm) and ponding time of depression (tp), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (li) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (vi) was derived from the upstream flow accumulation area using vm. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of li/vi) and tp. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs.
SU-E-T-538: Evaluation of IMRT Dose Calculation Based on Pencil-Beam and AAA Algorithms.
Yuan, Y; Duan, J; Popple, R; Brezovich, I
2012-06-01
To evaluate the accuracy of dose calculation for intensity modulated radiation therapy (IMRT) based on Pencil Beam (PB) and Analytical Anisotropic Algorithm (AAA) computation algorithms. IMRT plans of twelve patients with different treatment sites, including head/neck, lung and pelvis, were investigated. For each patient, dose calculation with PB and AAA algorithms using dose grid sizes of 0.5 mm, 0.25 mm, and 0.125 mm, were compared with composite-beam ion chamber and film measurements in patient specific QA. Discrepancies between the calculation and the measurement were evaluated by percentage error for ion chamber dose and γ〉l failure rate in gamma analysis (3%/3mm) for film dosimetry. For 9 patients, ion chamber dose calculated with AAA-algorithms is closer to ion chamber measurement than that calculated with PB algorithm with grid size of 2.5 mm, though all calculated ion chamber doses are within 3% of the measurements. For head/neck patients and other patients with large treatment volumes, γ〉l failure rate is significantly reduced (within 5%) with AAA-based treatment planning compared to generally more than 10% with PB-based treatment planning (grid size=2.5 mm). For lung and brain cancer patients with medium and small treatment volumes, γ〉l failure rates are typically within 5% for both AAA and PB-based treatment planning (grid size=2.5 mm). For both PB and AAA-based treatment planning, improvements of dose calculation accuracy with finer dose grids were observed in film dosimetry of 11 patients and in ion chamber measurements for 3 patients. AAA-based treatment planning provides more accurate dose calculation for head/neck patients and other patients with large treatment volumes. Compared with film dosimetry, a γ〉l failure rate within 5% can be achieved for AAA-based treatment planning. © 2012 American Association of Physicists in Medicine.
Weise, Frank; Fernekorn, Uta; Hampl, Jörg; Klett, Maren; Schober, Andreas
2013-09-01
By the use of a MatriGrid® we have established a three-dimensional high density cell culture. The MatriGrid® is a culture medium permeable, polymeric scaffold with 187 microcavities. In these cavities (300 μm diameter and 207 μm deep) the cells can growth three-dimensionally. For these experiments we measured the oxygen consumption of HepG2 cell cultures in order to optimize cultivation conditions. We measured and compared the oxygen consumption, growth rate and vitality under three different cultivation conditions: monolayer, three-dimensional static and three-dimensional actively perfused. The results show that the cells in a three-dimensional cell culture consume less oxygen as in a monolayer cell culture and that the actively perfused three-dimensional cell culture in the MatriGrid® has a similar growth rate and vitality as the monolayer culture. Copyright © 2013 Wiley Periodicals, Inc.
A 3D finite element ALE method using an approximate Riemann solution
Chiravalle, V. P.; Morgan, N. R.
2016-08-09
Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less
A 3D finite element ALE method using an approximate Riemann solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiravalle, V. P.; Morgan, N. R.
Arbitrary Lagrangian–Eulerian finite volume methods that solve a multidimensional Riemann-like problem at the cell center in a staggered grid hydrodynamic (SGH) arrangement have been proposed. This research proposes a new 3D finite element arbitrary Lagrangian–Eulerian SGH method that incorporates a multidimensional Riemann-like problem. Here, two different Riemann jump relations are investigated. A new limiting method that greatly improves the accuracy of the SGH method on isentropic flows is investigated. A remap method that improves upon a well-known mesh relaxation and remapping technique in order to ensure total energy conservation during the remap is also presented. Numerical details and test problemmore » results are presented.« less
Satellite radar altimetry over ice. Volume 4: Users' guide for Antarctica elevation data from Seasat
NASA Technical Reports Server (NTRS)
Zwally, H. Jay; Major, Judith A.; Brenner, Anita C.; Bindschadler, Robert A.; Martin, Thomas V.
1990-01-01
A gridded surface-elevation data set and a geo-referenced data base for the Seasat radar altimeter data over Greenland are described. This is a user guide to accompany the data provided to data centers and other users. The grid points are on a polar stereographic projection with a nominal spacing of 20 km. The gridded elevations are derived from the elevation data in the geo-referenced data base by a weighted fitting of a surface in the neighborhood of each grid point. The gridded elevations are useful for the creating of large-scale contour maps, and the geo-referenced data base is useful for regridding, creating smaller-scale contour maps, and examinating individual elevation measurements in specific geographic areas. Tape formats are described, and a FORTRAN program for reading the data tape is listed and provided on the tape.
Domain Decomposition By the Advancing-Partition Method
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2008-01-01
A new method of domain decomposition has been developed for generating unstructured grids in subdomains either sequentially or using multiple computers in parallel. Domain decomposition is a crucial and challenging step for parallel grid generation. Prior methods are generally based on auxiliary, complex, and computationally intensive operations for defining partition interfaces and usually produce grids of lower quality than those generated in single domains. The new technique, referred to as "Advancing Partition," is based on the Advancing-Front method, which partitions a domain as part of the volume mesh generation in a consistent and "natural" way. The benefits of this approach are: 1) the process of domain decomposition is highly automated, 2) partitioning of domain does not compromise the quality of the generated grids, and 3) the computational overhead for domain decomposition is minimal. The new method has been implemented in NASA's unstructured grid generation code VGRID.
DICOMGrid: a middleware to integrate PACS and EELA-2 grid infrastructure
NASA Astrophysics Data System (ADS)
Moreno, Ramon A.; de Sá Rebelo, Marina; Gutierrez, Marco A.
2010-03-01
Medical images provide lots of information for physicians, but the huge amount of data produced by medical image equipments in a modern Health Institution is not completely explored in its full potential yet. Nowadays medical images are used in hospitals mostly as part of routine activities while its intrinsic value for research is underestimated. Medical images can be used for the development of new visualization techniques, new algorithms for patient care and new image processing techniques. These research areas usually require the use of huge volumes of data to obtain significant results, along with enormous computing capabilities. Such qualities are characteristics of grid computing systems such as EELA-2 infrastructure. The grid technologies allow the sharing of data in large scale in a safe and integrated environment and offer high computing capabilities. In this paper we describe the DicomGrid to store and retrieve medical images, properly anonymized, that can be used by researchers to test new processing techniques, using the computational power offered by grid technology. A prototype of the DicomGrid is under evaluation and permits the submission of jobs into the EELA-2 grid infrastructure while offering a simple interface that requires minimal understanding of the grid operation.
Direct Replacement of Arbitrary Grid-Overlapping by Non-Structured Grid
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Liou, Meng-Sing
1994-01-01
A new approach that uses nonstructured mesh to replace the arbitrarily overlapped structured regions of embedded grids is presented. The present methodology uses the Chimera composite overlapping mesh system so that the physical domain of the flowfield is subdivided into regions which can accommodate easily-generated grid for complex configuration. In addition, a Delaunay triangulation technique generates nonstructured triangular mesh which wraps over the interconnecting region of embedded grids. It is designed that the present approach, termed DRAGON grid, has three important advantages: eliminating some difficulties of the Chimera scheme, such as the orphan points and/or bad quality of interpolation stencils; making grid communication in a fully conservative way; and implementation into three dimensions is straightforward. A computer code based on a time accurate, finite volume, high resolution scheme for solving the compressible Navier-Stokes equations has been further developed to include both the Chimera overset grid and the nonstructured mesh schemes. For steady state problems, the local time stepping accelerates convergence based on a Courant - Friedrichs - Leury (CFL) number near the local stability limit. Numerical tests on representative steady and unsteady supersonic inviscid flows with strong shock waves are demonstrated.
FV-MHMM: A Discussion on Weighting Schemes.
NASA Astrophysics Data System (ADS)
Franc, J.; Gerald, D.; Jeannin, L.; Egermann, P.; Masson, R.
2016-12-01
Upscaling or homogenization techniques consist in finding block-equivalentor equivalent upscaled properties on a coarse grid from heterogeneousproperties defined on an underlying fine grid. However, this couldbecome costly and resource consuming. Harder et al., 2013, have developeda Multiscale Hybrid-Mixed Method (MHMM) of upscaling to treat Darcytype equations on heterogeneous fields formulated using a finite elementmethod. Recently, Franc et al. 2016, has extended this method of upscalingto finite volume formulation (FV-MHMM). Although convergence refiningLagrange multipliers space has been observed, numerical artefactscan occur while trapping numerically the flow in regions of low permeability. This work will present the development of the method along with theresults obtained from its classical formulation. Then, two weightingschemes and their benefits on the FV-MHMM method will be presented insome simple random permeability cases. Next example will involve alarger heterogeneous 2D permeability field extracted from the 10thSPE test case. Eventually, multiphase flow will be addressed asan extension of this single phase flow method. An elliptic pressureequation solved on the coarse grid via FV-MHMM will be sequentiallycoupled with a hyperbolic saturation equation on the fine grid. Theimproved accuracy thanks to the weighting scheme will be measuredcompared to a finite volume fine grid solution. References: Harder, C., Paredes, D. and Valentin, F., A family of multiscalehybrid-mixed finite element methods for the Darcy equation with roughcoefficients, Journal of Computational Physics, 2013. Franc J., Debenest G., Jeannin L., Egermann P. and Masson R., FV-MHMMfor reservoir modelling ECMOR XV-15th European Conference on the Mathematicsof Oil Recovery, 2015.
Regional ash fall hazard II: Asia-Pacific modelling results and implications
NASA Astrophysics Data System (ADS)
Jenkins, Susanna; McAneney, John; Magill, Christina; Blong, Russell
2012-09-01
In a companion paper (this volume), the authors propose a methodology for assessing ash fall hazard on a regional scale. In this study, the methodology is applied to the Asia-Pacific region, determining the hazard from 190 volcanoes to over one million square kilometre of urban area. Ash fall hazard is quantified for each square kilometre grid cell of urban area in terms of the annual exceedance probability (AEP), and its inverse, the average recurrence interval (ARI), for ash falls exceeding 1, 10 and 100 mm. A surrogate risk variable, the Population-Weighted Hazard Score: the product of AEP and population density, approximates the relative risk for each grid cell. Within the Asia-Pacific region, urban areas in Indonesia are found to have the highest levels of hazard and risk, while Australia has the lowest. A clear demarcation emerges between the hazard in countries close to and farther from major subduction plate boundaries, with the latter having ARIs at least 2 orders of magnitude longer for the same thickness thresholds. Countries with no volcanoes, such as North Korea and Malaysia, also face ash falls from volcanoes in neighbouring countries. Ash falls exceeding 1 mm are expected to affect more than one million people living in urban areas within the study region; in Indonesia, Japan and the Philippines, this situation could occur with ARIs less than 40 years.
The Design of Connection Solid Oxide Fuel Cell (SOFC) Integrated Grid with Three-Phase Inverter
NASA Astrophysics Data System (ADS)
Darjat; Sulistyo; Triwiyatno, Aris; Thalib, Humaid
2018-03-01
Fuel cell technology is a relatively new energy-saving technology that has the potential to replace conventional energy technologies. Among the different types of generation technologies, fuel cells is the generation technologies considered as a potential source of power generation because it is flexible and can be placed anywhere based distribution system. Modeling of SOFC is done by using Nernst equation. The output power of the fuel cell can be controlled by controlling the flow rate of the fuels used in the process. Three-phase PWM inverter is used to get the form of three-phase voltage which same with the grid. In this paper, the planning and design of the SOFC are connected to the grid.
Characterization of Slosh Damping for Ortho-Grid and Iso-Grid Internal Tank Structures
NASA Technical Reports Server (NTRS)
Westra, Douglas G.; Sansone, Marco D.; Eberhart, Chad J.; West, Jeffrey S.
2016-01-01
Grid stiffened tank structures such as Ortho-Grid and Iso-Grid are widely used in cryogenic tanks for providing stiffening to the tank while reducing mass, compared to tank walls of constant cross-section. If the structure is internal to the tank, it will positively affect the fluid dynamic behavior of the liquid propellant, in regard to fluid slosh damping. As NASA and commercial companies endeavor to explore the solar system, vehicles will by necessity become more mass efficient, and design margin will be reduced where possible. Therefore, if the damping characteristics of the Ortho-Grid and Iso-Grid structure is understood, their positive damping effect can be taken into account in the systems design process. Historically, damping by internal structures has been characterized by rules of thumb and for Ortho-Grid, empirical design tools intended for slosh baffles of much larger cross-section have been used. There is little or no information available to characterize the slosh behavior of Iso-Grid internal structure. Therefore, to take advantage of these structures for their positive damping effects, there is much need for obtaining additional data and tools to characterize them. Recently, the NASA Marshall Space Flight Center conducted both sub-scale testing and computational fluid dynamics (CFD) simulations of slosh damping for Ortho-Grid and Iso-Grid tanks for cylindrical tanks containing water. Enhanced grid meshing techniques were applied to the geometrically detailed and complex Ortho-Grid and Iso-Grid structures. The Loci-STREAM CFD program with the Volume of Fluid Method module for tracking and locating the water-air fluid interface was used to conduct the simulations. The CFD simulations were validated with the test data and new empirical models for predicting damping and frequency of Ortho-Grid and Iso-Grid structures were generated.
Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process
Ruby, Douglas S.; Schubert, William K.; Gee, James M.
1999-01-01
A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas.
Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process
Ruby, D.S.; Schubert, W.K.; Gee, J.M.
1999-02-16
A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas. 5 figs.
Cut-cell method based large-eddy simulation of tip-leakage flow
NASA Astrophysics Data System (ADS)
Pogorelov, Alexej; Meinke, Matthias; Schröder, Wolfgang
2015-07-01
The turbulent low Mach number flow through an axial fan at a Reynolds number of 9.36 × 105 based on the outer casing diameter is investigated by large-eddy simulation. A finite-volume flow solver in an unstructured hierarchical Cartesian setup for the compressible Navier-Stokes equations is used. To account for sharp edges, a fully conservative cut-cell approach is applied. A newly developed rotational periodic boundary condition for Cartesian meshes is introduced such that the simulations are performed just for a 72° segment, i.e., the flow field over one out of five axial blades is resolved. The focus of this numerical analysis is on the development of the vortical flow structures in the tip-gap region. A detailed grid convergence study is performed on four computational grids with 50 × 106, 250 × 106, 1 × 109, and 1.6 × 109 cells. Results of the instantaneous and the mean fan flow field are thoroughly analyzed based on the solution with 1 × 109 cells. High levels of turbulent kinetic energy and pressure fluctuations are generated by a tip-gap vortex upstream of the blade, the separating vortices inside the tip gap, and a counter-rotating vortex on the outer casing wall. An intermittent interaction of the turbulent wake, generated by the tip-gap vortex, with the downstream blade, leads to a cyclic transition with high pressure fluctuations on the suction side of the blade and a decay of the tip-gap vortex. The disturbance of the tip-gap vortex results in an unsteady behavior of the turbulent wake causing the intermittent interaction. For this interaction and the cyclic transition, two dominant frequencies are identified which perfectly match with the characteristic frequencies in the experimental sound power level and therefore explain their physical origin.
Integration Of 3D Geographic Information System (GIS) For Effective Waste Management Practice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rood, G.J.; Hecox, G.R.
2006-07-01
Soil remediation in response to the presence of residual radioactivity resulting from past MED/AEC activities is currently in progress under the Formerly Utilized Sites Remedial Action Program near the St. Louis, MO airport. During GY05, approximately 92,000 cubic meters (120,000 cubic yards) of radioactive soil was excavated, packaged and transported via rail for disposal at U.S. Ecology or Envirocare of Utah, LLC. To facilitate the management of excavation/transportation/disposal activities, a 3D GIS was developed for the site that was used to estimate the in-situ radionuclide activities, activities in excavation block areas, and shipping activities using a sum-of ratio (SOR) methodmore » for combining various radionuclide compounds into applicable transportation and disposal SOR values. The 3D GIS was developed starting with the SOR values for the approximately 900 samples from 90 borings. These values were processed into a three-dimensional (3D) point grid using kriging with nominal grid spacing of 1.5 by 1.5 meter horizontal by 0.3 meter vertical. The final grid, clipped to the area and soil interval above the planned base of excavation, consisted of 210,000 individual points. Standard GIS volumetric and spatial join procedures were used to calculate the volume of soil represented by each grid point, the base of excavation, depth below ground surface, elevation, surface elevation and SOR values for each point in the final grid. To create the maps needed for management, the point grid results were spatially joined to each excavation area in 0.9 meter (3 foot) depth intervals and the average SOR and total volumes were calculations. The final maps were color-coded for easy identification of areas above the specific transportation or disposal criteria. (authors)« less
Yoshida, Motoharu; Jochems, Arthur; Hasselmo, Michael E
2013-01-01
Mechanisms underlying grid cell firing in the medial entorhinal cortex (MEC) still remain unknown. Computational modeling studies have suggested that cellular properties such as spike frequency adaptation and persistent firing might underlie the grid cell firing. Recent in vivo studies also suggest that cholinergic activation influences grid cell firing. Here we investigated the anatomical distribution of firing frequency adaptation, the medium spike after hyperpolarization potential (mAHP), subthreshold membrane potential oscillations, sag potential, input resistance and persistent firing, in MEC layer II principal cells using in vitro whole-cell patch clamp recordings in rats. Anatomical distributions of these properties were compared along both the dorso-ventral and medio-lateral axes, both with and without the cholinergic receptor agonist carbachol. We found that spike frequency adaptation is significantly stronger in ventral than in dorsal neurons both with and without carbachol. Spike frequency adaptation was significantly correlated with the duration of the mAHP, which also showed a gradient along the dorso-ventral axis. In carbachol, we found that about 50% of MEC layer II neurons show persistent firing which lasted more than 30 seconds. Persistent firing of MEC layer II neurons might contribute to grid cell firing by providing the excitatory drive. Dorso-ventral differences in spike frequency adaptation we report here are opposite from previous predictions by a computational model. We discuss an alternative mechanism as to how dorso-ventral differences in spike frequency adaptation could contribute to different scales of grid spacing.
Numerical simulation of helicopter engine plume in forward flight
NASA Technical Reports Server (NTRS)
Dimanlig, Arsenio C. B.; Vandam, Cornelis P.; Duque, Earl P. N.
1994-01-01
Flowfields around helicopters contain complex flow features such as large separated flow regions, vortices, shear layers, blown and suction surfaces and an inherently unsteady flow imposed by the rotor system. Another complicated feature of helicopters is their infrared signature. Typically, the aircraft's exhaust plume interacts with the rotor downwash, the fuselage's complicated flowfield, and the fuselage itself giving each aircraft a unique IR signature at given flight conditions. The goal of this project was to compute the flow about a realistic helicopter fuselage including the interaction of the engine air intakes and exhaust plume. The computations solve the Think-Layer Navier Stokes equations using overset type grids and in particular use the OVERFLOW code by Buning of NASA Ames. During this three month effort, an existing grid system of the Comanche Helicopter was to be modified to include the engine inlet and the hot engine exhaust. The engine exhaust was to be modeled as hot air exhaust. However, considerable changes in the fuselage geometry required a complete regriding of the surface and volume grids. The engine plume computations have been delayed to future efforts. The results of the current work consists of a complete regeneration of the surface and volume grids of the most recent Comanche fuselage along with a flowfield computation.
Mehl, S.; Hill, M.C.
2002-01-01
A new method of local grid refinement for two-dimensional block-centered finite-difference meshes is presented in the context of steady-state groundwater-flow modeling. The method uses an iteration-based feedback with shared nodes to couple two separate grids. The new method is evaluated by comparison with results using a uniform fine mesh, a variably spaced mesh, and a traditional method of local grid refinement without a feedback. Results indicate: (1) The new method exhibits quadratic convergence for homogeneous systems and convergence equivalent to uniform-grid refinement for heterogeneous systems. (2) Coupling the coarse grid with the refined grid in a numerically rigorous way allowed for improvement in the coarse-grid results. (3) For heterogeneous systems, commonly used linear interpolation of heads from the large model onto the boundary of the refined model produced heads that are inconsistent with the physics of the flow field. (4) The traditional method works well in situations where the better resolution of the locally refined grid has little influence on the overall flow-system dynamics, but if this is not true, lack of a feedback mechanism produced errors in head up to 3.6% and errors in cell-to-cell flows up to 25%. ?? 2002 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
1982-03-01
Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot.
Efficient visibility encoding for dynamic illumination in direct volume rendering.
Kronander, Joel; Jönsson, Daniel; Löw, Joakim; Ljung, Patric; Ynnerman, Anders; Unger, Jonas
2012-03-01
We present an algorithm that enables real-time dynamic shading in direct volume rendering using general lighting, including directional lights, point lights, and environment maps. Real-time performance is achieved by encoding local and global volumetric visibility using spherical harmonic (SH) basis functions stored in an efficient multiresolution grid over the extent of the volume. Our method enables high-frequency shadows in the spatial domain, but is limited to a low-frequency approximation of visibility and illumination in the angular domain. In a first pass, level of detail (LOD) selection in the grid is based on the current transfer function setting. This enables rapid online computation and SH projection of the local spherical distribution of visibility information. Using a piecewise integration of the SH coefficients over the local regions, the global visibility within the volume is then computed. By representing the light sources using their SH projections, the integral over lighting, visibility, and isotropic phase functions can be efficiently computed during rendering. The utility of our method is demonstrated in several examples showing the generality and interactive performance of the approach.
Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay
The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes tomore » explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.« less
Interdigitated photovoltaic power conversion device
Ward, James Scott; Wanlass, Mark Woodbury; Gessert, Timothy Arthur
1999-01-01
A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.
Interdigitated photovoltaic power conversion device
Ward, J.S.; Wanlass, M.W.; Gessert, T.A.
1999-04-27
A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.
The Numerical Simulation of Time Dependent Flow Structures Over a Natural Gravel Surface.
NASA Astrophysics Data System (ADS)
Hardy, R. J.; Lane, S. N.; Ferguson, R. I.; Parsons, D. R.
2004-05-01
Research undertaken over the last few years has demonstrated the importance of the structure of gravel river beds for understanding the interaction between fluid flow and sediment transport processes. This includes the observation of periodic high-speed fluid wedges interconnected by low-speed flow regions. Our understanding of these flows has been enhanced significantly through a series of laboratory experiments and supported by field observations. However, the potential of high resolution three dimensional Computational Fluid Dynamics (CFD) modeling has yet to be fully developed. This is largely the result of the problems of designing numerically stable meshes for use with complex bed topographies and that Reynolds averaged turbulence schemes are applied. This paper develops two novel techniques for dealing with these issues. The first is the development and validation of a method for representing the complex surface topography of gravel-bed rivers in high resolution three-dimensional computational fluid dynamic models. This is based upon a porosity treatment with a regular structured grid and the application of a porosity modification to the mass conservation equation in which: fully blocked cells are assigned a porosity of zero; fully unblocked cells are assigned a porosity of one; and partly blocked cells are assigned a porosity of between 0 and 1, according to the percentage of the cell volume that is blocked. The second is the application of Large Eddy Simulation (LES) which enables time dependent flow structures to be numerically predicted over the complex bed topographies. The regular structured grid with the embedded porosity algorithm maintains a constant grid cell size throughout the domain implying a constant filter scale for the LES simulation. This enables the prediction of coherent structures, repetitive quasi-cyclic large-scale turbulent motions, over the gravel surface which are of a similar magnitude and frequency to those previously observed in both flume and field studies. These structures are formed by topographic forcing within the domain and are scaled with the flow depth. Finally, this provides the numerical framework for the prediction of sediment transport within a time dependent framework. The turbulent motions make a significant contribution to the turbulent shear stress and the pressure fluctuations which significantly affect the forces acting on the bed and potentially control sediment motion.
Barnette, Daniel W.
2002-01-01
The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelms, Benjamin; Stambaugh, Cassandra; Hunt, Dylan
2015-08-15
Purpose: The authors designed data, methods, and metrics that can serve as a standard, independent of any software package, to evaluate dose-volume histogram (DVH) calculation accuracy and detect limitations. The authors use simple geometrical objects at different orientations combined with dose grids of varying spatial resolution with linear 1D dose gradients; when combined, ground truth DVH curves can be calculated analytically in closed form to serve as the absolute standards. Methods: DICOM RT structure sets containing a small sphere, cylinder, and cone were created programmatically with axial plane spacing varying from 0.2 to 3 mm. Cylinders and cones were modeledmore » in two different orientations with respect to the IEC 1217 Y axis. The contours were designed to stringently but methodically test voxelation methods required for DVH. Synthetic RT dose files were generated with 1D linear dose gradient and with grid resolution varying from 0.4 to 3 mm. Two commercial DVH algorithms—PINNACLE (Philips Radiation Oncology Systems) and PlanIQ (Sun Nuclear Corp.)—were tested against analytical values using custom, noncommercial analysis software. In Test 1, axial contour spacing was constant at 0.2 mm while dose grid resolution varied. In Tests 2 and 3, the dose grid resolution was matched to varying subsampled axial contours with spacing of 1, 2, and 3 mm, and difference analysis and metrics were employed: (1) histograms of the accuracy of various DVH parameters (total volume, D{sub max}, D{sub min}, and doses to % volume: D99, D95, D5, D1, D0.03 cm{sup 3}) and (2) volume errors extracted along the DVH curves were generated and summarized in tabular and graphical forms. Results: In Test 1, PINNACLE produced 52 deviations (15%) while PlanIQ produced 5 (1.5%). In Test 2, PINNACLE and PlanIQ differed from analytical by >3% in 93 (36%) and 18 (7%) times, respectively. Excluding D{sub min} and D{sub max} as least clinically relevant would result in 32 (15%) vs 5 (2%) scored deviations for PINNACLE vs PlanIQ in Test 1, while Test 2 would yield 53 (25%) vs 17 (8%). In Test 3, statistical analyses of volume errors extracted continuously along the curves show PINNACLE to have more errors and higher variability (relative to PlanIQ), primarily due to PINNACLE’s lack of sufficient 3D grid supersampling. Another major driver for PINNACLE errors is an inconsistency in implementation of the “end-capping”; the additional volume resulting from expanding superior and inferior contours halfway to the next slice is included in the total volume calculation, but dose voxels in this expanded volume are excluded from the DVH. PlanIQ had fewer deviations, and most were associated with a rotated cylinder modeled by rectangular axial contours; for coarser axial spacing, the limited number of cross-sectional rectangles hinders the ability to render the true structure volume. Conclusions: The method is applicable to any DVH-calculating software capable of importing DICOM RT structure set and dose objects (the authors’ examples are available for download). It includes a collection of tests that probe the design of the DVH algorithm, measure its accuracy, and identify failure modes. Merits and applicability of each test are discussed.« less
Low-temperature fuel cell systems for commercial airplane auxiliary power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curgus, Dita Brigitte; Pratt, Joseph William; Akhil, Abbas Ali
2010-11-01
This presentation briefly describes the ongoing study of fuel cell systems on-board a commercial airplane. Sandia's current project is focused on Proton Exchange Membrane (PEM) fuel cells applied to specific on-board electrical power needs. They are trying to understand how having a fuel cell on an airplane would affect overall performance. The fuel required to accomplish a mission is used to quantify the performance. Our analysis shows the differences between the base airplane and the airplane with the fuel cell. There are many ways of designing a system, depending on what you do with the waste heat. A system thatmore » requires ram air cooling has a large mass penalty due to increased drag. The bottom-line impact can be expressed as additional fuel required to complete the mission. Early results suggest PEM fuel cells can be used on airplanes with manageable performance impact if heat is rejected properly. For PEMs on aircraft, we are continuing to perform: (1) thermodynamic analysis (investigate configurations); (2) integrated electrical design (with dynamic modeling of the micro grid); (3) hardware assessment (performance, weight, and volume); and (4) galley and peaker application.« less
Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 7: July
NASA Astrophysics Data System (ADS)
Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.
1989-07-01
The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of July. Included are global analyses of: (1) Mean temperature/standard deviation; (2) Mean geopotential height/standard deviation; (3) Mean density/standard deviation; (4) Height and vector standard deviation (all at 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation at levels 1000 through 30 mb; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.
Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 10: October
NASA Astrophysics Data System (ADS)
Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.
1989-07-01
The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of October. Included are global analyses of: (1) Mean temperature/standard deviation; (2) Mean geopotential height/standard deviation; (3) Mean density/standard deviation; (4) Height and vector standard deviation (all at 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point/standard deviation at levels 1000 through 30 mb; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.
Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 3: March
NASA Astrophysics Data System (ADS)
Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.
1989-11-01
The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of March. Included are global analyses of: (1) Mean Temperature Standard Deviation; (2) Mean Geopotential Height Standard Deviation; (3) Mean Density Standard Deviation; (4) Height and Vector Standard Deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean Dew Point Standard Deviation for levels 1000 through 30 mb; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.
Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 2: February
NASA Astrophysics Data System (ADS)
Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.
1989-09-01
The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of February. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Height and vector standard deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.
Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 4: April
NASA Astrophysics Data System (ADS)
Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.
1989-07-01
The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analyses produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of April. Included are global analyses of: (1) Mean temperature standard deviation; (2) Mean geopotential height standard deviation; (3) Mean density standard deviation; (4) Height and vector standard deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation for the 13 levels; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.
Monthly fractional green vegetation cover associated with land cover classes of the conterminous USA
Gallo, Kevin P.; Tarpley, Dan; Mitchell, Ken; Csiszar, Ivan; Owen, Timothy W.; Reed, Bradley C.
2001-01-01
The land cover classes developed under the coordination of the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS) have been analyzed for a study area that includes the Conterminous United States and portions of Mexico and Canada. The 1-km resolution data have been analyzed to produce a gridded data set that includes within each 20-km grid cell: 1) the three most dominant land cover classes, 2) the fractional area associated with each of the three dominant classes, and 3) the fractional area covered by water. Additionally, the monthly fraction of green vegetation cover (fgreen) associated with each of the three dominant land cover classes per grid cell was derived from a 5-year climatology of 1-km resolution NOAA-AVHRR data. The variables derived in this study provide a potential improvement over the use of monthly fgreen linked to a single land cover class per model grid cell.
Draft reference grid cells for emergency response reconnaissance developed for use by the US Environmental Protection Agency. Grid cells are based on densification of the USGS Quarterquad (1:12,000 scale or 12K) grids for the continental United States, Alaska, Hawaii and Puerto Rico and are roughly equivalent to 1:6000 scale (6K) quadrangles approximately 2 miles long on each side. Note: This file is >80MB in size. Regional subsets have been created from this national file that include a 20 mile buffer of tiles around each EPA Region. To access the regional subsets, go to http://geodata.epa.gov/OSWER/6kquads_epa.zip and select the name of the file that corresponds to your region of interest (e.g. 6kquadr1.zip is the name of the file created for EPA Region 1).
Using Grid Cells for Navigation
Bush, Daniel; Barry, Caswell; Manson, Daniel; Burgess, Neil
2015-01-01
Summary Mammals are able to navigate to hidden goal locations by direct routes that may traverse previously unvisited terrain. Empirical evidence suggests that this “vector navigation” relies on an internal representation of space provided by the hippocampal formation. The periodic spatial firing patterns of grid cells in the hippocampal formation offer a compact combinatorial code for location within large-scale space. Here, we consider the computational problem of how to determine the vector between start and goal locations encoded by the firing of grid cells when this vector may be much longer than the largest grid scale. First, we present an algorithmic solution to the problem, inspired by the Fourier shift theorem. Second, we describe several potential neural network implementations of this solution that combine efficiency of search and biological plausibility. Finally, we discuss the empirical predictions of these implementations and their relationship to the anatomy and electrophysiology of the hippocampal formation. PMID:26247860
A New Family of Multilevel Grid Connected Inverters Based on Packed U Cell Topology.
Pakdel, Majid; Jalilzadeh, Saeid
2017-09-29
In this paper a novel packed U cell (PUC) based multilevel grid connected inverter is proposed. Unlike the U cell arrangement which consists of two power switches and one capacitor, in the proposed converter topology a lower DC power supply from renewable energy resources such as photovoltaic arrays (PV) is used as a base power source. The proposed topology offers higher efficiency and lower cost using a small number of power switches and a lower DC power source which is supplied from renewable energy resources. Other capacitor voltages are extracted from the base lower DC power source using isolated DC-DC power converters. The operation principle of proposed transformerless multilevel grid connected inverter is analyzed theoretically. Operation of the proposed multilevel grid connected inverter is verified through simulation studies. An experimental prototype using STM32F407 discovery controller board is performed to verify the simulation results.
Computational Analysis of the Effect of Porosity on Shock Cell Strength at Cruise
NASA Technical Reports Server (NTRS)
Massey, Steven J.; Elmiligui, Alaa A.; Pao, S. Paul; Abdol-Hamid, Khaled S.; Hunter, Craig A.
2006-01-01
A computational flow field analysis is presented of the effect of core cowl porosity on shock cell strength for a modern separate flow nozzle at cruise conditions. The goal of this study was to identify the primary physical mechanisms by which the application of porosity can reduce shock cell strength and hence the broadband shock associated noise. The flow is simulated by solving the asymptotically steady, compressible, Reynoldsaveraged Navier-Stokes equations on a structured grid using an implicit, up-wind, flux-difference splitting finite volume scheme. The standard two-equation k - epsilon turbulence model with a linear stress representation is used with the addition of a eddy viscosity dependence on total temperature gradient normalized by local turbulence length scale. Specific issues addressed in this study were the optimal area required to weaken a shock impinging on the core cowl surface and the optimal level of porosity and placement of porous areas for reduction of the overall shock cell strength downstream. Two configurations of porosity were found to reduce downstream shock strength by approximately 50%.
Three-dimensional unstructured grid generation via incremental insertion and local optimization
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Wiltberger, N. Lyn; Gandhi, Amar S.
1992-01-01
Algorithms for the generation of 3D unstructured surface and volume grids are discussed. These algorithms are based on incremental insertion and local optimization. The present algorithms are very general and permit local grid optimization based on various measures of grid quality. This is very important; unlike the 2D Delaunay triangulation, the 3D Delaunay triangulation appears not to have a lexicographic characterization of angularity. (The Delaunay triangulation is known to minimize that maximum containment sphere, but unfortunately this is not true lexicographically). Consequently, Delaunay triangulations in three-space can result in poorly shaped tetrahedral elements. Using the present algorithms, 3D meshes can be constructed which optimize a certain angle measure, albeit locally. We also discuss the combinatorial aspects of the algorithm as well as implementational details.
Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
1992-01-01
One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology.
Thermal stress cycling of GaAs solar cells
NASA Technical Reports Server (NTRS)
Francis, Robert W.
1987-01-01
Thermal stress cycling was performed on gallium arsenide solar cells to investigate their electrical, mechanical, and structural integrity. Cells were cycled under low Earth orbit (LEO) simulated temperature conditions in vacuum. Cell evaluations consisted of power output values, spectral response, optical microscopy and ion microprobe mass analysis, and depth profiles on both front surface inter-grid areas and metallization contact grid lines. Cells were examined for degradation after 500, 5,000, 10,000 and 15,245 thermal cycles. No indication of performance degradation was found for any vendor's cell lot.
On the Quality of Velocity Interpolation Schemes for Marker-in-Cell Method and Staggered Grids
NASA Astrophysics Data System (ADS)
Pusok, Adina E.; Kaus, Boris J. P.; Popov, Anton A.
2017-03-01
The marker-in-cell method is generally considered a flexible and robust method to model the advection of heterogenous non-diffusive properties (i.e., rock type or composition) in geodynamic problems. In this method, Lagrangian points carrying compositional information are advected with the ambient velocity field on an Eulerian grid. However, velocity interpolation from grid points to marker locations is often performed without considering the divergence of the velocity field at the interpolated locations (i.e., non-conservative). Such interpolation schemes can induce non-physical clustering of markers when strong velocity gradients are present (Journal of Computational Physics 166:218-252, 2001) and this may, eventually, result in empty grid cells, a serious numerical violation of the marker-in-cell method. To remedy this at low computational costs, Jenny et al. (Journal of Computational Physics 166:218-252, 2001) and Meyer and Jenny (Proceedings in Applied Mathematics and Mechanics 4:466-467, 2004) proposed a simple, conservative velocity interpolation scheme for 2-D staggered grid, while Wang et al. (Geochemistry, Geophysics, Geosystems 16(6):2015-2023, 2015) extended the formulation to 3-D finite element methods. Here, we adapt this formulation for 3-D staggered grids (correction interpolation) and we report on the quality of various velocity interpolation methods for 2-D and 3-D staggered grids. We test the interpolation schemes in combination with different advection schemes on incompressible Stokes problems with strong velocity gradients, which are discretized using a finite difference method. Our results suggest that a conservative formulation reduces the dispersion and clustering of markers, minimizing the need of unphysical marker control in geodynamic models.
Mulas, Marcello; Waniek, Nicolai; Conradt, Jörg
2016-01-01
After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN), is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time. In fact, in absence of an appropriate resetting mechanism, the accumulation of errors over time due to the noise intrinsic in velocity estimation and neural computation prevents CAN models to reproduce stable spatial grid patterns. In this paper, we propose an extension of the CAN model using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To validate our approach we used as input to the neural simulations both artificial data and real data recorded from a robotic setup. The additional neural mechanism can not only anchor grid patterns to external sensory cues but also recall grid patterns generated in previously explored environments. These results might be instrumental for next generation bio-inspired robotic navigation algorithms that take advantage of neural computation in order to cope with complex and dynamic environments. PMID:26924979
A Solution Adaptive Technique Using Tetrahedral Unstructured Grids
NASA Technical Reports Server (NTRS)
Pirzadeh, Shahyar Z.
2000-01-01
An adaptive unstructured grid refinement technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The method is based on a combination of surface mesh subdivision and local remeshing of the volume grid Simple functions of flow quantities are employed to detect dominant features of the flowfield The method is designed for modular coupling with various error/feature analyzers and flow solvers. Several steady-state, inviscid flow test cases are presented to demonstrate the applicability of the method for solving practical three-dimensional problems. In all cases, accurate solutions featuring complex, nonlinear flow phenomena such as shock waves and vortices have been generated automatically and efficiently.
NASA Technical Reports Server (NTRS)
Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.
1991-01-01
A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.
NASA Astrophysics Data System (ADS)
Chen, Junyi; Subramani, Thiyagu; Sun, Yonglie; Jevasuwan, Wipakorn; Fukata, Naoki
2018-05-01
Silicon nanowire solar cells were fabricated by metal catalyzed electroless etching (MCEE) followed by thermal chemical vapor deposition (CVD). In this study, we investigated two effects, a UV/ozone treatment and the use of a micro-grid electrodes, to enhance light absorption and reduce the optic losses in the solar cell device. The UV/ozone treatment successfully improved the conversion efficiency. The micro-grid electrodes were then applied in solar cell devices subjected to a back surface field (BSF) treatment and rapid thermal annealing (RTA). These effects improved the conversion efficiency from 9.4% to 10.9%. Moreover, to reduce surface recombination and improve the continuity of front electrodes, we optimized the etching time of the MCEE process, giving a high efficiency of 12.3%.
Coarse-grained hydrodynamics from correlation functions
NASA Astrophysics Data System (ADS)
Palmer, Bruce
2018-02-01
This paper will describe a formalism for using correlation functions between different grid cells as the basis for determining coarse-grained hydrodynamic equations for modeling the behavior of mesoscopic fluid systems. Configurations from a molecular dynamics simulation or other atomistic simulation are projected onto basis functions representing grid cells in a continuum hydrodynamic simulation. Equilibrium correlation functions between different grid cells are evaluated from the molecular simulation and used to determine the evolution operator for the coarse-grained hydrodynamic system. The formalism is demonstrated on a discrete particle simulation of diffusion with a spatially dependent diffusion coefficient. Correlation functions are calculated from the particle simulation and the spatially varying diffusion coefficient is recovered using a fitting procedure.
Yang, Ping; Kattawar, George W; Liou, Kuo-Nan; Lu, Jun Q
2004-08-10
Two grid configurations can be employed to implement the finite-difference time-domain (FDTD) technique in a Cartesian system. One configuration defines the electric and magnetic field components at the cell edges and cell-face centers, respectively, whereas the other reverses these definitions. These two grid configurations differ in terms of implication on the electromagnetic boundary conditions if the scatterer in the FDTD computation is a dielectric particle. The permittivity has an abrupt transition at the cell interface if the dielectric properties of two adjacent cells are not identical. Similarly, the discontinuity of permittivity is also observed at the edges of neighboring cells that are different in terms of their dielectric constants. We present two FDTD schemes for light scattering by dielectric particles to overcome the above-mentioned discontinuity on the basis of the electromagnetic boundary conditions for the two Cartesian grid configurations. We also present an empirical approach to accelerate the convergence of the discrete Fourier transform to obtain the field values in the frequency domain. As a new application of the FDTD method, we investigate the scattering properties of multibranched bullet-rosette ice crystals at both visible and thermal infrared wavelengths.
GRID-BASED EXPLORATION OF COSMOLOGICAL PARAMETER SPACE WITH SNAKE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikkelsen, K.; Næss, S. K.; Eriksen, H. K., E-mail: kristin.mikkelsen@astro.uio.no
2013-11-10
We present a fully parallelized grid-based parameter estimation algorithm for investigating multidimensional likelihoods called Snake, and apply it to cosmological parameter estimation. The basic idea is to map out the likelihood grid-cell by grid-cell according to decreasing likelihood, and stop when a certain threshold has been reached. This approach improves vastly on the 'curse of dimensionality' problem plaguing standard grid-based parameter estimation simply by disregarding grid cells with negligible likelihood. The main advantages of this method compared to standard Metropolis-Hastings Markov Chain Monte Carlo methods include (1) trivial extraction of arbitrary conditional distributions; (2) direct access to Bayesian evidences; (3)more » better sampling of the tails of the distribution; and (4) nearly perfect parallelization scaling. The main disadvantage is, as in the case of brute-force grid-based evaluation, a dependency on the number of parameters, N{sub par}. One of the main goals of the present paper is to determine how large N{sub par} can be, while still maintaining reasonable computational efficiency; we find that N{sub par} = 12 is well within the capabilities of the method. The performance of the code is tested by comparing cosmological parameters estimated using Snake and the WMAP-7 data with those obtained using CosmoMC, the current standard code in the field. We find fully consistent results, with similar computational expenses, but shorter wall time due to the perfect parallelization scheme.« less
Woven-grid sealed quasi-bipolar lead-acid battery construction and fabricating method
NASA Technical Reports Server (NTRS)
Rippel, Wally E. (Inventor)
1989-01-01
A quasi-bipolar lead-acid battery construction includes a plurality of bipolar cells disposed in side-by-side relation to form a stack, and a pair of monoplanar plates at opposite ends of the stack, the cell stack and monopolar plates being contained within a housing of the battery. Each bipolar cell is loaded with an electrolyte and composed of a bipolar electrode plate and a pair of separator plates disposed on opposite sides of the electrode plate and peripherally sealed thereto. Each bipolar electrode plate is composed of a partition sheet and two bipolar electrode elements folded into a hairpin configuration and applied over opposite edges of the partition sheet so as to cover the opposite surfaces of the opposite halves thereof. Each bipolar electrode element is comprised of a woven grid with a hot-melt strip applied to a central longitudinal region of the grid along which the grid is folded into the hairpin configuration, and layers of negative and positive active material pastes applied to opposite halves of the grid on opposite sides of the central hot-melt strip. The grid is made up of strands of conductive and non-conductive yarns composing the respective transverse and longitudinal weaves of the grid. The conductive yarn has a multi-stranded glass core surrounded and covered by a lead sheath, whereas the non-conductive yarn has a multi-stranded glass core surrounded and covered by a thermally activated sizing.
Efficient Fluid Dynamic Design Optimization Using Cartesian Grids
NASA Technical Reports Server (NTRS)
Dadone, A.; Grossman, B.; Sellers, Bill (Technical Monitor)
2004-01-01
This report is subdivided in three parts. The first one reviews a new approach to the computation of inviscid flows using Cartesian grid methods. The crux of the method is the curvature-corrected symmetry technique (CCST) developed by the present authors for body-fitted grids. The method introduces ghost cells near the boundaries whose values are developed from an assumed flow-field model in vicinity of the wall consisting of a vortex flow, which satisfies the normal momentum equation and the non-penetration condition. The CCST boundary condition was shown to be substantially more accurate than traditional boundary condition approaches. This improved boundary condition is adapted to a Cartesian mesh formulation, which we call the Ghost Body-Cell Method (GBCM). In this approach, all cell centers exterior to the body are computed with fluxes at the four surrounding cell edges. There is no need for special treatment corresponding to cut cells which complicate other Cartesian mesh methods.
Recent Developments in Grid Generation and Force Integration Technology for Overset Grids
NASA Technical Reports Server (NTRS)
Chan, William M.; VanDalsem, William R. (Technical Monitor)
1994-01-01
Recent developments in algorithms and software tools for generating overset grids for complex configurations are described. These include the overset surface grid generation code SURGRD and version 2.0 of the hyperbolic volume grid generation code HYPGEN. The SURGRD code is in beta test mode where the new features include the capability to march over a collection of panel networks, a variety of ways to control the side boundaries and the marching step sizes and distance, a more robust projection scheme and an interpolation option. New features in version 2.0 of HYPGEN include a wider range of boundary condition types. The code also allows the user to specify different marching step sizes and distance for each point on the surface grid. A scheme that takes into account of the overlapped zones on the body surface for the purpose of forces and moments computation is also briefly described, The process involves the following two software modules: MIXSUR - a composite grid generation module to produce a collection of quadrilaterals and triangles on which pressure and viscous stresses are to be integrated, and OVERINT - a forces and moments integration module.
MESH2D Grid generator design and use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G. P.
Mesh2d is a Fortran90 program originally designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). x-coordinates depending only on index i implies strictly vertical x-grid lines, whereas the y-grid lines can undulate. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. Since the original development effort, Mesh2d has been extended to more general two-dimensional structured grids of the form [x(i,j),(i,j)].
Fast High Resolution Volume Carving for 3D Plant Shoot Reconstruction
Scharr, Hanno; Briese, Christoph; Embgenbroich, Patrick; Fischbach, Andreas; Fiorani, Fabio; Müller-Linow, Mark
2017-01-01
Volume carving is a well established method for visual hull reconstruction and has been successfully applied in plant phenotyping, especially for 3d reconstruction of small plants and seeds. When imaging larger plants at still relatively high spatial resolution (≤1 mm), well known implementations become slow or have prohibitively large memory needs. Here we present and evaluate a computationally efficient algorithm for volume carving, allowing e.g., 3D reconstruction of plant shoots. It combines a well-known multi-grid representation called “Octree” with an efficient image region integration scheme called “Integral image.” Speedup with respect to less efficient octree implementations is about 2 orders of magnitude, due to the introduced refinement strategy “Mark and refine.” Speedup is about a factor 1.6 compared to a highly optimized GPU implementation using equidistant voxel grids, even without using any parallelization. We demonstrate the application of this method for trait derivation of banana and maize plants. PMID:29033961
Hasselmo, Michael E.
2008-01-01
This article presents a model of grid cell firing based on the intrinsic persistent firing shown experimentally in neurons of entorhinal cortex. In this model, the mechanism of persistent firing allows individual neurons to hold a stable baseline firing frequency. Depolarizing input from speed modulated head direction cells transiently shifts the frequency of firing from baseline, resulting in a shift in spiking phase in proportion to the integral of velocity. The convergence of input from different persistent firing neurons causes spiking in a grid cell only when the persistent firing neurons are within similar phase ranges. This model effectively simulates the two-dimensional firing of grid cells in open field environments, as well as the properties of theta phase precession. This model provides an alternate implementation of oscillatory interference models. The persistent firing could also interact on a circuit level with rhythmic inhibition and neurons showing membrane potential oscillations to code position with spiking phase. These mechanisms could operate in parallel with computation of position from visual angle and distance of stimuli. In addition to simulating two-dimensional grid patterns, models of phase interference can account for context-dependent firing in other tasks. In network simulations of entorhinal cortex, hippocampus and postsubiculum, the reset of phase effectively replicates context-dependent firing by entorhinal and hippocampal neurons during performance of a continuous spatial alternation task, a delayed spatial alternation task with running in a wheel during the delay period, and a hairpin maze task. PMID:19021258
A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems ⋆
Ying, Wenjun; Henriquez, Craig S.
2013-01-01
This paper presents a class of kernel-free boundary integral (KFBI) methods for general elliptic boundary value problems (BVPs). The boundary integral equations reformulated from the BVPs are solved iteratively with the GMRES method. During the iteration, the boundary and volume integrals involving Green's functions are approximated by structured grid-based numerical solutions, which avoids the need to know the analytical expressions of Green's functions. The KFBI method assumes that the larger regular domain, which embeds the original complex domain, can be easily partitioned into a hierarchy of structured grids so that fast elliptic solvers such as the fast Fourier transform (FFT) based Poisson/Helmholtz solvers or those based on geometric multigrid iterations are applicable. The structured grid-based solutions are obtained with standard finite difference method (FDM) or finite element method (FEM), where the right hand side of the resulting linear system is appropriately modified at irregular grid nodes to recover the formal accuracy of the underlying numerical scheme. Numerical results demonstrating the efficiency and accuracy of the KFBI methods are presented. It is observed that the number of GM-RES iterations used by the method for solving isotropic and moderately anisotropic BVPs is independent of the sizes of the grids that are employed to approximate the boundary and volume integrals. With the standard second-order FEMs and FDMs, the KFBI method shows a second-order convergence rate in accuracy for all of the tested Dirichlet/Neumann BVPs when the anisotropy of the diffusion tensor is not too strong. PMID:23519600
NASA Technical Reports Server (NTRS)
Engwirda, Darren
2017-01-01
An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered VoronoiDelaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.
NASA Astrophysics Data System (ADS)
Engwirda, Darren
2017-06-01
An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered Voronoi-Delaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.
NASA Technical Reports Server (NTRS)
Baker, A. J.; Iannelli, G. S.; Manhardt, Paul D.; Orzechowski, J. A.
1993-01-01
This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.
An arbitrary grid CFD algorithm for configuration aerodynamics analysis. Volume 2: FEMNAS user guide
NASA Technical Reports Server (NTRS)
Manhardt, Paul D.; Orzechowski, J. A.; Baker, A. J.
1992-01-01
This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.
Finite-volume scheme for anisotropic diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Es, Bram van, E-mail: bramiozo@gmail.com; FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands"1; Koren, Barry
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
Theta phase precession of grid and place cell firing in open environments
Jeewajee, A.; Barry, C.; Douchamps, V.; Manson, D.; Lever, C.; Burgess, N.
2014-01-01
Place and grid cells in the rodent hippocampal formation tend to fire spikes at successively earlier phases relative to the local field potential theta rhythm as the animal runs through the cell's firing field on a linear track. However, this ‘phase precession’ effect is less well characterized during foraging in two-dimensional open field environments. Here, we mapped runs through the firing fields onto a unit circle to pool data from multiple runs. We asked which of seven behavioural and physiological variables show the best circular–linear correlation with the theta phase of spikes from place cells in hippocampal area CA1 and from grid cells from superficial layers of medial entorhinal cortex. The best correlate was the distance to the firing field peak projected onto the animal's current running direction. This was significantly stronger than other correlates, such as instantaneous firing rate and time-in-field, but similar in strength to correlates with other measures of distance travelled through the firing field. Phase precession was stronger in place cells than grid cells overall, and robust phase precession was seen in traversals through firing field peripheries (although somewhat less than in traversals through the centre), consistent with phase coding of displacement along the current direction. This type of phase coding, of place field distance ahead of or behind the animal, may be useful for allowing calculation of goal directions during navigation. PMID:24366140
The R package 'icosa' for coarse resolution global triangular and penta-hexagonal gridding
NASA Astrophysics Data System (ADS)
Kocsis, Adam T.
2017-04-01
With the development of the internet and the computational power of personal computers, open source programming environments have become indispensable for science in the past decade. This includes the increase of the GIS capacity of the free R environment, which was originally developed for statistical analyses. The flexibility of R made it a preferred programming tool in a multitude of disciplines from the area of the biological and geological sciences. Many of these subdisciplines operate with incidence (occurrence) data that are in a large number of cases to be grained before further analyses can be conducted. This graining is executed mostly by gridding data to cells of a Gaussian grid of various resolutions to increase the density of data in a single unit of the analyses. This method has obvious shortcomings despite the ease of its application: well-known systematic biases are induced to cell sizes and shapes that can interfere with the results of statistical procedures, especially if the number of incidence points influences the metrics in question. The 'icosa' package employs a common method to overcome this obstacle by implementing grids with roughly equal cell sizes and shapes that are based on tessellated icosahedra. These grid objects are essentially polyhedra with xyz Cartesian vertex data that are linked to tables of faces and edges. At its current developmental stage, the package uses a single method of tessellation which balances grid cell size and shape distortions, but its structure allows the implementation of various other types of tessellation algorithms. The resolution of the grids can be set by the number of breakpoints inserted into a segment forming an edge of the original icosahedron. Both the triangular and their inverted penta-hexagonal grids are available for creation with the package. The package also incorporates functions to look up coordinates in the grid very effectively and data containers to link data to the grid structure. The classes defined in the package are communicating with classes of the 'sp' and 'raster' packages and functions are supplied that allow resolution change and type conversions. Three-dimensional rendering is made available with the 'rgl' package and two-dimensional projections can be calculated using 'sp' and 'rgdal'. The package was developed as part of a project funded by the Deutsche Forschungsgemeinschaft (KO - 5382/1-1).
THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mignone, A.; Tzeferacos, P.; Zanni, C.
We present a description of the adaptive mesh refinement (AMR) implementation of the PLUTO code for solving the equations of classical and special relativistic magnetohydrodynamics (MHD and RMHD). The current release exploits, in addition to the static grid version of the code, the distributed infrastructure of the CHOMBO library for multidimensional parallel computations over block-structured, adaptively refined grids. We employ a conservative finite-volume approach where primary flow quantities are discretized at the cell center in a dimensionally unsplit fashion using the Corner Transport Upwind method. Time stepping relies on a characteristic tracing step where piecewise parabolic method, weighted essentially non-oscillatory,more » or slope-limited linear interpolation schemes can be handily adopted. A characteristic decomposition-free version of the scheme is also illustrated. The solenoidal condition of the magnetic field is enforced by augmenting the equations with a generalized Lagrange multiplier providing propagation and damping of divergence errors through a mixed hyperbolic/parabolic explicit cleaning step. Among the novel features, we describe an extension of the scheme to include non-ideal dissipative processes, such as viscosity, resistivity, and anisotropic thermal conduction without operator splitting. Finally, we illustrate an efficient treatment of point-local, potentially stiff source terms over hierarchical nested grids by taking advantage of the adaptivity in time. Several multidimensional benchmarks and applications to problems of astrophysical relevance assess the potentiality of the AMR version of PLUTO in resolving flow features separated by large spatial and temporal disparities.« less
The Development of a Finite Volume Method for Modeling Sound in Coastal Ocean Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Wen; Yang, Zhaoqing; Copping, Andrea E.
: As the rapid growth of marine renewable energy and off-shore wind energy, there have been concerns that the noises generated from construction and operation of the devices may interfere marine animals’ communication. In this research, a underwater sound model is developed to simulate sound prorogation generated by marine-hydrokinetic energy (MHK) devices or offshore wind (OSW) energy platforms. Finite volume and finite difference methods are developed to solve the 3D Helmholtz equation of sound propagation in the coastal environment. For finite volume method, the grid system consists of triangular grids in horizontal plane and sigma-layers in vertical dimension. A 3Dmore » sparse matrix solver with complex coefficients is formed for solving the resulting acoustic pressure field. The Complex Shifted Laplacian Preconditioner (CSLP) method is applied to efficiently solve the matrix system iteratively with MPI parallelization using a high performance cluster. The sound model is then coupled with the Finite Volume Community Ocean Model (FVCOM) for simulating sound propagation generated by human activities in a range-dependent setting, such as offshore wind energy platform constructions and tidal stream turbines. As a proof of concept, initial validation of the finite difference solver is presented for two coastal wedge problems. Validation of finite volume method will be reported separately.« less
Lalonde, R; Hayzoun, K; Selimi, F; Mariani, J; Strazielle, C
2003-11-01
Grid2(ho/ho) is a loss of function gene mutation resulting in abnormal dendritic arborizations of Purkinje cells. These mutants were compared in a series of motor coordination tests requiring balance and equilibrium to nonataxic controls (Grid2(ho/+)) and to a double mutant (Grid2(ho/Lc)) with an inserted Lc mutation. The performance of Grid2(ho/ho) mutant mice was poorer than that of controls on stationary beam, coat hanger, unsteady platform, and rotorod tests. Grid2(ho/Lc) did not differ from Grid2(Lc/+) mice. However, the insertion of the Lc mutation in Grid2(ho/Lc) potentiated the deficits found in Grid2(ho/ho) in stationary beam, unsteady platform, and rotorod tests. These results indicate a deleterious effect of the Lc mutation on Grid2-deficient mice.
Guzik, Stephen M.; Gao, Xinfeng; Owen, Landon D.; ...
2015-12-20
We present a fourth-order accurate finite-volume method for solving time-dependent hyperbolic systems of conservation laws on mapped grids that are adaptively refined in space and time. Some novel considerations for formulating the semi-discrete system of equations in computational space are combined with detailed mechanisms for accommodating the adapting grids. Furthermore, these considerations ensure that conservation is maintained and that the divergence of a constant vector field is always zero (freestream-preservation property). The solution in time is advanced with a fourth-order Runge-Kutta method. A series of tests verifies that the expected accuracy is achieved in smooth flows and the solution ofmore » a Mach reflection problem demonstrates the effectiveness of the algorithm in resolving strong discontinuities.« less
Colling, D.; Britton, D.; Gordon, J.; Lloyd, S.; Doyle, A.; Gronbech, P.; Coles, J.; Sansum, A.; Patrick, G.; Jones, R.; Middleton, R.; Kelsey, D.; Cass, A.; Geddes, N.; Clark, P.; Barnby, L.
2013-01-01
The Large Hadron Collider (LHC) is one of the greatest scientific endeavours to date. The construction of the collider itself and the experiments that collect data from it represent a huge investment, both financially and in terms of human effort, in our hope to understand the way the Universe works at a deeper level. Yet the volumes of data produced are so large that they cannot be analysed at any single computing centre. Instead, the experiments have all adopted distributed computing models based on the LHC Computing Grid. Without the correct functioning of this grid infrastructure the experiments would not be able to understand the data that they have collected. Within the UK, the Grid infrastructure needed by the experiments is provided by the GridPP project. We report on the operations, performance and contributions made to the experiments by the GridPP project during the years of 2010 and 2011—the first two significant years of the running of the LHC. PMID:23230163
Taming instabilities in power grid networks by decentralized control
NASA Astrophysics Data System (ADS)
Schäfer, B.; Grabow, C.; Auer, S.; Kurths, J.; Witthaut, D.; Timme, M.
2016-05-01
Renewables will soon dominate energy production in our electric power system. And yet, how to integrate renewable energy into the grid and the market is still a subject of major debate. Decentral Smart Grid Control (DSGC) was recently proposed as a robust and decentralized approach to balance supply and demand and to guarantee a grid operation that is both economically and dynamically feasible. Here, we analyze the impact of network topology by assessing the stability of essential network motifs using both linear stability analysis and basin volume for delay systems. Our results indicate that if frequency measurements are averaged over sufficiently large time intervals, DSGC enhances the stability of extended power grid systems. We further investigate whether DSGC supports centralized and/or decentralized power production and find it to be applicable to both. However, our results on cycle-like systems suggest that DSGC favors systems with decentralized production. Here, lower line capacities and lower averaging times are required compared to those with centralized production.
Detailed Aerodynamic Analysis of a Shrouded Tail Rotor Using an Unstructured Mesh Flow Solver
NASA Astrophysics Data System (ADS)
Lee, Hee Dong; Kwon, Oh Joon
The detailed aerodynamics of a shrouded tail rotor in hover has been numerically studied using a parallel inviscid flow solver on unstructured meshes. The numerical method is based on a cell-centered finite-volume discretization and an implicit Gauss-Seidel time integration. The calculation was made for a single blade by imposing a periodic boundary condition between adjacent rotor blades. The grid periodicity was also imposed at the periodic boundary planes to avoid numerical inaccuracy resulting from solution interpolation. The results were compared with available experimental data and those from a disk vortex theory for validation. It was found that realistic three-dimensional modeling is important for the prediction of detailed aerodynamics of shrouded rotors including the tip clearance gap flow.
A Cell-Centered Multigrid Algorithm for All Grid Sizes
NASA Technical Reports Server (NTRS)
Gjesdal, Thor
1996-01-01
Multigrid methods are optimal; that is, their rate of convergence is independent of the number of grid points, because they use a nested sequence of coarse grids to represent different scales of the solution. This nesting does, however, usually lead to certain restrictions of the permissible size of the discretised problem. In cases where the modeler is free to specify the whole problem, such constraints are of little importance because they can be taken into consideration from the outset. We consider the situation in which there are other competing constraints on the resolution. These restrictions may stem from the physical problem (e.g., if the discretised operator contains experimental data measured on a fixed grid) or from the need to avoid limitations set by the hardware. In this paper we discuss a modification to the cell-centered multigrid algorithm, so that it can be used br problems with any resolution. We discuss in particular a coarsening strategy and choice of intergrid transfer operators that can handle grids with both an even or odd number of cells. The method is described and applied to linear equations obtained by discretization of two- and three-dimensional second-order elliptic PDEs.
Flowfield predictions for multiple body launch vehicles
NASA Technical Reports Server (NTRS)
Deese, Jerry E.; Pavish, D. L.; Johnson, Jerry G.; Agarwal, Ramesh K.; Soni, Bharat K.
1992-01-01
A method is developed for simulating inviscid and viscous flow around multicomponent launch vehicles. Grids are generated by the GENIE general-purpose grid-generation code, and the flow solver is a finite-volume Runge-Kutta time-stepping method. Turbulence effects are simulated using Baldwin and Lomax (1978) turbulence model. Calculations are presented for three multibody launch vehicle configurations: one with two small-diameter solid motors, one with nine small-diameter solid motors, and one with three large-diameter solid motors.
Unstructured 3D Delaunay mesh generation applied to planes, trains and automobiles
NASA Technical Reports Server (NTRS)
Blake, Kenneth R.; Spragle, Gregory S.
1993-01-01
Technical issues associated with domain-tessellation production, including initial boundary node triangulation and volume mesh refinement, are presented for the 'TGrid' 3D Delaunay unstructured grid generation program. The approach employed is noted to be capable of preserving predefined triangular surface facets in the final tessellation. The capabilities of the approach are demonstrated by generating grids about an entire fighter aircraft configuration, a train, and a wind tunnel model of an automobile.
Simulating hydrodynamics and ice cover in Lake Erie using an unstructured grid model
NASA Astrophysics Data System (ADS)
Fujisaki-Manome, A.; Wang, J.
2016-02-01
An unstructured grid Finite-Volume Coastal Ocean Model (FVCOM) is applied to Lake Erie to simulate seasonal ice cover. The model is coupled with an unstructured-grid, finite-volume version of the Los Alamos Sea Ice Model (UG-CICE). We replaced the original 2-time-step Euler forward scheme in time integration by the central difference (i.e., leapfrog) scheme to assure a neutrally inertial stability. The modified version of FVCOM coupled with the ice model is applied to the shallow freshwater lake in this study using unstructured grids to represent the complicated coastline in the Laurentian Great Lakes and refining the spatial resolution locally. We conducted multi-year simulations in Lake Erie from 2002 to 2013. The results were compared with the observed ice extent, water surface temperature, ice thickness, currents, and water temperature profiles. Seasonal and interannual variation of ice extent and water temperature was captured reasonably, while the modeled thermocline was somewhat diffusive. The modeled ice thickness tends to be systematically thinner than the observed values. The modeled lake currents compared well with measurements obtained from an Acoustic Doppler Current Profiler located in the deep part of the lake, whereas the simulated currents deviated from measurements near the surface, possibly due to the model's inability to reproduce the sharp thermocline during the summer and the lack of detailed representation of offshore wind fields in the interpolated meteorological forcing.
OGC and Grid Interoperability in enviroGRIDS Project
NASA Astrophysics Data System (ADS)
Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas
2010-05-01
EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and the OGC Web service protocols, the advantages offered by the Grid technology - such as providing a secure interoperability between the distributed geospatial resource -and the issues introduced by the integration of distributed geospatial data in a secure environment: data and service discovery, management, access and computation. enviroGRIDS project proposes a new architecture which allows a flexible and scalable approach for integrating the geospatial domain represented by the OGC Web services with the Grid domain represented by the gLite middleware. The parallelism offered by the Grid technology is discussed and explored at the data level, management level and computation level. The analysis is carried out for OGC Web service interoperability in general but specific details are emphasized for Web Map Service (WMS), Web Feature Service (WFS), Web Coverage Service (WCS), Web Processing Service (WPS) and Catalog Service for Web (CSW). Issues regarding the mapping and the interoperability between the OGC and the Grid standards and protocols are analyzed as they are the base in solving the communication problems between the two environments: grid and geospatial. The presetation mainly highlights how the Grid environment and Grid applications capabilities can be extended and utilized in geospatial interoperability. Interoperability between geospatial and Grid infrastructures provides features such as the specific geospatial complex functionality and the high power computation and security of the Grid, high spatial model resolution and geographical area covering, flexible combination and interoperability of the geographical models. According with the Service Oriented Architecture concepts and requirements of interoperability between geospatial and Grid infrastructures each of the main functionality is visible from enviroGRIDS Portal and consequently, by the end user applications such as Decision Maker/Citizen oriented Applications. The enviroGRIDS portal is the single way of the user to get into the system and the portal faces a unique style of the graphical user interface. Main reference for further information: [1] enviroGRIDS Project, http://www.envirogrids.net/
The Impacts of Bowtie Effect and View Angle Discontinuity on MODIS Swath Data Gridding
NASA Technical Reports Server (NTRS)
Wang, Yujie; Lyapustin, Alexei
2007-01-01
We have analyzed two effects of the MODIS viewing geometry on the quality of gridded imagery. First, the fact that the MODIS scans a swath of the Earth 10 km wide at nadir, causes abrupt change of the view azimuth angle at the boundary of adjacent scans. This discontinuity appears as striping of the image clearly visible in certain cases with viewing geometry close to principle plane over the snow of the glint area of water. The striping is a true surface Bi-directional Reflectance Factor (BRF) effect and should be preserved during gridding. Second, due to bowtie effect, the observations in adjacent scans overlap each other. Commonly used method of calculating grid cell value by averaging all overlapping observations may result in smearing of the image. This paper describes a refined gridding algorithm that takes the above two effects into account. By calculating the grid cell value by averaging the overlapping observations from a single scan, the new algorithm preserves the measured BRF signal and enhances sharpness of the image.
Solar Maps Development: How the Maps Were Made | Geospatial Data Science |
10% of a true measured value within the grid cell. Due to terrain effects and other microclimate effects and other microclimate influences, the local cloud cover can vary significantly even within a approximately 10% of a true measured value within the grid cell. Due to terrain effects and other microclimate
Kiesler, James L.
2002-01-01
An analysis of the application indicates that the selected data layers to be combined should be at the greatest spatial resolution possible; however, all data layers do not have to be at the same spatial resolution. The spatial variation of the data layers should be adequately defined. The size of each grid cell should be small enough to maintain the spatial definition of smaller features within the data layers. The most accurate results are shown to occur when the values for the grid cells representing the individual data layers are summed and the mean of the summed grid-cell values is used to describe the watershed of interest.
Semitransparent organic solar cells with hybrid monolayer graphene/metal grid as top electrodes
NASA Astrophysics Data System (ADS)
Lin, Peng; Choy, Wallace C. H.; Zhang, Di; Xie, Fengxian; Xin, Jianzhuo; Leung, C. W.
2013-03-01
Hybrid transparent monolayer graphene/metal grid is proposed as top electrode of semitransparent organic solar cells. The hybrid electrode using gold grid on flexible polyethylene terephthalate substrate shows very low sheet resistance of 22 ± 3 Ω/□ and high optical transmittance of 81.4%, which is comparable to conventional indium tin oxide/glass electrode. Using lamination process, the layer of poly(3,4-ethylenedioythiophene):poly(styrenesulfonate) doped with D-sorbitol plays an important role in the electrical performance of the laminated devices. In addition, the devices show best power convention efficiency of 3.1% and fill factor of 55.0%, which are much better than those of similar graphene-based semitransparent organic solar cells.
Using Grid Cells for Navigation.
Bush, Daniel; Barry, Caswell; Manson, Daniel; Burgess, Neil
2015-08-05
Mammals are able to navigate to hidden goal locations by direct routes that may traverse previously unvisited terrain. Empirical evidence suggests that this "vector navigation" relies on an internal representation of space provided by the hippocampal formation. The periodic spatial firing patterns of grid cells in the hippocampal formation offer a compact combinatorial code for location within large-scale space. Here, we consider the computational problem of how to determine the vector between start and goal locations encoded by the firing of grid cells when this vector may be much longer than the largest grid scale. First, we present an algorithmic solution to the problem, inspired by the Fourier shift theorem. Second, we describe several potential neural network implementations of this solution that combine efficiency of search and biological plausibility. Finally, we discuss the empirical predictions of these implementations and their relationship to the anatomy and electrophysiology of the hippocampal formation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, D.E.; Little, C.A.
1978-11-01
The APORT computer code was developed to apportion variables tabulated for polygon-structured civil districts onto cells of a polar grid. The apportionment is based on fractional overlap between the polygon and the grid cells. Centering the origin of the polar system at a pollutant source site yields results that are very useful for assessing and interpreting the effects of airborne pollutant dissemination. The APOPLT graphics code, which uses the same data set as APORT, provides a convenient visual display of the polygon structure and the extent of the polar grid. The APORT/APOPLT methodology was verified by application to county summariesmore » of cattle population for counties surrounding the Oyster Creek, New Jersey, nuclear power plant. These numerical results, which were obtained using approximately 2-min computer time on an IBM System 360/91 computer, compare favorably to results of manual computations in both speed and accuracy.« less
Deriving flow directions for coarse-resolution (1-4 km) gridded hydrologic modeling
NASA Astrophysics Data System (ADS)
Reed, Seann M.
2003-09-01
The National Weather Service Hydrology Laboratory (NWS-HL) is currently testing a grid-based distributed hydrologic model at a resolution (4 km) commensurate with operational, radar-based precipitation products. To implement distributed routing algorithms in this framework, a flow direction must be assigned to each model cell. A new algorithm, referred to as cell outlet tracing with an area threshold (COTAT) has been developed to automatically, accurately, and efficiently assign flow directions to any coarse-resolution grid cells using information from any higher-resolution digital elevation model. Although similar to previously published algorithms, this approach offers some advantages. Use of an area threshold allows more control over the tendency for producing diagonal flow directions. Analyses of results at different output resolutions ranging from 300 m to 4000 m indicate that it is possible to choose an area threshold that will produce minimal differences in average network flow lengths across this range of scales. Flow direction grids at a 4 km resolution have been produced for the conterminous United States.
Local transformations of the hippocampal cognitive map.
Krupic, Julija; Bauza, Marius; Burton, Stephen; O'Keefe, John
2018-03-09
Grid cells are neurons active in multiple fields arranged in a hexagonal lattice and are thought to represent the "universal metric for space." However, they become nonhomogeneously distorted in polarized enclosures, which challenges this view. We found that local changes to the configuration of the enclosure induce individual grid fields to shift in a manner inversely related to their distance from the reconfigured boundary. The grid remained primarily anchored to the unchanged stable walls and showed a nonuniform rescaling. Shifts in simultaneously recorded colocalized grid fields were strongly correlated, which suggests that the readout of the animal's position might still be intact. Similar field shifts were also observed in place and boundary cells-albeit of greater magnitude and more pronounced closer to the reconfigured boundary-which suggests that there is no simple one-to-one relationship between these three different cell types. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Numerical grid generation in computational field simulations. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soni, B.K.; Thompson, J.F.; Haeuser, J.
1996-12-31
To enhance the CFS technology to its next level of applicability (i.e., to create acceptance of CFS in an integrated product and process development involving multidisciplinary optimization) the basic requirements are: rapid turn-around time, reliable and accurate simulation, affordability and appropriate linkage to other engineering disciplines. In response to this demand, there has been a considerable growth in the grid generation related research activities involving automization, parallel processing, linkage with the CAD-CAM systems, CFS with dynamic motion and moving boundaries, strategies and algorithms associated with multi-block structured, unstructured, hybrid, hexahedral, and Cartesian grids, along with its applicability to various disciplinesmore » including biomedical, semiconductor, geophysical, ocean modeling, and multidisciplinary optimization.« less
Accurate solutions for transonic viscous flow over finite wings
NASA Technical Reports Server (NTRS)
Vatsa, V. N.
1986-01-01
An explicit multistage Runge-Kutta type time-stepping scheme is used for solving the three-dimensional, compressible, thin-layer Navier-Stokes equations. A finite-volume formulation is employed to facilitate treatment of complex grid topologies encountered in three-dimensional calculations. Convergence to steady state is expedited through usage of acceleration techniques. Further numerical efficiency is achieved through vectorization of the computer code. The accuracy of the overall scheme is evaluated by comparing the computed solutions with the experimental data for a finite wing under different test conditions in the transonic regime. A grid refinement study ir conducted to estimate the grid requirements for adequate resolution of salient features of such flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X; Liang, X; Penagaricano, J
2015-06-15
Purpose: To present the first clinical applications of Helical Tomotherapy-based spatially fractionated radiotherapy (HT-GRID) for deep seated tumors and associated dosimetric study. Methods: Ten previously treated GRID patients were selected (5 HT-GRID and 5 LINAC-GRID using a commercially available GRID block). Each case was re-planned either in HT-GRID or LINAC-GRID for a total of 10 plans for both techniques using same prescribed dose of 20 Gy to maximum point dose of GRID GTV. For TOMO-GRID, a programmable virtual TOMOGRID template mimicking a GRID pattern was generated. Dosimetric parameters compared included: GRID GTV mean dose (Dmean) and equivalent uniform dose (EUD),more » GRID GTV dose inhomogeneity (Ratio(valley/peak)), normal tissue Dmean and EUD, and other organs-at-risk(OARs) doses. Results: The median tumor volume was 634 cc, ranging from 182 to 4646 cc. Median distance from skin to the deepest part of tumor was 22cm, ranging from 8.9 to 38cm. The median GRID GTV Dmean and EUD was 10.65Gy (9.8–12.5Gy) and 7.62Gy (4.31–11.06Gy) for HT-GRID and was 6.73Gy (4.44–8.44Gy) and 3.95Gy (0.14–4.2Gy) for LINAC-GRID. The median Ratio(valley/peak) was 0.144(0.05–0.29) for HT-GRID and was 0.055(0.0001–0.14) for LINAC-GRID. For normal tissue in HT-GRID, the median Dmean and EUD was 1.24Gy (0.34–2.54Gy) and 5.45 Gy(3.45–6.89Gy) and was 0.61 Gy(0.11–1.52Gy) and 6Gy(4.45–6.82Gy) for LINAC-GRID. The OAR doses were comparable between the HT-GRID and LINAC-GRID. However, in some cases it was not possible to avoid a critical structure in LINAC-GRID; while HT-GRID can spare more tissue doses for certain critical structures. Conclusion: HT-GRID delivers higher GRID GTV Dmean, EUD and Ratio(valley/peak) compared to LINAC-GRID. HT-GRID delivers higher Dmean and lower EUD for normal tissue compared to LINAC-GRID. TOMOGRID template can be highly patient-specific and allows adjustment of the GRID pattern to different tumor sizes and shapes when they are deeply-seated and cannot be safely treated with LINAC-GRID.« less