A Development of Lightweight Grid Interface
NASA Astrophysics Data System (ADS)
Iwai, G.; Kawai, Y.; Sasaki, T.; Watase, Y.
2011-12-01
In order to help a rapid development of Grid/Cloud aware applications, we have developed API to abstract the distributed computing infrastructures based on SAGA (A Simple API for Grid Applications). SAGA, which is standardized in the OGF (Open Grid Forum), defines API specifications to access distributed computing infrastructures, such as Grid, Cloud and local computing resources. The Universal Grid API (UGAPI), which is a set of command line interfaces (CLI) and APIs, aims to offer simpler API to combine several SAGA interfaces with richer functionalities. These CLIs of the UGAPI offer typical functionalities required by end users for job management and file access to the different distributed computing infrastructures as well as local computing resources. We have also built a web interface for the particle therapy simulation and demonstrated the large scale calculation using the different infrastructures at the same time. In this paper, we would like to present how the web interface based on UGAPI and SAGA achieve more efficient utilization of computing resources over the different infrastructures with technical details and practical experiences.
Distributed Accounting on the Grid
NASA Technical Reports Server (NTRS)
Thigpen, William; Hacker, Thomas J.; McGinnis, Laura F.; Athey, Brian D.
2001-01-01
By the late 1990s, the Internet was adequately equipped to move vast amounts of data between HPC (High Performance Computing) systems, and efforts were initiated to link together the national infrastructure of high performance computational and data storage resources together into a general computational utility 'grid', analogous to the national electrical power grid infrastructure. The purpose of the Computational grid is to provide dependable, consistent, pervasive, and inexpensive access to computational resources for the computing community in the form of a computing utility. This paper presents a fully distributed view of Grid usage accounting and a methodology for allocating Grid computational resources for use on a Grid computing system.
FermiGrid - experience and future plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chadwick, K.; Berman, E.; Canal, P.
2007-09-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and themore » Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.« less
FermiGrid—experience and future plans
NASA Astrophysics Data System (ADS)
Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; Yocum, D. R.
2008-07-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid (OSG) and the Worldwide LHC Computing Grid Collaboration (WLCG). FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the OSG, EGEE, and the WLCG. Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure - the successes and the problems.
Grids, virtualization, and clouds at Fermilab
Timm, S.; Chadwick, K.; Garzoglio, G.; ...
2014-06-11
Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture andmore » the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). Lastly, this work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.« less
Grids, virtualization, and clouds at Fermilab
NASA Astrophysics Data System (ADS)
Timm, S.; Chadwick, K.; Garzoglio, G.; Noh, S.
2014-06-01
Fermilab supports a scientific program that includes experiments and scientists located across the globe. To better serve this community, in 2004, the (then) Computing Division undertook the strategy of placing all of the High Throughput Computing (HTC) resources in a Campus Grid known as FermiGrid, supported by common shared services. In 2007, the FermiGrid Services group deployed a service infrastructure that utilized Xen virtualization, LVS network routing and MySQL circular replication to deliver highly available services that offered significant performance, reliability and serviceability improvements. This deployment was further enhanced through the deployment of a distributed redundant network core architecture and the physical distribution of the systems that host the virtual machines across multiple buildings on the Fermilab Campus. In 2010, building on the experience pioneered by FermiGrid in delivering production services in a virtual infrastructure, the Computing Sector commissioned the FermiCloud, General Physics Computing Facility and Virtual Services projects to serve as platforms for support of scientific computing (FermiCloud 6 GPCF) and core computing (Virtual Services). This work will present the evolution of the Fermilab Campus Grid, Virtualization and Cloud Computing infrastructure together with plans for the future.
A Grid Infrastructure for Supporting Space-based Science Operations
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Redman, Sandra H.; McNair, Ann R. (Technical Monitor)
2002-01-01
Emerging technologies for computational grid infrastructures have the potential for revolutionizing the way computers are used in all aspects of our lives. Computational grids are currently being implemented to provide a large-scale, dynamic, and secure research and engineering environments based on standards and next-generation reusable software, enabling greater science and engineering productivity through shared resources and distributed computing for less cost than traditional architectures. Combined with the emerging technologies of high-performance networks, grids provide researchers, scientists and engineers the first real opportunity for an effective distributed collaborative environment with access to resources such as computational and storage systems, instruments, and software tools and services for the most computationally challenging applications.
GLIDE: a grid-based light-weight infrastructure for data-intensive environments
NASA Technical Reports Server (NTRS)
Mattmann, Chris A.; Malek, Sam; Beckman, Nels; Mikic-Rakic, Marija; Medvidovic, Nenad; Chrichton, Daniel J.
2005-01-01
The promise of the grid is that it will enable public access and sharing of immense amounts of computational and data resources among dynamic coalitions of individuals and institutions. However, the current grid solutions make several limiting assumptions that curtail their widespread adoption. To address these limitations, we present GLIDE, a prototype light-weight, data-intensive middleware infrastructure that enables access to the robust data and computational power of the grid on DREAM platforms.
DICOMGrid: a middleware to integrate PACS and EELA-2 grid infrastructure
NASA Astrophysics Data System (ADS)
Moreno, Ramon A.; de Sá Rebelo, Marina; Gutierrez, Marco A.
2010-03-01
Medical images provide lots of information for physicians, but the huge amount of data produced by medical image equipments in a modern Health Institution is not completely explored in its full potential yet. Nowadays medical images are used in hospitals mostly as part of routine activities while its intrinsic value for research is underestimated. Medical images can be used for the development of new visualization techniques, new algorithms for patient care and new image processing techniques. These research areas usually require the use of huge volumes of data to obtain significant results, along with enormous computing capabilities. Such qualities are characteristics of grid computing systems such as EELA-2 infrastructure. The grid technologies allow the sharing of data in large scale in a safe and integrated environment and offer high computing capabilities. In this paper we describe the DicomGrid to store and retrieve medical images, properly anonymized, that can be used by researchers to test new processing techniques, using the computational power offered by grid technology. A prototype of the DicomGrid is under evaluation and permits the submission of jobs into the EELA-2 grid infrastructure while offering a simple interface that requires minimal understanding of the grid operation.
Current Grid operation and future role of the Grid
NASA Astrophysics Data System (ADS)
Smirnova, O.
2012-12-01
Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place, Grid will become limited to HEP; if however the current multitude of Grid-like systems will converge to a generic, modular and extensible solution, Grid will become true to its name.
The Computing and Data Grid Approach: Infrastructure for Distributed Science Applications
NASA Technical Reports Server (NTRS)
Johnston, William E.
2002-01-01
With the advent of Grids - infrastructure for using and managing widely distributed computing and data resources in the science environment - there is now an opportunity to provide a standard, large-scale, computing, data, instrument, and collaboration environment for science that spans many different projects and provides the required infrastructure and services in a relatively uniform and supportable way. Grid technology has evolved over the past several years to provide the services and infrastructure needed for building 'virtual' systems and organizations. We argue that Grid technology provides an excellent basis for the creation of the integrated environments that can combine the resources needed to support the large- scale science projects located at multiple laboratories and universities. We present some science case studies that indicate that a paradigm shift in the process of science will come about as a result of Grids providing transparent and secure access to advanced and integrated information and technologies infrastructure: powerful computing systems, large-scale data archives, scientific instruments, and collaboration tools. These changes will be in the form of services that can be integrated with the user's work environment, and that enable uniform and highly capable access to these computers, data, and instruments, regardless of the location or exact nature of these resources. These services will integrate transient-use resources like computing systems, scientific instruments, and data caches (e.g., as they are needed to perform a simulation or analyze data from a single experiment); persistent-use resources. such as databases, data catalogues, and archives, and; collaborators, whose involvement will continue for the lifetime of a project or longer. While we largely address large-scale science in this paper, Grids, particularly when combined with Web Services, will address a broad spectrum of science scenarios. both large and small scale.
Progress in Machine Learning Studies for the CMS Computing Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonacorsi, Daniele; Kuznetsov, Valentin; Magini, Nicolo
Here, computing systems for LHC experiments developed together with Grids worldwide. While a complete description of the original Grid-based infrastructure and services for LHC experiments and its recent evolutions can be found elsewhere, it is worth to mention here the scale of the computing resources needed to fulfill the needs of LHC experiments in Run-1 and Run-2 so far.
Progress in Machine Learning Studies for the CMS Computing Infrastructure
Bonacorsi, Daniele; Kuznetsov, Valentin; Magini, Nicolo; ...
2017-12-06
Here, computing systems for LHC experiments developed together with Grids worldwide. While a complete description of the original Grid-based infrastructure and services for LHC experiments and its recent evolutions can be found elsewhere, it is worth to mention here the scale of the computing resources needed to fulfill the needs of LHC experiments in Run-1 and Run-2 so far.
Kepper, Nick; Ettig, Ramona; Dickmann, Frank; Stehr, Rene; Grosveld, Frank G; Wedemann, Gero; Knoch, Tobias A
2010-01-01
Especially in the life-science and the health-care sectors the huge IT requirements are imminent due to the large and complex systems to be analysed and simulated. Grid infrastructures play here a rapidly increasing role for research, diagnostics, and treatment, since they provide the necessary large-scale resources efficiently. Whereas grids were first used for huge number crunching of trivially parallelizable problems, increasingly parallel high-performance computing is required. Here, we show for the prime example of molecular dynamic simulations how the presence of large grid clusters including very fast network interconnects within grid infrastructures allows now parallel high-performance grid computing efficiently and thus combines the benefits of dedicated super-computing centres and grid infrastructures. The demands for this service class are the highest since the user group has very heterogeneous requirements: i) two to many thousands of CPUs, ii) different memory architectures, iii) huge storage capabilities, and iv) fast communication via network interconnects, are all needed in different combinations and must be considered in a highly dedicated manner to reach highest performance efficiency. Beyond, advanced and dedicated i) interaction with users, ii) the management of jobs, iii) accounting, and iv) billing, not only combines classic with parallel high-performance grid usage, but more importantly is also able to increase the efficiency of IT resource providers. Consequently, the mere "yes-we-can" becomes a huge opportunity like e.g. the life-science and health-care sectors as well as grid infrastructures by reaching higher level of resource efficiency.
NASA Astrophysics Data System (ADS)
Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt; Larson, Krista; Sfiligoi, Igor; Rynge, Mats
2014-06-01
Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared over the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by "Big Data" will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt
Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared overmore » the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by 'Big Data' will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.« less
GreenView and GreenLand Applications Development on SEE-GRID Infrastructure
NASA Astrophysics Data System (ADS)
Mihon, Danut; Bacu, Victor; Gorgan, Dorian; Mészáros, Róbert; Gelybó, Györgyi; Stefanut, Teodor
2010-05-01
The GreenView and GreenLand applications [1] have been developed through the SEE-GRID-SCI (SEE-GRID eInfrastructure for regional eScience) FP7 project co-funded by the European Commission [2]. The development of environment applications is a challenge for Grid technologies and software development methodologies. This presentation exemplifies the development of the GreenView and GreenLand applications over the SEE-GRID infrastructure by the Grid Application Development Methodology [3]. Today's environmental applications are used in vary domains of Earth Science such as meteorology, ground and atmospheric pollution, ground metal detection or weather prediction. These applications run on satellite images (e.g. Landsat, MERIS, MODIS, etc.) and the accuracy of output results depends mostly of the quality of these images. The main drawback of such environmental applications regards the need of computation power and storage power (some images are almost 1GB in size), in order to process such a large data volume. Actually, almost applications requiring high computation resources have approached the migration onto the Grid infrastructure. This infrastructure offers the computing power by running the atomic application components on different Grid nodes in sequential or parallel mode. The middleware used between the Grid infrastructure and client applications is ESIP (Environment Oriented Satellite Image Processing Platform), which is based on gProcess platform [4]. In its current format, gProcess is used for launching new processes on the Grid nodes, but also for monitoring the execution status of these processes. This presentation highlights two case studies of Grid based environmental applications, GreenView and GreenLand [5]. GreenView is used in correlation with MODIS (Moderate Resolution Imaging Spectroradiometer) satellite images and meteorological datasets, in order to produce pseudo colored temperature and vegetation maps for different geographical CEE (Central Eastern Europe) regions. On the other hand, GreenLand is used for generating maps for different vegetation indexes (e.g. NDVI, EVI, SAVI, GEMI) based on Landsat satellite images. Both applications are using interpolation and random value generation algorithms, but also specific formulas for computing vegetation index values. The GreenView and GreenLand applications have been experimented over the SEE-GRID infrastructure and the performance evaluation is reported in [6]. The improvement of the execution time (obtained through a better parallelization of jobs), the extension of geographical areas to other parts of the Earth, and new user interaction techniques on spatial data and large set of satellite images are the goals of the future work. References [1] GreenView application on Wiki, http://wiki.egee-see.org/index.php/GreenView [2] SEE-GRID-SCI Project, http://www.see-grid-sci.eu/ [3] Gorgan D., Stefanut T., Bâcu V., Mihon D., Grid based Environment Application Development Methodology, SCICOM, 7th International Conference on "Large-Scale Scientific Computations", 4-8 June, 2009, Sozopol, Bulgaria, (To be published by Springer), (2009). [4] Gorgan D., Bacu V., Stefanut T., Rodila D., Mihon D., Grid based Satellite Image Processing Platform for Earth Observation Applications Development. IDAACS'2009 - IEEE Fifth International Workshop on "Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications", 21-23 September, Cosenza, Italy, IEEE Published in Computer Press, 247-252 (2009). [5] Mihon D., Bacu V., Stefanut T., Gorgan D., "Grid Based Environment Application Development - GreenView Application". ICCP2009 - IEEE 5th International Conference on Intelligent Computer Communication and Processing, 27 Aug, 2009 Cluj-Napoca. Published by IEEE Computer Press, pp. 275-282 (2009). [6] Danut Mihon, Victor Bacu, Dorian Gorgan, Róbert Mészáros, Györgyi Gelybó, Teodor Stefanut, Practical Considerations on the GreenView Application Development and Execution over SEE-GRID. SEE-GRID-SCI User Forum, 9-10 Dec 2009, Bogazici University, Istanbul, Turkey, ISBN: 978-975-403-510-0, pp. 167-175 (2009).
Grid computing technology for hydrological applications
NASA Astrophysics Data System (ADS)
Lecca, G.; Petitdidier, M.; Hluchy, L.; Ivanovic, M.; Kussul, N.; Ray, N.; Thieron, V.
2011-06-01
SummaryAdvances in e-Infrastructure promise to revolutionize sensing systems and the way in which data are collected and assimilated, and complex water systems are simulated and visualized. According to the EU Infrastructure 2010 work-programme, data and compute infrastructures and their underlying technologies, either oriented to tackle scientific challenges or complex problem solving in engineering, are expected to converge together into the so-called knowledge infrastructures, leading to a more effective research, education and innovation in the next decade and beyond. Grid technology is recognized as a fundamental component of e-Infrastructures. Nevertheless, this emerging paradigm highlights several topics, including data management, algorithm optimization, security, performance (speed, throughput, bandwidth, etc.), and scientific cooperation and collaboration issues that require further examination to fully exploit it and to better inform future research policies. The paper illustrates the results of six different surface and subsurface hydrology applications that have been deployed on the Grid. All the applications aim to answer to strong requirements from the Civil Society at large, relatively to natural and anthropogenic risks. Grid technology has been successfully tested to improve flood prediction, groundwater resources management and Black Sea hydrological survey, by providing large computing resources. It is also shown that Grid technology facilitates e-cooperation among partners by means of services for authentication and authorization, seamless access to distributed data sources, data protection and access right, and standardization.
Grid Computing at GSI for ALICE and FAIR - present and future
NASA Astrophysics Data System (ADS)
Schwarz, Kilian; Uhlig, Florian; Karabowicz, Radoslaw; Montiel-Gonzalez, Almudena; Zynovyev, Mykhaylo; Preuss, Carsten
2012-12-01
The future FAIR experiments CBM and PANDA have computing requirements that fall in a category that could currently not be satisfied by one single computing centre. One needs a larger, distributed computing infrastructure to cope with the amount of data to be simulated and analysed. Since 2002, GSI operates a tier2 center for ALICE@CERN. The central component of the GSI computing facility and hence the core of the ALICE tier2 centre is a LSF/SGE batch farm, currently split into three subclusters with a total of 15000 CPU cores shared by the participating experiments, and accessible both locally and soon also completely via Grid. In terms of data storage, a 5.5 PB Lustre file system, directly accessible from all worker nodes is maintained, as well as a 300 TB xrootd-based Grid storage element. Based on this existing expertise, and utilising ALICE's middleware ‘AliEn’, the Grid infrastructure for PANDA and CBM is being built. Besides a tier0 centre at GSI, the computing Grids of the two FAIR collaborations encompass now more than 17 sites in 11 countries and are constantly expanding. The operation of the distributed FAIR computing infrastructure benefits significantly from the experience gained with the ALICE tier2 centre. A close collaboration between ALICE Offline and FAIR provides mutual advantages. The employment of a common Grid middleware as well as compatible simulation and analysis software frameworks ensure significant synergy effects.
The StratusLab cloud distribution: Use-cases and support for scientific applications
NASA Astrophysics Data System (ADS)
Floros, E.
2012-04-01
The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take advantage of StratusLab cloud solutions. Interested users are welcomed to join StratusLab's user community by getting access to the reference cloud services deployed by the project and offered to the public.
Evaluation of Service Level Agreement Approaches for Portfolio Management in the Financial Industry
NASA Astrophysics Data System (ADS)
Pontz, Tobias; Grauer, Manfred; Kuebert, Roland; Tenschert, Axel; Koller, Bastian
The idea of service-oriented Grid computing seems to have the potential for fundamental paradigm change and a new architectural alignment concerning the design of IT infrastructures. There is a wide range of technical approaches from scientific communities which describe basic infrastructures and middlewares for integrating Grid resources in order that by now Grid applications are technically realizable. Hence, Grid computing needs viable business models and enhanced infrastructures to move from academic application right up to commercial application. For a commercial usage of these evolutions service level agreements are needed. The developed approaches are primary of academic interest and mostly have not been put into practice. Based on a business use case of the financial industry, five service level agreement approaches have been evaluated in this paper. Based on the evaluation, a management architecture has been designed and implemented as a prototype.
NASA's Participation in the National Computational Grid
NASA Technical Reports Server (NTRS)
Feiereisen, William J.; Zornetzer, Steve F. (Technical Monitor)
1998-01-01
Over the last several years it has become evident that the character of NASA's supercomputing needs has changed. One of the major missions of the agency is to support the design and manufacture of aero- and space-vehicles with technologies that will significantly reduce their cost. It is becoming clear that improvements in the process of aerospace design and manufacturing will require a high performance information infrastructure that allows geographically dispersed teams to draw upon resources that are broader than traditional supercomputing. A computational grid draws together our information resources into one system. We can foresee the time when a Grid will allow engineers and scientists to use the tools of supercomputers, databases and on line experimental devices in a virtual environment to collaborate with distant colleagues. The concept of a computational grid has been spoken of for many years, but several events in recent times are conspiring to allow us to actually build one. In late 1997 the National Science Foundation initiated the Partnerships for Advanced Computational Infrastructure (PACI) which is built around the idea of distributed high performance computing. The Alliance lead, by the National Computational Science Alliance (NCSA), and the National Partnership for Advanced Computational Infrastructure (NPACI), lead by the San Diego Supercomputing Center, have been instrumental in drawing together the "Grid Community" to identify the technology bottlenecks and propose a research agenda to address them. During the same period NASA has begun to reformulate parts of two major high performance computing research programs to concentrate on distributed high performance computing and has banded together with the PACI centers to address the research agenda in common.
Modelling noise propagation using Grid Resources. Progress within GDI-Grid
NASA Astrophysics Data System (ADS)
Kiehle, Christian; Mayer, Christian; Padberg, Alexander; Stapelfeld, Hartmut
2010-05-01
Modelling noise propagation using Grid Resources. Progress within GDI-Grid. GDI-Grid (english: SDI-Grid) is a research project funded by the German Ministry for Science and Education (BMBF). It aims at bridging the gaps between OGC Web Services (OWS) and Grid infrastructures and identifying the potential of utilizing the superior storage capacities and computational power of grid infrastructures for geospatial applications while keeping the well-known service interfaces specified by the OGC. The project considers all major OGC webservice interfaces for Web Mapping (WMS), Feature access (Web Feature Service), Coverage access (Web Coverage Service) and processing (Web Processing Service). The major challenge within GDI-Grid is the harmonization of diverging standards as defined by standardization bodies for Grid computing and spatial information exchange. The project started in 2007 and will continue until June 2010. The concept for the gridification of OWS developed by lat/lon GmbH and the Department of Geography of the University of Bonn is applied to three real-world scenarios in order to check its practicability: a flood simulation, a scenario for emergency routing and a noise propagation simulation. The latter scenario is addressed by the Stapelfeldt Ingenieurgesellschaft mbH located in Dortmund adapting their LimA software to utilize grid resources. Noise mapping of e.g. traffic noise in urban agglomerates and along major trunk roads is a reoccurring demand of the EU Noise Directive. Input data requires road net and traffic, terrain, buildings and noise protection screens as well as population distribution. Noise impact levels are generally calculated in 10 m grid and along relevant building facades. For each receiver position sources within a typical range of 2000 m are split down into small segments, depending on local geometry. For each of the segments propagation analysis includes diffraction effects caused by all obstacles on the path of sound propagation. This immense intensive calculation needs to be performed for a major part of European landscape. A LINUX version of the commercial LimA software for noise mapping analysis has been implemented on a test cluster within the German D-GRID computer network. Results and performance indicators will be presented. The presentation is an extension to last-years presentation "Spatial Data Infrastructures and Grid Computing: the GDI-Grid project" that described the gridification concept developed in the GDI-Grid project and provided an overview of the conceptual gaps between Grid Computing and Spatial Data Infrastructures. Results from the GDI-Grid project are incorporated in the OGC-OGF (Open Grid Forum) collaboration efforts as well as the OGC WPS 2.0 standards working group developing the next major version of the WPS specification.
International Symposium on Grids and Clouds (ISGC) 2016
NASA Astrophysics Data System (ADS)
The International Symposium on Grids and Clouds (ISGC) 2016 will be held at Academia Sinica in Taipei, Taiwan from 13-18 March 2016, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC). The theme of ISGC 2016 focuses on“Ubiquitous e-infrastructures and Applications”. Contemporary research is impossible without a strong IT component - researchers rely on the existence of stable and widely available e-infrastructures and their higher level functions and properties. As a result of these expectations, e-Infrastructures are becoming ubiquitous, providing an environment that supports large scale collaborations that deal with global challenges as well as smaller and temporal research communities focusing on particular scientific problems. To support those diversified communities and their needs, the e-Infrastructures themselves are becoming more layered and multifaceted, supporting larger groups of applications. Following the call for the last year conference, ISGC 2016 continues its aim to bring together users and application developers with those responsible for the development and operation of multi-purpose ubiquitous e-Infrastructures. Topics of discussion include Physics (including HEP) and Engineering Applications, Biomedicine & Life Sciences Applications, Earth & Environmental Sciences & Biodiversity Applications, Humanities, Arts, and Social Sciences (HASS) Applications, Virtual Research Environment (including Middleware, tools, services, workflow, etc.), Data Management, Big Data, Networking & Security, Infrastructure & Operations, Infrastructure Clouds and Virtualisation, Interoperability, Business Models & Sustainability, Highly Distributed Computing Systems, and High Performance & Technical Computing (HPTC), etc.
Pinthong, Watthanai; Muangruen, Panya
2016-01-01
Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software. PMID:27547555
caGrid 1.0 : an enterprise Grid infrastructure for biomedical research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oster, S.; Langella, S.; Hastings, S.
To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. Design: An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG{trademark}) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including (1) discovery, (2) integrated and large-scale data analysis, and (3) coordinated study. Measurements: The caGrid is built as a Grid software infrastructure andmore » leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. Results: The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL:
Interoperable PKI Data Distribution in Computational Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pala, Massimiliano; Cholia, Shreyas; Rea, Scott A.
One of the most successful working examples of virtual organizations, computational grids need authentication mechanisms that inter-operate across domain boundaries. Public Key Infrastructures(PKIs) provide sufficient flexibility to allow resource managers to securely grant access to their systems in such distributed environments. However, as PKIs grow and services are added to enhance both security and usability, users and applications must struggle to discover available resources-particularly when the Certification Authority (CA) is alien to the relying party. This article presents how to overcome these limitations of the current grid authentication model by integrating the PKI Resource Query Protocol (PRQP) into the Gridmore » Security Infrastructure (GSI).« less
Consolidation and development roadmap of the EMI middleware
NASA Astrophysics Data System (ADS)
Kónya, B.; Aiftimiei, C.; Cecchi, M.; Field, L.; Fuhrmann, P.; Nilsen, J. K.; White, J.
2012-12-01
Scientific research communities have benefited recently from the increasing availability of computing and data infrastructures with unprecedented capabilities for large scale distributed initiatives. These infrastructures are largely defined and enabled by the middleware they deploy. One of the major issues in the current usage of research infrastructures is the need to use similar but often incompatible middleware solutions. The European Middleware Initiative (EMI) is a collaboration of the major European middleware providers ARC, dCache, gLite and UNICORE. EMI aims to: deliver a consolidated set of middleware components for deployment in EGI, PRACE and other Distributed Computing Infrastructures; extend the interoperability between grids and other computing infrastructures; strengthen the reliability of the services; establish a sustainable model to maintain and evolve the middleware; fulfil the requirements of the user communities. This paper presents the consolidation and development objectives of the EMI software stack covering the last two years. The EMI development roadmap is introduced along the four technical areas of compute, data, security and infrastructure. The compute area plan focuses on consolidation of standards and agreements through a unified interface for job submission and management, a common format for accounting, the wide adoption of GLUE schema version 2.0 and the provision of a common framework for the execution of parallel jobs. The security area is working towards a unified security model and lowering the barriers to Grid usage by allowing users to gain access with their own credentials. The data area is focusing on implementing standards to ensure interoperability with other grids and industry components and to reuse already existing clients in operating systems and open source distributions. One of the highlights of the infrastructure area is the consolidation of the information system services via the creation of a common information backbone.
The Czech National Grid Infrastructure
NASA Astrophysics Data System (ADS)
Chudoba, J.; Křenková, I.; Mulač, M.; Ruda, M.; Sitera, J.
2017-10-01
The Czech National Grid Infrastructure is operated by MetaCentrum, a CESNET department responsible for coordinating and managing activities related to distributed computing. CESNET as the Czech National Research and Education Network (NREN) provides many e-infrastructure services, which are used by 94% of the scientific and research community in the Czech Republic. Computing and storage resources owned by different organizations are connected by fast enough network to provide transparent access to all resources. We describe in more detail the computing infrastructure, which is based on several different technologies and covers grid, cloud and map-reduce environment. While the largest part of CPUs is still accessible via distributed torque servers, providing environment for long batch jobs, part of infrastructure is available via standard EGI tools in EGI, subset of NGI resources is provided into EGI FedCloud environment with cloud interface and there is also Hadoop cluster provided by the same e-infrastructure.A broad spectrum of computing servers is offered; users can choose from standard 2 CPU servers to large SMP machines with up to 6 TB of RAM or servers with GPU cards. Different groups have different priorities on various resources, resource owners can even have an exclusive access. The software is distributed via AFS. Storage servers offering up to tens of terabytes of disk space to individual users are connected via NFS4 on top of GPFS and access to long term HSM storage with peta-byte capacity is also provided. Overview of available resources and recent statistics of usage will be given.
Managing competing elastic Grid and Cloud scientific computing applications using OpenNebula
NASA Astrophysics Data System (ADS)
Bagnasco, S.; Berzano, D.; Lusso, S.; Masera, M.; Vallero, S.
2015-12-01
Elastic cloud computing applications, i.e. applications that automatically scale according to computing needs, work on the ideal assumption of infinite resources. While large public cloud infrastructures may be a reasonable approximation of this condition, scientific computing centres like WLCG Grid sites usually work in a saturated regime, in which applications compete for scarce resources through queues, priorities and scheduling policies, and keeping a fraction of the computing cores idle to allow for headroom is usually not an option. In our particular environment one of the applications (a WLCG Tier-2 Grid site) is much larger than all the others and cannot autoscale easily. Nevertheless, other smaller applications can benefit of automatic elasticity; the implementation of this property in our infrastructure, based on the OpenNebula cloud stack, will be described and the very first operational experiences with a small number of strategies for timely allocation and release of resources will be discussed.
Colling, D.; Britton, D.; Gordon, J.; Lloyd, S.; Doyle, A.; Gronbech, P.; Coles, J.; Sansum, A.; Patrick, G.; Jones, R.; Middleton, R.; Kelsey, D.; Cass, A.; Geddes, N.; Clark, P.; Barnby, L.
2013-01-01
The Large Hadron Collider (LHC) is one of the greatest scientific endeavours to date. The construction of the collider itself and the experiments that collect data from it represent a huge investment, both financially and in terms of human effort, in our hope to understand the way the Universe works at a deeper level. Yet the volumes of data produced are so large that they cannot be analysed at any single computing centre. Instead, the experiments have all adopted distributed computing models based on the LHC Computing Grid. Without the correct functioning of this grid infrastructure the experiments would not be able to understand the data that they have collected. Within the UK, the Grid infrastructure needed by the experiments is provided by the GridPP project. We report on the operations, performance and contributions made to the experiments by the GridPP project during the years of 2010 and 2011—the first two significant years of the running of the LHC. PMID:23230163
Security and Cloud Outsourcing Framework for Economic Dispatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarker, Mushfiqur R.; Wang, Jianhui; Li, Zuyi
The computational complexity and problem sizes of power grid applications have increased significantly with the advent of renewable resources and smart grid technologies. The current paradigm of solving these issues consist of inhouse high performance computing infrastructures, which have drawbacks of high capital expenditures, maintenance, and limited scalability. Cloud computing is an ideal alternative due to its powerful computational capacity, rapid scalability, and high cost-effectiveness. A major challenge, however, remains in that the highly confidential grid data is susceptible for potential cyberattacks when outsourced to the cloud. In this work, a security and cloud outsourcing framework is developed for themore » Economic Dispatch (ED) linear programming application. As a result, the security framework transforms the ED linear program into a confidentiality-preserving linear program, that masks both the data and problem structure, thus enabling secure outsourcing to the cloud. Results show that for large grid test cases the performance gain and costs outperforms the in-house infrastructure.« less
Security and Cloud Outsourcing Framework for Economic Dispatch
Sarker, Mushfiqur R.; Wang, Jianhui; Li, Zuyi; ...
2017-04-24
The computational complexity and problem sizes of power grid applications have increased significantly with the advent of renewable resources and smart grid technologies. The current paradigm of solving these issues consist of inhouse high performance computing infrastructures, which have drawbacks of high capital expenditures, maintenance, and limited scalability. Cloud computing is an ideal alternative due to its powerful computational capacity, rapid scalability, and high cost-effectiveness. A major challenge, however, remains in that the highly confidential grid data is susceptible for potential cyberattacks when outsourced to the cloud. In this work, a security and cloud outsourcing framework is developed for themore » Economic Dispatch (ED) linear programming application. As a result, the security framework transforms the ED linear program into a confidentiality-preserving linear program, that masks both the data and problem structure, thus enabling secure outsourcing to the cloud. Results show that for large grid test cases the performance gain and costs outperforms the in-house infrastructure.« less
The International Symposium on Grids and Clouds
NASA Astrophysics Data System (ADS)
The International Symposium on Grids and Clouds (ISGC) 2012 will be held at Academia Sinica in Taipei from 26 February to 2 March 2012, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC). 2012 is the decennium anniversary of the ISGC which over the last decade has tracked the convergence, collaboration and innovation of individual researchers across the Asia Pacific region to a coherent community. With the continuous support and dedication from the delegates, ISGC has provided the primary international distributed computing platform where distinguished researchers and collaboration partners from around the world share their knowledge and experiences. The last decade has seen the wide-scale emergence of e-Infrastructure as a critical asset for the modern e-Scientist. The emergence of large-scale research infrastructures and instruments that has produced a torrent of electronic data is forcing a generational change in the scientific process and the mechanisms used to analyse the resulting data deluge. No longer can the processing of these vast amounts of data and production of relevant scientific results be undertaken by a single scientist. Virtual Research Communities that span organisations around the world, through an integrated digital infrastructure that connects the trust and administrative domains of multiple resource providers, have become critical in supporting these analyses. Topics covered in ISGC 2012 include: High Energy Physics, Biomedicine & Life Sciences, Earth Science, Environmental Changes and Natural Disaster Mitigation, Humanities & Social Sciences, Operations & Management, Middleware & Interoperability, Security and Networking, Infrastructure Clouds & Virtualisation, Business Models & Sustainability, Data Management, Distributed Volunteer & Desktop Grid Computing, High Throughput Computing, and High Performance, Manycore & GPU Computing.
Grid computing in large pharmaceutical molecular modeling.
Claus, Brian L; Johnson, Stephen R
2008-07-01
Most major pharmaceutical companies have employed grid computing to expand their compute resources with the intention of minimizing additional financial expenditure. Historically, one of the issues restricting widespread utilization of the grid resources in molecular modeling is the limited set of suitable applications amenable to coarse-grained parallelization. Recent advances in grid infrastructure technology coupled with advances in application research and redesign will enable fine-grained parallel problems, such as quantum mechanics and molecular dynamics, which were previously inaccessible to the grid environment. This will enable new science as well as increase resource flexibility to load balance and schedule existing workloads.
NASA Astrophysics Data System (ADS)
Aktas, Mehmet; Aydin, Galip; Donnellan, Andrea; Fox, Geoffrey; Granat, Robert; Grant, Lisa; Lyzenga, Greg; McLeod, Dennis; Pallickara, Shrideep; Parker, Jay; Pierce, Marlon; Rundle, John; Sayar, Ahmet; Tullis, Terry
2006-12-01
We describe the goals and initial implementation of the International Solid Earth Virtual Observatory (iSERVO). This system is built using a Web Services approach to Grid computing infrastructure and is accessed via a component-based Web portal user interface. We describe our implementations of services used by this system, including Geographical Information System (GIS)-based data grid services for accessing remote data repositories and job management services for controlling multiple execution steps. iSERVO is an example of a larger trend to build globally scalable scientific computing infrastructures using the Service Oriented Architecture approach. Adoption of this approach raises a number of research challenges in millisecond-latency message systems suitable for internet-enabled scientific applications. We review our research in these areas.
Duarte, Afonso M. S.; Psomopoulos, Fotis E.; Blanchet, Christophe; Bonvin, Alexandre M. J. J.; Corpas, Manuel; Franc, Alain; Jimenez, Rafael C.; de Lucas, Jesus M.; Nyrönen, Tommi; Sipos, Gergely; Suhr, Stephanie B.
2015-01-01
With the increasingly rapid growth of data in life sciences we are witnessing a major transition in the way research is conducted, from hypothesis-driven studies to data-driven simulations of whole systems. Such approaches necessitate the use of large-scale computational resources and e-infrastructures, such as the European Grid Infrastructure (EGI). EGI, one of key the enablers of the digital European Research Area, is a federation of resource providers set up to deliver sustainable, integrated and secure computing services to European researchers and their international partners. Here we aim to provide the state of the art of Grid/Cloud computing in EU research as viewed from within the field of life sciences, focusing on key infrastructures and projects within the life sciences community. Rather than focusing purely on the technical aspects underlying the currently provided solutions, we outline the design aspects and key characteristics that can be identified across major research approaches. Overall, we aim to provide significant insights into the road ahead by establishing ever-strengthening connections between EGI as a whole and the life sciences community. PMID:26157454
Duarte, Afonso M S; Psomopoulos, Fotis E; Blanchet, Christophe; Bonvin, Alexandre M J J; Corpas, Manuel; Franc, Alain; Jimenez, Rafael C; de Lucas, Jesus M; Nyrönen, Tommi; Sipos, Gergely; Suhr, Stephanie B
2015-01-01
With the increasingly rapid growth of data in life sciences we are witnessing a major transition in the way research is conducted, from hypothesis-driven studies to data-driven simulations of whole systems. Such approaches necessitate the use of large-scale computational resources and e-infrastructures, such as the European Grid Infrastructure (EGI). EGI, one of key the enablers of the digital European Research Area, is a federation of resource providers set up to deliver sustainable, integrated and secure computing services to European researchers and their international partners. Here we aim to provide the state of the art of Grid/Cloud computing in EU research as viewed from within the field of life sciences, focusing on key infrastructures and projects within the life sciences community. Rather than focusing purely on the technical aspects underlying the currently provided solutions, we outline the design aspects and key characteristics that can be identified across major research approaches. Overall, we aim to provide significant insights into the road ahead by establishing ever-strengthening connections between EGI as a whole and the life sciences community.
OGC and Grid Interoperability in enviroGRIDS Project
NASA Astrophysics Data System (ADS)
Gorgan, Dorian; Rodila, Denisa; Bacu, Victor; Giuliani, Gregory; Ray, Nicolas
2010-05-01
EnviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is a 4-years FP7 Project aiming to address the subjects of ecologically unsustainable development and inadequate resource management. The project develops a Spatial Data Infrastructure of the Black Sea Catchment region. The geospatial technologies offer very specialized functionality for Earth Science oriented applications as well as the Grid oriented technology that is able to support distributed and parallel processing. One challenge of the enviroGRIDS project is the interoperability between geospatial and Grid infrastructures by providing the basic and the extended features of the both technologies. The geospatial interoperability technology has been promoted as a way of dealing with large volumes of geospatial data in distributed environments through the development of interoperable Web service specifications proposed by the Open Geospatial Consortium (OGC), with applications spread across multiple fields but especially in Earth observation research. Due to the huge volumes of data available in the geospatial domain and the additional introduced issues (data management, secure data transfer, data distribution and data computation), the need for an infrastructure capable to manage all those problems becomes an important aspect. The Grid promotes and facilitates the secure interoperations of geospatial heterogeneous distributed data within a distributed environment, the creation and management of large distributed computational jobs and assures a security level for communication and transfer of messages based on certificates. This presentation analysis and discusses the most significant use cases for enabling the OGC Web services interoperability with the Grid environment and focuses on the description and implementation of the most promising one. In these use cases we give a special attention to issues such as: the relations between computational grid and the OGC Web service protocols, the advantages offered by the Grid technology - such as providing a secure interoperability between the distributed geospatial resource -and the issues introduced by the integration of distributed geospatial data in a secure environment: data and service discovery, management, access and computation. enviroGRIDS project proposes a new architecture which allows a flexible and scalable approach for integrating the geospatial domain represented by the OGC Web services with the Grid domain represented by the gLite middleware. The parallelism offered by the Grid technology is discussed and explored at the data level, management level and computation level. The analysis is carried out for OGC Web service interoperability in general but specific details are emphasized for Web Map Service (WMS), Web Feature Service (WFS), Web Coverage Service (WCS), Web Processing Service (WPS) and Catalog Service for Web (CSW). Issues regarding the mapping and the interoperability between the OGC and the Grid standards and protocols are analyzed as they are the base in solving the communication problems between the two environments: grid and geospatial. The presetation mainly highlights how the Grid environment and Grid applications capabilities can be extended and utilized in geospatial interoperability. Interoperability between geospatial and Grid infrastructures provides features such as the specific geospatial complex functionality and the high power computation and security of the Grid, high spatial model resolution and geographical area covering, flexible combination and interoperability of the geographical models. According with the Service Oriented Architecture concepts and requirements of interoperability between geospatial and Grid infrastructures each of the main functionality is visible from enviroGRIDS Portal and consequently, by the end user applications such as Decision Maker/Citizen oriented Applications. The enviroGRIDS portal is the single way of the user to get into the system and the portal faces a unique style of the graphical user interface. Main reference for further information: [1] enviroGRIDS Project, http://www.envirogrids.net/
Approach to sustainable e-Infrastructures - The case of the Latin American Grid
NASA Astrophysics Data System (ADS)
Barbera, Roberto; Diacovo, Ramon; Brasileiro, Francisco; Carvalho, Diego; Dutra, Inês; Faerman, Marcio; Gavillet, Philippe; Hoeger, Herbert; Lopez Pourailly, Maria Jose; Marechal, Bernard; Garcia, Rafael Mayo; Neumann Ciuffo, Leandro; Ramos Pollan, Paul; Scardaci, Diego; Stanton, Michael
2010-05-01
The EELA (E-Infrastructure shared between Europe and Latin America) and EELA-2 (E-science grid facility for Europe and Latin America) projects, co-funded by the European Commission under FP6 and FP7, respectively, have been successful in building a high capacity, production-quality, scalable Grid Facility for a wide spectrum of applications (e.g. Earth & Life Sciences, High energy physics, etc.) from several European and Latin American User Communities. This paper presents the 4-year experience of EELA and EELA-2 in: • Providing each Member Institution the unique opportunity to benefit of a huge distributed computing platform for its research activities, in particular through initiatives such as OurGrid which proposes a so-called Opportunistic Grid Computing well adapted to small and medium Research Laboratories such as most of those of Latin America and Africa; • Developing a realistic strategy to ensure the long-term continuity of the e-Infrastructure in the Latin American continent, beyond the term of the EELA-2 project, in association with CLARA and collaborating with EGI. Previous interactions between EELA and African Grid members at events such as the IST Africa'07, 08 and 09, the International Conference on Open Access'08 and EuroAfriCa-ICT'08, to which EELA and EELA-2 contributed, have shown that the e-Infrastructure situation in Africa compares well with the Latin American one. This means that African Grids are likely to face the same problems that EELA and EELA-2 experienced, especially in getting the necessary User and Decision Makers support to create NGIs and, later, a possible continent-wide African Grid Initiative (AGI). The hope is that the EELA-2 endeavour towards sustainability as described in this presentation could help the progress of African Grids.
An infrastructure for the integration of geoscience instruments and sensors on the Grid
NASA Astrophysics Data System (ADS)
Pugliese, R.; Prica, M.; Kourousias, G.; Del Linz, A.; Curri, A.
2009-04-01
The Grid, as a computing paradigm, has long been in the attention of both academia and industry[1]. The distributed and expandable nature of its general architecture result to scalability and more efficient utilisation of the computing infrastructures. The scientific community, including that of geosciences, often handles problems with very high requirements in data processing, transferring, and storing[2,3]. This has raised the interest on Grid technologies but these are often viewed solely as an access gateway to HPC. Suitable Grid infrastructures could provide the geoscience community with additional benefits like those of sharing, remote access and control of scientific systems. These systems can be scientific instruments, sensors, robots, cameras and any other device used in geosciences. The solution for practical, general, and feasible Grid-enabling of such devices requires non-intrusive extensions on core parts of the current Grid architecture. We propose an extended version of an architecture[4] that can serve as the solution to the problem. The solution we propose is called Grid Instrument Element (IE) [5]. It is an addition to the existing core Grid parts; the Computing Element (CE) and the Storage Element (SE) that serve the purposes that their name suggests. The IE that we will be referring to, and the related technologies have been developed in the EU project on the Deployment of Remote Instrumentation Infrastructure (DORII1). In DORII, partners of various scientific communities including those of Earthquake, Environmental science, and Experimental science, have adopted the technology of the Instrument Element in order to integrate to the Grid their devices. The Oceanographic and coastal observation and modelling Mediterranean Ocean Observing Network (OGS2), a DORII partner, is in the process of deploying the above mentioned Grid technologies on two types of observational modules: Argo profiling floats and a novel Autonomous Underwater Vehicle (AUV). In this paper i) we define the need for integration of instrumentation in the Grid, ii) we introduce the solution of the Instrument Element, iii) we demonstrate a suitable end-user web portal for accessing Grid resources, iv) we describe from the Grid-technological point of view the process of the integration to the Grid of two advanced environmental monitoring devices. References [1] M. Surridge, S. Taylor, D. De Roure, and E. Zaluska, "Experiences with GRIA—Industrial Applications on a Web Services Grid," e-Science and Grid Computing, First International Conference on e-Science and Grid Computing, 2005, pp. 98-105. [2] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke, "The data grid: Towards an architecture for the distributed management and analysis of large scientific datasets," Journal of Network and Computer Applications, vol. 23, 2000, pp. 187-200. [3] B. Allcock, J. Bester, J. Bresnahan, A.L. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke, "Data management and transfer in high-performance computational grid environments," Parallel Computing, vol. 28, 2002, pp. 749-771. [4] E. Frizziero, M. Gulmini, F. Lelli, G. Maron, A. Oh, S. Orlando, A. Petrucci, S. Squizzato, and S. Traldi, "Instrument Element: A New Grid component that Enables the Control of Remote Instrumentation," Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid (CCGRID'06)-Volume 00, IEEE Computer Society Washington, DC, USA, 2006. [5] R. Ranon, L. De Marco, A. Senerchia, S. Gabrielli, L. Chittaro, R. Pugliese, L. Del Cano, F. Asnicar, and M. Prica, "A Web-based Tool for Collaborative Access to Scientific Instruments in Cyberinfrastructures." 1 The DORII project is supported by the European Commission within the 7th Framework Programme (FP7/2007-2013) under grant agreement no. RI-213110. URL: http://www.dorii.eu 2 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale. URL: http://www.ogs.trieste.it
WPS mediation: An approach to process geospatial data on different computing backends
NASA Astrophysics Data System (ADS)
Giuliani, Gregory; Nativi, Stefano; Lehmann, Anthony; Ray, Nicolas
2012-10-01
The OGC Web Processing Service (WPS) specification allows generating information by processing distributed geospatial data made available through Spatial Data Infrastructures (SDIs). However, current SDIs have limited analytical capacities and various problems emerge when trying to use them in data and computing-intensive domains such as environmental sciences. These problems are usually not or only partially solvable using single computing resources. Therefore, the Geographic Information (GI) community is trying to benefit from the superior storage and computing capabilities offered by distributed computing (e.g., Grids, Clouds) related methods and technologies. Currently, there is no commonly agreed approach to grid-enable WPS. No implementation allows one to seamlessly execute a geoprocessing calculation following user requirements on different computing backends, ranging from a stand-alone GIS server up to computer clusters and large Grid infrastructures. Considering this issue, this paper presents a proof of concept by mediating different geospatial and Grid software packages, and by proposing an extension of WPS specification through two optional parameters. The applicability of this approach will be demonstrated using a Normalized Difference Vegetation Index (NDVI) mediated WPS process, highlighting benefits, and issues that need to be further investigated to improve performances.
Integration of a neuroimaging processing pipeline into a pan-canadian computing grid
NASA Astrophysics Data System (ADS)
Lavoie-Courchesne, S.; Rioux, P.; Chouinard-Decorte, F.; Sherif, T.; Rousseau, M.-E.; Das, S.; Adalat, R.; Doyon, J.; Craddock, C.; Margulies, D.; Chu, C.; Lyttelton, O.; Evans, A. C.; Bellec, P.
2012-02-01
The ethos of the neuroimaging field is quickly moving towards the open sharing of resources, including both imaging databases and processing tools. As a neuroimaging database represents a large volume of datasets and as neuroimaging processing pipelines are composed of heterogeneous, computationally intensive tools, such open sharing raises specific computational challenges. This motivates the design of novel dedicated computing infrastructures. This paper describes an interface between PSOM, a code-oriented pipeline development framework, and CBRAIN, a web-oriented platform for grid computing. This interface was used to integrate a PSOM-compliant pipeline for preprocessing of structural and functional magnetic resonance imaging into CBRAIN. We further tested the capacity of our infrastructure to handle a real large-scale project. A neuroimaging database including close to 1000 subjects was preprocessed using our interface and publicly released to help the participants of the ADHD-200 international competition. This successful experiment demonstrated that our integrated grid-computing platform is a powerful solution for high-throughput pipeline analysis in the field of neuroimaging.
The GENIUS Grid Portal and robot certificates: a new tool for e-Science
Barbera, Roberto; Donvito, Giacinto; Falzone, Alberto; La Rocca, Giuseppe; Milanesi, Luciano; Maggi, Giorgio Pietro; Vicario, Saverio
2009-01-01
Background Grid technology is the computing model which allows users to share a wide pletora of distributed computational resources regardless of their geographical location. Up to now, the high security policy requested in order to access distributed computing resources has been a rather big limiting factor when trying to broaden the usage of Grids into a wide community of users. Grid security is indeed based on the Public Key Infrastructure (PKI) of X.509 certificates and the procedure to get and manage those certificates is unfortunately not straightforward. A first step to make Grids more appealing for new users has recently been achieved with the adoption of robot certificates. Methods Robot certificates have recently been introduced to perform automated tasks on Grids on behalf of users. They are extremely useful for instance to automate grid service monitoring, data processing production, distributed data collection systems. Basically these certificates can be used to identify a person responsible for an unattended service or process acting as client and/or server. Robot certificates can be installed on a smart card and used behind a portal by everyone interested in running the related applications in a Grid environment using a user-friendly graphic interface. In this work, the GENIUS Grid Portal, powered by EnginFrame, has been extended in order to support the new authentication based on the adoption of these robot certificates. Results The work carried out and reported in this manuscript is particularly relevant for all users who are not familiar with personal digital certificates and the technical aspects of the Grid Security Infrastructure (GSI). The valuable benefits introduced by robot certificates in e-Science can so be extended to users belonging to several scientific domains, providing an asset in raising Grid awareness to a wide number of potential users. Conclusion The adoption of Grid portals extended with robot certificates, can really contribute to creating transparent access to computational resources of Grid Infrastructures, enhancing the spread of this new paradigm in researchers' working life to address new global scientific challenges. The evaluated solution can of course be extended to other portals, applications and scientific communities. PMID:19534747
The GENIUS Grid Portal and robot certificates: a new tool for e-Science.
Barbera, Roberto; Donvito, Giacinto; Falzone, Alberto; La Rocca, Giuseppe; Milanesi, Luciano; Maggi, Giorgio Pietro; Vicario, Saverio
2009-06-16
Grid technology is the computing model which allows users to share a wide pletora of distributed computational resources regardless of their geographical location. Up to now, the high security policy requested in order to access distributed computing resources has been a rather big limiting factor when trying to broaden the usage of Grids into a wide community of users. Grid security is indeed based on the Public Key Infrastructure (PKI) of X.509 certificates and the procedure to get and manage those certificates is unfortunately not straightforward. A first step to make Grids more appealing for new users has recently been achieved with the adoption of robot certificates. Robot certificates have recently been introduced to perform automated tasks on Grids on behalf of users. They are extremely useful for instance to automate grid service monitoring, data processing production, distributed data collection systems. Basically these certificates can be used to identify a person responsible for an unattended service or process acting as client and/or server. Robot certificates can be installed on a smart card and used behind a portal by everyone interested in running the related applications in a Grid environment using a user-friendly graphic interface. In this work, the GENIUS Grid Portal, powered by EnginFrame, has been extended in order to support the new authentication based on the adoption of these robot certificates. The work carried out and reported in this manuscript is particularly relevant for all users who are not familiar with personal digital certificates and the technical aspects of the Grid Security Infrastructure (GSI). The valuable benefits introduced by robot certificates in e-Science can so be extended to users belonging to several scientific domains, providing an asset in raising Grid awareness to a wide number of potential users. The adoption of Grid portals extended with robot certificates, can really contribute to creating transparent access to computational resources of Grid Infrastructures, enhancing the spread of this new paradigm in researchers' working life to address new global scientific challenges. The evaluated solution can of course be extended to other portals, applications and scientific communities.
Kasam, Vinod; Salzemann, Jean; Botha, Marli; Dacosta, Ana; Degliesposti, Gianluca; Isea, Raul; Kim, Doman; Maass, Astrid; Kenyon, Colin; Rastelli, Giulio; Hofmann-Apitius, Martin; Breton, Vincent
2009-05-01
Despite continuous efforts of the international community to reduce the impact of malaria on developing countries, no significant progress has been made in the recent years and the discovery of new drugs is more than ever needed. Out of the many proteins involved in the metabolic activities of the Plasmodium parasite, some are promising targets to carry out rational drug discovery. Recent years have witnessed the emergence of grids, which are highly distributed computing infrastructures particularly well fitted for embarrassingly parallel computations like docking. In 2005, a first attempt at using grids for large-scale virtual screening focused on plasmepsins and ended up in the identification of previously unknown scaffolds, which were confirmed in vitro to be active plasmepsin inhibitors. Following this success, a second deployment took place in the fall of 2006 focussing on one well known target, dihydrofolate reductase (DHFR), and on a new promising one, glutathione-S-transferase. In silico drug design, especially vHTS is a widely and well-accepted technology in lead identification and lead optimization. This approach, therefore builds, upon the progress made in computational chemistry to achieve more accurate in silico docking and in information technology to design and operate large scale grid infrastructures. On the computational side, a sustained infrastructure has been developed: docking at large scale, using different strategies in result analysis, storing of the results on the fly into MySQL databases and application of molecular dynamics refinement are MM-PBSA and MM-GBSA rescoring. The modeling results obtained are very promising. Based on the modeling results, In vitro results are underway for all the targets against which screening is performed. The current paper describes the rational drug discovery activity at large scale, especially molecular docking using FlexX software on computational grids in finding hits against three different targets (PfGST, PfDHFR, PvDHFR (wild type and mutant forms) implicated in malaria. Grid-enabled virtual screening approach is proposed to produce focus compound libraries for other biological targets relevant to fight the infectious diseases of the developing world.
Use of Emerging Grid Computing Technologies for the Analysis of LIGO Data
NASA Astrophysics Data System (ADS)
Koranda, Scott
2004-03-01
The LIGO Scientific Collaboration (LSC) today faces the challenge of enabling analysis of terabytes of LIGO data by hundreds of scientists from institutions all around the world. To meet this challenge the LSC is developing tools, infrastructure, applications, and expertise leveraging Grid Computing technologies available today, and making available to LSC scientists compute resources at sites across the United States and Europe. We use digital credentials for strong and secure authentication and authorization to compute resources and data. Building on top of products from the Globus project for high-speed data transfer and information discovery we have created the Lightweight Data Replicator (LDR) to securely and robustly replicate data to resource sites. We have deployed at our computing sites the Virtual Data Toolkit (VDT) Server and Client packages, developed in collaboration with our partners in the GriPhyN and iVDGL projects, providing uniform access to distributed resources for users and their applications. Taken together these Grid Computing technologies and infrastructure have formed the LSC DataGrid--a coherent and uniform environment across two continents for the analysis of gravitational-wave detector data. Much work, however, remains in order to scale current analyses and recent lessons learned need to be integrated into the next generation of Grid middleware.
Grid-based HPC astrophysical applications at INAF Catania.
NASA Astrophysics Data System (ADS)
Costa, A.; Calanducci, A.; Becciani, U.; Capuzzo Dolcetta, R.
The research activity on grid area at INAF Catania has been devoted to two main goals: the integration of a multiprocessor supercomputer (IBM SP4) within INFN-GRID middleware and the developing of a web-portal, Astrocomp-G, for the submission of astrophysical jobs into the grid infrastructure. Most of the actual grid implementation infrastructure is based on common hardware, i.e. i386 architecture machines (Intel Celeron, Pentium III, IV, Amd Duron, Athlon) using Linux RedHat OS. We were the first institute to integrate a totally different machine, an IBM SP with RISC architecture and AIX OS, as a powerful Worker Node inside a grid infrastructure. We identified and ported to AIX OS the grid components dealing with job monitoring and execution and properly tuned the Computing Element to delivery jobs into this special Worker Node. For testing purpose we used MARA, an astrophysical application for the analysis of light curve sequences. Astrocomp-G is a user-friendly front end to our grid site. Users who want to submit the astrophysical applications already available in the portal need to own a valid personal X509 certificate in addiction to a username and password released by the grid portal web master. The personal X509 certificate is a prerequisite for the creation of a short or long-term proxy certificate that allows the grid infrastructure services to identify clearly whether the owner of the job has the permissions to use resources and data. X509 and proxy certificates are part of GSI (Grid Security Infrastructure), a standard security tool adopted by all major grid sites around the world.
Wide-area, real-time monitoring and visualization system
Budhraja, Vikram S.; Dyer, James D.; Martinez Morales, Carlos A.
2013-03-19
A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.
Wide-area, real-time monitoring and visualization system
Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA
2011-11-15
A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.
Real-time performance monitoring and management system
Budhraja, Vikram S [Los Angeles, CA; Dyer, James D [La Mirada, CA; Martinez Morales, Carlos A [Upland, CA
2007-06-19
A real-time performance monitoring system for monitoring an electric power grid. The electric power grid has a plurality of grid portions, each grid portion corresponding to one of a plurality of control areas. The real-time performance monitoring system includes a monitor computer for monitoring at least one of reliability metrics, generation metrics, transmission metrics, suppliers metrics, grid infrastructure security metrics, and markets metrics for the electric power grid. The data for metrics being monitored by the monitor computer are stored in a data base, and a visualization of the metrics is displayed on at least one display computer having a monitor. The at least one display computer in one said control area enables an operator to monitor the grid portion corresponding to a different said control area.
ERIC Educational Resources Information Center
Hu, Qinran; Li, Fangxing; Chen, Chien-fei
2015-01-01
There is a worldwide trend to modernize old power grid infrastructures to form future smart grids, which will achieve efficient, flexible energy consumption by using the latest technologies in communication, computing, and control. Smart grid initiatives are moving power systems curricula toward smart grids. Although the components of smart grids…
AstroGrid-D: Grid technology for astronomical science
NASA Astrophysics Data System (ADS)
Enke, Harry; Steinmetz, Matthias; Adorf, Hans-Martin; Beck-Ratzka, Alexander; Breitling, Frank; Brüsemeister, Thomas; Carlson, Arthur; Ensslin, Torsten; Högqvist, Mikael; Nickelt, Iliya; Radke, Thomas; Reinefeld, Alexander; Reiser, Angelika; Scholl, Tobias; Spurzem, Rainer; Steinacker, Jürgen; Voges, Wolfgang; Wambsganß, Joachim; White, Steve
2011-02-01
We present status and results of AstroGrid-D, a joint effort of astrophysicists and computer scientists to employ grid technology for scientific applications. AstroGrid-D provides access to a network of distributed machines with a set of commands as well as software interfaces. It allows simple use of computer and storage facilities and to schedule or monitor compute tasks and data management. It is based on the Globus Toolkit middleware (GT4). Chapter 1 describes the context which led to the demand for advanced software solutions in Astrophysics, and we state the goals of the project. We then present characteristic astrophysical applications that have been implemented on AstroGrid-D in chapter 2. We describe simulations of different complexity, compute-intensive calculations running on multiple sites (Section 2.1), and advanced applications for specific scientific purposes (Section 2.2), such as a connection to robotic telescopes (Section 2.2.3). We can show from these examples how grid execution improves e.g. the scientific workflow. Chapter 3 explains the software tools and services that we adapted or newly developed. Section 3.1 is focused on the administrative aspects of the infrastructure, to manage users and monitor activity. Section 3.2 characterises the central components of our architecture: The AstroGrid-D information service to collect and store metadata, a file management system, the data management system, and a job manager for automatic submission of compute tasks. We summarise the successfully established infrastructure in chapter 4, concluding with our future plans to establish AstroGrid-D as a platform of modern e-Astronomy.
AGIS: The ATLAS Grid Information System
NASA Astrophysics Data System (ADS)
Anisenkov, A.; Di Girolamo, A.; Klimentov, A.; Oleynik, D.; Petrosyan, A.; Atlas Collaboration
2014-06-01
ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produced petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we describe the ATLAS Grid Information System (AGIS), designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.
Parallel Processing of Images in Mobile Devices using BOINC
NASA Astrophysics Data System (ADS)
Curiel, Mariela; Calle, David F.; Santamaría, Alfredo S.; Suarez, David F.; Flórez, Leonardo
2018-04-01
Medical image processing helps health professionals make decisions for the diagnosis and treatment of patients. Since some algorithms for processing images require substantial amounts of resources, one could take advantage of distributed or parallel computing. A mobile grid can be an adequate computing infrastructure for this problem. A mobile grid is a grid that includes mobile devices as resource providers. In a previous step of this research, we selected BOINC as the infrastructure to build our mobile grid. However, parallel processing of images in mobile devices poses at least two important challenges: the execution of standard libraries for processing images and obtaining adequate performance when compared to desktop computers grids. By the time we started our research, the use of BOINC in mobile devices also involved two issues: a) the execution of programs in mobile devices required to modify the code to insert calls to the BOINC API, and b) the division of the image among the mobile devices as well as its merging required additional code in some BOINC components. This article presents answers to these four challenges.
Grid today, clouds on the horizon
NASA Astrophysics Data System (ADS)
Shiers, Jamie
2009-04-01
By the time of CCP 2008, the largest scientific machine in the world - the Large Hadron Collider - had been cooled down as scheduled to its operational temperature of below 2 degrees Kelvin and injection tests were starting. Collisions of proton beams at 5+5 TeV were expected within one to two months of the initial tests, with data taking at design energy ( 7+7 TeV) foreseen for 2009. In order to process the data from this world machine, we have put our "Higgs in one basket" - that of Grid computing [The Worldwide LHC Computing Grid (WLCG), in: Proceedings of the Conference on Computational Physics 2006 (CCP 2006), vol. 177, 2007, pp. 219-223]. After many years of preparation, 2008 saw a final "Common Computing Readiness Challenge" (CCRC'08) - aimed at demonstrating full readiness for 2008 data taking, processing and analysis. By definition, this relied on a world-wide production Grid infrastructure. But change - as always - is on the horizon. The current funding model for Grids - which in Europe has been through 3 generations of EGEE projects, together with related projects in other parts of the world, including South America - is evolving towards a long-term, sustainable e-infrastructure, like the European Grid Initiative (EGI) [The European Grid Initiative Design Study, website at http://web.eu-egi.eu/]. At the same time, potentially new paradigms, such as that of "Cloud Computing" are emerging. This paper summarizes the results of CCRC'08 and discusses the potential impact of future Grid funding on both regional and international application communities. It contrasts Grid and Cloud computing models from both technical and sociological points of view. Finally, it discusses the requirements from production application communities, in terms of stability and continuity in the medium to long term.
Network and computing infrastructure for scientific applications in Georgia
NASA Astrophysics Data System (ADS)
Kvatadze, R.; Modebadze, Z.
2016-09-01
Status of network and computing infrastructure and available services for research and education community of Georgia are presented. Research and Educational Networking Association - GRENA provides the following network services: Internet connectivity, network services, cyber security, technical support, etc. Computing resources used by the research teams are located at GRENA and at major state universities. GE-01-GRENA site is included in European Grid infrastructure. Paper also contains information about programs of Learning Center and research and development projects in which GRENA is participating.
Changing from computing grid to knowledge grid in life-science grid.
Talukdar, Veera; Konar, Amit; Datta, Ayan; Choudhury, Anamika Roy
2009-09-01
Grid computing has a great potential to become a standard cyber infrastructure for life sciences that often require high-performance computing and large data handling, which exceeds the computing capacity of a single institution. Grid computer applies the resources of many computers in a network to a single problem at the same time. It is useful to scientific problems that require a great number of computer processing cycles or access to a large amount of data.As biologists,we are constantly discovering millions of genes and genome features, which are assembled in a library and distributed on computers around the world.This means that new, innovative methods must be developed that exploit the re-sources available for extensive calculations - for example grid computing.This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing a "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. By extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.
Enabling campus grids with open science grid technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weitzel, Derek; Bockelman, Brian; Swanson, David
2011-01-01
The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condormore » clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.« less
NASA Astrophysics Data System (ADS)
Read, A.; Taga, A.; O-Saada, F.; Pajchel, K.; Samset, B. H.; Cameron, D.
2008-07-01
Computing and storage resources connected by the Nordugrid ARC middleware in the Nordic countries, Switzerland and Slovenia are a part of the ATLAS computing Grid. This infrastructure is being commissioned with the ongoing ATLAS Monte Carlo simulation production in preparation for the commencement of data taking in 2008. The unique non-intrusive architecture of ARC, its straightforward interplay with the ATLAS Production System via the Dulcinea executor, and its performance during the commissioning exercise is described. ARC support for flexible and powerful end-user analysis within the GANGA distributed analysis framework is also shown. Whereas the storage solution for this Grid was earlier based on a large, distributed collection of GridFTP-servers, the ATLAS computing design includes a structured SRM-based system with a limited number of storage endpoints. The characteristics, integration and performance of the old and new storage solutions are presented. Although the hardware resources in this Grid are quite modest, it has provided more than double the agreed contribution to the ATLAS production with an efficiency above 95% during long periods of stable operation.
Climate simulations and services on HPC, Cloud and Grid infrastructures
NASA Astrophysics Data System (ADS)
Cofino, Antonio S.; Blanco, Carlos; Minondo Tshuma, Antonio
2017-04-01
Cloud, Grid and High Performance Computing have changed the accessibility and availability of computing resources for Earth Science research communities, specially for Climate community. These paradigms are modifying the way how climate applications are being executed. By using these technologies the number, variety and complexity of experiments and resources are increasing substantially. But, although computational capacity is increasing, traditional applications and tools used by the community are not good enough to manage this large volume and variety of experiments and computing resources. In this contribution, we evaluate the challenges to run climate simulations and services on Grid, Cloud and HPC infrestructures and how to tackle them. The Grid and Cloud infrastructures provided by EGI's VOs ( esr , earth.vo.ibergrid and fedcloud.egi.eu) will be evaluated, as well as HPC resources from PRACE infrastructure and institutional clusters. To solve those challenges, solutions using DRM4G framework will be shown. DRM4G provides a good framework to manage big volume and variety of computing resources for climate experiments. This work has been supported by the Spanish National R&D Plan under projects WRF4G (CGL2011-28864), INSIGNIA (CGL2016-79210-R) and MULTI-SDM (CGL2015-66583-R) ; the IS-ENES2 project from the 7FP of the European Commission (grant agreement no. 312979); the European Regional Development Fund—ERDF and the Programa de Personal Investigador en Formación Predoctoral from Universidad de Cantabria and Government of Cantabria.
SEE-GRID eInfrastructure for Regional eScience
NASA Astrophysics Data System (ADS)
Prnjat, Ognjen; Balaz, Antun; Vudragovic, Dusan; Liabotis, Ioannis; Sener, Cevat; Marovic, Branko; Kozlovszky, Miklos; Neagu, Gabriel
In the past 6 years, a number of targeted initiatives, funded by the European Commission via its information society and RTD programmes and Greek infrastructure development actions, have articulated a successful regional development actions in South East Europe that can be used as a role model for other international developments. The SEEREN (South-East European Research and Education Networking initiative) project, through its two phases, established the SEE segment of the pan-European G ´EANT network and successfully connected the research and scientific communities in the region. Currently, the SEE-LIGHT project is working towards establishing a dark-fiber backbone that will interconnect most national Research and Education networks in the region. On the distributed computing and storage provisioning i.e. Grid plane, the SEE-GRID (South-East European GRID e-Infrastructure Development) project, similarly through its two phases, has established a strong human network in the area of scientific computing and has set up a powerful regional Grid infrastructure, and attracted a number of applications from different fields from countries throughout the South-East Europe. The current SEEGRID-SCI project, ending in April 2010, empowers the regional user communities from fields of meteorology, seismology and environmental protection in common use and sharing of the regional e-Infrastructure. Current technical initiatives in formulation are focusing on a set of coordinated actions in the area of HPC and application fields making use of HPC initiatives. Finally, the current SEERA-EI project brings together policy makers - programme managers from 10 countries in the region. The project aims to establish a communication platform between programme managers, pave the way towards common e-Infrastructure strategy and vision, and implement concrete actions for common funding of electronic infrastructures on the regional level. The regional vision on establishing an e-Infrastructure compatible with European developments, and empowering the scientists in the region in equal participation in the use of pan- European infrastructures, is materializing through the above initiatives. This model has a number of concrete operational and organizational guidelines which can be adapted to help e-Infrastructure developments in other world regions. In this paper we review the most important developments and contributions by the SEEGRID- SCI project.
caGrid 1.0: An Enterprise Grid Infrastructure for Biomedical Research
Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Phillips, Joshua; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel
2008-01-01
Objective To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. Design An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG™) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including 1) discovery, 2) integrated and large-scale data analysis, and 3) coordinated study. Measurements The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. Results The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid. Conclusions While caGrid 1.0 is designed to address use cases in cancer research, the requirements associated with discovery, analysis and integration of large scale data, and coordinated studies are common in other biomedical fields. In this respect, caGrid 1.0 is the realization of a framework that can benefit the entire biomedical community. PMID:18096909
caGrid 1.0: an enterprise Grid infrastructure for biomedical research.
Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Phillips, Joshua; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel
2008-01-01
To develop software infrastructure that will provide support for discovery, characterization, integrated access, and management of diverse and disparate collections of information sources, analysis methods, and applications in biomedical research. An enterprise Grid software infrastructure, called caGrid version 1.0 (caGrid 1.0), has been developed as the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. It is designed to support a wide range of use cases in basic, translational, and clinical research, including 1) discovery, 2) integrated and large-scale data analysis, and 3) coordinated study. The caGrid is built as a Grid software infrastructure and leverages Grid computing technologies and the Web Services Resource Framework standards. It provides a set of core services, toolkits for the development and deployment of new community provided services, and application programming interfaces for building client applications. The caGrid 1.0 was released to the caBIG community in December 2006. It is built on open source components and caGrid source code is publicly and freely available under a liberal open source license. The core software, associated tools, and documentation can be downloaded from the following URL: https://cabig.nci.nih.gov/workspaces/Architecture/caGrid. While caGrid 1.0 is designed to address use cases in cancer research, the requirements associated with discovery, analysis and integration of large scale data, and coordinated studies are common in other biomedical fields. In this respect, caGrid 1.0 is the realization of a framework that can benefit the entire biomedical community.
NASA Astrophysics Data System (ADS)
Deniskina, N.; Brescia, M.; Cavuoti, S.; d'Angelo, G.; Laurino, O.; Longo, G.
GRID-launcher-1.0 was built within the VO-Tech framework, as a software interface between the UK-ASTROGRID and a generic GRID infrastructures in order to allow any ASTROGRID user to launch on the GRID computing intensive tasks from the ASTROGRID Workbench or Desktop. Even though of general application, so far the Grid-Launcher has been tested on a few selected softwares (VONeural-MLP, VONeural-SVM, Sextractor and SWARP) and on the SCOPE-GRID.
Grids and clouds in the Czech NGI
NASA Astrophysics Data System (ADS)
Kundrát, Jan; Adam, Martin; Adamová, Dagmar; Chudoba, Jiří; Kouba, Tomáš; Lokajíček, Miloš; Mikula, Alexandr; Říkal, Václav; Švec, Jan; Vohnout, Rudolf
2016-09-01
There are several infrastructure operators within the Czech Republic NGI (National Grid Initiative) which provide users with access to high-performance computing facilities over a grid and cloud interface. This article focuses on those where the primary author has personal first-hand experience. We cover some operational issues as well as the history of these facilities.
Elastic Cloud Computing Infrastructures in the Open Cirrus Testbed Implemented via Eucalyptus
NASA Astrophysics Data System (ADS)
Baun, Christian; Kunze, Marcel
Cloud computing realizes the advantages and overcomes some restrictionsof the grid computing paradigm. Elastic infrastructures can easily be createdand managed by cloud users. In order to accelerate the research ondata center management and cloud services the OpenCirrusTM researchtestbed has been started by HP, Intel and Yahoo!. Although commercialcloud offerings are proprietary, Open Source solutions exist in the field ofIaaS with Eucalyptus, PaaS with AppScale and at the applications layerwith Hadoop MapReduce. This paper examines the I/O performance ofcloud computing infrastructures implemented with Eucalyptus in contrastto Amazon S3.
Using OSG Computing Resources with (iLC)Dirac
NASA Astrophysics Data System (ADS)
Sailer, A.; Petric, M.; CLICdp Collaboration
2017-10-01
CPU cycles for small experiments and projects can be scarce, thus making use of all available resources, whether dedicated or opportunistic, is mandatory. While enabling uniform access to the LCG computing elements (ARC, CREAM), the DIRAC grid interware was not able to use OSG computing elements (GlobusCE, HTCondor-CE) without dedicated support at the grid site through so called ‘SiteDirectors’, which directly submit to the local batch system. This in turn requires additional dedicated effort for small experiments on the grid site. Adding interfaces to the OSG CEs through the respective grid middleware is therefore allowing accessing them within the DIRAC software without additional site-specific infrastructure. This enables greater use of opportunistic resources for experiments and projects without dedicated clusters or an established computing infrastructure with the DIRAC software. To allow sending jobs to HTCondor-CE and legacy Globus computing elements inside DIRAC the required wrapper classes were developed. Not only is the usage of these types of computing elements now completely transparent for all DIRAC instances, which makes DIRAC a flexible solution for OSG based virtual organisations, but it also allows LCG Grid Sites to move to the HTCondor-CE software, without shutting DIRAC based VOs out of their site. In these proceedings we detail how we interfaced the DIRAC system to the HTCondor-CE and Globus computing elements and explain the encountered obstacles and solutions developed, and how the linear collider community uses resources in the OSG.
Physicists Get INSPIREd: INSPIRE Project and Grid Applications
NASA Astrophysics Data System (ADS)
Klem, Jukka; Iwaszkiewicz, Jan
2011-12-01
INSPIRE is the new high-energy physics scientific information system developed by CERN, DESY, Fermilab and SLAC. INSPIRE combines the curated and trusted contents of SPIRES database with Invenio digital library technology. INSPIRE contains the entire HEP literature with about one million records and in addition to becoming the reference HEP scientific information platform, it aims to provide new kinds of data mining services and metrics to assess the impact of articles and authors. Grid and cloud computing provide new opportunities to offer better services in areas that require large CPU and storage resources including document Optical Character Recognition (OCR) processing, full-text indexing of articles and improved metrics. D4Science-II is a European project that develops and operates an e-Infrastructure supporting Virtual Research Environments (VREs). It develops an enabling technology (gCube) which implements a mechanism for facilitating the interoperation of its e-Infrastructure with other autonomously running data e-Infrastructures. As a result, this creates the core of an e-Infrastructure ecosystem. INSPIRE is one of the e-Infrastructures participating in D4Science-II project. In the context of the D4Science-II project, the INSPIRE e-Infrastructure makes available some of its resources and services to other members of the resulting ecosystem. Moreover, it benefits from the ecosystem via a dedicated Virtual Organization giving access to an array of resources ranging from computing and storage resources of grid infrastructures to data and services.
Grid-Enabled Quantitative Analysis of Breast Cancer
2010-10-01
large-scale, multi-modality computerized image analysis . The central hypothesis of this research is that large-scale image analysis for breast cancer...research, we designed a pilot study utilizing large scale parallel Grid computing harnessing nationwide infrastructure for medical image analysis . Also
A bioinformatics knowledge discovery in text application for grid computing
Castellano, Marcello; Mastronardi, Giuseppe; Bellotti, Roberto; Tarricone, Gianfranco
2009-01-01
Background A fundamental activity in biomedical research is Knowledge Discovery which has the ability to search through large amounts of biomedical information such as documents and data. High performance computational infrastructures, such as Grid technologies, are emerging as a possible infrastructure to tackle the intensive use of Information and Communication resources in life science. The goal of this work was to develop a software middleware solution in order to exploit the many knowledge discovery applications on scalable and distributed computing systems to achieve intensive use of ICT resources. Methods The development of a grid application for Knowledge Discovery in Text using a middleware solution based methodology is presented. The system must be able to: perform a user application model, process the jobs with the aim of creating many parallel jobs to distribute on the computational nodes. Finally, the system must be aware of the computational resources available, their status and must be able to monitor the execution of parallel jobs. These operative requirements lead to design a middleware to be specialized using user application modules. It included a graphical user interface in order to access to a node search system, a load balancing system and a transfer optimizer to reduce communication costs. Results A middleware solution prototype and the performance evaluation of it in terms of the speed-up factor is shown. It was written in JAVA on Globus Toolkit 4 to build the grid infrastructure based on GNU/Linux computer grid nodes. A test was carried out and the results are shown for the named entity recognition search of symptoms and pathologies. The search was applied to a collection of 5,000 scientific documents taken from PubMed. Conclusion In this paper we discuss the development of a grid application based on a middleware solution. It has been tested on a knowledge discovery in text process to extract new and useful information about symptoms and pathologies from a large collection of unstructured scientific documents. As an example a computation of Knowledge Discovery in Database was applied on the output produced by the KDT user module to extract new knowledge about symptom and pathology bio-entities. PMID:19534749
A bioinformatics knowledge discovery in text application for grid computing.
Castellano, Marcello; Mastronardi, Giuseppe; Bellotti, Roberto; Tarricone, Gianfranco
2009-06-16
A fundamental activity in biomedical research is Knowledge Discovery which has the ability to search through large amounts of biomedical information such as documents and data. High performance computational infrastructures, such as Grid technologies, are emerging as a possible infrastructure to tackle the intensive use of Information and Communication resources in life science. The goal of this work was to develop a software middleware solution in order to exploit the many knowledge discovery applications on scalable and distributed computing systems to achieve intensive use of ICT resources. The development of a grid application for Knowledge Discovery in Text using a middleware solution based methodology is presented. The system must be able to: perform a user application model, process the jobs with the aim of creating many parallel jobs to distribute on the computational nodes. Finally, the system must be aware of the computational resources available, their status and must be able to monitor the execution of parallel jobs. These operative requirements lead to design a middleware to be specialized using user application modules. It included a graphical user interface in order to access to a node search system, a load balancing system and a transfer optimizer to reduce communication costs. A middleware solution prototype and the performance evaluation of it in terms of the speed-up factor is shown. It was written in JAVA on Globus Toolkit 4 to build the grid infrastructure based on GNU/Linux computer grid nodes. A test was carried out and the results are shown for the named entity recognition search of symptoms and pathologies. The search was applied to a collection of 5,000 scientific documents taken from PubMed. In this paper we discuss the development of a grid application based on a middleware solution. It has been tested on a knowledge discovery in text process to extract new and useful information about symptoms and pathologies from a large collection of unstructured scientific documents. As an example a computation of Knowledge Discovery in Database was applied on the output produced by the KDT user module to extract new knowledge about symptom and pathology bio-entities.
Nbody Simulations and Weak Gravitational Lensing using new HPC-Grid resources: the PI2S2 project
NASA Astrophysics Data System (ADS)
Becciani, U.; Antonuccio-Delogu, V.; Costa, A.; Comparato, M.
2008-08-01
We present the main project of the new grid infrastructure and the researches, that have been already started in Sicily and will be completed by next year. The PI2S2 project of the COMETA consortium is funded by the Italian Ministry of University and Research and will be completed in 2009. Funds are from the European Union Structural Funds for Objective 1 regions. The project, together with a similar project called Trinacria GRID Virtual Laboratory (Trigrid VL), aims to create in Sicily a computational grid for e-science and e-commerce applications with the main goal of increasing the technological innovation of local enterprises and their competition on the global market. PI2S2 project aims to build and develop an e-Infrastructure in Sicily, based on the grid paradigm, mainly for research activity using the grid environment and High Performance Computer systems. As an example we present the first results of a new grid version of FLY a tree Nbody code developed by INAF Astrophysical Observatory of Catania, already published in the CPC program Library, that will be used in the Weak Gravitational Lensing field.
Schopf, Jennifer M.; Nitzberg, Bill
2002-01-01
The design and implementation of a national computing system and data grid has become a reachable goal from both the computer science and computational science point of view. A distributed infrastructure capable of sophisticated computational functions can bring many benefits to scientific work, but poses many challenges, both technical and socio-political. Technical challenges include having basic software tools, higher-level services, functioning and pervasive security, and standards, while socio-political issues include building a user community, adding incentives for sites to be part of a user-centric environment, and educating funding sources about the needs of this community. This paper details the areasmore » relating to Grid research that we feel still need to be addressed to fully leverage the advantages of the Grid.« less
Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds
NASA Astrophysics Data System (ADS)
Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.
In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.
Grid infrastructure for automatic processing of SAR data for flood applications
NASA Astrophysics Data System (ADS)
Kussul, Natalia; Skakun, Serhiy; Shelestov, Andrii
2010-05-01
More and more geosciences applications are being put on to the Grids. Due to the complexity of geosciences applications that is caused by complex workflow, the use of computationally intensive environmental models, the need of management and integration of heterogeneous data sets, Grid offers solutions to tackle these problems. Many geosciences applications, especially those related to the disaster management and mitigations require the geospatial services to be delivered in proper time. For example, information on flooded areas should be provided to corresponding organizations (local authorities, civil protection agencies, UN agencies etc.) no more than in 24 h to be able to effectively allocate resources required to mitigate the disaster. Therefore, providing infrastructure and services that will enable automatic generation of products based on the integration of heterogeneous data represents the tasks of great importance. In this paper we present Grid infrastructure for automatic processing of synthetic-aperture radar (SAR) satellite images to derive flood products. In particular, we use SAR data acquired by ESA's ENVSAT satellite, and neural networks to derive flood extent. The data are provided in operational mode from ESA rolling archive (within ESA Category-1 grant). We developed a portal that is based on OpenLayers frameworks and provides access point to the developed services. Through the portal the user can define geographical region and search for the required data. Upon selection of data sets a workflow is automatically generated and executed on the resources of Grid infrastructure. For workflow execution and management we use Karajan language. The workflow of SAR data processing consists of the following steps: image calibration, image orthorectification, image processing with neural networks, topographic effects removal, geocoding and transformation to lat/long projection, and visualisation. These steps are executed by different software, and can be executed by different resources of the Grid system. The resulting geospatial services are available in various OGC standards such as KML and WMS. Currently, the Grid infrastructure integrates the resources of several geographically distributed organizations, in particular: Space Research Institute NASU-NSAU (Ukraine) with deployed computational and storage nodes based on Globus Toolkit 4 (htpp://www.globus.org) and gLite 3 (http://glite.web.cern.ch) middleware, access to geospatial data and a Grid portal; Institute of Cybernetics of NASU (Ukraine) with deployed computational and storage nodes (SCIT-1/2/3 clusters) based on Globus Toolkit 4 middleware and access to computational resources (approximately 500 processors); Center of Earth Observation and Digital Earth Chinese Academy of Sciences (CEODE-CAS, China) with deployed computational nodes based on Globus Toolkit 4 middleware and access to geospatial data (approximately 16 processors). We are currently adding new geospatial services based on optical satellite data, namely MODIS. This work is carried out jointly with the CEODE-CAS. Using workflow patterns that were developed for SAR data processing we are building new workflows for optical data processing.
Open Science in the Cloud: Towards a Universal Platform for Scientific and Statistical Computing
NASA Astrophysics Data System (ADS)
Chine, Karim
The UK, through the e-Science program, the US through the NSF-funded cyber infrastructure and the European Union through the ICT Calls aimed to provide "the technological solution to the problem of efficiently connecting data, computers, and people with the goal of enabling derivation of novel scientific theories and knowledge".1 The Grid (Foster, 2002; Foster; Kesselman, Nick, & Tuecke, 2002), foreseen as a major accelerator of discovery, didn't meet the expectations it had excited at its beginnings and was not adopted by the broad population of research professionals. The Grid is a good tool for particle physicists and it has allowed them to tackle the tremendous computational challenges inherent to their field. However, as a technology and paradigm for delivering computing on demand, it doesn't work and it can't be fixed. On one hand, "the abstractions that Grids expose - to the end-user, to the deployers and to application developers - are inappropriate and they need to be higher level" (Jha, Merzky, & Fox), and on the other hand, academic Grids are inherently economically unsustainable. They can't compete with a service outsourced to the Industry whose quality and price would be driven by market forces. The virtualization technologies and their corollary, the Infrastructure-as-a-Service (IaaS) style cloud, hold the promise to enable what the Grid failed to deliver: a sustainable environment for computational sciences that would lower the barriers for accessing federated computational resources, software tools and data; enable collaboration and resources sharing and provide the building blocks of a ubiquitous platform for traceable and reproducible computational research.
Design and implementation of spatial knowledge grid for integrated spatial analysis
NASA Astrophysics Data System (ADS)
Liu, Xiangnan; Guan, Li; Wang, Ping
2006-10-01
Supported by spatial information grid(SIG), the spatial knowledge grid (SKG) for integrated spatial analysis utilizes the middleware technology in constructing the spatial information grid computation environment and spatial information service system, develops spatial entity oriented spatial data organization technology, carries out the profound computation of the spatial structure and spatial process pattern on the basis of Grid GIS infrastructure, spatial data grid and spatial information grid (specialized definition). At the same time, it realizes the complex spatial pattern expression and the spatial function process simulation by taking the spatial intelligent agent as the core to establish space initiative computation. Moreover through the establishment of virtual geographical environment with man-machine interactivity and blending, complex spatial modeling, network cooperation work and spatial community decision knowledge driven are achieved. The framework of SKG is discussed systematically in this paper. Its implement flow and the key technology with examples of overlay analysis are proposed as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Shahryar Muhammad; /SLAC /NUST, Rawalpindi; Cottrell, R.Les
2007-10-30
The future of Computing in High Energy Physics (HEP) applications depends on both the Network and Grid infrastructure. South Asian countries such as India and Pakistan are making significant progress by building clusters as well as improving their network infrastructure However to facilitate the use of these resources, they need to manage the issues of network connectivity to be among the leading participants in Computing for HEP experiments. In this paper we classify the connectivity for academic and research institutions of South Asia. The quantitative measurements are carried out using the PingER methodology; an approach that induces minimal ICMP trafficmore » to gather active end-to-end network statistics. The PingER project has been measuring the Internet performance for the last decade. Currently the measurement infrastructure comprises of over 700 hosts in more than 130 countries which collectively represents approximately 99% of the world's Internet-connected population. Thus, we are well positioned to characterize the world's connectivity. Here we present the current state of the National Research and Educational Networks (NRENs) and Grid Infrastructure in the South Asian countries and identify the areas of concern. We also present comparisons between South Asia and other developing as well as developed regions. We show that there is a strong correlation between the Network performance and several Human Development indices.« less
Economic models for management of resources in peer-to-peer and grid computing
NASA Astrophysics Data System (ADS)
Buyya, Rajkumar; Stockinger, Heinz; Giddy, Jonathan; Abramson, David
2001-07-01
The accelerated development in Peer-to-Peer (P2P) and Grid computing has positioned them as promising next generation computing platforms. They enable the creation of Virtual Enterprises (VE) for sharing resources distributed across the world. However, resource management, application development and usage models in these environments is a complex undertaking. This is due to the geographic distribution of resources that are owned by different organizations or peers. The resource owners of each of these resources have different usage or access policies and cost models, and varying loads and availability. In order to address complex resource management issues, we have proposed a computational economy framework for resource allocation and for regulating supply and demand in Grid computing environments. The framework provides mechanisms for optimizing resource provider and consumer objective functions through trading and brokering services. In a real world market, there exist various economic models for setting the price for goods based on supply-and-demand and their value to the user. They include commodity market, posted price, tenders and auctions. In this paper, we discuss the use of these models for interaction between Grid components in deciding resource value and the necessary infrastructure to realize them. In addition to normal services offered by Grid computing systems, we need an infrastructure to support interaction protocols, allocation mechanisms, currency, secure banking, and enforcement services. Furthermore, we demonstrate the usage of some of these economic models in resource brokering through Nimrod/G deadline and cost-based scheduling for two different optimization strategies on the World Wide Grid (WWG) testbed that contains peer-to-peer resources located on five continents: Asia, Australia, Europe, North America, and South America.
Network Computing Infrastructure to Share Tools and Data in Global Nuclear Energy Partnership
NASA Astrophysics Data System (ADS)
Kim, Guehee; Suzuki, Yoshio; Teshima, Naoya
CCSE/JAEA (Center for Computational Science and e-Systems/Japan Atomic Energy Agency) integrated a prototype system of a network computing infrastructure for sharing tools and data to support the U.S. and Japan collaboration in GNEP (Global Nuclear Energy Partnership). We focused on three technical issues to apply our information process infrastructure, which are accessibility, security, and usability. In designing the prototype system, we integrated and improved both network and Web technologies. For the accessibility issue, we adopted SSL-VPN (Security Socket Layer-Virtual Private Network) technology for the access beyond firewalls. For the security issue, we developed an authentication gateway based on the PKI (Public Key Infrastructure) authentication mechanism to strengthen the security. Also, we set fine access control policy to shared tools and data and used shared key based encryption method to protect tools and data against leakage to third parties. For the usability issue, we chose Web browsers as user interface and developed Web application to provide functions to support sharing tools and data. By using WebDAV (Web-based Distributed Authoring and Versioning) function, users can manipulate shared tools and data through the Windows-like folder environment. We implemented the prototype system in Grid infrastructure for atomic energy research: AEGIS (Atomic Energy Grid Infrastructure) developed by CCSE/JAEA. The prototype system was applied for the trial use in the first period of GNEP.
The International Symposium on Grids and Clouds and the Open Grid Forum
NASA Astrophysics Data System (ADS)
The International Symposium on Grids and Clouds 20111 was held at Academia Sinica in Taipei, Taiwan on 19th to 25th March 2011. A series of workshops and tutorials preceded the symposium. The aim of ISGC is to promote the use of grid and cloud computing in the Asia Pacific region. Over the 9 years that ISGC has been running, the programme has evolved to become more user community focused with subjects reaching out to a larger population. Research communities are making widespread use of distributed computing facilities. Linking together data centers, production grids, desktop systems or public clouds, many researchers are able to do more research and produce results more quickly. They could do much more if the computing infrastructures they use worked together more effectively. Changes in the way we approach distributed computing, and new services from commercial providers, mean that boundaries are starting to blur. This opens the way for hybrid solutions that make it easier for researchers to get their job done. Consequently the theme for ISGC2011 was the opportunities that better integrated computing infrastructures can bring, and the steps needed to achieve the vision of a seamless global research infrastructure. 2011 is a year of firsts for ISGC. First the title - while the acronym remains the same, its meaning has changed to reflect the evolution of computing: The International Symposium on Grids and Clouds. Secondly the programming - ISGC 2011 has always included topical workshops and tutorials. But 2011 is the first year that ISGC has been held in conjunction with the Open Grid Forum2 which held its 31st meeting with a series of working group sessions. The ISGC plenary session included keynote speakers from OGF that highlighted the relevance of standards for the research community. ISGC with its focus on applications and operational aspects complemented well with OGF's focus on standards development. ISGC brought to OGF real-life use cases and needs to be addressed while OGF exposed the state of current developments and issues to be resolved if commonalities are to be exploited. Another first is for the Proceedings for 2011, an open access online publishing scheme will ensure these Proceedings will appear more quickly and more people will have access to the results, providing a long-term online archive of the event. The symposium attracted more than 212 participants from 29 countries spanning Asia, Europe and the Americas. Coming so soon after the earthquake and tsunami in Japan, the participation of our Japanese colleagues was particularly appreciated. Keynotes by invited speakers highlighted the impact of distributed computing infrastructures in the social sciences and humanities, high energy physics, earth and life sciences. Plenary sessions entitled Grid Activities in Asia Pacific surveyed the state of grid deployment across 11 Asian countries. Through the parallel sessions, the impact of distributed computing infrastructures in a range of research disciplines was highlighted. Operational procedures, middleware and security aspects were addressed in a dedicated sessions. The symposium was covered online in real-time by the GridCast team from the GridTalk project. A running blog including summarises of specific sessions as well as video interviews with keynote speakers and personalities and photos. As with all regions of the world, grid and cloud computing has to be prove it is adding value to researchers if it is be accepted by them and demonstrate its impact on society as a while if it to be supported by national governments, funding agencies and the general public. ISGC has helped foster the emergence of a strong regional interest in the earth and life sciences, notably for natural disaster mitigation and bioinformatics studies. Prof. Simon C. Lin organised an intense social programme with a gastronomic tour of Taipei culminating with a banquet for all the symposium's participants at the hotel Palais de Chine. I would like to thank all the members of the programme committee, the participants and above all our hosts, Prof. Simon C. Lin and his excellent support team at Academia Sinica. Dr. Bob Jones Programme Chair 1 http://event.twgrid.org/isgc2011/ 2 http://www.gridforum.org/
NASA Astrophysics Data System (ADS)
van Hemert, Jano; Vilotte, Jean-Pierre
2010-05-01
Research in earthquake and seismology addresses fundamental problems in understanding Earth's internal wave sources and structures, and augment applications to societal concerns about natural hazards, energy resources and environmental change. This community is central to the European Plate Observing System (EPOS)—the ESFRI initiative in solid Earth Sciences. Global and regional seismology monitoring systems are continuously operated and are transmitting a growing wealth of data from Europe and from around the world. These tremendous volumes of seismograms, i.e., records of ground motions as a function of time, have a definite multi-use attribute, which puts a great premium on open-access data infrastructures that are integrated globally. In Europe, the earthquake and seismology community is part of the European Integrated Data Archives (EIDA) infrastructure and is structured as "horizontal" data services. On top of this distributed data archive system, the community has developed recently within the EC project NERIES advanced SOA-based web services and a unified portal system. Enabling advanced analysis of these data by utilising a data-aware distributed computing environment is instrumental to fully exploit the cornucopia of data and to guarantee optimal operation of the high-cost monitoring facilities. The strategy of VERCE is driven by the needs of data-intensive applications in data mining and modelling and will be illustrated through a set of applications. It aims to provide a comprehensive architecture and framework adapted to the scale and the diversity of these applications, and to integrate the community data infrastructure with Grid and HPC infrastructures. A first novel aspect is a service-oriented architecture that provides well-equipped integrated workbenches, with an efficient communication layer between data and Grid infrastructures, augmented with bridges to the HPC facilities. A second novel aspect is the coupling between Grid data analysis and HPC data modelling applications through workflow and data sharing mechanisms. VERCE will develop important interactions with the European infrastructure initiatives in Grid and HPC computing. The VERCE team: CNRS-France (IPG Paris, LGIT Grenoble), UEDIN (UK), KNMI-ORFEUS (Holland), EMSC, INGV (Italy), LMU (Germany), ULIV (UK), BADW-LRZ (Germany), SCAI (Germany), CINECA (Italy)
NASA Technical Reports Server (NTRS)
Moore, Reagan W.; Jagatheesan, Arun; Rajasekar, Arcot; Wan, Michael; Schroeder, Wayne
2004-01-01
The "Grid" is an emerging infrastructure for coordinating access across autonomous organizations to distributed, heterogeneous computation and data resources. Data grids are being built around the world as the next generation data handling systems for sharing, publishing, and preserving data residing on storage systems located in multiple administrative domains. A data grid provides logical namespaces for users, digital entities and storage resources to create persistent identifiers for controlling access, enabling discovery, and managing wide area latencies. This paper introduces data grids and describes data grid use cases. The relevance of data grids to digital libraries and persistent archives is demonstrated, and research issues in data grids and grid dataflow management systems are discussed.
Role of the ATLAS Grid Information System (AGIS) in Distributed Data Analysis and Simulation
NASA Astrophysics Data System (ADS)
Anisenkov, A. V.
2018-03-01
In modern high-energy physics experiments, particular attention is paid to the global integration of information and computing resources into a unified system for efficient storage and processing of experimental data. Annually, the ATLAS experiment performed at the Large Hadron Collider at the European Organization for Nuclear Research (CERN) produces tens of petabytes raw data from the recording electronics and several petabytes of data from the simulation system. For processing and storage of such super-large volumes of data, the computing model of the ATLAS experiment is based on heterogeneous geographically distributed computing environment, which includes the worldwide LHC computing grid (WLCG) infrastructure and is able to meet the requirements of the experiment for processing huge data sets and provide a high degree of their accessibility (hundreds of petabytes). The paper considers the ATLAS grid information system (AGIS) used by the ATLAS collaboration to describe the topology and resources of the computing infrastructure, to configure and connect the high-level software systems of computer centers, to describe and store all possible parameters, control, configuration, and other auxiliary information required for the effective operation of the ATLAS distributed computing applications and services. The role of the AGIS system in the development of a unified description of the computing resources provided by grid sites, supercomputer centers, and cloud computing into a consistent information model for the ATLAS experiment is outlined. This approach has allowed the collaboration to extend the computing capabilities of the WLCG project and integrate the supercomputers and cloud computing platforms into the software components of the production and distributed analysis workload management system (PanDA, ATLAS).
Integration of Cloud resources in the LHCb Distributed Computing
NASA Astrophysics Data System (ADS)
Úbeda García, Mario; Méndez Muñoz, Víctor; Stagni, Federico; Cabarrou, Baptiste; Rauschmayr, Nathalie; Charpentier, Philippe; Closier, Joel
2014-06-01
This contribution describes how Cloud resources have been integrated in the LHCb Distributed Computing. LHCb is using its specific Dirac extension (LHCbDirac) as an interware for its Distributed Computing. So far, it was seamlessly integrating Grid resources and Computer clusters. The cloud extension of DIRAC (VMDIRAC) allows the integration of Cloud computing infrastructures. It is able to interact with multiple types of infrastructures in commercial and institutional clouds, supported by multiple interfaces (Amazon EC2, OpenNebula, OpenStack and CloudStack) - instantiates, monitors and manages Virtual Machines running on this aggregation of Cloud resources. Moreover, specifications for institutional Cloud resources proposed by Worldwide LHC Computing Grid (WLCG), mainly by the High Energy Physics Unix Information Exchange (HEPiX) group, have been taken into account. Several initiatives and computing resource providers in the eScience environment have already deployed IaaS in production during 2013. Keeping this on mind, pros and cons of a cloud based infrasctructure have been studied in contrast with the current setup. As a result, this work addresses four different use cases which represent a major improvement on several levels of our infrastructure. We describe the solution implemented by LHCb for the contextualisation of the VMs based on the idea of Cloud Site. We report on operational experience of using in production several institutional Cloud resources that are thus becoming integral part of the LHCb Distributed Computing resources. Furthermore, we describe as well the gradual migration of our Service Infrastructure towards a fully distributed architecture following the Service as a Service (SaaS) model.
interoperability emerging infrastructure for data management on computational grids Software Packages Services : ATLAS: Management and Steering: Computing Management Board Software Project Management Board Database Model Group Computing TDR: 4.5 Event Data 4.8 Database and Data Management Services 6.3.4 Production and
WLCG scale testing during CMS data challenges
NASA Astrophysics Data System (ADS)
Gutsche, O.; Hajdu, C.
2008-07-01
The CMS computing model to process and analyze LHC collision data follows a data-location driven approach and is using the WLCG infrastructure to provide access to GRID resources. As a preparation for data taking, CMS tests its computing model during dedicated data challenges. An important part of the challenges is the test of the user analysis which poses a special challenge for the infrastructure with its random distributed access patterns. The CMS Remote Analysis Builder (CRAB) handles all interactions with the WLCG infrastructure transparently for the user. During the 2006 challenge, CMS set its goal to test the infrastructure at a scale of 50,000 user jobs per day using CRAB. Both direct submissions by individual users and automated submissions by robots were used to achieve this goal. A report will be given about the outcome of the user analysis part of the challenge using both the EGEE and OSG parts of the WLCG. In particular, the difference in submission between both GRID middlewares (resource broker vs. direct submission) will be discussed. In the end, an outlook for the 2007 data challenge is given.
Integration of end-user Cloud storage for CMS analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riahi, Hassen; Aimar, Alberto; Ayllon, Alejandro Alvarez
End-user Cloud storage is increasing rapidly in popularity in research communities thanks to the collaboration capabilities it offers, namely synchronisation and sharing. CERN IT has implemented a model of such storage named, CERNBox, integrated with the CERN AuthN and AuthZ services. To exploit the use of the end-user Cloud storage for the distributed data analysis activity, the CMS experiment has started the integration of CERNBox as a Grid resource. This will allow CMS users to make use of their own storage in the Cloud for their analysis activities as well as to benefit from synchronisation and sharing capabilities to achievemore » results faster and more effectively. It will provide an integration model of Cloud storages in the Grid, which is implemented and commissioned over the world’s largest computing Grid infrastructure, Worldwide LHC Computing Grid (WLCG). In this paper, we present the integration strategy and infrastructure changes needed in order to transparently integrate end-user Cloud storage with the CMS distributed computing model. We describe the new challenges faced in data management between Grid and Cloud and how they were addressed, along with details of the support for Cloud storage recently introduced into the WLCG data movement middleware, FTS3. Finally, the commissioning experience of CERNBox for the distributed data analysis activity is also presented.« less
Integration of end-user Cloud storage for CMS analysis
Riahi, Hassen; Aimar, Alberto; Ayllon, Alejandro Alvarez; ...
2017-05-19
End-user Cloud storage is increasing rapidly in popularity in research communities thanks to the collaboration capabilities it offers, namely synchronisation and sharing. CERN IT has implemented a model of such storage named, CERNBox, integrated with the CERN AuthN and AuthZ services. To exploit the use of the end-user Cloud storage for the distributed data analysis activity, the CMS experiment has started the integration of CERNBox as a Grid resource. This will allow CMS users to make use of their own storage in the Cloud for their analysis activities as well as to benefit from synchronisation and sharing capabilities to achievemore » results faster and more effectively. It will provide an integration model of Cloud storages in the Grid, which is implemented and commissioned over the world’s largest computing Grid infrastructure, Worldwide LHC Computing Grid (WLCG). In this paper, we present the integration strategy and infrastructure changes needed in order to transparently integrate end-user Cloud storage with the CMS distributed computing model. We describe the new challenges faced in data management between Grid and Cloud and how they were addressed, along with details of the support for Cloud storage recently introduced into the WLCG data movement middleware, FTS3. Finally, the commissioning experience of CERNBox for the distributed data analysis activity is also presented.« less
Dashboard Task Monitor for Managing ATLAS User Analysis on the Grid
NASA Astrophysics Data System (ADS)
Sargsyan, L.; Andreeva, J.; Jha, M.; Karavakis, E.; Kokoszkiewicz, L.; Saiz, P.; Schovancova, J.; Tuckett, D.; Atlas Collaboration
2014-06-01
The organization of the distributed user analysis on the Worldwide LHC Computing Grid (WLCG) infrastructure is one of the most challenging tasks among the computing activities at the Large Hadron Collider. The Experiment Dashboard offers a solution that not only monitors but also manages (kill, resubmit) user tasks and jobs via a web interface. The ATLAS Dashboard Task Monitor provides analysis users with a tool that is independent of the operating system and Grid environment. This contribution describes the functionality of the application and its implementation details, in particular authentication, authorization and audit of the management operations.
Separating Added Value from Hype: Some Experiences and Prognostications
NASA Astrophysics Data System (ADS)
Reed, Dan
2004-03-01
These are exciting times for the interplay of science and computing technology. As new data archives, instruments and computing facilities are connected nationally and internationally, a new model of distributed scientific collaboration is emerging. However, any new technology brings both opportunities and challenges -- Grids are no exception. In this talk, we will discuss some of the experiences deploying Grid software in production environments, illustrated with experiences from the NSF PACI Alliance, the NSF Extensible Terascale Facility (ETF) and other Grid projects. From these experiences, we derive some guidelines for deployment and some suggestions for community engagement, software development and infrastructure
Operating a production pilot factory serving several scientific domains
NASA Astrophysics Data System (ADS)
Sfiligoi, I.; Würthwein, F.; Andrews, W.; Dost, J. M.; MacNeill, I.; McCrea, A.; Sheripon, E.; Murphy, C. W.
2011-12-01
Pilot infrastructures are becoming prominent players in the Grid environment. One of the major advantages is represented by the reduced effort required by the user communities (also known as Virtual Organizations or VOs) due to the outsourcing of the Grid interfacing services, i.e. the pilot factory, to Grid experts. One such pilot factory, based on the glideinWMS pilot infrastructure, is being operated by the Open Science Grid at University of California San Diego (UCSD). This pilot factory is serving multiple VOs from several scientific domains. Currently the three major clients are the analysis operations of the HEP experiment CMS, the community VO HCC, which serves mostly math, biology and computer science users, and the structural biology VO NEBioGrid. The UCSD glidein factory allows the served VOs to use Grid resources distributed over 150 sites in North and South America, in Europe, and in Asia. This paper presents the steps taken to create a production quality pilot factory, together with the challenges encountered along the road.
A Roadmap for caGrid, an Enterprise Grid Architecture for Biomedical Research
Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Hong, Neil Chue
2012-01-01
caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG™) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities. PMID:18560123
A roadmap for caGrid, an enterprise Grid architecture for biomedical research.
Saltz, Joel; Hastings, Shannon; Langella, Stephen; Oster, Scott; Kurc, Tahsin; Payne, Philip; Ferreira, Renato; Plale, Beth; Goble, Carole; Ervin, David; Sharma, Ashish; Pan, Tony; Permar, Justin; Brezany, Peter; Siebenlist, Frank; Madduri, Ravi; Foster, Ian; Shanbhag, Krishnakant; Mead, Charlie; Chue Hong, Neil
2008-01-01
caGrid is a middleware system which combines the Grid computing, the service oriented architecture, and the model driven architecture paradigms to support development of interoperable data and analytical resources and federation of such resources in a Grid environment. The functionality provided by caGrid is an essential and integral component of the cancer Biomedical Informatics Grid (caBIG) program. This program is established by the National Cancer Institute as a nationwide effort to develop enabling informatics technologies for collaborative, multi-institutional biomedical research with the overarching goal of accelerating translational cancer research. Although the main application domain for caGrid is cancer research, the infrastructure provides a generic framework that can be employed in other biomedical research and healthcare domains. The development of caGrid is an ongoing effort, adding new functionality and improvements based on feedback and use cases from the community. This paper provides an overview of potential future architecture and tooling directions and areas of improvement for caGrid and caGrid-like systems. This summary is based on discussions at a roadmap workshop held in February with participants from biomedical research, Grid computing, and high performance computing communities.
A Taxonomy on Accountability and Privacy Issues in Smart Grids
NASA Astrophysics Data System (ADS)
Naik, Ameya; Shahnasser, Hamid
2017-07-01
Cyber-Physical Systems (CPS) are combinations of computation, networking, and physical processes. Embedded computers and networks monitor control the physical processes, which affect computations and vice versa. Two applications of cyber physical systems include health-care and smart grid. In this paper, we have considered privacy aspects of cyber-physical system applicable to smart grid. Smart grid in collaboration with different stockholders can help in the improvement of power generation, communication, circulation and consumption. The proper management with monitoring feature by customers and utility of energy usage can be done through proper transmission and electricity flow; however cyber vulnerability could be increased due to an increased assimilation and linkage. This paper discusses various frameworks and architectures proposed for achieving accountability in smart grids by addressing privacy issues in Advance Metering Infrastructure (AMI). This paper also highlights additional work needed for accountability in more precise specifications such as uncertainty or ambiguity, indistinct, unmanageability, and undetectably.
Outlook for grid service technologies within the @neurIST eHealth environment.
Arbona, A; Benkner, S; Fingberg, J; Frangi, A F; Hofmann, M; Hose, D R; Lonsdale, G; Ruefenacht, D; Viceconti, M
2006-01-01
The aim of the @neurIST project is to create an IT infrastructure for the management of all processes linked to research, diagnosis and treatment development for complex and multi-factorial diseases. The IT infrastructure will be developed for one such disease, cerebral aneurysm and subarachnoid haemorrhage, but its core technologies will be transferable to meet the needs of other medical areas. Since the IT infrastructure for @neurIST will need to encompass data repositories, computational analysis services and information systems handling multi-scale, multi-modal information at distributed sites, the natural basis for the IT infrastructure is a Grid Service middleware. The project will adopt a service-oriented architecture because it aims to provide a system addressing the needs of medical researchers, clinicians and health care specialists (and their IT providers/systems) and medical supplier/consulting industries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Robert C.; Ray, Jaideep; Malony, A.
2003-11-01
We present a case study of performance measurement and modeling of a CCA (Common Component Architecture) component-based application in a high performance computing environment. We explore issues peculiar to component-based HPC applications and propose a performance measurement infrastructure for HPC based loosely on recent work done for Grid environments. A prototypical implementation of the infrastructure is used to collect data for a three components in a scientific application and construct performance models for two of them. Both computational and message-passing performance are addressed.
Belle II grid computing: An overview of the distributed data management system.
NASA Astrophysics Data System (ADS)
Bansal, Vikas; Schram, Malachi; Belle Collaboration, II
2017-01-01
The Belle II experiment at the SuperKEKB collider in Tsukuba, Japan, will start physics data taking in 2018 and will accumulate 50/ab of e +e- collision data, about 50 times larger than the data set of the Belle experiment. The computing requirements of Belle II are comparable to those of a Run I LHC experiment. Computing at this scale requires efficient use of the compute grids in North America, Asia and Europe and will take advantage of upgrades to the high-speed global network. We present the architecture of data flow and data handling as a part of the Belle II computing infrastructure.
Application of green IT for physics data processing at INCDTIM
NASA Astrophysics Data System (ADS)
Farcas, Felix; Trusca, Radu; Albert, Stefan; Szabo, Izabella; Popeneciu, Gabriel
2012-02-01
Green IT is the next generation technology used in all datacenter around the world. Its benefit is of economic and financial interest. The new technologies are energy efficient, reduce cost and avoid potential disruptions to the existing infrastructure. The most important problem appears at the cooling systems which are the most important in the functionality of a datacenter. Green IT used in Grid Network will benefit the environment and is the next phase in computer infrastructure that will fundamentally change the way we think about and use computing power. At the National Institute for Research and Development of Isotopic and Molecular Technologies Cluj-Napoca (INCDTIM) we have implemented such kind of technology and its support helped us in processing multiple data in different domains, which brought INCDTIM on the major Grid domain with the RO-14-ITIM Grid site. In this paper we present benefits that the new technology brought us and the result obtained in the last year after the implementation of the new green technology.
Blast2GO goes grid: developing a grid-enabled prototype for functional genomics analysis.
Aparicio, G; Götz, S; Conesa, A; Segrelles, D; Blanquer, I; García, J M; Hernandez, V; Robles, M; Talon, M
2006-01-01
The vast amount in complexity of data generated in Genomic Research implies that new dedicated and powerful computational tools need to be developed to meet their analysis requirements. Blast2GO (B2G) is a bioinformatics tool for Gene Ontology-based DNA or protein sequence annotation and function-based data mining. The application has been developed with the aim of affering an easy-to-use tool for functional genomics research. Typical B2G users are middle size genomics labs carrying out sequencing, ETS and microarray projects, handling datasets up to several thousand sequences. In the current version of B2G. The power and analytical potential of both annotation and function data-mining is somehow restricted to the computational power behind each particular installation. In order to be able to offer the possibility of an enhanced computational capacity within this bioinformatics application, a Grid component is being developed. A prototype has been conceived for the particular problem of speeding up the Blast searches to obtain fast results for large datasets. Many efforts have been done in the literature concerning the speeding up of Blast searches, but few of them deal with the use of large heterogeneous production Grid Infrastructures. These are the infrastructures that could reach the largest number of resources and the best load balancing for data access. The Grid Service under development will analyse requests based on the number of sequences, splitting them accordingly to the available resources. Lower-level computation will be performed through MPIBLAST. The software architecture is based on the WSRF standard.
Computation of Asteroid Proper Elements on the Grid
NASA Astrophysics Data System (ADS)
Novakovic, B.; Balaz, A.; Knezevic, Z.; Potocnik, M.
2009-12-01
A procedure of gridification of the computation of asteroid proper orbital elements is described. The need to speed up the time consuming computations and make them more efficient is justified by the large increase of observational data expected from the next generation all sky surveys. We give the basic notion of proper elements and of the contemporary theories and methods used to compute them for different populations of objects. Proper elements for nearly 70,000 asteroids are derived since the beginning of use of the Grid infrastructure for the purpose. The average time for the catalogs update is significantly shortened with respect to the time needed with stand-alone workstations. We also present basics of the Grid computing, the concepts of Grid middleware and its Workload management system. The practical steps we undertook to efficiently gridify our application are described in full detail. We present the results of a comprehensive testing of the performance of different Grid sites, and offer some practical conclusions based on the benchmark results and on our experience. Finally, we propose some possibilities for the future work.
Infrastructures for Distributed Computing: the case of BESIII
NASA Astrophysics Data System (ADS)
Pellegrino, J.
2018-05-01
The BESIII is an electron-positron collision experiment hosted at BEPCII in Beijing and aimed to investigate Tau-Charm physics. Now BESIII has been running for several years and gathered more than 1PB raw data. In order to analyze these data and perform massive Monte Carlo simulations, a large amount of computing and storage resources is needed. The distributed computing system is based up on DIRAC and it is in production since 2012. It integrates computing and storage resources from different institutes and a variety of resource types such as cluster, grid, cloud or volunteer computing. About 15 sites from BESIII Collaboration from all over the world joined this distributed computing infrastructure, giving a significant contribution to the IHEP computing facility. Nowadays cloud computing is playing a key role in the HEP computing field, due to its scalability and elasticity. Cloud infrastructures take advantages of several tools, such as VMDirac, to manage virtual machines through cloud managers according to the job requirements. With the virtually unlimited resources from commercial clouds, the computing capacity could scale accordingly in order to deal with any burst demands. General computing models have been discussed in the talk and are addressed herewith, with particular focus on the BESIII infrastructure. Moreover new computing tools and upcoming infrastructures will be addressed.
INFN-Pisa scientific computation environment (GRID, HPC and Interactive Analysis)
NASA Astrophysics Data System (ADS)
Arezzini, S.; Carboni, A.; Caruso, G.; Ciampa, A.; Coscetti, S.; Mazzoni, E.; Piras, S.
2014-06-01
The INFN-Pisa Tier2 infrastructure is described, optimized not only for GRID CPU and Storage access, but also for a more interactive use of the resources in order to provide good solutions for the final data analysis step. The Data Center, equipped with about 6700 production cores, permits the use of modern analysis techniques realized via advanced statistical tools (like RooFit and RooStat) implemented in multicore systems. In particular a POSIX file storage access integrated with standard SRM access is provided. Therefore the unified storage infrastructure is described, based on GPFS and Xrootd, used both for SRM data repository and interactive POSIX access. Such a common infrastructure allows a transparent access to the Tier2 data to the users for their interactive analysis. The organization of a specialized many cores CPU facility devoted to interactive analysis is also described along with the login mechanism integrated with the INFN-AAI (National INFN Infrastructure) to extend the site access and use to a geographical distributed community. Such infrastructure is used also for a national computing facility in use to the INFN theoretical community, it enables a synergic use of computing and storage resources. Our Center initially developed for the HEP community is now growing and includes also HPC resources fully integrated. In recent years has been installed and managed a cluster facility (1000 cores, parallel use via InfiniBand connection) and we are now updating this facility that will provide resources for all the intermediate level HPC computing needs of the INFN theoretical national community.
IGI (the Italian Grid initiative) and its impact on the Astrophysics community
NASA Astrophysics Data System (ADS)
Pasian, F.; Vuerli, C.; Taffoni, G.
IGI - the Association for the Italian Grid Infrastructure - has been established as a consortium of 14 different national institutions to provide long term sustainability to the Italian Grid. Its formal predecessor, the Grid.it project, has come to a close in 2006; to extend the benefits of this project, IGI has taken over and acts as the national coordinator for the different sectors of the Italian e-Infrastructure present in EGEE. IGI plans to support activities in a vast range of scientificdisciplines - e.g. Physics, Astrophysics, Biology, Health, Chemistry, Geophysics, Economy, Finance - and any possible extensions to other sectors such as Civil Protection, e-Learning, dissemination in Universities and secondary schools. Among these, the Astrophysics community is active as a user, by porting applications of various kinds, but also as a resource provider in terms of computing power and storage, and as middleware developer.
Service-Oriented Architecture for NVO and TeraGrid Computing
NASA Technical Reports Server (NTRS)
Jacob, Joseph; Miller, Craig; Williams, Roy; Steenberg, Conrad; Graham, Matthew
2008-01-01
The National Virtual Observatory (NVO) Extensible Secure Scalable Service Infrastructure (NESSSI) is a Web service architecture and software framework that enables Web-based astronomical data publishing and processing on grid computers such as the National Science Foundation's TeraGrid. Characteristics of this architecture include the following: (1) Services are created, managed, and upgraded by their developers, who are trusted users of computing platforms on which the services are deployed. (2) Service jobs can be initiated by means of Java or Python client programs run on a command line or with Web portals. (3) Access is granted within a graduated security scheme in which the size of a job that can be initiated depends on the level of authentication of the user.
A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure
NASA Astrophysics Data System (ADS)
Choi, Yosoon; Yi, Huiuk; Park, Hyeong-Dong
2011-08-01
We developed a new algorithm, the Adaptive Stormwater Infrastructure (ASI) algorithm, to incorporate ancillary data sets related to stormwater infrastructure into the grid-based hydrologic analysis. The algorithm simultaneously considers the effects of the surface stormwater collector network (e.g., diversions, roadside ditches, and canals) and underground stormwater conveyance systems (e.g., waterway tunnels, collector pipes, and culverts). The surface drainage flows controlled by the surface runoff collector network are superimposed onto the flow directions derived from a DEM. After examining the connections between inlets and outfalls in the underground stormwater conveyance system, the flow accumulation and delineation of watersheds are calculated based on recursive computations. Application of the algorithm to the Sangdong tailings dam in Korea revealed superior performance to that of a conventional D8 single-flow algorithm in terms of providing reasonable hydrologic information on watersheds with stormwater infrastructure.
Synchrotron Imaging Computations on the Grid without the Computing Element
NASA Astrophysics Data System (ADS)
Curri, A.; Pugliese, R.; Borghes, R.; Kourousias, G.
2011-12-01
Besides the heavy use of the Grid in the Synchrotron Radiation Facility (SRF) Elettra, additional special requirements from the beamlines had to be satisfied through a novel solution that we present in this work. In the traditional Grid Computing paradigm the computations are performed on the Worker Nodes of the grid element known as the Computing Element. A Grid middleware extension that our team has been working on, is that of the Instrument Element. In general it is used to Grid-enable instrumentation; and it can be seen as a neighbouring concept to that of the traditional Control Systems. As a further extension we demonstrate the Instrument Element as the steering mechanism for a series of computations. In our deployment it interfaces a Control System that manages a series of computational demanding Scientific Imaging tasks in an online manner. The instrument control in Elettra is done through a suitable Distributed Control System, a common approach in the SRF community. The applications that we present are for a beamline working in medical imaging. The solution resulted to a substantial improvement of a Computed Tomography workflow. The near-real-time requirements could not have been easily satisfied from our Grid's middleware (gLite) due to the various latencies often occurred during the job submission and queuing phases. Moreover the required deployment of a set of TANGO devices could not have been done in a standard gLite WN. Besides the avoidance of certain core Grid components, the Grid Security infrastructure has been utilised in the final solution.
Grid-Enabled Quantitative Analysis of Breast Cancer
2009-10-01
large-scale, multi-modality computerized image analysis . The central hypothesis of this research is that large-scale image analysis for breast cancer...pilot study to utilize large scale parallel Grid computing to harness the nationwide cluster infrastructure for optimization of medical image ... analysis parameters. Additionally, we investigated the use of cutting edge dataanalysis/ mining techniques as applied to Ultrasound, FFDM, and DCE-MRI Breast
Managing a tier-2 computer centre with a private cloud infrastructure
NASA Astrophysics Data System (ADS)
Bagnasco, Stefano; Berzano, Dario; Brunetti, Riccardo; Lusso, Stefano; Vallero, Sara
2014-06-01
In a typical scientific computing centre, several applications coexist and share a single physical infrastructure. An underlying Private Cloud infrastructure eases the management and maintenance of such heterogeneous applications (such as multipurpose or application-specific batch farms, Grid sites, interactive data analysis facilities and others), allowing dynamic allocation resources to any application. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques. Such infrastructures are being deployed in some large centres (see e.g. the CERN Agile Infrastructure project), but with several open-source tools reaching maturity this is becoming viable also for smaller sites. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 centre, an Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The private cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem and the OpenWRT Linux distribution (used for network virtualization); a future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and OCCI.
NASA Astrophysics Data System (ADS)
Pordes, Ruth; OSG Consortium; Petravick, Don; Kramer, Bill; Olson, Doug; Livny, Miron; Roy, Alain; Avery, Paul; Blackburn, Kent; Wenaus, Torre; Würthwein, Frank; Foster, Ian; Gardner, Rob; Wilde, Mike; Blatecky, Alan; McGee, John; Quick, Rob
2007-07-01
The Open Science Grid (OSG) provides a distributed facility where the Consortium members provide guaranteed and opportunistic access to shared computing and storage resources. OSG provides support for and evolution of the infrastructure through activities that cover operations, security, software, troubleshooting, addition of new capabilities, and support for existing and engagement with new communities. The OSG SciDAC-2 project provides specific activities to manage and evolve the distributed infrastructure and support it's use. The innovative aspects of the project are the maintenance and performance of a collaborative (shared & common) petascale national facility over tens of autonomous computing sites, for many hundreds of users, transferring terabytes of data a day, executing tens of thousands of jobs a day, and providing robust and usable resources for scientific groups of all types and sizes. More information can be found at the OSG web site: www.opensciencegrid.org.
International Symposium on Grids and Clouds (ISGC) 2014
NASA Astrophysics Data System (ADS)
The International Symposium on Grids and Clouds (ISGC) 2014 will be held at Academia Sinica in Taipei, Taiwan from 23-28 March 2014, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC).“Bringing the data scientist to global e-Infrastructures” is the theme of ISGC 2014. The last decade has seen the phenomenal growth in the production of data in all forms by all research communities to produce a deluge of data from which information and knowledge need to be extracted. Key to this success will be the data scientist - educated to use advanced algorithms, applications and infrastructures - collaborating internationally to tackle society’s challenges. ISGC 2014 will bring together researchers working in all aspects of data science from different disciplines around the world to collaborate and educate themselves in the latest achievements and techniques being used to tackle the data deluge. In addition to the regular workshops, technical presentations and plenary keynotes, ISGC this year will focus on how to grow the data science community by considering the educational foundation needed for tomorrow’s data scientist. Topics of discussion include Physics (including HEP) and Engineering Applications, Biomedicine & Life Sciences Applications, Earth & Environmental Sciences & Biodiversity Applications, Humanities & Social Sciences Application, Virtual Research Environment (including Middleware, tools, services, workflow, ... etc.), Data Management, Big Data, Infrastructure & Operations Management, Infrastructure Clouds and Virtualisation, Interoperability, Business Models & Sustainability, Highly Distributed Computing Systems, and High Performance & Technical Computing (HPTC).
omniClassifier: a Desktop Grid Computing System for Big Data Prediction Modeling
Phan, John H.; Kothari, Sonal; Wang, May D.
2016-01-01
Robust prediction models are important for numerous science, engineering, and biomedical applications. However, best-practice procedures for optimizing prediction models can be computationally complex, especially when choosing models from among hundreds or thousands of parameter choices. Computational complexity has further increased with the growth of data in these fields, concurrent with the era of “Big Data”. Grid computing is a potential solution to the computational challenges of Big Data. Desktop grid computing, which uses idle CPU cycles of commodity desktop machines, coupled with commercial cloud computing resources can enable research labs to gain easier and more cost effective access to vast computing resources. We have developed omniClassifier, a multi-purpose prediction modeling application that provides researchers with a tool for conducting machine learning research within the guidelines of recommended best-practices. omniClassifier is implemented as a desktop grid computing system using the Berkeley Open Infrastructure for Network Computing (BOINC) middleware. In addition to describing implementation details, we use various gene expression datasets to demonstrate the potential scalability of omniClassifier for efficient and robust Big Data prediction modeling. A prototype of omniClassifier can be accessed at http://omniclassifier.bme.gatech.edu/. PMID:27532062
Bringing Federated Identity to Grid Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teheran, Jeny
The Fermi National Accelerator Laboratory (FNAL) is facing the challenge of providing scientific data access and grid submission to scientific collaborations that span the globe but are hosted at FNAL. Users in these collaborations are currently required to register as an FNAL user and obtain FNAL credentials to access grid resources to perform their scientific computations. These requirements burden researchers with managing additional authentication credentials, and put additional load on FNAL for managing user identities. Our design integrates the existing InCommon federated identity infrastructure, CILogon Basic CA, and MyProxy with the FNAL grid submission system to provide secure access formore » users from diverse experiments and collab orations without requiring each user to have authentication credentials from FNAL. The design automates the handling of certificates so users do not need to manage them manually. Although the initial implementation is for FNAL's grid submission system, the design and the core of the implementation are general and could be applied to other distributed computing systems.« less
A Computing Infrastructure for Supporting Climate Studies
NASA Astrophysics Data System (ADS)
Yang, C.; Bambacus, M.; Freeman, S. M.; Huang, Q.; Li, J.; Sun, M.; Xu, C.; Wojcik, G. S.; Cahalan, R. F.; NASA Climate @ Home Project Team
2011-12-01
Climate change is one of the major challenges facing us on the Earth planet in the 21st century. Scientists build many models to simulate the past and predict the climate change for the next decades or century. Most of the models are at a low resolution with some targeting high resolution in linkage to practical climate change preparedness. To calibrate and validate the models, millions of model runs are needed to find the best simulation and configuration. This paper introduces the NASA effort on Climate@Home project to build a supercomputer based-on advanced computing technologies, such as cloud computing, grid computing, and others. Climate@Home computing infrastructure includes several aspects: 1) a cloud computing platform is utilized to manage the potential spike access to the centralized components, such as grid computing server for dispatching and collecting models runs results; 2) a grid computing engine is developed based on MapReduce to dispatch models, model configuration, and collect simulation results and contributing statistics; 3) a portal serves as the entry point for the project to provide the management, sharing, and data exploration for end users; 4) scientists can access customized tools to configure model runs and visualize model results; 5) the public can access twitter and facebook to get the latest about the project. This paper will introduce the latest progress of the project and demonstrate the operational system during the AGU fall meeting. It will also discuss how this technology can become a trailblazer for other climate studies and relevant sciences. It will share how the challenges in computation and software integration were solved.
NASA Astrophysics Data System (ADS)
Parodi, A.; Craig, G. C.; Clematis, A.; Kranzlmueller, D.; Schiffers, M.; Morando, M.; Rebora, N.; Trasforini, E.; D'Agostino, D.; Keil, K.
2010-09-01
Hydrometeorological science has made strong progress over the last decade at the European and worldwide level: new modeling tools, post processing methodologies and observational data and corresponding ICT (Information and Communication Technology) technologies are available. Recent European efforts in developing a platform for e-Science, such as EGEE (Enabling Grids for E-sciencE), SEEGRID-SCI (South East Europe GRID e-Infrastructure for regional e-Science), and the German C3-Grid, have demonstrated their abilities to provide an ideal basis for the sharing of complex hydrometeorological data sets and tools. Despite these early initiatives, however, the awareness of the potential of the Grid technology as a catalyst for future hydrometeorological research is still low and both the adoption and the exploitation have astonishingly been slow, not only within individual EC member states, but also on a European scale. With this background in mind and the fact that European ICT-infrastructures are in the progress of transferring to a sustainable and permanent service utility as underlined by the European Grid Initiative (EGI) and the Partnership for Advanced Computing in Europe (PRACE), the Distributed Research Infrastructure for Hydro-Meteorology Study (DRIHMS, co-Founded by the EC under the 7th Framework Programme) project has been initiated. The goal of DRIHMS is the promotion of the Grids in particular and e-Infrastructures in general within the European hydrometeorological research (HMR) community through the diffusion of a Grid platform for e-collaboration in this earth science sector: the idea is to further boost European research excellence and competitiveness in the fields of hydrometeorological research and Grid research by bridging the gaps between these two scientific communities. Furthermore the project is intended to transfer the results to areas beyond the strict hydrometeorology science as a support for the assessment of the effects of extreme hydrometeorological events on society and for the development of the tools improving the adaptation and resilience of society to the challenges of climate change. This paper will be devoted to provide an overview of DRIHMS ideas and to present the results of the DRIHMS HMR and ICT surveys.
A Semantic Grid Oriented to E-Tourism
NASA Astrophysics Data System (ADS)
Zhang, Xiao Ming
With increasing complexity of tourism business models and tasks, there is a clear need of the next generation e-Tourism infrastructure to support flexible automation, integration, computation, storage, and collaboration. Currently several enabling technologies such as semantic Web, Web service, agent and grid computing have been applied in the different e-Tourism applications, however there is no a unified framework to be able to integrate all of them. So this paper presents a promising e-Tourism framework based on emerging semantic grid, in which a number of key design issues are discussed including architecture, ontologies structure, semantic reconciliation, service and resource discovery, role based authorization and intelligent agent. The paper finally provides the implementation of the framework.
A practical approach to virtualization in HEP
NASA Astrophysics Data System (ADS)
Buncic, P.; Aguado Sánchez, C.; Blomer, J.; Harutyunyan, A.; Mudrinic, M.
2011-01-01
In the attempt to solve the problem of processing data coming from LHC experiments at CERN at a rate of 15PB per year, for almost a decade the High Enery Physics (HEP) community has focused its efforts on the development of the Worldwide LHC Computing Grid. This generated large interest and expectations promising to revolutionize computing. Meanwhile, having initially taken part in the Grid standardization process, industry has moved in a different direction and started promoting the Cloud Computing paradigm which aims to solve problems on a similar scale and in equally seamless way as it was expected in the idealized Grid approach. A key enabling technology behind Cloud computing is server virtualization. In early 2008, an R&D project was established in the PH-SFT group at CERN to investigate how virtualization technology could be used to improve and simplify the daily interaction of physicists with experiment software frameworks and the Grid infrastructure. In this article we shall first briefly compare Grid and Cloud computing paradigms and then summarize the results of the R&D activity pointing out where and how virtualization technology could be effectively used in our field in order to maximize practical benefits whilst avoiding potential pitfalls.
Cloud@Home: A New Enhanced Computing Paradigm
NASA Astrophysics Data System (ADS)
Distefano, Salvatore; Cunsolo, Vincenzo D.; Puliafito, Antonio; Scarpa, Marco
Cloud computing is a distributed computing paradigm that mixes aspects of Grid computing, ("… hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities" (Foster, 2002)) Internet Computing ("…a computing platform geographically distributed across the Internet" (Milenkovic et al., 2003)), Utility computing ("a collection of technologies and business practices that enables computing to be delivered seamlessly and reliably across multiple computers, ... available as needed and billed according to usage, much like water and electricity are today" (Ross & Westerman, 2004)) Autonomic computing ("computing systems that can manage themselves given high-level objectives from administrators" (Kephart & Chess, 2003)), Edge computing ("… provides a generic template facility for any type of application to spread its execution across a dedicated grid, balancing the load …" Davis, Parikh, & Weihl, 2004) and Green computing (a new frontier of Ethical computing1 starting from the assumption that in next future energy costs will be related to the environment pollution).
den Besten, Matthijs; Thomas, Arthur J; Schroeder, Ralph
2009-04-22
It is often said that the life sciences are transforming into an information science. As laboratory experiments are starting to yield ever increasing amounts of data and the capacity to deal with those data is catching up, an increasing share of scientific activity is seen to be taking place outside the laboratories, sifting through the data and modelling "in silico" the processes observed "in vitro." The transformation of the life sciences and similar developments in other disciplines have inspired a variety of initiatives around the world to create technical infrastructure to support the new scientific practices that are emerging. The e-Science programme in the United Kingdom and the NSF Office for Cyberinfrastructure are examples of these. In Switzerland there have been no such national initiatives. Yet, this has not prevented scientists from exploring the development of similar types of computing infrastructures. In 2004, a group of researchers in Switzerland established a project, SwissBioGrid, to explore whether Grid computing technologies could be successfully deployed within the life sciences. This paper presents their experiences as a case study of how the life sciences are currently operating as an information science and presents the lessons learned about how existing institutional and technical arrangements facilitate or impede this operation. SwissBioGrid gave rise to two pilot projects: one for proteomics data analysis and the other for high-throughput molecular docking ("virtual screening") to find new drugs for neglected diseases (specifically, for dengue fever). The proteomics project was an example of a data management problem, applying many different analysis algorithms to Terabyte-sized datasets from mass spectrometry, involving comparisons with many different reference databases; the virtual screening project was more a purely computational problem, modelling the interactions of millions of small molecules with a limited number of protein targets on the coat of the dengue virus. Both present interesting lessons about how scientific practices are changing when they tackle the problems of large-scale data analysis and data management by means of creating a novel technical infrastructure. In the experience of SwissBioGrid, data intensive discovery has a lot to gain from close collaboration with industry and harnessing distributed computing power. Yet the diversity in life science research implies only a limited role for generic infrastructure; and the transience of support means that researchers need to integrate their efforts with others if they want to sustain the benefits of their success, which are otherwise lost.
Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldhaber, Steve; Holland, Marika
The major goal of this project was to contribute improvements to the infrastructure of an Earth System Model in order to support research in the Multiscale Methods for Accurate, Efficient, and Scale-Aware models of the Earth System project. In support of this, the NCAR team accomplished two main tasks: improving input/output performance of the model and improving atmospheric model simulation quality. Improvement of the performance and scalability of data input and diagnostic output within the model required a new infrastructure which can efficiently handle the unstructured grids common in multiscale simulations. This allows for a more computationally efficient model, enablingmore » more years of Earth System simulation. The quality of the model simulations was improved by reducing grid-point noise in the spectral element version of the Community Atmosphere Model (CAM-SE). This was achieved by running the physics of the model using grid-cell data on a finite-volume grid.« less
Grid Technology as a Cyber Infrastructure for Earth Science Applications
NASA Technical Reports Server (NTRS)
Hinke, Thomas H.
2004-01-01
This paper describes how grids and grid service technologies can be used to develop an infrastructure for the Earth Science community. This cyberinfrastructure would be populated with a hierarchy of services, including discipline specific services such those needed by the Earth Science community as well as a set of core services that are needed by most applications. This core would include data-oriented services used for accessing and moving data as well as computer-oriented services used to broker access to resources and control the execution of tasks on the grid. The availability of such an Earth Science cyberinfrastructure would ease the development of Earth Science applications. With such a cyberinfrastructure, application work flows could be created to extract data from one or more of the Earth Science archives and then process it by passing it through various persistent services that are part of the persistent cyberinfrastructure, such as services to perform subsetting, reformatting, data mining and map projections.
Making the most of cloud storage - a toolkit for exploitation by WLCG experiments
NASA Astrophysics Data System (ADS)
Alvarez Ayllon, Alejandro; Arsuaga Rios, Maria; Bitzes, Georgios; Furano, Fabrizio; Keeble, Oliver; Manzi, Andrea
2017-10-01
Understanding how cloud storage can be effectively used, either standalone or in support of its associated compute, is now an important consideration for WLCG. We report on a suite of extensions to familiar tools targeted at enabling the integration of cloud object stores into traditional grid infrastructures and workflows. Notable updates include support for a number of object store flavours in FTS3, Davix and gfal2, including mitigations for lack of vector reads; the extension of Dynafed to operate as a bridge between grid and cloud domains; protocol translation in FTS3; the implementation of extensions to DPM (also implemented by the dCache project) to allow 3rd party transfers over HTTP. The result is a toolkit which facilitates data movement and access between grid and cloud infrastructures, broadening the range of workflows suitable for cloud. We report on deployment scenarios and prototype experience, explaining how, for example, an Amazon S3 or Azure allocation can be exploited by grid workflows.
Li, Yuancheng; Qiu, Rixuan; Jing, Sitong
2018-01-01
Advanced Metering Infrastructure (AMI) realizes a two-way communication of electricity data through by interconnecting with a computer network as the core component of the smart grid. Meanwhile, it brings many new security threats and the traditional intrusion detection method can't satisfy the security requirements of AMI. In this paper, an intrusion detection system based on Online Sequence Extreme Learning Machine (OS-ELM) is established, which is used to detecting the attack in AMI and carrying out the comparative analysis with other algorithms. Simulation results show that, compared with other intrusion detection methods, intrusion detection method based on OS-ELM is more superior in detection speed and accuracy.
Elastic extension of a local analysis facility on external clouds for the LHC experiments
NASA Astrophysics Data System (ADS)
Ciaschini, V.; Codispoti, G.; Rinaldi, L.; Aiftimiei, D. C.; Bonacorsi, D.; Calligola, P.; Dal Pra, S.; De Girolamo, D.; Di Maria, R.; Grandi, C.; Michelotto, D.; Panella, M.; Taneja, S.; Semeria, F.
2017-10-01
The computing infrastructures serving the LHC experiments have been designed to cope at most with the average amount of data recorded. The usage peaks, as already observed in Run-I, may however originate large backlogs, thus delaying the completion of the data reconstruction and ultimately the data availability for physics analysis. In order to cope with the production peaks, the LHC experiments are exploring the opportunity to access Cloud resources provided by external partners or commercial providers. In this work we present the proof of concept of the elastic extension of a local analysis facility, specifically the Bologna Tier-3 Grid site, for the LHC experiments hosted at the site, on an external OpenStack infrastructure. We focus on the Cloud Bursting of the Grid site using DynFarm, a newly designed tool that allows the dynamic registration of new worker nodes to LSF. In this approach, the dynamically added worker nodes instantiated on an OpenStack infrastructure are transparently accessed by the LHC Grid tools and at the same time they serve as an extension of the farm for the local usage.
DEM Based Modeling: Grid or TIN? The Answer Depends
NASA Astrophysics Data System (ADS)
Ogden, F. L.; Moreno, H. A.
2015-12-01
The availability of petascale supercomputing power has enabled process-based hydrological simulations on large watersheds and two-way coupling with mesoscale atmospheric models. Of course with increasing watershed scale come corresponding increases in watershed complexity, including wide ranging water management infrastructure and objectives, and ever increasing demands for forcing data. Simulations of large watersheds using grid-based models apply a fixed resolution over the entire watershed. In large watersheds, this means an enormous number of grids, or coarsening of the grid resolution to reduce memory requirements. One alternative to grid-based methods is the triangular irregular network (TIN) approach. TINs provide the flexibility of variable resolution, which allows optimization of computational resources by providing high resolution where necessary and low resolution elsewhere. TINs also increase required effort in model setup, parameter estimation, and coupling with forcing data which are often gridded. This presentation discusses the costs and benefits of the use of TINs compared to grid-based methods, in the context of large watershed simulations within the traditional gridded WRF-HYDRO framework and the new TIN-based ADHydro high performance computing watershed simulator.
Development of stable Grid service at the next generation system of KEKCC
NASA Astrophysics Data System (ADS)
Nakamura, T.; Iwai, G.; Matsunaga, H.; Murakami, K.; Sasaki, T.; Suzuki, S.; Takase, W.
2017-10-01
A lot of experiments in the field of accelerator based science are actively running at High Energy Accelerator Research Organization (KEK) by using SuperKEKB and J-PARC accelerator in Japan. In these days at KEK, the computing demand from the various experiments for the data processing, analysis, and MC simulation is monotonically increasing. It is not only for the case with high-energy experiments, the computing requirement from the hadron and neutrino experiments and some projects of astro-particle physics is also rapidly increasing due to the very high precision measurement. Under this situation, several projects, Belle II, T2K, ILC and KAGRA experiments supported by KEK are going to utilize Grid computing infrastructure as the main computing resource. The Grid system and services in KEK, which is already in production, are upgraded for the further stable operation at the same time of whole scale hardware replacement of KEK Central Computer System (KEKCC). The next generation system of KEKCC starts the operation from the beginning of September 2016. The basic Grid services e.g. BDII, VOMS, LFC, CREAM computing element and StoRM storage element are made by the more robust hardware configuration. Since the raw data transfer is one of the most important tasks for the KEKCC, two redundant GridFTP servers are adapted to the StoRM service instances with 40 Gbps network bandwidth on the LHCONE routing. These are dedicated to the Belle II raw data transfer to the other sites apart from the servers for the data transfer usage of the other VOs. Additionally, we prepare the redundant configuration for the database oriented services like LFC and AMGA by using LifeKeeper. The LFC servers are made by two read/write servers and two read-only servers for the Belle II experiment, and all of them have an individual database for the purpose of load balancing. The FTS3 service is newly deployed as a service for the Belle II data distribution. The service of CVMFS stratum-0 is started for the Belle II software repository, and stratum-1 service is prepared for the other VOs. In this way, there are a lot of upgrade for the real production service of Grid infrastructure at KEK Computing Research Center. In this paper, we would like to introduce the detailed configuration of the hardware for Grid instance, and several mechanisms to construct the robust Grid system in the next generation system of KEKCC.
Integrating Xgrid into the HENP distributed computing model
NASA Astrophysics Data System (ADS)
Hajdu, L.; Kocoloski, A.; Lauret, J.; Miller, M.
2008-07-01
Modern Macintosh computers feature Xgrid, a distributed computing architecture built directly into Apple's OS X operating system. While the approach is radically different from those generally expected by the Unix based Grid infrastructures (Open Science Grid, TeraGrid, EGEE), opportunistic computing on Xgrid is nonetheless a tempting and novel way to assemble a computing cluster with a minimum of additional configuration. In fact, it requires only the default operating system and authentication to a central controller from each node. OS X also implements arbitrarily extensible metadata, allowing an instantly updated file catalog to be stored as part of the filesystem itself. The low barrier to entry allows an Xgrid cluster to grow quickly and organically. This paper and presentation will detail the steps that can be taken to make such a cluster a viable resource for HENP research computing. We will further show how to provide to users a unified job submission framework by integrating Xgrid through the STAR Unified Meta-Scheduler (SUMS), making tasks and jobs submission effortlessly at reach for those users already using the tool for traditional Grid or local cluster job submission. We will discuss additional steps that can be taken to make an Xgrid cluster a full partner in grid computing initiatives, focusing on Open Science Grid integration. MIT's Xgrid system currently supports the work of multiple research groups in the Laboratory for Nuclear Science, and has become an important tool for generating simulations and conducting data analyses at the Massachusetts Institute of Technology.
Dynamic Collaboration Infrastructure for Hydrologic Science
NASA Astrophysics Data System (ADS)
Tarboton, D. G.; Idaszak, R.; Castillo, C.; Yi, H.; Jiang, F.; Jones, N.; Goodall, J. L.
2016-12-01
Data and modeling infrastructure is becoming increasingly accessible to water scientists. HydroShare is a collaborative environment that currently offers water scientists the ability to access modeling and data infrastructure in support of data intensive modeling and analysis. It supports the sharing of and collaboration around "resources" which are social objects defined to include both data and models in a structured standardized format. Users collaborate around these objects via comments, ratings, and groups. HydroShare also supports web services and cloud based computation for the execution of hydrologic models and analysis and visualization of hydrologic data. However, the quantity and variety of data and modeling infrastructure available that can be accessed from environments like HydroShare is increasing. Storage infrastructure can range from one's local PC to campus or organizational storage to storage in the cloud. Modeling or computing infrastructure can range from one's desktop to departmental clusters to national HPC resources to grid and cloud computing resources. How does one orchestrate this vast number of data and computing infrastructure without needing to correspondingly learn each new system? A common limitation across these systems is the lack of efficient integration between data transport mechanisms and the corresponding high-level services to support large distributed data and compute operations. A scientist running a hydrology model from their desktop may require processing a large collection of files across the aforementioned storage and compute resources and various national databases. To address these community challenges a proof-of-concept prototype was created integrating HydroShare with RADII (Resource Aware Data-centric collaboration Infrastructure) to provide software infrastructure to enable the comprehensive and rapid dynamic deployment of what we refer to as "collaborative infrastructure." In this presentation we discuss the results of this proof-of-concept prototype which enabled HydroShare users to readily instantiate virtual infrastructure marshaling arbitrary combinations, varieties, and quantities of distributed data and computing infrastructure in addressing big problems in hydrology.
The CMS Tier0 goes cloud and grid for LHC Run 2
Hufnagel, Dirk
2015-12-23
In 2015, CMS will embark on a new era of collecting LHC collisions at unprecedented rates and complexity. This will put a tremendous stress on our computing systems. Prompt Processing of the raw data by the Tier-0 infrastructure will no longer be constrained to CERN alone due to the significantly increased resource requirements. In LHC Run 2, we will need to operate it as a distributed system utilizing both the CERN Cloud-based Agile Infrastructure and a significant fraction of the CMS Tier-1 Grid resources. In another big change for LHC Run 2, we will process all data using the multi-threadedmore » framework to deal with the increased event complexity and to ensure efficient use of the resources. Furthermore, this contribution will cover the evolution of the Tier-0 infrastructure and present scale testing results and experiences from the first data taking in 2015.« less
The CMS TierO goes Cloud and Grid for LHC Run 2
NASA Astrophysics Data System (ADS)
Hufnagel, Dirk
2015-12-01
In 2015, CMS will embark on a new era of collecting LHC collisions at unprecedented rates and complexity. This will put a tremendous stress on our computing systems. Prompt Processing of the raw data by the Tier-0 infrastructure will no longer be constrained to CERN alone due to the significantly increased resource requirements. In LHC Run 2, we will need to operate it as a distributed system utilizing both the CERN Cloud-based Agile Infrastructure and a significant fraction of the CMS Tier-1 Grid resources. In another big change for LHC Run 2, we will process all data using the multi-threaded framework to deal with the increased event complexity and to ensure efficient use of the resources. This contribution will cover the evolution of the Tier-0 infrastructure and present scale testing results and experiences from the first data taking in 2015.
Evolution of user analysis on the grid in ATLAS
NASA Astrophysics Data System (ADS)
Dewhurst, A.; Legger, F.; ATLAS Collaboration
2017-10-01
More than one thousand physicists analyse data collected by the ATLAS experiment at the Large Hadron Collider (LHC) at CERN through 150 computing facilities around the world. Efficient distributed analysis requires optimal resource usage and the interplay of several factors: robust grid and software infrastructures, and system capability to adapt to different workloads. The continuous automatic validation of grid sites and the user support provided by a dedicated team of expert shifters have been proven to provide a solid distributed analysis system for ATLAS users. Typical user workflows on the grid, and their associated metrics, are discussed. Measurements of user job performance and typical requirements are also shown.
AGIS: Evolution of Distributed Computing information system for ATLAS
NASA Astrophysics Data System (ADS)
Anisenkov, A.; Di Girolamo, A.; Alandes, M.; Karavakis, E.
2015-12-01
ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produces petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization of computing resources in order to meet the ATLAS requirements of petabytes scale data operations. It has been evolved after the first period of LHC data taking (Run-1) in order to cope with new challenges of the upcoming Run- 2. In this paper we describe the evolution and recent developments of the ATLAS Grid Information System (AGIS), developed in order to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.
A scalable infrastructure for CMS data analysis based on OpenStack Cloud and Gluster file system
NASA Astrophysics Data System (ADS)
Toor, S.; Osmani, L.; Eerola, P.; Kraemer, O.; Lindén, T.; Tarkoma, S.; White, J.
2014-06-01
The challenge of providing a resilient and scalable computational and data management solution for massive scale research environments requires continuous exploration of new technologies and techniques. In this project the aim has been to design a scalable and resilient infrastructure for CERN HEP data analysis. The infrastructure is based on OpenStack components for structuring a private Cloud with the Gluster File System. We integrate the state-of-the-art Cloud technologies with the traditional Grid middleware infrastructure. Our test results show that the adopted approach provides a scalable and resilient solution for managing resources without compromising on performance and high availability.
NASA Astrophysics Data System (ADS)
Hoeft, B.; Epting, U.; Koenig, T.
2008-07-01
While many fields relevant to Grid security are already covered by existing working groups, their remit rarely goes beyond the scope of the Grid infrastructure itself. However, security issues pertaining to the internal set-up of compute centres have at least as much impact on Grid security. Thus, this talk will present briefly the EU ISSeG project (Integrated Site Security for Grids). In contrast to groups such as OSCT (Operational Security Coordination Team) and JSPG (Joint Security Policy Group), the purpose of ISSeG is to provide a holistic approach to security for Grid computer centres, from strategic considerations to an implementation plan and its deployment. The generalised methodology of Integrated Site Security (ISS) is based on the knowledge gained during its implementation at several sites as well as through security audits, and this will be briefly discussed. Several examples of ISS implementation tasks at the Forschungszentrum Karlsruhe will be presented, including segregation of the network for administration and maintenance and the implementation of Application Gateways. Furthermore, the web-based ISSeG training material will be introduced. This aims to offer ISS implementation guidance to other Grid installations in order to help avoid common pitfalls.
Critical Infrastructure Protection: EMP Impacts on the U.S. Electric Grid
NASA Astrophysics Data System (ADS)
Boston, Edwin J., Jr.
The purpose of this research is to identify the United States electric grid infrastructure systems vulnerabilities to electromagnetic pulse attacks and the cyber-based impacts of those vulnerabilities to the electric grid. Additionally, the research identifies multiple defensive strategies designed to harden the electric grid against electromagnetic pulse attack that include prevention, mitigation and recovery postures. Research results confirm the importance of the electric grid to the United States critical infrastructures system and that an electromagnetic pulse attack against the electric grid could result in electric grid degradation, critical infrastructure(s) damage and the potential for societal collapse. The conclusions of this research indicate that while an electromagnetic pulse attack against the United States electric grid could have catastrophic impacts on American society, there are currently many defensive strategies under consideration designed to prevent, mitigate and or recover from an electromagnetic pulse attack. However, additional research is essential to further identify future target hardening opportunities, efficient implementation strategies and funding resources.
NASA Astrophysics Data System (ADS)
Cofino, A. S.; Fernández Quiruelas, V.; Blanco Real, J. C.; García Díez, M.; Fernández, J.
2013-12-01
Nowadays Grid Computing is powerful computational tool which is ready to be used for scientific community in different areas (such as biomedicine, astrophysics, climate, etc.). However, the use of this distributed computing infrastructures (DCI) is not yet common practice in climate research, and only a few teams and applications in this area take advantage of this infrastructure. Thus, the WRF4G project objective is to popularize the use of this technology in the atmospheric sciences area. In order to achieve this objective, one of the most used applications has been taken (WRF; a limited- area model, successor of the MM5 model), that has a user community formed by more than 8000 researchers worldwide. This community develop its research activity on different areas and could benefit from the advantages of Grid resources (case study simulations, regional hind-cast/forecast, sensitivity studies, etc.). The WRF model is used by many groups, in the climate research community, to carry on downscaling simulations. Therefore this community will also benefit. However, Grid infrastructures have some drawbacks for the execution of applications that make an intensive use of CPU and memory for a long period of time. This makes necessary to develop a specific framework (middleware). This middleware encapsulates the application and provides appropriate services for the monitoring and management of the simulations and the data. Thus,another objective of theWRF4G project consists on the development of a generic adaptation of WRF to DCIs. It should simplify the access to the DCIs for the researchers, and also to free them from the technical and computational aspects of the use of theses DCI. Finally, in order to demonstrate the ability of WRF4G solving actual scientific challenges with interest and relevance on the climate science (implying a high computational cost) we will shown results from different kind of downscaling experiments, like ERA-Interim re-analysis, CMIP5 models, or seasonal. WRF4G is been used to run WRF simulations which are contributing to the CORDEX initiative and others projects like SPECS and EUPORIAS. This work is been partially funded by the European Regional Development Fund (ERDF) and the Spanish National R&D Plan 2008-2011 (CGL2011-28864)
Failure probability analysis of optical grid
NASA Astrophysics Data System (ADS)
Zhong, Yaoquan; Guo, Wei; Sun, Weiqiang; Jin, Yaohui; Hu, Weisheng
2008-11-01
Optical grid, the integrated computing environment based on optical network, is expected to be an efficient infrastructure to support advanced data-intensive grid applications. In optical grid, the faults of both computational and network resources are inevitable due to the large scale and high complexity of the system. With the optical network based distributed computing systems extensive applied in the processing of data, the requirement of the application failure probability have been an important indicator of the quality of application and an important aspect the operators consider. This paper will present a task-based analysis method of the application failure probability in optical grid. Then the failure probability of the entire application can be quantified, and the performance of reducing application failure probability in different backup strategies can be compared, so that the different requirements of different clients can be satisfied according to the application failure probability respectively. In optical grid, when the application based DAG (directed acyclic graph) is executed in different backup strategies, the application failure probability and the application complete time is different. This paper will propose new multi-objective differentiated services algorithm (MDSA). New application scheduling algorithm can guarantee the requirement of the failure probability and improve the network resource utilization, realize a compromise between the network operator and the application submission. Then differentiated services can be achieved in optical grid.
The QUANTGRID Project (RO)—Quantum Security in GRID Computing Applications
NASA Astrophysics Data System (ADS)
Dima, M.; Dulea, M.; Petre, M.; Petre, C.; Mitrica, B.; Stoica, M.; Udrea, M.; Sterian, R.; Sterian, P.
2010-01-01
The QUANTGRID Project, financed through the National Center for Programme Management (CNMP-Romania), is the first attempt at using Quantum Crypted Communications (QCC) in large scale operations, such as GRID Computing, and conceivably in the years ahead in the banking sector and other security tight communications. In relation with the GRID activities of the Center for Computing & Communications (Nat.'l Inst. Nucl. Phys.—IFIN-HH), the Quantum Optics Lab. (Nat.'l Inst. Plasma and Lasers—INFLPR) and the Physics Dept. (University Polytechnica—UPB) the project will build a demonstrator infrastructure for this technology. The status of the project in its incipient phase is reported, featuring tests for communications in classical security mode: socket level communications under AES (Advanced Encryption Std.), both proprietary code in C++ technology. An outline of the planned undertaking of the project is communicated, highlighting its impact in quantum physics, coherent optics and information technology.
Li, Yuancheng; Jing, Sitong
2018-01-01
Advanced Metering Infrastructure (AMI) realizes a two-way communication of electricity data through by interconnecting with a computer network as the core component of the smart grid. Meanwhile, it brings many new security threats and the traditional intrusion detection method can’t satisfy the security requirements of AMI. In this paper, an intrusion detection system based on Online Sequence Extreme Learning Machine (OS-ELM) is established, which is used to detecting the attack in AMI and carrying out the comparative analysis with other algorithms. Simulation results show that, compared with other intrusion detection methods, intrusion detection method based on OS-ELM is more superior in detection speed and accuracy. PMID:29485990
Implementation of Grid Tier 2 and Tier 3 facilities on a Distributed OpenStack Cloud
NASA Astrophysics Data System (ADS)
Limosani, Antonio; Boland, Lucien; Coddington, Paul; Crosby, Sean; Huang, Joanna; Sevior, Martin; Wilson, Ross; Zhang, Shunde
2014-06-01
The Australian Government is making a AUD 100 million investment in Compute and Storage for the academic community. The Compute facilities are provided in the form of 30,000 CPU cores located at 8 nodes around Australia in a distributed virtualized Infrastructure as a Service facility based on OpenStack. The storage will eventually consist of over 100 petabytes located at 6 nodes. All will be linked via a 100 Gb/s network. This proceeding describes the development of a fully connected WLCG Tier-2 grid site as well as a general purpose Tier-3 computing cluster based on this architecture. The facility employs an extension to Torque to enable dynamic allocations of virtual machine instances. A base Scientific Linux virtual machine (VM) image is deployed in the OpenStack cloud and automatically configured as required using Puppet. Custom scripts are used to launch multiple VMs, integrate them into the dynamic Torque cluster and to mount remote file systems. We report on our experience in developing this nation-wide ATLAS and Belle II Tier 2 and Tier 3 computing infrastructure using the national Research Cloud and storage facilities.
GEMSS: grid-infrastructure for medical service provision.
Benkner, S; Berti, G; Engelbrecht, G; Fingberg, J; Kohring, G; Middleton, S E; Schmidt, R
2005-01-01
The European GEMSS Project is concerned with the creation of medical Grid service prototypes and their evaluation in a secure service-oriented infrastructure for distributed on demand/supercomputing. Key aspects of the GEMSS Grid middleware include negotiable QoS support for time-critical service provision, flexible support for business models, and security at all levels in order to ensure privacy of patient data as well as compliance to EU law. The GEMSS Grid infrastructure is based on a service-oriented architecture and is being built on top of existing standard Grid and Web technologies. The GEMSS infrastructure offers a generic Grid service provision framework that hides the complexity of transforming existing applications into Grid services. For the development of client-side applications or portals, a pluggable component framework has been developed, providing developers with full control over business processes, service discovery, QoS negotiation, and workflow, while keeping their underlying implementation hidden from view. A first version of the GEMSS Grid infrastructure is operational and has been used for the set-up of a Grid test-bed deploying six medical Grid service prototypes including maxillo-facial surgery simulation, neuro-surgery support, radio-surgery planning, inhaled drug-delivery simulation, cardiovascular simulation and advanced image reconstruction. The GEMSS Grid infrastructure is based on standard Web Services technology with an anticipated future transition path towards the OGSA standard proposed by the Global Grid Forum. GEMSS demonstrates that the Grid can be used to provide medical practitioners and researchers with access to advanced simulation and image processing services for improved preoperative planning and near real-time surgical support.
Integration of Grid and Sensor Web for Flood Monitoring and Risk Assessment from Heterogeneous Data
NASA Astrophysics Data System (ADS)
Kussul, Nataliia; Skakun, Sergii; Shelestov, Andrii
2013-04-01
Over last decades we have witnessed the upward global trend in natural disaster occurrence. Hydrological and meteorological disasters such as floods are the main contributors to this pattern. In recent years flood management has shifted from protection against floods to managing the risks of floods (the European Flood risk directive). In order to enable operational flood monitoring and assessment of flood risk, it is required to provide an infrastructure with standardized interfaces and services. Grid and Sensor Web can meet these requirements. In this paper we present a general approach to flood monitoring and risk assessment based on heterogeneous geospatial data acquired from multiple sources. To enable operational flood risk assessment integration of Grid and Sensor Web approaches is proposed [1]. Grid represents a distributed environment that integrates heterogeneous computing and storage resources administrated by multiple organizations. SensorWeb is an emerging paradigm for integrating heterogeneous satellite and in situ sensors and data systems into a common informational infrastructure that produces products on demand. The basic Sensor Web functionality includes sensor discovery, triggering events by observed or predicted conditions, remote data access and processing capabilities to generate and deliver data products. Sensor Web is governed by the set of standards, called Sensor Web Enablement (SWE), developed by the Open Geospatial Consortium (OGC). Different practical issues regarding integration of Sensor Web with Grids are discussed in the study. We show how the Sensor Web can benefit from using Grids and vice versa. For example, Sensor Web services such as SOS, SPS and SAS can benefit from the integration with the Grid platform like Globus Toolkit. The proposed approach is implemented within the Sensor Web framework for flood monitoring and risk assessment, and a case-study of exploiting this framework, namely the Namibia SensorWeb Pilot Project, is described. The project was created as a testbed for evaluating and prototyping key technologies for rapid acquisition and distribution of data products for decision support systems to monitor floods and enable flood risk assessment. The system provides access to real-time products on rainfall estimates and flood potential forecast derived from the Tropical Rainfall Measuring Mission (TRMM) mission with lag time of 6 h, alerts from the Global Disaster Alert and Coordination System (GDACS) with lag time of 4 h, and the Coupled Routing and Excess STorage (CREST) model to generate alerts. These are alerts are used to trigger satellite observations. With deployed SPS service for NASA's EO-1 satellite it is possible to automatically task sensor with re-image capability of less 8 h. Therefore, with enabled computational and storage services provided by Grid and cloud infrastructure it was possible to generate flood maps within 24-48 h after trigger was alerted. To enable interoperability between system components and services OGC-compliant standards are utilized. [1] Hluchy L., Kussul N., Shelestov A., Skakun S., Kravchenko O., Gripich Y., Kopp P., Lupian E., "The Data Fusion Grid Infrastructure: Project Objectives and Achievements," Computing and Informatics, 2010, vol. 29, no. 2, pp. 319-334.
Solving optimization problems on computational grids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, S. J.; Mathematics and Computer Science
2001-05-01
Multiprocessor computing platforms, which have become more and more widely available since the mid-1980s, are now heavily used by organizations that need to solve very demanding computational problems. Parallel computing is now central to the culture of many research communities. Novel parallel approaches were developed for global optimization, network optimization, and direct-search methods for nonlinear optimization. Activity was particularly widespread in parallel branch-and-bound approaches for various problems in combinatorial and network optimization. As the cost of personal computers and low-end workstations has continued to fall, while the speed and capacity of processors and networks have increased dramatically, 'cluster' platforms havemore » become popular in many settings. A somewhat different type of parallel computing platform know as a computational grid (alternatively, metacomputer) has arisen in comparatively recent times. Broadly speaking, this term refers not to a multiprocessor with identical processing nodes but rather to a heterogeneous collection of devices that are widely distributed, possibly around the globe. The advantage of such platforms is obvious: they have the potential to deliver enormous computing power. Just as obviously, however, the complexity of grids makes them very difficult to use. The Condor team, headed by Miron Livny at the University of Wisconsin, were among the pioneers in providing infrastructure for grid computations. More recently, the Globus project has developed technologies to support computations on geographically distributed platforms consisting of high-end computers, storage and visualization devices, and other scientific instruments. In 1997, we started the metaneos project as a collaborative effort between optimization specialists and the Condor and Globus groups. Our aim was to address complex, difficult optimization problems in several areas, designing and implementing the algorithms and the software infrastructure need to solve these problems on computational grids. This article describes some of the results we have obtained during the first three years of the metaneos project. Our efforts have led to development of the runtime support library MW for implementing algorithms with master-worker control structure on Condor platforms. This work is discussed here, along with work on algorithms and codes for integer linear programming, the quadratic assignment problem, and stochastic linear programmming. Our experiences in the metaneos project have shown that cheap, powerful computational grids can be used to tackle large optimization problems of various types. In an industrial or commercial setting, the results demonstrate that one may not have to buy powerful computational servers to solve many of the large problems arising in areas such as scheduling, portfolio optimization, or logistics; the idle time on employee workstations (or, at worst, an investment in a modest cluster of PCs) may do the job. For the optimization research community, our results motivate further work on parallel, grid-enabled algorithms for solving very large problems of other types. The fact that very large problems can be solved cheaply allows researchers to better understand issues of 'practical' complexity and of the role of heuristics.« less
A Study of ATLAS Grid Performance for Distributed Analysis
NASA Astrophysics Data System (ADS)
Panitkin, Sergey; Fine, Valery; Wenaus, Torre
2012-12-01
In the past two years the ATLAS Collaboration at the LHC has collected a large volume of data and published a number of ground breaking papers. The Grid-based ATLAS distributed computing infrastructure played a crucial role in enabling timely analysis of the data. We will present a study of the performance and usage of the ATLAS Grid as platform for physics analysis in 2011. This includes studies of general properties as well as timing properties of user jobs (wait time, run time, etc). These studies are based on mining of data archived by the PanDA workload management system.
How to keep the Grid full and working with ATLAS production and physics jobs
NASA Astrophysics Data System (ADS)
Pacheco Pagés, A.; Barreiro Megino, F. H.; Cameron, D.; Fassi, F.; Filipcic, A.; Di Girolamo, A.; González de la Hoz, S.; Glushkov, I.; Maeno, T.; Walker, R.; Yang, W.; ATLAS Collaboration
2017-10-01
The ATLAS production system provides the infrastructure to process millions of events collected during the LHC Run 1 and the first two years of Run 2 using grid, clouds and high performance computing. We address in this contribution the strategies and improvements that have been implemented to the production system for optimal performance and to achieve the highest efficiency of available resources from operational perspective. We focus on the recent developments.
Increasing the resilience and security of the United States' power infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happenny, Sean F.
2015-08-01
The United States' power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power infrastructure control and distribution paradigms by utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Understanding how these systems behave in real-worldmore » conditions will lead to new ways to make our power infrastructure more resilient and secure. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the aging networks protecting them are becoming easier to attack.« less
Distributed Monitoring Infrastructure for Worldwide LHC Computing Grid
NASA Astrophysics Data System (ADS)
Andrade, P.; Babik, M.; Bhatt, K.; Chand, P.; Collados, D.; Duggal, V.; Fuente, P.; Hayashi, S.; Imamagic, E.; Joshi, P.; Kalmady, R.; Karnani, U.; Kumar, V.; Lapka, W.; Quick, R.; Tarragon, J.; Teige, S.; Triantafyllidis, C.
2012-12-01
The journey of a monitoring probe from its development phase to the moment its execution result is presented in an availability report is a complex process. It goes through multiple phases such as development, testing, integration, release, deployment, execution, data aggregation, computation, and reporting. Further, it involves people with different roles (developers, site managers, VO[1] managers, service managers, management), from different middleware providers (ARC[2], dCache[3], gLite[4], UNICORE[5] and VDT[6]), consortiums (WLCG[7], EMI[11], EGI[15], OSG[13]), and operational teams (GOC[16], OMB[8], OTAG[9], CSIRT[10]). The seamless harmonization of these distributed actors is in daily use for monitoring of the WLCG infrastructure. In this paper we describe the monitoring of the WLCG infrastructure from the operational perspective. We explain the complexity of the journey of a monitoring probe from its execution on a grid node to the visualization on the MyWLCG[27] portal where it is exposed to other clients. This monitoring workflow profits from the interoperability established between the SAM[19] and RSV[20] frameworks. We show how these two distributed structures are capable of uniting technologies and hiding the complexity around them, making them easy to be used by the community. Finally, the different supported deployment strategies, tailored not only for monitoring the entire infrastructure but also for monitoring sites and virtual organizations, are presented and the associated operational benefits highlighted.
A secure and efficiently searchable health information architecture.
Yasnoff, William A
2016-06-01
Patient-centric repositories of health records are an important component of health information infrastructure. However, patient information in a single repository is potentially vulnerable to loss of the entire dataset from a single unauthorized intrusion. A new health record storage architecture, the personal grid, eliminates this risk by separately storing and encrypting each person's record. The tradeoff for this improved security is that a personal grid repository must be sequentially searched since each record must be individually accessed and decrypted. To allow reasonable search times for large numbers of records, parallel processing with hundreds (or even thousands) of on-demand virtual servers (now available in cloud computing environments) is used. Estimated search times for a 10 million record personal grid using 500 servers vary from 7 to 33min depending on the complexity of the query. Since extremely rapid searching is not a critical requirement of health information infrastructure, the personal grid may provide a practical and useful alternative architecture that eliminates the large-scale security vulnerabilities of traditional databases by sacrificing unnecessary searching speed. Copyright © 2016 Elsevier Inc. All rights reserved.
Progress on the Fabric for Frontier Experiments Project at Fermilab
NASA Astrophysics Data System (ADS)
Box, Dennis; Boyd, Joseph; Dykstra, Dave; Garzoglio, Gabriele; Herner, Kenneth; Kirby, Michael; Kreymer, Arthur; Levshina, Tanya; Mhashilkar, Parag; Sharma, Neha
2015-12-01
The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.
ATLAS user analysis on private cloud resources at GoeGrid
NASA Astrophysics Data System (ADS)
Glaser, F.; Nadal Serrano, J.; Grabowski, J.; Quadt, A.
2015-12-01
User analysis job demands can exceed available computing resources, especially before major conferences. ATLAS physics results can potentially be slowed down due to the lack of resources. For these reasons, cloud research and development activities are now included in the skeleton of the ATLAS computing model, which has been extended by using resources from commercial and private cloud providers to satisfy the demands. However, most of these activities are focused on Monte-Carlo production jobs, extending the resources at Tier-2. To evaluate the suitability of the cloud-computing model for user analysis jobs, we developed a framework to launch an ATLAS user analysis cluster in a cloud infrastructure on demand and evaluated two solutions. The first solution is entirely integrated in the Grid infrastructure by using the same mechanism, which is already in use at Tier-2: A designated Panda-Queue is monitored and additional worker nodes are launched in a cloud environment and assigned to a corresponding HTCondor queue according to the demand. Thereby, the use of cloud resources is completely transparent to the user. However, using this approach, submitted user analysis jobs can still suffer from a certain delay introduced by waiting time in the queue and the deployed infrastructure lacks customizability. Therefore, our second solution offers the possibility to easily deploy a totally private, customizable analysis cluster on private cloud resources belonging to the university.
Kwf-Grid workflow management system for Earth science applications
NASA Astrophysics Data System (ADS)
Tran, V.; Hluchy, L.
2009-04-01
In this paper, we present workflow management tool for Earth science applications in EGEE. The workflow management tool was originally developed within K-wf Grid project for GT4 middleware and has many advanced features like semi-automatic workflow composition, user-friendly GUI for managing workflows, knowledge management. In EGEE, we are porting the workflow management tool to gLite middleware for Earth science applications K-wf Grid workflow management system was developed within "Knowledge-based Workflow System for Grid Applications" under the 6th Framework Programme. The workflow mangement system intended to - semi-automatically compose a workflow of Grid services, - execute the composed workflow application in a Grid computing environment, - monitor the performance of the Grid infrastructure and the Grid applications, - analyze the resulting monitoring information, - capture the knowledge that is contained in the information by means of intelligent agents, - and finally to reuse the joined knowledge gathered from all participating users in a collaborative way in order to efficiently construct workflows for new Grid applications. Kwf Grid workflow engines can support different types of jobs (e.g. GRAM job, web services) in a workflow. New class of gLite job has been added to the system, allows system to manage and execute gLite jobs in EGEE infrastructure. The GUI has been adapted to the requirements of EGEE users, new credential management servlet is added to portal. Porting K-wf Grid workflow management system to gLite would allow EGEE users to use the system and benefit from its avanced features. The system is primarly tested and evaluated with applications from ES clusters.
The Integration of CloudStack and OCCI/OpenNebula with DIRAC
NASA Astrophysics Data System (ADS)
Méndez Muñoz, Víctor; Fernández Albor, Víctor; Graciani Diaz, Ricardo; Casajús Ramo, Adriàn; Fernández Pena, Tomás; Merino Arévalo, Gonzalo; José Saborido Silva, Juan
2012-12-01
The increasing availability of Cloud resources is arising as a realistic alternative to the Grid as a paradigm for enabling scientific communities to access large distributed computing resources. The DIRAC framework for distributed computing is an easy way to efficiently access to resources from both systems. This paper explains the integration of DIRAC with two open-source Cloud Managers: OpenNebula (taking advantage of the OCCI standard) and CloudStack. These are computing tools to manage the complexity and heterogeneity of distributed data center infrastructures, allowing to create virtual clusters on demand, including public, private and hybrid clouds. This approach has required to develop an extension to the previous DIRAC Virtual Machine engine, which was developed for Amazon EC2, allowing the connection with these new cloud managers. In the OpenNebula case, the development has been based on the CernVM Virtual Software Appliance with appropriate contextualization, while in the case of CloudStack, the infrastructure has been kept more general, which permits other Virtual Machine sources and operating systems being used. In both cases, CernVM File System has been used to facilitate software distribution to the computing nodes. With the resulting infrastructure, the cloud resources are transparent to the users through a friendly interface, like the DIRAC Web Portal. The main purpose of this integration is to get a system that can manage cloud and grid resources at the same time. This particular feature pushes DIRAC to a new conceptual denomination as interware, integrating different middleware. Users from different communities do not need to care about the installation of the standard software that is available at the nodes, nor the operating system of the host machine which is transparent to the user. This paper presents an analysis of the overhead of the virtual layer, doing some tests to compare the proposed approach with the existing Grid solution. License Notice: Published under licence in Journal of Physics: Conference Series by IOP Publishing Ltd.
The Climate-G Portal: a Grid Enabled Scientifc Gateway for Climate Change
NASA Astrophysics Data System (ADS)
Fiore, Sandro; Negro, Alessandro; Aloisio, Giovanni
2010-05-01
Grid portals are web gateways aiming at concealing the underlying infrastructure through a pervasive, transparent, user-friendly, ubiquitous and seamless access to heterogeneous and geographical spread resources (i.e. storage, computational facilities, services, sensors, network, databases). Definitively they provide an enhanced problem-solving environment able to deal with modern, large scale scientific and engineering problems. Scientific gateways are able to introduce a revolution in the way scientists and researchers organize and carry out their activities. Access to distributed resources, complex workflow capabilities, and community-oriented functionalities are just some of the features that can be provided by such a web-based environment. In the context of the EGEE NA4 Earth Science Cluster, Climate-G is a distributed testbed focusing on climate change research topics. The Euro-Mediterranean Center for Climate Change (CMCC) is actively participating in the testbed providing the scientific gateway (Climate-G Portal) to access to the entire infrastructure. The Climate-G Portal has to face important and critical challenges as well as has to satisfy and address key requirements. In the following, the most relevant ones are presented and discussed. Transparency: the portal has to provide a transparent access to the underlying infrastructure preventing users from dealing with low level details and the complexity of a distributed grid environment. Security: users must be authenticated and authorized on the portal to access and exploit portal functionalities. A wide set of roles is needed to clearly assign the proper one to each user. The access to the computational grid must be completely secured, since the target infrastructure to run jobs is a production grid environment. A security infrastructure (based on X509v3 digital certificates) is strongly needed. Pervasivity and ubiquity: the access to the system must be pervasive and ubiquitous. This is easily true due to the nature of the needed web approach. Usability and simplicity: the portal has to provide simple, high level and user friendly interfaces to ease the access and exploitation of the entire system. Coexistence of general purpose and domain oriented services: along with general purpose services (file transfer, job submission, etc.), the portal has to provide domain based services and functionalities. Subsetting of data, visualization of 2D maps around a virtual globe, delivery of maps through OGC compliant interfaces (i.e. Web Map Service - WMS) are just some examples. Since april 2009, about 70 users (85% coming from the climate change community) got access to the portal. A key challenge of this work is the idea to provide users with an integrated working environment, that is a place where scientists can find huge amount of data, complete metadata support, a wide set of data access services, data visualization and analysis tools, easy access to the underlying grid infrastructure and advanced monitoring interfaces.
Virtual Control Systems Environment (VCSE)
Atkins, Will
2018-02-14
Will Atkins, a Sandia National Laboratories computer engineer discusses cybersecurity research work for process control systems. Will explains his work on the Virtual Control Systems Environment project to develop a modeling and simulation framework of the U.S. electric grid in order to study and mitigate possible cyberattacks on infrastructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Zhenyu Henry; Tate, Zeb; Abhyankar, Shrirang
The power grid has been evolving over the last 120 years, but it is seeing more changes in this decade and next than it has seen over the past century. In particular, the widespread deployment of intermittent renewable generation, smart loads and devices, hierarchical and distributed control technologies, phasor measurement units, energy storage, and widespread usage of electric vehicles will require fundamental changes in methods and tools for the operation and planning of the power grid. The resulting new dynamic and stochastic behaviors will demand the inclusion of more complexity in modeling the power grid. Solving such complex models inmore » the traditional computing environment will be a major challenge. Along with the increasing complexity of power system models, the increasing complexity of smart grid data further adds to the prevailing challenges. In this environment, the myriad of smart sensors and meters in the power grid increase by multiple orders of magnitude, so do the volume and speed of the data. The information infrastructure will need to drastically change to support the exchange of enormous amounts of data as smart grid applications will need the capability to collect, assimilate, analyze and process the data, to meet real-time grid functions. High performance computing (HPC) holds the promise to enhance these functions, but it is a great resource that has not been fully explored and adopted for the power grid domain.« less
Towards Dynamic Authentication in the Grid — Secure and Mobile Business Workflows Using GSet
NASA Astrophysics Data System (ADS)
Mangler, Jürgen; Schikuta, Erich; Witzany, Christoph; Jorns, Oliver; Ul Haq, Irfan; Wanek, Helmut
Until now, the research community mainly focused on the technical aspects of Grid computing and neglected commercial issues. However, recently the community tends to accept that the success of the Grid is crucially based on commercial exploitation. In our vision Foster's and Kesselman's statement "The Grid is all about sharing." has to be extended by "... and making money out of it!". To allow for the realization of this vision the trust-worthyness of the underlying technology needs to be ensured. This can be achieved by the use of gSET (Gridified Secure Electronic Transaction) as a basic technology for trust management and secure accounting in the presented Grid based workflow. We present a framework, conceptually and technically, from the area of the Mobile-Grid, which justifies the Grid infrastructure as a viable platform to enable commercially successful business workflows.
Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing.
Shatil, Anwar S; Younas, Sohail; Pourreza, Hossein; Figley, Chase R
2015-01-01
With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications.
Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing
Shatil, Anwar S.; Younas, Sohail; Pourreza, Hossein; Figley, Chase R.
2015-01-01
With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications. PMID:27279746
Synergy Between Archives, VO, and the Grid at ESAC
NASA Astrophysics Data System (ADS)
Arviset, C.; Alvarez, R.; Gabriel, C.; Osuna, P.; Ott, S.
2011-07-01
Over the years, in support to the Science Operations Centers at ESAC, we have set up two Grid infrastructures. These have been built: 1) to facilitate daily research for scientists at ESAC, 2) to provide high computing capabilities for project data processing pipelines (e.g., Herschel), 3) to support science operations activities (e.g., calibration monitoring). Furthermore, closer collaboration between the science archives, the Virtual Observatory (VO) and data processing activities has led to an other Grid use case: the Remote Interface to XMM-Newton SAS Analysis (RISA). This web service-based system allows users to launch SAS tasks transparently to the GRID, save results on http-based storage and visualize them through VO tools. This paper presents real and operational use cases of Grid usages in these contexts
Grid accounting service: state and future development
NASA Astrophysics Data System (ADS)
Levshina, T.; Sehgal, C.; Bockelman, B.; Weitzel, D.; Guru, A.
2014-06-01
During the last decade, large-scale federated distributed infrastructures have been continually developed and expanded. One of the crucial components of a cyber-infrastructure is an accounting service that collects data related to resource utilization and identity of users using resources. The accounting service is important for verifying pledged resource allocation per particular groups and users, providing reports for funding agencies and resource providers, and understanding hardware provisioning requirements. It can also be used for end-to-end troubleshooting as well as billing purposes. In this work we describe Gratia, a federated accounting service jointly developed at Fermilab and Holland Computing Center at University of Nebraska-Lincoln. The Open Science Grid, Fermilab, HCC, and several other institutions have used Gratia in production for several years. The current development activities include expanding Virtual Machines provisioning information, XSEDE allocation usage accounting, and Campus Grids resource utilization. We also identify the direction of future work: improvement and expansion of Cloud accounting, persistent and elastic storage space allocation, and the incorporation of WAN and LAN network metrics.
VOSpace: a Prototype for Grid 2.0
NASA Astrophysics Data System (ADS)
Graham, M. J.; Morris, D.; Rixon, G.
2007-10-01
As Grid 1.0 was characterized by distributed computation, so Grid 2.0 will be characterized by distributed data and the infrastructure needed to support and exploit it: the emerging success of Amazon S3 is already testimony to this. VOSpace is the IVOA interface standard for accessing distributed data. Although the base definition (VOSpace 1.0) only relates to flat, unconnected data stores, subsequent versions will add additional layers of functionality. In this paper, we consider how incorporating popular web concepts such as folksonomies (tagging), social networking, and data-spaces could lead to a much richer data environment than provided by a traditional collection of networked data stores.
Bringing the CMS distributed computing system into scalable operations
NASA Astrophysics Data System (ADS)
Belforte, S.; Fanfani, A.; Fisk, I.; Flix, J.; Hernández, J. M.; Kress, T.; Letts, J.; Magini, N.; Miccio, V.; Sciabà, A.
2010-04-01
Establishing efficient and scalable operations of the CMS distributed computing system critically relies on the proper integration, commissioning and scale testing of the data and workload management tools, the various computing workflows and the underlying computing infrastructure, located at more than 50 computing centres worldwide and interconnected by the Worldwide LHC Computing Grid. Computing challenges periodically undertaken by CMS in the past years with increasing scale and complexity have revealed the need for a sustained effort on computing integration and commissioning activities. The Processing and Data Access (PADA) Task Force was established at the beginning of 2008 within the CMS Computing Program with the mandate of validating the infrastructure for organized processing and user analysis including the sites and the workload and data management tools, validating the distributed production system by performing functionality, reliability and scale tests, helping sites to commission, configure and optimize the networking and storage through scale testing data transfers and data processing, and improving the efficiency of accessing data across the CMS computing system from global transfers to local access. This contribution reports on the tools and procedures developed by CMS for computing commissioning and scale testing as well as the improvements accomplished towards efficient, reliable and scalable computing operations. The activities include the development and operation of load generators for job submission and data transfers with the aim of stressing the experiment and Grid data management and workload management systems, site commissioning procedures and tools to monitor and improve site availability and reliability, as well as activities targeted to the commissioning of the distributed production, user analysis and monitoring systems.
A Latency-Tolerant Partitioner for Distributed Computing on the Information Power Grid
NASA Technical Reports Server (NTRS)
Das, Sajal K.; Harvey, Daniel J.; Biwas, Rupak; Kwak, Dochan (Technical Monitor)
2001-01-01
NASA's Information Power Grid (IPG) is an infrastructure designed to harness the power of graphically distributed computers, databases, and human expertise, in order to solve large-scale realistic computational problems. This type of a meta-computing environment is necessary to present a unified virtual machine to application developers that hides the intricacies of a highly heterogeneous environment and yet maintains adequate security. In this paper, we present a novel partitioning scheme. called MinEX, that dynamically balances processor workloads while minimizing data movement and runtime communication, for applications that are executed in a parallel distributed fashion on the IPG. We also analyze the conditions that are required for the IPG to be an effective tool for such distributed computations. Our results show that MinEX is a viable load balancer provided the nodes of the IPG are connected by a high-speed asynchronous interconnection network.
Web service module for access to g-Lite
NASA Astrophysics Data System (ADS)
Goranova, R.; Goranov, G.
2012-10-01
G-Lite is a lightweight grid middleware for grid computing installed on all clusters of the European Grid Infrastructure (EGI). The middleware is partially service-oriented and does not provide well-defined Web services for job management. The existing Web services in the environment cannot be directly used by grid users for building service compositions in the EGI. In this article we present a module of well-defined Web services for job management in the EGI. We describe the architecture of the module and the design of the developed Web services. The presented Web services are composable and can participate in service compositions (workflows). An example of usage of the module with tools for service compositions in g-Lite is shown.
Evolution of the Virtualized HPC Infrastructure of Novosibirsk Scientific Center
NASA Astrophysics Data System (ADS)
Adakin, A.; Anisenkov, A.; Belov, S.; Chubarov, D.; Kalyuzhny, V.; Kaplin, V.; Korol, A.; Kuchin, N.; Lomakin, S.; Nikultsev, V.; Skovpen, K.; Sukharev, A.; Zaytsev, A.
2012-12-01
Novosibirsk Scientific Center (NSC), also known worldwide as Akademgorodok, is one of the largest Russian scientific centers hosting Novosibirsk State University (NSU) and more than 35 research organizations of the Siberian Branch of Russian Academy of Sciences including Budker Institute of Nuclear Physics (BINP), Institute of Computational Technologies, and Institute of Computational Mathematics and Mathematical Geophysics (ICM&MG). Since each institute has specific requirements on the architecture of computing farms involved in its research field, currently we've got several computing facilities hosted by NSC institutes, each optimized for a particular set of tasks, of which the largest are the NSU Supercomputer Center, Siberian Supercomputer Center (ICM&MG), and a Grid Computing Facility of BINP. A dedicated optical network with the initial bandwidth of 10 Gb/s connecting these three facilities was built in order to make it possible to share the computing resources among the research communities, thus increasing the efficiency of operating the existing computing facilities and offering a common platform for building the computing infrastructure for future scientific projects. Unification of the computing infrastructure is achieved by extensive use of virtualization technology based on XEN and KVM platforms. This contribution gives a thorough review of the present status and future development prospects for the NSC virtualized computing infrastructure and the experience gained while using it for running production data analysis jobs related to HEP experiments being carried out at BINP, especially the KEDR detector experiment at the VEPP-4M electron-positron collider.
Grid computing enhances standards-compatible geospatial catalogue service
NASA Astrophysics Data System (ADS)
Chen, Aijun; Di, Liping; Bai, Yuqi; Wei, Yaxing; Liu, Yang
2010-04-01
A catalogue service facilitates sharing, discovery, retrieval, management of, and access to large volumes of distributed geospatial resources, for example data, services, applications, and their replicas on the Internet. Grid computing provides an infrastructure for effective use of computing, storage, and other resources available online. The Open Geospatial Consortium has proposed a catalogue service specification and a series of profiles for promoting the interoperability of geospatial resources. By referring to the profile of the catalogue service for Web, an innovative information model of a catalogue service is proposed to offer Grid-enabled registry, management, retrieval of and access to geospatial resources and their replicas. This information model extends the e-business registry information model by adopting several geospatial data and service metadata standards—the International Organization for Standardization (ISO)'s 19115/19119 standards and the US Federal Geographic Data Committee (FGDC) and US National Aeronautics and Space Administration (NASA) metadata standards for describing and indexing geospatial resources. In order to select the optimal geospatial resources and their replicas managed by the Grid, the Grid data management service and information service from the Globus Toolkits are closely integrated with the extended catalogue information model. Based on this new model, a catalogue service is implemented first as a Web service. Then, the catalogue service is further developed as a Grid service conforming to Grid service specifications. The catalogue service can be deployed in both the Web and Grid environments and accessed by standard Web services or authorized Grid services, respectively. The catalogue service has been implemented at the George Mason University/Center for Spatial Information Science and Systems (GMU/CSISS), managing more than 17 TB of geospatial data and geospatial Grid services. This service makes it easy to share and interoperate geospatial resources by using Grid technology and extends Grid technology into the geoscience communities.
NASA Astrophysics Data System (ADS)
Duffy, D.; Maxwell, T. P.; Doutriaux, C.; Williams, D. N.; Chaudhary, A.; Ames, S.
2015-12-01
As the size of remote sensing observations and model output data grows, the volume of the data has become overwhelming, even to many scientific experts. As societies are forced to better understand, mitigate, and adapt to climate changes, the combination of Earth observation data and global climate model projects is crucial to not only scientists but to policy makers, downstream applications, and even the public. Scientific progress on understanding climate is critically dependent on the availability of a reliable infrastructure that promotes data access, management, and provenance. The Earth System Grid Federation (ESGF) has created such an environment for the Intergovernmental Panel on Climate Change (IPCC). ESGF provides a federated global cyber infrastructure for data access and management of model outputs generated for the IPCC Assessment Reports (AR). The current generation of the ESGF federated grid allows consumers of the data to find and download data with limited capabilities for server-side processing. Since the amount of data for future AR is expected to grow dramatically, ESGF is working on integrating server-side analytics throughout the federation. The ESGF Compute Working Team (CWT) has created a Web Processing Service (WPS) Application Programming Interface (API) to enable access scalable computational resources. The API is the exposure point to high performance computing resources across the federation. Specifically, the API allows users to execute simple operations, such as maximum, minimum, average, and anomalies, on ESGF data without having to download the data. These operations are executed at the ESGF data node site with access to large amounts of parallel computing capabilities. This presentation will highlight the WPS API, its capabilities, provide implementation details, and discuss future developments.
Grid and Cloud for Developing Countries
NASA Astrophysics Data System (ADS)
Petitdidier, Monique
2014-05-01
The European Grid e-infrastructure has shown the capacity to connect geographically distributed heterogeneous compute resources in a secure way taking advantages of a robust and fast REN (Research and Education Network). In many countries like in Africa the first step has been to implement a REN and regional organizations like Ubuntunet, WACREN or ASREN to coordinate the development, improvement of the network and its interconnection. The Internet connections are still exploding in those countries. The second step has been to fill up compute needs of the scientists. Even if many of them have their own multi-core or not laptops for more and more applications it is not enough because they have to face intensive computing due to the large amount of data to be processed and/or complex codes. So far one solution has been to go abroad in Europe or in America to run large applications or not to participate to international communities. The Grid is very attractive to connect geographically-distributed heterogeneous resources, aggregate new ones and create new sites on the REN with a secure access. All the users have the same servicers even if they have no resources in their institute. With faster and more robust internet they will be able to take advantage of the European Grid. There are different initiatives to provide resources and training like UNESCO/HP Brain Gain initiative, EUMEDGrid, ..Nowadays Cloud becomes very attractive and they start to be developed in some countries. In this talk challenges for those countries to implement such e-infrastructures, to develop in parallel scientific and technical research and education in the new technologies will be presented illustrated by examples.
Context-aware access control for pervasive access to process-based healthcare systems.
Koufi, Vassiliki; Vassilacopoulos, George
2008-01-01
Healthcare is an increasingly collaborative enterprise involving a broad range of healthcare services provided by many individuals and organizations. Grid technology has been widely recognized as a means for integrating disparate computing resources in the healthcare field. Moreover, Grid portal applications can be developed on a wireless and mobile infrastructure to execute healthcare processes which, in turn, can provide remote access to Grid database services. Such an environment provides ubiquitous and pervasive access to integrated healthcare services at the point of care, thus improving healthcare quality. In such environments, the ability to provide an effective access control mechanism that meets the requirement of the least privilege principle is essential. Adherence to the least privilege principle requires continuous adjustments of user permissions in order to adapt to the current situation. This paper presents a context-aware access control mechanism for HDGPortal, a Grid portal application which provides access to workflow-based healthcare processes using wireless Personal Digital Assistants. The proposed mechanism builds upon and enhances security mechanisms provided by the Grid Security Infrastructure. It provides tight, just-in-time permissions so that authorized users get access to specific objects according to the current context. These permissions are subject to continuous adjustments triggered by the changing context. Thus, the risk of compromising information integrity during task executions is reduced.
HappyFace as a generic monitoring tool for HEP experiments
NASA Astrophysics Data System (ADS)
Kawamura, Gen; Magradze, Erekle; Musheghyan, Haykuhi; Quadt, Arnulf; Rzehorz, Gerhard
2015-12-01
The importance of monitoring on HEP grid computing systems is growing due to a significant increase in their complexity. Computer scientists and administrators have been studying and building effective ways to gather information on and clarify a status of each local grid infrastructure. The HappyFace project aims at making the above-mentioned workflow possible. It aggregates, processes and stores the information and the status of different HEP monitoring resources into the common database of HappyFace. The system displays the information and the status through a single interface. However, this model of HappyFace relied on the monitoring resources which are always under development in the HEP experiments. Consequently, HappyFace needed to have direct access methods to the grid application and grid service layers in the different HEP grid systems. To cope with this issue, we use a reliable HEP software repository, the CernVM File System. We propose a new implementation and an architecture of HappyFace, the so-called grid-enabled HappyFace. It allows its basic framework to connect directly to the grid user applications and the grid collective services, without involving the monitoring resources in the HEP grid systems. This approach gives HappyFace several advantages: Portability, to provide an independent and generic monitoring system among the HEP grid systems. Eunctionality, to allow users to perform various diagnostic tools in the individual HEP grid systems and grid sites. Elexibility, to make HappyFace beneficial and open for the various distributed grid computing environments. Different grid-enabled modules, to connect to the Ganga job monitoring system and to check the performance of grid transfers among the grid sites, have been implemented. The new HappyFace system has been successfully integrated and now it displays the information and the status of both the monitoring resources and the direct access to the grid user applications and the grid collective services.
OOI CyberInfrastructure - Next Generation Oceanographic Research
NASA Astrophysics Data System (ADS)
Farcas, C.; Fox, P.; Arrott, M.; Farcas, E.; Klacansky, I.; Krueger, I.; Meisinger, M.; Orcutt, J.
2008-12-01
Software has become a key enabling technology for scientific discovery, observation, modeling, and exploitation of natural phenomena. New value emerges from the integration of individual subsystems into networked federations of capabilities exposed to the scientific community. Such data-intensive interoperability networks are crucial for future scientific collaborative research, as they open up new ways of fusing data from different sources and across various domains, and analysis on wide geographic areas. The recently established NSF OOI program, through its CyberInfrastructure component addresses this challenge by providing broad access from sensor networks for data acquisition up to computational grids for massive computations and binding infrastructure facilitating policy management and governance of the emerging system-of-scientific-systems. We provide insight into the integration core of this effort, namely, a hierarchic service-oriented architecture for a robust, performant, and maintainable implementation. We first discuss the relationship between data management and CI crosscutting concerns such as identity management, policy and governance, which define the organizational contexts for data access and usage. Next, we detail critical services including data ingestion, transformation, preservation, inventory, and presentation. To address interoperability issues between data represented in various formats we employ a semantic framework derived from the Earth System Grid technology, a canonical representation for scientific data based on DAP/OPeNDAP, and related data publishers such as ERDDAP. Finally, we briefly present the underlying transport based on a messaging infrastructure over the AMQP protocol, and the preservation based on a distributed file system through SDSC iRODS.
Progress on the FabrIc for Frontier Experiments project at Fermilab
Box, Dennis; Boyd, Joseph; Dykstra, Dave; ...
2015-12-23
The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercialmore » cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. Hence, the progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide« less
NASA Astrophysics Data System (ADS)
Tudose, Alexandru; Terstyansky, Gabor; Kacsuk, Peter; Winter, Stephen
Grid Application Repositories vary greatly in terms of access interface, security system, implementation technology, communication protocols and repository model. This diversity has become a significant limitation in terms of interoperability and inter-repository access. This paper presents the Grid Application Meta-Repository System (GAMRS) as a solution that offers better options for the management of Grid applications. GAMRS proposes a generic repository architecture, which allows any Grid Application Repository (GAR) to be connected to the system independent of their underlying technology. It also presents applications in a uniform manner and makes applications from all connected repositories visible to web search engines, OGSI/WSRF Grid Services and other OAI (Open Archive Initiative)-compliant repositories. GAMRS can also function as a repository in its own right and can store applications under a new repository model. With the help of this model, applications can be presented as embedded in virtual machines (VM) and therefore they can be run in their native environments and can easily be deployed on virtualized infrastructures allowing interoperability with new generation technologies such as cloud computing, application-on-demand, automatic service/application deployments and automatic VM generation.
NASA Astrophysics Data System (ADS)
Maffioletti, Sergio; Dawes, Nicholas; Bavay, Mathias; Sarni, Sofiane; Lehning, Michael
2013-04-01
The Swiss Experiment platform (SwissEx: http://www.swiss-experiment.ch) provides a distributed storage and processing infrastructure for environmental research experiments. The aim of the second phase project (the Open Support Platform for Environmental Research, OSPER, 2012-2015) is to develop the existing infrastructure to provide scientists with an improved workflow. This improved workflow will include pre-defined, documented and connected processing routines. A large-scale computing and data facility is required to provide reliable and scalable access to data for analysis, and it is desirable that such an infrastructure should be free of traditional data handling methods. Such an infrastructure has been developed using the cloud-based part of the Swiss national infrastructure SMSCG (http://www.smscg.ch) and Academic Cloud. The infrastructure under construction supports two main usage models: 1) Ad-hoc data analysis scripts: These scripts are simple processing scripts, written by the environmental researchers themselves, which can be applied to large data sets via the high power infrastructure. Examples of this type of script are spatial statistical analysis scripts (R-based scripts), mostly computed on raw meteorological and/or soil moisture data. These provide processed output in the form of a grid, a plot, or a kml. 2) Complex models: A more intense data analysis pipeline centered (initially) around the physical process model, Alpine3D, and the MeteoIO plugin; depending on the data set, this may require a tightly coupled infrastructure. SMSCG already supports Alpine3D executions as both regular grid jobs and as virtual software appliances. A dedicated appliance with the Alpine3D specific libraries has been created and made available through the SMSCG infrastructure. The analysis pipelines are activated and supervised by simple control scripts that, depending on the data fetched from the meteorological stations, launch new instances of the Alpine3D appliance, execute location-based subroutines at each grid point and store the results back into the central repository for post-processing. An optional extension of this infrastructure will be to provide a 'ring buffer'-type database infrastructure, such that model results (e.g. test runs made to check parameter dependency or for development) can be visualised and downloaded after completion without submitting them to a permanent storage infrastructure. Data organization Data collected from sensors are archived and classified in distributed sites connected with an open-source software middleware, GSN. Publicly available data are available through common web services and via a cloud storage server (based on Swift). Collocation of the data and processing in the cloud would eventually eliminate data transfer requirements. Execution control logic Execution of the data analysis pipelines (for both the R-based analysis and the Alpine3D simulations) has been implemented using the GC3Pie framework developed by UZH. (https://code.google.com/p/gc3pie/). This allows large-scale, fault-tolerant execution of the pipelines to be described in terms of software appliances. GC3Pie also allows supervision of the execution of large campaigns of appliances as a single simulation. This poster will present the fundamental architectural components of the data analysis pipelines together with initial experimental results.
Autonomic Management of Application Workflows on Hybrid Computing Infrastructure
Kim, Hyunjoo; el-Khamra, Yaakoub; Rodero, Ivan; ...
2011-01-01
In this paper, we present a programming and runtime framework that enables the autonomic management of complex application workflows on hybrid computing infrastructures. The framework is designed to address system and application heterogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework presented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints.more » The framework also monitors the system/application state and adapts the application and/or resources to respond to changing requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage of traditional high performance computing infrastructure.« less
e-Science on Earthquake Disaster Mitigation by EUAsiaGrid
NASA Astrophysics Data System (ADS)
Yen, Eric; Lin, Simon; Chen, Hsin-Yen; Chao, Li; Huang, Bor-Shoh; Liang, Wen-Tzong
2010-05-01
Although earthquake is not predictable at this moment, with the aid of accurate seismic wave propagation analysis, we could simulate the potential hazards at all distances from possible fault sources by understanding the source rupture process during large earthquakes. With the integration of strong ground-motion sensor network, earthquake data center and seismic wave propagation analysis over gLite e-Science Infrastructure, we could explore much better knowledge on the impact and vulnerability of potential earthquake hazards. On the other hand, this application also demonstrated the e-Science way to investigate unknown earth structure. Regional integration of earthquake sensor networks could aid in fast event reporting and accurate event data collection. Federation of earthquake data center entails consolidation and sharing of seismology and geology knowledge. Capability building of seismic wave propagation analysis implies the predictability of potential hazard impacts. With gLite infrastructure and EUAsiaGrid collaboration framework, earth scientists from Taiwan, Vietnam, Philippine, Thailand are working together to alleviate potential seismic threats by making use of Grid technologies and also to support seismology researches by e-Science. A cross continental e-infrastructure, based on EGEE and EUAsiaGrid, is established for seismic wave forward simulation and risk estimation. Both the computing challenge on seismic wave analysis among 5 European and Asian partners, and the data challenge for data center federation had been exercised and verified. Seismogram-on-Demand service is also developed for the automatic generation of seismogram on any sensor point to a specific epicenter. To ease the access to all the services based on users workflow and retain the maximal flexibility, a Seismology Science Gateway integating data, computation, workflow, services and user communities would be implemented based on typical use cases. In the future, extension of the earthquake wave propagation to tsunami mitigation would be feasible once the user community support is in place.
Grid-Enabled High Energy Physics Research using a Beowulf Cluster
NASA Astrophysics Data System (ADS)
Mahmood, Akhtar
2005-04-01
At Edinboro University of Pennsylvania, we have built a 8-node 25 Gflops Beowulf Cluster with 2.5 TB of disk storage space to carry out grid-enabled, data-intensive high energy physics research for the ATLAS experiment via Grid3. We will describe how we built and configured our Cluster, which we have named the Sphinx Beowulf Cluster. We will describe the results of our cluster benchmark studies and the run-time plots of several parallel application codes. Once fully functional, the Cluster will be part of Grid3[www.ivdgl.org/grid3]. The current ATLAS simulation grid application, models the entire physical processes from the proton anti-proton collisions and detector's response to the collision debri through the complete reconstruction of the event from analyses of these responses. The end result is a detailed set of data that simulates the real physical collision event inside a particle detector. Grid is the new IT infrastructure for the 21^st century science -- a new computing paradigm that is poised to transform the practice of large-scale data-intensive research in science and engineering. The Grid will allow scientist worldwide to view and analyze huge amounts of data flowing from the large-scale experiments in High Energy Physics. The Grid is expected to bring together geographically and organizationally dispersed computational resources, such as CPUs, storage systems, communication systems, and data sources.
MindModeling@Home . . . and Anywhere Else You Have Idle Processors
2009-12-01
was SETI @Home. It was established in 1999 for the purpose of demonstrating the utility of “distributed grid computing” by providing a mechanism for...the public imagination, and SETI @Home remains the longest running and one of the most popular volunteer computing projects in the world. This...pursuits. Most of them, including SETI @Home, run on a software architecture called the Berkeley Open Infrastructure for Network Computing (BOINC). Some of
Scientific Grid activities and PKI deployment in the Cybermedia Center, Osaka University.
Akiyama, Toyokazu; Teranishi, Yuuichi; Nozaki, Kazunori; Kato, Seiichi; Shimojo, Shinji; Peltier, Steven T; Lin, Abel; Molina, Tomas; Yang, George; Lee, David; Ellisman, Mark; Naito, Sei; Koike, Atsushi; Matsumoto, Shuichi; Yoshida, Kiyokazu; Mori, Hirotaro
2005-10-01
The Cybermedia Center (CMC), Osaka University, is a research institution that offers knowledge and technology resources obtained from advanced researches in the areas of large-scale computation, information and communication, multimedia content and education. Currently, CMC is involved in Japanese national Grid projects such as JGN II (Japan Gigabit Network), NAREGI and BioGrid. Not limited to Japan, CMC also actively takes part in international activities such as PRAGMA. In these projects and international collaborations, CMC has developed a Grid system that allows scientists to perform their analysis by remote-controlling the world's largest ultra-high voltage electron microscope located in Osaka University. In another undertaking, CMC has assumed a leadership role in BioGrid by sharing its experiences and knowledge on the system development for the area of biology. In this paper, we will give an overview of the BioGrid project and introduce the progress of the Telescience unit, which collaborates with the Telescience Project led by the National Center for Microscopy and Imaging Research (NCMIR). Furthermore, CMC collaborates with seven Computing Centers in Japan, NAREGI and National Institute of Informatics to deploy PKI base authentication infrastructure. The current status of this project and future collaboration with Grid Projects will be delineated in this paper.
Evaluation of a grid based molecular dynamics approach for polypeptide simulations.
Merelli, Ivan; Morra, Giulia; Milanesi, Luciano
2007-09-01
Molecular dynamics is very important for biomedical research because it makes possible simulation of the behavior of a biological macromolecule in silico. However, molecular dynamics is computationally rather expensive: the simulation of some nanoseconds of dynamics for a large macromolecule such as a protein takes very long time, due to the high number of operations that are needed for solving the Newton's equations in the case of a system of thousands of atoms. In order to obtain biologically significant data, it is desirable to use high-performance computation resources to perform these simulations. Recently, a distributed computing approach based on replacing a single long simulation with many independent short trajectories has been introduced, which in many cases provides valuable results. This study concerns the development of an infrastructure to run molecular dynamics simulations on a grid platform in a distributed way. The implemented software allows the parallel submission of different simulations that are singularly short but together bring important biological information. Moreover, each simulation is divided into a chain of jobs to avoid data loss in case of system failure and to contain the dimension of each data transfer from the grid. The results confirm that the distributed approach on grid computing is particularly suitable for molecular dynamics simulations thanks to the elevated scalability.
The ATLAS Simulation Infrastructure
Aad, G.; Abbott, B.; Abdallah, J.; ...
2010-09-25
The simulation software for the ATLAS Experiment at the Large Hadron Collider is being used for large-scale production of events on the LHC Computing Grid. This simulation requires many components, from the generators that simulate particle collisions, through packages simulating the response of the various detectors and triggers. All of these components come together under the ATLAS simulation infrastructure. In this paper, that infrastructure is discussed, including that supporting the detector description, interfacing the event generation, and combining the GEANT4 simulation of the response of the individual detectors. Also described are the tools allowing the software validation, performance testing, andmore » the validation of the simulated output against known physics processes.« less
Grid accounting service: state and future development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levshina, T.; Sehgal, C.; Bockelman, B.
2014-01-01
During the last decade, large-scale federated distributed infrastructures have been continually developed and expanded. One of the crucial components of a cyber-infrastructure is an accounting service that collects data related to resource utilization and identity of users using resources. The accounting service is important for verifying pledged resource allocation per particular groups and users, providing reports for funding agencies and resource providers, and understanding hardware provisioning requirements. It can also be used for end-to-end troubleshooting as well as billing purposes. In this work we describe Gratia, a federated accounting service jointly developed at Fermilab and Holland Computing Center at Universitymore » of Nebraska-Lincoln. The Open Science Grid, Fermilab, HCC, and several other institutions have used Gratia in production for several years. The current development activities include expanding Virtual Machines provisioning information, XSEDE allocation usage accounting, and Campus Grids resource utilization. We also identify the direction of future work: improvement and expansion of Cloud accounting, persistent and elastic storage space allocation, and the incorporation of WAN and LAN network metrics.« less
NASA Astrophysics Data System (ADS)
The CHAIN-REDS Project is organising a workshop on "e-Infrastructures for e-Sciences" focusing on Cloud Computing and Data Repositories under the aegis of the European Commission and in co-location with the International Conference on e-Science 2013 (IEEE2013) that will be held in Beijing, P.R. of China on October 17-22, 2013. The core objective of the CHAIN-REDS project is to promote, coordinate and support the effort of a critical mass of non-European e-Infrastructures for Research and Education to collaborate with Europe addressing interoperability and interoperation of Grids and other Distributed Computing Infrastructures (DCI). From this perspective, CHAIN-REDS will optimise the interoperation of European infrastructures with those present in 6 other regions of the world, both from a development and use point of view, and catering to different communities. Overall, CHAIN-REDS will provide input for future strategies and decision-making regarding collaboration with other regions on e-Infrastructure deployment and availability of related data; it will raise the visibility of e-Infrastructures towards intercontinental audiences, covering most of the world and will provide support to establish globally connected and interoperable infrastructures, in particular between the EU and the developing regions. Organised by IHEP, INFN and Sigma Orionis with the support of all project partners, this workshop will aim at: - Presenting the state of the art of Cloud computing in Europe and in China and discussing the opportunities offered by having interoperable and federated e-Infrastructures; - Exploring the existing initiatives of Data Infrastructures in Europe and China, and highlighting the Data Repositories of interest for the Virtual Research Communities in several domains such as Health, Agriculture, Climate, etc.
European grid services for global earth science
NASA Astrophysics Data System (ADS)
Brewer, S.; Sipos, G.
2012-04-01
This presentation will provide an overview of the distributed computing services that the European Grid Infrastructure (EGI) offers to the Earth Sciences community and also explain the processes whereby Earth Science users can engage with the infrastructure. One of the main overarching goals for EGI over the coming year is to diversify its user-base. EGI therefore - through the National Grid Initiatives (NGIs) that provide the bulk of resources that make up the infrastructure - offers a number of routes whereby users, either individually or as communities, can make use of its services. At one level there are two approaches to working with EGI: either users can make use of existing resources and contribute to their evolution and configuration; or alternatively they can work with EGI, and hence the NGIs, to incorporate their own resources into the infrastructure to take advantage of EGI's monitoring, networking and managing services. Adopting this approach does not imply a loss of ownership of the resources. Both of these approaches are entirely applicable to the Earth Sciences community. The former because researchers within this field have been involved with EGI (and previously EGEE) as a Heavy User Community and the latter because they have very specific needs, such as incorporating HPC services into their workflows, and these will require multi-skilled interventions to fully provide such services. In addition to the technical support services that EGI has been offering for the last year or so - the applications database, the training marketplace and the Virtual Organisation services - there now exists a dynamic short-term project framework that can be utilised to establish and operate services for Earth Science users. During this talk we will present a summary of various on-going projects that will be of interest to Earth Science users with the intention that suggestions for future projects will emerge from the subsequent discussions: • The Federated Cloud Task Force is already providing a cloud infrastructure through a few committed NGIs. This is being made available to research communities participating in the Task Force and the long-term aim is to integrate these national clouds into a pan-European infrastructure for scientific communities. • The MPI group provides support for application developers to port and scale up parallel applications to the global European Grid Infrastructure. • A lively portal developer and provider community that is able to setup and operate custom, application and/or community specific portals for members of the Earth Science community to interact with EGI. • A project to assess the possibilities for federated identity management in EGI and the readiness of EGI member states for federated authentication and authorisation mechanisms. • Operating resources and user support services to process data with new types of services and infrastructures, such as desktop grids, map-reduce frameworks, GPU clusters.
NASA Technical Reports Server (NTRS)
Johnston, William E.; Gannon, Dennis; Nitzberg, Bill; Feiereisen, William (Technical Monitor)
2000-01-01
The term "Grid" refers to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. The vision for NASN's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks that will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. IPG development and deployment is addressing requirements obtained by analyzing a number of different application areas, in particular from the NASA Aero-Space Technology Enterprise. This analysis has focussed primarily on two types of users: The scientist / design engineer whose primary interest is problem solving (e.g., determining wing aerodynamic characteristics in many different operating environments), and whose primary interface to IPG will be through various sorts of problem solving frameworks. The second type of user if the tool designer: The computational scientists who convert physics and mathematics into code that can simulate the physical world. These are the two primary users of IPG, and they have rather different requirements. This paper describes the current state of IPG (the operational testbed), the set of capabilities being put into place for the operational prototype IPG, as well as some of the longer term R&D tasks.
Data distribution service-based interoperability framework for smart grid testbed infrastructure
Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.
2016-03-02
This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less
NASA Astrophysics Data System (ADS)
Belyaev, A.; Berezhnaya, A.; Betev, L.; Buncic, P.; De, K.; Drizhuk, D.; Klimentov, A.; Lazin, Y.; Lyalin, I.; Mashinistov, R.; Novikov, A.; Oleynik, D.; Polyakov, A.; Poyda, A.; Ryabinkin, E.; Teslyuk, A.; Tkachenko, I.; Yasnopolskiy, L.
2015-12-01
The LHC experiments are preparing for the precision measurements and further discoveries that will be made possible by higher LHC energies from April 2015 (LHC Run2). The need for simulation, data processing and analysis would overwhelm the expected capacity of grid infrastructure computing facilities deployed by the Worldwide LHC Computing Grid (WLCG). To meet this challenge the integration of the opportunistic resources into LHC computing model is highly important. The Tier-1 facility at Kurchatov Institute (NRC-KI) in Moscow is a part of WLCG and it will process, simulate and store up to 10% of total data obtained from ALICE, ATLAS and LHCb experiments. In addition Kurchatov Institute has supercomputers with peak performance 0.12 PFLOPS. The delegation of even a fraction of supercomputing resources to the LHC Computing will notably increase total capacity. In 2014 the development a portal combining a Tier-1 and a supercomputer in Kurchatov Institute was started to provide common interfaces and storage. The portal will be used not only for HENP experiments, but also by other data- and compute-intensive sciences like biology with genome sequencing analysis; astrophysics with cosmic rays analysis, antimatter and dark matter search, etc.
Grid Computing and Collaboration Technology in Support of Fusion Energy Sciences
NASA Astrophysics Data System (ADS)
Schissel, D. P.
2004-11-01
The SciDAC Initiative is creating a computational grid designed to advance scientific understanding in fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling, and allowing more efficient use of experimental facilities. The philosophy is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as easy to use network available services. Access to services is stressed rather than portability. Services share the same basic security infrastructure so that stakeholders can control their own resources and helps ensure fair use of resources. The collaborative control room is being developed using the open-source Access Grid software that enables secure group-to-group collaboration with capabilities beyond teleconferencing including application sharing and control. The ability to effectively integrate off-site scientists into a dynamic control room will be critical to the success of future international projects like ITER. Grid computing, the secure integration of computer systems over high-speed networks to provide on-demand access to data analysis capabilities and related functions, is being deployed as an alternative to traditional resource sharing among institutions. The first grid computational service deployed was the transport code TRANSP and included tools for run preparation, submission, monitoring and management. This approach saves user sites from the laborious effort of maintaining a complex code while at the same time reducing the burden on developers by avoiding the support of a large number of heterogeneous installations. This tutorial will present the philosophy behind an advanced collaborative environment, give specific examples, and discuss its usage beyond FES.
Multi-objective optimization of GENIE Earth system models.
Price, Andrew R; Myerscough, Richard J; Voutchkov, Ivan I; Marsh, Robert; Cox, Simon J
2009-07-13
The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. We apply a multi-objective optimization algorithm to the problem of parameter estimation in climate models. This optimization process involves the iterative evaluation of response surface models (RSMs), followed by the execution of multiple Earth system simulations. These computations require an infrastructure that provides high-performance computing for building and searching the RSMs and high-throughput computing for the concurrent evaluation of a large number of models. Grid computing technology is therefore essential to make this algorithm practical for members of the GENIE project.
CMS Distributed Computing Integration in the LHC sustained operations era
NASA Astrophysics Data System (ADS)
Grandi, C.; Bockelman, B.; Bonacorsi, D.; Fisk, I.; González Caballero, I.; Farina, F.; Hernández, J. M.; Padhi, S.; Sarkar, S.; Sciabà, A.; Sfiligoi, I.; Spiga, F.; Úbeda García, M.; Van Der Ster, D. C.; Zvada, M.
2011-12-01
After many years of preparation the CMS computing system has reached a situation where stability in operations limits the possibility to introduce innovative features. Nevertheless it is the same need of stability and smooth operations that requires the introduction of features that were considered not strategic in the previous phases. Examples are: adequate authorization to control and prioritize the access to storage and computing resources; improved monitoring to investigate problems and identify bottlenecks on the infrastructure; increased automation to reduce the manpower needed for operations; effective process to deploy in production new releases of the software tools. We present the work of the CMS Distributed Computing Integration Activity that is responsible for providing a liaison between the CMS distributed computing infrastructure and the software providers, both internal and external to CMS. In particular we describe the introduction of new middleware features during the last 18 months as well as the requirements to Grid and Cloud software developers for the future.
Earth System Grid II, Turning Climate Datasets into Community Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, Don
2006-08-01
The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects,more » we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.« less
Advances in Grid Computing for the FabrIc for Frontier Experiments Project at Fermialb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herner, K.; Alba Hernandex, A. F.; Bhat, S.
The FabrIc for Frontier Experiments (FIFE) project is a major initiative within the Fermilab Scientic Computing Division charged with leading the computing model for Fermilab experiments. Work within the FIFE project creates close collaboration between experimenters and computing professionals to serve high-energy physics experiments of diering size, scope, and physics area. The FIFE project has worked to develop common tools for job submission, certicate management, software and reference data distribution through CVMFS repositories, robust data transfer, job monitoring, and databases for project tracking. Since the projects inception the experiments under the FIFE umbrella have signicantly matured, and present an increasinglymore » complex list of requirements to service providers. To meet these requirements, the FIFE project has been involved in transitioning the Fermilab General Purpose Grid cluster to support a partitionable slot model, expanding the resources available to experiments via the Open Science Grid, assisting with commissioning dedicated high-throughput computing resources for individual experiments, supporting the eorts of the HEP Cloud projects to provision a variety of back end resources, including public clouds and high performance computers, and developing rapid onboarding procedures for new experiments and collaborations. The larger demands also require enhanced job monitoring tools, which the project has developed using such tools as ElasticSearch and Grafana. in helping experiments manage their large-scale production work ows. This group in turn requires a structured service to facilitate smooth management of experiment requests, which FIFE provides in the form of the Production Operations Management Service (POMS). POMS is designed to track and manage requests from the FIFE experiments to run particular work ows, and support troubleshooting and triage in case of problems. Recently a new certicate management infrastructure called Distributed Computing Access with Federated Identities (DCAFI) has been put in place that has eliminated our dependence on a Fermilab-specic third-party Certicate Authority service and better accommodates FIFE collaborators without a Fermilab Kerberos account. DCAFI integrates the existing InCommon federated identity infrastructure, CILogon Basic CA, and a MyProxy service using a new general purpose open source tool. We will discuss the general FIFE onboarding strategy, progress in expanding FIFE experiments presence on the Open Science Grid, new tools for job monitoring, the POMS service, and the DCAFI project.« less
Advances in Grid Computing for the Fabric for Frontier Experiments Project at Fermilab
NASA Astrophysics Data System (ADS)
Herner, K.; Alba Hernandez, A. F.; Bhat, S.; Box, D.; Boyd, J.; Di Benedetto, V.; Ding, P.; Dykstra, D.; Fattoruso, M.; Garzoglio, G.; Kirby, M.; Kreymer, A.; Levshina, T.; Mazzacane, A.; Mengel, M.; Mhashilkar, P.; Podstavkov, V.; Retzke, K.; Sharma, N.; Teheran, J.
2017-10-01
The Fabric for Frontier Experiments (FIFE) project is a major initiative within the Fermilab Scientific Computing Division charged with leading the computing model for Fermilab experiments. Work within the FIFE project creates close collaboration between experimenters and computing professionals to serve high-energy physics experiments of differing size, scope, and physics area. The FIFE project has worked to develop common tools for job submission, certificate management, software and reference data distribution through CVMFS repositories, robust data transfer, job monitoring, and databases for project tracking. Since the projects inception the experiments under the FIFE umbrella have significantly matured, and present an increasingly complex list of requirements to service providers. To meet these requirements, the FIFE project has been involved in transitioning the Fermilab General Purpose Grid cluster to support a partitionable slot model, expanding the resources available to experiments via the Open Science Grid, assisting with commissioning dedicated high-throughput computing resources for individual experiments, supporting the efforts of the HEP Cloud projects to provision a variety of back end resources, including public clouds and high performance computers, and developing rapid onboarding procedures for new experiments and collaborations. The larger demands also require enhanced job monitoring tools, which the project has developed using such tools as ElasticSearch and Grafana. in helping experiments manage their large-scale production workflows. This group in turn requires a structured service to facilitate smooth management of experiment requests, which FIFE provides in the form of the Production Operations Management Service (POMS). POMS is designed to track and manage requests from the FIFE experiments to run particular workflows, and support troubleshooting and triage in case of problems. Recently a new certificate management infrastructure called Distributed Computing Access with Federated Identities (DCAFI) has been put in place that has eliminated our dependence on a Fermilab-specific third-party Certificate Authority service and better accommodates FIFE collaborators without a Fermilab Kerberos account. DCAFI integrates the existing InCommon federated identity infrastructure, CILogon Basic CA, and a MyProxy service using a new general purpose open source tool. We will discuss the general FIFE onboarding strategy, progress in expanding FIFE experiments presence on the Open Science Grid, new tools for job monitoring, the POMS service, and the DCAFI project.
Air Pollution Monitoring and Mining Based on Sensor Grid in London
Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John
2008-01-01
In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a two-layer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm. PMID:27879895
Air Pollution Monitoring and Mining Based on Sensor Grid in London.
Ma, Yajie; Richards, Mark; Ghanem, Moustafa; Guo, Yike; Hassard, John
2008-06-01
In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a twolayer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.
gProcess and ESIP Platforms for Satellite Imagery Processing over the Grid
NASA Astrophysics Data System (ADS)
Bacu, Victor; Gorgan, Dorian; Rodila, Denisa; Pop, Florin; Neagu, Gabriel; Petcu, Dana
2010-05-01
The Environment oriented Satellite Data Processing Platform (ESIP) is developed through the SEE-GRID-SCI (SEE-GRID eInfrastructure for regional eScience) co-funded by the European Commission through FP7 [1]. The gProcess Platform [2] is a set of tools and services supporting the development and the execution over the Grid of the workflow based processing, and particularly the satelite imagery processing. The ESIP [3], [4] is build on top of the gProcess platform by adding a set of satellite image processing software modules and meteorological algorithms. The satellite images can reveal and supply important information on earth surface parameters, climate data, pollution level, weather conditions that can be used in different research areas. Generally, the processing algorithms of the satellite images can be decomposed in a set of modules that forms a graph representation of the processing workflow. Two types of workflows can be defined in the gProcess platform: abstract workflow (PDG - Process Description Graph), in which the user defines conceptually the algorithm, and instantiated workflow (iPDG - instantiated PDG), which is the mapping of the PDG pattern on particular satellite image and meteorological data [5]. The gProcess platform allows the definition of complex workflows by combining data resources, operators, services and sub-graphs. The gProcess platform is developed for the gLite middleware that is available in EGEE and SEE-GRID infrastructures [6]. gProcess exposes the specific functionality through web services [7]. The Editor Web Service retrieves information on available resources that are used to develop complex workflows (available operators, sub-graphs, services, supported resources, etc.). The Manager Web Service deals with resources management (uploading new resources such as workflows, operators, services, data, etc.) and in addition retrieves information on workflows. The Executor Web Service manages the execution of the instantiated workflows on the Grid infrastructure. In addition, this web service monitors the execution and generates statistical data that are important to evaluate performances and to optimize execution. The Viewer Web Service allows access to input and output data. To prove and to validate the utility of the gProcess and ESIP platforms there were developed the GreenView and GreenLand applications. The GreenView related functionality includes the refinement of some meteorological data such as temperature, and the calibration of the satellite images based on field measurements. The GreenLand application performs the classification of the satellite images by using a set of vegetation indices. The gProcess and ESIP platforms are used as well in GiSHEO project [8] to support the processing of Earth Observation data over the Grid in eGLE (GiSHEO eLearning Environment). Experiments of performance assessment were conducted and they have revealed that the workflow-based execution could improve the execution time of a satellite image processing algorithm [9]. It is not a reliable solution to execute all the workflow nodes on different machines. The execution of some nodes can be more time consuming and they will be performed in a longer time than other nodes. The total execution time will be affected because some nodes will slow down the execution. It is important to correctly balance the workflow nodes. Based on some optimization strategy the workflow nodes can be grouped horizontally, vertically or in a hybrid approach. In this way, those operators will be executed on one machine and also the data transfer between workflow nodes will be lower. The dynamic nature of the Grid infrastructure makes it more exposed to the occurrence of failures. These failures can occur at worker node, services availability, storage element, etc. Currently gProcess has support for some basic error prevention and error management solutions. In future, some more advanced error prevention and management solutions will be integrated in the gProcess platform. References [1] SEE-GRID-SCI Project, http://www.see-grid-sci.eu/ [2] Bacu V., Stefanut T., Rodila D., Gorgan D., Process Description Graph Composition by gProcess Platform. HiPerGRID - 3rd International Workshop on High Performance Grid Middleware, 28 May, Bucharest. Proceedings of CSCS-17 Conference, Vol.2., ISSN 2066-4451, pp. 423-430, (2009). [3] ESIP Platform, http://wiki.egee-see.org/index.php/JRA1_Commonalities [4] Gorgan D., Bacu V., Rodila D., Pop Fl., Petcu D., Experiments on ESIP - Environment oriented Satellite Data Processing Platform. SEE-GRID-SCI User Forum, 9-10 Dec 2009, Bogazici University, Istanbul, Turkey, ISBN: 978-975-403-510-0, pp. 157-166 (2009). [5] Radu, A., Bacu, V., Gorgan, D., Diagrammatic Description of Satellite Image Processing Workflow. Workshop on Grid Computing Applications Development (GridCAD) at the SYNASC Symposium, 28 September 2007, Timisoara, IEEE Computer Press, ISBN 0-7695-3078-8, 2007, pp. 341-348 (2007). [6] Gorgan D., Bacu V., Stefanut T., Rodila D., Mihon D., Grid based Satellite Image Processing Platform for Earth Observation Applications Development. IDAACS'2009 - IEEE Fifth International Workshop on "Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications", 21-23 September, Cosenza, Italy, IEEE Published in Computer Press, 247-252 (2009). [7] Rodila D., Bacu V., Gorgan D., Integration of Satellite Image Operators as Workflows in the gProcess Application. Proceedings of ICCP2009 - IEEE 5th International Conference on Intelligent Computer Communication and Processing, 27-29 Aug, 2009 Cluj-Napoca. ISBN: 978-1-4244-5007-7, pp. 355-358 (2009). [8] GiSHEO consortium, Project site, http://gisheo.info.uvt.ro [9] Bacu V., Gorgan D., Graph Based Evaluation of Satellite Imagery Processing over Grid. ISPDC 2008 - 7th International Symposium on Parallel and Distributed Computing, July 1-5, 2008, Krakow, Poland. IEEE Computer Society 2008, ISBN: 978-0-7695-3472-5, pp. 147-154.
A Simple XML Producer-Consumer Protocol
NASA Technical Reports Server (NTRS)
Smith, Warren; Gunter, Dan; Quesnel, Darcy; Biegel, Bryan (Technical Monitor)
2001-01-01
There are many different projects from government, academia, and industry that provide services for delivering events in distributed environments. The problem with these event services is that they are not general enough to support all uses and they speak different protocols so that they cannot interoperate. We require such interoperability when we, for example, wish to analyze the performance of an application in a distributed environment. Such an analysis might require performance information from the application, computer systems, networks, and scientific instruments. In this work we propose and evaluate a standard XML-based protocol for the transmission of events in distributed systems. One recent trend in government and academic research is the development and deployment of computational grids. Computational grids are large-scale distributed systems that typically consist of high-performance compute, storage, and networking resources. Examples of such computational grids are the DOE Science Grid, the NASA Information Power Grid (IPG), and the NSF Partnerships for Advanced Computing Infrastructure (PACIs). The major effort to deploy these grids is in the area of developing the software services to allow users to execute applications on these large and diverse sets of resources. These services include security, execution of remote applications, managing remote data, access to information about resources and services, and so on. There are several toolkits for providing these services such as Globus, Legion, and Condor. As part of these efforts to develop computational grids, the Global Grid Forum is working to standardize the protocols and APIs used by various grid services. This standardization will allow interoperability between the client and server software of the toolkits that are providing the grid services. The goal of the Performance Working Group of the Grid Forum is to standardize protocols and representations related to the storage and distribution of performance data. These standard protocols and representations must support tasks such as profiling parallel applications, monitoring the status of computers and networks, and monitoring the performance of services provided by a computational grid. This paper describes a proposed protocol and data representation for the exchange of events in a distributed system. The protocol exchanges messages formatted in XML and it can be layered atop any low-level communication protocol such as TCP or UDP Further, we describe Java and C++ implementations of this protocol and discuss their performance. The next section will provide some further background information. Section 3 describes the main communication patterns of our protocol. Section 4 describes how we represent events and related information using XML. Section 5 describes our protocol and Section 6 discusses the performance of two implementations of the protocol. Finally, an appendix provides the XML Schema definition of our protocol and event information.
Benkner, Siegfried; Arbona, Antonio; Berti, Guntram; Chiarini, Alessandro; Dunlop, Robert; Engelbrecht, Gerhard; Frangi, Alejandro F; Friedrich, Christoph M; Hanser, Susanne; Hasselmeyer, Peer; Hose, Rod D; Iavindrasana, Jimison; Köhler, Martin; Iacono, Luigi Lo; Lonsdale, Guy; Meyer, Rodolphe; Moore, Bob; Rajasekaran, Hariharan; Summers, Paul E; Wöhrer, Alexander; Wood, Steven
2010-11-01
The increasing volume of data describing human disease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the @neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system's architecture is generic enough that it could be adapted to the treatment of other diseases. Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers clinicians the tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medical researchers gain access to a critical mass of aneurysm related data due to the system's ability to federate distributed information sources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access and work on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand for performing computationally intensive simulations for treatment planning and research.
Cyber-Physical Correlations for Infrastructure Resilience: A Game-Theoretic Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S; He, Fei; Ma, Chris Y. T.
In several critical infrastructures, the cyber and physical parts are correlated so that disruptions to one affect the other and hence the whole system. These correlations may be exploited to strategically launch components attacks, and hence must be accounted for ensuring the infrastructure resilience, specified by its survival probability. We characterize the cyber-physical interactions at two levels: (i) the failure correlation function specifies the conditional survival probability of cyber sub-infrastructure given the physical sub-infrastructure as a function of their marginal probabilities, and (ii) the individual survival probabilities of both sub-infrastructures are characterized by first-order differential conditions. We formulate a resiliencemore » problem for infrastructures composed of discrete components as a game between the provider and attacker, wherein their utility functions consist of an infrastructure survival probability term and a cost term expressed in terms of the number of components attacked and reinforced. We derive Nash Equilibrium conditions and sensitivity functions that highlight the dependence of infrastructure resilience on the cost term, correlation function and sub-infrastructure survival probabilities. These results generalize earlier ones based on linear failure correlation functions and independent component failures. We apply the results to models of cloud computing infrastructures and energy grids.« less
NASA Technical Reports Server (NTRS)
Johnston, William E.; Gannon, Dennis; Nitzberg, Bill
2000-01-01
We use the term "Grid" to refer to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. This infrastructure includes: (1) Tools for constructing collaborative, application oriented Problem Solving Environments / Frameworks (the primary user interfaces for Grids); (2) Programming environments, tools, and services providing various approaches for building applications that use aggregated computing and storage resources, and federated data sources; (3) Comprehensive and consistent set of location independent tools and services for accessing and managing dynamic collections of widely distributed resources: heterogeneous computing systems, storage systems, real-time data sources and instruments, human collaborators, and communications systems; (4) Operational infrastructure including management tools for distributed systems and distributed resources, user services, accounting and auditing, strong and location independent user authentication and authorization, and overall system security services The vision for NASA's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks. Such Grids will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. Examples of these problems include: (1) Coupled, multidisciplinary simulations too large for single systems (e.g., multi-component NPSS turbomachine simulation); (2) Use of widely distributed, federated data archives (e.g., simultaneous access to metrological, topological, aircraft performance, and flight path scheduling databases supporting a National Air Space Simulation systems}; (3) Coupling large-scale computing and data systems to scientific and engineering instruments (e.g., realtime interaction with experiments through real-time data analysis and interpretation presented to the experimentalist in ways that allow direct interaction with the experiment (instead of just with instrument control); (5) Highly interactive, augmented reality and virtual reality remote collaborations (e.g., Ames / Boeing Remote Help Desk providing field maintenance use of coupled video and NDI to a remote, on-line airframe structures expert who uses this data to index into detailed design databases, and returns 3D internal aircraft geometry to the field); (5) Single computational problems too large for any single system (e.g. the rotocraft reference calculation). Grids also have the potential to provide pools of resources that could be called on in extraordinary / rapid response situations (such as disaster response) because they can provide common interfaces and access mechanisms, standardized management, and uniform user authentication and authorization, for large collections of distributed resources (whether or not they normally function in concert). IPG development and deployment is addressing requirements obtained by analyzing a number of different application areas, in particular from the NASA Aero-Space Technology Enterprise. This analysis has focussed primarily on two types of users: the scientist / design engineer whose primary interest is problem solving (e.g. determining wing aerodynamic characteristics in many different operating environments), and whose primary interface to IPG will be through various sorts of problem solving frameworks. The second type of user is the tool designer: the computational scientists who convert physics and mathematics into code that can simulate the physical world. These are the two primary users of IPG, and they have rather different requirements. The results of the analysis of the needs of these two types of users provides a broad set of requirements that gives rise to a general set of required capabilities. The IPG project is intended to address all of these requirements. In some cases the required computing technology exists, and in some cases it must be researched and developed. The project is using available technology to provide a prototype set of capabilities in a persistent distributed computing testbed. Beyond this, there are required capabilities that are not immediately available, and whose development spans the range from near-term engineering development (one to two years) to much longer term R&D (three to six years). Additional information is contained in the original.
Geospatial Applications on Different Parallel and Distributed Systems in enviroGRIDS Project
NASA Astrophysics Data System (ADS)
Rodila, D.; Bacu, V.; Gorgan, D.
2012-04-01
The execution of Earth Science applications and services on parallel and distributed systems has become a necessity especially due to the large amounts of Geospatial data these applications require and the large geographical areas they cover. The parallelization of these applications comes to solve important performance issues and can spread from task parallelism to data parallelism as well. Parallel and distributed architectures such as Grid, Cloud, Multicore, etc. seem to offer the necessary functionalities to solve important problems in the Earth Science domain: storing, distribution, management, processing and security of Geospatial data, execution of complex processing through task and data parallelism, etc. A main goal of the FP7-funded project enviroGRIDS (Black Sea Catchment Observation and Assessment System supporting Sustainable Development) [1] is the development of a Spatial Data Infrastructure targeting this catchment region but also the development of standardized and specialized tools for storing, analyzing, processing and visualizing the Geospatial data concerning this area. For achieving these objectives, the enviroGRIDS deals with the execution of different Earth Science applications, such as hydrological models, Geospatial Web services standardized by the Open Geospatial Consortium (OGC) and others, on parallel and distributed architecture to maximize the obtained performance. This presentation analysis the integration and execution of Geospatial applications on different parallel and distributed architectures and the possibility of choosing among these architectures based on application characteristics and user requirements through a specialized component. Versions of the proposed platform have been used in enviroGRIDS project on different use cases such as: the execution of Geospatial Web services both on Web and Grid infrastructures [2] and the execution of SWAT hydrological models both on Grid and Multicore architectures [3]. The current focus is to integrate in the proposed platform the Cloud infrastructure, which is still a paradigm with critical problems to be solved despite the great efforts and investments. Cloud computing comes as a new way of delivering resources while using a large set of old as well as new technologies and tools for providing the necessary functionalities. The main challenges in the Cloud computing, most of them identified also in the Open Cloud Manifesto 2009, address resource management and monitoring, data and application interoperability and portability, security, scalability, software licensing, etc. We propose a platform able to execute different Geospatial applications on different parallel and distributed architectures such as Grid, Cloud, Multicore, etc. with the possibility of choosing among these architectures based on application characteristics and complexity, user requirements, necessary performances, cost support, etc. The execution redirection on a selected architecture is realized through a specialized component and has the purpose of offering a flexible way in achieving the best performances considering the existing restrictions.
A Security Monitoring Framework For Virtualization Based HEP Infrastructures
NASA Astrophysics Data System (ADS)
Gomez Ramirez, A.; Martinez Pedreira, M.; Grigoras, C.; Betev, L.; Lara, C.; Kebschull, U.;
2017-10-01
High Energy Physics (HEP) distributed computing infrastructures require automatic tools to monitor, analyze and react to potential security incidents. These tools should collect and inspect data such as resource consumption, logs and sequence of system calls for detecting anomalies that indicate the presence of a malicious agent. They should also be able to perform automated reactions to attacks without administrator intervention. We describe a novel framework that accomplishes these requirements, with a proof of concept implementation for the ALICE experiment at CERN. We show how we achieve a fully virtualized environment that improves the security by isolating services and Jobs without a significant performance impact. We also describe a collected dataset for Machine Learning based Intrusion Prevention and Detection Systems on Grid computing. This dataset is composed of resource consumption measurements (such as CPU, RAM and network traffic), logfiles from operating system services, and system call data collected from production Jobs running in an ALICE Grid test site and a big set of malware samples. This malware set was collected from security research sites. Based on this dataset, we will proceed to develop Machine Learning algorithms able to detect malicious Jobs.
Infrastructure Systems for Advanced Computing in E-science applications
NASA Astrophysics Data System (ADS)
Terzo, Olivier
2013-04-01
In the e-science field are growing needs for having computing infrastructure more dynamic and customizable with a model of use "on demand" that follow the exact request in term of resources and storage capacities. The integration of grid and cloud infrastructure solutions allows us to offer services that can adapt the availability in terms of up scaling and downscaling resources. The main challenges for e-sciences domains will on implement infrastructure solutions for scientific computing that allow to adapt dynamically the demands of computing resources with a strong emphasis on optimizing the use of computing resources for reducing costs of investments. Instrumentation, data volumes, algorithms, analysis contribute to increase the complexity for applications who require high processing power and storage for a limited time and often exceeds the computational resources that equip the majority of laboratories, research Unit in an organization. Very often it is necessary to adapt or even tweak rethink tools, algorithms, and consolidate existing applications through a phase of reverse engineering in order to adapt them to a deployment on Cloud infrastructure. For example, in areas such as rainfall monitoring, meteorological analysis, Hydrometeorology, Climatology Bioinformatics Next Generation Sequencing, Computational Electromagnetic, Radio occultation, the complexity of the analysis raises several issues such as the processing time, the scheduling of tasks of processing, storage of results, a multi users environment. For these reasons, it is necessary to rethink the writing model of E-Science applications in order to be already adapted to exploit the potentiality of cloud computing services through the uses of IaaS, PaaS and SaaS layer. An other important focus is on create/use hybrid infrastructure typically a federation between Private and public cloud, in fact in this way when all resources owned by the organization are all used it will be easy with a federate cloud infrastructure to add some additional resources form the Public cloud for following the needs in term of computational and storage resources and release them where process are finished. Following the hybrid model, the scheduling approach is important for managing both cloud models. Thanks to this model infrastructure every time resources are available for additional request in term of IT capacities that can used "on demand" for a limited time without having to proceed to purchase additional servers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Salvador B.
Smart grids are a crucial component for enabling the nation’s future energy needs, as part of a modernization effort led by the Department of Energy. Smart grids and smart microgrids are being considered in niche applications, and as part of a comprehensive energy strategy to help manage the nation’s growing energy demands, for critical infrastructures, military installations, small rural communities, and large populations with limited water supplies. As part of a far-reaching strategic initiative, Sandia National Laboratories (SNL) presents herein a unique, three-pronged approach to integrate small modular reactors (SMRs) into microgrids, with the goal of providing economically-competitive, reliable, andmore » secure energy to meet the nation’s needs. SNL’s triad methodology involves an innovative blend of smart microgrid technology, high performance computing (HPC), and advanced manufacturing (AM). In this report, Sandia’s current capabilities in those areas are summarized, as well as paths forward that will enable DOE to achieve its energy goals. In the area of smart grid/microgrid technology, Sandia’s current computational capabilities can model the entire grid, including temporal aspects and cyber security issues. Our tools include system development, integration, testing and evaluation, monitoring, and sustainment.« less
Integrating multiple scientific computing needs via a Private Cloud infrastructure
NASA Astrophysics Data System (ADS)
Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.
2014-06-01
In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.
NASA Astrophysics Data System (ADS)
Rizki, Permata Nur Miftahur; Lee, Heezin; Lee, Minsu; Oh, Sangyoon
2017-01-01
With the rapid advance of remote sensing technology, the amount of three-dimensional point-cloud data has increased extraordinarily, requiring faster processing in the construction of digital elevation models. There have been several attempts to accelerate the computation using parallel methods; however, little attention has been given to investigating different approaches for selecting the most suited parallel programming model for a given computing environment. We present our findings and insights identified by implementing three popular high-performance parallel approaches (message passing interface, MapReduce, and GPGPU) on time demanding but accurate kriging interpolation. The performances of the approaches are compared by varying the size of the grid and input data. In our empirical experiment, we demonstrate the significant acceleration by all three approaches compared to a C-implemented sequential-processing method. In addition, we also discuss the pros and cons of each method in terms of usability, complexity infrastructure, and platform limitation to give readers a better understanding of utilizing those parallel approaches for gridding purposes.
A Security Architecture for Grid-enabling OGC Web Services
NASA Astrophysics Data System (ADS)
Angelini, Valerio; Petronzio, Luca
2010-05-01
In the proposed presentation we describe an architectural solution for enabling a secure access to Grids and possibly other large scale on-demand processing infrastructures through OGC (Open Geospatial Consortium) Web Services (OWS). This work has been carried out in the context of the security thread of the G-OWS Working Group. G-OWS (gLite enablement of OGC Web Services) is an international open initiative started in 2008 by the European CYCLOPS , GENESI-DR, and DORII Project Consortia in order to collect/coordinate experiences in the enablement of OWS's on top of the gLite Grid middleware. G-OWS investigates the problem of the development of Spatial Data and Information Infrastructures (SDI and SII) based on the Grid/Cloud capacity in order to enable Earth Science applications and tools. Concerning security issues, the integration of OWS compliant infrastructures and gLite Grids needs to address relevant challenges, due to their respective design principles. In fact OWS's are part of a Web based architecture that demands security aspects to other specifications, whereas the gLite middleware implements the Grid paradigm with a strong security model (the gLite Grid Security Infrastructure: GSI). In our work we propose a Security Architectural Framework allowing the seamless use of Grid-enabled OGC Web Services through the federation of existing security systems (mostly web based) with the gLite GSI. This is made possible mediating between different security realms, whose mutual trust is established in advance during the deployment of the system itself. Our architecture is composed of three different security tiers: the user's security system, a specific G-OWS security system, and the gLite Grid Security Infrastructure. Applying the separation-of-concerns principle, each of these tiers is responsible for controlling the access to a well-defined resource set, respectively: the user's organization resources, the geospatial resources and services, and the Grid resources. While the gLite middleware is tied to a consolidated security approach based on X.509 certificates, our system is able to support different kinds of user's security infrastructures. Our central component, the G-OWS Security Framework, is based on the OASIS WS-Trust specifications and on the OGC GeoRM architectural framework. This allows to satisfy advanced requirements such as the enforcement of specific geospatial policies and complex secure web service chained requests. The typical use case is represented by a scientist belonging to a given organization who issues a request to a G-OWS Grid-enabled Web Service. The system initially asks the user to authenticate to his/her organization's security system and, after verification of the user's security credentials, it translates the user's digital identity into a G-OWS identity. This identity is linked to a set of attributes describing the user's access rights to the G-OWS services and resources. Inside the G-OWS Security system, access restrictions are applied making use of the enhanced Geospatial capabilities specified by the OGC GeoXACML. If the required action needs to make use of the Grid environment the system checks if the user is entitled to access a Grid infrastructure. In that case his/her identity is translated to a temporary Grid security token using the Short Lived Credential Services (IGTF Standard). In our case, for the specific gLite Grid infrastructure, some information (VOMS Attributes) is plugged into the Grid Security Token to grant the access to the user's Virtual Organization Grid resources. The resulting token is used to submit the request to the Grid and also by the various gLite middleware elements to verify the user's grants. Basing on the presented framework, the G-OWS Security Working Group developed a prototype, enabling the execution of OGC Web Services on the EGEE Production Grid through the federation with a Shibboleth based security infrastructure. Future plans aim to integrate other Web authentication services such as OpenID, Kerberos and WS-Federation.
Power Systems Integration Laboratory | Energy Systems Integration Facility
inverters. Key Infrastructure Grid simulator, load bank, Opal-RT, battery, inverter mounting racks, data , frequency-watt, and grid anomaly ride-through. Key Infrastructure House power, Opal-RT, PV simulator access
Karpievitch, Yuliya V; Almeida, Jonas S
2006-01-01
Background Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. Results mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Conclusion Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet. PMID:16539707
Karpievitch, Yuliya V; Almeida, Jonas S
2006-03-15
Matlab, a powerful and productive language that allows for rapid prototyping, modeling and simulation, is widely used in computational biology. Modeling and simulation of large biological systems often require more computational resources then are available on a single computer. Existing distributed computing environments like the Distributed Computing Toolbox, MatlabMPI, Matlab*G and others allow for the remote (and possibly parallel) execution of Matlab commands with varying support for features like an easy-to-use application programming interface, load-balanced utilization of resources, extensibility over the wide area network, and minimal system administration skill requirements. However, all of these environments require some level of access to participating machines to manually distribute the user-defined libraries that the remote call may invoke. mGrid augments the usual process distribution seen in other similar distributed systems by adding facilities for user code distribution. mGrid's client-side interface is an easy-to-use native Matlab toolbox that transparently executes user-defined code on remote machines (i.e. the user is unaware that the code is executing somewhere else). Run-time variables are automatically packed and distributed with the user-defined code and automated load-balancing of remote resources enables smooth concurrent execution. mGrid is an open source environment. Apart from the programming language itself, all other components are also open source, freely available tools: light-weight PHP scripts and the Apache web server. Transparent, load-balanced distribution of user-defined Matlab toolboxes and rapid prototyping of many simple parallel applications can now be done with a single easy-to-use Matlab command. Because mGrid utilizes only Matlab, light-weight PHP scripts and the Apache web server, installation and configuration are very simple. Moreover, the web-based infrastructure of mGrid allows for it to be easily extensible over the Internet.
Sharing Data and Analytical Resources Securely in a Biomedical Research Grid Environment
Langella, Stephen; Hastings, Shannon; Oster, Scott; Pan, Tony; Sharma, Ashish; Permar, Justin; Ervin, David; Cambazoglu, B. Barla; Kurc, Tahsin; Saltz, Joel
2008-01-01
Objectives To develop a security infrastructure to support controlled and secure access to data and analytical resources in a biomedical research Grid environment, while facilitating resource sharing among collaborators. Design A Grid security infrastructure, called Grid Authentication and Authorization with Reliably Distributed Services (GAARDS), is developed as a key architecture component of the NCI-funded cancer Biomedical Informatics Grid (caBIG™). The GAARDS is designed to support in a distributed environment 1) efficient provisioning and federation of user identities and credentials; 2) group-based access control support with which resource providers can enforce policies based on community accepted groups and local groups; and 3) management of a trust fabric so that policies can be enforced based on required levels of assurance. Measurements GAARDS is implemented as a suite of Grid services and administrative tools. It provides three core services: Dorian for management and federation of user identities, Grid Trust Service for maintaining and provisioning a federated trust fabric within the Grid environment, and Grid Grouper for enforcing authorization policies based on both local and Grid-level groups. Results The GAARDS infrastructure is available as a stand-alone system and as a component of the caGrid infrastructure. More information about GAARDS can be accessed at http://www.cagrid.org. Conclusions GAARDS provides a comprehensive system to address the security challenges associated with environments in which resources may be located at different sites, requests to access the resources may cross institutional boundaries, and user credentials are created, managed, revoked dynamically in a de-centralized manner. PMID:18308979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Happenny, Sean F.
The United States’ power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power distribution networks utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Demonstrating security in embedded systems is another research area PNNL ismore » tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the networks protecting them are becoming easier to breach. Providing a virtual power substation network to each student team at the National Collegiate Cyber Defense Competition, thereby supporting the education of future cyber security professionals, is another way PNNL is helping to strengthen the security of the nation’s power infrastructure.« less
Integrating Reconfigurable Hardware-Based Grid for High Performance Computing
Dondo Gazzano, Julio; Sanchez Molina, Francisco; Rincon, Fernando; López, Juan Carlos
2015-01-01
FPGAs have shown several characteristics that make them very attractive for high performance computing (HPC). The impressive speed-up factors that they are able to achieve, the reduced power consumption, and the easiness and flexibility of the design process with fast iterations between consecutive versions are examples of benefits obtained with their use. However, there are still some difficulties when using reconfigurable platforms as accelerator that need to be addressed: the need of an in-depth application study to identify potential acceleration, the lack of tools for the deployment of computational problems in distributed hardware platforms, and the low portability of components, among others. This work proposes a complete grid infrastructure for distributed high performance computing based on dynamically reconfigurable FPGAs. Besides, a set of services designed to facilitate the application deployment is described. An example application and a comparison with other hardware and software implementations are shown. Experimental results show that the proposed architecture offers encouraging advantages for deployment of high performance distributed applications simplifying development process. PMID:25874241
Hasson, Uri; Skipper, Jeremy I; Wilde, Michael J; Nusbaum, Howard C; Small, Steven L
2008-01-15
The increasingly complex research questions addressed by neuroimaging research impose substantial demands on computational infrastructures. These infrastructures need to support management of massive amounts of data in a way that affords rapid and precise data analysis, to allow collaborative research, and to achieve these aims securely and with minimum management overhead. Here we present an approach that overcomes many current limitations in data analysis and data sharing. This approach is based on open source database management systems that support complex data queries as an integral part of data analysis, flexible data sharing, and parallel and distributed data processing using cluster computing and Grid computing resources. We assess the strengths of these approaches as compared to current frameworks based on storage of binary or text files. We then describe in detail the implementation of such a system and provide a concrete description of how it was used to enable a complex analysis of fMRI time series data.
Hasson, Uri; Skipper, Jeremy I.; Wilde, Michael J.; Nusbaum, Howard C.; Small, Steven L.
2007-01-01
The increasingly complex research questions addressed by neuroimaging research impose substantial demands on computational infrastructures. These infrastructures need to support management of massive amounts of data in a way that affords rapid and precise data analysis, to allow collaborative research, and to achieve these aims securely and with minimum management overhead. Here we present an approach that overcomes many current limitations in data analysis and data sharing. This approach is based on open source database management systems that support complex data queries as an integral part of data analysis, flexible data sharing, and parallel and distributed data processing using cluster computing and Grid computing resources. We assess the strengths of these approaches as compared to current frameworks based on storage of binary or text files. We then describe in detail the implementation of such a system and provide a concrete description of how it was used to enable a complex analysis of fMRI time series data. PMID:17964812
Pervasive access to MRI bias artifact suppression service on a grid.
Ardizzone, Edoardo; Gambino, Orazio; Genco, Alessandro; Pirrone, Roberto; Sorce, Salvatore
2009-01-01
Bias artifact corrupts MRIs in such a way that the image is afflicted by illumination variations. Some of the authors proposed the exponential entropy-driven homomorphic unsharp masking ( E(2)D-HUM) algorithm that corrects this artifact without any a priori hypothesis about the tissues or the MRI modality. Moreover, E(2)D-HUM does not care about the body part under examination and does not require any particular training task. People who want to use this algorithm, which is Matlab-based, have to set their own computers in order to execute it. Furthermore, they have to be Matlab-skilled to exploit all the features of the algorithm. In this paper, we propose to make such algorithm available as a service on a grid infrastructure, so that people can use it almost from everywhere, in a pervasive fashion, by means of a suitable user interface running on smartphones. The proposed solution allows physicians to use the E(2)D-HUM algorithm (or any other kind of algorithm, given that it is available as a service on the grid), being it remotely executed somewhere in the grid, and the results are sent back to the user's device. This way, physicians do not need to be aware of how to use Matlab to process their images. The pervasive service provision for medical image enhancement is presented, along with some experimental results obtained using smartphones connected to an existing Globus-based grid infrastructure.
Hydrological Scenario Using Tools and Applications Available in enviroGRIDS Portal
NASA Astrophysics Data System (ADS)
Bacu, V.; Mihon, D.; Stefanut, T.; Rodila, D.; Cau, P.; Manca, S.; Soru, C.; Gorgan, D.
2012-04-01
Nowadays the decision makers but also citizens are concerning with the sustainability and vulnerability of land management practices on various aspects and in particular on water quality and quantity in complex watersheds. The Black Sea Catchment is an important watershed in the Central and East Europe. In the FP7 project enviroGRIDS [1] was developed a Web Portal that incorporates different tools and applications focused on geospatial data management, hydrologic model calibration, execution and visualization and training activities. This presentation highlights, from the end-user point of view, the scenario related with hydrological models using the tools and applications available in the enviroGRIDS Web Portal [2]. The development of SWAT (Soil Water Assessment Tool) hydrological models is a well known procedure for the hydrological specialists [3]. Starting from the primary data (information related to weather, soil properties, topography, vegetation, and land management practices of the particular watershed) that are used to develop SWAT hydrological models, to specific reports, about the water quality in the studied watershed, the hydrological specialist will use different applications available in the enviroGRIDS portal. The tools and applications available through the enviroGRIDS portal are not dealing with the building up of the SWAT hydrological models. They are mainly focused on: calibration procedure (gSWAT [4]) - uses the GRID computational infrastructure to speed-up the calibration process; development of specific scenarios (BASHYT [5]) - starts from an already calibrated SWAT hydrological model and defines new scenarios; execution of scenarios (gSWATSim [6]) - executes the scenarios exported from BASHYT; visualization (BASHYT) - displays charts, tables and maps. Each application is built-up as a stack of functional layers. We combine different layers of applications by vertical interoperability in order to build the desired complex functionality. On the other hand, the applications can collaborate at the same architectural levels, which represent the horizontal interoperability. Both the horizontal and vertical interoperability is accomplished by services and by exchanging data. The calibration procedure requires huge computational resources, which are provided by the Grid infrastructure. On the other hand the scenario development through BASHYT requires a flexible way of interaction with the SWAT model in order to easily change the input model. The large user community of SWAT from the enviroGRIDS consortium or outside may greatly benefit from tools and applications related with the calibration process, scenario development and execution from the enviroGRIDS portal. [1]. enviroGRIDS project, http://envirogrids.net/ [2]. Gorgan D., Abbaspour K., Cau P., Bacu V., Mihon D., Giuliani G., Ray N., Lehmann A., Grid Based Data Processing Tools and Applications for Black Sea Catchment Basin. IDAACS 2011 - The 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications 15-17 September 2011, Prague. IEEE Computer Press, pp. 223 - 228 (2011). [3]. Soil and Water Assessment Tool, http://www.brc.tamus.edu/swat/index.html [4]. Bacu V., Mihon D., Rodila D., Stefanut T., Gorgan D., Grid Based Architectural Components for SWAT Model Calibration. HPCS 2011 - International Conference on High Performance Computing and Simulation, 4-8 July, Istanbul, Turkey, ISBN 978-1-61284-381-0, doi: 10.1109/HPCSim.2011.5999824, pp. 193-198 (2011). [5]. Manca S., Soru C., Cau P., Meloni G., Fiori M., A multi model and multiscale, GIS oriented Web framework based on the SWAT model to face issues of water and soil resource vulnerability. Presentation at the 5th International SWAT Conference, August 3-7, 2009, http://www.brc.tamus.edu/swat/4thswatconf/docs/rooma/session5/Cau-Bashyt.pdf [6]. Bacu V., Mihon D., Stefanut T., Rodila D., Gorgan D., Cau P., Manca S., Grid Based Services and Tools for Hydrological Model Processing and Visualization. SYNASC 2011 - 13 International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (in press).
Using CREAM and CEMonitor for job submission and management in the gLite middleware
NASA Astrophysics Data System (ADS)
Aiftimiei, C.; Andreetto, P.; Bertocco, S.; Dalla Fina, S.; Dorigo, A.; Frizziero, E.; Gianelle, A.; Marzolla, M.; Mazzucato, M.; Mendez Lorenzo, P.; Miccio, V.; Sgaravatto, M.; Traldi, S.; Zangrando, L.
2010-04-01
In this paper we describe the use of CREAM and CEMonitor services for job submission and management within the gLite Grid middleware. Both CREAM and CEMonitor address one of the most fundamental operations of a Grid middleware, that is job submission and management. Specifically, CREAM is a job management service used for submitting, managing and monitoring computational jobs. CEMonitor is an event notification framework, which can be coupled with CREAM to provide the users with asynchronous job status change notifications. Both components have been integrated in the gLite Workload Management System by means of ICE (Interface to CREAM Environment). These software components have been released for production in the EGEE Grid infrastructure and, for what concerns the CEMonitor service, also in the OSG Grid. In this paper we report the current status of these services, the achieved results, and the issues that still have to be addressed.
Flynn, Allen J; Boisvert, Peter; Gittlen, Nate; Gross, Colin; Iott, Brad; Lagoze, Carl; Meng, George; Friedman, Charles P
2018-01-01
The Knowledge Grid (KGrid) is a research and development program toward infrastructure capable of greatly decreasing latency between the publication of new biomedical knowledge and its widespread uptake into practice. KGrid comprises digital knowledge objects, an online Library to store them, and an Activator that uses them to provide Knowledge-as-a-Service (KaaS). KGrid's Activator enables computable biomedical knowledge, held in knowledge objects, to be rapidly deployed at Internet-scale in cloud computing environments for improved health. Here we present the Activator, its system architecture and primary functions.
Elastic Extension of a CMS Computing Centre Resources on External Clouds
NASA Astrophysics Data System (ADS)
Codispoti, G.; Di Maria, R.; Aiftimiei, C.; Bonacorsi, D.; Calligola, P.; Ciaschini, V.; Costantini, A.; Dal Pra, S.; DeGirolamo, D.; Grandi, C.; Michelotto, D.; Panella, M.; Peco, G.; Sapunenko, V.; Sgaravatto, M.; Taneja, S.; Zizzi, G.
2016-10-01
After the successful LHC data taking in Run-I and in view of the future runs, the LHC experiments are facing new challenges in the design and operation of the computing facilities. The computing infrastructure for Run-II is dimensioned to cope at most with the average amount of data recorded. The usage peaks, as already observed in Run-I, may however originate large backlogs, thus delaying the completion of the data reconstruction and ultimately the data availability for physics analysis. In order to cope with the production peaks, CMS - along the lines followed by other LHC experiments - is exploring the opportunity to access Cloud resources provided by external partners or commercial providers. Specific use cases have already been explored and successfully exploited during Long Shutdown 1 (LS1) and the first part of Run 2. In this work we present the proof of concept of the elastic extension of a CMS site, specifically the Bologna Tier-3, on an external OpenStack infrastructure. We focus on the “Cloud Bursting” of a CMS Grid site using a newly designed LSF configuration that allows the dynamic registration of new worker nodes to LSF. In this approach, the dynamically added worker nodes instantiated on the OpenStack infrastructure are transparently accessed by the LHC Grid tools and at the same time they serve as an extension of the farm for the local usage. The amount of resources allocated thus can be elastically modeled to cope up with the needs of CMS experiment and local users. Moreover, a direct access/integration of OpenStack resources to the CMS workload management system is explored. In this paper we present this approach, we report on the performances of the on-demand allocated resources, and we discuss the lessons learned and the next steps.
High-Performance Compute Infrastructure in Astronomy: 2020 Is Only Months Away
NASA Astrophysics Data System (ADS)
Berriman, B.; Deelman, E.; Juve, G.; Rynge, M.; Vöckler, J. S.
2012-09-01
By 2020, astronomy will be awash with as much as 60 PB of public data. Full scientific exploitation of such massive volumes of data will require high-performance computing on server farms co-located with the data. Development of this computing model will be a community-wide enterprise that has profound cultural and technical implications. Astronomers must be prepared to develop environment-agnostic applications that support parallel processing. The community must investigate the applicability and cost-benefit of emerging technologies such as cloud computing to astronomy, and must engage the Computer Science community to develop science-driven cyberinfrastructure such as workflow schedulers and optimizers. We report here the results of collaborations between a science center, IPAC, and a Computer Science research institute, ISI. These collaborations may be considered pathfinders in developing a high-performance compute infrastructure in astronomy. These collaborations investigated two exemplar large-scale science-driver workflow applications: 1) Calculation of an infrared atlas of the Galactic Plane at 18 different wavelengths by placing data from multiple surveys on a common plate scale and co-registering all the pixels; 2) Calculation of an atlas of periodicities present in the public Kepler data sets, which currently contain 380,000 light curves. These products have been generated with two workflow applications, written in C for performance and designed to support parallel processing on multiple environments and platforms, but with different compute resource needs: the Montage image mosaic engine is I/O-bound, and the NASA Star and Exoplanet Database periodogram code is CPU-bound. Our presentation will report cost and performance metrics and lessons-learned for continuing development. Applicability of Cloud Computing: Commercial Cloud providers generally charge for all operations, including processing, transfer of input and output data, and for storage of data, and so the costs of running applications vary widely according to how they use resources. The cloud is well suited to processing CPU-bound (and memory bound) workflows such as the periodogram code, given the relatively low cost of processing in comparison with I/O operations. I/O-bound applications such as Montage perform best on high-performance clusters with fast networks and parallel file-systems. Science-driven Cyberinfrastructure: Montage has been widely used as a driver application to develop workflow management services, such as task scheduling in distributed environments, designing fault tolerance techniques for job schedulers, and developing workflow orchestration techniques. Running Parallel Applications Across Distributed Cloud Environments: Data processing will eventually take place in parallel distributed across cyber infrastructure environments having different architectures. We have used the Pegasus Work Management System (WMS) to successfully run applications across three very different environments: TeraGrid, OSG (Open Science Grid), and FutureGrid. Provisioning resources across different grids and clouds (also referred to as Sky Computing), involves establishing a distributed environment, where issues of, e.g, remote job submission, data management, and security need to be addressed. This environment also requires building virtual machine images that can run in different environments. Usually, each cloud provides basic images that can be customized with additional software and services. In most of our work, we provisioned compute resources using a custom application, called Wrangler. Pegasus WMS abstracts the architectures of the compute environments away from the end-user, and can be considered a first-generation tool suitable for scientists to run their applications on disparate environments.
NASA Astrophysics Data System (ADS)
Mazzetti, P.; Nativi, S.; Verlato, M.; Angelini, V.
2009-04-01
In the context of the EU co-funded project CYCLOPS (http://www.cyclops-project.eu) the problem of designing an advanced e-Infrastructure for Civil Protection (CP) applications has been addressed. As a preliminary step, some studies about European CP systems and operational applications were performed in order to define their specific system requirements. At a higher level it was verified that CP applications are usually conceived to map CP Business Processes involving different levels of processing including data access, data processing, and output visualization. At their core they usually run one or more Earth Science models for information extraction. The traditional approach based on the development of monolithic applications presents some limitations related to flexibility (e.g. the possibility of running the same models with different input data sources, or different models with the same data sources) and scalability (e.g. launching several runs for different scenarios, or implementing more accurate and computing-demanding models). Flexibility can be addressed adopting a modular design based on a SOA and standard services and models, such as OWS and ISO for geospatial services. Distributed computing and storage solutions could improve scalability. Basing on such considerations an architectural framework has been defined. It is made of a Web Service layer providing advanced services for CP applications (e.g. standard geospatial data sharing and processing services) working on the underlying Grid platform. This framework has been tested through the development of prototypes as proof-of-concept. These theoretical studies and proof-of-concept demonstrated that although Grid and geospatial technologies would be able to provide significant benefits to CP applications in terms of scalability and flexibility, current platforms are designed taking into account requirements different from CP. In particular CP applications have strict requirements in terms of: a) Real-Time capabilities, privileging time-of-response instead of accuracy, b) Security services to support complex data policies and trust relationships, c) Interoperability with existing or planned infrastructures (e.g. e-Government, INSPIRE compliant, etc.). Actually these requirements are the main reason why CP applications differ from Earth Science applications. Therefore further research is required to design and implement an advanced e-Infrastructure satisfying those specific requirements. In particular five themes where further research is required were identified: Grid Infrastructure Enhancement, Advanced Middleware for CP Applications, Security and Data Policies, CP Applications Enablement, and Interoperability. For each theme several research topics were proposed and detailed. They are targeted to solve specific problems for the implementation of an effective operational European e-Infrastructure for CP applications.
Data location-aware job scheduling in the grid. Application to the GridWay metascheduler
NASA Astrophysics Data System (ADS)
Delgado Peris, Antonio; Hernandez, Jose; Huedo, Eduardo; Llorente, Ignacio M.
2010-04-01
Grid infrastructures constitute nowadays the core of the computing facilities of the biggest LHC experiments. These experiments produce and manage petabytes of data per year and run thousands of computing jobs every day to process that data. It is the duty of metaschedulers to allocate the tasks to the most appropriate resources at the proper time. Our work reviews the policies that have been proposed for the scheduling of grid jobs in the context of very data-intensive applications. We indicate some of the practical problems that such models will face and describe what we consider essential characteristics of an optimum scheduling system: aim to minimise not only job turnaround time but also data replication, flexibility to support different virtual organisation requirements and capability to coordinate the tasks of data placement and job allocation while keeping their execution decoupled. These ideas have guided the development of an enhanced prototype for GridWay, a general purpose metascheduler, part of the Globus Toolkit and member of the EGEE's RESPECT program. Current GridWay's scheduling algorithm is unaware of data location. Our prototype makes it possible for job requests to set data needs not only as absolute requirements but also as functions for resource ranking. As our tests show, this makes it more flexible than currently used resource brokers to implement different data-aware scheduling algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzoglio, Gabriele
The Fermilab Grid and Cloud Computing Department and the KISTI Global Science experimental Data hub Center propose a joint project. The goals are to enable scientific workflows of stakeholders to run on multiple cloud resources by use of (a) Virtual Infrastructure Automation and Provisioning, (b) Interoperability and Federat ion of Cloud Resources , and (c) High-Throughput Fabric Virtualization. This is a matching fund project in which Fermilab and KISTI will contribute equal resources .
The OSG open facility: A sharing ecosystem
Jayatilaka, B.; Levshina, T.; Rynge, M.; ...
2015-12-23
The Open Science Grid (OSG) ties together individual experiments’ computing power, connecting their resources to create a large, robust computing grid, this computing infrastructure started primarily as a collection of sites associated with large HEP experiments such as ATLAS, CDF, CMS, and DZero. In the years since, the OSG has broadened its focus to also address the needs of other US researchers and increased delivery of Distributed High Through-put Computing (DHTC) to users from a wide variety of disciplines via the OSG Open Facility. Presently, the Open Facility delivers about 100 million computing wall hours per year to researchers whomore » are not already associated with the owners of the computing sites, this is primarily accomplished by harvesting and organizing the temporarily unused capacity (i.e. opportunistic cycles) from the sites in the OSG. Using these methods, OSG resource providers and scientists share computing hours with researchers in many other fields to enable their science, striving to make sure that these computing power used with maximal efficiency. Furthermore, we believe that expanded access to DHTC is an essential tool for scientific innovation and work continues in expanding this service.« less
NASA Astrophysics Data System (ADS)
van Tuyet, Dao; Tuan, Ngo Anh; van Lang, Tran
Grid computing has been an increasing topic in recent years. It attracts the attention of many scientists from many fields. As a result, many Grid systems have been built for serving people's demands. At present, many tools for developing the Grid systems such as Globus, gLite, Unicore still developed incessantly. Especially, gLite - the Grid Middleware - was developed by the Europe Community scientific in recent years. Constant growth of Grid technology opened the way for new opportunities in term of information and data exchange in a secure and collaborative context. These new opportunities can be exploited to offer physicians new telemedicine services in order to improve their collaborative capacities. Our platform gives physicians an easy method to use telemedicine environment to manage and share patient's information (such as electronic medical record, images formatted DICOM) between remote locations. This paper presents the Grid Infrastructure based on gLite; some main components of gLite; the challenge scenario in which new applications can be developed to improve collaborative work between scientists; the process of deploying Hospital Open software Platform for E-health (HOPE) on the Grid.
BelleII@home: Integrate volunteer computing resources into DIRAC in a secure way
NASA Astrophysics Data System (ADS)
Wu, Wenjing; Hara, Takanori; Miyake, Hideki; Ueda, Ikuo; Kan, Wenxiao; Urquijo, Phillip
2017-10-01
The exploitation of volunteer computing resources has become a popular practice in the HEP computing community as the huge amount of potential computing power it provides. In the recent HEP experiments, the grid middleware has been used to organize the services and the resources, however it relies heavily on the X.509 authentication, which is contradictory to the untrusted feature of volunteer computing resources, therefore one big challenge to utilize the volunteer computing resources is how to integrate them into the grid middleware in a secure way. The DIRAC interware which is commonly used as the major component of the grid computing infrastructure for several HEP experiments proposes an even bigger challenge to this paradox as its pilot is more closely coupled with operations requiring the X.509 authentication compared to the implementations of pilot in its peer grid interware. The Belle II experiment is a B-factory experiment at KEK, and it uses DIRAC for its distributed computing. In the project of BelleII@home, in order to integrate the volunteer computing resources into the Belle II distributed computing platform in a secure way, we adopted a new approach which detaches the payload running from the Belle II DIRAC pilot which is a customized pilot pulling and processing jobs from the Belle II distributed computing platform, so that the payload can run on volunteer computers without requiring any X.509 authentication. In this approach we developed a gateway service running on a trusted server which handles all the operations requiring the X.509 authentication. So far, we have developed and deployed the prototype of BelleII@home, and tested its full workflow which proves the feasibility of this approach. This approach can also be applied on HPC systems whose work nodes do not have outbound connectivity to interact with the DIRAC system in general.
Instant provisioning of wavelength service using quasi-circuit optical burst switching
NASA Astrophysics Data System (ADS)
Xie, Hongyi; Li, Yanhe; Zheng, Xiaoping; Zhang, Hanyi
2006-09-01
Due to the recent outstanding advancement of optical networking technology, pervasive Grid computing will be a feasible option in the near future. As Grid infrastructure, optical networks must be able to handle different Grid traffic patterns with various traffic characteristics as well as different QoS requirements. With current optical switching technology, optical circuit switching is suitable for data-intensive Grid applications while optical burst switching is suitable to submit small Grid jobs. However, there would be high bandwidth short-lived traffic in some emerging Grid applications such as multimedia editing. This kind of traffic couldn't be well supported by both OCS and conventional OBS because of considerable path setup delay and bandwidth waste in OCS and inherent loss in OBS. Quasi-Circuit OBS (QCOBS) is proposed in this paper to address this challenge, providing one-way reserved, nearly lossless, instant provisioned wavelength service in OBS networks. Simulation results show that QCOBS achieves lossless transmission at low and moderate loads, and very low loss probability at high loads with proper guard time configuration.
Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid.
Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul
2017-02-01
Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid.
Towards Integrating Distributed Energy Resources and Storage Devices in Smart Grid
Xu, Guobin; Yu, Wei; Griffith, David; Golmie, Nada; Moulema, Paul
2017-01-01
Internet of Things (IoT) provides a generic infrastructure for different applications to integrate information communication techniques with physical components to achieve automatic data collection, transmission, exchange, and computation. The smart grid, as one of typical applications supported by IoT, denoted as a re-engineering and a modernization of the traditional power grid, aims to provide reliable, secure, and efficient energy transmission and distribution to consumers. How to effectively integrate distributed (renewable) energy resources and storage devices to satisfy the energy service requirements of users, while minimizing the power generation and transmission cost, remains a highly pressing challenge in the smart grid. To address this challenge and assess the effectiveness of integrating distributed energy resources and storage devices, in this paper we develop a theoretical framework to model and analyze three types of power grid systems: the power grid with only bulk energy generators, the power grid with distributed energy resources, and the power grid with both distributed energy resources and storage devices. Based on the metrics of the power cumulative cost and the service reliability to users, we formally model and analyze the impact of integrating distributed energy resources and storage devices in the power grid. We also use the concept of network calculus, which has been traditionally used for carrying out traffic engineering in computer networks, to derive the bounds of both power supply and user demand to achieve a high service reliability to users. Through an extensive performance evaluation, our data shows that integrating distributed energy resources conjointly with energy storage devices can reduce generation costs, smooth the curve of bulk power generation over time, reduce bulk power generation and power distribution losses, and provide a sustainable service reliability to users in the power grid1. PMID:29354654
Mediated definite delegation - Certified Grid jobs in ALICE and beyond
NASA Astrophysics Data System (ADS)
Schreiner, Steffen; Grigoras, Costin; Litmaath, Maarten; Betev, Latchezar; Buchmann, Johannes
2012-12-01
Grid computing infrastructures need to provide traceability and accounting of their users’ activity and protection against misuse and privilege escalation, where the delegation of privileges in the course of a job submission is a key concern. This work describes an improved handling of Multi-user Grid Jobs in the ALICE Grid Services. A security analysis of the ALICE Grid job model is presented with derived security objectives, followed by a discussion of existing approaches of unrestricted delegation based on X.509 proxy certificates and the Grid middleware gLExec. Unrestricted delegation has severe security consequences and limitations, most importantly allowing for identity theft and forgery of jobs and data. These limitations are discussed and formulated, both in general and with respect to an adoption in line with Multi-user Grid Jobs. A new general model of mediated definite delegation is developed, allowing a broker to dynamically process and assign Grid jobs to agents while providing strong accountability and long-term traceability. A prototype implementation allowing for fully certified Grid jobs is presented as well as a potential interaction with gLExec. The achieved improvements regarding system security, malicious job exploitation, identity protection, and accountability are emphasized, including a discussion of non-repudiation in the face of malicious Grid jobs.
Game-Theoretic strategies for systems of components using product-form utilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S; Ma, Cheng-Yu; Hausken, K.
Many critical infrastructures are composed of multiple systems of components which are correlated so that disruptions to one may propagate to others. We consider such infrastructures with correlations characterized in two ways: (i) an aggregate failure correlation function specifies the conditional failure probability of the infrastructure given the failure of an individual system, and (ii) a pairwise correlation function between two systems specifies the failure probability of one system given the failure of the other. We formulate a game for ensuring the resilience of the infrastructure, wherein the utility functions of the provider and attacker are products of an infrastructuremore » survival probability term and a cost term, both expressed in terms of the numbers of system components attacked and reinforced. The survival probabilities of individual systems satisfy first-order differential conditions that lead to simple Nash Equilibrium conditions. We then derive sensitivity functions that highlight the dependence of infrastructure resilience on the cost terms, correlation functions, and individual system survival probabilities. We apply these results to simplified models of distributed cloud computing and energy grid infrastructures.« less
de Araújo, Paulo Régis C; Filho, Raimir Holanda; Rodrigues, Joel J P C; Oliveira, João P C M; Braga, Stephanie A
2018-04-24
At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations.
de Araújo, Paulo Régis C.; Filho, Raimir Holanda; Oliveira, João P. C. M.; Braga, Stephanie A.
2018-01-01
At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations. PMID:29695099
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.
This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less
National Fusion Collaboratory: Grid Computing for Simulations and Experiments
NASA Astrophysics Data System (ADS)
Greenwald, Martin
2004-05-01
The National Fusion Collaboratory Project is creating a computational grid designed to advance scientific understanding and innovation in magnetic fusion research by facilitating collaborations, enabling more effective integration of experiments, theory and modeling and allowing more efficient use of experimental facilities. The philosophy of FusionGrid is that data, codes, analysis routines, visualization tools, and communication tools should be thought of as network available services, easily used by the fusion scientist. In such an environment, access to services is stressed rather than portability. By building on a foundation of established computer science toolkits, deployment time can be minimized. These services all share the same basic infrastructure that allows for secure authentication and resource authorization which allows stakeholders to control their own resources such as computers, data and experiments. Code developers can control intellectual property, and fair use of shared resources can be demonstrated and controlled. A key goal is to shield scientific users from the implementation details such that transparency and ease-of-use are maximized. The first FusionGrid service deployed was the TRANSP code, a widely used tool for transport analysis. Tools for run preparation, submission, monitoring and management have been developed and shared among a wide user base. This approach saves user sites from the laborious effort of maintaining such a large and complex code while at the same time reducing the burden on the development team by avoiding the need to support a large number of heterogeneous installations. Shared visualization and A/V tools are being developed and deployed to enhance long-distance collaborations. These include desktop versions of the Access Grid, a highly capable multi-point remote conferencing tool and capabilities for sharing displays and analysis tools over local and wide-area networks.
NASA Astrophysics Data System (ADS)
Bonacorsi, D.; Gutsche, O.
The Worldwide LHC Computing Grid (WLCG) project decided in March 2009 to perform scale tests of parts of its overall Grid infrastructure before the start of the LHC data taking. The "Scale Test for the Experiment Program" (STEP'09) was performed mainly in June 2009 -with more selected tests in September- October 2009 -and emphasized the simultaneous test of the computing systems of all 4 LHC experiments. CMS tested its Tier-0 tape writing and processing capabilities. The Tier-1 tape systems were stress tested using the complete range of Tier-1 work-flows: transfer from Tier-0 and custody of data on tape, processing and subsequent archival, redistribution of datasets amongst all Tier-1 sites as well as burst transfers of datasets to Tier-2 sites. The Tier-2 analysis capacity was tested using bulk analysis job submissions to backfill normal user activity. In this talk, we will report on the different performed tests and present their post-mortem analysis.
Improved ATLAS HammerCloud Monitoring for Local Site Administration
NASA Astrophysics Data System (ADS)
Böhler, M.; Elmsheuser, J.; Hönig, F.; Legger, F.; Mancinelli, V.; Sciacca, G.
2015-12-01
Every day hundreds of tests are run on the Worldwide LHC Computing Grid for the ATLAS, and CMS experiments in order to evaluate the performance and reliability of the different computing sites. All this activity is steered, controlled, and monitored by the HammerCloud testing infrastructure. Sites with failing functionality tests are auto-excluded from the ATLAS computing grid, therefore it is essential to provide a detailed and well organized web interface for the local site administrators such that they can easily spot and promptly solve site issues. Additional functionality has been developed to extract and visualize the most relevant information. The site administrators can now be pointed easily to major site issues which lead to site blacklisting as well as possible minor issues that are usually not conspicuous enough to warrant the blacklisting of a specific site, but can still cause undesired effects such as a non-negligible job failure rate. This paper summarizes the different developments and optimizations of the HammerCloud web interface and gives an overview of typical use cases.
NASA Astrophysics Data System (ADS)
Rahman, Imran; Vasant, Pandian M.; Singh, Balbir Singh Mahinder; Abdullah-Al-Wadud, M.
2014-10-01
Recent researches towards the use of green technologies to reduce pollution and increase penetration of renewable energy sources in the transportation sector are gaining popularity. The development of the smart grid environment focusing on PHEVs may also heal some of the prevailing grid problems by enabling the implementation of Vehicle-to-Grid (V2G) concept. Intelligent energy management is an important issue which has already drawn much attention to researchers. Most of these works require formulation of mathematical models which extensively use computational intelligence-based optimization techniques to solve many technical problems. Higher penetration of PHEVs require adequate charging infrastructure as well as smart charging strategies. We used Gravitational Search Algorithm (GSA) to intelligently allocate energy to the PHEVs considering constraints such as energy price, remaining battery capacity, and remaining charging time.
Improving ATLAS grid site reliability with functional tests using HammerCloud
NASA Astrophysics Data System (ADS)
Elmsheuser, Johannes; Legger, Federica; Medrano Llamas, Ramon; Sciacca, Gianfranco; van der Ster, Dan
2012-12-01
With the exponential growth of LHC (Large Hadron Collider) data in 2011, and more coming in 2012, distributed computing has become the established way to analyse collider data. The ATLAS grid infrastructure includes almost 100 sites worldwide, ranging from large national computing centers to smaller university clusters. These facilities are used for data reconstruction and simulation, which are centrally managed by the ATLAS production system, and for distributed user analysis. To ensure the smooth operation of such a complex system, regular tests of all sites are necessary to validate the site capability of successfully executing user and production jobs. We report on the development, optimization and results of an automated functional testing suite using the HammerCloud framework. Functional tests are short lightweight applications covering typical user analysis and production schemes, which are periodically submitted to all ATLAS grid sites. Results from those tests are collected and used to evaluate site performances. Sites that fail or are unable to run the tests are automatically excluded from the PanDA brokerage system, therefore avoiding user or production jobs to be sent to problematic sites.
Enabling Grid Computing resources within the KM3NeT computing model
NASA Astrophysics Data System (ADS)
Filippidis, Christos
2016-04-01
KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that - located at the bottom of the Mediterranean Sea - will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. International collaborative scientific experiments, like KM3NeT, are generating datasets which are increasing exponentially in both complexity and volume, making their analysis, archival, and sharing one of the grand challenges of the 21st century. These experiments, in their majority, adopt computing models consisting of different Tiers with several computing centres and providing a specific set of services for the different steps of data processing such as detector calibration, simulation and data filtering, reconstruction and analysis. The computing requirements are extremely demanding and, usually, span from serial to multi-parallel or GPU-optimized jobs. The collaborative nature of these experiments demands very frequent WAN data transfers and data sharing among individuals and groups. In order to support the aforementioned demanding computing requirements we enabled Grid Computing resources, operated by EGI, within the KM3NeT computing model. In this study we describe our first advances in this field and the method for the KM3NeT users to utilize the EGI computing resources in a simulation-driven use-case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Box, D.; Boyd, J.; Di Benedetto, V.
2016-01-01
The FabrIc for Frontier Experiments (FIFE) project is an initiative within the Fermilab Scientific Computing Division designed to steer the computing model for non-LHC Fermilab experiments across multiple physics areas. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying size, needs, and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of solutions for high throughput computing, data management, database access and collaboration management within an experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid compute sites alongmore » with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including a common job submission service, software and reference data distribution through CVMFS repositories, flexible and robust data transfer clients, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken the leading role in defining the computing model for Fermilab experiments, aided in the design of experiments beyond those hosted at Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.« less
Integration of the Chinese HPC Grid in ATLAS Distributed Computing
NASA Astrophysics Data System (ADS)
Filipčič, A.;
2017-10-01
Fifteen Chinese High-Performance Computing sites, many of them on the TOP500 list of most powerful supercomputers, are integrated into a common infrastructure providing coherent access to a user through an interface based on a RESTful interface called SCEAPI. These resources have been integrated into the ATLAS Grid production system using a bridge between ATLAS and SCEAPI which translates the authorization and job submission protocols between the two environments. The ARC Computing Element (ARC-CE) forms the bridge using an extended batch system interface to allow job submission to SCEAPI. The ARC-CE was setup at the Institute for High Energy Physics, Beijing, in order to be as close as possible to the SCEAPI front-end interface at the Computing Network Information Center, also in Beijing. This paper describes the technical details of the integration between ARC-CE and SCEAPI and presents results so far with two supercomputer centers, Tianhe-IA and ERA. These two centers have been the pilots for ATLAS Monte Carlo Simulation in SCEAPI and have been providing CPU power since fall 2015.
A European Federated Cloud: Innovative distributed computing solutions by EGI
NASA Astrophysics Data System (ADS)
Sipos, Gergely; Turilli, Matteo; Newhouse, Steven; Kacsuk, Peter
2013-04-01
The European Grid Infrastructure (EGI) is the result of pioneering work that has, over the last decade, built a collaborative production infrastructure of uniform services through the federation of national resource providers that supports multi-disciplinary science across Europe and around the world. This presentation will provide an overview of the recently established 'federated cloud computing services' that the National Grid Initiatives (NGIs), operators of EGI, offer to scientific communities. The presentation will explain the technical capabilities of the 'EGI Federated Cloud' and the processes whereby earth and space science researchers can engage with it. EGI's resource centres have been providing services for collaborative, compute- and data-intensive applications for over a decade. Besides the well-established 'grid services', several NGIs already offer privately run cloud services to their national researchers. Many of these researchers recently expressed the need to share these cloud capabilities within their international research collaborations - a model similar to the way the grid emerged through the federation of institutional batch computing and file storage servers. To facilitate the setup of a pan-European cloud service from the NGIs' resources, the EGI-InSPIRE project established a Federated Cloud Task Force in September 2011. The Task Force has a mandate to identify and test technologies for a multinational federated cloud that could be provisioned within EGI by the NGIs. A guiding principle for the EGI Federated Cloud is to remain technology neutral and flexible for both resource providers and users: • Resource providers are allowed to use any cloud hypervisor and management technology to join virtualised resources into the EGI Federated Cloud as long as the site is subscribed to the user-facing interfaces selected by the EGI community. • Users can integrate high level services - such as brokers, portals and customised Virtual Research Environments - with the EGI Federated Cloud as long as these services access cloud resources through the user-facing interfaces selected by the EGI community. The Task Force will be closed in May 2013. It already • Identified key enabling technologies by which a multinational, federated 'Infrastructure as a Service' (IaaS) type cloud can be built from the NGIs' resources; • Deployed a test bed to evaluate the integration of virtualised resources within EGI and to engage with early adopter use cases from different scientific domains; • Integrated cloud resources into the EGI production infrastructure through cloud specific bindings of the EGI information system, monitoring system, authentication system, etc.; • Collected and catalogued requirements concerning the federated cloud services from the feedback of early adopter use cases; • Provided feedback and requirements to relevant technology providers on their implementations and worked with these providers to address those requirements; • Identified issues that need to be addressed by other areas of EGI (such as portal solutions, resource allocation policies, marketing and user support) to reach a production system. The Task Force will publish a blueprint in April 2013. The blueprint will drive the establishment of a production level EGI Federated Cloud service after May 2013.
NASA Astrophysics Data System (ADS)
Licari, Daniele; Calzolari, Federico
2011-12-01
In this paper we introduce a new way to deal with Grid portals referring to our implementation. L-GRID is a light portal to access the EGEE/EGI Grid infrastructure via Web, allowing users to submit their jobs from a common Web browser in a few minutes, without any knowledge about the Grid infrastructure. It provides the control over the complete lifecycle of a Grid Job, from its submission and status monitoring, to the output retrieval. The system, implemented as client-server architecture, is based on the Globus Grid middleware. The client side application is based on a java applet; the server relies on a Globus User Interface. There is no need of user registration on the server side, and the user needs only his own X.509 personal certificate. The system is user-friendly, secure (it uses SSL protocol, mechanism for dynamic delegation and identity creation in public key infrastructures), highly customizable, open source, and easy to install. The X.509 personal certificate does not get out from the local machine. It allows to reduce the time spent for the job submission, granting at the same time a higher efficiency and a better security level in proxy delegation and management.
Running SW4 On New Commodity Technology Systems (CTS-1) Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, Arthur J.; Petersson, N. Anders; Pitarka, Arben
We have recently been running earthquake ground motion simulations with SW4 on the new capacity computing systems, called the Commodity Technology Systems - 1 (CTS-1) at Lawrence Livermore National Laboratory (LLNL). SW4 is a fourth order time domain finite difference code developed by LLNL and distributed by the Computational Infrastructure for Geodynamics (CIG). SW4 simulates seismic wave propagation in complex three-dimensional Earth models including anelasticity and surface topography. We are modeling near-fault earthquake strong ground motions for the purposes of evaluating the response of engineered structures, such as nuclear power plants and other critical infrastructure. Engineering analysis of structures requiresmore » the inclusion of high frequencies which can cause damage, but are often difficult to include in simulations because of the need for large memory to model fine grid spacing on large domains.« less
NASA Astrophysics Data System (ADS)
Delle Fratte, C.; Kennedy, J. A.; Kluth, S.; Mazzaferro, L.
2015-12-01
In a grid computing infrastructure tasks such as continuous upgrades, services installations and software deployments are part of an admins daily work. In such an environment tools to help with the management, provisioning and monitoring of the deployed systems and services have become crucial. As experiments such as the LHC increase in scale, the computing infrastructure also becomes larger and more complex. Moreover, today's admins increasingly work within teams that share responsibilities and tasks. Such a scaled up situation requires tools that not only simplify the workload on administrators but also enable them to work seamlessly in teams. In this paper will be presented our experience from managing the Max Planck Institute Tier2 using Puppet and Gitolite in a cooperative way to help the system administrator in their daily work. In addition to describing the Puppet-Gitolite system, best practices and customizations will also be shown.
Do regions of ALICE matter? Social relationships and data exchanges in the Grid
NASA Astrophysics Data System (ADS)
Widmer, E. D.; Carminati, F.; Grigoras, C.; Viry, G.; Galli Carminati, G.
2012-06-01
Following a previous publication [1], this study aims at investigating the impact of regional affiliations of centres on the organisation of collaboration within the Distributed Computing ALICE infrastructure, based on social networks methods. A self-administered questionnaire was sent to all centre managers about support, email interactions and wished collaborations in the infrastructure. Several additional measures, stemming from technical observations were produced, such as bandwidth, data transfers and Internet Round Trip Time (RTT) were also included. Information for 50 centres were considered (60% response rate). Empirical analysis shows that despite the centralisation on CERN, the network is highly organised by regions. The results are discussed in the light of policy and efficiency issues.
Do regions matter in ALICE?. Social relationships and data exchanges in the Grid
NASA Astrophysics Data System (ADS)
Widmer, E. D.; Viry, G.; Carminati, F.; Galli-Carminati, G.
2012-02-01
This study aims at investigating the impact of regional affiliations of centres on the organisation of collaborations within the Distributed Computing ALICE infrastructure, based on social networks methods. A self-administered questionnaire was sent to all centre managers about support, email interactions and wished collaborations in the infrastructure. Several additional measures, stemming from technical observations were collected, such as bandwidth, data transfers and Internet Round Trip Time (RTT) were also included. Information for 50 centres were considered (about 70% response rate). Empirical analysis shows that despite the centralisation on CERN, the network is highly organised by regions. The results are discussed in the light of policy and efficiency issues.
Automatically generated code for relativistic inhomogeneous cosmologies
NASA Astrophysics Data System (ADS)
Bentivegna, Eloisa
2017-02-01
The applications of numerical relativity to cosmology are on the rise, contributing insight into such cosmological problems as structure formation, primordial phase transitions, gravitational-wave generation, and inflation. In this paper, I present the infrastructure for the computation of inhomogeneous dust cosmologies which was used recently to measure the effect of nonlinear inhomogeneity on the cosmic expansion rate. I illustrate the code's architecture, provide evidence for its correctness in a number of familiar cosmological settings, and evaluate its parallel performance for grids of up to several billion points. The code, which is available as free software, is based on the Einstein Toolkit infrastructure, and in particular leverages the automated code generation capabilities provided by its component Kranc.
User-level framework for performance monitoring of HPC applications
NASA Astrophysics Data System (ADS)
Hristova, R.; Goranov, G.
2013-10-01
HP-SEE is an infrastructure that links the existing HPC facilities in South East Europe in a common infrastructure. The analysis of the performance monitoring of the High-Performance Computing (HPC) applications in the infrastructure can be useful for the end user as diagnostic for the overall performance of his applications. The existing monitoring tools for HP-SEE provide to the end user only aggregated information for all applications. Usually, the user does not have permissions to select only the relevant information for him and for his applications. In this article we present a framework for performance monitoring of the HPC applications in the HP-SEE infrastructure. The framework provides standardized performance metrics, which every user can use in order to monitor his applications. Furthermore as a part of the framework a program interface is developed. The interface allows the user to publish metrics data from his application and to read and analyze gathered information. Publishing and reading through the framework is possible only with grid certificate valid for the infrastructure. Therefore the user is authorized to access only the data for his applications.
Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment
Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran
2013-01-01
Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation’s electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments. PMID:25685516
Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment.
Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran
2014-07-01
Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation's electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments.
Radiosurgery planning supported by the GEMSS grid.
Fenner, J W; Mehrem, R A; Ganesan, V; Riley, S; Middleton, S E; Potter, K; Walton, L
2005-01-01
GEMSS (Grid Enabled Medical Simulation Services IST-2001-37153) is an EU project funded to provide a test bed for Grid-enabled health applications. Its purpose is evaluation of Grid computing in the health sector. The health context imposes particular constraints on Grid infrastructure design, and it is this that has driven the feature set of the middleware. In addition to security, the time critical nature of health applications is accommodated by a Quality of Service component, and support for a well defined business model is also included. This paper documents experience of a GEMSS compliant radiosurgery application running within the Medical Physics department at the Royal Hallamshire Hospital in the UK. An outline of the Grid-enabled RAPT radiosurgery application is presented and preliminary experience of its use in the hospital environment is reported. The performance of the software is compared against GammaPlan (an industry standard) and advantages/disadvantages are highlighted. The RAPT software relies on features of the GEMSS middleware that are integral to the success of this application, and together they provide a glimpse of an enabling technology that can impact upon patient management in the 21st century.
The QuakeSim Project: Web Services for Managing Geophysical Data and Applications
NASA Astrophysics Data System (ADS)
Pierce, Marlon E.; Fox, Geoffrey C.; Aktas, Mehmet S.; Aydin, Galip; Gadgil, Harshawardhan; Qi, Zhigang; Sayar, Ahmet
2008-04-01
We describe our distributed systems research efforts to build the “cyberinfrastructure” components that constitute a geophysical Grid, or more accurately, a Grid of Grids. Service-oriented computing principles are used to build a distributed infrastructure of Web accessible components for accessing data and scientific applications. Our data services fall into two major categories: Archival, database-backed services based around Geographical Information System (GIS) standards from the Open Geospatial Consortium, and streaming services that can be used to filter and route real-time data sources such as Global Positioning System data streams. Execution support services include application execution management services and services for transferring remote files. These data and execution service families are bound together through metadata information and workflow services for service orchestration. Users may access the system through the QuakeSim scientific Web portal, which is built using a portlet component approach.
Transitioning to digital radiography.
Drost, Wm Tod
2011-04-01
To describe the different forms of digital radiography (DR), image file formats, supporting equipment and services required for DR, storage of digital images, and teleradiology. Purchasing a DR system is a major investment for a veterinary practice. Types of DR systems include computed radiography, charge coupled devices, and direct or indirect DR. Comparison of workflow for analog and DR is presented. On the surface, switching to DR involves the purchase of DR acquisition hardware. The X-ray machine, table and grids used in analog radiography are the same for DR. Realistically, a considerable infrastructure supports the image acquisition hardware. This infrastructure includes monitors, computer workstations, a robust computer network and internet connection, a plan for storage and back up of images, and service contracts. Advantages of DR compared with analog radiography include improved image quality (when used properly), ease of use (more forgiving to the errors of radiographic technique), speed of making a complete study (important for critically ill patients), fewer repeat radiographs, less time looking for imaging studies, less physical storage space, and the ability to easily send images for consultation. With an understanding of the infrastructure requirements, capabilities and limitations of DR, an informed veterinary practice should be better able to make a sound decision about transitioning to DR. © Veterinary Emergency and Critical Care Society 2011.
NASA Astrophysics Data System (ADS)
Herrick, Gregory Paul
The quest to accurately capture flow phenomena with length-scales both short and long and to accurately represent complex flow phenomena within disparately sized geometry inspires a need for an efficient, high-fidelity, multi-block structured computational fluid dynamics (CFD) parallel computational scheme. This research presents and demonstrates a more efficient computational method by which to perform multi-block structured CFD parallel computational simulations, thus facilitating higher-fidelity solutions of complicated geometries (due to the inclusion of grids for "small'' flow areas which are often merely modeled) and their associated flows. This computational framework offers greater flexibility and user-control in allocating the resource balance between process count and wall-clock computation time. The principal modifications implemented in this revision consist of a "multiple grid block per processing core'' software infrastructure and an analytic computation of viscous flux Jacobians. The development of this scheme is largely motivated by the desire to simulate axial compressor stall inception with more complete gridding of the flow passages (including rotor tip clearance regions) than has been previously done while maintaining high computational efficiency (i.e., minimal consumption of computational resources), and thus this paradigm shall be demonstrated with an examination of instability in a transonic axial compressor. However, the paradigm presented herein facilitates CFD simulation of myriad previously impractical geometries and flows and is not limited to detailed analyses of axial compressor flows. While the simulations presented herein were technically possible under the previous structure of the subject software, they were much less computationally efficient and thus not pragmatically feasible; the previous research using this software to perform three-dimensional, full-annulus, time-accurate, unsteady, full-stage (with sliding-interface) simulations of rotating stall inception in axial compressors utilized tip clearance periodic models, while the scheme here is demonstrated by a simulation of axial compressor stall inception utilizing gridded rotor tip clearance regions. As will be discussed, much previous research---experimental, theoretical, and computational---has suggested that understanding clearance flow behavior is critical to understanding stall inception, and previous computational research efforts which have used tip clearance models have begged the question, "What about the clearance flows?''. This research begins to address that question.
ERIC Educational Resources Information Center
Chaudhry, Hina
2013-01-01
This study is a part of the smart grid initiative providing electric vehicle charging infrastructure. It is a refueling structure, an energy generating photovoltaic system and charge point electric vehicle charging station. The system will utilize advanced design and technology allowing electricity to flow from the site's normal electric service…
Cloud Computing for radiologists.
Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit
2012-07-01
Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.
Cloud Computing for radiologists
Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit
2012-01-01
Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future. PMID:23599560
Energy Theft in the Advanced Metering Infrastructure
NASA Astrophysics Data System (ADS)
McLaughlin, Stephen; Podkuiko, Dmitry; McDaniel, Patrick
Global energy generation and delivery systems are transitioning to a new computerized "smart grid". One of the principle components of the smart grid is an advanced metering infrastructure (AMI). AMI replaces the analog meters with computerized systems that report usage over digital communication interfaces, e.g., phone lines. However, with this infrastructure comes new risk. In this paper, we consider adversary means of defrauding the electrical grid by manipulating AMI systems. We document the methods adversaries will use to attempt to manipulate energy usage data, and validate the viability of these attacks by performing penetration testing on commodity devices. Through these activities, we demonstrate that not only is theft still possible in AMI systems, but that current AMI devices introduce a myriad of new vectors for achieving it.
Grid enablement of OpenGeospatial Web Services: the G-OWS Working Group
NASA Astrophysics Data System (ADS)
Mazzetti, Paolo
2010-05-01
In last decades two main paradigms for resource sharing emerged and reached maturity: the Web and the Grid. They both demonstrate suitable for building Distributed Computing Infrastructures (DCIs) supporting the coordinated sharing of resources (i.e. data, information, services, etc) on the Internet. Grid and Web DCIs have much in common as a result of their underlying Internet technology (protocols, models and specifications). However, being based on different requirements and architectural approaches, they show some differences as well. The Web's "major goal was to be a shared information space through which people and machines could communicate" [Berners-Lee 1996]. The success of the Web, and its consequent pervasiveness, made it appealing for building specialized systems like the Spatial Data Infrastructures (SDIs). In this systems the introduction of Web-based geo-information technologies enables specialized services for geospatial data sharing and processing. The Grid was born to achieve "flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources" [Foster 2001]. It specifically focuses on large-scale resource sharing, innovative applications, and, in some cases, high-performance orientation. In the Earth and Space Sciences (ESS) the most part of handled information is geo-referred (geo-information) since spatial and temporal meta-information is of primary importance in many application domains: Earth Sciences, Disasters Management, Environmental Sciences, etc. On the other hand, in several application areas there is the need of running complex models which require the large processing and storage capabilities that the Grids are able to provide. Therefore the integration of geo-information and Grid technologies might be a valuable approach in order to enable advanced ESS applications. Currently both geo-information and Grid technologies have reached a high level of maturity, allowing to build such an integration on existing solutions. More specifically, the Open Geospatial Consortium (OGC) Web Services (OWS) specifications play a fundamental role in geospatial information sharing (e.g. in INSPIRE Implementing Rules, GEOSS architecture, GMES Services, etc.). On the Grid side, the gLite middleware, developed in the European EGEE (Enabling Grids for E-sciencE) Projects, is widely spread in Europe and beyond, proving its high scalability and it is one of the middleware chosen for the future European Grid Infrastructure (EGI) initiative. Therefore the convergence between OWS and gLite technologies would be desirable for a seamless access to the Grid capabilities through OWS-compliant systems. Anyway, to achieve this harmonization there are some obstacles to overcome. Firstly, a semantics mismatch must be addressed: gLite handle low-level (e.g. close to the machine) concepts like "file", "data", "instruments", "job", etc., while geo-information services handle higher-level (closer to the human) concepts like "coverage", "observation", "measurement", "model", etc. Secondly, an architectural mismatch must be addressed: OWS implements a Web Service-Oriented-Architecture which is stateless, synchronous and with no embedded security (which is demanded to other specs), while gLite implements the Grid paradigm in an architecture which is stateful, asynchronous (even not fully event-based) and with strong embedded security (based on the VO paradigm). In recent years many initiatives and projects have worked out possible approaches for implementing Grid-enabled OWSs. Just to mention some: (i) in 2007 the OGC has signed a Memorandum of Understanding with the Open Grid Forum, "a community of users, developers, and vendors leading the global standardization effort for grid computing."; (ii) the OGC identified "WPS Profiles - Conflation; and Grid processing" as one of the tasks in the Geo Processing Workflow theme of the OWS Phase 6 (OWS-6); (iii) several national, European and international projects investigated different aspects of this integration, developing demonstrators and Proof-of-Concepts; In this context, "gLite enablement of OpenGeospatial Web Services" (G-OWS) is an initiative started in 2008 by the European CYCLOPS, GENESI-DR, and DORII Projects Consortia in order to collect/coordinate experiences on the enablement of OWS on top of the gLite middleware [GOWS]. Currently G-OWS counts ten member organizations from Europe and beyond, and four European Projects involved. It broadened its scope to the development of Spatial Data and Information Infrastructures (SDI and SII) based on the Grid/Cloud capacity in order to enable Earth Science applications and tools. Its operational objectives are the following: i) to contribute to the OGC-OGF initiative; ii) to release a reference implementation as standard gLite APIs (under the gLite software license); iii) to release a reference model (including procedures and guidelines) for OWS Grid-ification, as far as gLite is concerned; iv) to foster and promote the formation of consortiums for participation to projects/initiatives aimed at building Grid-enabled SDIs To achieve this objectives G-OWS bases its activities on two main guiding principles: a) the adoption of a service-oriented architecture based on the information modelling approach, and b) standardization as a means of achieving interoperability (i.e. adoption of standards from ISO TC211, OGC OWS, OGF). In the first year of activity G-OWS has designed a general architectural framework stemming from the FP6 CYCLOPS studies and enriched by the outcomes of other projects and initiatives involved (i.e. FP7 GENESI-DR, FP7 DORII, AIST GeoGrid, etc.). Some proof-of-concepts have been developed to demonstrate the flexibility and scalability of such architectural framework. The G-OWS WG developed implementations of gLite-enabled Web Coverage Service (WCS) and Web Processing Service (WPS), and an implementation of a Shibboleth authentication for gLite-enabled OWS in order to evaluate the possible integration of Web and Grid security models. The presentation will aim to communicate the G-OWS organization, activities, future plans and means to involve the ESSI community. References [Berners-Lee 1996] T. Berners-Lee, "WWW: Past, present, and future". IEEE Computer, 29(10), Oct. 1996, pp. 69-77. [Foster 2001] I. Foster, C. Kesselman and S. Tuecke, "The Anatomy of the Grid. The International Journal ofHigh Performance Computing Applications", 15(3):200-222, Fall 2001 [GOWS] G-OWS WG, https://www.g-ows.org/, accessed: 15 January 2010
The GILDA t-Infrastructure: grid training activities in Africa and future opportunities
NASA Astrophysics Data System (ADS)
Ardizzone, V.; Barbera, R.; Ciuffo, L.; Giorgio, E.
2009-04-01
Scientists, educators, and students from many parts of the worlds are not able to take advantage of ICT because the digital divide is growing and prevents less developed countries to exploit its benefits. Instead of becoming more empowered and involved in worldwide developments, they are becoming increasingly marginalised as the world of education and science becomes increasingly Internet-dependent. The Grid Infn Laboratory for Dissemination Activities (GILDA) spreads since almost five years the awareness of Grid technology to a large audience, training new communities and fostering new organisations to provide resources. The knowledge dissemination process guided by the training activities is a key factor to ensure that all users can fully understand the characteristics of the Grid services offered by large existing e-Infrastructure. GILDA is becoming a "de facto" standard in training infrastructures (t-Infrastructures) and it is adopted by many grid projects worldwide. In this contribution we will report on the latest status of GILDA services and on the training activities recently carried out in sub-Saharan Africa (Malawi and South Africa). Particular care will be devoted to show how GILDA can be "cloned" to satisfy both education and research demands of African Organisations. The opportunities to benefit from GILDA in the framework of the EPIKH project as well as the plans of the European Commission on grid training and education for the 2010-2011 calls of its 7th Framework Programme will be presented and discussed.
The Earth System Grid Federation (ESGF) Project
NASA Astrophysics Data System (ADS)
Carenton-Madiec, Nicolas; Denvil, Sébastien; Greenslade, Mark
2015-04-01
The Earth System Grid Federation (ESGF) Peer-to-Peer (P2P) enterprise system is a collaboration that develops, deploys and maintains software infrastructure for the management, dissemination, and analysis of model output and observational data. ESGF's primary goal is to facilitate advancements in Earth System Science. It is an interagency and international effort led by the US Department of Energy (DOE), and co-funded by National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), National Science Foundation (NSF), Infrastructure for the European Network of Earth System Modelling (IS-ENES) and international laboratories such as the Max Planck Institute for Meteorology (MPI-M) german Climate Computing Centre (DKRZ), the Australian National University (ANU) National Computational Infrastructure (NCI), Institut Pierre-Simon Laplace (IPSL), and the British Atmospheric Data Center (BADC). Its main mission is to support current CMIP5 activities and prepare for future assesments. The ESGF architecture is based on a system of autonomous and distributed nodes, which interoperate through common acceptance of federation protocols and trust agreements. Data is stored at multiple nodes around the world, and served through local data and metadata services. Nodes exchange information about their data holdings and services, trust each other for registering users and establishing access control decisions. The net result is that a user can use a web browser, connect to any node, and seamlessly find and access data throughout the federation. This type of collaborative working organization and distributed architecture context en-lighted the need of integration and testing processes definition to ensure the quality of software releases and interoperability. This presentation will introduce the ESGF project and demonstrate the range of tools and processes that have been set up to support release management activities.
development to improve the nation's electrical grid infrastructure, making it more flexible, reliable Standard, IEEE 1547 Blue cover page of report with hexagon shapes over electric grid Basic Research Needs Controls Power Systems Design and Studies Security and Resilience Institutional Support NREL grid research
The SCEC Community Modeling Environment(SCEC/CME): A Collaboratory for Seismic Hazard Analysis
NASA Astrophysics Data System (ADS)
Maechling, P. J.; Jordan, T. H.; Minster, J. B.; Moore, R.; Kesselman, C.
2005-12-01
The SCEC Community Modeling Environment (SCEC/CME) Project is an NSF-supported Geosciences/IT partnership that is actively developing an advanced information infrastructure for system-level earthquake science in Southern California. This partnership includes SCEC, USC's Information Sciences Institute (ISI), the San Diego Supercomputer Center (SDSC), the Incorporated Institutions for Research in Seismology (IRIS), and the U.S. Geological Survey. The goal of the SCEC/CME is to develop seismological applications and information technology (IT) infrastructure to support the development of Seismic Hazard Analysis (SHA) programs and other geophysical simulations. The SHA application programs developed on the Project include a Probabilistic Seismic Hazard Analysis system called OpenSHA. OpenSHA computational elements that are currently available include a collection of attenuation relationships, and several Earthquake Rupture Forecasts (ERFs). Geophysicists in the collaboration have also developed Anelastic Wave Models (AWMs) using both finite-difference and finite-element approaches. Earthquake simulations using these codes have been run for a variety of earthquake sources. Rupture Dynamic Model (RDM) codes have also been developed that simulate friction-based fault slip. The SCEC/CME collaboration has also developed IT software and hardware infrastructure to support the development, execution, and analysis of these SHA programs. To support computationally expensive simulations, we have constructed a grid-based scientific workflow system. Using the SCEC grid, project collaborators can submit computations from the SCEC/CME servers to High Performance Computers at USC and TeraGrid High Performance Computing Centers. Data generated and archived by the SCEC/CME is stored in a digital library system, the Storage Resource Broker (SRB). This system provides a robust and secure system for maintaining the association between the data seta and their metadata. To provide an easy-to-use system for constructing SHA computations, a browser-based workflow assembly web portal has been developed. Users can compose complex SHA calculations, specifying SCEC/CME data sets as inputs to calculations, and calling SCEC/CME computational programs to process the data and the output. Knowledge-based software tools have been implemented that utilize ontological descriptions of SHA software and data can validate workflows created with this pathway assembly tool. Data visualization software developed by the collaboration supports analysis and validation of data sets. Several programs have been developed to visualize SCEC/CME data including GMT-based map making software for PSHA codes, 4D wavefield propagation visualization software based on OpenGL, and 3D Geowall-based visualization of earthquakes, faults, and seismic wave propagation. The SCEC/CME Project also helps to sponsor the SCEC UseIT Intern program. The UseIT Intern Program provides research opportunities in both Geosciences and Information Technology to undergraduate students in a variety of fields. The UseIT group has developed a 3D data visualization tool, called SCEC-VDO, as a part of this undergraduate research program.
Volunteer Clouds and Citizen Cyberscience for LHC Physics
NASA Astrophysics Data System (ADS)
Aguado Sanchez, Carlos; Blomer, Jakob; Buncic, Predrag; Chen, Gang; Ellis, John; Garcia Quintas, David; Harutyunyan, Artem; Grey, Francois; Lombrana Gonzalez, Daniel; Marquina, Miguel; Mato, Pere; Rantala, Jarno; Schulz, Holger; Segal, Ben; Sharma, Archana; Skands, Peter; Weir, David; Wu, Jie; Wu, Wenjing; Yadav, Rohit
2011-12-01
Computing for the LHC, and for HEP more generally, is traditionally viewed as requiring specialized infrastructure and software environments, and therefore not compatible with the recent trend in "volunteer computing", where volunteers supply free processing time on ordinary PCs and laptops via standard Internet connections. In this paper, we demonstrate that with the use of virtual machine technology, at least some standard LHC computing tasks can be tackled with volunteer computing resources. Specifically, by presenting volunteer computing resources to HEP scientists as a "volunteer cloud", essentially identical to a Grid or dedicated cluster from a job submission perspective, LHC simulations can be processed effectively. This article outlines both the technical steps required for such a solution and the implications for LHC computing as well as for LHC public outreach and for participation by scientists from developing regions in LHC research.
UNH Data Cooperative: A Cyber Infrastructure for Earth System Studies
NASA Astrophysics Data System (ADS)
Braswell, B. H.; Fekete, B. M.; Prusevich, A.; Gliden, S.; Magill, A.; Vorosmarty, C. J.
2007-12-01
Earth system scientists and managers have a continuously growing demand for a wide array of earth observations derived from various data sources including (a) modern satellite retrievals, (b) "in-situ" records, (c) various simulation outputs, and (d) assimilated data products combining model results with observational records. The sheer quantity of data, and formatting inconsistencies make it difficult for users to take full advantage of this important information resource. Thus the system could benefit from a thorough retooling of our current data processing procedures and infrastructure. Emerging technologies, like OPeNDAP and OGC map services, open standard data formats (NetCDF, HDF) data cataloging systems (NASA-Echo, Global Change Master Directory, etc.) are providing the basis for a new approach in data management and processing, where web- services are increasingly designed to serve computer-to-computer communications without human interactions and complex analysis can be carried out over distributed computer resources interconnected via cyber infrastructure. The UNH Earth System Data Collaborative is designed to utilize the aforementioned emerging web technologies to offer new means of access to earth system data. While the UNH Data Collaborative serves a wide array of data ranging from weather station data (Climate Portal) to ocean buoy records and ship tracks (Portsmouth Harbor Initiative) to land cover characteristics, etc. the underlaying data architecture shares common components for data mining and data dissemination via web-services. Perhaps the most unique element of the UNH Data Cooperative's IT infrastructure is its prototype modeling environment for regional ecosystem surveillance over the Northeast corridor, which allows the integration of complex earth system model components with the Cooperative's data services. While the complexity of the IT infrastructure to perform complex computations is continuously increasing, scientists are often forced to spend considerable amount of time to solve basic data management and preprocessing tasks and deal with low level computational design problems like parallelization of model codes. Our modeling infrastructure is designed to take care the bulk of the common tasks found in complex earth system models like I/O handling, computational domain and time management, parallel execution of the modeling tasks, etc. The modeling infrastructure allows scientists to focus on the numerical implementation of the physical processes on a single computational objects(typically grid cells) while the framework takes care of the preprocessing of input data, establishing of the data exchange between computation objects and the execution of the science code. In our presentation, we will discuss the key concepts of our modeling infrastructure. We will demonstrate integration of our modeling framework with data services offered by the UNH Earth System Data Collaborative via web interfaces. We will layout the road map to turn our prototype modeling environment into a truly community framework for wide range of earth system scientists and environmental managers.
Recovery Act-SmartGrid regional demonstration transmission and distribution (T&D) Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedges, Edward T.
This document represents the Final Technical Report for the Kansas City Power & Light Company (KCP&L) Green Impact Zone SmartGrid Demonstration Project (SGDP). The KCP&L project is partially funded by Department of Energy (DOE) Regional Smart Grid Demonstration Project cooperative agreement DE-OE0000221 in the Transmission and Distribution Infrastructure application area. This Final Technical Report summarizes the KCP&L SGDP as of April 30, 2015 and includes summaries of the project design, implementation, operations, and analysis performed as of that date.
A Geometry Based Infra-structure for Computational Analysis and Design
NASA Technical Reports Server (NTRS)
Haimes, Robert
1997-01-01
The computational steps traditionally taken for most engineering analysis (CFD, structural analysis, and etc.) are: Surface Generation - usually by employing a CAD system; Grid Generation - preparing the volume for the simulation; Flow Solver - producing the results at the specified operational point; and Post-processing Visualization - interactively attempting to understand the results For structural analysis, integrated systems can be obtained from a number of commercial vendors. For CFD, these steps have worked well in the past for simple steady-state simulations at the expense of much user interaction. The data was transmitted between phases via files. Specifically the problems with this procedure are: (1) File based. Information flows from one step to the next via data files with formats specified for that procedure. (2) 'Good' Geometry. A bottleneck in getting results from a solver is the construction of proper geometry to be fed to the grid generator. With 'good' geometry a grid can be constructed in tens of minutes (even with a complex configuration) using unstructured techniques. (3) One-Way communication. All information travels on from one phase to the next. Until this process can be automated, more complex problems such as multi-disciplinary analysis or using the above procedure for design becomes prohibitive.
The JINR Tier1 Site Simulation for Research and Development Purposes
NASA Astrophysics Data System (ADS)
Korenkov, V.; Nechaevskiy, A.; Ososkov, G.; Pryahina, D.; Trofimov, V.; Uzhinskiy, A.; Voytishin, N.
2016-02-01
Distributed complex computing systems for data storage and processing are in common use in the majority of modern scientific centers. The design of such systems is usually based on recommendations obtained via a preliminary simulated model used and executed only once. However big experiments last for years and decades, and the development of their computing system is going on, not only quantitatively but also qualitatively. Even with the substantial efforts invested in the design phase to understand the systems configuration, it would be hard enough to develop a system without additional research of its future evolution. The developers and operators face the problem of the system behaviour predicting after the planned modifications. A system for grid and cloud services simulation is developed at LIT (JINR, Dubna). This simulation system is focused on improving the effciency of the grid/cloud structures development by using the work quality indicators of some real system. The development of such kind of software is very important for making a new grid/cloud infrastructure for such big scientific experiments like the JINR Tier1 site for WLCG. The simulation of some processes of the Tier1 site is considered as an example of our application approach.
Can Clouds replace Grids? Will Clouds replace Grids?
NASA Astrophysics Data System (ADS)
Shiers, J. D.
2010-04-01
The world's largest scientific machine - comprising dual 27km circular proton accelerators cooled to 1.9oK and located some 100m underground - currently relies on major production Grid infrastructures for the offline computing needs of the 4 main experiments that will take data at this facility. After many years of sometimes difficult preparation the computing service has been declared "open" and ready to meet the challenges that will come shortly when the machine restarts in 2009. But the service is not without its problems: reliability - as seen by the experiments, as opposed to that measured by the official tools - still needs to be significantly improved. Prolonged downtimes or degradations of major services or even complete sites are still too common and the operational and coordination effort to keep the overall service running is probably not sustainable at this level. Recently "Cloud Computing" - in terms of pay-per-use fabric provisioning - has emerged as a potentially viable alternative but with rather different strengths and no doubt weaknesses too. Based on the concrete needs of the LHC experiments - where the total data volume that will be acquired over the full lifetime of the project, including the additional data copies that are required by the Computing Models of the experiments, approaches 1 Exabyte - we analyze the pros and cons of Grids versus Clouds. This analysis covers not only technical issues - such as those related to demanding database and data management needs - but also sociological aspects, which cannot be ignored, neither in terms of funding nor in the wider context of the essential but often overlooked role of science in society, education and economy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Dr., Joel
This final report is presented by Langston University (LU) for the project entitled "Langston University High Energy Physics" (LUHEP) under the direction of principal investigator (PI) and project director Professor Joel Snow. The project encompassed high energy physics research performed at hadron colliders. The PI is a collaborator on the DZero experiment at Fermi National Accelerator Laboratory in Batavia, IL, USA and the ATLAS experiment at CERN in Geneva, Switzerland and was during the entire project period from April 1, 1999 until May 14, 2012. Both experiments seek to understand the fundamental constituents of the physical universe and the forcesmore » that govern their interactions. In 1999 as member of the Online Systems group for Run 2 the PI developed a cross-platform Python-based, Graphical User Interface (GUI) application for monitoring and control of EPICS based devices for control room use. This served as a model for other developers to enhance and build on for further monitoring and control tasks written in Python. Subsequently the PI created and developed a cross-platform C++ GUI utilizing a networked client-server paradigm and based on ROOT, the object oriented analysis framework from CERN. The GUI served as a user interface to the Examine tasks running in the D\\O\\ control room which monitored the status and integrity of data taking for Run 2. The PI developed the histogram server/control interface to the GUI client for the EXAMINE processes. The histogram server was built from the ROOT framework and was integrated into the D\\O\\ framework used for online monitoring programs and offline analysis. The PI developed the first implementation of displaying histograms dynamically generated by ROOT in a Web Browser. The PI's work resulted in several talks and papers at international conferences and workshops. The PI established computing software infrastructure at LU and U. Oklahoma (OU) to do analysis of DZero production data and produce simulation data for the experiment. Eventually this included the FNAL SAM data grid system, the SAMGrid (SG) infrastructure, and the Open Science Grid software stacks for computing and storage elements. At the end of 2003 Snow took on the role of global Monte Carlo production coordinator for the DØ experiment. A role which continues til this day. In January of 2004 Snow started working with the SAMGrid development team to help debug, deploy, and integrate SAMGrid with DØ Monte Carlo production. Snow installed and configured SG execution and client sites at LUHEP and OUHEP, and a SG scheduler site at LUHEP. The PI developed a python based GUI (DAJ) that acts as a front end for job submission to SAMGrid. The GUI interfaces to the DZero Mone Carlo (MC) request system that uses SAM to manage MC requests by the physics analysis groups. DAJ significantly simplified SG job submission and was deployed in DZero in an effort to increase the user base of SG. The following year was the advent of SAMGrid job submission to the Open Science Grid (OSG) and LHC Computing Grid (LCG) through a forwarding mechanism. The PI oversaw the integration of these grids into the existing production infrastructure. The PI developed an automatic MC (Automc) request processing system capable of operating without user intervention (other than getting grid credentials), and able to submit to any number of sites on various grids. The system manages production at all but 2 sites. The system was deployed at Fermilab and remains operating there today. The PI's work in distributed computing resulted in several talks at international conferences. UTA, OU, and LU were chosen as the collaborating institutions that form the Southwest Tier 2 Center (SWT2) for ATLAS. During the project period the PI contributed to the online and offline software infrastructure through his work with the Run 2 online group, and played a major role in Monte Carlo production for DZero. During the part of the project period in which the PI served as MC production coordinator MC production increased very significantly. In the first year of the PI's tenure as production coordinator production was 159M events and 6.7~TB of data. During the last year of the project period production was 2,342~M events and 262~TB of data. That is a factor of 15 increase in events and 39 in data volume. The increase occurred with improvements in computer hardware and networks, through the use of grid technology on diverse resources, and through increased automation and efficiency of the production process. LU HEP developed and deployed the automatic MC request processing system in use at FNAL. The complementary strategies of automation and grid production served DZero well. Fermilab has recognized LU HEP's contribution to DZero by allowing the PI to devote full time to research activities by appointing him a guest scientist for the last six years of the project period.« less
NASA Astrophysics Data System (ADS)
Lengert, Wolfgang; Farres, Jordi; Lanari, Riccardo; Casu, Francesco; Manunta, Michele; Lassalle-Balier, Gerard
2014-05-01
Helix Nebula has established a growing public private partnership of more than 30 commercial cloud providers, SMEs, and publicly funded research organisations and e-infrastructures. The Helix Nebula strategy is to establish a federated cloud service across Europe. Three high-profile flagships, sponsored by CERN (high energy physics), EMBL (life sciences) and ESA/DLR/CNES/CNR (earth science), have been deployed and extensively tested within this federated environment. The commitments behind these initial flagships have created a critical mass that attracts suppliers and users to the initiative, to work together towards an "Information as a Service" market place. Significant progress in implementing the following 4 programmatic goals (as outlined in the strategic Plan Ref.1) has been achieved: × Goal #1 Establish a Cloud Computing Infrastructure for the European Research Area (ERA) serving as a platform for innovation and evolution of the overall infrastructure. × Goal #2 Identify and adopt suitable policies for trust, security and privacy on a European-level can be provided by the European Cloud Computing framework and infrastructure. × Goal #3 Create a light-weight governance structure for the future European Cloud Computing Infrastructure that involves all the stakeholders and can evolve over time as the infrastructure, services and user-base grows. × Goal #4 Define a funding scheme involving the three stake-holder groups (service suppliers, users, EC and national funding agencies) into a Public-Private-Partnership model to implement a Cloud Computing Infrastructure that delivers a sustainable business environment adhering to European level policies. Now in 2014 a first version of this generic cross-domain e-infrastructure is ready to go into operations building on federation of European industry and contributors (data, tools, knowledge, ...). This presentation describes how Helix Nebula is being used in the domain of earth science focusing on geohazards. The so called "Supersite Exploitation Platform" (SSEP) provides scientists an overarching federated e-infrastructure with a very fast access to (i) large volume of data (EO/non-space data), (ii) computing resources (e.g. hybrid cloud/grid), (iii) processing software (e.g. toolboxes, RTMs, retrieval baselines, visualization routines), and (iv) general platform capabilities (e.g. user management and access control, accounting, information portal, collaborative tools, social networks etc.). In this federation each data provider remains in full control of the implementation of its data policy. This presentation outlines the Architecture (technical and services) supporting very heterogeneous science domains as well as the procedures for new-comers to join the Helix Nebula Market Place. Ref.1 http://cds.cern.ch/record/1374172/files/CERN-OPEN-2011-036.pdf
NASA Astrophysics Data System (ADS)
Chan, Christine S.; Ostertag, Michael H.; Akyürek, Alper Sinan; Šimunić Rosing, Tajana
2017-05-01
The Internet of Things envisions a web-connected infrastructure of billions of sensors and actuation devices. However, the current state-of-the-art presents another reality: monolithic end-to-end applications tightly coupled to a limited set of sensors and actuators. Growing such applications with new devices or behaviors, or extending the existing infrastructure with new applications, involves redesign and redeployment. We instead propose a modular approach to these applications, breaking them into an equivalent set of functional units (context engines) whose input/output transformations are driven by general-purpose machine learning, demonstrating an improvement in compute redundancy and computational complexity with minimal impact on accuracy. In conjunction with formal data specifications, or ontologies, we can replace application-specific implementations with a composition of context engines that use common statistical learning to generate output, thus improving context reuse. We implement interconnected context-aware applications using our approach, extracting user context from sensors in both healthcare and grid applications. We compare our infrastructure to single-stage monolithic implementations with single-point communications between sensor nodes and the cloud servers, demonstrating a reduction in combined system energy by 22-45%, and multiplying the battery lifetime of power-constrained devices by at least 22x, with easy deployment across different architectures and devices.
Computing through Scientific Abstractions in SysBioPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, George; Stephan, Eric G.; Gracio, Deborah K.
2004-10-13
Today, biologists and bioinformaticists have a tremendous amount of computational power at their disposal. With the availability of supercomputers, burgeoning scientific databases and digital libraries such as GenBank and PubMed, and pervasive computational environments such as the Grid, biologists have access to a wealth of computational capabilities and scientific data at hand. Yet, the rapid development of computational technologies has far exceeded the typical biologist’s ability to effectively apply the technology in their research. Computational sciences research and development efforts such as the Biology Workbench, BioSPICE (Biological Simulation Program for Intra-Cellular Evaluation), and BioCoRE (Biological Collaborative Research Environment) are importantmore » in connecting biologists and their scientific problems to computational infrastructures. On the Computational Cell Environment and Heuristic Entity-Relationship Building Environment projects at the Pacific Northwest National Laboratory, we are jointly developing a new breed of scientific problem solving environment called SysBioPSE that will allow biologists to access and apply computational resources in the scientific research context. In contrast to other computational science environments, SysBioPSE operates as an abstraction layer above a computational infrastructure. The goal of SysBioPSE is to allow biologists to apply computational resources in the context of the scientific problems they are addressing and the scientific perspectives from which they conduct their research. More specifically, SysBioPSE allows biologists to capture and represent scientific concepts and theories and experimental processes, and to link these views to scientific applications, data repositories, and computer systems.« less
NASA Astrophysics Data System (ADS)
Kolbasov, A.; Karpukhin, K.; Terenchenko, A.; Kavalchuk, I.
2018-02-01
Electric vehicles have become the most common solution to improve sustainability of the transportation systems all around the world. Despite all benefits, wide adaptation of electric vehicles requires major changes in the infrastructure, including grid adaptation to the rapidly increased power demand and development of the Connected Car concept. This paper discusses the approaches to improve usability of electric vehicles, by creating suitable web-services, with possible connections vehicle-to-vehicle, vehicle-to-infrastructure, and vehicle-to-grid. Developed concept combines information about electrical loads on the grid in specific direction, navigation information from the on-board system, existing and empty charging slots and power availability. In addition, this paper presents the universal concept of the photovoltaic integrated charging stations, which are connected to the developed information systems. It helps to achieve rapid adaptation of the overall infrastructure to the needs of the electric vehicles users with minor changes in the existing grid and loads.
caGrid 1.0: a Grid enterprise architecture for cancer research.
Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel
2007-10-11
caGrid is the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIG) program. The current release, caGrid version 1.0, is developed as the production Grid software infrastructure of caBIG. Based on feedback from adopters of the previous version (caGrid 0.5), it has been significantly enhanced with new features and improvements to existing components. This paper presents an overview of caGrid 1.0, its main components, and enhancements over caGrid 0.5.
NASA Astrophysics Data System (ADS)
Acedo, L.; Villanueva-Oller, J.; Moraño, J. A.; Villanueva, R.-J.
2013-01-01
The Berkeley Open Infrastructure for Network Computing (BOINC) has become the standard open source solution for grid computing in the Internet. Volunteers use their computers to complete an small part of the task assigned by a dedicated server. We have developed a BOINC project called Neurona@Home whose objective is to simulate a cellular automata random network with, at least, one million neurons. We consider a cellular automata version of the integrate-and-fire model in which excitatory and inhibitory nodes can activate or deactivate neighbor nodes according to a set of probabilistic rules. Our aim is to determine the phase diagram of the model and its behaviour and to compare it with the electroencephalographic signals measured in real brains.
NASA Astrophysics Data System (ADS)
López García, Álvaro; Fernández del Castillo, Enol; Orviz Fernández, Pablo
In this document we present an implementation of the Open Grid Forum's Open Cloud Computing Interface (OCCI) for OpenStack, namely ooi (Openstack occi interface, 2015) [1]. OCCI is an open standard for management tasks over cloud resources, focused on interoperability, portability and integration. ooi aims to implement this open interface for the OpenStack cloud middleware, promoting interoperability with other OCCI-enabled cloud management frameworks and infrastructures. ooi focuses on being non-invasive with a vanilla OpenStack installation, not tied to a particular OpenStack release version.
Classifying Infrastructure in an Urban Battlespace Using Thermal IR Signatures
2006-11-01
Huntsville, Alabama for sharing their ATLAS data for Atlanta. REFERENCES Bentz , D . P . (2000). A Computer Model to Predict the Surface Temperature...10: 2 2 xt α Δ Δ ≤ (10) 2.2 Implementing the Model Bentz uses a 1- D finite difference grid with a varying number of nodes. The nodes are equally...and rooftops were modeled as a function of time and environmental conditions using 1- D heat transfer theory. The model was implemented in MATLAB
Mass production of extensive air showers for the Pierre Auger Collaboration using Grid Technology
NASA Astrophysics Data System (ADS)
Lozano Bahilo, Julio; Pierre Auger Collaboration
2012-06-01
When ultra-high energy cosmic rays enter the atmosphere they interact producing extensive air showers (EAS) which are the objects studied by the Pierre Auger Observatory. The number of particles involved in an EAS at these energies is of the order of billions and the generation of a single simulated EAS requires many hours of computing time with current processors. In addition, the storage space consumed by the output of one simulated EAS is very high. Therefore we have to make use of Grid resources to be able to generate sufficient quantities of showers for our physics studies in reasonable time periods. We have developed a set of highly automated scripts written in common software scripting languages in order to deal with the high number of jobs which we have to submit regularly to the Grid. In spite of the low number of sites supporting our Virtual Organization (VO) we have reached the top spot on CPU consumption among non LHC (Large Hadron Collider) VOs within EGI (European Grid Infrastructure).
A code inspection process for security reviews
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzoglio, Gabriele; /Fermilab
2009-05-01
In recent years, it has become more and more evident that software threat communities are taking an increasing interest in Grid infrastructures. To mitigate the security risk associated with the increased numbers of attacks, the Grid software development community needs to scale up effort to reduce software vulnerabilities. This can be achieved by introducing security review processes as a standard project management practice. The Grid Facilities Department of the Fermilab Computing Division has developed a code inspection process, tailored to reviewing security properties of software. The goal of the process is to identify technical risks associated with an application andmore » their impact. This is achieved by focusing on the business needs of the application (what it does and protects), on understanding threats and exploit communities (what an exploiter gains), and on uncovering potential vulnerabilities (what defects can be exploited). The desired outcome of the process is an improvement of the quality of the software artifact and an enhanced understanding of possible mitigation strategies for residual risks. This paper describes the inspection process and lessons learned on applying it to Grid middleware.« less
A code inspection process for security reviews
NASA Astrophysics Data System (ADS)
Garzoglio, Gabriele
2010-04-01
In recent years, it has become more and more evident that software threat communities are taking an increasing interest in Grid infrastructures. To mitigate the security risk associated with the increased numbers of attacks, the Grid software development community needs to scale up effort to reduce software vulnerabilities. This can be achieved by introducing security review processes as a standard project management practice. The Grid Facilities Department of the Fermilab Computing Division has developed a code inspection process, tailored to reviewing security properties of software. The goal of the process is to identify technical risks associated with an application and their impact. This is achieved by focusing on the business needs of the application (what it does and protects), on understanding threats and exploit communities (what an exploiter gains), and on uncovering potential vulnerabilities (what defects can be exploited). The desired outcome of the process is an improvement of the quality of the software artifact and an enhanced understanding of possible mitigation strategies for residual risks. This paper describes the inspection process and lessons learned on applying it to Grid middleware.
Overview of ATLAS PanDA Workload Management
NASA Astrophysics Data System (ADS)
Maeno, T.; De, K.; Wenaus, T.; Nilsson, P.; Stewart, G. A.; Walker, R.; Stradling, A.; Caballero, J.; Potekhin, M.; Smith, D.; ATLAS Collaboration
2011-12-01
The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in addition to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.
Overview of ATLAS PanDA Workload Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeno T.; De K.; Wenaus T.
2011-01-01
The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in additionmore » to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Emma M.; Hendrix, Val; Chertkov, Michael
This white paper introduces the application of advanced data analytics to the modernized grid. In particular, we consider the field of machine learning and where it is both useful, and not useful, for the particular field of the distribution grid and buildings interface. While analytics, in general, is a growing field of interest, and often seen as the golden goose in the burgeoning distribution grid industry, its application is often limited by communications infrastructure, or lack of a focused technical application. Overall, the linkage of analytics to purposeful application in the grid space has been limited. In this paper wemore » consider the field of machine learning as a subset of analytical techniques, and discuss its ability and limitations to enable the future distribution grid and the building-to-grid interface. To that end, we also consider the potential for mixing distributed and centralized analytics and the pros and cons of these approaches. Machine learning is a subfield of computer science that studies and constructs algorithms that can learn from data and make predictions and improve forecasts. Incorporation of machine learning in grid monitoring and analysis tools may have the potential to solve data and operational challenges that result from increasing penetration of distributed and behind-the-meter energy resources. There is an exponentially expanding volume of measured data being generated on the distribution grid, which, with appropriate application of analytics, may be transformed into intelligible, actionable information that can be provided to the right actors – such as grid and building operators, at the appropriate time to enhance grid or building resilience, efficiency, and operations against various metrics or goals – such as total carbon reduction or other economic benefit to customers. While some basic analysis into these data streams can provide a wealth of information, computational and human boundaries on performing the analysis are becoming significant, with more data and multi-objective concerns. Efficient applications of analysis and the machine learning field are being considered in the loop.« less
Ko, Sungahn; Zhao, Jieqiong; Xia, Jing; Afzal, Shehzad; Wang, Xiaoyu; Abram, Greg; Elmqvist, Niklas; Kne, Len; Van Riper, David; Gaither, Kelly; Kennedy, Shaun; Tolone, William; Ribarsky, William; Ebert, David S
2014-12-01
We present VASA, a visual analytics platform consisting of a desktop application, a component model, and a suite of distributed simulation components for modeling the impact of societal threats such as weather, food contamination, and traffic on critical infrastructure such as supply chains, road networks, and power grids. Each component encapsulates a high-fidelity simulation model that together form an asynchronous simulation pipeline: a system of systems of individual simulations with a common data and parameter exchange format. At the heart of VASA is the Workbench, a visual analytics application providing three distinct features: (1) low-fidelity approximations of the distributed simulation components using local simulation proxies to enable analysts to interactively configure a simulation run; (2) computational steering mechanisms to manage the execution of individual simulation components; and (3) spatiotemporal and interactive methods to explore the combined results of a simulation run. We showcase the utility of the platform using examples involving supply chains during a hurricane as well as food contamination in a fast food restaurant chain.
JINR cloud infrastructure evolution
NASA Astrophysics Data System (ADS)
Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.
2016-09-01
To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.
Complex Dynamics of the Power Transmission Grid (and other Critical Infrastructures)
NASA Astrophysics Data System (ADS)
Newman, David
2015-03-01
Our modern societies depend crucially on a web of complex critical infrastructures such as power transmission networks, communication systems, transportation networks and many others. These infrastructure systems display a great number of the characteristic properties of complex systems. Important among these characteristics, they exhibit infrequent large cascading failures that often obey a power law distribution in their probability versus size. This power law behavior suggests that conventional risk analysis does not apply to these systems. It is thought that much of this behavior comes from the dynamical evolution of the system as it ages, is repaired, upgraded, and as the operational rules evolve with human decision making playing an important role in the dynamics. In this talk, infrastructure systems as complex dynamical systems will be introduced and some of their properties explored. The majority of the talk will then be focused on the electric power transmission grid though many of the results can be easily applied to other infrastructures. General properties of the grid will be discussed and results from a dynamical complex systems power transmission model will be compared with real world data. Then we will look at a variety of uses of this type of model. As examples, we will discuss the impact of size and network homogeneity on the grid robustness, the change in risk of failure as generation mix (more distributed vs centralized for example) changes, as well as the effect of operational changes such as the changing the operational risk aversion or grid upgrade strategies. One of the important outcomes from this work is the realization that ``improvements'' in the system components and operational efficiency do not always improve the system robustness, and can in fact greatly increase the risk, when measured as a risk of large failure.
NASA Astrophysics Data System (ADS)
Abad Lopez, Carlos Adrian
Current electricity infrastructure is being stressed from several directions -- high demand, unreliable supply, extreme weather conditions, accidents, among others. Infrastructure planners have, traditionally, focused on only the cost of the system; today, resilience and sustainability are increasingly becoming more important. In this dissertation, we develop computational tools for efficiently managing electricity resources to help create a more reliable and sustainable electrical grid. The tools we present in this work will help electric utilities coordinate demand to allow the smooth and large scale integration of renewable sources of energy into traditional grids, as well as provide infrastructure planners and operators in developing countries a framework for making informed planning and control decisions in the presence of uncertainty. Demand-side management is considered as the most viable solution for maintaining grid stability as generation from intermittent renewable sources increases. Demand-side management, particularly demand response (DR) programs that attempt to alter the energy consumption of customers either by using price-based incentives or up-front power interruption contracts, is more cost-effective and sustainable in addressing short-term supply-demand imbalances when compared with the alternative that involves increasing fossil fuel-based fast spinning reserves. An essential step in compensating participating customers and benchmarking the effectiveness of DR programs is to be able to independently detect the load reduction from observed meter data. Electric utilities implementing automated DR programs through direct load control switches are also interested in detecting the reduction in demand to efficiently pinpoint non-functioning devices to reduce maintenance costs. We develop sparse optimization methods for detecting a small change in the demand for electricity of a customer in response to a price change or signal from the utility, dynamic learning methods for scheduling the maintenance of direct load control switches whose operating state is not directly observable and can only be inferred from the metered electricity consumption, and machine learning methods for accurately forecasting the load of hundreds of thousands of residential, commercial and industrial customers. These algorithms have been implemented in the software system provided by AutoGrid, Inc., and this system has helped several utilities in the Pacific Northwest, Oklahoma, California and Texas, provide more reliable power to their customers at significantly reduced prices. Providing power to widely spread out communities in developing countries using the conventional power grid is not economically feasible. The most attractive alternative source of affordable energy for these communities is solar micro-grids. We discuss risk-aware robust methods to optimally size and operate solar micro-grids in the presence of uncertain demand and uncertain renewable generation. These algorithms help system operators to increase their revenue while making their systems more resilient to inclement weather conditions.
NASA Technical Reports Server (NTRS)
Moore, Reagan W.
2004-01-01
The long-term preservation of digital entities requires mechanisms to manage the authenticity of massive data collections that are written to archival storage systems. Preservation environments impose authenticity constraints and manage the evolution of the storage system technology by building infrastructure independent solutions. This seeming paradox, the need for large archives, while avoiding dependence upon vendor specific solutions, is resolved through use of data grid technology. Data grids provide the storage repository abstractions that make it possible to migrate collections between vendor specific products, while ensuring the authenticity of the archived data. Data grids provide the software infrastructure that interfaces vendor-specific storage archives to preservation environments.
NASA Technical Reports Server (NTRS)
Mineck, Raymond E.; Thomas, James L.; Biedron, Robert T.; Diskin, Boris
2005-01-01
FMG3D (full multigrid 3 dimensions) is a pilot computer program that solves equations of fluid flow using a finite difference representation on a structured grid. Infrastructure exists for three dimensions but the current implementation treats only two dimensions. Written in Fortran 90, FMG3D takes advantage of the recursive subroutine feature, dynamic memory allocation, and structured-programming constructs of that language. FMG3D supports multi-block grids with three types of block-to-block interfaces: periodic, C-zero, and C-infinity. For all three types, grid points must match at interfaces. For periodic and C-infinity types, derivatives of grid metrics must be continuous at interfaces. The available equation sets are as follows: scalar elliptic equations, scalar convection equations, and the pressure-Poisson formulation of the Navier-Stokes equations for an incompressible fluid. All the equation sets are implemented with nonzero forcing functions to enable the use of user-specified solutions to assist in verification and validation. The equations are solved with a full multigrid scheme using a full approximation scheme to converge the solution on each succeeding grid level. Restriction to the next coarser mesh uses direct injection for variables and full weighting for residual quantities; prolongation of the coarse grid correction from the coarse mesh to the fine mesh uses bilinear interpolation; and prolongation of the coarse grid solution uses bicubic interpolation.
2011-03-01
they can continue to leverage these capabilities (building Smart Grid infrastructure and providing Internet connectivity to every home ) while ensuring...21 Figure 9. Smart Grid Interoperability .............................................................................. 22 Figure 10. Smart ...Grid Integration .................................................................................... 24 Figure 11. National Smart Grid Initiatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Ching-Yen; Youn, Edward; Chynoweth, Joshua
As Electric Vehicles (EVs) increase, charging infrastructure becomes more important. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuit by multiplexing power and providing charge control and safety systems to prevent electric shock. The safety design is implemented in different levels that include both the servermore » and the smart charging stations. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV charging management system.« less
caGrid 1.0: A Grid Enterprise Architecture for Cancer Research
Oster, Scott; Langella, Stephen; Hastings, Shannon; Ervin, David; Madduri, Ravi; Kurc, Tahsin; Siebenlist, Frank; Covitz, Peter; Shanbhag, Krishnakant; Foster, Ian; Saltz, Joel
2007-01-01
caGrid is the core Grid architecture of the NCI-sponsored cancer Biomedical Informatics Grid (caBIGTM) program. The current release, caGrid version 1.0, is developed as the production Grid software infrastructure of caBIGTM. Based on feedback from adopters of the previous version (caGrid 0.5), it has been significantly enhanced with new features and improvements to existing components. This paper presents an overview of caGrid 1.0, its main components, and enhancements over caGrid 0.5. PMID:18693901
Changing the batch system in a Tier 1 computing center: why and how
NASA Astrophysics Data System (ADS)
Chierici, Andrea; Dal Pra, Stefano
2014-06-01
At the Italian Tierl Center at CNAF we are evaluating the possibility to change the current production batch system. This activity is motivated mainly because we are looking for a more flexible licensing model as well as to avoid vendor lock-in. We performed a technology tracking exercise and among many possible solutions we chose to evaluate Grid Engine as an alternative because its adoption is increasing in the HEPiX community and because it's supported by the EMI middleware that we currently use on our computing farm. Another INFN site evaluated Slurm and we will compare our results in order to understand pros and cons of the two solutions. We will present the results of our evaluation of Grid Engine, in order to understand if it can fit the requirements of a Tier 1 center, compared to the solution we adopted long ago. We performed a survey and a critical re-evaluation of our farming infrastructure: many production softwares (accounting and monitoring on top of all) rely on our current solution and changing it required us to write new wrappers and adapt the infrastructure to the new system. We believe the results of this investigation can be very useful to other Tier-ls and Tier-2s centers in a similar situation, where the effort of switching may appear too hard to stand. We will provide guidelines in order to understand how difficult this operation can be and how long the change may take.
Caballero, Víctor; Vernet, David; Zaballos, Agustín; Corral, Guiomar
2018-01-30
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid's Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.
Unlocking the potential of smart grid technologies with behavioral science
Sintov, Nicole D.; Schultz, P. Wesley
2015-01-01
Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizing the impact of smart grid technologies. In this paper, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings. PMID:25914666
Unlocking the potential of smart grid technologies with behavioral science.
Sintov, Nicole D; Schultz, P Wesley
2015-01-01
Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizing the impact of smart grid technologies. In this paper, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings.
Unlocking the potential of smart grid technologies with behavioral science
Sintov, Nicole D.; Schultz, P. Wesley
2015-04-09
Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizingmore » the impact of smart grid technologies. In this study, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings.« less
Unlocking the potential of smart grid technologies with behavioral science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sintov, Nicole D.; Schultz, P. Wesley
Smart grid systems aim to provide a more stable and adaptable electricity infrastructure, and to maximize energy efficiency. Grid-linked technologies vary widely in form and function, but generally share common potentials: to reduce energy consumption via efficiency and/or curtailment, to shift use to off-peak times of day, and to enable distributed storage and generation options. Although end users are central players in these systems, they are sometimes not central considerations in technology or program design, and in some cases, their motivations for participating in such systems are not fully appreciated. Behavioral science can be instrumental in engaging end-users and maximizingmore » the impact of smart grid technologies. In this study, we present emerging technologies made possible by a smart grid infrastructure, and for each we highlight ways in which behavioral science can be applied to enhance their impact on energy savings.« less
NASA Astrophysics Data System (ADS)
Bagnasco, S.; Berzano, D.; Guarise, A.; Lusso, S.; Masera, M.; Vallero, S.
2015-12-01
The INFN computing centre in Torino hosts a private Cloud, which is managed with the OpenNebula cloud controller. The infrastructure offers Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) services to different scientific computing applications. The main stakeholders of the facility are a grid Tier-2 site for the ALICE collaboration at LHC, an interactive analysis facility for the same experiment and a grid Tier-2 site for the BESIII collaboration, plus an increasing number of other small tenants. The dynamic allocation of resources to tenants is partially automated. This feature requires detailed monitoring and accounting of the resource usage. We set up a monitoring framework to inspect the site activities both in terms of IaaS and applications running on the hosted virtual instances. For this purpose we used the ElasticSearch, Logstash and Kibana (ELK) stack. The infrastructure relies on a MySQL database back-end for data preservation and to ensure flexibility to choose a different monitoring solution if needed. The heterogeneous accounting information is transferred from the database to the ElasticSearch engine via a custom Logstash plugin. Each use-case is indexed separately in ElasticSearch and we setup a set of Kibana dashboards with pre-defined queries in order to monitor the relevant information in each case. For the IaaS metering, we developed sensors for the OpenNebula API. The IaaS level information gathered through the API is sent to the MySQL database through an ad-hoc developed RESTful web service. Moreover, we have developed a billing system for our private Cloud, which relies on the RabbitMQ message queue for asynchronous communication to the database and on the ELK stack for its graphical interface. The Italian Grid accounting framework is also migrating to a similar set-up. Concerning the application level, we used the Root plugin TProofMonSenderSQL to collect accounting data from the interactive analysis facility. The BESIII virtual instances used to be monitored with Zabbix, as a proof of concept we also retrieve the information contained in the Zabbix database. In this way we have achieved a uniform monitoring interface for both the IaaS and the scientific applications, mostly leveraging off-the-shelf tools. At present, we are working to define a model for monitoring-as-a-service, based on the tools described above, which the Cloud tenants can easily configure to suit their specific needs.
NaradaBrokering as Middleware Fabric for Grid-based Remote Visualization Services
NASA Astrophysics Data System (ADS)
Pallickara, S.; Erlebacher, G.; Yuen, D.; Fox, G.; Pierce, M.
2003-12-01
Remote Visualization Services (RVS) have tended to rely on approaches based on the client server paradigm. The simplicity in these approaches is offset by problems such as single-point-of-failures, scaling and availability. Furthermore, as the complexity, scale and scope of the services hosted on this paradigm increase, this approach becomes increasingly unsuitable. We propose a scheme based on top of a distributed brokering infrastructure, NaradaBrokering, which comprises a distributed network of broker nodes. These broker nodes are organized in a cluster-based architecture that can scale to very large sizes. The broker network is resilient to broker failures and efficiently routes interactions to entities that expressed an interest in them. In our approach to RVS, services advertise their capabilities to the broker network, which manages these service advertisements. Among the services considered within our system are those that perform graphic transformations, mediate access to specialized datasets and finally those that manage the execution of specified tasks. There could be multiple instances of each of these services and the system ensures that load for a given service is distributed efficiently over these service instances. Among the features provided in our approach are efficient discovery of services and asynchronous interactions between services and service requestors (which could themselves be other services). Entities need not be online during the execution of the service request. The system also ensures that entities can be notified about task executions, partial results and failures that might have taken place during service execution. The system also facilitates specification of task overrides, distribution of execution results to alternate devices (which were not used to originally request service execution) and to multiple users. These RVS services could of course be either OGSA (Open Grid Services Architecture) based Grid services or traditional Web services. The brokering infrastructure will manage the service advertisements and the invocation of these services. This scheme ensures that the fundamental Grid computing concept is met - provide computing capabilities of those that are willing to provide it to those that seek the same. {[1]} The NaradaBrokering Project: http://www.naradabrokering.org
Enabling opportunistic resources for CMS Computing Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hufnagel, Dirk
With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize opportunistic resources resources not owned by, or a priori configured for CMS to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enablemore » access and bring the CMS environment into these non CMS resources. Finally, we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.« less
Enabling opportunistic resources for CMS Computing Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hufnagel, Dick
With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize “opportunistic” resources — resources not owned by, or a priori configured for CMS — to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are usedmore » to enable access and bring the CMS environment into these non CMS resources. Here we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.« less
Enabling opportunistic resources for CMS Computing Operations
Hufnagel, Dirk
2015-12-23
With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize opportunistic resources resources not owned by, or a priori configured for CMS to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enablemore » access and bring the CMS environment into these non CMS resources. Finally, we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.« less
Developing a European grid infrastructure for cancer research: vision, architecture and services
Tsiknakis, M; Rueping, S; Martin, L; Sfakianakis, S; Bucur, A; Sengstag, T; Brochhausen, M; Pucaski, J; Graf, N
2007-01-01
Life sciences are currently at the centre of an information revolution. The nature and amount of information now available opens up areas of research that were once in the realm of science fiction. During this information revolution, the data-gathering capabilities have greatly surpassed the data-analysis techniques. Data integration across heterogeneous data sources and data aggregation across different aspects of the biomedical spectrum, therefore, is at the centre of current biomedical and pharmaceutical R&D. This paper reports on original results from the ACGT integrated project, focusing on the design and development of a European Biomedical Grid infrastructure in support of multi-centric, post-genomic clinical trials (CTs) on cancer. Post-genomic CTs use multi-level clinical and genomic data and advanced computational analysis and visualization tools to test hypotheses in trying to identify the molecular reasons for a disease and the stratification of patients in terms of treatment. The paper provides a presentation of the needs of users involved in post-genomic CTs and presents indicative scenarios, which drive the requirements of the engineering phase of the project. Subsequently, the initial architecture specified by the project is presented, and its services are classified and discussed. A range of such key services, including the Master Ontology on sCancer, which lie at the heart of the integration architecture of the project, is presented. Special efforts have been taken to describe the methodological and technological framework of the project, enabling the creation of a legally compliant and trustworthy infrastructure. Finally, a short discussion of the forthcoming work is included, and the potential involvement of the cancer research community in further development or utilization of the infrastructure is described. PMID:22275955
Real-Time Optimization and Control of Next-Generation Distribution
Infrastructure | Grid Modernization | NREL Real-Time Optimization and Control of Next -Generation Distribution Infrastructure Real-Time Optimization and Control of Next-Generation Distribution Infrastructure This project develops innovative, real-time optimization and control methods for next-generation
Processing of the WLCG monitoring data using NoSQL
NASA Astrophysics Data System (ADS)
Andreeva, J.; Beche, A.; Belov, S.; Dzhunov, I.; Kadochnikov, I.; Karavakis, E.; Saiz, P.; Schovancova, J.; Tuckett, D.
2014-06-01
The Worldwide LHC Computing Grid (WLCG) today includes more than 150 computing centres where more than 2 million jobs are being executed daily and petabytes of data are transferred between sites. Monitoring the computing activities of the LHC experiments, over such a huge heterogeneous infrastructure, is extremely demanding in terms of computation, performance and reliability. Furthermore, the generated monitoring flow is constantly increasing, which represents another challenge for the monitoring systems. While existing solutions are traditionally based on Oracle for data storage and processing, recent developments evaluate NoSQL for processing large-scale monitoring datasets. NoSQL databases are getting increasingly popular for processing datasets at the terabyte and petabyte scale using commodity hardware. In this contribution, the integration of NoSQL data processing in the Experiment Dashboard framework is described along with first experiences of using this technology for monitoring the LHC computing activities.
Honda, Kiyoshi; Shrestha, Aadit; Witayangkurn, Apichon; Chinnachodteeranun, Rassarin; Shimamura, Hiroshi
2009-01-01
The fieldserver is an Internet based observation robot that can provide an outdoor solution for monitoring environmental parameters in real-time. The data from its sensors can be collected to a central server infrastructure and published on the Internet. The information from the sensor network will contribute to monitoring and modeling on various environmental issues in Asia, including agriculture, food, pollution, disaster, climate change etc. An initiative called Sensor Asia is developing an infrastructure called Sensor Service Grid (SSG), which integrates fieldservers and Web GIS to realize easy and low cost installation and operation of ubiquitous field sensor networks. PMID:22574018
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, A.; Kabel, A.; Lee, L.
Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell)more » approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yocum, D.R.; Berman, E.; Canal, P.
2007-05-01
As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.
Security architecture for health grid using ambient intelligence.
Naqvi, S; Riguidel, M; Demeure, I
2005-01-01
To propose a novel approach of incorporating ambient intelligence in the health grid security architecture. Security concerns are severely impeding the grid community effort in spreading its wings in health applications. In this paper, we have proposed a high level approach to incorporate ambient intelligence for health grid security architecture and have argued that this will significantly improve the current state of the grid security paradigm with an enhanced user-friendly environment. We believe that the time is right to shift the onus of traditional security mechanisms onto the new technologies. The incorporation of ambient intelligence in the security architecture of a grid will not only render a security paradigm robust but also provide an attractive vision for the future of computing by bringing the two worlds together. In this article we propose an evolutionary approach of utilizing smart devices for grid security architecture. We argue that such an infrastructure will impart unique features to the existing grid security paradigms by offering fortified and relentless monitoring. This new security architecture will be comprehensive in nature but will not be cumbersome for the users due to its typical characteristics of not prying into their lives and adapting to their needs. We have identified a new paradigm of the security architecture for a health grid that will not only render a security mechanism robust but will also provide the high levels of user-friendliness. As our approach is a first contribution to this problem, a number of other issues for future research remain open. However, the prospects are fascinating.
Using IKAROS as a data transfer and management utility within the KM3NeT computing model
NASA Astrophysics Data System (ADS)
Filippidis, Christos; Cotronis, Yiannis; Markou, Christos
2016-04-01
KM3NeT is a future European deep-sea research infrastructure hosting a new generation neutrino detectors that - located at the bottom of the Mediterranean Sea - will open a new window on the universe and answer fundamental questions both in particle physics and astrophysics. IKAROS is a framework that enables creating scalable storage formations on-demand and helps addressing several limitations that the current file systems face when dealing with very large scale infrastructures. It enables creating ad-hoc nearby storage formations and can use a huge number of I/O nodes in order to increase the available bandwidth (I/O and network). IKAROS unifies remote and local access in the overall data flow, by permitting direct access to each I/O node. In this way we can handle the overall data flow at the network layer, limiting the interaction with the operating system. This approach allows virtually connecting, at the users level, the several different computing facilities used (Grids, Clouds, HPCs, Data Centers, Local computing Clusters and personal storage devices), on-demand, based on the needs, by using well known standards and protocols, like HTTP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.
The climate and weather data science community gathered December 3–5, 2013, at Lawrence Livermore National Laboratory, in Livermore, California, for the third annual Earth System Grid Federation (ESGF) and Ultra-scale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Meeting, which was hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UV-CDAT are global collaborations designed to develop a new generation of open-source software infrastructure that provides distributed access and analysis to observed andmore » simulated data from the climate and weather communities. The tools and infrastructure developed under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change, while the F2F meetings help to build a stronger climate and weather data science community and stronger federated software infrastructure. The 2013 F2F meeting determined requirements for existing and impending national and international community projects; enhancements needed for data distribution, analysis, and visualization infrastructure; and standards and resources needed for better collaborations.« less
NASA Astrophysics Data System (ADS)
Grigoras, Costin; Carminati, Federico; Vladimirovna Datskova, Olga; Schreiner, Steffen; Lee, Sehoon; Zhu, Jianlin; Gheata, Mihaela; Gheata, Andrei; Saiz, Pablo; Betev, Latchezar; Furano, Fabrizio; Mendez Lorenzo, Patricia; Grigoras, Alina Gabriela; Bagnasco, Stefano; Peters, Andreas Joachim; Saiz Santos, Maria Dolores
2011-12-01
With the LHC and ALICE entering a full operation and production modes, the amount of Simulation and RAW data processing and end user analysis computational tasks are increasing. The efficient management of all these tasks, all of which have large differences in lifecycle, amounts of processed data and methods to analyze the end result, required the development and deployment of new tools in addition to the already existing Grid infrastructure. To facilitate the management of the large scale simulation and raw data reconstruction tasks, ALICE has developed a production framework called a Lightweight Production Manager (LPM). The LPM is automatically submitting jobs to the Grid based on triggers and conditions, for example after a physics run completion. It follows the evolution of the job and publishes the results on the web for worldwide access by the ALICE physicists. This framework is tightly integrated with the ALICE Grid framework AliEn. In addition to the publication of the job status, LPM is also allowing a fully authenticated interface to the AliEn Grid catalogue, to browse and download files, and in the near future will provide simple types of data analysis through ROOT plugins. The framework is also being extended to allow management of end user jobs.
1001 Ways to run AutoDock Vina for virtual screening
NASA Astrophysics Data System (ADS)
Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D.
2016-03-01
Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.
1001 Ways to run AutoDock Vina for virtual screening.
Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D
2016-03-01
Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.
Design and implementation of a fault-tolerant and dynamic metadata database for clinical trials
NASA Astrophysics Data System (ADS)
Lee, J.; Zhou, Z.; Talini, E.; Documet, J.; Liu, B.
2007-03-01
In recent imaging-based clinical trials, quantitative image analysis (QIA) and computer-aided diagnosis (CAD) methods are increasing in productivity due to higher resolution imaging capabilities. A radiology core doing clinical trials have been analyzing more treatment methods and there is a growing quantity of metadata that need to be stored and managed. These radiology centers are also collaborating with many off-site imaging field sites and need a way to communicate metadata between one another in a secure infrastructure. Our solution is to implement a data storage grid with a fault-tolerant and dynamic metadata database design to unify metadata from different clinical trial experiments and field sites. Although metadata from images follow the DICOM standard, clinical trials also produce metadata specific to regions-of-interest and quantitative image analysis. We have implemented a data access and integration (DAI) server layer where multiple field sites can access multiple metadata databases in the data grid through a single web-based grid service. The centralization of metadata database management simplifies the task of adding new databases into the grid and also decreases the risk of configuration errors seen in peer-to-peer grids. In this paper, we address the design and implementation of a data grid metadata storage that has fault-tolerance and dynamic integration for imaging-based clinical trials.
Trends in life science grid: from computing grid to knowledge grid.
Konagaya, Akihiko
2006-12-18
Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community.
Trends in life science grid: from computing grid to knowledge grid
Konagaya, Akihiko
2006-01-01
Background Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. Results This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. Conclusion Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community. PMID:17254294
Vernet, David; Corral, Guiomar
2018-01-01
Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29385748
Applications of the pipeline environment for visual informatics and genomics computations
2011-01-01
Background Contemporary informatics and genomics research require efficient, flexible and robust management of large heterogeneous data, advanced computational tools, powerful visualization, reliable hardware infrastructure, interoperability of computational resources, and detailed data and analysis-protocol provenance. The Pipeline is a client-server distributed computational environment that facilitates the visual graphical construction, execution, monitoring, validation and dissemination of advanced data analysis protocols. Results This paper reports on the applications of the LONI Pipeline environment to address two informatics challenges - graphical management of diverse genomics tools, and the interoperability of informatics software. Specifically, this manuscript presents the concrete details of deploying general informatics suites and individual software tools to new hardware infrastructures, the design, validation and execution of new visual analysis protocols via the Pipeline graphical interface, and integration of diverse informatics tools via the Pipeline eXtensible Markup Language syntax. We demonstrate each of these processes using several established informatics packages (e.g., miBLAST, EMBOSS, mrFAST, GWASS, MAQ, SAMtools, Bowtie) for basic local sequence alignment and search, molecular biology data analysis, and genome-wide association studies. These examples demonstrate the power of the Pipeline graphical workflow environment to enable integration of bioinformatics resources which provide a well-defined syntax for dynamic specification of the input/output parameters and the run-time execution controls. Conclusions The LONI Pipeline environment http://pipeline.loni.ucla.edu provides a flexible graphical infrastructure for efficient biomedical computing and distributed informatics research. The interactive Pipeline resource manager enables the utilization and interoperability of diverse types of informatics resources. The Pipeline client-server model provides computational power to a broad spectrum of informatics investigators - experienced developers and novice users, user with or without access to advanced computational-resources (e.g., Grid, data), as well as basic and translational scientists. The open development, validation and dissemination of computational networks (pipeline workflows) facilitates the sharing of knowledge, tools, protocols and best practices, and enables the unbiased validation and replication of scientific findings by the entire community. PMID:21791102
NASA Astrophysics Data System (ADS)
Huang, Bor-Shouh; Liu, Chun-Chi; Yen, Eric; Liang, Wen-Tzong; Lin, Simon C.; Huang, Win-Gee; Lee, Shiann-Jong; Chen, Hsin-Yen
Experience from the 1994 giant Sumatra earthquake, seismic and tsunami hazard have been considered as important issues in the South China Sea and its surrounding region, and attracted many seismologist's interesting. Currently, more than 25 broadband seismic instruments are currently operated by Institute of Earth Sciences, Academia Sinica in northern Vietnam to study the geodynamic evolution of the Red river fracture zone and rearranged to distribute to southern Vietnam recently to study the geodynamic evolution and its deep structures of the South China Sea. Similar stations are planned to deploy in Philippines in near future. In planning, some high quality stations may be as permanent stations and added continuous GPS observations, and instruments to be maintained and operated by several cooperation institutes, for instance, Institute of Geophysics, Vietnamese Acadamy of Sciences and Technology in Vietnam and Philippine Institute of Volcanology and Seismology in Philippines. Finally, those stations will be planed to upgrade as real time transmission stations for earthquake monitoring and tsunami warning. However, high speed data transfer within different agencies is always a critical issue for successful network operation. By taking advantage of both EGEE and EUAsiaGrid e-Infrastructure, Academia Sinica Grid Computing Centre coordinates researchers from various Asian countries to construct a platform to high performance data transfer for huge parallel computation. Efforts from this data service and a newly build earthquake data centre for data management may greatly improve seismic network performance. Implementation of Grid infrastructure and e-science issues in this region may assistant development of earthquake research, monitor and natural hazard reduction. In the near future, we will search for new cooperation continually from the surrounding countries of the South China Sea to install new seismic stations to construct a complete seismic network of the South China Sea and encourage studies for earthquake sciences and natural hazard reductions.
Cyberwarfare on the Electricity Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murarka, N.; Ramesh, V.C.
2000-03-20
The report analyzes the possibility of cyberwarfare on the electricity infrastructure. The ongoing deregulation of the electricity industry makes the power grid all the more vulnerable to cyber attacks. The report models the power system information system components, models potential threats and protective measures. It therefore offers a framework for infrastructure protection.
A policy system for Grid Management and Monitoring
NASA Astrophysics Data System (ADS)
Stagni, Federico; Santinelli, Roberto; LHCb Collaboration
2011-12-01
Organizations using a Grid computing model are faced with non-traditional administrative challenges: the heterogeneous nature of the underlying resources requires professionals acting as Grid Administrators. Members of a Virtual Organization (VO) can use a subset of available resources and services in the grid infrastructure and in an ideal world, the more resoures are exploited the better. In the real world, the less faulty services, the better: experienced Grid administrators apply procedures for adding and removing services, based on their status, as it is reported by an ever-growing set of monitoring tools. When a procedure is agreed and well-exercised, a formal policy could be derived. For this reason, using the DIRAC framework in the LHCb collaboration, we developed a policy system that can enforce management and operational policies, in a VO-specific fashion. A single policy makes an assessment on the status of a subject, relative to one or more monitoring information. Subjects of the policies are monitored entities of an established Grid ontology. The status of a same entity is evaluated against a number of policies, whose results are then combined by a Policy Decision Point. Such results are enforced in a Policy Enforcing Point, which provides plug-ins for actions, like raising alarms, sending notifications, automatic addition and removal of services and resources from the Grid mask. Policy results are shown in the web portal, and site-specific views are provided also. This innovative system provides advantages in terms of procedures automation, information aggregation and problem solving.
Nomadic migration : a service environment for autonomic computing on the Grid
NASA Astrophysics Data System (ADS)
Lanfermann, Gerd
2003-06-01
In recent years, there has been a dramatic increase in available compute capacities. However, these “Grid resources” are rarely accessible in a continuous stream, but rather appear scattered across various machine types, platforms and operating systems, which are coupled by networks of fluctuating bandwidth. It becomes increasingly difficult for scientists to exploit available resources for their applications. We believe that intelligent, self-governing applications should be able to select resources in a dynamic and heterogeneous environment: Migrating applications determine a resource when old capacities are used up. Spawning simulations launch algorithms on external machines to speed up the main execution. Applications are restarted as soon as a failure is detected. All these actions can be taken without human interaction. A distributed compute environment possesses an intrinsic unreliability. Any application that interacts with such an environment must be able to cope with its failing components: deteriorating networks, crashing machines, failing software. We construct a reliable service infrastructure by endowing a service environment with a peer-to-peer topology. This “Grid Peer Services” infrastructure accommodates high-level services like migration and spawning, as well as fundamental services for application launching, file transfer and resource selection. It utilizes existing Grid technology wherever possible to accomplish its tasks. An Application Information Server acts as a generic information registry to all participants in a service environment. The service environment that we developed, allows applications e.g. to send a relocation requests to a migration server. The server selects a new computer based on the transmitted resource requirements. It transfers the application's checkpoint and binary to the new host and resumes the simulation. Although the Grid's underlying resource substrate is not continuous, we achieve persistent computations on Grids by relocating the application. We show with our real-world examples that a traditional genome analysis program can be easily modified to perform self-determined migrations in this service environment. In den vergangenen Jahren ist es zu einer dramatischen Vervielfachung der verfügbaren Rechenzeit gekommen. Diese 'Grid Ressourcen' stehen jedoch nicht als kontinuierlicher Strom zur Verfügung, sondern sind über verschiedene Maschinentypen, Plattformen und Betriebssysteme verteilt, die jeweils durch Netzwerke mit fluktuierender Bandbreite verbunden sind. Es wird für Wissenschaftler zunehmend schwieriger, die verfügbaren Ressourcen für ihre Anwendungen zu nutzen. Wir glauben, dass intelligente, selbstbestimmende Applikationen in der Lage sein sollten, ihre Ressourcen in einer dynamischen und heterogenen Umgebung selbst zu wählen: Migrierende Applikationen suchen eine neue Ressource, wenn die alte aufgebraucht ist. 'Spawning'-Anwendungen lassen Algorithmen auf externen Maschinen laufen, um die Hauptanwendung zu beschleunigen. Applikationen werden neu gestartet, sobald ein Absturz endeckt wird. Alle diese Verfahren können ohne menschliche Interaktion erfolgen. Eine verteilte Rechenumgebung besitzt eine natürliche Unverlässlichkeit. Jede Applikation, die mit einer solchen Umgebung interagiert, muss auf die gestörten Komponenten reagieren können: schlechte Netzwerkverbindung, abstürzende Maschinen, fehlerhafte Software. Wir konstruieren eine verlässliche Serviceinfrastruktur, indem wir der Serviceumgebung eine 'Peer-to-Peer'-Topology aufprägen. Diese “Grid Peer Service” Infrastruktur beinhaltet Services wie Migration und Spawning, als auch Services zum Starten von Applikationen, zur Dateiübertragung und Auswahl von Rechenressourcen. Sie benutzt existierende Gridtechnologie wo immer möglich, um ihre Aufgabe durchzuführen. Ein Applikations-Information- Server arbeitet als generische Registratur für alle Teilnehmer in der Serviceumgebung. Die Serviceumgebung, die wir entwickelt haben, erlaubt es Applikationen z.B. eine Relokationsanfrage an einen Migrationsserver zu stellen. Der Server sucht einen neuen Computer, basierend auf den übermittelten Ressourcen-Anforderungen. Er transferiert den Statusfile des Applikation zu der neuen Maschine und startet die Applikation neu. Obwohl das umgebende Ressourcensubstrat nicht kontinuierlich ist, können wir kontinuierliche Berechnungen auf Grids ausführen, indem wir die Applikation migrieren. Wir zeigen mit realistischen Beispielen, wie sich z.B. ein traditionelles Genom-Analyse-Programm leicht modifizieren lässt, um selbstbestimmte Migrationen in dieser Serviceumgebung durchzuführen.
NASA Astrophysics Data System (ADS)
Painter, S.; Moulton, J. D.; Berndt, M.; Coon, E.; Garimella, R.; Lewis, K. C.; Manzini, G.; Mishra, P.; Travis, B. J.; Wilson, C. J.
2012-12-01
The frozen soils of the Arctic and subarctic regions contain vast amounts of stored organic carbon. This carbon is vulnerable to release to the atmosphere as temperatures warm and permafrost degrades. Understanding the response of the subsurface and surface hydrologic system to degrading permafrost is key to understanding the rate, timing, and chemical form of potential carbon releases to the atmosphere. Simulating the hydrologic system in degrading permafrost regions is challenging because of the potential for topographic evolution and associated drainage network reorganization as permafrost thaws and massive ground ice melts. The critical process models required for simulating hydrology include subsurface thermal hydrology of freezing/thawing soils, thermal processes within ice wedges, mechanical deformation processes, overland flow, and surface energy balances including snow dynamics. A new simulation tool, the Arctic Terrestrial Simulator (ATS), is being developed to simulate these coupled processes. The computational infrastructure must accommodate fully unstructured grids that track evolving topography, allow accurate solutions on distorted grids, provide robust and efficient solutions on highly parallel computer architectures, and enable flexibility in the strategies for coupling among the various processes. The ATS is based on Amanzi (Moulton et al. 2012), an object-oriented multi-process simulator written in C++ that provides much of the necessary computational infrastructure. Status and plans for the ATS including major hydrologic process models and validation strategies will be presented. Highly parallel simulations of overland flow using high-resolution digital elevation maps of polygonal patterned ground landscapes demonstrate the feasibility of the approach. Simulations coupling three-phase subsurface thermal hydrology with a simple thaw-induced subsidence model illustrate the strong feedbacks among the processes. D. Moulton, M. Berndt, M. Day, J. Meza, et al., High-Level Design of Amanzi, the Multi-Process High Performance Computing Simulator, Technical Report ASCEM-HPC-2011-03-1, DOE Environmental Management, 2012.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalimunthe, Amty Ma’rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia
Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for amore » renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become ‘smart’. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.« less
Assistive Awareness in Smart Grids
NASA Astrophysics Data System (ADS)
Bourazeri, Aikaterini; Almajano, Pablo; Rodriguez, Inmaculada; Lopez-Sanchez, Maite
The following sections are included: * Introduction * Background * The User-Infrastructure Interface * User Engagement through Assistive Awareness * Research Impact * Serious Games for Smart Grids * Serious Game Technology * Game scenario * Game mechanics * Related Work * Summary and Conclusions
Cybersecurity Awareness in the Power Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean; Franklin, Lyndsey; Le Blanc, Katya L.
2016-07-10
We report on a series of interviews and observations conducted with control room dispatchers in a bulk electrical system. These dispatchers must react quickly to incidents as they happen in order to ensure the reliability and safe operation of the power grid. They do not have the time to evaluate incidents for signs of cyber-attack as part of their initial response. Cyber-attack detection involves multiple personnel from a variety of roles at both local and regional levels. Smart grid technology will improve detection and defense capabilities of the future grid, however, the current infrastructure remains a mixture of old andmore » new equipment which will continue to operate for some time. Thus, research still needs to focus on strategies for the detection of malicious activity on current infrastructure as well as protection and remediation.« less
Mesoscale Climate Evaluation Using Grid Computing
NASA Astrophysics Data System (ADS)
Campos Velho, H. F.; Freitas, S. R.; Souto, R. P.; Charao, A. S.; Ferraz, S.; Roberti, D. R.; Streck, N.; Navaux, P. O.; Maillard, N.; Collischonn, W.; Diniz, G.; Radin, B.
2012-04-01
The CLIMARS project is focused to establish an operational environment for seasonal climate prediction for the Rio Grande do Sul state, Brazil. The dynamical downscaling will be performed with the use of several software platforms and hardware infrastructure to carry out the investigation on mesoscale of the global change impact. The grid computing takes advantage of geographically spread out computer systems, connected by the internet, for enhancing the power of computation. The ensemble climate prediction is an appropriated application for processing on grid computing, because the integration of each ensemble member does not have a dependency on information from another ensemble members. The grid processing is employed to compute the 20-year climatology and the long range simulations under ensemble methodology. BRAMS (Brazilian Regional Atmospheric Model) is a mesoscale model developed from a version of the RAMS (from the Colorado State University - CSU, USA). BRAMS model is the tool for carrying out the dynamical downscaling from the IPCC scenarios. Long range BRAMS simulations will provide data for some climate (data) analysis, and supply data for numerical integration of different models: (a) Regime of the extreme events for temperature and precipitation fields: statistical analysis will be applied on the BRAMS data, (b) CCATT-BRAMS (Coupled Chemistry Aerosol Tracer Transport - BRAMS) is an environmental prediction system that will be used to evaluate if the new standards of temperature, rain regime, and wind field have a significant impact on the pollutant dispersion in the analyzed regions, (c) MGB-IPH (Portuguese acronym for the Large Basin Model (MGB), developed by the Hydraulic Research Institute, (IPH) from the Federal University of Rio Grande do Sul (UFRGS), Brazil) will be employed to simulate the alteration of the river flux under new climate patterns. Important meteorological input variables for the MGB-IPH are the precipitation (most relevant), temperature, and wind field, all provided by BRAMS. The Uruguay river basin will be analyzed in the scope of this proposal, (d) INFOCROP: this crop model has been calibrated for Southern Brazil, three agriculture cropswill be analyzed: rice, soybean and corn.
Advanced Optical Burst Switched Network Concepts
NASA Astrophysics Data System (ADS)
Nejabati, Reza; Aracil, Javier; Castoldi, Piero; de Leenheer, Marc; Simeonidou, Dimitra; Valcarenghi, Luca; Zervas, Georgios; Wu, Jian
In recent years, as the bandwidth and the speed of networks have increased significantly, a new generation of network-based applications using the concept of distributed computing and collaborative services is emerging (e.g., Grid computing applications). The use of the available fiber and DWDM infrastructure for these applications is a logical choice offering huge amounts of cheap bandwidth and ensuring global reach of computing resources [230]. Currently, there is a great deal of interest in deploying optical circuit (wavelength) switched network infrastructure for distributed computing applications that require long-lived wavelength paths and address the specific needs of a small number of well-known users. Typical users are particle physicists who, due to their international collaborations and experiments, generate enormous amounts of data (Petabytes per year). These users require a network infrastructures that can support processing and analysis of large datasets through globally distributed computing resources [230]. However, providing wavelength granularity bandwidth services is not an efficient and scalable solution for applications and services that address a wider base of user communities with different traffic profiles and connectivity requirements. Examples of such applications may be: scientific collaboration in smaller scale (e.g., bioinformatics, environmental research), distributed virtual laboratories (e.g., remote instrumentation), e-health, national security and defense, personalized learning environments and digital libraries, evolving broadband user services (i.e., high resolution home video editing, real-time rendering, high definition interactive TV). As a specific example, in e-health services and in particular mammography applications due to the size and quantity of images produced by remote mammography, stringent network requirements are necessary. Initial calculations have shown that for 100 patients to be screened remotely, the network would have to securely transport 1.2 GB of data every 30 s [230]. According to the above explanation it is clear that these types of applications need a new network infrastructure and transport technology that makes large amounts of bandwidth at subwavelength granularity, storage, computation, and visualization resources potentially available to a wide user base for specified time durations. As these types of collaborative and network-based applications evolve addressing a wide range and large number of users, it is infeasible to build dedicated networks for each application type or category. Consequently, there should be an adaptive network infrastructure able to support all application types, each with their own access, network, and resource usage patterns. This infrastructure should offer flexible and intelligent network elements and control mechanism able to deploy new applications quickly and efficiently.
Komatsoulis, George A; Warzel, Denise B; Hartel, Francis W; Shanbhag, Krishnakant; Chilukuri, Ram; Fragoso, Gilberto; Coronado, Sherri de; Reeves, Dianne M; Hadfield, Jillaine B; Ludet, Christophe; Covitz, Peter A
2008-02-01
One of the requirements for a federated information system is interoperability, the ability of one computer system to access and use the resources of another system. This feature is particularly important in biomedical research systems, which need to coordinate a variety of disparate types of data. In order to meet this need, the National Cancer Institute Center for Bioinformatics (NCICB) has created the cancer Common Ontologic Representation Environment (caCORE), an interoperability infrastructure based on Model Driven Architecture. The caCORE infrastructure provides a mechanism to create interoperable biomedical information systems. Systems built using the caCORE paradigm address both aspects of interoperability: the ability to access data (syntactic interoperability) and understand the data once retrieved (semantic interoperability). This infrastructure consists of an integrated set of three major components: a controlled terminology service (Enterprise Vocabulary Services), a standards-based metadata repository (the cancer Data Standards Repository) and an information system with an Application Programming Interface (API) based on Domain Model Driven Architecture. This infrastructure is being leveraged to create a Semantic Service-Oriented Architecture (SSOA) for cancer research by the National Cancer Institute's cancer Biomedical Informatics Grid (caBIG).
Komatsoulis, George A.; Warzel, Denise B.; Hartel, Frank W.; Shanbhag, Krishnakant; Chilukuri, Ram; Fragoso, Gilberto; de Coronado, Sherri; Reeves, Dianne M.; Hadfield, Jillaine B.; Ludet, Christophe; Covitz, Peter A.
2008-01-01
One of the requirements for a federated information system is interoperability, the ability of one computer system to access and use the resources of another system. This feature is particularly important in biomedical research systems, which need to coordinate a variety of disparate types of data. In order to meet this need, the National Cancer Institute Center for Bioinformatics (NCICB) has created the cancer Common Ontologic Representation Environment (caCORE), an interoperability infrastructure based on Model Driven Architecture. The caCORE infrastructure provides a mechanism to create interoperable biomedical information systems. Systems built using the caCORE paradigm address both aspects of interoperability: the ability to access data (syntactic interoperability) and understand the data once retrieved (semantic interoperability). This infrastructure consists of an integrated set of three major components: a controlled terminology service (Enterprise Vocabulary Services), a standards-based metadata repository (the cancer Data Standards Repository) and an information system with an Application Programming Interface (API) based on Domain Model Driven Architecture. This infrastructure is being leveraged to create a Semantic Service Oriented Architecture (SSOA) for cancer research by the National Cancer Institute’s cancer Biomedical Informatics Grid (caBIG™). PMID:17512259
Business Case Analysis of the Marine Corps Base Pendleton Virtual Smart Grid
2017-06-01
Metering Infrastructure on DOD installations. An examination of five case studies highlights the costs and benefits of the Virtual Smart Grid (VSG...studies highlights the costs and benefits of the Virtual Smart Grid (VSG) developed by Space and Naval Warfare Systems Command for use at Marine Corps...41 A. SMART GRID BENEFITS .....................................................................41 B. SUMMARY OF VSG ESTIMATED COSTS AND BENEFITS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Ching-Yen; Chu, Peter; Gadh, Rajit
Currently, when Electric Vehicles (EVs) are charging, they only have the option to charge at a selected current or not charge. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. There is a need for technology that controls the current being disbursed to these electric vehicles. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuitmore » by multiplexing power and providing charge control. The smart charging infrastructure includes the server and the smart charging station. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV management system« less
A Comparison of a Solar Power Satellite Concept to a Concentrating Solar Power System
NASA Technical Reports Server (NTRS)
Smitherman, David V.
2013-01-01
A comparison is made of a solar power satellite (SPS) concept in geostationary Earth orbit to a concentrating solar power (CSP) system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the SPS concept has a higher end-to-end efficiency, the combined space and ground collector infrastructure is still about the same size as a comparable CSP system on the ground.
None
2018-01-24
The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing â from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Seti@Home. Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance. 4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.
None
2018-06-20
The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing â from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry. Michael Yoo, Managing Director, Head of the Technical Council, UBS. Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse. Grid computing gets mentions in the press for community programs starting last decade with "Seti@Home". Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.
None
2018-01-25
The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing â from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industries Adam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.
None
2018-02-02
The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing â from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance. 4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followedmore » by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Seti@Home. Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance. 4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followedmore » by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry. Michael Yoo, Managing Director, Head of the Technical Council, UBS. Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse. Grid computing gets mentions in the press for community programs starting last decade with "Seti@Home". Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followedmore » by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance. 4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followedmore » by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followedmore » by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industries Adam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing – from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followedmore » by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Seti@Home. Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN. 3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.« less
None
2018-02-01
The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing â from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN.3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.
None
2018-01-24
The finance sector is one of the driving forces for the use of distributed or Grid computing for business purposes. The speakers will review the state-of-the-art of high performance computing in the financial sector, and provide insight into how different types of Grid computing â from local clusters to global networks - are being applied to financial applications. They will also describe the use of software and techniques from physics, such as Monte Carlo simulations, in the financial world. There will be four talks of 20min each. The talk abstracts and speaker bios are listed below. This will be followed by a Q&A; panel session with the speakers. From 19:00 onwards there will be a networking cocktail for audience and speakers. This is an EGEE / CERN openlab event organized in collaboration with the regional business network rezonance.ch. A webcast of the event will be made available for subsequent viewing, along with powerpoint material presented by the speakers. Attendance is free and open to all. Registration is mandatory via www.rezonance.ch, including for CERN staff. 1. Overview of High Performance Computing in the Financial Industry Michael Yoo, Managing Director, Head of the Technical Council, UBS Presentation will describe the key business challenges driving the need for HPC solutions, describe the means in which those challenges are being addressed within UBS (such as GRID) as well as the limitations of some of these solutions, and assess some of the newer HPC technologies which may also play a role in the Financial Industry in the future. Speaker Bio: Michael originally joined the former Swiss Bank Corporation in 1994 in New York as a developer on a large data warehouse project. In 1996 he left SBC and took a role with Fidelity Investments in Boston. Unable to stay away for long, he returned to SBC in 1997 while working for Perot Systems in Singapore. Finally, in 1998 he formally returned to UBS in Stamford following the merger with SBC and has remained with UBS for the past 9 years. During his tenure at UBS, he has had a number of leadership roles within IT in development, support and architecture. In 2006 Michael relocated to Switzerland to take up his current role as head of the UBS IB Technical Council, responsible for the overall technology strategy and vision of the Investment Bank. One of Michael's key responsibilities is to manage the UBS High Performance Computing Research Lab and he has been involved in a number of initiatives in the HPC space. 2. Grid in the Commercial WorldFred Gedling, Chief Technology Officer EMEA and Senior Vice President Global Services, DataSynapse Grid computing gets mentions in the press for community programs starting last decade with Seti@Home. Government, national and supranational initiatives in grid receive some press. One of the IT-industries' best-kept secrets is the use of grid computing by commercial organizations with spectacular results. Grid Computing and its evolution into Application Virtualization is discussed and how this is key to the next generation data center. Speaker Bio: Fred Gedling holds the joint roles of Chief Technology Officer for EMEA and Senior Vice President of Global Services at DataSynapse, a global provider of application virtualisation software. Based in London and working closely with organisations seeking to optimise their IT infrastructures, Fred offers unique insights into the technology of virtualisation as well as the methodology of establishing ROI and rapid deployment to the immediate advantage of the business. Fred has more than fifteen years experience of enterprise middleware and high-performance infrastructures. Prior to DataSynapse he worked in high performance CRM middleware and was the CTO EMEA for New Era of Networks (NEON) during the rapid growth of Enterprise Application Integration. His 25-year career in technology also includes management positions at Goldman Sachs and Stratus Computer. Fred holds a First Class Bsc (Hons) degree in Physics with Astrophysics from the University of Leeds and had the privilege of being a summer student at CERN. 3. Opportunities for gLite in finance and related industriesAdam Vile, Head of Grid, HPC and Technical Computing, Excelian Ltd.gLite, the Grid software developed by the EGEE project, has been exceedingly successful as an enabling infrastructure, and has been a massive success in bringing together scientific and technical communities to provide the compute power to address previously incomputable problems. Not so in the finance industry. In its current form gLite would be a business disabler. There are other middleware tools that solve the finance communities compute problems much better. Things are moving on, however. There are moves afoot in the open source community to evolve the technology to address other, more sophisticated needs such as utility and interactive computing. In this talk, I will describe how Excelian is providing Grid consultancy services for the finance community and how, through its relationship to the EGEE project, Excelian is helping to identify and exploit opportunities as the research and business worlds converge. Because of the strong third party presence in the finance industry, such opportunities are few and far between, but they are there, especially as we expand sideways into related verticals such as the smaller hedge funds and energy companies. This talk will give an overview of the barriers to adoption of gLite in the finance industry and highlight some of the opportunities offered in this and related industries as the ideas around Grid mature. Speaker Bio: Dr Adam Vile is a senior consultant and head of the Grid and HPC practice at Excelian, a consultancy that focuses on financial markets professional services. He has spent many years in investment banking, as a developer, project manager and architect in both front and back office. Before joining Excelian he was senior Grid and HPC architect at Barclays Capital. Prior to joining investment banking, Adam spent a number of years lecturing in IT and mathematics at a UK University and maintains links with academia through lectures, research and through validation and steering of postgraduate courses. He is a chartered mathematician and was the conference chair of the Institute of Mathematics and its Applications first conference in computational Finance.4. From Monte Carlo to Wall Street Daniel Egloff, Head of Financial Engineering Computing Unit, Zürich Cantonal Bank High performance computing techniques provide new means to solve computationally hard problems in the financial service industry. First I consider Monte Carlo simulation and illustrate how it can be used to implement a sophisticated credit risk management and economic capital framework. From a HPC perspective, basic Monte Carlo simulation is embarrassingly parallel and can be implemented efficiently on distributed memory clusters. Additional difficulties arise for adaptive variance reduction schemes, if the information content in a sample is very small, and if the amount of simulated date becomes huge such that incremental processing algorithms are indispensable. We discuss the business value of an advanced credit risk quantification which is particularly compelling in these days. While Monte Carlo simulation is a very versatile tool it is not always the preferred solution for the pricing of complex products like multi asset options, structured products, or credit derivatives. As a second application I show how operator methods can be used to develop a pricing framework. The scalability of operator methods relies heavily on optimized dense matrix-matrix multiplications and requires specialized BLAS level-3 implementations provided by specialized FPGA or GPU boards. Speaker Bio: Daniel Egloff studied mathematics, theoretical physics, and computer science at the University of Zurich and the ETH Zurich. He holds a PhD in Mathematics from University of Fribourg, Switzerland. After his PhD he started to work for a large Swiss insurance company in the area of asset and liability management. He continued his professional career in the consulting industry. At KPMG and Arthur Andersen he consulted international clients and implemented quantitative risk management solutions for financial institutions and insurance companies. In 2002 he joined Zurich Cantonal Bank. He was assigned to develop and implement credit portfolio risk and economic capital methodologies. He built up a competence center for high performance and cluster computing. Currently, Daniel Egloff is heading the Financial Computing unit in the ZKB Financial Engineering division. He and his team is engineering and operating high performance cluster applications for computationally intensive problems in financial risk management.
A Framework for Testing Automated Detection, Diagnosis, and Remediation Systems on the Smart Grid
NASA Technical Reports Server (NTRS)
Lau, Shing-hon
2011-01-01
America's electrical grid is currently undergoing a multi-billion dollar modernization effort aimed at producing a highly reliable critical national infrastructure for power - a Smart Grid. While the goals for the Smart Grid include upgrades to accommodate large quantities of clean, but transient, renewable energy and upgrades to provide customers with real-time pricing information, perhaps the most important objective is to create an electrical grid with a greatly increased robustness.
AGIS: Integration of new technologies used in ATLAS Distributed Computing
NASA Astrophysics Data System (ADS)
Anisenkov, Alexey; Di Girolamo, Alessandro; Alandes Pradillo, Maria
2017-10-01
The variety of the ATLAS Distributed Computing infrastructure requires a central information system to define the topology of computing resources and to store different parameters and configuration data which are needed by various ATLAS software components. The ATLAS Grid Information System (AGIS) is the system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing applications and services. Being an intermediate middleware system between clients and external information sources (like central BDII, GOCDB, MyOSG), AGIS defines the relations between experiment specific used resources and physical distributed computing capabilities. Being in production during LHC Runl AGIS became the central information system for Distributed Computing in ATLAS and it is continuously evolving to fulfil new user requests, enable enhanced operations and follow the extension of the ATLAS Computing model. The ATLAS Computing model and data structures used by Distributed Computing applications and services are continuously evolving and trend to fit newer requirements from ADC community. In this note, we describe the evolution and the recent developments of AGIS functionalities, related to integration of new technologies recently become widely used in ATLAS Computing, like flexible computing utilization of opportunistic Cloud and HPC resources, ObjectStore services integration for Distributed Data Management (Rucio) and ATLAS workload management (PanDA) systems, unified storage protocols declaration required for PandDA Pilot site movers and others. The improvements of information model and general updates are also shown, in particular we explain how other collaborations outside ATLAS could benefit the system as a computing resources information catalogue. AGIS is evolving towards a common information system, not coupled to a specific experiment.
Efficient On-Demand Operations in Large-Scale Infrastructures
ERIC Educational Resources Information Center
Ko, Steven Y.
2009-01-01
In large-scale distributed infrastructures such as clouds, Grids, peer-to-peer systems, and wide-area testbeds, users and administrators typically desire to perform "on-demand operations" that deal with the most up-to-date state of the infrastructure. However, the scale and dynamism present in the operating environment make it challenging to…
Semantic 3d City Model to Raster Generalisation for Water Run-Off Modelling
NASA Astrophysics Data System (ADS)
Verbree, E.; de Vries, M.; Gorte, B.; Oude Elberink, S.; Karimlou, G.
2013-09-01
Water run-off modelling applied within urban areas requires an appropriate detailed surface model represented by a raster height grid. Accurate simulations at this scale level have to take into account small but important water barriers and flow channels given by the large-scale map definitions of buildings, street infrastructure, and other terrain objects. Thus, these 3D features have to be rasterised such that each cell represents the height of the object class as good as possible given the cell size limitations. Small grid cells will result in realistic run-off modelling but with unacceptable computation times; larger grid cells with averaged height values will result in less realistic run-off modelling but fast computation times. This paper introduces a height grid generalisation approach in which the surface characteristics that most influence the water run-off flow are preserved. The first step is to create a detailed surface model (1:1.000), combining high-density laser data with a detailed topographic base map. The topographic map objects are triangulated to a set of TIN-objects by taking into account the semantics of the different map object classes. These TIN objects are then rasterised to two grids with a 0.5m cell-spacing: one grid for the object class labels and the other for the TIN-interpolated height values. The next step is to generalise both raster grids to a lower resolution using a procedure that considers the class label of each cell and that of its neighbours. The results of this approach are tested and validated by water run-off model runs for different cellspaced height grids at a pilot area in Amersfoort (the Netherlands). Two national datasets were used in this study: the large scale Topographic Base map (BGT, map scale 1:1.000), and the National height model of the Netherlands AHN2 (10 points per square meter on average). Comparison between the original AHN2 height grid and the semantically enriched and then generalised height grids shows that water barriers are better preserved with the new method. This research confirms the idea that topographical information, mainly the boundary locations and object classes, can enrich the height grid for this hydrological application.
Data Provenance Hybridization Supporting Extreme-Scale Scientific WorkflowApplications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsethagen, Todd O.; Stephan, Eric G.; Raju, Bibi
As high performance computing (HPC) infrastructures continue to grow in capability and complexity, so do the applications that they serve. HPC and distributed-area computing (DAC) (e.g. grid and cloud) users are looking increasingly toward workflow solutions to orchestrate their complex application coupling, pre- and post-processing needs To gain insight and a more quantitative understanding of a workflow’s performance our method includes not only the capture of traditional provenance information, but also the capture and integration of system environment metrics helping to give context and explanation for a workflow’s execution. In this paper, we describe IPPD’s provenance management solution (ProvEn) andmore » its hybrid data store combining both of these data provenance perspectives.« less
Toward Exascale Earthquake Ground Motion Simulations for Near-Fault Engineering Analysis
Johansen, Hans; Rodgers, Arthur; Petersson, N. Anders; ...
2017-09-01
Modernizing SW4 for massively parallel time-domain simulations of earthquake ground motions in 3D earth models increases resolution and provides ground motion estimates for critical infrastructure risk evaluations. Simulations of ground motions from large (M ≥ 7.0) earthquakes require domains on the order of 100 to500 km and spatial granularity on the order of 1 to5 m resulting in hundreds of billions of grid points. Surface-focused structured mesh refinement (SMR) allows for more constant grid point per wavelength scaling in typical Earth models, where wavespeeds increase with depth. In fact, MR allows for simulations to double the frequency content relative tomore » a fixed grid calculation on a given resource. The authors report improvements to the SW4 algorithm developed while porting the code to the Cori Phase 2 (Intel Xeon Phi) systems at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. As a result, investigations of the performance of the innermost loop of the calculations found that reorganizing the order of operations can improve performance for massive problems.« less
Toward Exascale Earthquake Ground Motion Simulations for Near-Fault Engineering Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johansen, Hans; Rodgers, Arthur; Petersson, N. Anders
Modernizing SW4 for massively parallel time-domain simulations of earthquake ground motions in 3D earth models increases resolution and provides ground motion estimates for critical infrastructure risk evaluations. Simulations of ground motions from large (M ≥ 7.0) earthquakes require domains on the order of 100 to500 km and spatial granularity on the order of 1 to5 m resulting in hundreds of billions of grid points. Surface-focused structured mesh refinement (SMR) allows for more constant grid point per wavelength scaling in typical Earth models, where wavespeeds increase with depth. In fact, MR allows for simulations to double the frequency content relative tomore » a fixed grid calculation on a given resource. The authors report improvements to the SW4 algorithm developed while porting the code to the Cori Phase 2 (Intel Xeon Phi) systems at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. As a result, investigations of the performance of the innermost loop of the calculations found that reorganizing the order of operations can improve performance for massive problems.« less
DIRAC distributed secure framework
NASA Astrophysics Data System (ADS)
Casajus, A.; Graciani, R.; LHCb DIRAC Team
2010-04-01
DIRAC, the LHCb community Grid solution, provides access to a vast amount of computing and storage resources to a large number of users. In DIRAC users are organized in groups with different needs and permissions. In order to ensure that only allowed users can access the resources and to enforce that there are no abuses, security is mandatory. All DIRAC services and clients use secure connections that are authenticated using certificates and grid proxies. Once a client has been authenticated, authorization rules are applied to the requested action based on the presented credentials. These authorization rules and the list of users and groups are centrally managed in the DIRAC Configuration Service. Users submit jobs to DIRAC using their local credentials. From then on, DIRAC has to interact with different Grid services on behalf of this user. DIRAC has a proxy management service where users upload short-lived proxies to be used when DIRAC needs to act on behalf of them. Long duration proxies are uploaded by users to a MyProxy service, and DIRAC retrieves new short delegated proxies when necessary. This contribution discusses the details of the implementation of this security infrastructure in DIRAC.
Connecting Electric Vehicles to the Grid for Greater Infrastructure
with the grid at the Energy Systems Integration Facility. Photo by Dennis Schroeder, NREL As the market serves as a test bed for assessing various EV charging scenarios. Photo by Dennis Schroeder, NREL back to the grid and essentially serve as a mobile power generator. Photo by Dennis Schroeder, NREL
NASA Technical Reports Server (NTRS)
Haimes, Robert; Follen, Gregory J.
1998-01-01
CAPRI is a CAD-vendor neutral application programming interface designed for the construction of analysis and design systems. By allowing access to the geometry from within all modules (grid generators, solvers and post-processors) such tasks as meshing on the actual surfaces, node enrichment by solvers and defining which mesh faces are boundaries (for the solver and visualization system) become simpler. The overall reliance on file 'standards' is minimized. This 'Geometry Centric' approach makes multi-physics (multi-disciplinary) analysis codes much easier to build. By using the shared (coupled) surface as the foundation, CAPRI provides a single call to interpolate grid-node based data from the surface discretization in one volume to another. Finally, design systems are possible where the results can be brought back into the CAD system (and therefore manufactured) because all geometry construction and modification are performed using the CAD system's geometry kernel.
Building analytical platform with Big Data solutions for log files of PanDA infrastructure
NASA Astrophysics Data System (ADS)
Alekseev, A. A.; Barreiro Megino, F. G.; Klimentov, A. A.; Korchuganova, T. A.; Maendo, T.; Padolski, S. V.
2018-05-01
The paper describes the implementation of a high-performance system for the processing and analysis of log files for the PanDA infrastructure of the ATLAS experiment at the Large Hadron Collider (LHC), responsible for the workload management of order of 2M daily jobs across the Worldwide LHC Computing Grid. The solution is based on the ELK technology stack, which includes several components: Filebeat, Logstash, ElasticSearch (ES), and Kibana. Filebeat is used to collect data from logs. Logstash processes data and export to Elasticsearch. ES are responsible for centralized data storage. Accumulated data in ES can be viewed using a special software Kibana. These components were integrated with the PanDA infrastructure and replaced previous log processing systems for increased scalability and usability. The authors will describe all the components and their configuration tuning for the current tasks, the scale of the actual system and give several real-life examples of how this centralized log processing and storage service is used to showcase the advantages for daily operations.
Warner, Guy C; Blum, Jesse M; Jones, Simon B; Lambert, Paul S; Turner, Kenneth J; Tan, Larry; Dawson, Alison S F; Bell, David N F
2010-08-28
The last two decades have seen substantially increased potential for quantitative social science research. This has been made possible by the significant expansion of publicly available social science datasets, the development of new analytical methodologies, such as microsimulation, and increases in computing power. These rich resources do, however, bring with them substantial challenges associated with organizing and using data. These processes are often referred to as 'data management'. The Data Management through e-Social Science (DAMES) project is working to support activities of data management for social science research. This paper describes the DAMES infrastructure, focusing on the data-fusion process that is central to the project approach. It covers: the background and requirements for provision of resources by DAMES; the use of grid technologies to provide easy-to-use tools and user front-ends for several common social science data-management tasks such as data fusion; the approach taken to solve problems related to data resources and metadata relevant to social science applications; and the implementation of the architecture that has been designed to achieve this infrastructure.
A national-scale authentication infrastructure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, R.; Engert, D.; Foster, I.
2000-12-01
Today, individuals and institutions in science and industry are increasingly forming virtual organizations to pool resources and tackle a common goal. Participants in virtual organizations commonly need to share resources such as data archives, computer cycles, and networks - resources usually available only with restrictions based on the requested resource's nature and the user's identity. Thus, any sharing mechanism must have the ability to authenticate the user's identity and determine if the user is authorized to request the resource. Virtual organizations tend to be fluid, however, so authentication mechanisms must be flexible and lightweight, allowing administrators to quickly establish andmore » change resource-sharing arrangements. However, because virtual organizations complement rather than replace existing institutions, sharing mechanisms cannot change local policies and must allow individual institutions to maintain control over their own resources. Our group has created and deployed an authentication and authorization infrastructure that meets these requirements: the Grid Security Infrastructure. GSI offers secure single sign-ons and preserves site control over access policies and local security. It provides its own versions of common applications, such as FTP and remote login, and a programming interface for creating secure applications.« less
A Comparison Of A Solar Power Satellite Concept To A Concentrating Solar Power System
NASA Technical Reports Server (NTRS)
Smitherman, David V.
2013-01-01
A comparison is made of a Solar Power Satellite concept in geostationary Earth orbit to a Concentrating Solar Power system on the ground to analyze overall efficiencies of each infrastructure from solar radiance at 1 AU to conversion and transmission of electrical energy into the power grid on the Earth's surface. Each system is sized for a 1-gigawatt output to the power grid and then further analyzed to determine primary collector infrastructure areas. Findings indicate that even though the Solar Power Satellite concept has a higher end-to-end efficiency, that the combined space and ground collector infrastructure is still about the same size as a comparable Concentrating Solar Power system on the ground.
Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, Naresh; Baone, Chaitanya; Veda, Santosh
2014-12-31
Power grid planning and operation decisions are made based on simulation of the dynamic behavior of the system. Enabling substantial energy savings while increasing the reliability of the aging North American power grid through improved utilization of existing transmission assets hinges on the adoption of wide-area measurement systems (WAMS) for power system stabilization. However, adoption of WAMS alone will not suffice if the power system is to reach its full entitlement in stability and reliability. It is necessary to enhance predictability with "faster than real-time" dynamic simulations that will enable the dynamic stability margins, proactive real-time control, and improve gridmore » resiliency to fast time-scale phenomena such as cascading network failures. Present-day dynamic simulations are performed only during offline planning studies, considering only worst case conditions such as summer peak, winter peak days, etc. With widespread deployment of renewable generation, controllable loads, energy storage devices and plug-in hybrid electric vehicles expected in the near future and greater integration of cyber infrastructure (communications, computation and control), monitoring and controlling the dynamic performance of the grid in real-time would become increasingly important. The state-of-the-art dynamic simulation tools have limited computational speed and are not suitable for real-time applications, given the large set of contingency conditions to be evaluated. These tools are optimized for best performance of single-processor computers, but the simulation is still several times slower than real-time due to its computational complexity. With recent significant advances in numerical methods and computational hardware, the expectations have been rising towards more efficient and faster techniques to be implemented in power system simulators. This is a natural expectation, given that the core solution algorithms of most commercial simulators were developed decades ago, when High Performance Computing (HPC) resources were not commonly available.« less
Resilient Military Systems and the Advanced Cyber Threat
2013-01-01
systems; intelligence, surveillance, and reconnaissance systems; logistics and human resource systems; and mobile as well as fixed- infrastructure ...significant portions of military and critical infrastructure : power generation, communications, fuel and transportation, emergency services, financial...vulnerabilities in the domestic power grid and critical infrastructure systems.4,5 DoD, and the United States, is extremely reliant on the
A Scalable proxy cache for Grid Data Access
NASA Astrophysics Data System (ADS)
Cristian Cirstea, Traian; Just Keijser, Jan; Koeroo, Oscar Arthur; Starink, Ronald; Templon, Jeffrey Alan
2012-12-01
We describe a prototype grid proxy cache system developed at Nikhef, motivated by a desire to construct the first building block of a future https-based Content Delivery Network for grid infrastructures. Two goals drove the project: firstly to provide a “native view” of the grid for desktop-type users, and secondly to improve performance for physics-analysis type use cases, where multiple passes are made over the same set of data (residing on the grid). We further constrained the design by requiring that the system should be made of standard components wherever possible. The prototype that emerged from this exercise is a horizontally-scalable, cooperating system of web server / cache nodes, fronted by a customized webDAV server. The webDAV server is custom only in the sense that it supports http redirects (providing horizontal scaling) and that the authentication module has, as back end, a proxy delegation chain that can be used by the cache nodes to retrieve files from the grid. The prototype was deployed at Nikhef and tested at a scale of several terabytes of data and approximately one hundred fast cores of computing. Both small and large files were tested, in a number of scenarios, and with various numbers of cache nodes, in order to understand the scaling properties of the system. For properly-dimensioned cache-node hardware, the system showed speedup of several integer factors for the analysis-type use cases. These results and others are presented and discussed.
SLGRID: spectral synthesis software in the grid
NASA Astrophysics Data System (ADS)
Sabater, J.; Sánchez, S.; Verdes-Montenegro, L.
2011-11-01
SLGRID (http://www.e-ciencia.es/wiki/index.php/Slgrid) is a pilot project proposed by the e-Science Initiative of Andalusia (eCA) and supported by the Spanish e-Science Network in the frame of the European Grid Initiative (EGI). The aim of the project was to adapt the spectral synthesis software Starlight (Cid-Fernandes et al. 2005) to the Grid infrastructure. Starlight is used to estimate the underlying stellar populations (their ages and metallicities) using an optical spectrum, hence, it is possible to obtain a clean nebular spectrum that can be used for the diagnostic of the presence of an Active Galactic Nucleus (Sabater et al. 2008, 2009). The typical serial execution of the code for big samples of galaxies made it ideal to be integrated into the Grid. We obtain an improvement on the computational time of order N, being N the number of nodes available in the Grid. In a real case we obtained our results in 3 hours with SLGRID instead of the 60 days spent using Starlight in a PC. The code has already been ported to the Grid. The first tests were made within the e-CA infrastrusture and, later, itwas tested and improved with the colaboration of the CETA-CIEMAT. The SLGRID project has been recently renewed. In a future it is planned to adapt the code for the reduction of data from Integral Field Units where each dataset is composed of hundreds of spectra. Electronic version of the poster at http://www.iaa.es/~jsm/SEA2010
AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics
NASA Astrophysics Data System (ADS)
Fatemi, Shahab; Poppe, Andrew R.; Delory, Gregory T.; Farrell, William M.
2017-05-01
We have developed, for the first time, an advanced modeling infrastructure in space simulations (AMITIS) with an embedded three-dimensional self-consistent grid-based hybrid model of plasma (kinetic ions and fluid electrons) that runs entirely on graphics processing units (GPUs). The model uses NVIDIA GPUs and their associated parallel computing platform, CUDA, developed for general purpose processing on GPUs. The model uses a single CPU-GPU pair, where the CPU transfers data between the system and GPU memory, executes CUDA kernels, and writes simulation outputs on the disk. All computations, including moving particles, calculating macroscopic properties of particles on a grid, and solving hybrid model equations are processed on a single GPU. We explain various computing kernels within AMITIS and compare their performance with an already existing well-tested hybrid model of plasma that runs in parallel using multi-CPU platforms. We show that AMITIS runs ∼10 times faster than the parallel CPU-based hybrid model. We also introduce an implicit solver for computation of Faraday’s Equation, resulting in an explicit-implicit scheme for the hybrid model equation. We show that the proposed scheme is stable and accurate. We examine the AMITIS energy conservation and show that the energy is conserved with an error < 0.2% after 500,000 timesteps, even when a very low number of particles per cell is used.
Ahmed, Wamiq M; Lenz, Dominik; Liu, Jia; Paul Robinson, J; Ghafoor, Arif
2008-03-01
High-throughput biological imaging uses automated imaging devices to collect a large number of microscopic images for analysis of biological systems and validation of scientific hypotheses. Efficient manipulation of these datasets for knowledge discovery requires high-performance computational resources, efficient storage, and automated tools for extracting and sharing such knowledge among different research sites. Newly emerging grid technologies provide powerful means for exploiting the full potential of these imaging techniques. Efficient utilization of grid resources requires the development of knowledge-based tools and services that combine domain knowledge with analysis algorithms. In this paper, we first investigate how grid infrastructure can facilitate high-throughput biological imaging research, and present an architecture for providing knowledge-based grid services for this field. We identify two levels of knowledge-based services. The first level provides tools for extracting spatiotemporal knowledge from image sets and the second level provides high-level knowledge management and reasoning services. We then present cellular imaging markup language, an extensible markup language-based language for modeling of biological images and representation of spatiotemporal knowledge. This scheme can be used for spatiotemporal event composition, matching, and automated knowledge extraction and representation for large biological imaging datasets. We demonstrate the expressive power of this formalism by means of different examples and extensive experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McParland, Charles
The Smart Grid envisions a transformed US power distribution grid that enables communicating devices, under human supervision, to moderate loads and increase overall system stability and security. This vision explicitly promotes increased participation from a community that, in the past, has had little involvement in power grid operations -the consumer. The potential size of this new community and its member's extensive experience with the public Internet prompts an analysis of the evolution and current state of the Internet as a predictor for best practices in the architectural design of certain portions of the Smart Grid network. Although still evolving, themore » vision of the Smart Grid is that of a community of communicating and cooperating energy related devices that can be directed to route power and modulate loads in pursuit of an integrated, efficient and secure electrical power grid. The remaking of the present power grid into the Smart Grid is considered as fundamentally transformative as previous developments such as modern computing technology and high bandwidth data communications. However, unlike these earlier developments, which relied on the discovery of critical new technologies (e.g. the transistor or optical fiber transmission lines), the technologies required for the Smart Grid currently exist and, in many cases, are already widely deployed. In contrast to other examples of technical transformations, the path (and success) of the Smart Grid will be determined not by its technology, but by its system architecture. Fortunately, we have a recent example of a transformative force of similar scope that shares a fundamental dependence on our existing communications infrastructure - namely, the Internet. We will explore several ways in which the scale of the Internet and expectations of its users have shaped the present Internet environment. As the presence of consumers within the Smart Grid increases, some experiences from the early growth of the Internet are expected to be informative and pertinent.« less
Investigation of Storage Options for Scientific Computing on Grid and Cloud Facilities
NASA Astrophysics Data System (ADS)
Garzoglio, Gabriele
2012-12-01
In recent years, several new storage technologies, such as Lustre, Hadoop, OrangeFS, and BlueArc, have emerged. While several groups have run benchmarks to characterize them under a variety of configurations, more work is needed to evaluate these technologies for the use cases of scientific computing on Grid clusters and Cloud facilities. This paper discusses our evaluation of the technologies as deployed on a test bed at FermiCloud, one of the Fermilab infrastructure-as-a-service Cloud facilities. The test bed consists of 4 server-class nodes with 40 TB of disk space and up to 50 virtual machine clients, some running on the storage server nodes themselves. With this configuration, the evaluation compares the performance of some of these technologies when deployed on virtual machines and on “bare metal” nodes. In addition to running standard benchmarks such as IOZone to check the sanity of our installation, we have run I/O intensive tests using physics-analysis applications. This paper presents how the storage solutions perform in a variety of realistic use cases of scientific computing. One interesting difference among the storage systems tested is found in a decrease in total read throughput with increasing number of client processes, which occurs in some implementations but not others.
Investigation of storage options for scientific computing on Grid and Cloud facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzoglio, Gabriele
In recent years, several new storage technologies, such as Lustre, Hadoop, OrangeFS, and BlueArc, have emerged. While several groups have run benchmarks to characterize them under a variety of configurations, more work is needed to evaluate these technologies for the use cases of scientific computing on Grid clusters and Cloud facilities. This paper discusses our evaluation of the technologies as deployed on a test bed at FermiCloud, one of the Fermilab infrastructure-as-a-service Cloud facilities. The test bed consists of 4 server-class nodes with 40 TB of disk space and up to 50 virtual machine clients, some running on the storagemore » server nodes themselves. With this configuration, the evaluation compares the performance of some of these technologies when deployed on virtual machines and on bare metal nodes. In addition to running standard benchmarks such as IOZone to check the sanity of our installation, we have run I/O intensive tests using physics-analysis applications. This paper presents how the storage solutions perform in a variety of realistic use cases of scientific computing. One interesting difference among the storage systems tested is found in a decrease in total read throughput with increasing number of client processes, which occurs in some implementations but not others.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Ching-Yen; Shepelev, Aleksey; Qiu, Charlie
With an increased number of Electric Vehicles (EVs) on the roads, charging infrastructure is gaining an ever-more important role in simultaneously meeting the needs of the local distribution grid and of EV users. This paper proposes a mesh network RFID system for user identification and charging authorization as part of a smart charging infrastructure providing charge monitoring and control. The Zigbee-based mesh network RFID provides a cost-efficient solution to identify and authorize vehicles for charging and would allow EV charging to be conducted effectively while observing grid constraints and meeting the needs of EV drivers
Testbeds for Assessing Critical Scenarios in Power Control Systems
NASA Astrophysics Data System (ADS)
Dondossola, Giovanna; Deconinck, Geert; Garrone, Fabrizio; Beitollahi, Hakem
The paper presents a set of control system scenarios implemented in two testbeds developed in the context of the European Project CRUTIAL - CRitical UTility InfrastructurAL Resilience. The selected scenarios refer to power control systems encompassing information and communication security of SCADA systems for grid teleoperation, impact of attacks on inter-operator communications in power emergency conditions, impact of intentional faults on the secondary and tertiary control in power grids with distributed generators. Two testbeds have been developed for assessing the effect of the attacks and prototyping resilient architectures.
Risk Assessment Methodology Based on the NISTIR 7628 Guidelines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, Robert K; Sheldon, Frederick T; Hauser, Katie R
2013-01-01
Earlier work describes computational models of critical infrastructure that allow an analyst to estimate the security of a system in terms of the impact of loss per stakeholder resulting from security breakdowns. Here, we consider how to identify, monitor and estimate risk impact and probability for different smart grid stakeholders. Our constructive method leverages currently available standards and defined failure scenarios. We utilize the National Institute of Standards and Technology (NIST) Interagency or Internal Reports (NISTIR) 7628 as a basis to apply Cyberspace Security Econometrics system (CSES) for comparing design principles and courses of action in making security-related decisions.
The Open Science Grid - Support for Multi-Disciplinary Team Science - the Adolescent Years
NASA Astrophysics Data System (ADS)
Bauerdick, Lothar; Ernst, Michael; Fraser, Dan; Livny, Miron; Pordes, Ruth; Sehgal, Chander; Würthwein, Frank; Open Science Grid
2012-12-01
As it enters adolescence the Open Science Grid (OSG) is bringing a maturing fabric of Distributed High Throughput Computing (DHTC) services that supports an expanding HEP community to an increasingly diverse spectrum of domain scientists. Working closely with researchers on campuses throughout the US and in collaboration with national cyberinfrastructure initiatives, we transform their computing environment through new concepts, advanced tools and deep experience. We discuss examples of these including: the pilot-job overlay concepts and technologies now in use throughout OSG and delivering 1.4 Million CPU hours/day; the role of campus infrastructures- built out from concepts of sharing across multiple local faculty clusters (made good use of already by many of the HEP Tier-2 sites in the US); the work towards the use of clouds and access to high throughput parallel (multi-core and GPU) compute resources; and the progress we are making towards meeting the data management and access needs of non-HEP communities with general tools derived from the experience of the parochial tools in HEP (integration of Globus Online, prototyping with IRODS, investigations into Wide Area Lustre). We will also review our activities and experiences as HTC Service Provider to the recently awarded NSF XD XSEDE project, the evolution of the US NSF TeraGrid project, and how we are extending the reach of HTC through this activity to the increasingly broad national cyberinfrastructure. We believe that a coordinated view of the HPC and HTC resources in the US will further expand their impact on scientific discovery.
Wireless Communications in Smart Grid
NASA Astrophysics Data System (ADS)
Bojkovic, Zoran; Bakmaz, Bojan
Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.
Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring
Gharavi, Hamid; Hu, Bin
2018-01-01
With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network. PMID:29503505
Wireless Infrastructure M2M Network For Distributed Power Grid Monitoring.
Gharavi, Hamid; Hu, Bin
2017-01-01
With the massive integration of distributed renewable energy sources (RESs) into the power system, the demand for timely and reliable network quality monitoring, control, and fault analysis is rapidly growing. Following the successful deployment of Phasor Measurement Units (PMUs) in transmission systems for power monitoring, a new opportunity to utilize PMU measurement data for power quality assessment in distribution grid systems is emerging. The main problem however, is that a distribution grid system does not normally have the support of an infrastructure network. Therefore, the main objective in this paper is to develop a Machine-to-Machine (M2M) communication network that can support wide ranging sensory data, including high rate synchrophasor data for real-time communication. In particular, we evaluate the suitability of the emerging IEEE 802.11ah standard by exploiting its important features, such as classifying the power grid sensory data into different categories according to their traffic characteristics. For performance evaluation we use our hardware in the loop grid communication network testbed to access the performance of the network.
Testing as a Service with HammerCloud
NASA Astrophysics Data System (ADS)
Medrano Llamas, Ramón; Barrand, Quentin; Elmsheuser, Johannes; Legger, Federica; Sciacca, Gianfranco; Sciabà, Andrea; van der Ster, Daniel
2014-06-01
HammerCloud was designed and born under the needs of the grid community to test the resources and automate operations from a user perspective. The recent developments in the IT space propose a shift to the software defined data centres, in which every layer of the infrastructure can be offered as a service. Testing and monitoring is an integral part of the development, validation and operations of big systems, like the grid. This area is not escaping the paradigm shift and we are starting to perceive as natural the Testing as a Service (TaaS) offerings, which allow testing any infrastructure service, such as the Infrastructure as a Service (IaaS) platforms being deployed in many grid sites, both from the functional and stressing perspectives. This work will review the recent developments in HammerCloud and its evolution to a TaaS conception, in particular its deployment on the Agile Infrastructure platform at CERN and the testing of many IaaS providers across Europe in the context of experiment requirements. The first section will review the architectural changes that a service running in the cloud needs, such an orchestration service or new storage requirements in order to provide functional and stress testing. The second section will review the first tests of infrastructure providers on the perspective of the challenges discovered from the architectural point of view. Finally, the third section will evaluate future requirements of scalability and features to increase testing productivity.
Analysis of the World Experience of Smart Grid Deployment: Economic Effectiveness Issues
NASA Astrophysics Data System (ADS)
Ratner, S. V.; Nizhegorodtsev, R. M.
2018-06-01
Despite the positive dynamics in the growth of RES-based power production in electric power systems of many countries, the further development of commercially mature technologies of wind and solar generation is often constrained by the existing grid infrastructure and conventional energy supply practices. The integration of large wind and solar power plants into a single power grid and the development of microgeneration require the widespread introduction of a new smart grid technology cluster (smart power grids), whose technical advantages over the conventional ones have been fairly well studied, while issues of their economic effectiveness remain open. Estimation and forecasting potential economic effects from the introduction of innovative technologies in the power sector during the stage preceding commercial development is a methodologically difficult task that requires the use of knowledge from different sciences. This paper contains the analysis of smart grid project implementation in Europe and the United States. Interval estimates are obtained for their basic economic parameters. It was revealed that the majority of smart grid implemented projects are not yet commercially effective, since their positive externalities are usually not recognized on the revenue side due to the lack of universal methods for public benefits monetization. The results of the research can be used in modernization and development planning for the existing grid infrastructure both at the federal level and at the level of certain regions and territories.
Performance evaluation of cognitive radio in advanced metering infrastructure communication
NASA Astrophysics Data System (ADS)
Hiew, Yik-Kuan; Mohd Aripin, Norazizah; Din, Norashidah Md
2016-03-01
Smart grid is an intelligent electricity grid system. A reliable two-way communication system is required to transmit both critical and non-critical smart grid data. However, it is difficult to locate a huge chunk of dedicated spectrum for smart grid communications. Hence, cognitive radio based communication is applied. Cognitive radio allows smart grid users to access licensed spectrums opportunistically with the constraint of not causing harmful interference to licensed users. In this paper, a cognitive radio based smart grid communication framework is proposed. Smart grid framework consists of Home Area Network (HAN) and Advanced Metering Infrastructure (AMI), while AMI is made up of Neighborhood Area Network (NAN) and Wide Area Network (WAN). In this paper, the authors only report the findings for AMI communication. AMI is smart grid domain that comprises smart meters, data aggregator unit, and billing center. Meter data are collected by smart meters and transmitted to data aggregator unit by using cognitive 802.11 technique; data aggregator unit then relays the data to billing center using cognitive WiMAX and TV white space. The performance of cognitive radio in AMI communication is investigated using Network Simulator 2. Simulation results show that cognitive radio improves the latency and throughput performances of AMI. Besides, cognitive radio also improves spectrum utilization efficiency of WiMAX band from 5.92% to 9.24% and duty cycle of TV band from 6.6% to 10.77%.
Grid Modernization Laboratory Consortium - Testing and Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroposki, Benjamin; Skare, Paul; Pratt, Rob
This paper highlights some of the unique testing capabilities and projects being performed at several national laboratories as part of the U. S. Department of Energy Grid Modernization Laboratory Consortium. As part of this effort, the Grid Modernization Laboratory Consortium Testing Network isbeing developed to accelerate grid modernization by enablingaccess to a comprehensive testing infrastructure and creating a repository of validated models and simulation tools that will be publicly available. This work is key to accelerating thedevelopment, validation, standardization, adoption, and deployment of new grid technologies to help meet U. S. energy goals.
Legislation Seeks to Protect Power Grid From Space Weather
NASA Astrophysics Data System (ADS)
Tretkoff, Ernie
2010-05-01
Proposed legislation would help protect the U.S. power grid against space weather and other threats. The Grid Reliability and Infrastructure Defense Act (GRID Act) would give the Federal Energy Regulatory Commission (FERC) authority to develop and enforce standards for power companies to protect the electric grid from geomagnetic storms and threats such as a terrorist attack using electromagnetic pulse (EMP) weapons. The act unanimously passed the U.S. House Committee on Energy and Commerce in April and will proceed to a vote in the full House of Representatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abercrombie, Robert K; Sheldon, Frederick T.
Cyber physical computing infrastructures typically consist of a number of sites are interconnected. Its operation critically depends both on cyber components and physical components. Both types of components are subject to attacks of different kinds and frequencies, which must be accounted for the initial provisioning and subsequent operation of the infrastructure via information security analysis. Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, andmore » information assets. We concentrated our analysis on the electric sector failure scenarios and impact analyses by the NESCOR Working Group Study, From the Section 5 electric sector representative failure scenarios; we extracted the four generic failure scenarios and grouped them into three specific threat categories (confidentiality, integrity, and availability) to the system. These specific failure scenarios serve as a demonstration of our simulation. The analysis using our ABGT simulation demonstrates how to model the electric sector functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the cyber physical infrastructure network with respect to CIA.« less
2005-06-01
Logistics, BA-5590, BB- 390, BB-2590, PVPC, Iraq, Power Grid, Infrastructure, Cost Estimate, Photovoltaic Power Conversion (PVPC), MPPT 16. PRICE...the cost and feasibility of using photovoltaic (PV) solar power to assist in the rebuilding of the Iraqi electrical infrastructure. This project...cost and feasibility of using photovoltaic (PV) solar power to assist in the rebuilding of the Iraqi infrastructure. The project examines available
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Kate; Burman, Kari; Simpkins, Travis
Resilient PV, which is solar paired with storage ('solar-plus-storage'), provides value both during normal grid operation and power outages as opposed to traditional solar PV, which functions only when the electric grid is operating. During normal grid operations, resilient PV systems help host sites generate revenue and/or reduce electricity bill charges. During grid outages, resilient PV provides critical emergency power that can help people in need and ease demand on emergency fuel supplies. The combination of grid interruptions during recent storms, the proliferation of solar PV, and the growing deployment of battery storage technologies has generated significant interest in usingmore » these assets for both economic and resiliency benefits. This report analyzes the technical and economic viability for resilient PV on three critical infrastructure sites in New York City (NYC): a school that is part of a coastal storm shelter system, a fire station, and a NYCHA senior center that serves as a cooling center during heat emergencies. This analysis differs from previous solar-plus-storage studies by placing a monetary value on resiliency and thus, in essence, modeling a new revenue stream for the avoided cost of a power outage. Analysis results show that resilient PV is economically viable for NYC's critical infrastructure and that it may be similarly beneficial to other commercial buildings across the city. This report will help city building owners, managers, and policymakers better understand the economic and resiliency benefits of resilient PV. As NYC fortifies its building stock against future storms of increasing severity, resilient PV can play an important role in disaster response and recovery while also supporting city greenhouse gas emission reduction targets and relieving stress to the electric grid from growing power demands.« less
Utility Computing: Reality and Beyond
NASA Astrophysics Data System (ADS)
Ivanov, Ivan I.
Utility Computing is not a new concept. It involves organizing and providing a wide range of computing-related services as public utilities. Much like water, gas, electricity and telecommunications, the concept of computing as public utility was announced in 1955. Utility Computing remained a concept for near 50 years. Now some models and forms of Utility Computing are emerging such as storage and server virtualization, grid computing, and automated provisioning. Recent trends in Utility Computing as a complex technology involve business procedures that could profoundly transform the nature of companies' IT services, organizational IT strategies and technology infrastructure, and business models. In the ultimate Utility Computing models, organizations will be able to acquire as much IT services as they need, whenever and wherever they need them. Based on networked businesses and new secure online applications, Utility Computing would facilitate "agility-integration" of IT resources and services within and between virtual companies. With the application of Utility Computing there could be concealment of the complexity of IT, reduction of operational expenses, and converting of IT costs to variable `on-demand' services. How far should technology, business and society go to adopt Utility Computing forms, modes and models?
NASA Astrophysics Data System (ADS)
Bielski, Conrad; Lemoine, Guido; Syryczynski, Jacek
2009-09-01
High Performance Computing (HPC) hardware solutions such as grid computing and General Processing on a Graphics Processing Unit (GPGPU) are now accessible to users with general computing needs. Grid computing infrastructures in the form of computing clusters or blades are becoming common place and GPGPU solutions that leverage the processing power of the video card are quickly being integrated into personal workstations. Our interest in these HPC technologies stems from the need to produce near real-time maps from a combination of pre- and post-event satellite imagery in support of post-disaster management. Faster processing provides a twofold gain in this situation: 1. critical information can be provided faster and 2. more elaborate automated processing can be performed prior to providing the critical information. In our particular case, we test the use of the PANTEX index which is based on analysis of image textural measures extracted using anisotropic, rotation-invariant GLCM statistics. The use of this index, applied in a moving window, has been shown to successfully identify built-up areas in remotely sensed imagery. Built-up index image masks are important input to the structuring of damage assessment interpretation because they help optimise the workload. The performance of computing the PANTEX workflow is compared on two different HPC hardware architectures: (1) a blade server with 4 blades, each having dual quad-core CPUs and (2) a CUDA enabled GPU workstation. The reference platform is a dual CPU-quad core workstation and the PANTEX workflow total computing time is measured. Furthermore, as part of a qualitative evaluation, the differences in setting up and configuring various hardware solutions and the related software coding effort is presented.
NASA Astrophysics Data System (ADS)
McNab, A.
2017-10-01
This paper describes GridPP’s Vacuum Platform for managing virtual machines (VMs), which has been used to run production workloads for WLCG and other HEP experiments. The platform provides a uniform interface between VMs and the sites they run at, whether the site is organised as an Infrastructure-as-a-Service cloud system such as OpenStack, or an Infrastructure-as-a-Client system such as Vac. The paper describes our experience in using this platform, in developing and operating VM lifecycle managers Vac and Vcycle, and in interacting with VMs provided by LHCb, ATLAS, ALICE, CMS, and the GridPP DIRAC service to run production workloads.
NASA Astrophysics Data System (ADS)
Woodcock, R.
2013-12-01
Australia's AuScope provides world class research infrastructure as a framework for understanding the structure and evolution of the Australian continent. Since it conception in 2005, Data Scientists have led the Grid and Interoperability component of AuScope. The AuScope Grid is responsible for the effective management, curation, preservation and analysis of earth science data across the many organisations collaborating in AuScope. During this journey much was learned about technology and architectures but even more about organisations and people, and the role of Data Scientists in the science ecosystem. With the AuScope Grid now in operation and resulting techniques and technologies now underpinning Australian Government initiatives in solid earth and environmental information, it is beneficial to reflect upon the journey and observe what has been learned in order to make data science routine. The role of the Data Scientist is a hybrid one, of not quite belonging and yet highly valued. With the skills to support domain scientists with data and computational needs and communicate across domains, yet not quite able to do the domain science itself. A bridge between two worlds, there is tremendous satisfaction from a job well done, but paradoxically it is also best when it is unnoticeable. In the years since AuScope started much has changed for the Data Scientist. Initially misunderstood, Data Scientists are now a recognisable part of the science landscape in Australia. Whilst the rewards and incentives are still catching up, there is wealth of knowledge on the technical and soft skills required and recognition of the need for Data Scientists. These will be shared from the AuScope journey so other pilgrims may progress well.
Earth System Grid and EGI interoperability
NASA Astrophysics Data System (ADS)
Raciazek, J.; Petitdidier, M.; Gemuend, A.; Schwichtenberg, H.
2012-04-01
The Earth Science data centers have developed a data grid called Earth Science Grid Federation (ESGF) to give the scientific community world wide access to CMIP5 (Coupled Model Inter-comparison Project 5) climate data. The CMIP5 data will permit to evaluate the impact of climate change in various environmental and societal areas, such as regional climate, extreme events, agriculture, insurance… The ESGF grid provides services like searching, browsing and downloading of datasets. At the security level, ESGF data access is protected by an authentication mechanism. An ESGF trusted X509 Short-Lived EEC certificate with the correct roles/attributes is required to get access to the data in a non-interactive way (e.g. from a worker node). To access ESGF from EGI (i.e. by earth science applications running on EGI infrastructure), the security incompatibility between the two grids is the challenge: the EGI proxy certificate is not ESGF trusted nor it contains the correct roles/attributes. To solve this problem, we decided to use a Credential Translation Service (CTS) to translate the EGI X509 proxy certificate into the ESGF Short-Lived EEC certificate (the CTS will issue ESGF certificates based on EGI certificate authentication). From the end user perspective, the main steps to use the CTS are: the user binds his two identities (EGI and ESGF) together in the CTS using the CTS web interface (this steps has to be done only once) and then request an ESGF Short-Lived EEC certificate every time is needed, using a command-line tools. The implementation of the CTS is on-going. It is based on the open source MyProxy software stack, which is used in many grid infrastructures. On the client side, the "myproxy-logon" command-line tools is used to request the certificate translation. A new option has been added to "myproxy-logon" to select the original certificate (in our case, the EGI one). On the server side, MyProxy server operates in Certificate Authority mode, with a new module to store and manage identity pairs. Many European teams are working on the impact of climate change and face the problem of a lack of compute resources in connection with large data sets. This work between the ES VRC in EGI-Inspire and ESGF will be important to facilitate the exploitation of the CMIP5 data on EGI.
VisIVO: A Library and Integrated Tools for Large Astrophysical Dataset Exploration
NASA Astrophysics Data System (ADS)
Becciani, U.; Costa, A.; Ersotelos, N.; Krokos, M.; Massimino, P.; Petta, C.; Vitello, F.
2012-09-01
VisIVO provides an integrated suite of tools and services that can be used in many scientific fields. VisIVO development starts in the Virtual Observatory framework. VisIVO allows users to visualize meaningfully highly-complex, large-scale datasets and create movies of these visualizations based on distributed infrastructures. VisIVO supports high-performance, multi-dimensional visualization of large-scale astrophysical datasets. Users can rapidly obtain meaningful visualizations while preserving full and intuitive control of the relevant parameters. VisIVO consists of VisIVO Desktop - a stand-alone application for interactive visualization on standard PCs, VisIVO Server - a platform for high performance visualization, VisIVO Web - a custom designed web portal, VisIVOSmartphone - an application to exploit the VisIVO Server functionality and the latest VisIVO features: VisIVO Library allows a job running on a computational system (grid, HPC, etc.) to produce movies directly with the code internal data arrays without the need to produce intermediate files. This is particularly important when running on large computational facilities, where the user wants to have a look at the results during the data production phase. For example, in grid computing facilities, images can be produced directly in the grid catalogue while the user code is running in a system that cannot be directly accessed by the user (a worker node). The deployment of VisIVO on the DG and gLite is carried out with the support of EDGI and EGI-Inspire projects. Depending on the structure and size of datasets under consideration, the data exploration process could take several hours of CPU for creating customized views and the production of movies could potentially last several days. For this reason an MPI parallel version of VisIVO could play a fundamental role in increasing performance, e.g. it could be automatically deployed on nodes that are MPI aware. A central concept in our development is thus to produce unified code that can run either on serial nodes or in parallel by using HPC oriented grid nodes. Another important aspect, to obtain as high performance as possible, is the integration of VisIVO processes with grid nodes where GPUs are available. We have selected CUDA for implementing a range of computationally heavy modules. VisIVO is supported by EGI-Inspire, EDGI and SCI-BUS projects.
NASA Astrophysics Data System (ADS)
Hernandez, C.
2010-09-01
The weakness of small island electrical grids implies a handicap for the electrical generation with renewable energy sources. With the intention of maximizing the installation of photovoltaic generators in the Canary Islands, arises the need to develop a solar forecasting system that allows knowing in advance the amount of PV generated electricity that will be going into the grid, from the installed PV power plants installed in the island. The forecasting tools need to get feedback from real weather data in "real time" from remote weather stations. Nevertheless, the transference of this data to the calculation computer servers is very complicated with the old point to point telecommunication systems that, neither allow the transfer of data from several remote weather stations simultaneously nor high frequency of sampling of weather parameters due to slowness of the connection. This one project has developed a telecommunications infrastructure that allows sensorizadas remote stations, to send data of its sensors, once every minute and simultaneously, to the calculation server running the solar forecasting numerical models. For it, the Canary Islands Institute of Technology has added a sophisticated communications network to its 30 weather stations measuring irradiation at strategic sites, areas with high penetration of photovoltaic generation or that have potential to host in the future photovoltaic power plants connected to the grid. In each one of the stations, irradiance and temperature measurement instruments have been installed, over inclined silicon cell, global radiation on horizontal surface and room temperature. Mobile telephone devices have been installed and programmed in each one of the weather stations, which allow the transfer of their data taking advantage of the UMTS service offered by the local telephone operator. Every minute the computer server running the numerical weather forecasting models receives data inputs from 120 instruments distributed over the 30 radiometric stations. As a the result, currently it exist a stable, flexible, safe and economic infrastructure of radiometric stations and telecommunications that allows, on the one hand, to have data in real time from all 30 remote weather stations, and on the other hand allows to communicate with them in order to reprogram them and to carry out maintenance works.
Electric Sector Integration | Energy Analysis | NREL
investigates the potential impacts of expanding renewable technology deployment on grid operations and Electric System Flexibility and Storage Impacts on Conventional Generators Transmission Infrastructure Generation Our grid integration studies use state-of-the-art modeling and analysis to evaluate the impacts of
Present and Future Energy Scenario in India
NASA Astrophysics Data System (ADS)
Kumar, S.; Bhattacharyya, B.; Gupta, V. K.
2014-09-01
India's energy sector is one of the most critical components of an infrastructure that affects India's economic growth and therefore is also one of the largest industries in India. India has the 5th largest electricity generating capacity and is the 6th largest energy consumer amounting for around 3.4 % of global energy consumption. India's energy demand has grown at 3.6 % pa over the past 30 years. The consumption of the energy is directly proportional to the progress of manpower with ever growing population, improvement in the living standard of the humanity and industrialization of the developing countries. Very recently smart grid technology can attribute important role in energy scenario. Smart grid refers to electric power system that enhances grid reliability and efficiency by automatically responding to system disturbances. This paper discusses the new communication infrastructure and scheme designed to integrate data.
Transformation of OODT CAS to Perform Larger Tasks
NASA Technical Reports Server (NTRS)
Mattmann, Chris; Freeborn, Dana; Crichton, Daniel; Hughes, John; Ramirez, Paul; Hardman, Sean; Woollard, David; Kelly, Sean
2008-01-01
A computer program denoted OODT CAS has been transformed to enable performance of larger tasks that involve greatly increased data volumes and increasingly intensive processing of data on heterogeneous, geographically dispersed computers. Prior to the transformation, OODT CAS (also alternatively denoted, simply, 'CAS') [wherein 'OODT' signifies 'Object-Oriented Data Technology' and 'CAS' signifies 'Catalog and Archive Service'] was a proven software component used to manage scientific data from spaceflight missions. In the transformation, CAS was split into two separate components representing its canonical capabilities: file management and workflow management. In addition, CAS was augmented by addition of a resource-management component. This third component enables CAS to manage heterogeneous computing by use of diverse resources, including high-performance clusters of computers, commodity computing hardware, and grid computing infrastructures. CAS is now more easily maintainable, evolvable, and reusable. These components can be used separately or, taking advantage of synergies, can be used together. Other elements of the transformation included addition of a separate Web presentation layer that supports distribution of data products via Really Simple Syndication (RSS) feeds, and provision for full Resource Description Framework (RDF) exports of metadata.
NASA Technical Reports Server (NTRS)
Slater, John W.; Liou, Meng-Sing; Hindman, Richard G.
1994-01-01
An approach is presented for the generation of two-dimensional, structured, dynamic grids. The grid motion may be due to the motion of the boundaries of the computational domain or to the adaptation of the grid to the transient, physical solution. A time-dependent grid is computed through the time integration of the grid speeds which are computed from a system of grid speed equations. The grid speed equations are derived from the time-differentiation of the grid equations so as to ensure that the dynamic grid maintains the desired qualities of the static grid. The grid equations are the Euler-Lagrange equations derived from a variational statement for the grid. The dynamic grid method is demonstrated for a model problem involving boundary motion, an inviscid flow in a converging-diverging nozzle during startup, and a viscous flow over a flat plate with an impinging shock wave. It is shown that the approach is more accurate for transient flows than an approach in which the grid speeds are computed using a finite difference with respect to time of the grid. However, the approach requires significantly more computational effort.
THE PLUTO CODE FOR ADAPTIVE MESH COMPUTATIONS IN ASTROPHYSICAL FLUID DYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mignone, A.; Tzeferacos, P.; Zanni, C.
We present a description of the adaptive mesh refinement (AMR) implementation of the PLUTO code for solving the equations of classical and special relativistic magnetohydrodynamics (MHD and RMHD). The current release exploits, in addition to the static grid version of the code, the distributed infrastructure of the CHOMBO library for multidimensional parallel computations over block-structured, adaptively refined grids. We employ a conservative finite-volume approach where primary flow quantities are discretized at the cell center in a dimensionally unsplit fashion using the Corner Transport Upwind method. Time stepping relies on a characteristic tracing step where piecewise parabolic method, weighted essentially non-oscillatory,more » or slope-limited linear interpolation schemes can be handily adopted. A characteristic decomposition-free version of the scheme is also illustrated. The solenoidal condition of the magnetic field is enforced by augmenting the equations with a generalized Lagrange multiplier providing propagation and damping of divergence errors through a mixed hyperbolic/parabolic explicit cleaning step. Among the novel features, we describe an extension of the scheme to include non-ideal dissipative processes, such as viscosity, resistivity, and anisotropic thermal conduction without operator splitting. Finally, we illustrate an efficient treatment of point-local, potentially stiff source terms over hierarchical nested grids by taking advantage of the adaptivity in time. Several multidimensional benchmarks and applications to problems of astrophysical relevance assess the potentiality of the AMR version of PLUTO in resolving flow features separated by large spatial and temporal disparities.« less
Integration and validation of a data grid software
NASA Astrophysics Data System (ADS)
Carenton-Madiec, Nicolas; Berger, Katharina; Cofino, Antonio
2014-05-01
The Earth System Grid Federation (ESGF) Peer-to-Peer (P2P) is a software infrastructure for the management, dissemination, and analysis of model output and observational data. The ESGF grid is composed with several types of nodes which have different roles. About 40 data nodes host model outputs and datasets using thredds catalogs. About 25 compute nodes offer remote visualization and analysis tools. About 15 index nodes crawl data nodes catalogs and implement faceted and federated search in a web interface. About 15 Identity providers nodes manage accounts, authentication and authorization. Here we will present an actual size test federation spread across different institutes in different countries and a python test suite that were started in December 2013. The first objective of the test suite is to provide a simple tool that helps to test and validate a single data node and its closest index, compute and identity provider peer. The next objective will be to run this test suite on every data node of the federation and therefore test and validate every single node of the whole federation. The suite already implements nosetests, requests, myproxy-logon, subprocess, selenium and fabric python libraries in order to test both web front ends, back ends and security services. The goal of this project is to improve the quality of deliverable in a small developers team context. Developers are widely spread around the world working collaboratively and without hierarchy. This kind of working organization context en-lighted the need of a federated integration test and validation process.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-11
... information about electricity infrastructure's current and projected communications requirements, as well as...'s electricity infrastructure need to employ adequate communications technologies that serve their... Smart Grid and the other technologies that will evolve and change how electricity is produced, consumed...
Additional Security Considerations for Grid Management
NASA Technical Reports Server (NTRS)
Eidson, Thomas M.
2003-01-01
The use of Grid computing environments is growing in popularity. A Grid computing environment is primarily a wide area network that encompasses multiple local area networks, where some of the local area networks are managed by different organizations. A Grid computing environment also includes common interfaces for distributed computing software so that the heterogeneous set of machines that make up the Grid can be used more easily. The other key feature of a Grid is that the distributed computing software includes appropriate security technology. The focus of most Grid software is on the security involved with application execution, file transfers, and other remote computing procedures. However, there are other important security issues related to the management of a Grid and the users who use that Grid. This note discusses these additional security issues and makes several suggestions as how they can be managed.
The Particle Physics Data Grid. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livny, Miron
2002-08-16
The main objective of the Particle Physics Data Grid (PPDG) project has been to implement and evaluate distributed (Grid-enabled) data access and management technology for current and future particle and nuclear physics experiments. The specific goals of PPDG have been to design, implement, and deploy a Grid-based software infrastructure capable of supporting the data generation, processing and analysis needs common to the physics experiments represented by the participants, and to adapt experiment-specific software to operate in the Grid environment and to exploit this infrastructure. To accomplish these goals, the PPDG focused on the implementation and deployment of several critical services:more » reliable and efficient file replication service, high-speed data transfer services, multisite file caching and staging service, and reliable and recoverable job management services. The focus of the activity was the job management services and the interplay between these services and distributed data access in a Grid environment. Software was developed to study the interaction between HENP applications and distributed data storage fabric. One key conclusion was the need for a reliable and recoverable tool for managing large collections of interdependent jobs. An attached document provides an overview of the current status of the Directed Acyclic Graph Manager (DAGMan) with its main features and capabilities.« less
Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations.
Khalifa, Tarek; Abdrabou, Atef; Shaban, Khaled; Gaouda, A M
2018-05-11
Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids.
Heterogeneous Wireless Networks for Smart Grid Distribution Systems: Advantages and Limitations
Khalifa, Tarek; Abdrabou, Atef; Gaouda, A. M.
2018-01-01
Supporting a conventional power grid with advanced communication capabilities is a cornerstone to transferring it to a smart grid. A reliable communication infrastructure with a high throughput can lay the foundation towards the ultimate objective of a fully automated power grid with self-healing capabilities. In order to realize this objective, the communication infrastructure of a power distribution network needs to be extended to cover all substations including medium/low voltage ones. This shall enable information exchange among substations for a variety of system automation purposes with a low latency that suits time critical applications. This paper proposes the integration of two heterogeneous wireless technologies (such as WiFi and cellular 3G/4G) to provide reliable and fast communication among primary and secondary distribution substations. This integration allows the transmission of different data packets (not packet replicas) over two radio interfaces, making these interfaces act like a one data pipe. Thus, the paper investigates the applicability and effectiveness of employing heterogeneous wireless networks (HWNs) in achieving the desired reliability and timeliness requirements of future smart grids. We study the performance of HWNs in a realistic scenario under different data transfer loads and packet loss ratios. Our findings reveal that HWNs can be a viable data transfer option for smart grids. PMID:29751633
Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improvemore » the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.« less
NASA Astrophysics Data System (ADS)
Agavanakis, Kyriakos; Papageorgas, Panagiotis G.; Vokas, Georgios A.; Ampatis, Dionysios; Salame, Chafic
2018-05-01
Energy trading market is a consequence of the grid evolution, which has been highly regulated and accessible to a small group of stakeholders so far. Being a fundamental part of national economies, the business models and the operating regulatory structures have been the subject of intense research and experimentation. At the same time, the increasing integration of distributed energy resources to the microgrid level changes the dependence of the grid infrastructure from fossil and nuclear to renewable energy sources, smart storage and smart management. In this paper, it is argued that this shift which marks the transformation towards the next industrial era, puts in the market foreground a big number of smaller producers and ultimately all the end users, in the form of actively engaged prosumers. Furthermore, it is shown that the computational resources and technology to support an open, widely accessible and fair peer-to-peer trading market, are already available. And that such an implementation is feasible and immediately achievable using just commercial products and a side-by-side approach in the place of unrealistic big-bang type grid upgrades.
Hydrodynamic modeling of urban flooding taking into account detailed data about city infrastructure
NASA Astrophysics Data System (ADS)
Belikov, Vitaly; Norin, Sergey; Aleksyuk, Andrey; Krylenko, Inna; Borisova, Natalya; Rumyantsev, Alexey
2017-04-01
Flood waves moving across urban areas have specific features. Thus, the linear objects of infrastructure (such as embankments, roads, dams) can change the direction of flow or block the water movement. On the contrary, paved avenues and wide streets in the cities contribute to the concentration of flood waters. Buildings create an additional resistance to the movement of water, which depends on the urban density and the type of constructions; this effect cannot be completely described by Manning's resistance law. In addition, part of the earth surface, occupied by buildings, is excluded from the flooded area, which results in a substantial (relative to undeveloped areas) increase of the depth of flooding, especially for unsteady flow conditions. An approach to numerical simulation of urban areas flooding that consists in direct allocating of all buildings and structures on the computational grid are proposed. This can be done in almost full automatic way with usage of modern software. Real geometry of all objects of infrastructure can be taken into account on the base of highly detailed digital maps and satellite images. The calculations based on two-dimensional Saint-Venant equations on irregular adaptive computational meshes, which can contain millions of cells and take into account tens of thousands of buildings and other objects of infrastructure. Flood maps, received as result of modeling, are the basis for the damage and risk assessment for urban areas. The main advantage of the developed method is high-precision calculations, realistic modeling results and appropriate graphical display of the flood dynamics and dam-break wave's propagation on urban areas. Verification of this method has been done on the experimental data and real events simulations, including catastrophic flooding of the Krymsk city in 2012 year.
Tempest: Tools for Addressing the Needs of Next-Generation Climate Models
NASA Astrophysics Data System (ADS)
Ullrich, P. A.; Guerra, J. E.; Pinheiro, M. C.; Fong, J.
2015-12-01
Tempest is a comprehensive simulation-to-science infrastructure that tackles the needs of next-generation, high-resolution, data intensive climate modeling activities. This project incorporates three key components: TempestDynamics, a global modeling framework for experimental numerical methods and high-performance computing; TempestRemap, a toolset for arbitrary-order conservative and consistent remapping between unstructured grids; and TempestExtremes, a suite of detection and characterization tools for identifying weather extremes in large climate datasets. In this presentation, the latest advances with the implementation of this framework will be discussed, and a number of projects now utilizing these tools will be featured.
A grid-embedding transonic flow analysis computer program for wing/nacelle configurations
NASA Technical Reports Server (NTRS)
Atta, E. H.; Vadyak, J.
1983-01-01
An efficient grid-interfacing zonal algorithm was developed for computing the three-dimensional transonic flow field about wing/nacelle configurations. the algorithm uses the full-potential formulation and the AF2 approximate factorization scheme. The flow field solution is computed using a component-adaptive grid approach in which separate grids are employed for the individual components in the multi-component configuration, where each component grid is optimized for a particular geometry such as the wing or nacelle. The wing and nacelle component grids are allowed to overlap, and flow field information is transmitted from one grid to another through the overlap region using trivariate interpolation. This report represents a discussion of the computational methods used to generate both the wing and nacelle component grids, the technique used to interface the component grids, and the method used to obtain the inviscid flow solution. Computed results and correlations with experiment are presented. also presented are discussions on the organization of the wing grid generation (GRGEN3) and nacelle grid generation (NGRIDA) computer programs, the grid interface (LK) computer program, and the wing/nacelle flow solution (TWN) computer program. Descriptions of the respective subroutines, definitions of the required input parameters, a discussion on interpretation of the output, and the sample cases illustrating application of the analysis are provided for each of the four computer programs.
The Cloud Area Padovana: from pilot to production
NASA Astrophysics Data System (ADS)
Andreetto, P.; Costa, F.; Crescente, A.; Dorigo, A.; Fantinel, S.; Fanzago, F.; Sgaravatto, M.; Traldi, S.; Verlato, M.; Zangrando, L.
2017-10-01
The Cloud Area Padovana has been running for almost two years. This is an OpenStack-based scientific cloud, spread across two different sites: the INFN Padova Unit and the INFN Legnaro National Labs. The hardware resources have been scaled horizontally and vertically, by upgrading some hypervisors and by adding new ones: currently it provides about 1100 cores. Some in-house developments were also integrated in the OpenStack dashboard, such as a tool for user and project registrations with direct support for the INFN-AAI Identity Provider as a new option for the user authentication. In collaboration with the EU-funded Indigo DataCloud project, the integration with Docker-based containers has been experimented with and will be available in production soon. This computing facility now satisfies the computational and storage demands of more than 70 users affiliated with about 20 research projects. We present here the architecture of this Cloud infrastructure, the tools and procedures used to operate it. We also focus on the lessons learnt in these two years, describing the problems that were found and the corrective actions that had to be applied. We also discuss about the chosen strategy for upgrades, which combines the need to promptly integrate the OpenStack new developments, the demand to reduce the downtimes of the infrastructure, and the need to limit the effort requested for such updates. We also discuss how this Cloud infrastructure is being used. In particular we focus on two big physics experiments which are intensively exploiting this computing facility: CMS and SPES. CMS deployed on the cloud a complex computational infrastructure, composed of several user interfaces for job submission in the Grid environment/local batch queues or for interactive processes; this is fully integrated with the local Tier-2 facility. To avoid a static allocation of the resources, an elastic cluster, based on cernVM, has been configured: it allows to automatically create and delete virtual machines according to the user needs. SPES, using a client-server system called TraceWin, exploits INFN’s virtual resources performing a very large number of simulations on about a thousand nodes elastically managed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-08
... addition, Hong Kong has an efficient, transparent legal system based on common law principles that offer... 2020. The current grid infrastructure system is unable to support greater electricity movement from... sector, including traditional transmission/distribution systems and smart grid technologies, offers huge...
NASA Astrophysics Data System (ADS)
Rai, A.; Minsker, B. S.
2016-12-01
In this work we introduce a novel dataset GRID: GReen Infrastructure Detection Dataset and a framework for identifying urban green storm water infrastructure (GI) designs (wetlands/ponds, urban trees, and rain gardens/bioswales) from social media and satellite aerial images using computer vision and machine learning methods. Along with the hydrologic benefits of GI, such as reducing runoff volumes and urban heat islands, GI also provides important socio-economic benefits such as stress recovery and community cohesion. However, GI is installed by many different parties and cities typically do not know where GI is located, making study of its impacts or siting new GI difficult. We use object recognition learning methods (template matching, sliding window approach, and Random Hough Forest method) and supervised machine learning algorithms (e.g., support vector machines) as initial screening approaches to detect potential GI sites, which can then be investigated in more detail using on-site surveys. Training data were collected from GPS locations of Flickr and Instagram image postings and Amazon Mechanical Turk identification of each GI type. Sliding window method outperformed other methods and achieved an average F measure, which is combined metric for precision and recall performance measure of 0.78.
NASA Astrophysics Data System (ADS)
Balcas, J.; Bockelman, B.; Gardner, R., Jr.; Hurtado Anampa, K.; Jayatilaka, B.; Aftab Khan, F.; Lannon, K.; Larson, K.; Letts, J.; Marra Da Silva, J.; Mascheroni, M.; Mason, D.; Perez-Calero Yzquierdo, A.; Tiradani, A.
2017-10-01
The CMS experiment collects and analyzes large amounts of data coming from high energy particle collisions produced by the Large Hadron Collider (LHC) at CERN. This involves a huge amount of real and simulated data processing that needs to be handled in batch-oriented platforms. The CMS Global Pool of computing resources provide +100K dedicated CPU cores and another 50K to 100K CPU cores from opportunistic resources for these kind of tasks and even though production and event processing analysis workflows are already managed by existing tools, there is still a lack of support to submit final stage condor-like analysis jobs familiar to Tier-3 or local Computing Facilities users into these distributed resources in an integrated (with other CMS services) and friendly way. CMS Connect is a set of computing tools and services designed to augment existing services in the CMS Physics community focusing on these kind of condor analysis jobs. It is based on the CI-Connect platform developed by the Open Science Grid and uses the CMS GlideInWMS infrastructure to transparently plug CMS global grid resources into a virtual pool accessed via a single submission machine. This paper describes the specific developments and deployment of CMS Connect beyond the CI-Connect platform in order to integrate the service with CMS specific needs, including specific Site submission, accounting of jobs and automated reporting to standard CMS monitoring resources in an effortless way to their users.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billings, Jay J.; Bonior, Jason D.; Evans, Philip G.
Securely transferring timing information in the electrical grid is a critical component of securing the nation's infrastructure from cyber attacks. One solution to this problem is to use quantum information to securely transfer the timing information across sites. This software provides such an infrastructure using a standard Java webserver that pulls the quantum information from associated hardware.
Breton, Vincent; Dean, Kevin; Solomonides, Tony; Blanquer, I; Hernandez, V; Medico, E; Maglaveras, N; Benkner, S; Lonsdale, G; Lloyd, S; Hassan, K; McClatchey, R; Miguet, S; Montagnat, J; Pennec, X; De Neve, W; De Wagter, C; Heeren, G; Maigne, L; Nozaki, K; Taillet, M; Bilofsky, H; Ziegler, R; Hoffman, M; Jones, C; Cannataro, M; Veltri, P; Aloisio, G; Fiore, S; Mirto, M; Chouvarda, I; Koutkias, V; Malousi, A; Lopez, V; Oliveira, I; Sanchez, J P; Martin-Sanchez, F; De Moor, G; Claerhout, B; Herveg, J A M
2005-01-01
Over the last four years, a community of researchers working on Grid and High Performance Computing technologies started discussing the barriers and opportunities that grid technologies must face and exploit for the development of health-related applications. This interest lead to the first Healthgrid conference, held in Lyon, France, on January 16th-17th, 2003, with the focus of creating increased awareness about the possibilities and advantages linked to the deployment of grid technologies in health, ultimately targeting the creation of a European/international grid infrastructure for health. The topics of this conference converged with the position of the eHealth division of the European Commission, whose mandate from the Lisbon Meeting was "To develop an intelligent environment that enables ubiquitous management of citizens' health status, and to assist health professionals in coping with some major challenges, risk management and the integration into clinical practice of advances in health knowledge." In this context "Health" involves not only clinical procedures but covers the whole range of information from molecular level (genetic and proteomic information) over cells and tissues, to the individual and finally the population level (social healthcare). Grid technology offers the opportunity to create a common working backbone for all different members of this large "health family" and will hopefully lead to an increased awareness and interoperability among disciplines. The first HealthGrid conference led to the creation of the Healthgrid association, a non-profit research association legally incorporated in France but formed from the broad community of European researchers and institutions sharing expertise in health grids. After the second Healthgrid conference, held in Clermont-Ferrand on January 29th-30th, 2004, the need for a "white paper" on the current status and prospective of health grids was raised. Over fifty experts from different areas of grid technologies, eHealth applications and the medical world were invited to contribute to the preparation of this document.
Federated data storage and management infrastructure
NASA Astrophysics Data System (ADS)
Zarochentsev, A.; Kiryanov, A.; Klimentov, A.; Krasnopevtsev, D.; Hristov, P.
2016-10-01
The Large Hadron Collider (LHC)’ operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe. Computing models for the High Luminosity LHC era anticipate a growth of storage needs of at least orders of magnitude; it will require new approaches in data storage organization and data handling. In our project we address the fundamental problem of designing of architecture to integrate a distributed heterogeneous disk resources for LHC experiments and other data- intensive science applications and to provide access to data from heterogeneous computing facilities. We have prototyped a federated storage for Russian T1 and T2 centers located in Moscow, St.-Petersburg and Gatchina, as well as Russian / CERN federation. We have conducted extensive tests of underlying network infrastructure and storage endpoints with synthetic performance measurement tools as well as with HENP-specific workloads, including the ones running on supercomputing platform, cloud computing and Grid for ALICE and ATLAS experiments. We will present our current accomplishments with running LHC data analysis remotely and locally to demonstrate our ability to efficiently use federated data storage experiment wide within National Academic facilities for High Energy and Nuclear Physics as well as for other data-intensive science applications, such as bio-informatics.
Distributed intrusion detection system based on grid security model
NASA Astrophysics Data System (ADS)
Su, Jie; Liu, Yahui
2008-03-01
Grid computing has developed rapidly with the development of network technology and it can solve the problem of large-scale complex computing by sharing large-scale computing resource. In grid environment, we can realize a distributed and load balance intrusion detection system. This paper first discusses the security mechanism in grid computing and the function of PKI/CA in the grid security system, then gives the application of grid computing character in the distributed intrusion detection system (IDS) based on Artificial Immune System. Finally, it gives a distributed intrusion detection system based on grid security system that can reduce the processing delay and assure the detection rates.
Distinction of Concept and Discussion on Construction Idea of Smart Water Grid Project
NASA Astrophysics Data System (ADS)
Ye, Y.; Yizi, S., Sr.; Lili, L., Sr.; Sang, X.; Zhai, J.
2016-12-01
Smart water grid project includes construction of water physical grid consisting of various flow regulating infrastructures, construction of water information grid in line with the trend of intelligent technology and construction of water management grid featured by system & mechanism construction and systemization of regulation decision-making. It is the integrated platform and comprehensive carrier for water conservancy practices. Currently, there still is dispute over engineering construction idea of smart water grid which, however, represents the future development trend of water management and is increasingly emphasized. The paper, based on distinction of concept of water grid and water grid engineering, explains the concept of water grid intelligentization, actively probes into construction idea of Smart water grid project in our country and presents scientific problems to be solved as well as core technologies to be mastered for smart water grid construction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amerio, S.; Behari, S.; Boyd, J.
The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards inmore » both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. Lastly, these efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.« less
Data preservation at the Fermilab Tevatron
NASA Astrophysics Data System (ADS)
Amerio, S.; Behari, S.; Boyd, J.; Brochmann, M.; Culbertson, R.; Diesburg, M.; Freeman, J.; Garren, L.; Greenlee, H.; Herner, K.; Illingworth, R.; Jayatilaka, B.; Jonckheere, A.; Li, Q.; Naymola, S.; Oleynik, G.; Sakumoto, W.; Varnes, E.; Vellidis, C.; Watts, G.; White, S.
2017-04-01
The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. These efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.
Smart Grid Maturity Model: Model Definition. A Framework for Smart Grid Transformation
2010-09-01
adoption of more efficient and reliable generation sources and would allow consumer-generated electricity (e.g., solar power and wind) to be connected to...program that pays customers (or credits their accounts) for customer-provided electricity such as from solar panels to the grid or electric vehicles...deployed. CUST-5.3 Plug-and-play customer-based generation (e.g., wind and solar ) is supported. This includes the necessary infrastructure, such
Grid Oriented Implementation of the Tephra Model
NASA Astrophysics Data System (ADS)
Coltelli, M.; D'Agostino, M.; Drago, A.; Pistagna, F.; Prestifilippo, M.; Reitano, D.; Scollo, S.; Spata, G.
2009-04-01
TEPHRA is a two dimensional advection-diffusion model implemented by Bonadonna et al. [2005] that describes the sedimentation process of particles from volcanic plumes. The model is used by INGV - Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, to forecast tephra dispersion during Etna volcanic events. Every day weather forecast provided by the Italian Air Force Meteorological Office in Rome and by the hydrometeorological service of ARPA in Emilia Romagna are processed by TEPHRA model with other volcanological parameters to simulate two different eruptive scenarios of Mt. Etna (corresponding to 1998 and 2002-03 Etna eruptions). The model outputs are plotted on maps and transferred to Civil Protection which takes the trouble to give public warnings and plan mitigation measures. The TEPHRA model is implemented in ANSI-C code using MPI commands to maximize parallel computation. Actually the model runs on an INGV Beowulf cluster. In order to provide better performances we worked on porting it to PI2S2 sicilian grid infrastructure inside the "PI2S2 Project" (2006-2008). We configured the application to run on grid, using Glite middleware, analyzed the obtained performances and comparing them with ones obtained on the local cluster. As TEPHRA needs to be run in a short time in order to transfer fastly the dispersion maps to Civil Protection, we also worked to minimize and stabilize grid job-scheduling time by using customized high-priority queues called Emergency Queue.
Association rule mining on grid monitoring data to detect error sources
NASA Astrophysics Data System (ADS)
Maier, Gerhild; Schiffers, Michael; Kranzlmueller, Dieter; Gaidioz, Benjamin
2010-04-01
Error handling is a crucial task in an infrastructure as complex as a grid. There are several monitoring tools put in place, which report failing grid jobs including exit codes. However, the exit codes do not always denote the actual fault, which caused the job failure. Human time and knowledge is required to manually trace back errors to the real fault underlying an error. We perform association rule mining on grid job monitoring data to automatically retrieve knowledge about the grid components' behavior by taking dependencies between grid job characteristics into account. Therewith, problematic grid components are located automatically and this information - expressed by association rules - is visualized in a web interface. This work achieves a decrease in time for fault recovery and yields an improvement of a grid's reliability.
Computational Science in Armenia (Invited Talk)
NASA Astrophysics Data System (ADS)
Marandjian, H.; Shoukourian, Yu.
This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.
Setting Up a Grid-CERT: Experiences of an Academic CSIRT
ERIC Educational Resources Information Center
Moller, Klaus
2007-01-01
Purpose: Grid computing has often been heralded as the next logical step after the worldwide web. Users of grids can access dynamic resources such as computer storage and use the computing resources of computers under the umbrella of a virtual organisation. Although grid computing is often compared to the worldwide web, it is vastly more complex…
Technical support for Life Sciences communities on a production grid infrastructure.
Michel, Franck; Montagnat, Johan; Glatard, Tristan
2012-01-01
Production operation of large distributed computing infrastructures (DCI) still requires a lot of human intervention to reach acceptable quality of service. This may be achievable for scientific communities with solid IT support, but it remains a show-stopper for others. Some application execution environments are used to hide runtime technical issues from end users. But they mostly aim at fault-tolerance rather than incident resolution, and their operation still requires substantial manpower. A longer-term support activity is thus needed to ensure sustained quality of service for Virtual Organisations (VO). This paper describes how the biomed VO has addressed this challenge by setting up a technical support team. Its organisation, tooling, daily tasks, and procedures are described. Results are shown in terms of resource usage by end users, amount of reported incidents, and developed software tools. Based on our experience, we suggest ways to measure the impact of the technical support, perspectives to decrease its human cost and make it more community-specific.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Fulin; Cao, Yang; Zhang, Jun Jason
Ensuring flexible and reliable data routing is indispensable for the integration of Advanced Metering Infrastructure (AMI) networks, we propose a secure-oriented and load-balancing wireless data routing scheme. A novel utility function is designed based on security routing scheme. Then, we model the interactive security-oriented routing strategy among meter data concentrators or smart grid meters as a mixed-strategy network formation game. Finally, such problem results in a stable probabilistic routing scheme with proposed distributed learning algorithm. One contributions is that we studied that different types of applications affect the routing selection strategy and the strategy tendency. Another contributions is that themore » chosen strategy of our mixed routing can adaptively to converge to a new mixed strategy Nash equilibrium (MSNE) during the learning process in the smart grid.« less
A Grid Metadata Service for Earth and Environmental Sciences
NASA Astrophysics Data System (ADS)
Fiore, Sandro; Negro, Alessandro; Aloisio, Giovanni
2010-05-01
Critical challenges for climate modeling researchers are strongly connected with the increasingly complex simulation models and the huge quantities of produced datasets. Future trends in climate modeling will only increase computational and storage requirements. For this reason the ability to transparently access to both computational and data resources for large-scale complex climate simulations must be considered as a key requirement for Earth Science and Environmental distributed systems. From the data management perspective (i) the quantity of data will continuously increases, (ii) data will become more and more distributed and widespread, (iii) data sharing/federation will represent a key challenging issue among different sites distributed worldwide, (iv) the potential community of users (large and heterogeneous) will be interested in discovery experimental results, searching of metadata, browsing collections of files, compare different results, display output, etc.; A key element to carry out data search and discovery, manage and access huge and distributed amount of data is the metadata handling framework. What we propose for the management of distributed datasets is the GRelC service (a data grid solution focusing on metadata management). Despite the classical approaches, the proposed data-grid solution is able to address scalability, transparency, security and efficiency and interoperability. The GRelC service we propose is able to provide access to metadata stored in different and widespread data sources (relational databases running on top of MySQL, Oracle, DB2, etc. leveraging SQL as query language, as well as XML databases - XIndice, eXist, and libxml2 based documents, adopting either XPath or XQuery) providing a strong data virtualization layer in a grid environment. Such a technological solution for distributed metadata management leverages on well known adopted standards (W3C, OASIS, etc.); (ii) supports role-based management (based on VOMS), which increases flexibility and scalability; (iii) provides full support for Grid Security Infrastructure, which means (authorization, mutual authentication, data integrity, data confidentiality and delegation); (iv) is compatible with existing grid middleware such as gLite and Globus and finally (v) is currently adopted at the Euro-Mediterranean Centre for Climate Change (CMCC - Italy) to manage the entire CMCC data production activity as well as in the international Climate-G testbed.
The Legnaro-Padova distributed Tier-2: challenges and results
NASA Astrophysics Data System (ADS)
Badoer, Simone; Biasotto, Massimo; Costa, Fulvia; Crescente, Alberto; Fantinel, Sergio; Ferrari, Roberto; Gulmini, Michele; Maron, Gaetano; Michelotto, Michele; Sgaravatto, Massimo; Toniolo, Nicola
2014-06-01
The Legnaro-Padova Tier-2 is a computing facility serving the ALICE and CMS LHC experiments. It also supports other High Energy Physics experiments and other virtual organizations of different disciplines, which can opportunistically harness idle resources if available. The unique characteristic of this Tier-2 is its topology: the computational resources are spread in two different sites, about 15 km apart: the INFN Legnaro National Laboratories and the INFN Padova unit, connected through a 10 Gbps network link (it will be soon updated to 20 Gbps). Nevertheless these resources are seamlessly integrated and are exposed as a single computing facility. Despite this intrinsic complexity, the Legnaro-Padova Tier-2 ranks among the best Grid sites for what concerns reliability and availability. The Tier-2 comprises about 190 worker nodes, providing about 26000 HS06 in total. Such computing nodes are managed by the LSF local resource management system, and are accessible using a Grid-based interface implemented through multiple CREAM CE front-ends. dCache, xrootd and Lustre are the storage systems in use at the Tier-2: about 1.5 PB of disk space is available to users in total, through multiple access protocols. A 10 Gbps network link, planned to be doubled in the next months, connects the Tier-2 to WAN. This link is used for the LHC Open Network Environment (LHCONE) and for other general purpose traffic. In this paper we discuss about the experiences at the Legnaro-Padova Tier-2: the problems that had to be addressed, the lessons learned, the implementation choices. We also present the tools used for the daily management operations. These include DOCET, a Java-based webtool designed, implemented and maintained at the Legnaro-Padova Tier-2, and deployed also in other sites, such as the LHC Italian T1. DOCET provides an uniform interface to manage all the information about the physical resources of a computing center. It is also used as documentation repository available to the Tier-2 operations team. Finally we discuss about the foreseen developments of the existing infrastructure. This includes in particular the evolution from a Grid-based resource towards a Cloud-based computing facility.
Using Taxonomic Indexing Trees to Efficiently Retrieve SCORM-Compliant Documents in e-Learning Grids
ERIC Educational Resources Information Center
Shih, Wen-Chung; Tseng, Shian-Shyong; Yang, Chao-Tung
2008-01-01
With the flourishing development of e-Learning, more and more SCORM-compliant teaching materials are developed by institutes and individuals in different sites. In addition, the e-Learning grid is emerging as an infrastructure to enhance traditional e-Learning systems. Therefore, information retrieval schemes supporting SCORM-compliant documents…
Cook, Brendan; Gazzano, Jerrome; Gunay, Zeynep; Hiller, Lucas; Mahajan, Sakshi; Taskan, Aynur; Vilogorac, Samra
2012-04-23
The electric grid in the United States has been suffering from underinvestment for years, and now faces pressing challenges from rising demand and deteriorating infrastructure. High congestion levels in transmission lines are greatly reducing the efficiency of electricity generation and distribution. In this paper, we assess the faults of the current electric grid and quantify the costs of maintaining the current system into the future. While the proposed "smart grid" contains many proposals to upgrade the ailing infrastructure of the electric grid, we argue that smart meter installation in each U.S. household will offer a significant reduction in peak demand on the current system. A smart meter is a device which monitors a household's electricity consumption in real-time, and has the ability to display real-time pricing in each household. We conclude that these devices will provide short-term and long-term benefits to utilities and consumers. The smart meter will enable utilities to closely monitor electricity consumption in real-time, while also allowing households to adjust electricity consumption in response to real-time price adjustments.
Strategies, Protections and Mitigations for Electric Grid from Electromagnetic Pulse Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, Rita Ann; Frickey, Steven Jay
2016-01-01
The mission of DOE’s Office of Electricity Delivery and Energy Reliability (OE) is to lead national efforts to modernize the electricity delivery system, enhance the security and reliability of America’s energy infrastructure and facilitate recovery from disruptions to the energy supply. One of the threats OE is concerned about is a high-altitude electro-magnetic pulse (HEMP) from a nuclear explosion and eletro-magnetic pulse (EMP) or E1 pulse can be generated by EMP weapons. DOE-OE provides federal leadership and technical guidance in addressing electric grid issues. The Idaho National Laboratory (INL) was chosen to conduct the EMP study for DOE-OE due tomore » its capabilities and experience in setting up EMP experiments on the electric grid and conducting vulnerability assessments and developing innovative technology to increase infrastructure resiliency. This report identifies known impacts to EMP threats, known mitigations and effectiveness of mitigations, potential cost of mitigation, areas for government and private partnerships in protecting the electric grid to EMP, and identifying gaps in our knowledge and protection strategies.« less
Proposal for grid computing for nuclear applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idris, Faridah Mohamad; Ismail, Saaidi; Haris, Mohd Fauzi B.
2014-02-12
The use of computer clusters for computational sciences including computational physics is vital as it provides computing power to crunch big numbers at a faster rate. In compute intensive applications that requires high resolution such as Monte Carlo simulation, the use of computer clusters in a grid form that supplies computational power to any nodes within the grid that needs computing power, has now become a necessity. In this paper, we described how the clusters running on a specific application could use resources within the grid, to run the applications to speed up the computing process.
A Public Health Grid (PHGrid): Architecture and value proposition for 21st century public health.
Savel, T; Hall, K; Lee, B; McMullin, V; Miles, M; Stinn, J; White, P; Washington, D; Boyd, T; Lenert, L
2010-07-01
This manuscript describes the value of and proposal for a high-level architectural framework for a Public Health Grid (PHGrid), which the authors feel has the capability to afford the public health community a robust technology infrastructure for secure and timely data, information, and knowledge exchange, not only within the public health domain, but between public health and the overall health care system. The CDC facilitated multiple Proof-of-Concept (PoC) projects, leveraging an open-source-based software development methodology, to test four hypotheses with regard to this high-level framework. The outcomes of the four PoCs in combination with the use of the Federal Enterprise Architecture Framework (FEAF) and the newly emerging Federal Segment Architecture Methodology (FSAM) was used to develop and refine a high-level architectural framework for a Public Health Grid infrastructure. The authors were successful in documenting a robust high-level architectural framework for a PHGrid. The documentation generated provided a level of granularity needed to validate the proposal, and included examples of both information standards and services to be implemented. Both the results of the PoCs as well as feedback from selected public health partners were used to develop the granular documentation. A robust high-level cohesive architectural framework for a Public Health Grid (PHGrid) has been successfully articulated, with its feasibility demonstrated via multiple PoCs. In order to successfully implement this framework for a Public Health Grid, the authors recommend moving forward with a three-pronged approach focusing on interoperability and standards, streamlining the PHGrid infrastructure, and developing robust and high-impact public health services. Published by Elsevier Ireland Ltd.
GEMSS: privacy and security for a medical Grid.
Middleton, S E; Herveg, J A M; Crazzolara, F; Marvin, D; Poullet, Y
2005-01-01
The GEMSS project is developing a secure Grid infrastructure through which six medical simulations services can be invoked. We examine the legal and security framework within which GEMSS operates. We provide a legal qualification to the operations performed upon patient data, in view of EU directive 95/46, when using medical applications on the GEMSS Grid. We identify appropriate measures to ensure security and describe the legal rationale behind our choice of security technology. Our legal analysis demonstrates there must be an identified controller (typically a hospital) of patient data. The controller must then choose a processor (in this context a Grid service provider) that provides sufficient guarantees with respect to the security of their technical and organizational data processing procedures. These guarantees must ensure a level of security appropriate to the risks, with due regard to the state of the art and the cost of their implementation. Our security solutions are based on a public key infrastructure (PKI), transport level security and end-to-end security mechanisms in line with the web service (WS Security, WS Trust and SecureConversation) security specifications. The GEMSS infrastructure ensures a degree of protection of patient data that is appropriate for the health care sector, and is in line with the European directives. We hope that GEMSS will become synonymous with high security data processing, providing a framework by which GEMSS service providers can provide the security guarantees required by hospitals with regard to the processing of patient data.
Initial steps towards a production platform for DNA sequence analysis on the grid.
Luyf, Angela C M; van Schaik, Barbera D C; de Vries, Michel; Baas, Frank; van Kampen, Antoine H C; Olabarriaga, Silvia D
2010-12-14
Bioinformatics is confronted with a new data explosion due to the availability of high throughput DNA sequencers. Data storage and analysis becomes a problem on local servers, and therefore it is needed to switch to other IT infrastructures. Grid and workflow technology can help to handle the data more efficiently, as well as facilitate collaborations. However, interfaces to grids are often unfriendly to novice users. In this study we reused a platform that was developed in the VL-e project for the analysis of medical images. Data transfer, workflow execution and job monitoring are operated from one graphical interface. We developed workflows for two sequence alignment tools (BLAST and BLAT) as a proof of concept. The analysis time was significantly reduced. All workflows and executables are available for the members of the Dutch Life Science Grid and the VL-e Medical virtual organizations All components are open source and can be transported to other grid infrastructures. The availability of in-house expertise and tools facilitates the usage of grid resources by new users. Our first results indicate that this is a practical, powerful and scalable solution to address the capacity and collaboration issues raised by the deployment of next generation sequencers. We currently adopt this methodology on a daily basis for DNA sequencing and other applications. More information and source code is available via http://www.bioinformaticslaboratory.nl/
Executable research compendia in geoscience research infrastructures
NASA Astrophysics Data System (ADS)
Nüst, Daniel
2017-04-01
From generation through analysis and collaboration to communication, scientific research requires the right tools. Scientists create their own software using third party libraries and platforms. Cloud computing, Open Science, public data infrastructures, and Open Source enable scientists with unprecedented opportunites, nowadays often in a field "Computational X" (e.g. computational seismology) or X-informatics (e.g. geoinformatics) [0]. This increases complexity and generates more innovation, e.g. Environmental Research Infrastructures (environmental RIs [1]). Researchers in Computational X write their software relying on both source code (e.g. from https://github.com) and binary libraries (e.g. from package managers such as APT, https://wiki.debian.org/Apt, or CRAN, https://cran.r-project.org/). They download data from domain specific (cf. https://re3data.org) or generic (e.g. https://zenodo.org) data repositories, and deploy computations remotely (e.g. European Open Science Cloud). The results themselves are archived, given persistent identifiers, connected to other works (e.g. using https://orcid.org/), and listed in metadata catalogues. A single researcher, intentionally or not, interacts with all sub-systems of RIs: data acquisition, data access, data processing, data curation, and community support [3]. To preserve computational research [3] proposes the Executable Research Compendium (ERC), a container format closing the gap of dependency preservation by encapsulating the runtime environment. ERCs and RIs can be integrated for different uses: (i) Coherence: ERC services validate completeness, integrity and results (ii) Metadata: ERCs connect the different parts of a piece of research and faciliate discovery (iii) Exchange and Preservation: ERC as usable building blocks are the shared and archived entity (iv) Self-consistency: ERCs remove dependence on ephemeral sources (v) Execution: ERC services create and execute a packaged analysis but integrate with existing platforms for display and control These integrations are vital for capturing workflows in RIs and connect key stakeholders (scientists, publishers, librarians). They are demonstrated using developments by the DFG-funded project Opening Reproducible Research (http://o2r.info). Semi-automatic creation of ERCs based on research workflows is a core goal of the project. References [0] Tony Hey, Stewart Tansley, Kristin Tolle (eds), 2009. The Fourth Paradigm: Data-Intensive Scientific Discovery. Microsoft Research. [1] P. Martin et al., Open Information Linking for Environmental Research Infrastructures, 2015 IEEE 11th International Conference on e-Science, Munich, 2015, pp. 513-520. doi: 10.1109/eScience.2015.66 [2] Y. Chen et al., Analysis of Common Requirements for Environmental Science Research Infrastructures, The International Symposium on Grids and Clouds (ISGC) 2013, Taipei, 2013, http://pos.sissa.it/archive/conferences/179/032/ISGC [3] Opening Reproducible Research, Geophysical Research Abstracts Vol. 18, EGU2016-7396, 2016, http://meetingorganizer.copernicus.org/EGU2016/EGU2016-7396.pdf
Moreno, Rodrigo; Street, Alexandre; Arroyo, José M; Mancarella, Pierluigi
2017-08-13
Electricity grid operators and planners need to deal with both the rapidly increasing integration of renewables and an unprecedented level of uncertainty that originates from unknown generation outputs, changing commercial and regulatory frameworks aimed to foster low-carbon technologies, the evolving availability of market information on feasibility and costs of various technologies, etc. In this context, there is a significant risk of locking-in to inefficient investment planning solutions determined by current deterministic engineering practices that neither capture uncertainty nor represent the actual operation of the planned infrastructure under high penetration of renewables. We therefore present an alternative optimization framework to plan electricity grids that deals with uncertain scenarios and represents increased operational details. The presented framework is able to model the effects of an array of flexible, smart grid technologies that can efficiently displace the need for conventional solutions. We then argue, and demonstrate via the proposed framework and an illustrative example, that proper modelling of uncertainty and operational constraints in planning is key to valuing operationally flexible solutions leading to optimal investment in a smart grid context. Finally, we review the most used practices in power system planning under uncertainty, highlight the challenges of incorporating operational aspects and advocate the need for new and computationally effective optimization tools to properly value the benefits of flexible, smart grid solutions in planning. Such tools are essential to accelerate the development of a low-carbon energy system and investment in the most appropriate portfolio of renewable energy sources and complementary enabling smart technologies.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Toward an automated parallel computing environment for geosciences
NASA Astrophysics Data System (ADS)
Zhang, Huai; Liu, Mian; Shi, Yaolin; Yuen, David A.; Yan, Zhenzhen; Liang, Guoping
2007-08-01
Software for geodynamic modeling has not kept up with the fast growing computing hardware and network resources. In the past decade supercomputing power has become available to most researchers in the form of affordable Beowulf clusters and other parallel computer platforms. However, to take full advantage of such computing power requires developing parallel algorithms and associated software, a task that is often too daunting for geoscience modelers whose main expertise is in geosciences. We introduce here an automated parallel computing environment built on open-source algorithms and libraries. Users interact with this computing environment by specifying the partial differential equations, solvers, and model-specific properties using an English-like modeling language in the input files. The system then automatically generates the finite element codes that can be run on distributed or shared memory parallel machines. This system is dynamic and flexible, allowing users to address different problems in geosciences. It is capable of providing web-based services, enabling users to generate source codes online. This unique feature will facilitate high-performance computing to be integrated with distributed data grids in the emerging cyber-infrastructures for geosciences. In this paper we discuss the principles of this automated modeling environment and provide examples to demonstrate its versatility.
NASA Astrophysics Data System (ADS)
Mende, Denis; Böttger, Diana; Löwer, Lothar; Becker, Holger; Akbulut, Alev; Stock, Sebastian
2018-02-01
The European power grid infrastructure faces various challenges due to the expansion of renewable energy sources (RES). To conduct investigations on interactions between power generation and the power grid, models for the power market as well as for the power grid are necessary. This paper describes the basic functionalities and working principles of both types of models as well as steps to couple power market results and the power grid model. The combination of these models is beneficial in terms of gaining realistic power flow scenarios in the grid model and of being able to pass back results of the power flow and restrictions to the market model. Focus is laid on the power grid model and possible application examples like algorithms in grid analysis, operation and dynamic equipment modelling.
NASA Astrophysics Data System (ADS)
Groth, Markus; Cortekar, Jörg
2015-04-01
The option of adapting to climate change is becoming more and more important in climate change policy. Hence, responding to climate change now involves both mitigation to address the cause and adaptation as a response to already ongoing and expected changes. These changes also have relevance for the current and future energy sector in Germany. An energy sector that in the course of the German Energiewende also has to deal with a fundamental shift in energy supply from fossil fuel to renewable energies in the next decades. Thereby it needs to be considered that the energy sector is one critical infrastructure in the European Union that needs to be protected. Critical infrastructures can be defined as organisations or facilities of special importance for the country and its people where failure or functional impairment would lead to severe supply bottlenecks, significant disturbance of public order or other dramatic consequences. Regarding the adaptation to climate change, the main question is, whether adaptation options will be implemented voluntarily by companies or not. This will be the case, when the measure is considered a private good and is economically beneficial. If, on the contrary, the measure is considered a public good, additional incentives are needed. Based on a synthesis of the current knowledge regarding the possible impacts of climate change on the German energy sector along its value-added chain, the paper points out, that the power distribution and the grid infrastructure is consistently attributed the highest vulnerability. Direct physical impacts and damages to the transmission and distribution grids, utility poles, power transformers, and relay stations are expected due to more intense extreme weather events like storms, floods or thunderstorms. Furthermore fundaments of utility poles can be eroded and relay stations or power transformers can be flooded, which might cause short circuits etc. Besides these impacts causing damage to the physical infrastructure, there might also occur efficiency losses in electricity transmission due to very high or very low temperatures. While vulnerabilities in power generation primarily result in efficiency losses, interferences on the grid level could cause power outages with cascade effects influencing other sectors of society and economy. The paper argues that these possible impacts of a changing climate should be taken into account in the upcoming infrastructure projects in the course of the Energiewende. Therefore governmental intervention - like legal obligations or incentives by the use of economic instruments - are for example justifiable regarding measures to adapt the grid infrastructure as a critical infrastructure that needs to be protected against current and future impacts of climate change.
Refinement Of Hexahedral Cells In Euler Flow Computations
NASA Technical Reports Server (NTRS)
Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.
1996-01-01
Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.
Spatial Data Exploring by Satellite Image Distributed Processing
NASA Astrophysics Data System (ADS)
Mihon, V. D.; Colceriu, V.; Bektas, F.; Allenbach, K.; Gvilava, M.; Gorgan, D.
2012-04-01
Our society needs and environmental predictions encourage the applications development, oriented on supervising and analyzing different Earth Science related phenomena. Satellite images could be explored for discovering information concerning land cover, hydrology, air quality, and water and soil pollution. Spatial and environment related data could be acquired by imagery classification consisting of data mining throughout the multispectral bands. The process takes in account a large set of variables such as satellite image types (e.g. MODIS, Landsat), particular geographic area, soil composition, vegetation cover, and generally the context (e.g. clouds, snow, and season). All these specific and variable conditions require flexible tools and applications to support an optimal search for the appropriate solutions, and high power computation resources. The research concerns with experiments on solutions of using the flexible and visual descriptions of the satellite image processing over distributed infrastructures (e.g. Grid, Cloud, and GPU clusters). This presentation highlights the Grid based implementation of the GreenLand application. The GreenLand application development is based on simple, but powerful, notions of mathematical operators and workflows that are used in distributed and parallel executions over the Grid infrastructure. Currently it is used in three major case studies concerning with Istanbul geographical area, Rioni River in Georgia, and Black Sea catchment region. The GreenLand application offers a friendly user interface for viewing and editing workflows and operators. The description involves the basic operators provided by GRASS [1] library as well as many other image related operators supported by the ESIP platform [2]. The processing workflows are represented as directed graphs giving the user a fast and easy way to describe complex parallel algorithms, without having any prior knowledge of any programming language or application commands. Also this Web application does not require any kind of install for what the house-hold user is concerned. It is a remote application which may be accessed over the Internet. Currently the GreenLand application is available through the BSC-OS Portal provided by the enviroGRIDS FP7 project [3]. This presentation aims to highlight the challenges and issues of flexible description of the Grid based processing of satellite images, interoperability with other software platforms available in the portal, as well as the particular requirements of the Black Sea related use cases.
Cloud Computing and Its Applications in GIS
NASA Astrophysics Data System (ADS)
Kang, Cao
2011-12-01
Cloud computing is a novel computing paradigm that offers highly scalable and highly available distributed computing services. The objectives of this research are to: 1. analyze and understand cloud computing and its potential for GIS; 2. discover the feasibilities of migrating truly spatial GIS algorithms to distributed computing infrastructures; 3. explore a solution to host and serve large volumes of raster GIS data efficiently and speedily. These objectives thus form the basis for three professional articles. The first article is entitled "Cloud Computing and Its Applications in GIS". This paper introduces the concept, structure, and features of cloud computing. Features of cloud computing such as scalability, parallelization, and high availability make it a very capable computing paradigm. Unlike High Performance Computing (HPC), cloud computing uses inexpensive commodity computers. The uniform administration systems in cloud computing make it easier to use than GRID computing. Potential advantages of cloud-based GIS systems such as lower barrier to entry are consequently presented. Three cloud-based GIS system architectures are proposed: public cloud- based GIS systems, private cloud-based GIS systems and hybrid cloud-based GIS systems. Public cloud-based GIS systems provide the lowest entry barriers for users among these three architectures, but their advantages are offset by data security and privacy related issues. Private cloud-based GIS systems provide the best data protection, though they have the highest entry barriers. Hybrid cloud-based GIS systems provide a compromise between these extremes. The second article is entitled "A cloud computing algorithm for the calculation of Euclidian distance for raster GIS". Euclidean distance is a truly spatial GIS algorithm. Classical algorithms such as the pushbroom and growth ring techniques require computational propagation through the entire raster image, which makes it incompatible with the distributed nature of cloud computing. This paper presents a parallel Euclidean distance algorithm that works seamlessly with the distributed nature of cloud computing infrastructures. The mechanism of this algorithm is to subdivide a raster image into sub-images and wrap them with a one pixel deep edge layer of individually computed distance information. Each sub-image is then processed by a separate node, after which the resulting sub-images are reassembled into the final output. It is shown that while any rectangular sub-image shape can be used, those approximating squares are computationally optimal. This study also serves as a demonstration of this subdivide and layer-wrap strategy, which would enable the migration of many truly spatial GIS algorithms to cloud computing infrastructures. However, this research also indicates that certain spatial GIS algorithms such as cost distance cannot be migrated by adopting this mechanism, which presents significant challenges for the development of cloud-based GIS systems. The third article is entitled "A Distributed Storage Schema for Cloud Computing based Raster GIS Systems". This paper proposes a NoSQL Database Management System (NDDBMS) based raster GIS data storage schema. NDDBMS has good scalability and is able to use distributed commodity computers, which make it superior to Relational Database Management Systems (RDBMS) in a cloud computing environment. In order to provide optimized data service performance, the proposed storage schema analyzes the nature of commonly used raster GIS data sets. It discriminates two categories of commonly used data sets, and then designs corresponding data storage models for both categories. As a result, the proposed storage schema is capable of hosting and serving enormous volumes of raster GIS data speedily and efficiently on cloud computing infrastructures. In addition, the scheme also takes advantage of the data compression characteristics of Quadtrees, thus promoting efficient data storage. Through this assessment of cloud computing technology, the exploration of the challenges and solutions to the migration of GIS algorithms to cloud computing infrastructures, and the examination of strategies for serving large amounts of GIS data in a cloud computing infrastructure, this dissertation lends support to the feasibility of building a cloud-based GIS system. However, there are still challenges that need to be addressed before a full-scale functional cloud-based GIS system can be successfully implemented. (Abstract shortened by UMI.)
Impact of electric vehicles on the IEEE 34 node distribution infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zeming; Shalalfel, Laith; Beshir, Mohammed J.
With the growing penetration of the electric vehicles to our daily life owing to their economic and environmental benefits, there will be both opportunities and challenges to the utilities when adopting plug-in electric vehicles (PEV) to the distribution network. In this study, a thorough analysis based on real-world project is conducted to evaluate the impacts of electric vehicles infrastructure on the grid relating to system load flow, load factor, and voltage stability. IEEE 34 node test feeder was selected and tested along with different case scenarios utilizing the electrical distribution design (EDD) software to find out the potential impacts tomore » the grid.« less
Impact of electric vehicles on the IEEE 34 node distribution infrastructure
Jiang, Zeming; Shalalfel, Laith; Beshir, Mohammed J.
2014-10-01
With the growing penetration of the electric vehicles to our daily life owing to their economic and environmental benefits, there will be both opportunities and challenges to the utilities when adopting plug-in electric vehicles (PEV) to the distribution network. In this study, a thorough analysis based on real-world project is conducted to evaluate the impacts of electric vehicles infrastructure on the grid relating to system load flow, load factor, and voltage stability. IEEE 34 node test feeder was selected and tested along with different case scenarios utilizing the electrical distribution design (EDD) software to find out the potential impacts tomore » the grid.« less
Smart Grid Enabled L2 EVSE for the Commercial Market
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, John; Pugh, Jerry
In 2011, the DOE issued Funding Opportunity DE-FOA-0000554 as a means of addressing two major task areas identified by the Grid Integration Tech Team (GITT) that would help transition Electric vehicles from a market driven by early adopters and environmental supporters to a market with mainstream volumes. Per DE-FOA-0000554, these tasks were: To reduce the cost of Electric Vehicle Supply Equipment (EVSE), thereby increasing the likelihood of the build out of EV charging infrastructure. The goal of increasing the number of EVSE available was to ease concerns over range anxiety, and promote the adoption of electric vehicles: To allow EVmore » loads to be managed via the smart grid, thereby maintaining power quality, reliability and affordability, while protecting installed distribution equipment. In December of that year, the DOE awarded one of the two contracts targeted toward commercial EVSE to Eaton, and in early 2012, we began in earnest the process of developing a Smart Grid Enable L2 EVSE for the Commercial Market (hereafter known as the DOE Charger). The design of the Smart Grid Enabled L2 EVSE was based primarily on the FOA requirements along with input from the Electric Transportation Infrastructure product line (hereafter ETI) marketing team who aided in development of the customer requirements.« less
Recent evolution of the offline computing model of the NOvA experiment
Habig, Alec; Norman, A.; Group, Craig
2015-12-23
The NOvA experiment at Fermilab is a long-baseline neutrino experiment designed to study ν e appearance in a ν μ beam. Over the last few years there has been intense work to streamline the computing infrastructure in preparation for data, which started to flow in from the far detector in Fall 2013. Major accomplishments for this effort include migration to the use of off-site resources through the use of the Open Science Grid and upgrading the file-handling framework from simple disk storage to a tiered system using a comprehensive data management and delivery system to find and access files onmore » either disk or tape storage. NOvA has already produced more than 6.5 million files and more than 1 PB of raw data and Monte Carlo simulation files which are managed under this model. In addition, the current system has demonstrated sustained rates of up to 1 TB/hour of file transfer by the data handling system. NOvA pioneered the use of new tools and this paved the way for their use by other Intensity Frontier experiments at Fermilab. Most importantly, the new framework places the experiment's infrastructure on a firm foundation, and is ready to produce the files needed for first physics.« less
Recent Evolution of the Offline Computing Model of the NOvA Experiment
NASA Astrophysics Data System (ADS)
Habig, Alec; Norman, A.
2015-12-01
The NOvA experiment at Fermilab is a long-baseline neutrino experiment designed to study νe appearance in a νμ beam. Over the last few years there has been intense work to streamline the computing infrastructure in preparation for data, which started to flow in from the far detector in Fall 2013. Major accomplishments for this effort include migration to the use of off-site resources through the use of the Open Science Grid and upgrading the file-handling framework from simple disk storage to a tiered system using a comprehensive data management and delivery system to find and access files on either disk or tape storage. NOvA has already produced more than 6.5 million files and more than 1 PB of raw data and Monte Carlo simulation files which are managed under this model. The current system has demonstrated sustained rates of up to 1 TB/hour of file transfer by the data handling system. NOvA pioneered the use of new tools and this paved the way for their use by other Intensity Frontier experiments at Fermilab. Most importantly, the new framework places the experiment's infrastructure on a firm foundation, and is ready to produce the files needed for first physics.
System design and implementation of digital-image processing using computational grids
NASA Astrophysics Data System (ADS)
Shen, Zhanfeng; Luo, Jiancheng; Zhou, Chenghu; Huang, Guangyu; Ma, Weifeng; Ming, Dongping
2005-06-01
As a special type of digital image, remotely sensed images are playing increasingly important roles in our daily lives. Because of the enormous amounts of data involved, and the difficulties of data processing and transfer, an important issue for current computer and geo-science experts is developing internet technology to implement rapid remotely sensed image processing. Computational grids are able to solve this problem effectively. These networks of computer workstations enable the sharing of data and resources, and are used by computer experts to solve imbalances of network resources and lopsided usage. In China, computational grids combined with spatial-information-processing technology have formed a new technology: namely, spatial-information grids. In the field of remotely sensed images, spatial-information grids work more effectively for network computing, data processing, resource sharing, task cooperation and so on. This paper focuses mainly on the application of computational grids to digital-image processing. Firstly, we describe the architecture of digital-image processing on the basis of computational grids, its implementation is then discussed in detail with respect to the technology of middleware. The whole network-based intelligent image-processing system is evaluated on the basis of the experimental analysis of remotely sensed image-processing tasks; the results confirm the feasibility of the application of computational grids to digital-image processing.
Software Surface Modeling and Grid Generation Steering Committee
NASA Technical Reports Server (NTRS)
Smith, Robert E. (Editor)
1992-01-01
It is a NASA objective to promote improvements in the capability and efficiency of computational fluid dynamics. Grid generation, the creation of a discrete representation of the solution domain, is an essential part of computational fluid dynamics. However, grid generation about complex boundaries requires sophisticated surface-model descriptions of the boundaries. The surface modeling and the associated computation of surface grids consume an extremely large percentage of the total time required for volume grid generation. Efficient and user friendly software systems for surface modeling and grid generation are critical for computational fluid dynamics to reach its potential. The papers presented here represent the state-of-the-art in software systems for surface modeling and grid generation. Several papers describe improved techniques for grid generation.
Energy Systems Integration Facility (ESIF): Golden, CO - Energy Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheppy, Michael; VanGeet, Otto; Pless, Shanti
2015-03-01
At NREL's Energy Systems Integration Facility (ESIF) in Golden, Colo., scientists and engineers work to overcome challenges related to how the nation generates, delivers and uses energy by modernizing the interplay between energy sources, infrastructure, and data. Test facilities include a megawatt-scale ac electric grid, photovoltaic simulators and a load bank. Additionally, a high performance computing data center (HPCDC) is dedicated to advancing renewable energy and energy efficient technologies. A key design strategy is to use waste heat from the HPCDC to heat parts of the building. The ESIF boasts an annual EUI of 168.3 kBtu/ft2. This article describes themore » building's procurement, design and first year of performance.« less
Fault tolerance in computational grids: perspectives, challenges, and issues.
Haider, Sajjad; Nazir, Babar
2016-01-01
Computational grids are established with the intention of providing shared access to hardware and software based resources with special reference to increased computational capabilities. Fault tolerance is one of the most important issues faced by the computational grids. The main contribution of this survey is the creation of an extended classification of problems that incur in the computational grid environments. The proposed classification will help researchers, developers, and maintainers of grids to understand the types of issues to be anticipated. Moreover, different types of problems, such as omission, interaction, and timing related have been identified that need to be handled on various layers of the computational grid. In this survey, an analysis and examination is also performed pertaining to the fault tolerance and fault detection mechanisms. Our conclusion is that a dependable and reliable grid can only be established when more emphasis is on fault identification. Moreover, our survey reveals that adaptive and intelligent fault identification, and tolerance techniques can improve the dependability of grid working environments.
Chimera grids in the simulation of three-dimensional flowfields in turbine-blade-coolant passages
NASA Technical Reports Server (NTRS)
Stephens, M. A.; Rimlinger, M. J.; Shih, T. I.-P.; Civinskas, K. C.
1993-01-01
When computing flows inside geometrically complex turbine-blade coolant passages, the structure of the grid system used can affect significantly the overall time and cost required to obtain solutions. This paper addresses this issue while evaluating and developing computational tools for the design and analysis of coolant-passages, and is divided into two parts. In the first part, the various types of structured and unstructured grids are compared in relation to their ability to provide solutions in a timely and cost-effective manner. This comparison shows that the overlapping structured grids, known as Chimera grids, can rival and in some instances exceed the cost-effectiveness of unstructured grids in terms of both the man hours needed to generate grids and the amount of computer memory and CPU time needed to obtain solutions. In the second part, a computational tool utilizing Chimera grids was used to compute the flow and heat transfer in two different turbine-blade coolant passages that contain baffles and numerous pin fins. These computations showed the versatility and flexibility offered by Chimera grids.
Interoperability of GADU in using heterogeneous Grid resources for bioinformatics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulakhe, D.; Rodriguez, A.; Wilde, M.
2008-03-01
Bioinformatics tools used for efficient and computationally intensive analysis of genetic sequences require large-scale computational resources to accommodate the growing data. Grid computational resources such as the Open Science Grid and TeraGrid have proved useful for scientific discovery. The genome analysis and database update system (GADU) is a high-throughput computational system developed to automate the steps involved in accessing the Grid resources for running bioinformatics applications. This paper describes the requirements for building an automated scalable system such as GADU that can run jobs on different Grids. The paper describes the resource-independent configuration of GADU using the Pegasus-based virtual datamore » system that makes high-throughput computational tools interoperable on heterogeneous Grid resources. The paper also highlights the features implemented to make GADU a gateway to computationally intensive bioinformatics applications on the Grid. The paper will not go into the details of problems involved or the lessons learned in using individual Grid resources as it has already been published in our paper on genome analysis research environment (GNARE) and will focus primarily on the architecture that makes GADU resource independent and interoperable across heterogeneous Grid resources.« less
Multidimensional Environmental Data Resource Brokering on Computational Grids and Scientific Clouds
NASA Astrophysics Data System (ADS)
Montella, Raffaele; Giunta, Giulio; Laccetti, Giuliano
Grid computing has widely evolved over the past years, and its capabilities have found their way even into business products and are no longer relegated to scientific applications. Today, grid computing technology is not restricted to a set of specific grid open source or industrial products, but rather it is comprised of a set of capabilities virtually within any kind of software to create shared and highly collaborative production environments. These environments are focused on computational (workload) capabilities and the integration of information (data) into those computational capabilities. An active grid computing application field is the fully virtualization of scientific instruments in order to increase their availability and decrease operational and maintaining costs. Computational and information grids allow to manage real-world objects in a service-oriented way using industrial world-spread standards.
Grid Computing in K-12 Schools. Soapbox Digest. Volume 3, Number 2, Fall 2004
ERIC Educational Resources Information Center
AEL, 2004
2004-01-01
Grid computing allows large groups of computers (either in a lab, or remote and connected only by the Internet) to extend extra processing power to each individual computer to work on components of a complex request. Grid middleware, recognizing priorities set by systems administrators, allows the grid to identify and use this power without…
DRIHM: Distributed Research Infrastructure for Hydro-Meteorology
NASA Astrophysics Data System (ADS)
Parodi, A.; Rebora, N.; Kranzlmueller, D.; Schiffers, M.; Clematis, A.; Tafferner, A.; Garrote, L. M.; Llasat Botija, M.; Caumont, O.; Richard, E.; Cros, P.; Dimitrijevic, V.; Jagers, B.; Harpham, Q.; Hooper, R. P.
2012-12-01
Hydro-Meteorology Research (HMR) is an area of critical scientific importance and of high societal relevance. It plays a key role in guiding predictions relevant to the safety and prosperity of humans and ecosystems from highly urbanized areas, to coastal zones, and to agricultural landscapes. Of special interest and urgency within HMR is the problem of understanding and predicting the impacts of severe hydro-meteorological events, such as flash-floods and landslides in complex orography areas, on humans and the environment, under the incoming climate change effects. At the heart of this challenge lies the ability to have easy access to hydrometeorological data and models, and facilitate the collaboration between meteorologists, hydrologists, and Earth science experts for accelerated scientific advances in this field. To face these problems the DRIHM (Distributed Research Infrastructure for Hydro-Meteorology) project is developing a prototype e-Science environment to facilitate this collaboration and provide end-to-end HMR services (models, datasets and post-processing tools) at the European level, with the ability to expand to global scale (e.g. cooperation with Earth Cube related initiatives). The objectives of DRIHM are to lead the definition of a common long-term strategy, to foster the development of new HMR models and observational archives for the study of severe hydrometeorological events, to promote the execution and analysis of high-end simulations, and to support the dissemination of predictive models as decision analysis tools. DRIHM combines the European expertise in HMR, in Grid and High Performance Computing (HPC). Joint research activities will improve the efficient use of the European e-Infrastructures, notably Grid and HPC, for HMR modelling and observational databases, model evaluation tool sets and access to HMR model results. Networking activities will disseminate DRIHM results at the European and global levels in order to increase the cohesion of European and possibly worldwide HMR communities and increase the awareness of ICT potential for HMR. Service activities will deploy the end-to-end DRIHM services and tools in support of HMR networks and virtual organizations on top of the existing European e-Infrastructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, J.; Herner, K.; Jayatilaka, B.
The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in bothmore » software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.« less
CMS Centres Worldwide - a New Collaborative Infrastructure
NASA Astrophysics Data System (ADS)
Taylor, Lucas
2011-12-01
The CMS Experiment at the LHC has established a network of more than fifty inter-connected "CMS Centres" at CERN and in institutes in the Americas, Asia, Australasia, and Europe. These facilities are used by people doing CMS detector and computing grid operations, remote shifts, data quality monitoring and analysis, as well as education and outreach. We present the computing, software, and collaborative tools and videoconferencing systems. These include permanently running "telepresence" video links (hardware-based H.323, EVO and Vidyo), Webcasts, and generic Web tools such as CMS-TV for broadcasting live monitoring and outreach information. Being Web-based and experiment-independent, these systems could easily be extended to other organizations. We describe the experiences of using CMS Centres Worldwide in the CMS data-taking operations as well as for major media events with several hundred TV channels, radio stations, and many more press journalists simultaneously around the world.
Kanarska, Yuliya; Walton, Otis
2015-11-30
Fluid-granular flows are common phenomena in nature and industry. Here, an efficient computational technique based on the distributed Lagrange multiplier method is utilized to simulate complex fluid-granular flows. Each particle is explicitly resolved on an Eulerian grid as a separate domain, using solid volume fractions. The fluid equations are solved through the entire computational domain, however, Lagrange multiplier constrains are applied inside the particle domain such that the fluid within any volume associated with a solid particle moves as an incompressible rigid body. The particle–particle interactions are implemented using explicit force-displacement interactions for frictional inelastic particles similar to the DEMmore » method with some modifications using the volume of an overlapping region as an input to the contact forces. Here, a parallel implementation of the method is based on the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library.« less
Data preservation at the Fermilab Tevatron
Amerio, S.; Behari, S.; Boyd, J.; ...
2017-01-22
The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and D0 experiments each have approximately 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 and beyond. To achieve this goal, we have implemented a system that utilizes virtualization, automated validation, and migration to new standards inmore » both software and data storage technology and leverages resources available from currently-running experiments at Fermilab. Lastly, these efforts have also provided useful lessons in ensuring long-term data access for numerous experiments, and enable high-quality scientific output for years to come.« less
Data preservation at the Fermilab Tevatron
Boyd, J.; Herner, K.; Jayatilaka, B.; ...
2015-12-23
The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in bothmore » software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. Furthermore, these efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.« less
Data preservation at the Fermilab Tevatron
NASA Astrophysics Data System (ADS)
Boyd, J.; Herner, K.; Jayatilaka, B.; Roser, R.; Sakumoto, W.
2015-12-01
The Fermilab Tevatron collider's data-taking run ended in September 2011, yielding a dataset with rich scientific potential. The CDF and DO experiments each have nearly 9 PB of collider and simulated data stored on tape. A large computing infrastructure consisting of tape storage, disk cache, and distributed grid computing for physics analysis with the Tevatron data is present at Fermilab. The Fermilab Run II data preservation project intends to keep this analysis capability sustained through the year 2020 or beyond. To achieve this, we are implementing a system that utilizes virtualization, automated validation, and migration to new standards in both software and data storage technology as well as leveraging resources available from currently-running experiments at Fermilab. These efforts will provide useful lessons in ensuring long-term data access for numerous experiments throughout high-energy physics, and provide a roadmap for high-quality scientific output for years to come.
Evolution of the ATLAS distributed computing system during the LHC long shutdown
NASA Astrophysics Data System (ADS)
Campana, S.; Atlas Collaboration
2014-06-01
The ATLAS Distributed Computing project (ADC) was established in 2007 to develop and operate a framework, following the ATLAS computing model, to enable data storage, processing and bookkeeping on top of the Worldwide LHC Computing Grid (WLCG) distributed infrastructure. ADC development has always been driven by operations and this contributed to its success. The system has fulfilled the demanding requirements of ATLAS, daily consolidating worldwide up to 1 PB of data and running more than 1.5 million payloads distributed globally, supporting almost one thousand concurrent distributed analysis users. Comprehensive automation and monitoring minimized the operational manpower required. The flexibility of the system to adjust to operational needs has been important to the success of the ATLAS physics program. The LHC shutdown in 2013-2015 affords an opportunity to improve the system in light of operational experience and scale it to cope with the demanding requirements of 2015 and beyond, most notably a much higher trigger rate and event pileup. We will describe the evolution of the ADC software foreseen during this period. This includes consolidating the existing Production and Distributed Analysis framework (PanDA) and ATLAS Grid Information System (AGIS), together with the development and commissioning of next generation systems for distributed data management (DDM/Rucio) and production (Prodsys-2). We will explain how new technologies such as Cloud Computing and NoSQL databases, which ATLAS investigated as R&D projects in past years, will be integrated in production. Finally, we will describe more fundamental developments such as breaking job-to-data locality by exploiting storage federations and caches, and event level (rather than file or dataset level) workload engines.
Automation of multi-agent control for complex dynamic systems in heterogeneous computational network
NASA Astrophysics Data System (ADS)
Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan
2017-01-01
The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.
NASA Technical Reports Server (NTRS)
Papadopoulos, Periklis; Venkatapathy, Ethiraj; Prabhu, Dinesh; Loomis, Mark P.; Olynick, Dave; Arnold, James O. (Technical Monitor)
1998-01-01
Recent advances in computational power enable computational fluid dynamic modeling of increasingly complex configurations. A review of grid generation methodologies implemented in support of the computational work performed for the X-38 and X-33 are presented. In strategizing topological constructs and blocking structures factors considered are the geometric configuration, optimal grid size, numerical algorithms, accuracy requirements, physics of the problem at hand, computational expense, and the available computer hardware. Also addressed are grid refinement strategies, the effects of wall spacing, and convergence. The significance of grid is demonstrated through a comparison of computational and experimental results of the aeroheating environment experienced by the X-38 vehicle. Special topics on grid generation strategies are also addressed to model control surface deflections, and material mapping.
A Testbed Environment for Buildings-to-Grid Cyber Resilience Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridhar, Siddharth; Ashok, Aditya; Mylrea, Michael E.
The Smart Grid is characterized by the proliferation of advanced digital controllers at all levels of its operational hierarchy from generation to end consumption. Such controllers within modern residential and commercial buildings enable grid operators to exercise fine-grained control over energy consumption through several emerging Buildings-to-Grid (B2G) applications. Though this capability promises significant benefits in terms of operational economics and improved reliability, cybersecurity weaknesses in the supporting infrastructure could be exploited to cause a detrimental effect and this necessitates focused research efforts on two fronts. First, the understanding of how cyber attacks in the B2G space could impact grid reliabilitymore » and to what extent. Second, the development and validation of cyber-physical application-specific countermeasures that are complementary to traditional infrastructure cybersecurity mechanisms for enhanced cyber attack detection and mitigation. The PNNL B2G testbed is currently being developed to address these core research needs. Specifically, the B2G testbed combines high-fidelity buildings+grid simulators, industry-grade building automation and Supervisory Control and Data Acquisition (SCADA) systems in an integrated, realistic, and reconfigurable environment capable of supporting attack-impact-detection-mitigation experimentation. In this paper, we articulate the need for research testbeds to model various B2G applications broadly by looking at the end-to-end operational hierarchy of the Smart Grid. Finally, the paper not only describes the architecture of the B2G testbed in detail, but also addresses the broad spectrum of B2G resilience research it is capable of supporting based on the smart grid operational hierarchy identified earlier.« less
Program Aids Specification Of Multiple-Block Grids
NASA Technical Reports Server (NTRS)
Sorenson, R. L.; Mccann, K. M.
1993-01-01
3DPREP computer program aids specification of multiple-block computational grids. Highly interactive graphical preprocessing program designed for use on powerful graphical scientific computer workstation. Divided into three main parts, each corresponding to principal graphical-and-alphanumerical display. Relieves user of some burden of collecting and formatting many data needed to specify blocks and grids, and prepares input data for NASA's 3DGRAPE grid-generating computer program.
NASA Astrophysics Data System (ADS)
Kuo, K. S.; Rilee, M. L.
2017-12-01
Existing pathways for bringing together massive, diverse Earth Science datasets for integrated analyses burden end users with data packaging and management details irrelevant to their domain goals. The major data repositories focus on archival, discovery, and dissemination of products (files) in a standardized manner. End-users must download and then adapt these files using local resources and custom methods before analysis can proceed. This reduces scientific or other domain productivity, as scarce resources and expertise must be diverted to data processing. The Spatio-Temporal Adaptive Resolution Encoding (STARE) is a unifying scheme encoding geospatial and temporal information for organizing data on scalable computing/storage resources, minimizing expensive data transfers. STARE provides a compact representation that turns set-logic functions, e.g. conditional subsetting, into integer operations, that takes into account representative spatiotemporal resolutions of the data in the datasets, which is needed for data placement alignment of geo-spatiotemporally diverse data on massive parallel resources. Automating important scientific functions (e.g. regridding) and computational functions (e.g. data placement) allows scientists to focus on domain specific questions instead of expending their expertise on data processing. While STARE is not tied to any particular computing technology, we have used STARE for visualization and the SciDB array database to analyze Earth Science data on a 28-node compute cluster. STARE's automatic data placement and coupling of geometric and array indexing allows complicated data comparisons to be realized as straightforward database operations like "join." With STARE-enabled automation, SciDB+STARE provides a database interface, reducing costly data preparation, increasing the volume and variety of integrable data, and easing result sharing. Using SciDB+STARE as part of an integrated analysis infrastructure, we demonstrate the dramatic ease of combining diametrically different datasets, i.e. gridded (NMQ radar) vs. spacecraft swath (TRMM). SciDB+STARE is an important step towards a computational infrastructure for integrating and sharing diverse, complex Earth Science data and science products derived from them.
A highly optimized grid deployment: the metagenomic analysis example.
Aparicio, Gabriel; Blanquer, Ignacio; Hernández, Vicente
2008-01-01
Computational resources and computationally expensive processes are two topics that are not growing at the same ratio. The availability of large amounts of computing resources in Grid infrastructures does not mean that efficiency is not an important issue. It is necessary to analyze the whole process to improve partitioning and submission schemas, especially in the most critical experiments. This is the case of metagenomic analysis, and this text shows the work done in order to optimize a Grid deployment, which has led to a reduction of the response time and the failure rates. Metagenomic studies aim at processing samples of multiple specimens to extract the genes and proteins that belong to the different species. In many cases, the sequencing of the DNA of many microorganisms is hindered by the impossibility of growing significant samples of isolated specimens. Many bacteria cannot survive alone, and require the interaction with other organisms. In such cases, the information of the DNA available belongs to different kinds of organisms. One important stage in Metagenomic analysis consists on the extraction of fragments followed by the comparison and analysis of their function stage. By the comparison to existing chains, whose function is well known, fragments can be classified. This process is computationally intensive and requires of several iterations of alignment and phylogeny classification steps. Source samples reach several millions of sequences, which could reach up to thousands of nucleotides each. These sequences are compared to a selected part of the "Non-redundant" database which only implies the information from eukaryotic species. From this first analysis, a refining process is performed and alignment analysis is restarted from the results. This process implies several CPU years. The article describes and analyzes the difficulties to fragment, automate and check the above operations in current Grid production environments. This environment has been tuned-up from an experimental study which has tested the most efficient and reliable resources, the optimal job size, and the data transference and database reindexation overhead. The environment should re-submit faulty jobs, detect endless tasks and ensure that the results are correctly retrieved and workflow synchronised. The paper will give an outline on the structure of the system, and the preparation steps performed to deal with this experiment.
The EPOS Vision for the Open Science Cloud
NASA Astrophysics Data System (ADS)
Jeffery, Keith; Harrison, Matt; Cocco, Massimo
2016-04-01
Cloud computing offers dynamic elastic scalability for data processing on demand. For much research activity, demand for computing is uneven over time and so CLOUD computing offers both cost-effectiveness and capacity advantages. However, as reported repeatedly by the EC Cloud Expert Group, there are barriers to the uptake of Cloud Computing: (1) security and privacy; (2) interoperability (avoidance of lock-in); (3) lack of appropriate systems development environments for application programmers to characterise their applications to allow CLOUD middleware to optimize their deployment and execution. From CERN, the Helix-Nebula group has proposed the architecture for the European Open Science Cloud. They are discussing with other e-Infrastructure groups such as EGI (GRIDs), EUDAT (data curation), AARC (network authentication and authorisation) and also with the EIROFORUM group of 'international treaty' RIs (Research Infrastructures) and the ESFRI (European Strategic Forum for Research Infrastructures) RIs including EPOS. Many of these RIs are either e-RIs (electronic-RIs) or have an e-RI interface for access and use. The EPOS architecture is centred on a portal: ICS (Integrated Core Services). The architectural design already allows for access to e-RIs (which may include any or all of data, software, users and resources such as computers or instruments). Those within any one domain (subject area) of EPOS are considered within the TCS (Thematic Core Services). Those outside, or available across multiple domains of EPOS, are ICS-d (Integrated Core Services-Distributed) since the intention is that they will be used by any or all of the TCS via the ICS. Another such service type is CES (Computational Earth Science); effectively an ICS-d specializing in high performance computation, analytics, simulation or visualization offered by a TCS for others to use. Already discussions are underway between EPOS and EGI, EUDAT, AARC and Helix-Nebula for those offerings to be considered as ICS-ds by EPOS.. Provision of access to ICS-Ds from ICS-C concerns several aspects: (a) Technical : it may be more or less difficult to connect and pass from ICS-C to the ICS-d/ CES the 'package' (probably a virtual machine) of data and software; (b) Security/privacy : including passing personal information e.g. related to AAAI (Authentication, authorization, accounting Infrastructure); (c) financial and legal : such as payment, licence conditions; Appropriate interfaces from ICS-C to ICS-d are being designed to accommodate these aspects. The Open Science Cloud is timely because it provides a framework to discuss governance and sustainability for computational resource provision as well as an effective interpretation of federated approach to HPC(High Performance Computing) -HTC (High Throughput Computing). It will be a unique opportunity to share and adopt procurement policies to provide access to computational resources for RIs. The current state of discussions and expected roadmap for the EPOS-Open Science Cloud relationship are presented.
Maintaining Traceability in an Evolving Distributed Computing Environment
NASA Astrophysics Data System (ADS)
Collier, I.; Wartel, R.
2015-12-01
The management of risk is fundamental to the operation of any distributed computing infrastructure. Identifying the cause of incidents is essential to prevent them from re-occurring. In addition, it is a goal to contain the impact of an incident while keeping services operational. For response to incidents to be acceptable this needs to be commensurate with the scale of the problem. The minimum level of traceability for distributed computing infrastructure usage is to be able to identify the source of all actions (executables, file transfers, pilot jobs, portal jobs, etc.) and the individual who initiated them. In addition, sufficiently fine-grained controls, such as blocking the originating user and monitoring to detect abnormal behaviour, are necessary for keeping services operational. It is essential to be able to understand the cause and to fix any problems before re-enabling access for the user. The aim is to be able to answer the basic questions who, what, where, and when concerning any incident. This requires retaining all relevant information, including timestamps and the digital identity of the user, sufficient to identify, for each service instance, and for every security event including at least the following: connect, authenticate, authorize (including identity changes) and disconnect. In traditional grid infrastructures (WLCG, EGI, OSG etc.) best practices and procedures for gathering and maintaining the information required to maintain traceability are well established. In particular, sites collect and store information required to ensure traceability of events at their sites. With the increased use of virtualisation and private and public clouds for HEP workloads established procedures, which are unable to see 'inside' running virtual machines no longer capture all the information required. Maintaining traceability will at least involve a shift of responsibility from sites to Virtual Organisations (VOs) bringing with it new requirements for their logging infrastructures. VOs indeed need to fulfil a new operational role and become fully active participants in the incident response process. We present an analysis of the changing requirements to maintain traceability for virtualised and cloud based workflows with particular reference to the work of the WLCG Traceability Working Group.
Multiprocessor computer overset grid method and apparatus
Barnette, Daniel W.; Ober, Curtis C.
2003-01-01
A multiprocessor computer overset grid method and apparatus comprises associating points in each overset grid with processors and using mapped interpolation transformations to communicate intermediate values between processors assigned base and target points of the interpolation transformations. The method allows a multiprocessor computer to operate with effective load balance on overset grid applications.
2011-08-21
poultry, pork , beef, fish, and other meat products also are typically automated operations, done on electrically driven processing lines. 53 Food ...Infrastructure ..................................................... 18 Power Outage Impact on Consumables ( Food , Water, Medication...transportation, consumables ( food , water, and medication), and emergency services, are so highly dependent on reliable power supply from the grid, a
NASA Astrophysics Data System (ADS)
Foo, Kam Keong
A two-dimensional dual-mode scramjet flowpath is developed and evaluated using the ANSYS Fluent density-based flow solver with various computational grids. Results are obtained for fuel-off, fuel-on non-reacting, and fuel-on reacting cases at different equivalence ratios. A one-step global chemical kinetics hydrogen-air model is used in conjunction with the eddy-dissipation model. Coarse, medium and fine computational grids are used to evaluate grid sensitivity and to investigate a lack of grid independence. Different grid adaptation strategies are performed on the coarse grid in an attempt to emulate the solutions obtained from the finer grids. The goal of this study is to investigate the feasibility of using various mesh adaptation criteria to significantly decrease computational efforts for high-speed reacting flows.
Schilling, Lisa M.; Kwan, Bethany M.; Drolshagen, Charles T.; Hosokawa, Patrick W.; Brandt, Elias; Pace, Wilson D.; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R.O.; Stephens, William E.; George, Joseph M.; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K.; Kahn, Michael G.
2013-01-01
Introduction: Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. Methods: The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. Discussion: SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions. PMID:25848567
Schilling, Lisa M; Kwan, Bethany M; Drolshagen, Charles T; Hosokawa, Patrick W; Brandt, Elias; Pace, Wilson D; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R O; Stephens, William E; George, Joseph M; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K; Kahn, Michael G
2013-01-01
Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions.
NASA Technical Reports Server (NTRS)
Chan, William M.; Rogers, Stuart E.; Nash, Steven M.; Buning, Pieter G.; Meakin, Robert
2005-01-01
Chimera Grid Tools (CGT) is a software package for performing computational fluid dynamics (CFD) analysis utilizing the Chimera-overset-grid method. For modeling flows with viscosity about geometrically complex bodies in relative motion, the Chimera-overset-grid method is among the most computationally cost-effective methods for obtaining accurate aerodynamic results. CGT contains a large collection of tools for generating overset grids, preparing inputs for computer programs that solve equations of flow on the grids, and post-processing of flow-solution data. The tools in CGT include grid editing tools, surface-grid-generation tools, volume-grid-generation tools, utility scripts, configuration scripts, and tools for post-processing (including generation of animated images of flows and calculating forces and moments exerted on affected bodies). One of the tools, denoted OVERGRID, is a graphical user interface (GUI) that serves to visualize the grids and flow solutions and provides central access to many other tools. The GUI facilitates the generation of grids for a new flow-field configuration. Scripts that follow the grid generation process can then be constructed to mostly automate grid generation for similar configurations. CGT is designed for use in conjunction with a computer-aided-design program that provides the geometry description of the bodies, and a flow-solver program.
Surface Modeling and Grid Generation of Orbital Sciences X34 Vehicle. Phase 1
NASA Technical Reports Server (NTRS)
Alter, Stephen J.
1997-01-01
The surface modeling and grid generation requirements, motivations, and methods used to develop Computational Fluid Dynamic volume grids for the X34-Phase 1 are presented. The requirements set forth by the Aerothermodynamics Branch at the NASA Langley Research Center serve as the basis for the final techniques used in the construction of all volume grids, including grids for parametric studies of the X34. The Integrated Computer Engineering and Manufacturing code for Computational Fluid Dynamics (ICEM/CFD), the Grid Generation code (GRIDGEN), the Three-Dimensional Multi-block Advanced Grid Generation System (3DMAGGS) code, and Volume Grid Manipulator (VGM) code are used to enable the necessary surface modeling, surface grid generation, volume grid generation, and grid alterations, respectively. All volume grids generated for the X34, as outlined in this paper, were used for CFD simulations within the Aerothermodynamics Branch.
The JASMIN Cloud: specialised and hybrid to meet the needs of the Environmental Sciences Community
NASA Astrophysics Data System (ADS)
Kershaw, Philip; Lawrence, Bryan; Churchill, Jonathan; Pritchard, Matt
2014-05-01
Cloud computing provides enormous opportunities for the research community. The large public cloud providers provide near-limitless scaling capability. However, adapting Cloud to scientific workloads is not without its problems. The commodity nature of the public cloud infrastructure can be at odds with the specialist requirements of the research community. Issues such as trust, ownership of data, WAN bandwidth and costing models make additional barriers to more widespread adoption. Alongside the application of public cloud for scientific applications, a number of private cloud initiatives are underway in the research community of which the JASMIN Cloud is one example. Here, cloud service models are being effectively super-imposed over more established services such as data centres, compute cluster facilities and Grids. These have the potential to deliver the specialist infrastructure needed for the science community coupled with the benefits of a Cloud service model. The JASMIN facility based at the Rutherford Appleton Laboratory was established in 2012 to support the data analysis requirements of the climate and Earth Observation community. In its first year of operation, the 5PB of available storage capacity was filled and the hosted compute capability used extensively. JASMIN has modelled the concept of a centralised large-volume data analysis facility. Key characteristics have enabled success: peta-scale fast disk connected via low latency networks to compute resources and the use of virtualisation for effective management of the resources for a range of users. A second phase is now underway funded through NERC's (Natural Environment Research Council) Big Data initiative. This will see significant expansion to the resources available with a doubling of disk-based storage to 12PB and an increase of compute capacity by a factor of ten to over 3000 processing cores. This expansion is accompanied by a broadening in the scope for JASMIN, as a service available to the entire UK environmental science community. Experience with the first phase demonstrated the range of user needs. A trade-off is needed between access privileges to resources, flexibility of use and security. This has influenced the form and types of service under development for the new phase. JASMIN will deploy a specialised private cloud organised into "Managed" and "Unmanaged" components. In the Managed Cloud, users have direct access to the storage and compute resources for optimal performance but for reasons of security, via a more restrictive PaaS (Platform-as-a-Service) interface. The Unmanaged Cloud is deployed in an isolated part of the network but co-located with the rest of the infrastructure. This enables greater liberty to tenants - full IaaS (Infrastructure-as-a-Service) capability to provision customised infrastructure - whilst at the same time protecting more sensitive parts of the system from direct access using these elevated privileges. The private cloud will be augmented with cloud-bursting capability so that it can exploit the resources available from public clouds, making it effectively a hybrid solution. A single interface will overlay the functionality of both the private cloud and external interfaces to public cloud providers giving users the flexibility to migrate resources between infrastructures as requirements dictate.
JTS and its Application in Environmental Protection Applications
NASA Astrophysics Data System (ADS)
Atanassov, Emanouil; Gurov, Todor; Slavov, Dimitar; Ivanovska, Sofiya; Karaivanova, Aneta
2010-05-01
The environmental protection was identified as a domain of high interest for South East Europe, addressing practical problems related to security and quality of life. The gridification of the Bulgarian applications MCSAES (Monte Carlo Sensitivity Analysis for Environmental Studies) which aims to develop an efficient Grid implementation of a sensitivity analysis of the Danish Eulerian Model), MSACM (Multi-Scale Atmospheric Composition Modeling) which aims to produce an integrated, multi-scale Balkan region oriented modelling system, able to interface the scales of the problem from emissions on the urban scale to their transport and transformation on the local and regional scales), MSERRHSA (Modeling System for Emergency Response to the Release of Harmful Substances in the Atmosphere) which aims to develop and deploy a modeling system for emergency response to the release of harmful substances in the atmosphere, targeted at the SEE and more specifically Balkan region) faces several challenges: These applications are resource intensive, in terms of both CPU utilization and data transfers and storage. The use of applications for operational purposes poses requirements for availability of resources, which are difficult to be met on a dynamically changing Grid environment. The validation of applications is resource intensive and time consuming. The successful resolution of these problems requires collaborative work and support from part of the infrastructure operators. However, the infrastructure operators are interested to avoid underutilization of resources. That is why we developed the Job Track Service and tested it during the development of the grid implementations of MCSAES, MSACM and MSERRHSA. The Job Track Service (JTS) is a grid middleware component which facilitates the provision of Quality of Service in grid infrastructures using gLite middleware like EGEE and SEEGRID. The service is based on messaging middleware and uses standart protocols like AMQP (Advanced Message Queuing Protocol) and XMPP (eXtensible Messaging and Presence Protocol) for real-time communication, while its security model is based on GSI authentication. It enables resource owners to provide the most popular types of QoS of execution to some of their users, using a standardized model. The first version of the service offered services to individual users. In this work we describe a new version of the Job Track service offering application specific functionality, geared towards the specific needs of the Environmental Modelling and Protection applications and oriented towards collaborative usage by groups and subgroups of users. We used the modular design of the JTS in order to implement plugins enabling smoother interaction of the users with the Grid environment. Our experience shows improved response times and decreased failure rate from the executions of the application. In this work we present such observations from the use of the South East European Grid infrastructure.
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1994-01-01
A fast algorithm has been developed for accurately generating boundary-conforming, three-dimensional consecutively refined computational grids applicable to arbitrary wing-body and axial turbomachinery geometries. This algorithm has been incorporated into the GRID3O computer program. The method employed in GRID3O is based on using an analytic function to generate two-dimensional grids on a number of coaxial axisymmetric surfaces positioned between the centerbody and the outer radial boundary. These grids are of the O-type and are characterized by quasi-orthogonality, geometric periodicity, and an adequate resolution throughout the flow field. Because the built-in nonorthogonal coordinate stretching and shearing cause the grid lines leaving the blade or wing trailing-edge to end at downstream infinity, use of the generated grid simplifies the numerical treatment of three-dimensional trailing vortex sheets. The GRID3O program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 450K of 8 bit bytes. The GRID3O program was developed in 1981.
NASA Technical Reports Server (NTRS)
Johnston, William E.; Ziobarth, John (Technical Monitor)
2002-01-01
We have presented the essence of experience gained in building two production Grids, and provided some of the global context for this work. As the reader might imagine, there were a lot of false starts, refinements to the approaches and to the software, and several substantial integration projects (SRB and Condor integrated with Globus) to get where we are today. However, the point of this paper is to try and make it substantially easier for others to get to the point where Information Power Grids (IPG) and the DOE Science Grids are today. This is what is needed in order to move us toward the vision of a common cyber infrastructure for science. The author would also like to remind the readers that this paper primarily represents the actual experiences that resulted from specific architectural and software choices during the design and implementation of these two Grids. The choices made were dictated by the criteria laid out in section 1. There is a lot more Grid software available today that there was four years ago, and various of these packages are being integrated into IPG and the DOE Grids. However, the foundation choices of Globus, SRB, and Condor would not be significantly different today than they were four years ago. Nonetheless, if the GGF is successful in its work - and we have every reason to believe that it will be - then in a few years we will see that the 28 functions provided by these packages will be defined in terms of protocols and MIS, and there will be several robust implementations available for each of the basic components, especially the Grid Common Services. The impact of the emerging Web Grid Services work is not yet clear. It will likely have a substantial impact on building higher level services, however it is the opinion of the author that this will in no way obviate the need for the Grid Common Services. These are the foundation of Grids, and the focus of almost all of the operational and persistent infrastructure aspects of Grids.
NASA Astrophysics Data System (ADS)
Cao, Jian; Li, Qi; Cheng, Jicheng
2005-10-01
This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.
Collaborative Access Control For Critical Infrastructures
NASA Astrophysics Data System (ADS)
Baina, Amine; El Kalam, Anas Abou; Deswarte, Yves; Kaaniche, Mohamed
A critical infrastructure (CI) can fail with various degrees of severity due to physical and logical vulnerabilities. Since many interdependencies exist between CIs, failures can have dramatic consequences on the entire infrastructure. This paper focuses on threats that affect information and communication systems that constitute the critical information infrastructure (CII). A new collaborative access control framework called PolyOrBAC is proposed to address security problems that are specific to CIIs. The framework offers each organization participating in a CII the ability to collaborate with other organizations while maintaining control of its resources and internal security policy. The approach is demonstrated on a practical scenario involving the electrical power grid.
Low Latency Workflow Scheduling and an Application of Hyperspectral Brightness Temperatures
NASA Astrophysics Data System (ADS)
Nguyen, P. T.; Chapman, D. R.; Halem, M.
2012-12-01
New system analytics for Big Data computing holds the promise of major scientific breakthroughs and discoveries from the exploration and mining of the massive data sets becoming available to the science community. However, such data intensive scientific applications face severe challenges in accessing, managing and analyzing petabytes of data. While the Hadoop MapReduce environment has been successfully applied to data intensive problems arising in business, there are still many scientific problem domains where limitations in the functionality of MapReduce systems prevent its wide adoption by those communities. This is mainly because MapReduce does not readily support the unique science discipline needs such as special science data formats, graphic and computational data analysis tools, maintaining high degrees of computational accuracies, and interfacing with application's existing components across heterogeneous computing processors. We address some of these limitations by exploiting the MapReduce programming model for satellite data intensive scientific problems and address scalability, reliability, scheduling, and data management issues when dealing with climate data records and their complex observational challenges. In addition, we will present techniques to support the unique Earth science discipline needs such as dealing with special science data formats (HDF and NetCDF). We have developed a Hadoop task scheduling algorithm that improves latency by 2x for a scientific workflow including the gridding of the EOS AIRS hyperspectral Brightness Temperatures (BT). This workflow processing algorithm has been tested at the Multicore Computing Center private Hadoop based Intel Nehalem cluster, as well as in a virtual mode under the Open Source Eucalyptus cloud. The 55TB AIRS hyperspectral L1b Brightness Temperature record has been gridded at the resolution of 0.5x1.0 degrees, and we have computed a 0.9 annual anti-correlation to the El Nino Southern oscillation in the Nino 4 region, as well as a 1.9 Kelvin decadal Arctic warming in the 4u and 12u spectral regions. Additionally, we will present the frequency of extreme global warming events by the use of a normalized maximum BT in a grid cell relative to its local standard deviation. A low-latency Hadoop scheduling environment maintains data integrity and fault tolerance in a MapReduce data intensive Cloud environment while improving the "time to solution" metric by 35% when compared to a more traditional parallel processing system for the same dataset. Our next step will be to improve the usability of our Hadoop task scheduling system, to enable rapid prototyping of data intensive experiments by means of processing "kernels". We will report on the performance and experience of implementing these experiments on the NEX testbed, and propose the use of a graphical directed acyclic graph (DAG) interface to help us develop on-demand scientific experiments. Our workflow system works within Hadoop infrastructure as a replacement for the FIFO or FairScheduler, thus the use of Apache "Pig" latin or other Apache tools may also be worth investigating on the NEX system to improve the usability of our workflow scheduling infrastructure for rapid experimentation.
The OSG Open Facility: an on-ramp for opportunistic scientific computing
NASA Astrophysics Data System (ADS)
Jayatilaka, B.; Levshina, T.; Sehgal, C.; Gardner, R.; Rynge, M.; Würthwein, F.
2017-10-01
The Open Science Grid (OSG) is a large, robust computing grid that started primarily as a collection of sites associated with large HEP experiments such as ATLAS, CDF, CMS, and DZero, but has evolved in recent years to a much larger user and resource platform. In addition to meeting the US LHC community’s computational needs, the OSG continues to be one of the largest providers of distributed high-throughput computing (DHTC) to researchers from a wide variety of disciplines via the OSG Open Facility. The Open Facility consists of OSG resources that are available opportunistically to users other than resource owners and their collaborators. In the past two years, the Open Facility has doubled its annual throughput to over 200 million wall hours. More than half of these resources are used by over 100 individual researchers from over 60 institutions in fields such as biology, medicine, math, economics, and many others. Over 10% of these individual users utilized in excess of 1 million computational hours each in the past year. The largest source of these cycles is temporary unused capacity at institutions affiliated with US LHC computational sites. An increasing fraction, however, comes from university HPC clusters and large national infrastructure supercomputers offering unused capacity. Such expansions have allowed the OSG to provide ample computational resources to both individual researchers and small groups as well as sizable international science collaborations such as LIGO, AMS, IceCube, and sPHENIX. Opening up access to the Fermilab FabrIc for Frontier Experiments (FIFE) project has also allowed experiments such as mu2e and NOvA to make substantial use of Open Facility resources, the former with over 40 million wall hours in a year. We present how this expansion was accomplished as well as future plans for keeping the OSG Open Facility at the forefront of enabling scientific research by way of DHTC.
The OSG Open Facility: An On-Ramp for Opportunistic Scientific Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayatilaka, B.; Levshina, T.; Sehgal, C.
The Open Science Grid (OSG) is a large, robust computing grid that started primarily as a collection of sites associated with large HEP experiments such as ATLAS, CDF, CMS, and DZero, but has evolved in recent years to a much larger user and resource platform. In addition to meeting the US LHC community’s computational needs, the OSG continues to be one of the largest providers of distributed high-throughput computing (DHTC) to researchers from a wide variety of disciplines via the OSG Open Facility. The Open Facility consists of OSG resources that are available opportunistically to users other than resource ownersmore » and their collaborators. In the past two years, the Open Facility has doubled its annual throughput to over 200 million wall hours. More than half of these resources are used by over 100 individual researchers from over 60 institutions in fields such as biology, medicine, math, economics, and many others. Over 10% of these individual users utilized in excess of 1 million computational hours each in the past year. The largest source of these cycles is temporary unused capacity at institutions affiliated with US LHC computational sites. An increasing fraction, however, comes from university HPC clusters and large national infrastructure supercomputers offering unused capacity. Such expansions have allowed the OSG to provide ample computational resources to both individual researchers and small groups as well as sizable international science collaborations such as LIGO, AMS, IceCube, and sPHENIX. Opening up access to the Fermilab FabrIc for Frontier Experiments (FIFE) project has also allowed experiments such as mu2e and NOvA to make substantial use of Open Facility resources, the former with over 40 million wall hours in a year. We present how this expansion was accomplished as well as future plans for keeping the OSG Open Facility at the forefront of enabling scientific research by way of DHTC.« less
NASA Astrophysics Data System (ADS)
Li, Gaohua; Fu, Xiang; Wang, Fuxin
2017-10-01
The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart-Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, Nate; Zhou, Ella; Getman, Dan
2015-10-01
Mathematical and computational models are widely used for the analysis and design of both physical and financial systems. Modeling the electric grid is of particular importance to China for three reasons. First, power-sector assets are expensive and long-lived, and they are critical to any country's development. China's electric load, transmission, and other energy-related infrastructure are expected to continue to grow rapidly; therefore it is crucial to understand and help plan for the future in which those assets will operate (NDRC ERI 2015). Second, China has dramatically increased its deployment of renewable energy (RE), and is likely to continue further acceleratingmore » such deployment over the coming decades. Careful planning and assessment of the various aspects (technical, economic, social, and political) of integrating a large amount of renewables on the grid is required. Third, companies need the tools to develop a strategy for their own involvement in the power market China is now developing, and to enable a possible transition to an efficient and high RE future.« less
Opportunistic Resource Usage in CMS
NASA Astrophysics Data System (ADS)
Kreuzer, Peter; Hufnagel, Dirk; Dykstra, D.; Gutsche, O.; Tadel, M.; Sfiligoi, I.; Letts, J.; Wuerthwein, F.; McCrea, A.; Bockelman, B.; Fajardo, E.; Linares, L.; Wagner, R.; Konstantinov, P.; Blumenfeld, B.; Bradley, D.; Cms Collaboration
2014-06-01
CMS is using a tiered setup of dedicated computing resources provided by sites distributed over the world and organized in WLCG. These sites pledge resources to CMS and are preparing them especially for CMS to run the experiment's applications. But there are more resources available opportunistically both on the GRID and in local university and research clusters which can be used for CMS applications. We will present CMS' strategy to use opportunistic resources and prepare them dynamically to run CMS applications. CMS is able to run its applications on resources that can be reached through the GRID, through EC2 compliant cloud interfaces. Even resources that can be used through ssh login nodes can be harnessed. All of these usage modes are integrated transparently into the GlideIn WMS submission infrastructure, which is the basis of CMS' opportunistic resource usage strategy. Technologies like Parrot to mount the software distribution via CVMFS and xrootd for access to data and simulation samples via the WAN are used and will be described. We will summarize the experience with opportunistic resource usage and give an outlook for the restart of LHC data taking in 2015.
Geometry definition and grid generation for a complete fighter aircraft
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1986-01-01
Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. This paper presents a procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.
Geometry definition and grid generation for a complete fighter aircraft
NASA Technical Reports Server (NTRS)
Edwards, Thomas A.
1986-01-01
Recent advances in computing power and numerical solution procedures have enabled computational fluid dynamicists to attempt increasingly difficult problems. In particular, efforts are focusing on computations of complex three-dimensional flow fields about realistic aerodynamic bodies. To perform such computations, a very accurate and detailed description of the surface geometry must be provided, and a three-dimensional grid must be generated in the space around the body. The geometry must be supplied in a format compatible with the grid generation requirements, and must be verified to be free of inconsistencies. A procedure for performing the geometry definition of a fighter aircraft that makes use of a commercial computer-aided design/computer-aided manufacturing system is presented. Furthermore, visual representations of the geometry are generated using a computer graphics system for verification of the body definition. Finally, the three-dimensional grids for fighter-like aircraft are generated by means of an efficient new parabolic grid generation method. This method exhibits good control of grid quality.
The LHCb Grid Simulation: Proof of Concept
NASA Astrophysics Data System (ADS)
Hushchyn, M.; Ustyuzhanin, A.; Arzymatov, K.; Roiser, S.; Baranov, A.
2017-10-01
The Worldwide LHC Computing Grid provides access to data and computational resources to analyze it for researchers with different geographical locations. The grid has a hierarchical topology with multiple sites distributed over the world with varying number of CPUs, amount of disk storage and connection bandwidth. Job scheduling and data distribution strategy are key elements of grid performance. Optimization of algorithms for those tasks requires their testing on real grid which is hard to achieve. Having a grid simulator might simplify this task and therefore lead to more optimal scheduling and data placement algorithms. In this paper we demonstrate a grid simulator for the LHCb distributed computing software.
Cloud computing for energy management in smart grid - an application survey
NASA Astrophysics Data System (ADS)
Naveen, P.; Kiing Ing, Wong; Kobina Danquah, Michael; Sidhu, Amandeep S.; Abu-Siada, Ahmed
2016-03-01
The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid.