Sample records for grid condition detection

  1. Islanding detection technique using wavelet energy in grid-connected PV system

    NASA Astrophysics Data System (ADS)

    Kim, Il Song

    2016-08-01

    This paper proposes a new islanding detection method using wavelet energy in a grid-connected photovoltaic system. The method detects spectral changes in the higher-frequency components of the point of common coupling voltage and obtains wavelet coefficients by multilevel wavelet analysis. The autocorrelation of the wavelet coefficients can clearly identify islanding detection, even in the variations of the grid voltage harmonics during normal operating conditions. The advantage of the proposed method is that it can detect islanding condition the conventional under voltage/over voltage/under frequency/over frequency methods fail to detect. The theoretical method to obtain wavelet energies is evolved and verified by the experimental result.

  2. System and method for islanding detection and prevention in distributed generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhowmik, Shibashis; Mazhari, Iman; Parkhideh, Babak

    Various examples are directed to systems and methods for detecting an islanding condition at an inverter configured to couple a distributed generation system to an electrical grid network. A controller may determine a command frequency and a command frequency variation. The controller may determine that the command frequency variation indicates a potential islanding condition and send to the inverter an instruction to disconnect the distributed generation system from the electrical grid network. When the distributed generation system is disconnected from the electrical grid network, the controller may determine whether the grid network is valid.

  3. Inverter Anti-Islanding with Advanced Grid Support in Single- and Multi-Inverter Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Andy

    As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1. In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2. The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly ormore » indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness.« less

  4. Low-cost wireless voltage & current grid monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hines, Jacqueline

    This report describes the development and demonstration of a novel low-cost wireless power distribution line monitoring system. This system measures voltage, current, and relative phase on power lines of up to 35 kV-class. The line units operate without any batteries, and without harvesting energy from the power line. Thus, data on grid condition is provided even in outage conditions, when line current is zero. This enhances worker safety by detecting the presence of voltage and current that may appear from stray sources on nominally isolated lines. Availability of low-cost power line monitoring systems will enable widespread monitoring of the distributionmore » grid. Real-time data on local grid operating conditions will enable grid operators to optimize grid operation, implement grid automation, and understand the impact of solar and other distributed sources on grid stability. The latter will enable utilities to implement eneygy storage and control systems to enable greater penetration of solar into the grid.« less

  5. Research on Ultrasonic Flaw Detection of Steel Weld in Spatial Grid Structure

    NASA Astrophysics Data System (ADS)

    Du, Tao; Sun, Jiandong; Fu, Shengguang; Zhang, Changquan; Gao, Qing

    2017-06-01

    The welding quality of spatial grid member is an important link in quality control of steel structure. The paper analyzed the reasons that the welding seam of small-bore pipe with thin wall grid structure is difficult to be detected by ultrasonic wave from the theoretical and practical aspects. A series of feasible detection methods was also proposed by improving probe and operation approaches in this paper, and the detection methods were verified by project cases. Over the years, the spatial grid structure is widely used the engineering by virtue of its several outstanding characteristics such as reasonable structure type, standard member, excellent space integrity and quick installation. The wide application of spatial grid structure brings higher requirements on nondestructive test of grid structure. The implementation of new Code for Construction Quality Acceptance of Steel Structure Work GB50205-2001 strengthens the site inspection of steel structure, especially the site inspection of ultrasonic flaw detection in steel weld. The detection for spatial grid member structured by small-bore and thin-walled pipes is difficult due to the irregular influence of sound pressure in near-field region of sound field, sound beam diffusion generated by small bore pipe and reduction of sensitivity. Therefore, it is quite significant to select correct detecting conditions. The spatial grid structure of welding ball and bolt ball is statically determinate structure with high-order axial force which is connected by member bars and joints. It is welded by shrouding or conehead of member bars and of member bar and bolt-node sphere. It is obvious that to ensure the quality of these welding positions is critical to the quality of overall grid structure. However, the complexity of weld structure and limitation of ultrasonic detection method cause many difficulties in detection. No satisfactory results will be obtained by the conventional detection technology, so some special approaches must be used.

  6. Adaptive Harmonic Detection Control of Grid Interfaced Solar Photovoltaic Energy System with Power Quality Improvement

    NASA Astrophysics Data System (ADS)

    Singh, B.; Goel, S.

    2015-03-01

    This paper presents a grid interfaced solar photovoltaic (SPV) energy system with a novel adaptive harmonic detection control for power quality improvement at ac mains under balanced as well as unbalanced and distorted supply conditions. The SPV energy system is capable of compensation of linear and nonlinear loads with the objectives of load balancing, harmonics elimination, power factor correction and terminal voltage regulation. The proposed control increases the utilization of PV infrastructure and brings down its effective cost due to its other benefits. The adaptive harmonic detection control algorithm is used to detect the fundamental active power component of load currents which are subsequently used for reference source currents estimation. An instantaneous symmetrical component theory is used to obtain instantaneous positive sequence point of common coupling (PCC) voltages which are used to derive inphase and quadrature phase voltage templates. The proposed grid interfaced PV energy system is modelled and simulated in MATLAB Simulink and its performance is verified under various operating conditions.

  7. A Structured Grid Based Solution-Adaptive Technique for Complex Separated Flows

    NASA Technical Reports Server (NTRS)

    Thornburg, Hugh; Soni, Bharat K.; Kishore, Boyalakuntla; Yu, Robert

    1996-01-01

    The objective of this work was to enhance the predictive capability of widely used computational fluid dynamic (CFD) codes through the use of solution adaptive gridding. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. In order to study the accuracy and efficiency improvements due to the grid adaptation, it is necessary to quantify grid size and distribution requirements as well as computational times of non-adapted solutions. Flow fields about launch vehicles of practical interest often involve supersonic freestream conditions at angle of attack exhibiting large scale separate vortical flow, vortex-vortex and vortex-surface interactions, separated shear layers and multiple shocks of different intensity. In this work, a weight function and an associated mesh redistribution procedure is presented which detects and resolves these features without user intervention. Particular emphasis has been placed upon accurate resolution of expansion regions and boundary layers. Flow past a wedge at Mach=2.0 is used to illustrate the enhanced detection capabilities of this newly developed weight function.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalimunthe, Amty Ma’rufah Ardhiyah; Mindara, Jajat Yuda; Panatarani, Camellia

    Smart grid and distributed generation should be the solution of the global climate change and the crisis energy of the main source of electrical power generation which is fossil fuel. In order to meet the rising electrical power demand and increasing service quality demands, as well as reduce pollution, the existing power grid infrastructure should be developed into a smart grid and distributed power generation which provide a great opportunity to address issues related to energy efficiency, energy security, power quality and aging infrastructure systems. The conventional of the existing distributed generation system is an AC grid while for amore » renewable resources requires a DC grid system. This paper explores the model of smart DC grid by introducing a model of smart DC grid with the stable power generation give a minimal and compressed circuitry that can be implemented very cost-effectively with simple components. The PC based application software for controlling was developed to show the condition of the grid and to control the grid become ‘smart’. The model is then subjected to a severe system perturbation, such as incremental change in loads to test the performance of the system again stability. It is concluded that the system able to detect and controlled the voltage stability which indicating the ability of power system to maintain steady voltage within permissible rangers in normal condition.« less

  9. Boundary condition identification for a grid model by experimental and numerical dynamic analysis

    NASA Astrophysics Data System (ADS)

    Mao, Qiang; Devitis, John; Mazzotti, Matteo; Bartoli, Ivan; Moon, Franklin; Sjoblom, Kurt; Aktan, Emin

    2015-04-01

    There is a growing need to characterize unknown foundations and assess substructures in existing bridges. It is becoming an important issue for the serviceability and safety of bridges as well as for the possibility of partial reuse of existing infrastructures. Within this broader contest, this paper investigates the possibility of identifying, locating and quantifying changes of boundary conditions, by leveraging a simply supported grid structure with a composite deck. Multi-reference impact tests are operated for the grid model and modification of one supporting bearing is done by replacing a steel cylindrical roller with a roller of compliant material. Impact based modal analysis provide global modal parameters such as damped natural frequencies, mode shapes and flexibility matrix that are used as indicators of boundary condition changes. An updating process combining a hybrid optimization algorithm and the finite element software suit ABAQUS is presented in this paper. The updated ABAQUS model of the grid that simulates the supporting bearing with springs is used to detect and quantify the change of the boundary conditions.

  10. Human skin surface evaluation by image processing

    NASA Astrophysics Data System (ADS)

    Zhu, Liangen; Zhan, Xuemin; Xie, Fengying

    2003-12-01

    Human skin gradually lose its tension and becomes very dry as time flies by. Use of cosmetics is effective to prevent skin aging. Recently, there are many choices of products of cosmetics. To show their effects, It is desirable to develop a way to evaluate quantificationally skin surface condition. In this paper, An automatic skin evaluating method is proposed. The skin surface has the pattern called grid-texture. This pattern is composed of the valleys that spread vertically, horizontally, and obliquely and the hills separated by them. Changes of the grid are closely linked to the skin surface condition. They can serve as a good indicator for the skin condition. By measuring the skin grid using digital image processing technologies, we can evaluate skin surface about its aging, health, and alimentary status. In this method, the skin grid is first detected to form a closed net. Then, some skin parameters such as Roughness, tension, scale and gloss can be calculated from the statistical measurements of the net. Through analyzing these parameters, the condition of the skin can be monitored.

  11. Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Anderson; Nelson, Austin; Miller, Brian

    As PV and other DER systems are connected to the grid at increased penetration levels, island detection may become more challenging for two reasons: 1.) In islands containing many DERs, active inverter-based anti-islanding methods may have more difficulty detecting islands because each individual inverter's efforts to detect the island may be interfered with by the other inverters in the island. 2.) The increasing numbers of DERs are leading to new requirements that DERs ride through grid disturbances and even actively try to regulate grid voltage and frequency back towards nominal operating conditions. These new grid support requirements may directly ormore » indirectly interfere with anti-islanding controls. This report describes a series of tests designed to examine the impacts of both grid support functions and multi-inverter islands on anti-islanding effectiveness. Crucially, the multi-inverter anti-islanding tests described in this report examine scenarios with multiple inverters connected to multiple different points on the grid. While this so-called 'solar subdivision' scenario has been examined to some extent through simulation, this is the first known work to test it using hardware inverters. This was accomplished through the use of power hardware-in-the-loop (PHIL) simulation, which allows the hardware inverters to be connected to a real-time transient simulation of an electric power system that can be easily reconfigured to test various distribution circuit scenarios. The anti-islanding test design was a modified version of the unintentional islanding test in IEEE Standard 1547.1, which creates a balanced, resonant island with the intent of creating a highly challenging condition for island detection. Three common, commercially available single-phase PV inverters from three different manufacturers were tested. The first part of this work examined each inverter individually using a series of pure hardware resistive-inductive-capacitive (RLC) resonant load based anti-islanding tests to determine the worst-case configuration of grid support functions for each inverter. A grid support function is a function an inverter performs to help stabilize the grid or drive the grid back towards its nominal operating point. The four grid support functions examined here were voltage ride-through, frequency ride-through, Volt-VAr control, and frequency-Watt control. The worst-case grid support configuration was defined as the configuration that led to the maximum island duration (or run-on time, ROT) out of 50 tests of each inverter. For each of the three inverters, it was observed that maximum ROT increased when voltage and frequency ride-through were activated. No conclusive evidence was found that Volt-VAr control or frequency-Watt control increased maximum ROT. Over all single-inverter test cases, the maximum ROT was 711 ms, well below the two-second limit currently imposed by IEEE Standard 1547-2003. A subsequent series of 244 experiments tested all three inverters simultaneously in the same island. These tests again used a procedure based on the IEEE 1547.1 unintentional islanding test to create a difficult-to-detect island condition. For these tests, which used the two worst-case grid support function configurations from the single-inverter tests, the inverters were connected to a variety of island circuit topologies designed to represent the variety of multiple-inverter islands that may occur on real distribution circuits. The interconnecting circuits and the resonant island load itself were represented in the real-time PHIL model. PHIL techniques similar to those employed here have been previously used and validated for anti-islanding tests, and the PHIL resonant load model used in this test was successfully validated by comparing single-inverter PHIL tests to conventional tests using an RLC load bank.« less

  12. Distributed intrusion detection system based on grid security model

    NASA Astrophysics Data System (ADS)

    Su, Jie; Liu, Yahui

    2008-03-01

    Grid computing has developed rapidly with the development of network technology and it can solve the problem of large-scale complex computing by sharing large-scale computing resource. In grid environment, we can realize a distributed and load balance intrusion detection system. This paper first discusses the security mechanism in grid computing and the function of PKI/CA in the grid security system, then gives the application of grid computing character in the distributed intrusion detection system (IDS) based on Artificial Immune System. Finally, it gives a distributed intrusion detection system based on grid security system that can reduce the processing delay and assure the detection rates.

  13. Advanced technologies for scalable ATLAS conditions database access on the grid

    NASA Astrophysics Data System (ADS)

    Basset, R.; Canali, L.; Dimitrov, G.; Girone, M.; Hawkings, R.; Nevski, P.; Valassi, A.; Vaniachine, A.; Viegas, F.; Walker, R.; Wong, A.

    2010-04-01

    During massive data reprocessing operations an ATLAS Conditions Database application must support concurrent access from numerous ATLAS data processing jobs running on the Grid. By simulating realistic work-flow, ATLAS database scalability tests provided feedback for Conditions Db software optimization and allowed precise determination of required distributed database resources. In distributed data processing one must take into account the chaotic nature of Grid computing characterized by peak loads, which can be much higher than average access rates. To validate database performance at peak loads, we tested database scalability at very high concurrent jobs rates. This has been achieved through coordinated database stress tests performed in series of ATLAS reprocessing exercises at the Tier-1 sites. The goal of database stress tests is to detect scalability limits of the hardware deployed at the Tier-1 sites, so that the server overload conditions can be safely avoided in a production environment. Our analysis of server performance under stress tests indicates that Conditions Db data access is limited by the disk I/O throughput. An unacceptable side-effect of the disk I/O saturation is a degradation of the WLCG 3D Services that update Conditions Db data at all ten ATLAS Tier-1 sites using the technology of Oracle Streams. To avoid such bottlenecks we prototyped and tested a novel approach for database peak load avoidance in Grid computing. Our approach is based upon the proven idea of pilot job submission on the Grid: instead of the actual query, an ATLAS utility library sends to the database server a pilot query first.

  14. X-ray photon correlation spectroscopy using a fast pixel array detector with a grid mask resolution enhancer.

    PubMed

    Hoshino, Taiki; Kikuchi, Moriya; Murakami, Daiki; Harada, Yoshiko; Mitamura, Koji; Ito, Kiminori; Tanaka, Yoshihito; Sasaki, Sono; Takata, Masaki; Jinnai, Hiroshi; Takahara, Atsushi

    2012-11-01

    The performance of a fast pixel array detector with a grid mask resolution enhancer has been demonstrated for X-ray photon correlation spectroscopy (XPCS) measurements to investigate fast dynamics on a microscopic scale. A detecting system, in which each pixel of a single-photon-counting pixel array detector, PILATUS, is covered by grid mask apertures, was constructed for XPCS measurements of silica nanoparticles in polymer melts. The experimental results are confirmed to be consistent by comparison with other independent experiments. By applying this method, XPCS measurements can be carried out by customizing the hole size of the grid mask to suit the experimental conditions, such as beam size, detector size and sample-to-detector distance.

  15. Design and Implementation of a C++ Multithreaded Operational Tool for the Generation of Detection Time Grids in 2D for P- and S-waves taking into Consideration Seismic Network Topology and Data Latency

    NASA Astrophysics Data System (ADS)

    Sardina, V.

    2017-12-01

    The Pacific Tsunami Warning Center's round the clock operations rely on the rapid determination of the source parameters of earthquakes occurring around the world. To rapidly estimate source parameters such as earthquake location and magnitude the PTWC analyzes data streams ingested in near-real time from a global network of more than 700 seismic stations. Both the density of this network and the data latency of its member stations at any given time have a direct impact on the speed at which the PTWC scientists on duty can locate an earthquake and estimate its magnitude. In this context, it turns operationally advantageous to have the ability of assessing how quickly the PTWC operational system can reasonably detect and locate and earthquake, estimate its magnitude, and send the corresponding tsunami message whenever appropriate. For this purpose, we designed and implemented a multithreaded C++ software package to generate detection time grids for both P- and S-waves after taking into consideration the seismic network topology and the data latency of its member stations. We first encapsulate all the parameters of interest at a given geographic point, such as geographic coordinates, P- and S-waves detection time in at least a minimum number of stations, and maximum allowed azimuth gap into a DetectionTimePoint class. Then we apply composition and inheritance to define a DetectionTimeLine class that handles a vector of DetectionTimePoint objects along a given latitude. A DetectionTimesGrid class in turn handles the dynamic allocation of new TravelTimeLine objects and assigning the calculation of the corresponding P- and S-waves' detection times to new threads. Finally, we added a GUI that allows the user to interactively set all initial calculation parameters and output options. Initial testing in an eight core system shows that generation of a global 2D grid at 1 degree resolution setting detection on at least 5 stations and no azimuth gap restriction takes under 25 seconds. Under the same initial conditions, generation of a 2D grid at 0.1 degree resolution (2.6 million grid points) takes no more than 22 minutes. This preliminary results show a significant gain in grid generation speed when compared to other implementation via either scripts, or previous versions of the C++ code that did not implement multithreading.

  16. Characterizing the digital radiography system in terms of effective detective quantum efficiency and CDRAD measurement

    NASA Astrophysics Data System (ADS)

    Yalcin, A.; Olgar, T.

    2018-07-01

    The aim of this study was to assess the performance of a digital radiography system in terms of effective detective quantum efficiency (eDQE) for different tube voltages, polymethyl methacrylate (PMMA) phantom thicknesses and different grid types. The image performance of the digital radiography system was also evaluated by using CDRAD measurements at the same conditions and the correlation of CDRAD results with eDQE was compared. The eDQE was calculated via measurement of effective modulation transfer function (eMTF), effective normalized noise power spectra (eNNPS), scatter fraction (SF) and transmission factors (TF). SFs and TFs were also calculated for different beam qualities by using MCNP4C Monte Carlo simulation code. The integrated eDQE (IeDQE) over the frequency range was used to find the correlation with the inverse image quality figure (IQFinv) obtained from CDRAD measurements. The highest eDQE was obtained with 60 lp/cm grid frequency and 10:1 grid ratio. No remarkable effect was observed on eDQE with different grid frequency, but eDQE decreased with increasing grid ratio. A significant correlation was found between IeDQE and IQFinv.

  17. Advances in Software Tools for Pre-processing and Post-processing of Overset Grid Computations

    NASA Technical Reports Server (NTRS)

    Chan, William M.

    2004-01-01

    Recent developments in three pieces of software for performing pre-processing and post-processing work on numerical computations using overset grids are presented. The first is the OVERGRID graphical interface which provides a unified environment for the visualization, manipulation, generation and diagnostics of geometry and grids. Modules are also available for automatic boundary conditions detection, flow solver input preparation, multiple component dynamics input preparation and dynamics animation, simple solution viewing for moving components, and debris trajectory analysis input preparation. The second is a grid generation script library that enables rapid creation of grid generation scripts. A sample of recent applications will be described. The third is the OVERPLOT graphical interface for displaying and analyzing history files generated by the flow solver. Data displayed include residuals, component forces and moments, number of supersonic and reverse flow points, and various dynamics parameters.

  18. Reliable Detection and Smart Deletion of Malassez Counting Chamber Grid in Microscopic White Light Images for Microbiological Applications.

    PubMed

    Denimal, Emmanuel; Marin, Ambroise; Guyot, Stéphane; Journaux, Ludovic; Molin, Paul

    2015-08-01

    In biology, hemocytometers such as Malassez slides are widely used and are effective tools for counting cells manually. In a previous work, a robust algorithm was developed for grid extraction in Malassez slide images. This algorithm was evaluated on a set of 135 images and grids were accurately detected in most cases, but there remained failures for the most difficult images. In this work, we present an optimization of this algorithm that allows for 100% grid detection and a 25% improvement in grid positioning accuracy. These improvements make the algorithm fully reliable for grid detection. This optimization also allows complete erasing of the grid without altering the cells, which eases their segmentation.

  19. Glucose biosensor based on GOx/HRP bienzyme at liquid-crystal/aqueous interface.

    PubMed

    Khan, Mashooq; Park, Soo-Young

    2015-11-01

    Glucose oxidase (GOx) and horseradish peroxidase (HRP) were co-immobilized to the polyacrylicacid block of a poly(acrylicacid-b-4-cyanobiphenyl-4'-undecylacrylate) (PAA-b-LCP) copolymer in water. PAA-b-LCP was strongly anchored by the LCP block in 4-cyano-4'-pentylbiphenyl (5CB) which was contained in a transmission electron microscope (TEM) grid for glucose detection. The optimal conditions for the performance of the TEM grid glucose biosensor were studied in terms of the activity and stability of the immobilized enzymes. Glucose in water was detected by the 5CB changing from a planar to a homeotropic orientation, as observed through a polarized optical microscope. The TEM biosensor detected glucose concentrations at ⩾0.02 mM, with an optimal GOx/HRP molar ratio of 3/1. This glucose biosensor has characteristics of enzyme sensitivity and stability, reusability, the ease and selective glucose detection which may provide a new way of detecting glucose. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Design and Implementation of Real-Time Off-Grid Detection Tool Based on FNET/GridEye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jiahui; Zhang, Ye; Liu, Yilu

    2014-01-01

    Real-time situational awareness tools are of critical importance to power system operators, especially during emergencies. The availability of electric power has become a linchpin of most post disaster response efforts as it is the primary dependency for public and private sector services, as well as individuals. Knowledge of the scope and extent of facilities impacted, as well as the duration of their dependence on backup power, enables emergency response officials to plan for contingencies and provide better overall response. Based on real-time data acquired by Frequency Disturbance Recorders (FDRs) deployed in the North American power grid, a real-time detection methodmore » is proposed. This method monitors critical electrical loads and detects the transition of these loads from an on-grid state, where the loads are fed by the power grid to an off-grid state, where the loads are fed by an Uninterrupted Power Supply (UPS) or a backup generation system. The details of the proposed detection algorithm are presented, and some case studies and off-grid detection scenarios are also provided to verify the effectiveness and robustness. Meanwhile, the algorithm has already been implemented based on the Grid Solutions Framework (GSF) and has effectively detected several off-grid situations.« less

  1. Cubic spline anchored grid pattern algorithm for high-resolution detection of subsurface cavities by the IR-CAT method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassab, A.J.; Pollard, J.E.

    An algorithm is presented for the high-resolution detection of irregular-shaped subsurface cavities within irregular-shaped bodies by the IR-CAT method. The theoretical basis of the algorithm is rooted in the solution of an inverse geometric steady-state heat conduction problem. A Cauchy boundary condition is prescribed at the exposed surface, and the inverse geometric heat conduction problem is formulated by specifying the thermal condition at the inner cavities walls, whose unknown geometries are to be detected. The location of the inner cavities is initially estimated, and the domain boundaries are discretized. Linear boundary elements are used in conjunction with cubic splines formore » high resolution of the cavity walls. An anchored grid pattern (AGP) is established to constrain the cubic spline knots that control the inner cavity geometry to evolve along the AGP at each iterative step. A residual is defined measuring the difference between imposed and computed boundary conditions. A Newton-Raphson method with a Broyden update is used to automate the detection of inner cavity walls. During the iterative procedure, the movement of the inner cavity walls is restricted to physically realistic intermediate solutions. Numerical simulation demonstrates the superior resolution of the cubic spline AGP algorithm over the linear spline-based AGP in the detection of an irregular-shaped cavity. Numerical simulation is also used to test the sensitivity of the linear and cubic spline AGP algorithms by simulating bias and random error in measured surface temperature. The proposed AGP algorithm is shown to satisfactorily detect cavities with these simulated data.« less

  2. ELIPGRID-PC: A PC program for calculating hot spot probabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, J.R.

    1994-10-01

    ELIPGRID-PC, a new personal computer program has been developed to provide easy access to Singer`s 1972 ELIPGRID algorithm for hot-spot detection probabilities. Three features of the program are the ability to determine: (1) the grid size required for specified conditions, (2) the smallest hot spot that can be sampled with a given probability, and (3) the approximate grid size resulting from specified conditions and sampling cost. ELIPGRID-PC also provides probability of hit versus cost data for graphing with spread-sheets or graphics software. The program has been successfully tested using Singer`s published ELIPGRID results. An apparent error in the original ELIPGRIDmore » code has been uncovered and an appropriate modification incorporated into the new program.« less

  3. Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Zhang, X.; Nagata, K.

    2018-03-01

    The turbulent/non-turbulent interface (TNTI) detected in direct numerical simulations is studied for incompressible, temporally developing turbulent boundary layers at momentum thickness Reynolds number Reθ ≈ 2000. The outer edge of the TNTI layer is detected as an isosurface of the vorticity magnitude with the threshold determined with the dependence of the turbulent volume on a threshold level. The spanwise vorticity magnitude and passive scalar are shown to be good markers of turbulent fluids, where the conditional statistics on a distance from the outer edge of the TNTI layer are almost identical to the ones obtained with the vorticity magnitude. Significant differences are observed for the conditional statistics between the TNTI detected by the kinetic energy and vorticity magnitude. A widely used grid setting determined solely from the wall unit results in an insufficient resolution in a streamwise direction in the outer region, whose influence is found for the geometry of the TNTI and vorticity jump across the TNTI layer. The present results suggest that the grid spacing should be similar for the streamwise and spanwise directions. Comparison of the TNTI layer among different flows requires appropriate normalization of the conditional statistics. Reference quantities of the turbulence near the TNTI layer are obtained with the average of turbulent fluids in the intermittent region. The conditional statistics normalized by the reference turbulence characteristics show good quantitative agreement for the turbulent boundary layer and planar jet when they are plotted against the distance from the outer edge of the TNTI layer divided by the Kolmogorov scale defined for turbulent fluids in the intermittent region.

  4. Single and double grid long-range alpha detectors

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.

    1993-01-01

    Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.

  5. Single and double grid long-range alpha detectors

    DOEpatents

    MacArthur, D.W.; Allander, K.S.

    1993-03-16

    Alpha particle detectors capable of detecting alpha radiation from distant sources. In one embodiment, a voltage is generated in a single electrically conductive grid while a fan draws air containing air molecules ionized by alpha particles through an air passage and across the conductive grid. The current in the conductive grid can be detected and used for measurement or alarm. Another embodiment builds on this concept and provides an additional grid so that air ions of both polarities can be detected. The detector can be used in many applications, such as for pipe or duct, tank, or soil sample monitoring.

  6. Parallel Proximity Detection for Computer Simulation

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor); Wieland, Frederick P. (Inventor)

    1997-01-01

    The present invention discloses a system for performing proximity detection in computer simulations on parallel processing architectures utilizing a distribution list which includes movers and sensor coverages which check in and out of grids. Each mover maintains a list of sensors that detect the mover's motion as the mover and sensor coverages check in and out of the grids. Fuzzy grids are includes by fuzzy resolution parameters to allow movers and sensor coverages to check in and out of grids without computing exact grid crossings. The movers check in and out of grids while moving sensors periodically inform the grids of their coverage. In addition, a lookahead function is also included for providing a generalized capability without making any limiting assumptions about the particular application to which it is applied. The lookahead function is initiated so that risk-free synchronization strategies never roll back grid events. The lookahead function adds fixed delays as events are scheduled for objects on other nodes.

  7. Parallel Proximity Detection for Computer Simulations

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor); Wieland, Frederick P. (Inventor)

    1998-01-01

    The present invention discloses a system for performing proximity detection in computer simulations on parallel processing architectures utilizing a distribution list which includes movers and sensor coverages which check in and out of grids. Each mover maintains a list of sensors that detect the mover's motion as the mover and sensor coverages check in and out of the grids. Fuzzy grids are included by fuzzy resolution parameters to allow movers and sensor coverages to check in and out of grids without computing exact grid crossings. The movers check in and out of grids while moving sensors periodically inform the grids of their coverage. In addition, a lookahead function is also included for providing a generalized capability without making any limiting assumptions about the particular application to which it is applied. The lookahead function is initiated so that risk-free synchronization strategies never roll back grid events. The lookahead function adds fixed delays as events are scheduled for objects on other nodes.

  8. Smart Grid Risk Management

    NASA Astrophysics Data System (ADS)

    Abad Lopez, Carlos Adrian

    Current electricity infrastructure is being stressed from several directions -- high demand, unreliable supply, extreme weather conditions, accidents, among others. Infrastructure planners have, traditionally, focused on only the cost of the system; today, resilience and sustainability are increasingly becoming more important. In this dissertation, we develop computational tools for efficiently managing electricity resources to help create a more reliable and sustainable electrical grid. The tools we present in this work will help electric utilities coordinate demand to allow the smooth and large scale integration of renewable sources of energy into traditional grids, as well as provide infrastructure planners and operators in developing countries a framework for making informed planning and control decisions in the presence of uncertainty. Demand-side management is considered as the most viable solution for maintaining grid stability as generation from intermittent renewable sources increases. Demand-side management, particularly demand response (DR) programs that attempt to alter the energy consumption of customers either by using price-based incentives or up-front power interruption contracts, is more cost-effective and sustainable in addressing short-term supply-demand imbalances when compared with the alternative that involves increasing fossil fuel-based fast spinning reserves. An essential step in compensating participating customers and benchmarking the effectiveness of DR programs is to be able to independently detect the load reduction from observed meter data. Electric utilities implementing automated DR programs through direct load control switches are also interested in detecting the reduction in demand to efficiently pinpoint non-functioning devices to reduce maintenance costs. We develop sparse optimization methods for detecting a small change in the demand for electricity of a customer in response to a price change or signal from the utility, dynamic learning methods for scheduling the maintenance of direct load control switches whose operating state is not directly observable and can only be inferred from the metered electricity consumption, and machine learning methods for accurately forecasting the load of hundreds of thousands of residential, commercial and industrial customers. These algorithms have been implemented in the software system provided by AutoGrid, Inc., and this system has helped several utilities in the Pacific Northwest, Oklahoma, California and Texas, provide more reliable power to their customers at significantly reduced prices. Providing power to widely spread out communities in developing countries using the conventional power grid is not economically feasible. The most attractive alternative source of affordable energy for these communities is solar micro-grids. We discuss risk-aware robust methods to optimally size and operate solar micro-grids in the presence of uncertain demand and uncertain renewable generation. These algorithms help system operators to increase their revenue while making their systems more resilient to inclement weather conditions.

  9. Islanding detection and over voltage mitigation using wireless sensor networks and electric vehicle charging stations.

    DOT National Transportation Integrated Search

    2016-06-01

    An islanding condition occurs when a distributed generation (DG) unit continues to energize a : part of the grid while said part has been isolated from the main electrical utility. In this event, if : the power of the DG exceeds the load, a transient...

  10. Radiation boundary condition and anisotropy correction for finite difference solutions of the Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Webb, Jay C.

    1994-01-01

    In this paper finite-difference solutions of the Helmholtz equation in an open domain are considered. By using a second-order central difference scheme and the Bayliss-Turkel radiation boundary condition, reasonably accurate solutions can be obtained when the number of grid points per acoustic wavelength used is large. However, when a smaller number of grid points per wavelength is used excessive reflections occur which tend to overwhelm the computed solutions. Excessive reflections are due to the incompability between the governing finite difference equation and the Bayliss-Turkel radiation boundary condition. The Bayliss-Turkel radiation boundary condition was developed from the asymptotic solution of the partial differential equation. To obtain compatibility, the radiation boundary condition should be constructed from the asymptotic solution of the finite difference equation instead. Examples are provided using the improved radiation boundary condition based on the asymptotic solution of the governing finite difference equation. The computed results are free of reflections even when only five grid points per wavelength are used. The improved radiation boundary condition has also been tested for problems with complex acoustic sources and sources embedded in a uniform mean flow. The present method of developing a radiation boundary condition is also applicable to higher order finite difference schemes. In all these cases no reflected waves could be detected. The use of finite difference approximation inevita bly introduces anisotropy into the governing field equation. The effect of anisotropy is to distort the directional distribution of the amplitude and phase of the computed solution. It can be quite large when the number of grid points per wavelength used in the computation is small. A way to correct this effect is proposed. The correction factor developed from the asymptotic solutions is source independent and, hence, can be determined once and for all. The effectiveness of the correction factor in providing improvements to the computed solution is demonstrated in this paper.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babun, Leonardo; Aksu, Hidayet; Uluagac, A. Selcuk

    The core vision of the smart grid concept is the realization of reliable two-­way communications between smart devices (e.g., IEDs, PLCs, PMUs). The benefits of the smart grid also come with tremendous security risks and new challenges in protecting the smart grid systems from cyber threats. Particularly, the use of untrusted counterfeit smart grid devices represents a real problem. Consequences of propagating false or malicious data, as well as stealing valuable user or smart grid state information from counterfeit devices are costly. Hence, early detection of counterfeit devices is critical for protecting smart grid’s components and users. To address thesemore » concerns, in this poster, we introduce our initial design of a configurable framework that utilize system call tracing, library interposition, and statistical techniques for monitoring and detection of counterfeit smart grid devices. In our framework, we consider six different counterfeit device scenarios with different smart grid devices and adversarial seZings. Our initial results on a realistic testbed utilizing actual smart-­grid GOOSE messages with IEC-­61850 communication protocol are very promising. Our framework is showing excellent rates on detection of smart grid counterfeit devices from impostors.« less

  12. GridMass: a fast two-dimensional feature detection method for LC/MS.

    PubMed

    Treviño, Victor; Yañez-Garza, Irma-Luz; Rodriguez-López, Carlos E; Urrea-López, Rafael; Garza-Rodriguez, Maria-Lourdes; Barrera-Saldaña, Hugo-Alberto; Tamez-Peña, José G; Winkler, Robert; Díaz de-la-Garza, Rocío-Isabel

    2015-01-01

    One of the initial and critical procedures for the analysis of metabolomics data using liquid chromatography and mass spectrometry is feature detection. Feature detection is the process to detect boundaries of the mass surface from raw data. It consists of detected abundances arranged in a two-dimensional (2D) matrix of mass/charge and elution time. MZmine 2 is one of the leading software environments that provide a full analysis pipeline for these data. However, the feature detection algorithms provided in MZmine 2 are based mainly on the analysis of one-dimension at a time. We propose GridMass, an efficient algorithm for 2D feature detection. The algorithm is based on landing probes across the chromatographic space that are moved to find local maxima providing accurate boundary estimations. We tested GridMass on a controlled marker experiment, on plasma samples, on plant fruits, and in a proteome sample. Compared with other algorithms, GridMass is faster and may achieve comparable or better sensitivity and specificity. As a proof of concept, GridMass has been implemented in Java under the MZmine 2 environment and is available at http://www.bioinformatica.mty.itesm.mx/GridMass and MASSyPup. It has also been submitted to the MZmine 2 developing community. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Security attack detection algorithm for electric power gis system based on mobile application

    NASA Astrophysics Data System (ADS)

    Zhou, Chao; Feng, Renjun; Wang, Liming; Huang, Wei; Guo, Yajuan

    2017-05-01

    Electric power GIS is one of the key information technologies to satisfy the power grid construction in China, and widely used in power grid construction planning, weather, and power distribution management. The introduction of electric power GIS based on mobile applications is an effective extension of the geographic information system that has been widely used in the electric power industry. It provides reliable, cheap and sustainable power service for the country. The accurate state estimation is the important conditions to maintain the normal operation of the electric power GIS. Recent research has shown that attackers can inject the complex false data into the power system. The injection attack of this new type of false data (load integrity attack LIA) can successfully bypass the routine detection to achieve the purpose of attack, so that the control center will make a series of wrong decision. Eventually, leading to uneven distribution of power in the grid. In order to ensure the safety of the electric power GIS system based on mobile application, it is very important to analyze the attack mechanism and propose a new type of attack, and to study the corresponding detection method and prevention strategy in the environment of electric power GIS system based on mobile application.

  14. Development of a Whole Container Seal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhn, Michael J; Pickett, Chris A; Stinson, Brad J

    This paper outlines a technique for utilizing electrically conductive textiles as a whole container seal. This method has the potential to provide more robustness for ensuring that the container has not been breached versus conventional sealing methods that only provide tamper indication at the area used for normal access. The conductive textile is used as a distributed sensor for detecting and localizing container tamper or breach. For sealing purposes, the conductive fabric represents a bounded, near-infinite grid of resistors. The well-known infinite resistance grid problem was used to model and confirm the expected accuracy and validity of this approach. Anmore » experimental setup was built that uses a multiplexed Wheatstone bridge measurement to determine the resistances of a coarse electrode grid across the conductive fabric. Non-uniform resistance values of the grid infer the presence of damage or tears in the fabric. Results suggest accuracy proportional to the electrode spacing in determining the presence and location of disturbances in conductive fabric samples. Current work is focused on constructing experimental prototypes for field and environmental testing to gauge the performance of these whole container seals in real world conditions. We are also developing software and hardware to interface with the whole container seals. The latest prototypes are expected to provide more accuracy in detecting and localizing events, although detection of a penetration should be adequate for most sealing applications. We are also developing smart sensing nodes that integrate digital hardware and additional sensors (e.g., motion, humidity) into the electrode nodes within the whole container seal.« less

  15. Method and apparatus for detecting cyber attacks on an alternating current power grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEachern, Alexander; Hofmann, Ronald

    A method and apparatus for detecting cyber attacks on remotely-operable elements of an alternating current distribution grid. Two state estimates of the distribution grid are prepared, one of which uses micro-synchrophasors. A difference between the two state estimates indicates a possible cyber attack.

  16. A new method for producing automated seismic bulletins: Probabilistic event detection, association, and location

    DOE PAGES

    Draelos, Timothy J.; Ballard, Sanford; Young, Christopher J.; ...

    2015-10-01

    Given a set of observations within a specified time window, a fitness value is calculated at each grid node by summing station-specific conditional fitness values. Assuming each observation was generated by a refracted P wave, these values are proportional to the conditional probabilities that each observation was generated by a seismic event at the grid node. The node with highest fitness value is accepted as a hypothetical event location, subject to some minimal fitness value, and all arrivals within a longer time window consistent with that event are associated with it. During the association step, a variety of different phasesmore » are considered. In addition, once associated with an event, an arrival is removed from further consideration. While unassociated arrivals remain, the search for other events is repeated until none are identified.« less

  17. Deep learning for classification of islanding and grid disturbance based on multi-resolution singular spectrum entropy

    NASA Astrophysics Data System (ADS)

    Li, Tie; He, Xiaoyang; Tang, Junci; Zeng, Hui; Zhou, Chunying; Zhang, Nan; Liu, Hui; Lu, Zhuoxin; Kong, Xiangrui; Yan, Zheng

    2018-02-01

    Forasmuch as the distinguishment of islanding is easy to be interfered by grid disturbance, island detection device may make misjudgment thus causing the consequence of photovoltaic out of service. The detection device must provide with the ability to differ islanding from grid disturbance. In this paper, the concept of deep learning is introduced into classification of islanding and grid disturbance for the first time. A novel deep learning framework is proposed to detect and classify islanding or grid disturbance. The framework is a hybrid of wavelet transformation, multi-resolution singular spectrum entropy, and deep learning architecture. As a signal processing method after wavelet transformation, multi-resolution singular spectrum entropy combines multi-resolution analysis and spectrum analysis with entropy as output, from which we can extract the intrinsic different features between islanding and grid disturbance. With the features extracted, deep learning is utilized to classify islanding and grid disturbance. Simulation results indicate that the method can achieve its goal while being highly accurate, so the photovoltaic system mistakenly withdrawing from power grids can be avoided.

  18. Applicability of grid-net detection system for landfill leachate and diesel fuel release in the subsurface.

    PubMed

    Oh, Myounghak; Seo, Min Woo; Lee, Seunghak; Park, Junboum

    2008-02-19

    The grid-net system estimating the electrical conductivity changes was evaluated as a potential detection system for the leakage of diesel fuel and landfill leachate. Aspects of electrical conductivity changes were varied upon the type of contaminant. The electrical conductivity in the homogeneous mixtures of soil and landfill leachate linearly increased with the ionic concentration of pore fluid, which became more significant at higher volumetric water contents. However, the electrical conductivity in soil/diesel fuel mixture decreased with diesel fuel content and it was more significant at lower water contents. The electrode spacing should be determined by considering the type of contaminant to enhance the electrode sensitivity especially when two-electrode sensors are to be used. The electrode sensitivity for landfill leachate was constantly maintained regardless of the electrode spacings while that for the diesel fuel significantly increased at smaller electrode spacings. This is possibly due to the fact that the insulating barrier effect of the diesel fuel in non-aqueous phase was less predominant at large electrode spacing because electrical current can form the round-about paths over the volume with relatively small diesel fuel content. The model test results showed that the grid-net detection system can be used to monitor the leakage from waste landfill and underground storage tank sites. However, for a successful application of the detection system in the field, data under various field conditions should be accumulated.

  19. A randomized trial comparing INR monitoring devices in patients with anticoagulation self-management: evaluation of a novel error-grid approach.

    PubMed

    Hemkens, Lars G; Hilden, Kristian M; Hartschen, Stephan; Kaiser, Thomas; Didjurgeit, Ulrike; Hansen, Roland; Bender, Ralf; Sawicki, Peter T

    2008-08-01

    In addition to the metrological quality of international normalized ratio (INR) monitoring devices used in patients' self-management of long-term anticoagulation, the effectiveness of self-monitoring with such devices has to be evaluated under real-life conditions with a focus on clinical implications. An approach to evaluate the clinical significance of inaccuracies is the error-grid analysis as already established in self-monitoring of blood glucose. Two anticoagulation monitors were compared in a real-life setting and a novel error-grid instrument for oral anticoagulation has been evaluated. In a randomized crossover study 16 patients performed self-management of anticoagulation using the INRatio and the CoaguChek S system. Main outcome measures were clinically relevant INR differences according to established criteria and to the error-grid approach. A lower rate of clinically relevant disagreements according to Anderson's criteria was found with CoaguChek S than with INRatio without statistical significance (10.77% vs. 12.90%; P = 0.787). Using the error-grid we found principally consistent results: More measurement pairs with discrepancies of no or low clinical relevance were found with CoaguChek S, whereas with INRatio we found more differences with a moderate clinical relevance. A high rate of patients' satisfaction with both of the point of care devices was found with only marginal differences. A principal appropriateness of the investigated point-of-care devices to adequately monitor the INR is shown. The error-grid is useful for comparing monitoring methods with a focus on clinical relevance under real-life conditions beyond assessing the pure metrological quality, but we emphasize that additional trials using this instrument with larger patient populations are needed to detect differences in clinically relevant disagreements.

  20. Methodological Caveats in the Detection of Coordinated Replay between Place Cells and Grid Cells.

    PubMed

    Trimper, John B; Trettel, Sean G; Hwaun, Ernie; Colgin, Laura Lee

    2017-01-01

    At rest, hippocampal "place cells," neurons with receptive fields corresponding to specific spatial locations, reactivate in a manner that reflects recently traveled trajectories. These "replay" events have been proposed as a mechanism underlying memory consolidation, or the transfer of a memory representation from the hippocampus to neocortical regions associated with the original sensory experience. Accordingly, it has been hypothesized that hippocampal replay of a particular experience should be accompanied by simultaneous reactivation of corresponding representations in the neocortex and in the entorhinal cortex, the primary interface between the hippocampus and the neocortex. Recent studies have reported that coordinated replay may occur between hippocampal place cells and medial entorhinal cortex grid cells, cells with multiple spatial receptive fields. Assessing replay in grid cells is problematic, however, as the cells exhibit regularly spaced spatial receptive fields in all environments and, therefore, coordinated replay between place cells and grid cells may be detected by chance. In the present report, we adapted analytical approaches utilized in recent studies of grid cell and place cell replay to determine the extent to which coordinated replay is spuriously detected between grid cells and place cells recorded from separate rats. For a subset of the employed analytical methods, coordinated replay was detected spuriously in a significant proportion of cases in which place cell replay events were randomly matched with grid cell firing epochs of equal duration. More rigorous replay evaluation procedures and minimum spike count requirements greatly reduced the amount of spurious findings. These results provide insights into aspects of place cell and grid cell activity during rest that contribute to false detection of coordinated replay. The results further emphasize the need for careful controls and rigorous methods when testing the hypothesis that place cells and grid cells exhibit coordinated replay.

  1. Integrity Verification for SCADA Devices Using Bloom Filters and Deep Packet Inspection

    DTIC Science & Technology

    2014-03-27

    prevent intrusions in smart grids [PK12]. Parthasarathy proposed an anomaly detection based IDS that takes into account system state. In his implementation...Security, 25(7):498–506, 10 2006. [LMV12] O. Linda, M. Manic, and T. Vollmer. Improving cyber-security of smart grid systems via anomaly detection and...6 2012. 114 [PK12] S. Parthasarathy and D. Kundur. Bloom filter based intrusion detection for smart grid SCADA. In Electrical & Computer Engineering

  2. Structured grid technology to enable flow simulation in an integrated system environment

    NASA Astrophysics Data System (ADS)

    Remotigue, Michael Gerard

    An application-driven Computational Fluid Dynamics (CFD) environment needs flexible and general tools to effectively solve complex problems in a timely manner. In addition, reusable, portable, and maintainable specialized libraries will aid in rapidly developing integrated systems or procedures. The presented structured grid technology enables the flow simulation for complex geometries by addressing grid generation, grid decomposition/solver setup, solution, and interpretation. Grid generation is accomplished with the graphical, arbitrarily-connected, multi-block structured grid generation software system (GUM-B) developed and presented here. GUM-B is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a solid-modeling data structure that utilizes a structured grid generation library and a geometric library based on Non-Uniform Rational B-Splines (NURBS). A presented modification of the solid-modeling data structure provides the capability for arbitrarily-connected regions between the grid blocks. The presented grid generation library provides algorithms that are reliable and accurate. GUM-B has been utilized to generate numerous structured grids for complex geometries in hydrodynamics, propulsors, and aerodynamics. The versatility of the libraries that compose GUM-B is also displayed in a prototype to automatically regenerate a grid for a free-surface solution. Grid decomposition and solver setup is accomplished with the graphical grid manipulation and repartition software system (GUMBO) developed and presented here. GUMBO is an integrated system comprised of specialized libraries for the graphical user interface and graphical display coupled with a structured grid-tools library. The described functions within the grid-tools library reduce the possibility of human error during decomposition and setup for the numerical solver by accounting for boundary conditions and connectivity. GUMBO is linked with a flow solver interface, to the parallel UNCLE code, to provide load balancing tools and solver setup. Weeks of boundary condition and connectivity specification and validation has been reduced to hours. The UNCLE flow solver is utilized for the solution of the flow field. To accelerate convergence toward a quick engineering answer, a full multigrid (FMG) approach coupled with UNCLE, which is a full approximation scheme (FAS), is presented. The prolongation operators used in the FMG-FAS method are compared. The procedure is demonstrated on a marine propeller in incompressible flow. Interpretation of the solution is accomplished by vortex feature detection. Regions of "Intrinsic Swirl" are located by interrogating the velocity gradient tensor for complex eigenvalues. The "Intrinsic Swirl" parameter is visualized on a solution of a marine propeller to determine if any vortical features are captured. The libraries and the structured grid technology presented herein are flexible and general enough to tackle a variety of complex applications. This technology has significantly enabled the capability of the ERC personnel to effectively calculate solutions for complex geometries.

  3. Wire-chamber radiation detector with discharge control

    DOEpatents

    Perez-Mendez, V.; Mulera, T.A.

    1982-03-29

    A wire chamber; radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or; near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  4. Modeling and measuring the visual detection of ecologically relevant motion by an Anolis lizard.

    PubMed

    Pallus, Adam C; Fleishman, Leo J; Castonguay, Philip M

    2010-01-01

    Motion in the visual periphery of lizards, and other animals, often causes a shift of visual attention toward the moving object. This behavioral response must be more responsive to relevant motion (predators, prey, conspecifics) than to irrelevant motion (windblown vegetation). Early stages of visual motion detection rely on simple local circuits known as elementary motion detectors (EMDs). We presented a computer model consisting of a grid of correlation-type EMDs, with videos of natural motion patterns, including prey, predators and windblown vegetation. We systematically varied the model parameters and quantified the relative response to the different classes of motion. We carried out behavioral experiments with the lizard Anolis sagrei and determined that their visual response could be modeled with a grid of correlation-type EMDs with a spacing parameter of 0.3 degrees visual angle, and a time constant of 0.1 s. The model with these parameters gave substantially stronger responses to relevant motion patterns than to windblown vegetation under equivalent conditions. However, the model is sensitive to local contrast and viewer-object distance. Therefore, additional neural processing is probably required for the visual system to reliably distinguish relevant from irrelevant motion under a full range of natural conditions.

  5. Radiation detector based on a matrix of crossed wavelength-shifting fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kross, Brian J.; Weisenberger, Andrew; Zorn, Carl

    A radiation detection system comprising a detection grid of wavelength shifting fibers with a volume of scintillating material at the intersecting points of the fibers. Light detectors, preferably Silicon Photomultipliers, are positioned at the ends of the fibers. The position of radiation is determined from data obtained from the detection grid. The system is easily scalable, customizable, and also suitable for use in soil and underground applications. An alternate embodiment employs a fiber grid sheet or layer which is comprised of multiple fibers secured to one another within the same plane. This embodiment further includes shielding in order to preventmore » radiation cross-talk within the grid layer.« less

  6. Groundwater-quality data in the Santa Cruz, San Gabriel, and Peninsular Ranges Hard Rock Aquifers study unit, 2011-2012: results from the California GAMA program

    USGS Publications Warehouse

    Davis, Tracy A.; Shelton, Jennifer L.

    2014-01-01

    Results for constituents with nonregulatory benchmarks set for aesthetic concerns showed that iron concentrations greater than the CDPH secondary maximum contaminant level (SMCL-CA) of 300 μg/L were detected in samples from 19 grid wells. Manganese concentrations greater than the SMCL-CA of 50 μg/L were detected in 27 grid wells. Chloride was detected at a concentration greater than the SMCL-CA upper benchmark of 500 mg/L in one grid well. TDS concentrations in three grid wells were greater than the SMCL-CA upper benchmark of 1,000 mg/L.

  7. Method for the depth corrected detection of ionizing events from a co-planar grids sensor

    DOEpatents

    De Geronimo, Gianluigi [Syosset, NY; Bolotnikov, Aleksey E [South Setauket, NY; Carini, Gabriella [Port Jefferson, NY

    2009-05-12

    A method for the detection of ionizing events utilizing a co-planar grids sensor comprising a semiconductor substrate, cathode electrode, collecting grid and non-collecting grid. The semiconductor substrate is sensitive to ionizing radiation. A voltage less than 0 Volts is applied to the cathode electrode. A voltage greater than the voltage applied to the cathode is applied to the non-collecting grid. A voltage greater than the voltage applied to the non-collecting grid is applied to the collecting grid. The collecting grid and the non-collecting grid are summed and subtracted creating a sum and difference respectively. The difference and sum are divided creating a ratio. A gain coefficient factor for each depth (distance between the ionizing event and the collecting grid) is determined, whereby the difference between the collecting electrode and the non-collecting electrode multiplied by the corresponding gain coefficient is the depth corrected energy of an ionizing event. Therefore, the energy of each ionizing event is the difference between the collecting grid and the non-collecting grid multiplied by the corresponding gain coefficient. The depth of the ionizing event can also be determined from the ratio.

  8. Solar activity and economic fundamentals: Evidence from 12 geographically disparate power grids

    NASA Astrophysics Data System (ADS)

    Forbes, Kevin F.; St. Cyr, O. C.

    2008-10-01

    This study uses local (ground-based) magnetometer data as a proxy for geomagnetically induced currents (GICs) to address whether there is a space weather/electricity market relationship in 12 geographically disparate power grids: Eirgrid, the power grid that serves the Republic of Ireland; Scottish and Southern Electricity, the power grid that served northern Scotland until April 2005; Scottish Power, the power grid that served southern Scotland until April 2005; the power grid that serves the Czech Republic; E.ON Netz, the transmission system operator in central Germany; the power grid in England and Wales; the power grid in New Zealand; the power grid that serves the vast proportion of the population in Australia; ISO New England, the power grid that serves New England; PJM, a power grid that over the sample period served all or parts of Delaware, Maryland, New Jersey, Ohio, Pennsylvania, Virginia, West Virginia, and the District of Columbia; NYISO, the power grid that serves New York State; and the power grid in the Netherlands. This study tests the hypothesis that GIC levels (proxied by the time variation of local magnetic field measurements (dH/dt)) and electricity grid conditions are related using Pearson's chi-squared statistic. The metrics of power grid conditions include measures of electricity market imbalances, energy losses, congestion costs, and actions by system operators to restore grid stability. The results of the analysis indicate that real-time market conditions in these power grids are statistically related with the GIC proxy.

  9. Damage mapping in structural health monitoring using a multi-grid architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, V. John

    2015-03-31

    This paper presents a multi-grid architecture for tomography-based damage mapping of composite aerospace structures. The system employs an array of piezo-electric transducers bonded on the structure. Each transducer may be used as an actuator as well as a sensor. The structure is excited sequentially using the actuators and the guided waves arriving at the sensors in response to the excitations are recorded for further analysis. The sensor signals are compared to their baseline counterparts and a damage index is computed for each actuator-sensor pair. These damage indices are then used as inputs to the tomographic reconstruction system. Preliminary damage mapsmore » are reconstructed on multiple coordinate grids defined on the structure. These grids are shifted versions of each other where the shift is a fraction of the spatial sampling interval associated with each grid. These preliminary damage maps are then combined to provide a reconstruction that is more robust to measurement noise in the sensor signals and the ill-conditioned problem formulation for single-grid algorithms. Experimental results on a composite structure with complexity that is representative of aerospace structures included in the paper demonstrate that for sufficiently high sensor densities, the algorithm of this paper is capable of providing damage detection and characterization with accuracy comparable to traditional C-scan and A-scan-based ultrasound non-destructive inspection systems quickly and without human supervision.« less

  10. Methodological Caveats in the Detection of Coordinated Replay between Place Cells and Grid Cells

    PubMed Central

    Trimper, John B.; Trettel, Sean G.; Hwaun, Ernie; Colgin, Laura Lee

    2017-01-01

    At rest, hippocampal “place cells,” neurons with receptive fields corresponding to specific spatial locations, reactivate in a manner that reflects recently traveled trajectories. These “replay” events have been proposed as a mechanism underlying memory consolidation, or the transfer of a memory representation from the hippocampus to neocortical regions associated with the original sensory experience. Accordingly, it has been hypothesized that hippocampal replay of a particular experience should be accompanied by simultaneous reactivation of corresponding representations in the neocortex and in the entorhinal cortex, the primary interface between the hippocampus and the neocortex. Recent studies have reported that coordinated replay may occur between hippocampal place cells and medial entorhinal cortex grid cells, cells with multiple spatial receptive fields. Assessing replay in grid cells is problematic, however, as the cells exhibit regularly spaced spatial receptive fields in all environments and, therefore, coordinated replay between place cells and grid cells may be detected by chance. In the present report, we adapted analytical approaches utilized in recent studies of grid cell and place cell replay to determine the extent to which coordinated replay is spuriously detected between grid cells and place cells recorded from separate rats. For a subset of the employed analytical methods, coordinated replay was detected spuriously in a significant proportion of cases in which place cell replay events were randomly matched with grid cell firing epochs of equal duration. More rigorous replay evaluation procedures and minimum spike count requirements greatly reduced the amount of spurious findings. These results provide insights into aspects of place cell and grid cell activity during rest that contribute to false detection of coordinated replay. The results further emphasize the need for careful controls and rigorous methods when testing the hypothesis that place cells and grid cells exhibit coordinated replay. PMID:28824388

  11. Error Estimates of the Ares I Computed Turbulent Ascent Longitudinal Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Ghaffari, Farhad

    2012-01-01

    Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on an unstructured grid, Reynolds-averaged Navier-Stokes analysis. The validity of the approach to compute the associated error estimates, derived from a base grid to an extrapolated infinite-size grid, was first demonstrated on a sub-scaled wind tunnel model at representative ascent flow conditions for which the experimental data existed. Such analysis at the transonic flow conditions revealed a maximum deviation of about 23% between the computed longitudinal aerodynamic coefficients with the base grid and the measured data across the entire roll angles. This maximum deviation from the wind tunnel data was associated with the computed normal force coefficient at the transonic flow condition and was reduced to approximately 16% based on the infinite-size grid. However, all the computed aerodynamic coefficients with the base grid at the supersonic flow conditions showed a maximum deviation of only about 8% with that level being improved to approximately 5% for the infinite-size grid. The results and the error estimates based on the established procedure are also presented for the flight flow conditions.

  12. NREL Research Proves Wind Can Provide Ancillary Grid Fault Response | News

    Science.gov Websites

    controllable grid interface (CGI) test facility, which simulates the real-time conditions of a utility-scale power grid. This began an ongoing, Energy Department-funded research effort to test how wind turbines test their equipment under any possible grid fault condition. Researchers such as Mark McDade, project

  13. Controllable Grid Interface | Wind | NREL

    Science.gov Websites

    assessments Continuous operation under unbalanced voltage conditions Grid condition simulation (strong and - and undervoltage and frequency limits) Islanding operation Subsynchronous resonance conditions 50-Hz

  14. HABITABLE ZONES OF POST-MAIN SEQUENCE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, Ramses M.; Kaltenegger, Lisa

    Once a star leaves the main sequence and becomes a red giant, its Habitable Zone (HZ) moves outward, promoting detectable habitable conditions at larger orbital distances. We use a one-dimensional radiative-convective climate and stellar evolutionary models to calculate post-MS HZ distances for a grid of stars from 3700 to 10,000 K (∼M1 to A5 stellar types) for different stellar metallicities. The post-MS HZ limits are comparable to the distances of known directly imaged planets. We model the stellar as well as planetary atmospheric mass loss during the Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) phases for super-Moons tomore » super-Earths. A planet can stay between 200 million years up to 9 Gyr in the post-MS HZ for our hottest and coldest grid stars, respectively, assuming solar metallicity. These numbers increase for increased stellar metallicity. Total atmospheric erosion only occurs for planets in close-in orbits. The post-MS HZ orbital distances are within detection capabilities of direct imaging techniques.« less

  15. Experimental Evaluation of Grid Support Enabled PV Inverter Response to Abnormal Grid Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin A; Martin, Gregory D; Hurtt, James

    As revised interconnection standards for grid-tied photovoltaic (PV) inverters address new advanced grid support functions (GSFs), there is increasing interest in inverter performance in the case of abnormal grid conditions. The growth of GSF-enabled inverters has outpaced the industry standards that define their operation, although recently published updates to UL1741 Supplement SA define test conditions for GSFs such as volt-var control, frequency-watt control, and voltage/frequency ride-through, among others. This paper describes the results of a comparative experimental evaluation on four commercially available, three-phase PV inverters in the 24.0-39.8 kVA power range on their GSF capability and its effect on abnormalmore » grid condition response. The evaluation examined the impact particular GSF implementations have on run-on times during islanding conditions, peak voltages in load rejection overvoltage scenarios, and peak currents during single-phase and three-phase fault events for individual inverters. Testing results indicated a wide variance in the performance of GSF enabled inverters to various test cases.« less

  16. An Improved dem Construction Method for Mudflats Based on BJ-1 Small Satellite Images: a Case Study on Bohai Bay

    NASA Astrophysics Data System (ADS)

    Wu, D.; Du, Y.; Su, F.; Huang, W.; Zhang, L.

    2018-04-01

    The topographic measurement of muddy tidal flat is restricted by the difficulty of access to the complex, wide-range and dynamic tidal conditions. Then the waterline detection method (WDM) has the potential to investigate the morph-dynamics quantitatively by utilizing large archives of satellite images. The study explores the potential for using WDM with BJ-1 small satellite images to construct a digital elevation model (DEM) of a wide and grading mudflat. Three major conclusions of the study are as follows: (1) A new intelligent correlating model of waterline detection considering different tidal stages and local geographic conditions was explored. With this correlative algorithm waterline detection model, a series of waterlines were extracted from multi-temporal remotely sensing images collected over the period of a year. The model proved to detect waterlines more efficiently and exactly. (2) The spatial structure of elevation superimposing on the points of waterlines was firstly constructed and a more accurate hydrodynamic ocean tide grid model was used. By the newly constructed abnormal hydrology evaluation model, a more reasonable and reliable set of waterline points was acquired to construct a smoother TIN and GRID DEM. (3) DEM maps of Bohai Bay, with a spatial resolution of about 30 m and height accuracy of about 0.35 m considering LiDAR and 0.19 m considering RTK surveying were constructed over an area of about 266 km2. Results show that remote sensing research in extremely turbid estuaries and tidal areas is possible and is an effective tool for monitoring the tidal flats.

  17. Modernizing Electricity Delivery

    EPA Pesticide Factsheets

    Explains how modern grid, or smart grid, investments can enable grid operators to respond faster to changes in grid conditions and allow for two-way communication between utilities and electricity end-users.

  18. Large Eddy Simulation in a Channel with Exit Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Cziesla, T.; Braun, H.; Biswas, G.; Mitra, N. K.

    1996-01-01

    The influence of the exit boundary conditions (vanishing first derivative of the velocity components and constant pressure) on the large eddy simulation of the fully developed turbulent channel flow has been investigated for equidistant and stretched grids at the channel exit. Results show that the chosen exit boundary conditions introduce some small disturbance which is mostly damped by the grid stretching. The difference between the fully developed turbulent channel flow obtained with LES with periodicity condition and the inlet and exit and the LES with fully developed flow at the inlet and the exit boundary condition is less than 10% for equidistant grids and less than 5% for the case grid stretching. The chosen boundary condition is of interest because it may be used in complex flows with backflow at exit.

  19. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    NASA Astrophysics Data System (ADS)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal processing technique based on discrete wavelet transformation (DWT), the first attempt is devised, which extracts the features of both line-to-line (L-L) and line-to-ground (L-G) faults and employs a fuzzy inference system (FIS) for the decision-making stage of fault detection. This scheme is then improved as the second attempt by further studying the system's behaviors during L-L faults, extracting more efficient fault features, and devising a more advanced decision-making stage: the two-stage support vector machine (SVM). For the first time, the two-stage SVM method is proposed in this dissertation to detect L-L faults in PV system with satisfactory accuracies. Numerous simulation and experimental case studies are carried out to verify the proposed control and protection strategies. Simulation environment is set up using the PSCAD/EMTDC and Matlab/Simulink software packages. Experimental case studies are conducted in a PV-battery hybrid microgrid using the dSPACE real-time controller to demonstrate the ease of hardware implementation and the controller performance. Another small-scale grid-connected PV system is set up to verify both fault detection algorithms which demonstrate promising performances and fault detecting accuracies.

  20. ATMAD: robust image analysis for Automatic Tissue MicroArray De-arraying.

    PubMed

    Nguyen, Hoai Nam; Paveau, Vincent; Cauchois, Cyril; Kervrann, Charles

    2018-04-19

    Over the last two decades, an innovative technology called Tissue Microarray (TMA), which combines multi-tissue and DNA microarray concepts, has been widely used in the field of histology. It consists of a collection of several (up to 1000 or more) tissue samples that are assembled onto a single support - typically a glass slide - according to a design grid (array) layout, in order to allow multiplex analysis by treating numerous samples under identical and standardized conditions. However, during the TMA manufacturing process, the sample positions can be highly distorted from the design grid due to the imprecision when assembling tissue samples and the deformation of the embedding waxes. Consequently, these distortions may lead to severe errors of (histological) assay results when the sample identities are mismatched between the design and its manufactured output. The development of a robust method for de-arraying TMA, which localizes and matches TMA samples with their design grid, is therefore crucial to overcome the bottleneck of this prominent technology. In this paper, we propose an Automatic, fast and robust TMA De-arraying (ATMAD) approach dedicated to images acquired with brightfield and fluorescence microscopes (or scanners). First, tissue samples are localized in the large image by applying a locally adaptive thresholding on the isotropic wavelet transform of the input TMA image. To reduce false detections, a parametric shape model is considered for segmenting ellipse-shaped objects at each detected position. Segmented objects that do not meet the size and the roundness criteria are discarded from the list of tissue samples before being matched with the design grid. Sample matching is performed by estimating the TMA grid deformation under the thin-plate model. Finally, thanks to the estimated deformation, the true tissue samples that were preliminary rejected in the early image processing step are recognized by running a second segmentation step. We developed a novel de-arraying approach for TMA analysis. By combining wavelet-based detection, active contour segmentation, and thin-plate spline interpolation, our approach is able to handle TMA images with high dynamic, poor signal-to-noise ratio, complex background and non-linear deformation of TMA grid. In addition, the deformation estimation produces quantitative information to asset the manufacturing quality of TMAs.

  1. The image enhancement and region of interest extraction of lobster-eye X-ray dangerous material inspection system

    NASA Astrophysics Data System (ADS)

    Zhan, Qi; Wang, Xin; Mu, Baozhong; Xu, Jie; Xie, Qing; Li, Yaran; Chen, Yifan; He, Yanan

    2016-10-01

    Dangerous materials inspection is an important technique to confirm dangerous materials crimes. It has significant impact on the prohibition of dangerous materials-related crimes and the spread of dangerous materials. Lobster-Eye Optical Imaging System is a kind of dangerous materials detection device which mainly takes advantage of backscatter X-ray. The strength of the system is its applicability to access only one side of an object, and to detect dangerous materials without disturbing the surroundings of the target material. The device uses Compton scattered x-rays to create computerized outlines of suspected objects during security detection process. Due to the grid structure of the bionic object glass, which imitate the eye of a lobster, grids contribute to the main image noise during the imaging process. At the same time, when used to inspect structured or dense materials, the image is plagued by superposition artifacts and limited by attenuation and noise. With the goal of achieving high quality images which could be used for dangerous materials detection and further analysis, we developed effective image process methods applied to the system. The first aspect of the image process is the denoising and enhancing edge contrast process, during the process, we apply deconvolution algorithm to remove the grids and other noises. After image processing, we achieve high signal-to-noise ratio image. The second part is to reconstruct image from low dose X-ray exposure condition. We developed a kind of interpolation method to achieve the goal. The last aspect is the region of interest (ROI) extraction process, which could be used to help identifying dangerous materials mixed with complex backgrounds. The methods demonstrated in the paper have the potential to improve the sensitivity and quality of x-ray backscatter system imaging.

  2. Wire chamber radiation detector with discharge control

    DOEpatents

    Perez-Mendez, Victor; Mulera, Terrence A.

    1984-01-01

    A wire chamber radiation detector (11) has spaced apart parallel electrodes (16) and grids (17, 18, 19) defining an ignition region (21) in which charged particles (12) or other ionizing radiations initiate brief localized avalanche discharges (93) and defining an adjacent memory region (22) in which sustained glow discharges (94) are initiated by the primary discharges (93). Conductors (29, 32) of the grids (18, 19) at each side of the memory section (22) extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles (12) were detected by sequentially transmitting pulses to the conductors (29) of one grid (18) while detecting transmissions of the pulses to the orthogonal conductors (36) of the other grid (19) through glow discharges (94). One of the grids (19) bounding the memory region (22) is defined by an array of conductive elements (32) each of which is connected to the associated readout conductor (36) through a separate resistance (37). The wire chamber (11) avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles (12) have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

  3. CANDID: Companion Analysis and Non-Detection in Interferometric Data

    NASA Astrophysics Data System (ADS)

    Gallenne, A.; Mérand, A.; Kervella, P.; Monnier, J. D.; Schaefer, G. H.; Baron, F.; Breitfelder, J.; Le Bouquin, J. B.; Roettenbacher, R. M.; Gieren, W.; Pietrzynski, G.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Ridgway, S.; Kraus, S.

    2015-05-01

    CANDID finds faint companion around star in interferometric data in the OIFITS format. It allows systematically searching for faint companions in OIFITS data, and if not found, estimates the detection limit. The tool is based on model fitting and Chi2 minimization, with a grid for the starting points of the companion position. It ensures all positions are explored by estimating a-posteriori if the grid is dense enough, and provides an estimate of the optimum grid density.

  4. A Wireless Sensor System for Real-Time Measurement of Pressure Profiles at Lower Limb Protheses to Ensure Proper Fitting

    DTIC Science & Technology

    2011-10-01

    been developed. The next step is to develop a the base technology into a grid like mapping sensor, construct the excitation and detection circuits...the project involves advancing the base technology into a grid -like mapping se nsor, constructing the excitation and detection circuits, modifying and...further. In conclusion, the screen printing and etching process allows for precise repeat able production of sensing elements for grid fabrication

  5. Effect of molding conditions on fracture mechanisms and stiffness of a composite of grid structure

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. P.; Pichugin, V. S.; Korobeinikov, A. G.

    1999-01-01

    Methods of determining a complex of stiffness and deformability characteristics of a composite with rhomb-type grid structure were elaborated. Rhomb-type specimens were used for testing the ribs of the structure in tension, compression, and bending and the nodal points in shear in the plane of the ribs. The effect of additional tensioning of the ribs preceding the curing of the binder was investigated (ten tensioning levels ranging from 8 to 70 N/bundle with a linear density of 390 tex were applied). In testing epoxy-carbon specimens (UKN-5000+EHD-MK) in compression and tension, the failure mode changed depending on the tensioning level, i.e., the presence or absence of delamination and the appearance of "dry" fibers were detected. Dependences of the mechanical properties on tensioning were of a markedly pronounced extreme nature. The methods elaborated allow us to investigate the effect of other molding parameters, as well as the conditions and nature of loading, on the mechanical characteristics of composites.

  6. Cybersecurity Awareness in the Power Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholtz, Jean; Franklin, Lyndsey; Le Blanc, Katya L.

    2016-07-10

    We report on a series of interviews and observations conducted with control room dispatchers in a bulk electrical system. These dispatchers must react quickly to incidents as they happen in order to ensure the reliability and safe operation of the power grid. They do not have the time to evaluate incidents for signs of cyber-attack as part of their initial response. Cyber-attack detection involves multiple personnel from a variety of roles at both local and regional levels. Smart grid technology will improve detection and defense capabilities of the future grid, however, the current infrastructure remains a mixture of old andmore » new equipment which will continue to operate for some time. Thus, research still needs to focus on strategies for the detection of malicious activity on current infrastructure as well as protection and remediation.« less

  7. Detection of new-onset choroidal neovascularization using optical coherence tomography: the AMD DOC Study.

    PubMed

    Do, Diana V; Gower, Emily W; Cassard, Sandra D; Boyer, David; Bressler, Neil M; Bressler, Susan B; Heier, Jeffrey S; Jefferys, Joan L; Singerman, Lawrence J; Solomon, Sharon D

    2012-04-01

    To determine the sensitivity of time domain optical coherence tomography (OCT) in detecting conversion to neovascular age-related macular degeneration (AMD) in eyes at high risk for choroidal neovascularization (CNV), compared with detection using fluorescein angiography (FA) as the gold standard. Prospective, multicenter, observational study. Individuals aged ≥50 years with nonneovascular AMD at high risk of progressing to CNV in the study eye and evidence of neovascular AMD in the fellow eye. At study entry and every 3 months through 2 years, participants underwent best-corrected visual acuity, supervised Amsler grid testing, preferential hyperacuity perimetry (PHP) testing, stereoscopic digital fundus photographs with FA, and OCT imaging. A central Reading Center graded all images. The sensitivity of OCT in detecting conversion to neovascular AMD by 2 years, using FA as the reference standard. Secondary outcomes included comparison of sensitivity, specificity, positive predictive value, and negative predictive value of OCT, PHP, and supervised Amsler grid relative to FA for detecting incident CNV. A total of 98 participants were enrolled; 87 (89%) of these individuals either completed the 24-month visit or exited the study after developing CNV. Fifteen (17%) study eyes had incident CNV confirmed on FA by the Reading Center. The sensitivity of each modality for detecting CNV was: OCT 0.40 (95% confidence interval [CI], 0.16-0.68), supervised Amsler grid 0.42 (95% CI, 0.15-0.72), and PHP 0.50 (95% CI, 0.23-0.77). Treatment for incident CNV was recommended by the study investigator in 13 study eyes. Sensitivity of the testing modalities for detection of CNV in these 13 eyes was 0.69 (95% CI, 0.39-0.91) for OCT, 0.50 (95% CI, 0.19-0.81) for supervised Amsler grid, and 0.70 (95% CI, 0.35-0.93) for PHP. Specificity of the OCT was higher than that of the Amsler grid and PHP. Time-domain OCT, supervised Amsler grid, and PHP have low to moderate sensitivity for detection of new-onset CNV compared with FA. Optical coherence tomography has greater specificity than Amsler grid or PHP. Among fellow eyes of individuals with unilateral CNV, FA remains the best method to detect new-onset CNV. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  8. Evaluation of acoustic telemetry grids for determining aquatic animal movement and survival

    USGS Publications Warehouse

    Kraus, Richard T.; Holbrook, Christopher; Vandergoot, Christopher; Stewart, Taylor R.; Faust, Matthew D.; Watkinson, Douglas A.; Charles, Colin; Pegg, Mark; Enders, Eva C.; Krueger, Charles C.

    2018-01-01

    Acoustic telemetry studies have frequently prioritized linear configurations of hydrophone receivers, such as perpendicular from shorelines or across rivers, to detect the presence of tagged aquatic animals. This approach introduces unknown bias when receivers are stationed for convenience at geographic bottlenecks (e.g., at the mouth of an embayment or between islands) as opposed to deployments following a statistical sampling design.We evaluated two-dimensional acoustic receiver arrays (grids: receivers spread uniformly across space) as an alternative approach to provide estimates of survival, movement, and habitat use. Performance of variably-spaced receiver grids (5–25 km spacing) was evaluated by simulating (1) animal tracks as correlated random walks (speed: 0.1–0.9 m/s; turning angle standard deviation: 5–30 degrees); (2) variable tag transmission intervals along each track (nominal delay: 15–300 seconds); and (3) probability of detection of each transmission based on logistic detection range curves (midpoint: 200–1500 m). From simulations, we quantified i) time between successive detections on any receiver (detection time), ii) time between successive detections on different receivers (transit time), and iii) distance between successive detections on different receivers (transit distance).In the most restrictive detection range scenario (200 m), the 95th percentile of transit time was 3.2 days at 5 km grid spacing, 5.7 days at 7 km, and 15.2 days at 25 km; for the 1500 m detection range scenario, it was 0.1 days at 5 km, 0.5 days at 7 km, and 10.8 days at 25 km. These values represented upper bounds on the expected maximum time that an animal could go undetected. Comparison of the simulations with pilot studies on three fishes (walleye Sander vitreus, common carp Cyprinus carpio, and channel catfish Ictalurus punctatus) from two independent large lake ecosystems (lakes Erie and Winnipeg) revealed shorter detection and transit times than what simulations predicted.By spreading effort uniformly across space, grids can improve understanding of fish migration over the commonly employed receiver line approach, but at increased time cost for maintaining grids.

  9. A Hyperspherical Adaptive Sparse-Grid Method for High-Dimensional Discontinuity Detection

    DOE PAGES

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.; ...

    2015-06-24

    This study proposes and analyzes a hyperspherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hypersurface of an N-dimensional discontinuous quantity of interest, by virtue of a hyperspherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyperspherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the newmore » technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. In addition, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less

  10. A hyper-spherical adaptive sparse-grid method for high-dimensional discontinuity detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max D.

    This work proposes and analyzes a hyper-spherical adaptive hierarchical sparse-grid method for detecting jump discontinuities of functions in high-dimensional spaces is proposed. The method is motivated by the theoretical and computational inefficiencies of well-known adaptive sparse-grid methods for discontinuity detection. Our novel approach constructs a function representation of the discontinuity hyper-surface of an N-dimensional dis- continuous quantity of interest, by virtue of a hyper-spherical transformation. Then, a sparse-grid approximation of the transformed function is built in the hyper-spherical coordinate system, whose value at each point is estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of themore » hyper-surface, the new technique can identify jump discontinuities with significantly reduced computational cost, compared to existing methods. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. Rigorous error estimates and complexity analyses of the new method are provided as are several numerical examples that illustrate the effectiveness of the approach.« less

  11. Experimental Evaluation of Grid Support Enabled PV Inverter Response to Abnormal Grid Conditions: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Martin, Gregory; Hurtt, James

    As revised interconnection standards for grid-tied photovoltaic (PV) inverters address new advanced grid support functions (GSFs), there is increasing interest in inverter performance in the case of abnormal grid conditions. The growth of GSF-enabled inverters has outpaced the industry standards that define their operation, although recently published updates to UL1741 with Supplement SA define test conditions for GSFs such as volt-var control, frequency-watt control, and volt-age/frequency ride-through, among others. A comparative experimental evaluation has been completed on four commercially available, three-phase PV inverters in the 24.0-39.8 kVA power range on their GSF capability and the effect on abnormal grid conditionmore » response. This study examines the impact particular GSF implementations have on run-on times during islanding conditions, peak voltages in load rejection overvoltage scenarios, and peak currents during single-phase and three-phase fault events for individual inverters. This report reviews comparative test data, which shows that GSFs have little impact on the metrics of interest in most tests cases.« less

  12. Occupancy change detection system and method

    DOEpatents

    Bruemmer, David J [Idaho Falls, ID; Few, Douglas A [Idaho Falls, ID

    2009-09-01

    A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for producing an occupancy grid map of an environment around the robot, scanning the environment to generate a current obstacle map relative to a current robot position, and converting the current obstacle map to a current occupancy grid map. The instructions also include processing each grid cell in the occupancy grid map. Within the processing of each grid cell, the instructions include comparing each grid cell in the occupancy grid map to a corresponding grid cell in the current occupancy grid map. For grid cells with a difference, the instructions include defining a change vector for each changed grid cell, wherein the change vector includes a direction from the robot to the changed grid cell and a range from the robot to the changed grid cell.

  13. Groundwater-quality data in the Monterey–Salinas shallow aquifer study unit, 2013: Results from the California GAMA Program

    USGS Publications Warehouse

    Goldrath, Dara A.; Kulongoski, Justin T.; Davis, Tracy A.

    2016-09-01

    Groundwater quality in the 3,016-square-mile Monterey–Salinas Shallow Aquifer study unit was investigated by the U.S. Geological Survey (USGS) from October 2012 to May 2013 as part of the California State Water Resources Control Board Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project. The GAMA Monterey–Salinas Shallow Aquifer study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the shallow-aquifer systems in parts of Monterey and San Luis Obispo Counties and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The shallow-aquifer system in the Monterey–Salinas Shallow Aquifer study unit was defined as those parts of the aquifer system shallower than the perforated depth intervals of public-supply wells, which generally corresponds to the part of the aquifer system used by domestic wells. Groundwater quality in the shallow aquifers can differ from the quality in the deeper water-bearing zones; shallow groundwater can be more vulnerable to surficial contamination.Samples were collected from 170 sites that were selected by using a spatially distributed, randomized grid-based method. The study unit was divided into 4 study areas, each study area was divided into grid cells, and 1 well was sampled in each of the 100 grid cells (grid wells). The grid wells were domestic wells or wells with screen depths similar to those in nearby domestic wells. A greater spatial density of data was achieved in 2 of the study areas by dividing grid cells in those study areas into subcells, and in 70 subcells, samples were collected from exterior faucets at sites where there were domestic wells or wells with screen depths similar to those in nearby domestic wells (shallow-well tap sites).Field water-quality indicators (dissolved oxygen, water temperature, pH, and specific conductance) were measured, and samples for analysis of inorganic constituents (trace elements, nutrients, major and minor ions, silica, total dissolved solids, and alkalinity) were collected at all 170 sites. In addition to these constituents, the samples from grid wells were analyzed for organic constituents (volatile organic compounds, pesticides and pesticide degradates), constituents of special interest (perchlorate and N-nitrosodimethylamine, or NDMA), radioactive constituents (radon-222 and gross-alpha and gross-beta radioactivity), and geochemical and age-dating tracers (stable isotopes of carbon in dissolved inorganic carbon, carbon-14 abundances, stable isotopes of hydrogen and oxygen in water, and tritium activities).Three types of quality-control samples (blanks, replicates, and matrix spikes) were collected at up to 11 percent of the wells in the Monterey–Salinas Shallow Aquifer study unit, and the results for these samples were used to evaluate the quality of the data from the groundwater samples. With the exception of trace elements, blanks rarely contained detectable concentrations of any constituent, indicating that contamination from sample-collection procedures was not a significant source of bias in the data for the groundwater samples. Low concentrations of some trace elements were detected in blanks; therefore, the data were re-censored at higher reporting levels. Replicate samples generally were within the limits of acceptable analytical reproducibility. The median values of matrix-spike recoveries were within the acceptable range (70 to 130 percent) for the volatile organic compounds (VOCs) and N-nitrosodimethylamine (NDMA), but were only approximately 64 percent for pesticides and pesticide degradates.The sample-collection protocols used in this study were designed to obtain representative samples of groundwater. The quality of groundwater can differ from the quality of drinking water because water chemistry can change as a result of contact with plumbing systems or the atmosphere; because of treatment, disinfection, or blending with water from other sources; or some combination of these. Water quality in domestic wells is not regulated in California, however, to provide context for the water-quality data presented in this report, results were compared to benchmarks established for drinking-water quality. The primary comparison benchmarks were maximum contaminant levels established by the U.S. Environmental Protection Agency and the State of California (MCL-US and MCL-CA, respectively). Non-regulatory benchmarks were used for constituents without maximum contaminant levels (MCLs), including Health Based Screening Levels (HBSLs) developed by the USGS and State of California secondary maximum contaminant levels (SMCL-CA) and notification levels. Most constituents detected in samples from the Monterey–Salinas Shallow Aquifer study unit had concentrations less than their respective benchmarks.Of the 148 organic constituents analyzed in the 100 grid-well samples, 38 were detected, and all concentrations were less than the benchmarks. Volatile organic compounds were detected in 26 of the grid wells, and pesticides and pesticide degradates were detected in 28 grid wells. The special-interest constituent NDMA was detected above the HBSL in three samples, one of which also had a perchlorate concentration greater than the MCL-CA.Of the inorganic constituents, 6 were detected at concentrations above their respective MCL benchmarks in grid-well samples: arsenic (5 grid wells above the MCL of 10 micrograms per liter, μg/L), selenium (3 grid wells, MCL of 50 μg/L), uranium (4 grid wells, MCL of 30 μg/L), nitrate (16 grid wells, MCL of 10 milligrams per liter, mg/L), adjusted gross alpha particle activity (10 grid wells, MCL of 15 picocuries per liter, pCi/L), and gross beta particle activity (1 grid well, MCL of 50 pCi/L). An additional 4 inorganic constituents were detected at concentrations above their respective HBSL benchmarks in grid-well samples: boron (1 grid well above the HBSL of 6,000 μg/L), manganese (8 grid wells, HBSL of 300 μg/L), molybdenum (6 grid wells, HBSL of 40 μg/L), and strontium (6 grid wells, HBSL of 4,000 μg/L). Of the inorganic constituents, 4 were detected at concentrations above their non-health based SMCL benchmarks in grid-well samples: iron (9 grid wells above the SMCL of 300 μg/L), chloride (7 grid wells, SMCL of 500 mg/L), sulfate (14 grid wells, SMCL of 500 mg/L), and total dissolved solids (27 grid wells, SMCL of 1,000 mg/L).Of the inorganic constituents analyzed in the 70 shallow-well tap sites, 10 were detected at concentrations above the benchmarks. Of the inorganic constituents, 3 were detected at concentrations above their respective MCL benchmarks in shallow-well tap sites: arsenic (2 shallow-well tap sites above the MCL of 10 μg/L), uranium (2 shallow-well tap sites, MCL of 30 μg/L), and nitrate (24 shallow-well tap sites, MCL of 10 mg/L). An additional 3 inorganic constituents were detected above their respective HBSL benchmarks in shallow-well tap sites: manganese (4 shallow-well tap sites above the HBSL of 300 μg/L), molybdenum (4 shallow-well tap sites, HBSL of 40 μg/L), and zinc (2 shallow-well tap sites, HBSL of 2,000 μg/L). Of the inorganic constituents, 4 were detected at concentrations above their non-health based SMCL benchmarks in shallow-well tap sites: iron (6 shallow-well tap sites above the SMCL of 300 μg/L), chloride (1 shallow-well tap site, SMCL of 500 mg/L), sulfate (9 shallow-well tap sites, SMCL of 500 mg/L), and total dissolved solids (15 shallow-well tap sites, SMCL of 1,000 mg/L).

  14. Controllable Grid Interface | Water Power | NREL

    Science.gov Websites

    -through Frequency response Continuous operation under unbalanced voltage conditions Simulation of grid frequency limits Islanding operation Subsynchronous resonance conditions 50-hertz validation

  15. An interactive multi-block grid generation system

    NASA Technical Reports Server (NTRS)

    Kao, T. J.; Su, T. Y.; Appleby, Ruth

    1992-01-01

    A grid generation procedure combining interactive and batch grid generation programs was put together to generate multi-block grids for complex aircraft configurations. The interactive section provides the tools for 3D geometry manipulation, surface grid extraction, boundary domain construction for 3D volume grid generation, and block-block relationships and boundary conditions for flow solvers. The procedure improves the flexibility and quality of grid generation to meet the design/analysis requirements.

  16. Rapid Airplane Parametric Input Design(RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.; Bloor, Malcolm I. G.; Wilson, Michael J.; Thomas, Almuttil M.

    2004-01-01

    An efficient methodology is presented for defining a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. A small set of design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tail, horizontal tail, and canard components. The wing, tail, and canard components are manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. Grid sensitivity is obtained by applying the automatic differentiation precompiler ADIFOR to software for the grid generation. The computed surface grids, volume grids, and sensitivity derivatives are suitable for a wide range of Computational Fluid Dynamics simulation and configuration optimizations.

  17. Best Practices for Unstructured Grid Shock-Fitting

    NASA Technical Reports Server (NTRS)

    McCoud, Peter L.

    2017-01-01

    Unstructured grid solvers have well-known issues predicting surface heat fluxes when strong shocks are present. Various efforts have been made to address the underlying numerical issues that cause the erroneous predictions. The present work addresses some of the shortcomings of unstructured grid solvers, not by addressing the numerics, but by applying structured grid best practices to unstructured grids. A methodology for robust shock detection and shock-fitting is outlined and applied to production-relevant cases. Results

  18. A Framework for Testing Automated Detection, Diagnosis, and Remediation Systems on the Smart Grid

    NASA Technical Reports Server (NTRS)

    Lau, Shing-hon

    2011-01-01

    America's electrical grid is currently undergoing a multi-billion dollar modernization effort aimed at producing a highly reliable critical national infrastructure for power - a Smart Grid. While the goals for the Smart Grid include upgrades to accommodate large quantities of clean, but transient, renewable energy and upgrades to provide customers with real-time pricing information, perhaps the most important objective is to create an electrical grid with a greatly increased robustness.

  19. Groundwater-quality data in the North San Francisco Bay Shallow Aquifer study unit, 2012: results from the California GAMA Program

    USGS Publications Warehouse

    Bennett, George L.; Fram, Miranda S.

    2014-01-01

    Results for constituents with non-regulatory benchmarks set for aesthetic concerns from the grid wells showed that iron concentrations greater than the CDPH secondary maximum contaminant level (SMCL-CA) of 300 μg/L were detected in 13 grid wells. Chloride was detected at a concentration greater than the SMCL-CA recommended benchmark of 250 mg/L in two grid wells. Sulfate concentrations greater than the SMCL-CA recommended benchmark of 250 mg/L were measured in two grid wells, and the concentration in one of these wells was also greater than the SMCL-CA upper benchmark of 500 mg/L. TDS concentrations greater than the SMCL-CA recommended benchmark of 500 mg/L were measured in 15 grid wells, and concentrations in 4 of these wells were also greater than the SMCL-CA upper benchmark of 1,000 mg/L.

  20. Influence of grid control and object detection on radiation exposure and image quality using mobile C-arms - first results.

    PubMed

    Gosch, D; Ratzmer, A; Berauer, P; Kahn, T

    2007-09-01

    The objective of this study was to examine the extent to which the image quality on mobile C-arms can be improved by an innovative exposure rate control system (grid control). In addition, the possible dose reduction in the pulsed fluoroscopy mode using 25 pulses/sec produced by automatic adjustment of the pulse rate through motion detection was to be determined. As opposed to conventional exposure rate control systems, which use a measuring circle in the center of the field of view, grid control is based on a fine mesh of square cells which are overlaid on the entire fluoroscopic image. The system uses only those cells for exposure control that are covered by the object to be visualized. This is intended to ensure optimally exposed images, regardless of the size, shape and position of the object to be visualized. The system also automatically detects any motion of the object. If a pulse rate of 25 pulses/sec is selected and no changes in the image are observed, the pulse rate used for pulsed fluoroscopy is gradually reduced. This may decrease the radiation exposure. The influence of grid control on image quality was examined using an anthropomorphic phantom. The dose reduction achieved with the help of object detection was determined by evaluating the examination data of 146 patients from 5 different countries. The image of the static phantom made with grid control was always optimally exposed, regardless of the position of the object to be visualized. The average dose reduction when using 25 pulses/sec resulting from object detection and automatic down-pulsing was 21 %, and the maximum dose reduction was 60 %. Grid control facilitates C-arm operation, since optimum image exposure can be obtained independently of object positioning. Object detection may lead to a reduction in radiation exposure for the patient and operating staff.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Fuyu; Collins, William D.; Wehner, Michael F.

    High-resolution climate models have been shown to improve the statistics of tropical storms and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea level pressure, andmore » mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariant.« less

  2. Smart grid technologies in local electric grids

    NASA Astrophysics Data System (ADS)

    Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.

    2017-08-01

    The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.

  3. Recent development of the Multi-Grid detector for large area neutron scattering instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerard, Bruno

    2015-07-01

    Most of the Neutron Scattering facilities are committed in a continuous program of modernization of their instruments, requiring large area and high performance thermal neutron detectors. Beside scintillators detectors, {sup 3}He detectors, like linear PSDs (Position Sensitive Detectors) and MWPCs (Multi-Wires Proportional Chambers), are the most current techniques nowadays. Time Of Flight instruments are using {sup 3}He PSDs mounted side by side to cover tens of m{sup 2}. As a result of the so-called '{sup 3}He shortage crisis{sup ,} the volume of 3He which is needed to build one of these instruments is not accessible anymore. The development of alternativemore » techniques requiring no 3He, has been given high priority to secure the future of neutron scattering instrumentation. This is particularly important in the context where the future ESS (European Spallation Source) will start its operation in 2019-2020. Improved scintillators represent one of the alternative techniques. Another one is the Multi-Grid introduced at the ILL in 2009. A Multi-Grid detector is composed of several independent modules of typically 0.8 m x 3 m sensitive area, mounted side by side in air or in a vacuum TOF chamber. One module is composed of segmented boron-lined proportional counters mounted in a gas vessel; the counters, of square section, are assembled with Aluminium grids electrically insulated and stacked together. This design provides two advantages: First, magnetron sputtering techniques can be used to coat B{sub 4}C films on planar substrates, and second, the neutron position along the anode wires can be measured by reading out individually the grid signals with fast shaping amplifiers followed by comparators. Unlike charge division localisation in linear PSDs, the individual readout of the grids allows operating the Multi-Grid at a low amplification gain, hence this detector is tolerant to mechanical defects and its production accessible to laboratories equipped with standard equipment. Prototypes of different configurations and sizes have been developed and tested. A demonstrator, with a sensitive area of 0.8 m x 3 m, has been studied during the CRISP European project; it contains 1024 grids, and a surface of isotopically enriched B{sub 4}C film close to 80 m{sup 2}. Its size represented a challenge in terms of fabrication and mounting of the detection elements. Another challenge was to make the gas chamber mechanically compatible with operation in a vacuum TOF chamber. Optimal working condition of this detector was achieved by flushing Ar-CO{sub 2} at a pressure of 50 mbar, and by applying 400 Volts on the anodes. This unusual gas pressure allows to greatly simplifying the mechanics of the gas vessel in vacuum. The detection efficiency has been measured with high precision for different film thicknesses. 52% has been measured at 2.5 Angstrom, in good agreement with the MC simulation. A high position resolution has been achieved by centre of gravity measurement of the TOT (Time-Over-Threshold) signals between neighbouring grids. These results, as well as other detection parameters, including gamma sensitivity and spatial uniformity, will be presented. (author)« less

  4. Voltage collapse in complex power grids

    PubMed Central

    Simpson-Porco, John W.; Dörfler, Florian; Bullo, Francesco

    2016-01-01

    A large-scale power grid's ability to transfer energy from producers to consumers is constrained by both the network structure and the nonlinear physics of power flow. Violations of these constraints have been observed to result in voltage collapse blackouts, where nodal voltages slowly decline before precipitously falling. However, methods to test for voltage collapse are dominantly simulation-based, offering little theoretical insight into how grid structure influences stability margins. For a simplified power flow model, here we derive a closed-form condition under which a power network is safe from voltage collapse. The condition combines the complex structure of the network with the reactive power demands of loads to produce a node-by-node measure of grid stress, a prediction of the largest nodal voltage deviation, and an estimate of the distance to collapse. We extensively test our predictions on large-scale systems, highlighting how our condition can be leveraged to increase grid stability margins. PMID:26887284

  5. On the effects of grid ill-conditioning in three dimensional finite element vector potential magnetostatic field computations

    NASA Technical Reports Server (NTRS)

    Wang, R.; Demerdash, N. A.

    1990-01-01

    The effects of finite element grid geometries and associated ill-conditioning were studied in single medium and multi-media (air-iron) three dimensional magnetostatic field computation problems. The sensitivities of these 3D field computations to finite element grid geometries were investigated. It was found that in single medium applications the unconstrained magnetic vector potential curl-curl formulation in conjunction with first order finite elements produce global results which are almost totally insensitive to grid geometries. However, it was found that in multi-media (air-iron) applications first order finite element results are sensitive to grid geometries and consequent elemental shape ill-conditioning. These sensitivities were almost totally eliminated by means of the use of second order finite elements in the field computation algorithms. Practical examples are given in this paper to demonstrate these aspects mentioned above.

  6. [Comparison of Preferential Hyperacuity Perimeter (PHP) test and Amsler grid test in the diagnosis of different stages of age-related macular degeneration].

    PubMed

    Kampmeier, J; Zorn, M M; Lang, G K; Botros, Y T; Lang, G E

    2006-09-01

    Age-related macular degeneration (ARMD) is the leading cause of blindness in people over 65 years of age. A rapid loss of vision occurs especially in cases with choroidal neovascularisation. Early detection of ARMD and timely treatment are mandatory. We have prospectively studied the results of two diagnostic self tests for the early detection of metamorphopsia and scotoma, the PHP test and the Amsler grid test, in different stages of ARMD. Patients with ARMD and best corrected visual acuity of 6/30 or better (Snellen charts) were examined with a standardised protocol, including supervised Amsler grid examination and PHP, a new device for metamorphopsia or scotoma measurement, based on the hyperacuity phenomenon in the central 14 degrees of the visual field. The stages of ARMD were independently graded in a masked fashion by stereoscopic ophthalmoscopy, stereoscopic fundus colour photographs, fluorescein angiography, and OCT. The patients were subdivided into 3 non-neovascular groups [early, late (RPE atrophy > 175 microm) and geographic atrophy], a neovascular group (classic and occult CNV) and an age-matched control group (healthy volunteers). 140 patients, with ages ranging from 50 to 90 years (median 68 years), were included in the study. Best corrected visual acuity ranged from 6/30 to 6/6 with a median of 6/12. 95 patients were diagnosed as non-neovascular ARMD. Thirty eyes had early ARMD (9 were tested positive by the PHP test and 9 by the Amsler grid test), and 50 late ARMD (positive: PHP test 23, Amsler grid test 26). The group with geographic atrophy consisted of 15 eyes (positive: PHP test 13, Amsler grid test 10). Forty-five patients presented with neovascular ARMD (positive: PHP test 38, Amsler grid test 36), 34 volunteers served as control group (positive: PHP test 1, Amsler grid test 5). The PHP and Amsler grid tests revealed comparable results detecting metamorphopsia and scotoma in early ARMD (30 vs. 30 %) and late ARMD (46 vs. 52 %). However, the PHP test more often revealed disease-related functional changes in the groups of geographic atrophy (87 vs. 67 %) and neovascular ARMD (84 vs. 80 %). This implies that the PHP and Amsler grid self tests are useful tools for detection of ARMD and that the PHP test has a greater sensitivity in the groups of geographic atrophy and neovascular AMD.

  7. Alternating current long range alpha particle detector

    DOEpatents

    MacArthur, Duncan W.; McAtee, James L.

    1993-01-01

    An alpha particle detector, utilizing alternating currents, whcih is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

  8. Alternating current long range alpha particle detector

    DOEpatents

    MacArthur, D.W.; McAtee, J.L.

    1993-02-16

    An alpha particle detector, utilizing alternating currents, which is capable of detecting alpha particles from distinct sources. The use of alternating currents allows use of simpler ac circuits which, in turn, are not susceptible to dc error components. It also allows the benefit of gas gain, if desired. In the invention, a voltage source creates an electric field between two conductive grids, and between the grids and a conductive enclosure. Air containing air ions created by collision with alpha particles is drawn into the enclosure and detected. In some embodiments, the air flow into the enclosure is interrupted, creating an alternating flow of ions. In another embodiment, a modulated voltage is applied to the grid, also modulating the detection of ions.

  9. Multi-Dimensional Damage Detection

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L. (Inventor); Williams, Martha K. (Inventor); Roberson, Luke B. (Inventor); Lewis, Mark E. (Inventor); Snyder, Sarah J. (Inventor); Medelius, Pedro J. (Inventor)

    2016-01-01

    Methods and systems may provide for a structure having a plurality of interconnected panels, wherein each panel has a plurality of detection layers separated from one another by one or more non-detection layers. The plurality of detection layers may form a grid of conductive traces. Additionally, a monitor may be coupled to each grid of conductive traces, wherein the monitor is configured to detect damage to the plurality of interconnected panels in response to an electrical property change with respect to one or more of the conductive traces. In one example, the structure is part of an inflatable space platform such as a spacecraft or habitat.

  10. Utilizing Metalized Fabrics for Liquid and Rip Detection and Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Stephen; Mahan, Cody; Kuhn, Michael J

    2013-01-01

    This paper proposes a novel technique for utilizing conductive textiles as a distributed sensor for detecting and localizing liquids (e.g., blood), rips (e.g., bullet holes), and potentially biosignals. The proposed technique is verified through both simulation and experimental measurements. Circuit theory is utilized to depict conductive fabric as a bounded, near-infinite grid of resistors. Solutions to the well-known infinite resistance grid problem are used to confirm the accuracy and validity of this modeling approach. Simulations allow for discontinuities to be placed within the resistor matrix to illustrate the effects of bullet holes within the fabric. A real-time experimental system wasmore » developed that uses a multiplexed Wheatstone bridge approach to reconstruct the resistor grid across the conductive fabric and detect liquids and rips. The resistor grid model is validated through a comparison of simulated and experimental results. Results suggest accuracy proportional to the electrode spacing in determining the presence and location of discontinuities in conductive fabric samples. Future work is focused on refining the experimental system to provide more accuracy in detecting and localizing events as well as developing a complete prototype that can be deployed for field testing. Potential applications include intelligent clothing, flexible, lightweight sensing systems, and combat wound detection.« less

  11. Intrusion Prevention and Detection in Grid Computing - The ALICE Case

    NASA Astrophysics Data System (ADS)

    Gomez, Andres; Lara, Camilo; Kebschull, Udo

    2015-12-01

    Grids allow users flexible on-demand usage of computing resources through remote communication networks. A remarkable example of a Grid in High Energy Physics (HEP) research is used in the ALICE experiment at European Organization for Nuclear Research CERN. Physicists can submit jobs used to process the huge amount of particle collision data produced by the Large Hadron Collider (LHC). Grids face complex security challenges. They are interesting targets for attackers seeking for huge computational resources. Since users can execute arbitrary code in the worker nodes on the Grid sites, special care should be put in this environment. Automatic tools to harden and monitor this scenario are required. Currently, there is no integrated solution for such requirement. This paper describes a new security framework to allow execution of job payloads in a sandboxed context. It also allows process behavior monitoring to detect intrusions, even when new attack methods or zero day vulnerabilities are exploited, by a Machine Learning approach. We plan to implement the proposed framework as a software prototype that will be tested as a component of the ALICE Grid middleware.

  12. Study on improved Ip-iq APF control algorithm and its application in micro grid

    NASA Astrophysics Data System (ADS)

    Xie, Xifeng; Shi, Hua; Deng, Haiyingv

    2018-01-01

    In order to enhance the tracking velocity and accuracy of harmonic detection by ip-iq algorithm, a novel ip-iq control algorithm based on the Instantaneous reactive power theory is presented, the improved algorithm adds the lead correction link to adjust the zero point of the detection system, the Fuzzy Self-Tuning Adaptive PI control is introduced to dynamically adjust the DC-link Voltage, which meets the requirement of the harmonic compensation of the micro grid. Simulation and experimental results verify the proposed method is feasible and effective in micro grid.

  13. Asbestos Air Monitoring Results at Eleven Family Housing Areas throughout the United States.

    DTIC Science & Technology

    1991-05-23

    limits varied depending on sampling volumes and grid openings scanned. Therefore, the detection limits presented in the results summary tables vary...1 f/10 grid squares) (855 mm 2) (1 liter) = 3054 liters (0.005 f/cc) (0.0056 mm 2) (1000 cc) Where: * 1 f/10 grid squares (the maximum recommended...diameter filter. * 0.0056 mm 2 is the area of each grid square (75 /Jm per side) in a 200 mesh electron microscope grid . This value will vary from 0.0056

  14. Best Practices for Unstructured Grid Shock Fitting

    NASA Technical Reports Server (NTRS)

    McCloud, Peter L.

    2017-01-01

    Unstructured grid solvers have well-known issues predicting surface heat fluxes when strong shocks are present. Various efforts have been made to address the underlying numerical issues that cause the erroneous predictions. The present work addresses some of the shortcomings of unstructured grid solvers, not by addressing the numerics, but by applying structured grid best practices to unstructured grids. A methodology for robust shock detection and shock fitting is outlined and applied to production relevant cases. Results achieved by using the Loci-CHEM Computational Fluid Dynamics solver are provided.

  15. Intrusion detection system using Online Sequence Extreme Learning Machine (OS-ELM) in advanced metering infrastructure of smart grid.

    PubMed

    Li, Yuancheng; Qiu, Rixuan; Jing, Sitong

    2018-01-01

    Advanced Metering Infrastructure (AMI) realizes a two-way communication of electricity data through by interconnecting with a computer network as the core component of the smart grid. Meanwhile, it brings many new security threats and the traditional intrusion detection method can't satisfy the security requirements of AMI. In this paper, an intrusion detection system based on Online Sequence Extreme Learning Machine (OS-ELM) is established, which is used to detecting the attack in AMI and carrying out the comparative analysis with other algorithms. Simulation results show that, compared with other intrusion detection methods, intrusion detection method based on OS-ELM is more superior in detection speed and accuracy.

  16. Target intersection probabilities for parallel-line and continuous-grid types of search

    USGS Publications Warehouse

    McCammon, R.B.

    1977-01-01

    The expressions for calculating the probability of intersection of hidden targets of different sizes and shapes for parallel-line and continuous-grid types of search can be formulated by vsing the concept of conditional probability. When the prior probability of the orientation of a widden target is represented by a uniform distribution, the calculated posterior probabilities are identical with the results obtained by the classic methods of probability. For hidden targets of different sizes and shapes, the following generalizations about the probability of intersection can be made: (1) to a first approximation, the probability of intersection of a hidden target is proportional to the ratio of the greatest dimension of the target (viewed in plane projection) to the minimum line spacing of the search pattern; (2) the shape of the hidden target does not greatly affect the probability of the intersection when the largest dimension of the target is small relative to the minimum spacing of the search pattern, (3) the probability of intersecting a target twice for a particular type of search can be used as a lower bound if there is an element of uncertainty of detection for a particular type of tool; (4) the geometry of the search pattern becomes more critical when the largest dimension of the target equals or exceeds the minimum spacing of the search pattern; (5) for elongate targets, the probability of intersection is greater for parallel-line search than for an equivalent continuous square-grid search when the largest dimension of the target is less than the minimum spacing of the search pattern, whereas the opposite is true when the largest dimension exceeds the minimum spacing; (6) the probability of intersection for nonorthogonal continuous-grid search patterns is not greatly different from the probability of intersection for the equivalent orthogonal continuous-grid pattern when the orientation of the target is unknown. The probability of intersection for an elliptically shaped target can be approximated by treating the ellipse as intermediate between a circle and a line. A search conducted along a continuous rectangular grid can be represented as intermediate between a search along parallel lines and along a continuous square grid. On this basis, an upper and lower bound for the probability of intersection of an elliptically shaped target for a continuous rectangular grid can be calculated. Charts have been constructed that permit the values for these probabilities to be obtained graphically. The use of conditional probability allows the explorationist greater flexibility in considering alternate search strategies for locating hidden targets. ?? 1977 Plenum Publishing Corp.

  17. Association rule mining on grid monitoring data to detect error sources

    NASA Astrophysics Data System (ADS)

    Maier, Gerhild; Schiffers, Michael; Kranzlmueller, Dieter; Gaidioz, Benjamin

    2010-04-01

    Error handling is a crucial task in an infrastructure as complex as a grid. There are several monitoring tools put in place, which report failing grid jobs including exit codes. However, the exit codes do not always denote the actual fault, which caused the job failure. Human time and knowledge is required to manually trace back errors to the real fault underlying an error. We perform association rule mining on grid job monitoring data to automatically retrieve knowledge about the grid components' behavior by taking dependencies between grid job characteristics into account. Therewith, problematic grid components are located automatically and this information - expressed by association rules - is visualized in a web interface. This work achieves a decrease in time for fault recovery and yields an improvement of a grid's reliability.

  18. NWTC's Grid Capabilities Providing Value for Partners | News | NREL

    Science.gov Websites

    controlled grid conditions where you can research interactions of grid impacts and resource variability impacts on the system at the same time." This capability creates an unrivaled asset. "That's on a smaller 2.5-megawatt dynamometer. They started to realize that grid impacts also need to be

  19. Advanced Grid Simulator for Multi-Megawatt Power Converter Testing and Certification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koralewicz, Przemyslaw; Gevorgian, Vahan; Wallen, Robb

    2017-02-16

    Grid integration testing of inverter-coupled renewable energy technologies is an essential step in the qualification of renewable energy and energy storage systems to ensure the stability of the power system. New types of devices must be thoroughly tested and validated for compliance with relevant grid codes and interconnection requirements. For this purpose, highly specialized custom-made testing equipment is needed to emulate various types of realistic grid conditions that are required by certification bodies or for research purposes. For testing multi-megawatt converters, a high power grid simulator capable of creating controlled grid conditions and meeting both power quality and dynamic characteristicsmore » is needed. This paper describes the new grid simulator concept based on ABB's medium voltage ACS6000 drive technology that utilizes advanced modulation and control techniques to create an unique testing platform for various multi-megawatt power converter systems. Its performance is demonstrated utilizing the test results obtained during commissioning activities at the National Renewable Energy Laboratory in Colorado, USA.« less

  20. Fatigue and Fracture Characterization of GlasGridRTM Reinforced Asphalt Concrete Pavement

    NASA Astrophysics Data System (ADS)

    Safavizadeh, Seyed Amirshayan

    The purpose of this research is to develop an experimental and analytical framework for describing, modeling, and predicting the reflective cracking patterns and crack growth rates in GlasGridRTM-reinforced asphalt pavements. In order to fulfill this objective, the effects of different interfacial conditions (mixture and tack coat type, and grid opening size) on reflective cracking-related failure mechanisms and the fatigue and fracture characteristics of fiberglass grid-reinforced asphalt concrete beams were studied by means of four- and threepoint bending notched beam fatigue tests (NBFTs) and cyclic and monotonic interface shear tests. The digital image correlation (DIC) technique was utilized for obtaining the displacement and strain contours of specimen surfaces during each test. The DIC analysis results were used to develop crack tip detection methods that were in turn used to determine interfacial crack lengths in the shear tests, and vertical and horizontal (interfacial) crack lengths in the notched beam fatigue tests. Linear elastic fracture mechanics (LEFM) principles were applied to the crack length data to describe the crack growth. In the case of the NBFTs, a finite element (FE) code was developed and used for modeling each beam at different stages of testing and back-calculating the stress intensity factors (SIFs) for the vertical and horizontal cracks. The local effect of reinforcement on the stiffness of the system at a vertical crack-interface intersection or the resistance of the grid system to the deflection differential at the joint/crack (hereinafter called joint stiffness) for GlasGrid-reinforced asphalt concrete beams was determined by implementing a joint stiffness parameter into the finite element code. The strain level dependency of the fatigue and fracture characteristics of the GlasGrid-reinforced beams was studied by performing four-point bending notched beam fatigue tests at strain levels of 600, 750, and 900 microstrain. These beam tests were conducted at 15°C, 20°C, and 23°C, with the main focus being to find the characteristics at 20°C. The results obtained from the tests at the different temperatures were used to investigate the effects of temperature on the reflective cracking performance of the gridreinforced beam specimens. The temperature tests were also used to investigate the validity of the time-temperature superposition (t-TS) principle in shear and the beam fatigue performance of the grid-reinforced specimens. The NBFT results suggest that different interlayer conditions do not reflect a unique failure mechanism, and thus, in order to predict and model the performance of grid-reinforced pavement, all the mechanisms involved in weakening its structural integrity, including damage within the asphalt layers and along the interface, must be considered. The shear and beam fatigue test results suggest that the grid opening size, interfacial bond quality, and mixture type play important roles in the reflective cracking performance of GlasGrid-reinforced asphalt pavements. According to the NBTF results, GlasGrid reinforcement retards reflective crack growth by stiffening the composite system and introducing a joint stiffness parameter. The results also show that the higher the bond strength and interlayer stiffness values, the higher the joint stiffness and retardation effects. The t-TS studies proved the validity of this principle in terms of the reflective crack growth of the grid-reinforced beam specimens and the shear modulus and shear strength of the grid-reinforced interfaces.

  1. Pressure wave propagation studies for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1992-01-01

    The unsteady flow field around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flow field than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved.

  2. Validation of a High-Order Prefactored Compact Scheme on Nonlinear Flows with Complex Geometries

    NASA Technical Reports Server (NTRS)

    Hixon, Ray; Mankbadi, Reda R.; Povinelli, L. A. (Technical Monitor)

    2000-01-01

    Three benchmark problems are solved using a sixth-order prefactored compact scheme employing an explicit 10th-order filter with optimized fourth-order Runge-Kutta time stepping. The problems solved are the following: (1) propagation of sound waves through a transonic nozzle; (2) shock-sound interaction; and (3) single airfoil gust response. In the first two problems, the spatial accuracy of the scheme is tested on a stretched grid, and the effectiveness of boundary conditions is shown. The solution stability and accuracy near a shock discontinuity is shown as well. Also, 1-D nonlinear characteristic boundary conditions will be evaluated. In the third problem, a nonlinear Euler solver will be used that solves the equations in generalized curvilinear coordinates using the chain rule transformation. This work, continuing earlier work on flat-plate cascades and Joukowski airfoils, will focus mainly on the effect of the grid and boundary conditions on the accuracy of the solution. The grids were generated using a commercially available grid generator, GridPro/az3000.

  3. Grid-size dependence of Cauchy boundary conditions used to simulate stream-aquifer interactions

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2010-01-01

    This work examines the simulation of stream–aquifer interactions as grids are refined vertically and horizontally and suggests that traditional methods for calculating conductance can produce inappropriate values when the grid size is changed. Instead, different grid resolutions require different estimated values. Grid refinement strategies considered include global refinement of the entire model and local refinement of part of the stream. Three methods of calculating the conductance of the Cauchy boundary conditions are investigated. Single- and multi-layer models with narrow and wide streams produced stream leakages that differ by as much as 122% as the grid is refined. Similar results occur for globally and locally refined grids, but the latter required as little as one-quarter the computer execution time and memory and thus are useful for addressing some scale issues of stream–aquifer interactions. Results suggest that existing grid-size criteria for simulating stream–aquifer interactions are useful for one-layer models, but inadequate for three-dimensional models. The grid dependence of the conductance terms suggests that values for refined models using, for example, finite difference or finite-element methods, cannot be determined from previous coarse-grid models or field measurements. Our examples demonstrate the need for a method of obtaining conductances that can be translated to different grid resolutions and provide definitive test cases for investigating alternative conductance formulations.

  4. Arrester Resistive Current Measuring System Based on Heterogeneous Network

    NASA Astrophysics Data System (ADS)

    Zhang, Yun Hua; Li, Zai Lin; Yuan, Feng; Hou Pan, Feng; Guo, Zhan Nan; Han, Yue

    2018-03-01

    Metal Oxide Arrester (MOA) suffers from aging and poor insulation due to long-term impulse voltage and environmental impact, and the value and variation tendency of resistive current can reflect the health conditions of MOA. The common wired MOA detection need to use long cables, which is complicated to operate, and that wireless measurement methods are facing the problems of poor data synchronization and instability. Therefore a novel synchronous measurement system of arrester current resistive based on heterogeneous network is proposed, which simplifies the calculation process and improves synchronization, accuracy and stability and of the measuring system. This system combines LoRa wireless network, high speed wireless personal area network and the process layer communication, and realizes the detection of arrester working condition. Field test data shows that the system has the characteristics of high accuracy, strong anti-interference ability and good synchronization, which plays an important role in ensuring the stable operation of the power grid.

  5. Intrusion detection system using Online Sequence Extreme Learning Machine (OS-ELM) in advanced metering infrastructure of smart grid

    PubMed Central

    Li, Yuancheng; Jing, Sitong

    2018-01-01

    Advanced Metering Infrastructure (AMI) realizes a two-way communication of electricity data through by interconnecting with a computer network as the core component of the smart grid. Meanwhile, it brings many new security threats and the traditional intrusion detection method can’t satisfy the security requirements of AMI. In this paper, an intrusion detection system based on Online Sequence Extreme Learning Machine (OS-ELM) is established, which is used to detecting the attack in AMI and carrying out the comparative analysis with other algorithms. Simulation results show that, compared with other intrusion detection methods, intrusion detection method based on OS-ELM is more superior in detection speed and accuracy. PMID:29485990

  6. The event notification and alarm system for the Open Science Grid operations center

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Teige and, S.; Quick, R.

    2012-12-01

    The Open Science Grid Operations (OSG) Team operates a distributed set of services and tools that enable the utilization of the OSG by several HEP projects. Without these services users of the OSG would not be able to run jobs, locate resources, obtain information about the status of systems or generally use the OSG. For this reason these services must be highly available. This paper describes the automated monitoring and notification systems used to diagnose and report problems. Described here are the means used by OSG Operations to monitor systems such as physical facilities, network operations, server health, service availability and software error events. Once detected, an error condition generates a message sent to, for example, Email, SMS, Twitter, an Instant Message Server, etc. The mechanism being developed to integrate these monitoring systems into a prioritized and configurable alarming system is emphasized.

  7. Analysis of turbine-grid interaction of grid-connected wind turbine using HHT

    NASA Astrophysics Data System (ADS)

    Chen, A.; Wu, W.; Miao, J.; Xie, D.

    2018-05-01

    This paper processes the output power of the grid-connected wind turbine with the denoising and extracting method based on Hilbert Huang transform (HHT) to discuss the turbine-grid interaction. At first, the detailed Empirical Mode Decomposition (EMD) and the Hilbert Transform (HT) are introduced. Then, on the premise of decomposing the output power of the grid-connected wind turbine into a series of Intrinsic Mode Functions (IMFs), energy ratio and power volatility are calculated to detect the unessential components. Meanwhile, combined with vibration function of turbine-grid interaction, data fitting of instantaneous amplitude and phase of each IMF is implemented to extract characteristic parameters of different interactions. Finally, utilizing measured data of actual parallel-operated wind turbines in China, this work accurately obtains the characteristic parameters of turbine-grid interaction of grid-connected wind turbine.

  8. Langmuir Probe Measurements in a Grid-Assisted Magnetron Sputtering System

    NASA Astrophysics Data System (ADS)

    Sagás, Julio César; Pessoa, Rodrigo Sávio; Maciel, Homero Santiago

    2018-02-01

    The grid-assisted magnetron sputtering is a variation of the magnetron sputtering commonly used for thin film deposition. In this work, Langmuir probe measurements were performed in such a system by using the grid under two basic and practical electrical conditions, i.e., floating and grounded. The results show that grounding the grid leads to an enhancement of the plasma confinement and to increases in both floating and plasma potential, as inferred from the probe characteristics. The grounded grid drains electrons from the plasma, acting as an auxiliary anode and reducing the plasma diffusion toward the chamber walls. For the same discharge current, the improved confinement results in a lower electron temperature when compared to floating condition, although the electron densities are comparable in both cases.

  9. Oscillating plasma bubble and its associated nonlinear studies in presence of low magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Megalingam, Mariammal; Sarma, Bornali; Mitra, Vramori

    Oscillating plasma bubbles have been created around a cylindrical mesh grid of 75% optical transparency in a DC plasma system with a low magnetic field. Plasma bubbles are created by developing ion density gradient around a cylindrical grid of 20 cm in diameter and 25 cm in height, inserted into the plasma. Relaxation and contraction of the plasma bubbles in the presence of external conditions, such as magnetic field and pressure, have been studied. A Langmuir probe has been used to detect the plasma floating potential fluctuations at different imposed experimental conditions. Nonlinear behavior of the system has been characterized by adoptingmore » nonlinear techniques such as Fast Fourier Transform, Phase Space Plot, and Recurrence Plot. It shows that the system creates highly nonlinear phenomena associated with the plasma bubble under the imposed experimental conditions. A theoretical and numerical model has also been developed to satisfy the observed experimental analysis. Moreover, observations are extended further to study the growth of instability associated with the plasma bubbles. The intention of the present work is to correlate the findings about plasma bubbles and their related instability with the one existing in the equatorial F-region of the ionosphere.« less

  10. Electrostatic dust detector

    DOEpatents

    Skinner, Charles H [Lawrenceville, NJ

    2006-05-02

    An apparatus for detecting dust in a variety of environments which can include radioactive and other hostile environments both in a vacuum and in a pressurized system. The apparatus consists of a grid coupled to a selected bias voltage. The signal generated when dust impacts and shorts out the grid is electrically filtered, and then analyzed by a signal analyzer which is then sent to a counter. For fine grids a correlation can be developed to relate the number of counts observed to the amount of dust which impacts the grid.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhenyu; Zhou, Ning; Tuffner, Francis K.

    Small signal stability problems are one of the major threats to grid stability and reliability in the U.S. power grid. An undamped mode can cause large-amplitude oscillations and may result in system breakups and large-scale blackouts. There have been several incidents of system-wide oscillations. Of those incidents, the most notable is the August 10, 1996 western system breakup, a result of undamped system-wide oscillations. Significant efforts have been devoted to monitoring system oscillatory behaviors from measurements in the past 20 years. The deployment of phasor measurement units (PMU) provides high-precision, time-synchronized data needed for detecting oscillation modes. Measurement-based modal analysis,more » also known as ModeMeter, uses real-time phasor measurements to identify system oscillation modes and their damping. Low damping indicates potential system stability issues. Modal analysis has been demonstrated with phasor measurements to have the capability of estimating system modes from both oscillation signals and ambient data. With more and more phasor measurements available and ModeMeter techniques maturing, there is yet a need for methods to bring modal analysis from monitoring to actions. The methods should be able to associate low damping with grid operating conditions, so operators or automated operation schemes can respond when low damping is observed. The work presented in this report aims to develop such a method and establish a Modal Analysis for Grid Operation (MANGO) procedure to aid grid operation decision making to increase inter-area modal damping. The procedure can provide operation suggestions (such as increasing generation or decreasing load) for mitigating inter-area oscillations.« less

  12. Impacts of Inverter-Based Advanced Grid Support Functions on Islanding Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Hoke, Anderson; Miller, Brian

    A long-standing requirement for inverters paired with distributed energy resources is that they are required to disconnect from the electrical power system (EPS) when an electrical island is formed. In recent years, advanced grid support controls have been developed for inverters to provide voltage and frequency support by integrating functions such as voltage and frequency ride-through, volt-VAr control, and frequency-Watt control. With these new capabilities integrated into the inverter, additional examination is needed to determine how voltage and frequency support will impact pre-existing inverter functions like island detection. This paper inspects how advanced inverter functions will impact its ability tomore » detect the formation of an electrical island. Results are presented for the unintentional islanding laboratory tests of three common residential-scale photovoltaic inverters performing various combinations of grid support functions. For the inverters tested, grid support functions prolonged island disconnection times slightly; however, it was found that in all scenarios the inverters disconnected well within two seconds, the limit imposed by IEEE Std 1547-2003.« less

  13. Influence of Spanwise Boundary Conditions on Slat Noise Simulations

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Choudhari, Meelan M.; Buning, Pieter G.

    2015-01-01

    The slat noise from the 30P/30N high-lift system is being investigated through computational fluid dynamics simulations with the OVERFLOW code in conjunction with a Ffowcs Williams-Hawkings acoustics solver. In the present study, two different spanwise grids are being used to investigate the effect of the spanwise extent and periodicity on the near-field unsteady structures and radiated noise. The baseline grid with periodic boundary conditions has a short span equal to 1/9th of the stowed chord, whereas the other, longer span grid adds stretched grids on both sides of the core, baseline grid to allow inviscid surface boundary conditions at both ends. The results indicate that the near-field mean statistics obtained using the two grids are similar to each other, as are the directivity and spectral shapes of the radiated noise. However, periodicity forces all acoustic waves with less than one wavelength across the span to be two-dimensional, without any variation in the span. The spanwise coherence of the acoustic waves is what is needed to make estimates of the noise that would be radiated from realistic span lengths. Simulations with periodic conditions need spans of at least six slat chords to allow spanwise variation in the low-frequencies associated with the peak of broadband slat noise. Even then, the full influence of the periodicity is unclear, so employing grids with a fine, central region and highly stretched meshes that go to slip walls may be a more efficient means of capturing the spanwise decorrelation of low-frequency acoustic phenomena.

  14. Social stimuli enhance phencyclidine (PCP) self-administration in rhesus monkeys

    PubMed Central

    Newman, Jennifer L.; Perry, Jennifer L.; Carroll, Marilyn E.

    2007-01-01

    Environmental factors, including social interaction, can alter the effects of drugs of abuse on behavior. The present study was conducted to examine the effects of social stimuli on oral phencyclidine (PCP) self-administration by rhesus monkeys. Ten adult rhesus monkeys (M. mulatta) were housed side by side in modular cages that could be configured to provide visual, auditory, and olfactory stimuli provided by another monkey located in the other side of the paired unit. During the first experiment, monkeys self-administered PCP (0.25 mg/ml) and water under concurrent fixed ratio (FR) 16 schedules of reinforcement with either a solid or a grid (social) partition separating each pair of monkeys. In the second experiment, a PCP concentration-response relationship was determined under concurrent progressive ratio (PR) schedules of reinforcement under the solid and grid partition conditions. Under the concurrent FR 16 schedules, PCP and water self-administration was significantly higher during exposure to a cage mate through a grid partition than when a solid partition separated the monkeys. The relative reinforcing strength of PCP, as measured by PR break points, was greater during the grid partition condition compared to the solid partition condition indicated by an upward shift in the concentration-response curve. To determine whether the social stimuli provided by another monkey led to activation of the hypothalamic-pituitary-adrenal (HPA) axis, which may have evoked the increase of PCP self-administration during the grid partition condition, a third experiment was conducted to examine cortisol levels under the two housing conditions. A modest, but nonsignificant increase in cortisol levels was found upon switching from the solid to the grid partition condition. The results suggest that social stimulation among monkeys in adjoining cages leads to enhanced reinforcing strength of PCP. PMID:17560636

  15. Preparing and Analyzing Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.; hide

    2004-01-01

    SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.

  16. Improving Distribution Resiliency with Microgrids and State and Parameter Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuffner, Francis K.; Williams, Tess L.; Schneider, Kevin P.

    Modern society relies on low-cost reliable electrical power, both to maintain industry, as well as provide basic social services to the populace. When major disturbances occur, such as Hurricane Katrina or Hurricane Sandy, the nation’s electrical infrastructure can experience significant outages. To help prevent the spread of these outages, as well as facilitating faster restoration after an outage, various aspects of improving the resiliency of the power system are needed. Two such approaches are breaking the system into smaller microgrid sections, and to have improved insight into the operations to detect failures or mis-operations before they become critical. Breaking themore » system into smaller sections of microgrid islands, power can be maintained in smaller areas where distribution generation and energy storage resources are still available, but bulk power generation is no longer connected. Additionally, microgrid systems can maintain service to local pockets of customers when there has been extensive damage to the local distribution system. However, microgrids are grid connected a majority of the time and implementing and operating a microgrid is much different than when islanded. This report discusses work conducted by the Pacific Northwest National Laboratory that developed improvements for simulation tools to capture the characteristics of microgrids and how they can be used to develop new operational strategies. These operational strategies reduce the cost of microgrid operation and increase the reliability and resilience of the nation’s electricity infrastructure. In addition to the ability to break the system into microgrids, improved observability into the state of the distribution grid can make the power system more resilient. State estimation on the transmission system already provides great insight into grid operations and detecting abnormal conditions by leveraging existing measurements. These transmission-level approaches are expanded to using advanced metering infrastructure and other distribution-level measurements to create a three-phase, unbalanced distribution state estimation approach. With distribution-level state estimation, the grid can be operated more efficiently, and outages or equipment failures can be caught faster, improving the overall resilience and reliability of the grid.« less

  17. A control strategy for grid-side converter of DFIG under unbalanced condition based on Dig SILENT/Power Factory

    NASA Astrophysics Data System (ADS)

    Han, Pingping; Zhang, Haitian; Chen, Lingqi; Zhang, Xiaoan

    2018-01-01

    The models of doubly fed induction generator (DFIG) and its grid-side converter (GSC) are established under unbalanced grid condition based on DIgSILENT/PowerFactory. According to the mathematical model, the vector equations of positive and negative sequence voltage and current are deduced in the positive sequence synchronous rotating reference frame d-q-0 when the characteristics of the simulation software are considered adequately. Moreover, the reference value of current component of GSC in the positive sequence frame d-q-0 under unbalanced condition can be obtained to improve the traditional control of GSC when the national issue of unbalanced current limits is combined. The simulated results indicate that the control strategy can restrain negative sequence current and the two times frequency power wave of GSC’s ac side effectively. The voltage of DC bus can be maintained a constant to ensure the uninterrupted operation of DFIG under unbalanced grid condition eventually.

  18. Smart grid integration of small-scale trigeneration systems

    NASA Astrophysics Data System (ADS)

    Vacheva, Gergana; Kanchev, Hristiyan; Hinov, Nikolay

    2017-12-01

    This paper presents a study on the possibilities for implementation of local heating, air-conditioning and electricity generation (trigeneration) as distributed energy resource in the Smart Grid. By the means of microturbine-based generators and absorption chillers buildings are able to meet partially or entirely their electrical load curve or even supply power to the grid by following their heating and air-conditioning daily schedule. The principles of small-scale cooling, heating and power generation systems are presented at first, then the thermal calculations of an example building are performed: the heat losses due to thermal conductivity and the estimated daily heating and air-conditioning load curves. By considering daily power consumption curves and weather data for several winter and summer days, the heating/air-conditioning schedule is estimated and the available electrical energy from a microturbine-based cogeneration system is estimated. Simulation results confirm the potential of using cogeneration and trigeneration systems for local distributed electricity generation and grid support in the daily peaks of power consumption.

  19. Acceleration of incremental-pressure-correction incompressible flow computations using a coarse-grid projection method

    NASA Astrophysics Data System (ADS)

    Kashefi, Ali; Staples, Anne

    2016-11-01

    Coarse grid projection (CGP) methodology is a novel multigrid method for systems involving decoupled nonlinear evolution equations and linear elliptic equations. The nonlinear equations are solved on a fine grid and the linear equations are solved on a corresponding coarsened grid. Mapping functions transfer data between the two grids. Here we propose a version of CGP for incompressible flow computations using incremental pressure correction methods, called IFEi-CGP (implicit-time-integration, finite-element, incremental coarse grid projection). Incremental pressure correction schemes solve Poisson's equation for an intermediate variable and not the pressure itself. This fact contributes to IFEi-CGP's efficiency in two ways. First, IFEi-CGP preserves the velocity field accuracy even for a high level of pressure field grid coarsening and thus significant speedup is achieved. Second, because incremental schemes reduce the errors that arise from boundaries with artificial homogenous Neumann conditions, CGP generates undamped flows for simulations with velocity Dirichlet boundary conditions. Comparisons of the data accuracy and CPU times for the incremental-CGP versus non-incremental-CGP computations are presented.

  20. System and method for controlling microgrid

    DOEpatents

    Bose, Sumit [Niskayuna, NY; Achilles, Alfredo Sebastian [Bavaria, DE; Liu, Yan [Ballston Lake, NY; Ahmed, Emad Ezzat [Munich, DE; Garces, Luis Jose [Niskayuna, NY

    2011-07-19

    A system for controlling a microgrid includes microgrid assets and a tieline for coupling the microgrid to a bulk grid; and a tieline controller coupled to the tieline. At least one of the microgrid assets comprises a different type of asset than another one of the microgrid assets. The tieline controller is configured for providing tieline control signals to adjust active and reactive power in respective microgrid assets in response to commands from the bulk grid operating entity, microgrid system conditions, bulk grid conditions, or combinations thereof.

  1. Onboard power line conditioning system for an electric or hybrid vehicle

    DOEpatents

    Kajouke, Lateef A.; Perisic, Milun

    2016-06-14

    A power line quality conditioning system for a vehicle includes an onboard rechargeable direct current (DC) energy storage system and an onboard electrical system coupled to the energy storage system. The energy storage system provides DC energy to drive an electric traction motor of the vehicle. The electrical system operates in a charging mode such that alternating current (AC) energy from a power grid external to the vehicle is converted to DC energy to charge the DC energy storage system. The electrical system also operates in a vehicle-to-grid power conditioning mode such that DC energy from the DC energy storage system is converted to AC energy to condition an AC voltage of the power grid.

  2. Energy stable and high-order-accurate finite difference methods on staggered grids

    NASA Astrophysics Data System (ADS)

    O'Reilly, Ossian; Lundquist, Tomas; Dunham, Eric M.; Nordström, Jan

    2017-10-01

    For wave propagation over distances of many wavelengths, high-order finite difference methods on staggered grids are widely used due to their excellent dispersion properties. However, the enforcement of boundary conditions in a stable manner and treatment of interface problems with discontinuous coefficients usually pose many challenges. In this work, we construct a provably stable and high-order-accurate finite difference method on staggered grids that can be applied to a broad class of boundary and interface problems. The staggered grid difference operators are in summation-by-parts form and when combined with a weak enforcement of the boundary conditions, lead to an energy stable method on multiblock grids. The general applicability of the method is demonstrated by simulating an explosive acoustic source, generating waves reflecting against a free surface and material discontinuity.

  3. Wildfire spread, hazard and exposure metric raster grids for central Catalonia.

    PubMed

    Alcasena, Fermín J; Ager, Alan A; Salis, Michele; Day, Michelle A; Vega-Garcia, Cristina

    2018-04-01

    We provide 40 m resolution wildfire spread, hazard and exposure metric raster grids for the 0.13 million ha fire-prone Bages County in central Catalonia (northeastern Spain) corresponding to node influence grid (NIG), crown fraction burned (CFB) and fire transmission to residential houses (TR). Fire spread and behavior data (NIG, CFB and fire perimeters) were generated with fire simulation modeling considering wildfire season extreme fire weather conditions (97 th percentile). Moreover, CFB was also generated for prescribed fire (Rx) mild weather conditions. The TR smoothed grid was obtained with a geospatial analysis considering large fire perimeters and individual residential structures located within the study area. We made these raster grids available to assist in the optimization of wildfire risk management plans within the study area and to help mitigate potential losses from catastrophic events.

  4. Electric arc discharge damage to ion thruster grids

    NASA Technical Reports Server (NTRS)

    Beebe, D. D.; Nakanishi, S.; Finke, R. C.

    1974-01-01

    Arcs representative of those occurring between the grids of a mercury ion thruster were simulated. Parameters affecting an arc and the resulting damage were studied. The parameters investigated were arc energy, arc duration, and grid geometry. Arc attenuation techniques were also investigated. Potentially serious damage occurred at all energy levels representative of actual thruster operating conditions. Of the grids tested, the lowest open-area configuration sustained the least damage for given conditions. At a fixed energy level a long duration discharge caused greater damage than a short discharge. Attenuation of arc current using various impedances proved to be effective in reducing arc damage. Faults were also deliberately caused using chips of sputtered materials formed during the operation of an actual thruster. These faults were cleared with no serious grid damage resulting using the principles and methods developed in this study.

  5. A Structured-Grid Quality Measure for Simulated Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2004-01-01

    A structured-grid quality measure is proposed, combining three traditional measurements: intersection angles, stretching, and curvature. Quality assesses whether the grid generated provides the best possible tradeoffs in grid stretching and skewness that enable accurate flow predictions, whereas the grid density is assumed to be a constraint imposed by the available computational resources and the desired resolution of the flow field. The usefulness of this quality measure is assessed by comparing heat transfer predictions from grid convergence studies for grids of varying quality in the range of [0.6-0.8] on an 8'half-angle sphere-cone, at laminar, perfect gas, Mach 10 wind tunnel conditions.

  6. A modified adjoint-based grid adaptation and error correction method for unstructured grid

    NASA Astrophysics Data System (ADS)

    Cui, Pengcheng; Li, Bin; Tang, Jing; Chen, Jiangtao; Deng, Youqi

    2018-05-01

    Grid adaptation is an important strategy to improve the accuracy of output functions (e.g. drag, lift, etc.) in computational fluid dynamics (CFD) analysis and design applications. This paper presents a modified robust grid adaptation and error correction method for reducing simulation errors in integral outputs. The procedure is based on discrete adjoint optimization theory in which the estimated global error of output functions can be directly related to the local residual error. According to this relationship, local residual error contribution can be used as an indicator in a grid adaptation strategy designed to generate refined grids for accurately estimating the output functions. This grid adaptation and error correction method is applied to subsonic and supersonic simulations around three-dimensional configurations. Numerical results demonstrate that the sensitive grids to output functions are detected and refined after grid adaptation, and the accuracy of output functions is obviously improved after error correction. The proposed grid adaptation and error correction method is shown to compare very favorably in terms of output accuracy and computational efficiency relative to the traditional featured-based grid adaptation.

  7. Controllable Grid Interface | Grid Modernization | NREL

    Science.gov Websites

    groundbreaking apparatus for testing and demonstrating advanced controls for wind and solar power generation at requirements. These requirements involve various aspects of renewable power plant operation, including fault respond directly to grid conditions measured on plant terminals, including: "Nasty" and "

  8. Evaluation of load flow and grid expansion in a unit-commitment and expansion optimization model SciGRID International Conference on Power Grid Modelling

    NASA Astrophysics Data System (ADS)

    Senkpiel, Charlotte; Biener, Wolfgang; Shammugam, Shivenes; Längle, Sven

    2018-02-01

    Energy system models serve as a basis for long term system planning. Joint optimization of electricity generating technologies, storage systems and the electricity grid leads to lower total system cost compared to an approach in which the grid expansion follows a given technology portfolio and their distribution. Modelers often face the problem of finding a good tradeoff between computational time and the level of detail that can be modeled. This paper analyses the differences between a transport model and a DC load flow model to evaluate the validity of using a simple but faster transport model within the system optimization model in terms of system reliability. The main findings in this paper are that a higher regional resolution of a system leads to better results compared to an approach in which regions are clustered as more overloads can be detected. An aggregation of lines between two model regions compared to a line sharp representation has little influence on grid expansion within a system optimizer. In a DC load flow model overloads can be detected in a line sharp case, which is therefore preferred. Overall the regions that need to reinforce the grid are identified within the system optimizer. Finally the paper recommends the usage of a load-flow model to test the validity of the model results.

  9. Unsteady-flow-field predictions for oscillating cascades

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    1991-01-01

    The unsteady flow field around an oscillating cascade of flat plates with zero stagger was studied by using a time marching Euler code. This case had an exact solution based on linear theory and served as a model problem for studying pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step size was shown for a moderate reduced frequency. Results show that an approximate nonreflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer to the airfoils than when reflective boundaries are used. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates captures the unsteady flow field better than when uniform grids are used as long as the 'Courant Friedrichs Levy' (CFL) number is less than 1 for a sufficient portion of the grid. Finally, a solution based on an optimization of grid, CFL number, and boundary conditions shows good agreement with linear theory.

  10. Collection Efficiency and Ice Accretion Characteristics of Two Full Scale and One 1/4 Scale Business Jet Horizontal Tails

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.; Papadakis, Michael

    2005-01-01

    Collection efficiency and ice accretion calculations have been made for a series of business jet horizontal tail configurations using a three-dimensional panel code, an adaptive grid code, and the NASA Glenn LEWICE3D grid based ice accretion code. The horizontal tail models included two full scale wing tips and a 25 percent scale model. Flow solutions for the horizontal tails were generated using the PMARC panel code. Grids used in the ice accretion calculations were generated using the adaptive grid code ICEGRID. The LEWICE3D grid based ice accretion program was used to calculate impingement efficiency and ice shapes. Ice shapes typifying rime and mixed icing conditions were generated for a 30 minute hold condition. All calculations were performed on an SGI Octane computer. The results have been compared to experimental flow and impingement data. In general, the calculated flow and collection efficiencies compared well with experiment, and the ice shapes appeared representative of the rime and mixed icing conditions for which they were calculated.

  11. [Analytical figures of merit of Hildebrand grid and ultrasonic nebulizations in inductively coupled plasma atomic emission].

    PubMed

    Tian, Mei; Han, Xiao-yuan; Zhuo, Shang-jun; Zhang, Rui-rong

    2012-05-01

    Hildebrand grid nebulizer is a kind of improved Babington nebulizer, which can nebulize solutions with high total dissolved solids. And the ultrasonic nebulizer (USN) possesses advantage of high nebulization efficiency and fine droplets. In the present paper, the detection limits, matrix effects, ICP robustness and memory effects of Hildebrand grid and ultrasonic nebulizers for ICP-AES were studied. The results show that the detection limits using USN are improved by a factor of 6-23 in comparison to Hildebrand grid nebulizer for Cu, Pb, Zn, Cr, Cd and Ni. With the USN the matrix effects were heavier, and the degree of intensity enhancement and lowering depends on the element line, the composition and concentrations of matrices. Moreover, matrix effects induced by Ca and Mg are more significant than those caused by Na and Mg, and intensities of ionic lines are affected more easily than those of atomic lines. At the same time, with the USN ICP has less robustness. In addition, memory effect of the USN is also heavier than that of Hildebrand grid nebulizer.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deka, Deepjyoti; Backhaus, Scott N.; Chertkov, Michael

    Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as those related to demand response, outage detection and management, and improved load-monitoring. In this two part paper, inspired by proliferation of the metering technology, we discuss estimation problems in structurally loopy but operationally radial distribution grids from measurements, e.g. voltage data, which are either already available or can be made available with a relatively minor investment. In Part I, the objective is to learn the operational layout of the grid. Part II of this paper presentsmore » algorithms that estimate load statistics or line parameters in addition to learning the grid structure. Further, Part II discusses the problem of structure estimation for systems with incomplete measurement sets. Our newly suggested algorithms apply to a wide range of realistic scenarios. The algorithms are also computationally efficient – polynomial in time– which is proven theoretically and illustrated computationally on a number of test cases. The technique developed can be applied to detect line failures in real time as well as to understand the scope of possible adversarial attacks on the grid.« less

  13. Integrated geometry and grid generation system for complex configurations

    NASA Technical Reports Server (NTRS)

    Akdag, Vedat; Wulf, Armin

    1992-01-01

    A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle.

  14. Comparison of Models for Spacer Grid Pressure Loss in Nuclear Fuel Bundles for One and Two-Phase Flows

    NASA Astrophysics Data System (ADS)

    Maskal, Alan B.

    Spacer grids maintain the structural integrity of the fuel rods within fuel bundles of nuclear power plants. They can also improve flow characteristics within the nuclear reactor core. However, spacer grids add reactor coolant pressure losses, which require estimation and engineering into the design. Several mathematical models and computer codes were developed over decades to predict spacer grid pressure loss. Most models use generalized characteristics, measured by older, less precise equipment. The study of OECD/US-NRC BWR Full-Size Fine Mesh Bundle Tests (BFBT) provides updated and detailed experimental single and two-phase results, using technically advanced flow measurements for a wide range of boundary conditions. This thesis compares the predictions from the mathematical models to the BFBT experimental data by utilizing statistical formulae for accuracy and precision. This thesis also analyzes the effects of BFBT flow characteristics on spacer grids. No single model has been identified as valid for all flow conditions. However, some models' predictions perform better than others within a range of flow conditions, based on the accuracy and precision of the models' predictions. This study also demonstrates that pressure and flow quality have a significant effect on two-phase flow spacer grid models' biases.

  15. Groundwater-quality data in the Santa Barbara study unit, 2011: results from the California GAMA Program

    USGS Publications Warehouse

    Davis, Tracy A.; Kulongoski, Justin T.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the 48-square-mile Santa Barbara study unit was investigated by the U.S. Geological Survey (USGS) from January to February 2011, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The Santa Barbara study unit was the thirty-fourth study unit to be sampled as part of the GAMA-PBP. The GAMA Santa Barbara study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system, and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer system is defined as those parts of the aquifers corresponding to the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the Santa Barbara study unit. Groundwater quality in the primary aquifer system may differ from the quality in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. In the Santa Barbara study unit located in Santa Barbara and Ventura Counties, groundwater samples were collected from 24 wells. Eighteen of the wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and six wells were selected to aid in evaluation of water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, and pharmaceutical compounds); constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]); naturally occurring inorganic constituents (trace elements, nutrients, major and minor ions, silica, total dissolved solids [TDS], alkalinity, and arsenic, chromium, and iron species); and radioactive constituents (radon-222 and gross alpha and gross beta radioactivity). Naturally occurring isotopes (stable isotopes of hydrogen and oxygen in water, stables isotopes of inorganic carbon and boron dissolved in water, isotope ratios of dissolved strontium, tritium activities, and carbon-14 abundances) and dissolved noble gases also were measured to help identify the sources and ages of the sampled groundwater. In total, 281 constituents and water-quality indicators were measured. Three types of quality-control samples (blanks, replicates, and matrix spikes) were collected at up to 12 percent of the wells in the Santa Barbara study unit, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection procedures was not a significant source of bias in the data for the groundwater samples. Replicate samples generally were within the limits of acceptable analytical reproducibility. Matrix-spike recoveries were within the acceptable range (70 to 130 percent) for approximately 82 percent of the compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, and (or) blended with other waters to maintain water quality. Regulatory benchmarks apply to water that is served to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwater were compared with regulatory and non-regulatory health-based benchmarks established by the U.S. Environmental Protection Agency (USEPA) and CDPH and to non-regulatory benchmarks established for aesthetic concerns by CDPH. Comparisons between data collected for this study and benchmarks for drinking water are for illustrative purposes only and are not indicative of compliance or non-compliance with those benchmarks. All organic constituents and most inorganic constituents that were detected in groundwater samples from the 18 grid wells in the Santa Barbara study unit were detected at concentrations less than drinking-water benchmarks. Of the 220 organic and special-interest constituents sampled for at the 18 grid wells, 13 were detected in groundwater samples; concentrations of all detected constituents were less than regulatory and non-regulatory health-based benchmarks. In total, VOCs were detected in 61 percent of the 18 grid wells sampled, pesticides and pesticide degradates were detected in 11 percent, and perchlorate was detected in 67 percent. Polar pesticides and their degradates, pharmaceutical compounds, and NDMA were not detected in any of the grid wells sampled in the Santa Barbara study unit. Eighteen grid wells were sampled for trace elements, major and minor ions, nutrients, and radioactive constituents; most detected concentrations were less than health-based benchmarks. Exceptions are one detection of boron greater than the CDPH notification level (NL-CA) of 1,000 micrograms per liter (μg/L) and one detection of fluoride greater than the CDPH maximum contaminant level (MCL-CA) of 2 milligrams per liter (mg/L). Results for constituents with non-regulatory benchmarks set for aesthetic concerns from the grid wells showed that iron concentrations greater than the CDPH secondary maximum contaminant level (SMCL-CA) of 300 μg/L were detected in three grid wells. Manganese concentrations greater than the SMCL-CA of 50 μg/L were detected in seven grid wells. Chloride was detected at a concentration greater than the SMCL-CA recommended benchmark of 250 mg/L in four grid wells. Sulfate concentrations greater than the SMCL-CA recommended benchmark of 250 mg/L were measured in eight grid wells, and the concentration in one of these wells was also greater than the SMCL-CA upper benchmark of 500 mg/L. TDS concentrations greater than the SMCL-CA recommended benchmark of 500 mg/L were measured in 17 grid wells, and concentrations in six of these wells were also greater than the SMCL-CA upper benchmark of 1,000 mg/L.

  16. CFD Script for Rapid TPS Damage Assessment

    NASA Technical Reports Server (NTRS)

    McCloud, Peter

    2013-01-01

    This grid generation script creates unstructured CFD grids for rapid thermal protection system (TPS) damage aeroheating assessments. The existing manual solution is cumbersome, open to errors, and slow. The invention takes a large-scale geometry grid and its large-scale CFD solution, and creates a unstructured patch grid that models the TPS damage. The flow field boundary condition for the patch grid is then interpolated from the large-scale CFD solution. It speeds up the generation of CFD grids and solutions in the modeling of TPS damages and their aeroheating assessment. This process was successfully utilized during STS-134.

  17. A new ghost-node method for linking different models and initial investigations of heterogeneity and nonmatching grids

    USGS Publications Warehouse

    Dickinson, J.E.; James, S.C.; Mehl, S.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Faunt, C.C.; Eddebbarh, A.-A.

    2007-01-01

    A flexible, robust method for linking parent (regional-scale) and child (local-scale) grids of locally refined models that use different numerical methods is developed based on a new, iterative ghost-node method. Tests are presented for two-dimensional and three-dimensional pumped systems that are homogeneous or that have simple heterogeneity. The parent and child grids are simulated using the block-centered finite-difference MODFLOW and control-volume finite-element FEHM models, respectively. The models are solved iteratively through head-dependent (child model) and specified-flow (parent model) boundary conditions. Boundary conditions for models with nonmatching grids or zones of different hydraulic conductivity are derived and tested against heads and flows from analytical or globally-refined models. Results indicate that for homogeneous two- and three-dimensional models with matched grids (integer number of child cells per parent cell), the new method is nearly as accurate as the coupling of two MODFLOW models using the shared-node method and, surprisingly, errors are slightly lower for nonmatching grids (noninteger number of child cells per parent cell). For heterogeneous three-dimensional systems, this paper compares two methods for each of the two sets of boundary conditions: external heads at head-dependent boundary conditions for the child model are calculated using bilinear interpolation or a Darcy-weighted interpolation; specified-flow boundary conditions for the parent model are calculated using model-grid or hydrogeologic-unit hydraulic conductivities. Results suggest that significantly more accurate heads and flows are produced when both Darcy-weighted interpolation and hydrogeologic-unit hydraulic conductivities are used, while the other methods produce larger errors at the boundary between the regional and local models. The tests suggest that, if posed correctly, the ghost-node method performs well. Additional testing is needed for highly heterogeneous systems. ?? 2007 Elsevier Ltd. All rights reserved.

  18. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE PAGES

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo; ...

    2017-07-14

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  19. An islanding detection methodology combining decision trees and Sandia frequency shift for inverter-based distributed generations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azim, Riyasat; Li, Fangxing; Xue, Yaosuo

    Distributed generations (DGs) for grid-connected applications require an accurate and reliable islanding detection methodology (IDM) for secure system operation. This paper presents an IDM for grid-connected inverter-based DGs. The proposed method is a combination of passive and active islanding detection techniques for aggregation of their advantages and elimination/minimisation of the drawbacks. In the proposed IDM, the passive method utilises critical system attributes extracted from local voltage measurements at target DG locations as well as employs decision tree-based classifiers for characterisation and detection of islanding events. The active method is based on Sandia frequency shift technique and is initiated only whenmore » the passive method is unable to differentiate islanding events from other system events. Thus, the power quality degradation introduced into the system by active islanding detection techniques can be minimised. Furthermore, a combination of active and passive techniques allows detection of islanding events under low power mismatch scenarios eliminating the disadvantage associated with the use of passive techniques alone. Finally, detailed case study results demonstrate the effectiveness of the proposed method in detection of islanding events under various power mismatch scenarios, load quality factors and in the presence of single or multiple grid-connected inverter-based DG units.« less

  20. Status and understanding of groundwater quality in the Bear Valley and Lake Arrowhead Watershed Study Unit, 2010: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Mathany, Timothy; Burton, Carmen

    2017-06-20

    Groundwater quality in the 112-square-mile Bear Valley and Lake Arrowhead Watershed (BEAR) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit comprises two study areas (Bear Valley and Lake Arrowhead Watershed) in southern California in San Bernardino County. The GAMA-PBP is conducted by the California State Water Resources Control Board (SWRCB) in cooperation with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory.The GAMA BEAR study was designed to provide a spatially balanced, robust assessment of the quality of untreated (raw) groundwater from the primary aquifer systems in the two study areas of the BEAR study unit. The assessment is based on water-quality collected by the USGS from 38 sites (27 grid and 11 understanding) during 2010 and on water-quality data from the SWRCB-Division of Drinking Water (DDW) database. The primary aquifer system is defined by springs and the perforation intervals of wells listed in the SWRCB-DDW water-quality database for the BEAR study unit.This study included two types of assessments: (1) a status assessment, which characterized the status of the quality of the groundwater resource as of 2010 by using data from samples analyzed for volatile organic compounds, pesticides, and naturally present inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the BEAR study unit, not the treated drinking water delivered to consumers. Bear Valley study area and the Lake Arrowhead Watershed study area were also compared statistically on the basis of water-quality results and factors potentially affecting the groundwater quality.Relative concentrations (RCs), which are sample concentration of a particular constituent divided by its associated health- or aesthetic-based benchmark concentrations, were used for evaluating the groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. An RC greater than 1.0 indicates a concentration greater than a benchmark. Organic (volatile organic compounds and pesticides) and special-interest (perchlorate) constituent RCs were classified as “high” (RC greater than 1.0), “moderate” (RC less than or equal to 1.0 and greater than 0.1), or “low” (RC less than or equal to 0.1). For inorganic (radioactive, trace element, major ion, and nutrient) constituents, the boundary between low and moderate RCs was set at 0.5.Aquifer-scale proportion was used as the primary metric in the status assessment for evaluating groundwater quality at the study-unit scale or for its component areas. High aquifer-scale proportion was defined as the percentage of the area of the primary aquifer system with a RC greater than 1.0 for a particular constituent or class of constituents; the percentage is based on area rather than volume. Moderate and low aquifer-scale proportions were defined as the percentage of the primary aquifer system with moderate and low RCs, respectively. A spatially weighted statistical approach was used to evaluate aquifer-scale proportions for individual constituents and classes of constituents.The status assessment for the Bear Valley study area found that inorganic constituents with health-based benchmarks were detected at high RCs in 9.0 percent of the primary aquifer system and at moderate RCs in 13 percent. The high RCs of inorganic constituents primarily reflected high aquifer-scale proportions of fluoride (in 5.4 percent of the primary aquifer system) and arsenic (3.6 percent). The RCs of organic constituents with health-based benchmarks were high in 1.0 percent of the primary aquifer system, moderate in 8.1 percent, and low in 70 percent. Organic constituents were detected in 79 percent of the primary aquifer system. Two groups of organic constituents and two individual organic constituents were detected at frequencies greater than 10 percent of samples from the USGS grid sites: trihalomethanes (THMs), solvents, methyl tert-butyl ether (MTBE), and simazine. The special-interest constituent perchlorate was detected in 93 percent of the primary aquifer system; it was detected at moderate RCs in 7.1 percent and at low RCs in 86 percent.The status assessment in the Lake Arrowhead Watershed study area showed that inorganic constituents with human-health benchmarks were detected at high RCs in 25 percent of the primary aquifer system and at moderate RCs in 41 percent. The high aquifer-scale proportion of inorganic constituents primarily reflected high aquifer-scale proportions of radon‑222 (in 62 percent of the primary aquifer system) and uranium (26 percent). RCs of organic constituents with health-based benchmarks were moderate in 7.7 percent of the primary aquifer system and low in 46 percent. Organic constituents were detected in 54 percent of the primary aquifer system. The only organic constituents that were detected at frequencies greater than 10 percent of samples from the USGS grid sites were THMs. Perchlorate was detected in 62 percent of the primary aquifer system at uniformly low RCs.The second component of this study, the understanding assessment, identified the natural and human factors that could have affected the groundwater quality in the BEAR study unit by evaluating statistical correlations between water-quality constituents and potential explanatory factors. The potential explanatory factors evaluated were land use (including density of septic tanks and leaking or formerly leaking underground fuel tanks), site type, aquifer lithology, well construction (well depth and depth to the top-of-perforated interval), elevation, aridity index, groundwater-age distribution, and oxidation-reduction condition (including pH and dissolved oxygen concentration). Results of the statistical evaluations were used to explain the distribution of constituents in groundwater of the BEAR study unit.In the Bear Valley study area, high and moderate RCs of fluoride were found in sites known to be influenced by hydrothermic conditions or that had high concentrations of fluoride historically. The high RC of arsenic can likely be attributed to desorption of arsenic from aquifer sediments saturated in old groundwater with high pH under reducing conditions. The THMs were detected more frequently at USGS grid sites that were wells, part of a large urban water system, and surrounded by urban land use. Solvents, MTBE, and simazine were all detected more frequently at USGS grid sites that were wells with a greater urban percentage of surrounding land use and that accessed older groundwater than other USGS grid sites. Comparison between the observed and predicted detection frequencies of perchlorate at USGS grid sites indicated that anthropogenic sources could have contributed to low levels of perchlorate in the groundwater of the Bear Valley study area.In the Lake Arrowhead Watershed study area, high and moderate RCs of radon-222 and uranium can be attributed to older groundwater from the granitic fractured-rock primary aquifer system. Low RCs of THMs were detected at USGS grid sites that were wells and part of small water systems. The similarities between the observed and predicted detection frequencies of perchlorate in samples from USGS grid sites indicated that the source and distribution of perchlorate were most likely attributable to precipitation (rain and snow), with minimal, if any, contribution from anthropogenic sources.

  1. Detecting Surface Changes from an Underground Explosion in Granite Using Unmanned Aerial System Photogrammetry

    DOE PAGES

    Schultz-Fellenz, Emily S.; Coppersmith, Ryan T.; Sussman, Aviva J.; ...

    2017-08-19

    Efficient detection and high-fidelity quantification of surface changes resulting from underground activities are important national and global security efforts. In this investigation, a team performed field-based topographic characterization by gathering high-quality photographs at very low altitudes from an unmanned aerial system (UAS)-borne camera platform. The data collection occurred shortly before and after a controlled underground chemical explosion as part of the United States Department of Energy’s Source Physics Experiments (SPE-5) series. The high-resolution overlapping photographs were used to create 3D photogrammetric models of the site, which then served to map changes in the landscape down to 1-cm-scale. Separate models weremore » created for two areas, herein referred to as the test table grid region and the nearfield grid region. The test table grid includes the region within ~40 m from surface ground zero, with photographs collected at a flight altitude of 8.5 m above ground level (AGL). The near-field grid area covered a broader area, 90–130 m from surface ground zero, and collected at a flight altitude of 22 m AGL. The photographs, processed using Agisoft Photoscan® in conjunction with 125 surveyed ground control point targets, yielded a 6-mm pixel-size digital elevation model (DEM) for the test table grid region. This provided the ≤3 cm resolution in the topographic data to map in fine detail a suite of features related to the underground explosion: uplift, subsidence, surface fractures, and morphological change detection. The near-field grid region data collection resulted in a 2-cm pixel-size DEM, enabling mapping of a broader range of features related to the explosion, including: uplift and subsidence, rock fall, and slope sloughing. This study represents one of the first works to constrain, both temporally and spatially, explosion-related surface damage using a UAS photogrammetric platform; these data will help to advance the science of underground explosion detection.« less

  2. Detecting Surface Changes from an Underground Explosion in Granite Using Unmanned Aerial System Photogrammetry

    NASA Astrophysics Data System (ADS)

    Schultz-Fellenz, Emily S.; Coppersmith, Ryan T.; Sussman, Aviva J.; Swanson, Erika M.; Cooley, James A.

    2017-08-01

    Efficient detection and high-fidelity quantification of surface changes resulting from underground activities are important national and global security efforts. In this investigation, a team performed field-based topographic characterization by gathering high-quality photographs at very low altitudes from an unmanned aerial system (UAS)-borne camera platform. The data collection occurred shortly before and after a controlled underground chemical explosion as part of the United States Department of Energy's Source Physics Experiments (SPE-5) series. The high-resolution overlapping photographs were used to create 3D photogrammetric models of the site, which then served to map changes in the landscape down to 1-cm-scale. Separate models were created for two areas, herein referred to as the test table grid region and the nearfield grid region. The test table grid includes the region within 40 m from surface ground zero, with photographs collected at a flight altitude of 8.5 m above ground level (AGL). The near-field grid area covered a broader area, 90-130 m from surface ground zero, and collected at a flight altitude of 22 m AGL. The photographs, processed using Agisoft Photoscan® in conjunction with 125 surveyed ground control point targets, yielded a 6-mm pixel-size digital elevation model (DEM) for the test table grid region. This provided the ≤3 cm resolution in the topographic data to map in fine detail a suite of features related to the underground explosion: uplift, subsidence, surface fractures, and morphological change detection. The near-field grid region data collection resulted in a 2-cm pixel-size DEM, enabling mapping of a broader range of features related to the explosion, including: uplift and subsidence, rock fall, and slope sloughing. This study represents one of the first works to constrain, both temporally and spatially, explosion-related surface damage using a UAS photogrammetric platform; these data will help to advance the science of underground explosion detection.

  3. Detecting Surface Changes from an Underground Explosion in Granite Using Unmanned Aerial System Photogrammetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz-Fellenz, Emily S.; Coppersmith, Ryan T.; Sussman, Aviva J.

    Efficient detection and high-fidelity quantification of surface changes resulting from underground activities are important national and global security efforts. In this investigation, a team performed field-based topographic characterization by gathering high-quality photographs at very low altitudes from an unmanned aerial system (UAS)-borne camera platform. The data collection occurred shortly before and after a controlled underground chemical explosion as part of the United States Department of Energy’s Source Physics Experiments (SPE-5) series. The high-resolution overlapping photographs were used to create 3D photogrammetric models of the site, which then served to map changes in the landscape down to 1-cm-scale. Separate models weremore » created for two areas, herein referred to as the test table grid region and the nearfield grid region. The test table grid includes the region within ~40 m from surface ground zero, with photographs collected at a flight altitude of 8.5 m above ground level (AGL). The near-field grid area covered a broader area, 90–130 m from surface ground zero, and collected at a flight altitude of 22 m AGL. The photographs, processed using Agisoft Photoscan® in conjunction with 125 surveyed ground control point targets, yielded a 6-mm pixel-size digital elevation model (DEM) for the test table grid region. This provided the ≤3 cm resolution in the topographic data to map in fine detail a suite of features related to the underground explosion: uplift, subsidence, surface fractures, and morphological change detection. The near-field grid region data collection resulted in a 2-cm pixel-size DEM, enabling mapping of a broader range of features related to the explosion, including: uplift and subsidence, rock fall, and slope sloughing. This study represents one of the first works to constrain, both temporally and spatially, explosion-related surface damage using a UAS photogrammetric platform; these data will help to advance the science of underground explosion detection.« less

  4. Silicon nitride grids are compatible with correlative negative staining electron microscopy and tip-enhanced Raman spectroscopy for use in the detection of micro-organisms.

    PubMed

    Lausch, V; Hermann, P; Laue, M; Bannert, N

    2014-06-01

    Successive application of negative staining transmission electron microscopy (TEM) and tip-enhanced Raman spectroscopy (TERS) is a new correlative approach that could be used to rapidly and specifically detect and identify single pathogens including bioterrorism-relevant viruses in complex samples. Our objective is to evaluate the TERS-compatibility of commonly used electron microscopy (EM) grids (sample supports), chemicals and negative staining techniques and, if required, to devise appropriate alternatives. While phosphortungstic acid (PTA) is suitable as a heavy metal stain, uranyl acetate, paraformaldehyde in HEPES buffer and alcian blue are unsuitable due to their relatively high Raman scattering. Moreover, the low thermal stability of the carbon-coated pioloform film on copper grids (pioloform grids) negates their utilization. The silicon in the cantilever of the silver-coated atomic force microscope tip used to record TERS spectra suggested that Si-based grids might be employed as alternatives. From all evaluated Si-based TEM grids, the silicon nitride (SiN) grid was found to be best suited, with almost no background Raman signals in the relevant spectral range, a low surface roughness and good particle adhesion properties that could be further improved by glow discharge. Charged SiN grids have excellent particle adhesion properties. The use of these grids in combination with PTA for contrast in the TEM is suitable for subsequent analysis by TERS. The study reports fundamental modifications and optimizations of the negative staining EM method that allows a combination with near-field Raman spectroscopy to acquire a spectroscopic signature from nanoscale biological structures. This should facilitate a more precise diagnosis of single viral particles and other micro-organisms previously localized and visualized in the TEM. © 2014 The Society for Applied Microbiology.

  5. Ion extraction capabilities of two-grid accelerator systems. [for spacecraft propulsion

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. A large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current is presented. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high.

  6. Groundwater-quality data in the Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts study unit, 2008-2010--Results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Wright, Michael T.; Beuttel, Brandon S.; Belitz, Kenneth

    2012-01-01

    Groundwater quality in the 12,103-square-mile Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts (CLUB) study unit was investigated by the U.S. Geological Survey (USGS) from December 2008 to March 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program's Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The CLUB study unit was the twenty-eighth study unit to be sampled as part of the GAMA-PBP. The GAMA CLUB study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer systems, and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer systems (hereinafter referred to as primary aquifers) are defined as parts of aquifers corresponding to the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the CLUB study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to surficial contamination. In the CLUB study unit, groundwater samples were collected from 52 wells in 3 study areas (Borrego Valley, Central Desert, and Low-Use Basins of the Mojave and Sonoran Deserts) in San Bernardino, Riverside, Kern, San Diego, and Imperial Counties. Forty-nine of the wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and three wells were selected to aid in evaluation of water-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally-occurring inorganic constituents (trace elements, nutrients, major and minor ions, silica, total dissolved solids [TDS], alkalinity, and species of inorganic chromium), and radioactive constituents (radon-222, radium isotopes, and gross alpha and gross beta radioactivity). Naturally-occurring isotopes (stable isotopes of hydrogen, oxygen, boron, and strontium in water, stable isotopes of carbon in dissolved inorganic carbon, activities of tritium, and carbon-14 abundance) and dissolved noble gases also were measured to help identify the sources and ages of sampled groundwater. In total, 223 constituents and 12 water-quality indicators were investigated. Three types of quality-control samples (blanks, replicates, and matrix spikes) were collected at up to 10 percent of the wells in the CLUB study unit, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Field blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection procedures was not a significant source of bias in the data for the groundwater samples. Replicate samples generally were within the limits of acceptable analytical reproducibility. Median matrix-spike recoveries were within the acceptable range (70 to 130 percent) for approximately 85 percent of the compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, and (or) blended with other waters to maintain water quality. Regulatory benchmarks apply to water that is delivered to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwater were compared with regulatory and non-regulatory health-based benchmarks established by the U.S. Environmental Protection Agency (USEPA) and CDPH, and to non-regulatory benchmarks established for aesthetic concerns by CDPH. Comparisons between data collected for this study and benchmarks for drinking water are for illustrative purposes only and are not indicative of compliance or non-compliance with those benchmarks. Most inorganic constituents detected in groundwater samples from the 49 grid wells were detected at concentrations less than drinking-water benchmarks. In addition, all detections of organic constituents from the CLUB study-unit grid-well samples were less than health-based benchmarks. In total, VOCs were detected in 17 of the 49 grid wells sampled (approximately 35 percent), pesticides and pesticide degradates were detected in 5 of the 47 grid wells sampled (approximately 11 percent), and perchlorate was detected in 41 of 49 grid wells sampled (approximately 84 percent). Trace elements, major and minor ions, and nutrients were sampled for at 39 grid wells, and radioactive constituents were sampled for at 23 grid wells; most detected concentrations were less than health-based benchmarks. Exceptions in the grid-well samples include seven detections of arsenic greater than the USEPA maximum contaminant level (MCL-US) of 10 micrograms per liter (μg/L); four detections of boron greater than the CDPH notification level (NL-CA) of 1,000 μg/L; six detections of molybdenum greater than the USEPA lifetime health advisory level (HAL-US) of 40 μg/L; two detections of uranium greater than the MCL-US of 30 μg/L; nine detections of fluoride greater than the CDPH maximum contaminant level (MCL-CA) of 2 milligrams per liter (mg/L); one detection of nitrite plus nitrate (NO2-+NO3-), as nitrogen, greater than the MCL-US of 10 mg/L; and four detections of gross alpha radioactivity (72-hour count), and one detection of gross alpha radioactivity (30-day count), greater than the MCL-US of 15 picocuries per liter. Results for constituents with non-regulatory benchmarks set for aesthetic concerns showed that a manganese concentration greater than the CDPH secondary maximum contaminant level (SMCL-CA) of 50 μg/L was detected in one grid well. Chloride concentrations greater than the recommended SMCL-CA benchmark of 250 mg/L were detected in three grid wells, and one of these wells also had a concentration that was greater than the upper SMCL-CA benchmark of 500 mg/L. Sulfate concentrations greater than the recommended SMCL-CA benchmark of 250 mg/L were measured in six grid wells. TDS concentrations greater than the SMCL-CA recommended benchmark of 500 mg/L were measured in 20 grid wells, and concentrations in 2 of these wells also were greater than the SMCL-CA upper benchmark of 1,000 mg/L.

  7. Facial recognition using simulated prosthetic pixelized vision.

    PubMed

    Thompson, Robert W; Barnett, G David; Humayun, Mark S; Dagnelie, Gislin

    2003-11-01

    To evaluate a model of simulated pixelized prosthetic vision using noncontiguous circular phosphenes, to test the effects of phosphene and grid parameters on facial recognition. A video headset was used to view a reference set of four faces, followed by a partially averted image of one of those faces viewed through a square pixelizing grid that contained 10x10 to 32x32 dots separated by gaps. The grid size, dot size, gap width, dot dropout rate, and gray-scale resolution were varied separately about a standard test condition, for a total of 16 conditions. All tests were first performed at 99% contrast and then repeated at 12.5% contrast. Discrimination speed and performance were influenced by all stimulus parameters. The subjects achieved highly significant facial recognition accuracy for all high-contrast tests except for grids with 70% random dot dropout and two gray levels. In low-contrast tests, significant facial recognition accuracy was achieved for all but the most adverse grid parameters: total grid area less than 17% of the target image, 70% dropout, four or fewer gray levels, and a gap of 40.5 arcmin. For difficult test conditions, a pronounced learning effect was noticed during high-contrast trials, and a more subtle practice effect on timing was evident during subsequent low-contrast trials. These findings suggest that reliable face recognition with crude pixelized grids can be learned and may be possible, even with a crude visual prosthesis.

  8. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    school. Andreas Schmitt spent hours this summer estimating grid voltage-under conditions when minimal Jiang of the State Grid Energy Research Institute in Beijing, China, to produce a review article that . The article, "Grid-Level Application of Electrical Energy Storage: Example Use Cases in the

  9. CFL3D, FUN3d, and NSU3D Contributions to the Fifth Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Laflin, Kelly R.; Chaffin, Mark S.; Powell, Nicholas; Levy, David W.

    2013-01-01

    Results presented at the Fifth Drag Prediction Workshop using CFL3D, FUN3D, and NSU3D are described. These are calculations on the workshop provided grids and drag adapted grids. The NSU3D results have been updated to reflect an improvement to skin friction calculation on skewed grids. FUN3D results generated after the workshop are included for custom participant generated grids and a grid from a previous workshop. Uniform grid refinement at the design condition shows a tight grouping in calculated drag, where the variation in the pressure component of drag is larger than the skin friction component. At this design condition, A fine-grid drag value was predicted with a smaller drag adjoint adapted grid via tetrahedral adaption to a metric and mixed-element subdivision. The buffet study produced larger variation than the design case, which is attributed to large differences in the predicted side-of-body separation extent. Various modeling and discretization approaches had a strong impact on predicted side-of-body separation. This large wing root separation bubble was not observed in wind tunnel tests indicating that more work is necessary in modeling wing root juncture flows to predict experiments.

  10. Models of very-low-mass stars, brown dwarfs and exoplanets.

    PubMed

    Allard, F; Homeier, D; Freytag, B

    2012-06-13

    Within the next few years, GAIA and several instruments aiming to image extrasolar planets will be ready. In parallel, low-mass planets are being sought around red dwarfs, which offer more favourable conditions, for both radial velocity detection and transit studies, than solar-type stars. In this paper, the authors of a model atmosphere code that has allowed the detection of water vapour in the atmosphere of hot Jupiters review recent advances in modelling the stellar to substellar transition. The revised solar oxygen abundances and cloud model allow the photometric and spectroscopic properties of this transition to be reproduced for the first time. Also presented are highlight results of a model atmosphere grid for stars, brown dwarfs and extrasolar planets.

  11. First real-time detection of surface dust in a tokamak.

    PubMed

    Skinner, C H; Rais, B; Roquemore, A L; Kugel, H W; Marsala, R; Provost, T

    2010-10-01

    The first real-time detection of surface dust inside a tokamak was made using an electrostatic dust detector. A fine grid of interlocking circuit traces was installed in the NSTX vessel and biased to 50 V. Impinging dust particles created a temporary short circuit and the resulting current pulse was recorded by counting electronics. The techniques used to increase the detector sensitivity by a factor of ×10,000 to match NSTX dust levels while suppressing electrical pickup are presented. The results were validated by comparison to laboratory measurements, by the null signal from a covered detector that was only sensitive to pickup, and by the dramatic increase in signal when Li particles were introduced for wall conditioning purposes.

  12. A theory of utility conditionals: Paralogical reasoning from decision-theoretic leakage.

    PubMed

    Bonnefon, Jean-François

    2009-10-01

    Many "if p, then q" conditionals have decision-theoretic features, such as antecedents or consequents that relate to the utility functions of various agents. These decision-theoretic features leak into reasoning processes, resulting in various paralogical conclusions. The theory of utility conditionals offers a unified account of the various forms that this phenomenon can take. The theory is built on 2 main components: (1) a representational tool (the utility grid), which summarizes in compact form the decision-theoretic features of a conditional, and (2) a set of folk axioms of decision, which reflect reasoners' beliefs about the way most agents make their decisions. Applying the folk axioms to the utility grid of a conditional allows for the systematic prediction of the paralogical conclusions invited by the utility grid's decision-theoretic features. The theory of utility conditionals significantly extends the scope of current theories of conditional inference and moves reasoning research toward a greater integration with decision-making research.

  13. Regional and seasonal estimates of fractional storm coverage based on station precipitation observations

    NASA Technical Reports Server (NTRS)

    Gong, Gavin; Entekhabi, Dara; Salvucci, Guido D.

    1994-01-01

    Simulated climates using numerical atmospheric general circulation models (GCMs) have been shown to be highly sensitive to the fraction of GCM grid area assumed to be wetted during rain events. The model hydrologic cycle and land-surface water and energy balance are influenced by the parameter bar-kappa, which is the dimensionless fractional wetted area for GCM grids. Hourly precipitation records for over 1700 precipitation stations within the contiguous United States are used to obtain observation-based estimates of fractional wetting that exhibit regional and seasonal variations. The spatial parameter bar-kappa is estimated from the temporal raingauge data using conditional probability relations. Monthly bar-kappa values are estimated for rectangular grid areas over the contiguous United States as defined by the Goddard Institute for Space Studies 4 deg x 5 deg GCM. A bias in the estimates is evident due to the unavoidably sparse raingauge network density, which causes some storms to go undetected by the network. This bias is corrected by deriving the probability of a storm escaping detection by the network. A Monte Carlo simulation study is also conducted that consists of synthetically generated storm arrivals over an artificial grid area. It is used to confirm the bar-kappa estimation procedure and to test the nature of the bias and its correction. These monthly fractional wetting estimates, based on the analysis of station precipitation data, provide an observational basis for assigning the influential parameter bar-kappa in GCM land-surface hydrology parameterizations.

  14. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions.

    PubMed

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method.

  15. An improved synchronous reference frame current control strategy for a photovoltaic grid-connected inverter under unbalanced and nonlinear load conditions

    PubMed Central

    Naderipour, Amirreza; Asuhaimi Mohd Zin, Abdullah; Bin Habibuddin, Mohd Hafiz; Miveh, Mohammad Reza; Guerrero, Josep M.

    2017-01-01

    In recent years, renewable energy sources have been considered the most encouraging resources for grid and off-grid power generation. This paper presents an improved current control strategy for a three-phase photovoltaic grid-connected inverter (GCI) under unbalanced and nonlinear load conditions. It is challenging to suppress the harmonic content in the output current below a pre-set value in the GCI. It is also difficult to compensate for unbalanced loads even when the grid is under disruption due to total harmonic distortion (THD) and unbalanced loads. The primary advantage and objective of this method is to effectively compensate for the harmonic current content of the grid current and microgrid without the use of any compensation devices, such as active and passive filters. This method leads to a very low THD in both the GCI currents and the current exchanged with the grid. The control approach is designed to control the active and reactive power and harmonic current compensation, and it also corrects the system unbalance. The proposed control method features the synchronous reference frame (SRF) method. Simulation results are presented to demonstrate the effective performance of the proposed method. PMID:28192436

  16. Refinement Of Hexahedral Cells In Euler Flow Computations

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.

    1996-01-01

    Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.

  17. Rapid Airplane Parametric Input Design (RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1995-01-01

    RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool ADIFOR to the grid generation program. The output of ADIFOR is a new source code containing the old code plus expressions for derivatives of specified dependent variables (grid coordinates) with respect to specified independent variables (design parameters). The RAPID methodology and software provide a means of rapidly defining numerical prototypes, grids, and grid sensitivity of a class of airplane configurations. This technology and software is highly useful for CFD research for preliminary design and optimization processes.

  18. Analysis of a grid ionospheric vertical delay and its bounding errors over West African sub-Saharan region

    NASA Astrophysics Data System (ADS)

    Abe, O. E.; Otero Villamide, X.; Paparini, C.; Radicella, S. M.; Nava, B.

    2017-02-01

    Investigating the effects of the Equatorial Ionization Anomaly (EIA) ionosphere and space weather on Global Navigation Satellite Systems (GNSS) is very crucial, and a key to successful implementation of a GNSS augmentation system (SBAS) over the equatorial and low-latitude regions. A possible ionospheric vertical delay (GIVD, Grid Ionospheric Vertical Delay) broadcast at a Ionospheric Grid Point (IGP) and its confidence bounds errors (GIVE, Grid Ionospheric Vertical Error) are analyzed and compared with the ionospheric vertical delay estimated at a nearby user location over the West African Sub-Saharan region. Since African sub-Saharan ionosphere falls within the EIA region, which is always characterized by a disturbance in form of irregularities after sunset, and the disturbance is even more during the geomagnetically quiet conditions unlike middle latitudes, the need to have a reliable ionospheric threat model to cater for the nighttime ionospheric plasma irregularities for the future SBAS user is essential. The study was done during the most quiet and disturbed geomagnetic conditions on October 2013. A specific low latitude EGNOS-like algorithm, based on single thin layer model, was engaged to simulate SBAS message in the study. Our preliminary results indicate that, the estimated GIVE detects and protects a potential SBAS user against sampled ionospheric plasma irregularities over the region with a steep increment in GIVE to non-monitored after local sunset to post midnight. This corresponds to the onset of the usual ionospheric plasma irregularities in the region. The results further confirm that the effects of the geomagnetic storms on the ionosphere are not consistent in affecting GNSS applications over the region. Finally, this paper suggests further work to be investigated in order to improve the threat integrity model activity, and thereby enhance the availability of the future SBAS over African sub-Saharan region.

  19. Fault tolerance in computational grids: perspectives, challenges, and issues.

    PubMed

    Haider, Sajjad; Nazir, Babar

    2016-01-01

    Computational grids are established with the intention of providing shared access to hardware and software based resources with special reference to increased computational capabilities. Fault tolerance is one of the most important issues faced by the computational grids. The main contribution of this survey is the creation of an extended classification of problems that incur in the computational grid environments. The proposed classification will help researchers, developers, and maintainers of grids to understand the types of issues to be anticipated. Moreover, different types of problems, such as omission, interaction, and timing related have been identified that need to be handled on various layers of the computational grid. In this survey, an analysis and examination is also performed pertaining to the fault tolerance and fault detection mechanisms. Our conclusion is that a dependable and reliable grid can only be established when more emphasis is on fault identification. Moreover, our survey reveals that adaptive and intelligent fault identification, and tolerance techniques can improve the dependability of grid working environments.

  20. Construction and application research of Three-dimensional digital power grid in Southwest China

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Zhou, Hong; You, Chuan; Jiang, Li; Xin, Weidong

    2018-01-01

    With the rapid development of Three-dimensional (3D) digital design technology in the field of power grid construction, the data foundation and technical means of 3D digital power grid construction approaches perfection. 3D digital power grid has gradually developed into an important part of power grid construction and management. In view of the complicated geological conditions in Southwest China and the difficulty in power grid construction and management, this paper is based on the data assets of Southwest power grid, and it aims at establishing a 3D digital power grid in Southwest China to provide effective support for power grid construction and operation management. This paper discusses the data architecture, technical architecture and system design and implementation process of the 3D digital power grid construction through teasing the key technology of 3D digital power grid. The application of power grid data assets management, transmission line corridor planning, geological hazards risk assessment, environmental impact assessment in 3D digital power grid are also discussed and analysed.

  1. MaGate Simulator: A Simulation Environment for a Decentralized Grid Scheduler

    NASA Astrophysics Data System (ADS)

    Huang, Ye; Brocco, Amos; Courant, Michele; Hirsbrunner, Beat; Kuonen, Pierre

    This paper presents a simulator for of a decentralized modular grid scheduler named MaGate. MaGate’s design emphasizes scheduler interoperability by providing intelligent scheduling serving the grid community as a whole. Each MaGate scheduler instance is able to deal with dynamic scheduling conditions, with continuously arriving grid jobs. Received jobs are either allocated on local resources, or delegated to other MaGates for remote execution. The proposed MaGate simulator is based on GridSim toolkit and Alea simulator, and abstracts the features and behaviors of complex fundamental grid elements, such as grid jobs, grid resources, and grid users. Simulation of scheduling tasks is supported by a grid network overlay simulator executing distributed ant-based swarm intelligence algorithms to provide services such as group communication and resource discovery. For evaluation, a comparison of behaviors of different collaborative policies among a community of MaGates is provided. Results support the use of the proposed approach as a functional ready grid scheduler simulator.

  2. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improvemore » the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.« less

  3. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  4. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramer, L. M.; Rounds, J.; Burleyson, C. D.

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions is examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and datasets were examined. A penalized logistic regression model fit at the operation-zone levelmore » was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at different time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. The methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less

  5. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramer, Lisa M.; Rounds, J.; Burleyson, C. D.

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions were examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and combinations of predictive variables were examined. A penalized logistic regression model which wasmore » fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at various time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. In conclusion, the methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less

  6. DPW-VI Results Using FUN3D with Focus on k-kL-MEAH2015 (k-kL) Turbulence Model

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, K. S.; Carlson, Jan-Renee; Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Park, Michael A.

    2017-01-01

    The Common Research Model wing-body configuration is investigated with the k-kL-MEAH2015 turbulence model implemented in FUN3D. This includes results presented at the Sixth Drag Prediction Workshop and additional results generated after the workshop with a nonlinear Quadratic Constitutive Relation (QCR) variant of the same turbulence model. The workshop provided grids are used, and a uniform grid refinement study is performed at the design condition. A large variation between results with and without a reconstruction limiter is exhibited on "medium" grid sizes, indicating that the medium grid size is too coarse for drawing conclusions in comparison with experiment. This variation is reduced with grid refinement. At a fixed angle of attack near design conditions, the QCR variant yielded decreased lift and drag compared with the linear eddy-viscosity model by an amount that was approximately constant with grid refinement. The k-kL-MEAH2015 turbulence model produced wing root junction flow behavior consistent with wind tunnel observations.

  7. Ion extraction capabilities of two-grid accelerator systems. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rovang, D. C.; Wilbur, P. J.

    1984-01-01

    An experimental investigation into the ion extraction capabilities of two-grid accelerator systems common to electrostatic ion thrusters is described. This work resulted in a large body of experimental data which facilitates the selection of the accelerator system geometries and operating parameters necessary to maximize the extracted ion current. Results suggest that the impingement-limited perveance is not dramatically affected by reductions in screen hole diameter to 0.5 mm. Impingement-limited performance is shown to depend most strongly on grid separation distance, accelerator hole diameter ratio, the discharge-to-total accelerating voltage ratio, and the net-to-total accelerating voltage ratio. Results obtained at small grid separation ratios suggest a new grid operating condition where high beam current per hole levels are achieved at a specified net accelerating voltage. It is shown that this operating condition is realized at an optimum ratio of net-to-total accelerating voltage ratio which is typically quite high. The apparatus developed for this study is also shown to be well suited measuring the electron backstreaming and electrical breakdown characteristics of two-grid accelerator systems.

  8. Evaluating penalized logistic regression models to predict Heat-Related Electric grid stress days

    DOE PAGES

    Bramer, Lisa M.; Rounds, J.; Burleyson, C. D.; ...

    2017-09-22

    Understanding the conditions associated with stress on the electricity grid is important in the development of contingency plans for maintaining reliability during periods when the grid is stressed. In this paper, heat-related grid stress and the relationship with weather conditions were examined using data from the eastern United States. Penalized logistic regression models were developed and applied to predict stress on the electric grid using weather data. The inclusion of other weather variables, such as precipitation, in addition to temperature improved model performance. Several candidate models and combinations of predictive variables were examined. A penalized logistic regression model which wasmore » fit at the operation-zone level was found to provide predictive value and interpretability. Additionally, the importance of different weather variables observed at various time scales were examined. Maximum temperature and precipitation were identified as important across all zones while the importance of other weather variables was zone specific. In conclusion, the methods presented in this work are extensible to other regions and can be used to aid in planning and development of the electrical grid.« less

  9. Improving Cyber-Security of Smart Grid Systems via Anomaly Detection and Linguistic Domain Knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Milos Manic

    The planned large scale deployment of smart grid network devices will generate a large amount of information exchanged over various types of communication networks. The implementation of these critical systems will require appropriate cyber-security measures. A network anomaly detection solution is considered in this work. In common network architectures multiple communications streams are simultaneously present, making it difficult to build an anomaly detection solution for the entire system. In addition, common anomaly detection algorithms require specification of a sensitivity threshold, which inevitably leads to a tradeoff between false positives and false negatives rates. In order to alleviate these issues, thismore » paper proposes a novel anomaly detection architecture. The designed system applies the previously developed network security cyber-sensor method to individual selected communication streams allowing for learning accurate normal network behavior models. Furthermore, the developed system dynamically adjusts the sensitivity threshold of each anomaly detection algorithm based on domain knowledge about the specific network system. It is proposed to model this domain knowledge using Interval Type-2 Fuzzy Logic rules, which linguistically describe the relationship between various features of the network communication and the possibility of a cyber attack. The proposed method was tested on experimental smart grid system demonstrating enhanced cyber-security.« less

  10. Operation of an InGrid based X-ray detector at the CAST experiment

    NASA Astrophysics Data System (ADS)

    Krieger, Christoph; Desch, Klaus; Kaminski, Jochen; Lupberger, Michael

    2018-02-01

    The CERN Axion Solar Telescope (CAST) is searching for axions and other particles which could be candidates for DarkMatter and even Dark Energy. These particles could be produced in the Sun and detected by a conversion into soft X-ray photons inside a strong magnetic field. In order to increase the sensitivity for physics beyond the Standard Model, detectors with a threshold below 1 keV as well as efficient background rejection methods are required to compensate for low energies and weak couplings resulting in very low detection rates. Those criteria are fulfilled by a detector utilizing the combination of a pixelized readout chip with an integrated Micromegas stage. These InGrid (Integrated Grid) devices can be build by photolithographic postprocessing techniques, resulting in a close to perfect match of grid and pixels facilitating the detection of single electrons on the chip surface. The high spatial resolution allows for energy determination by simple electron counting as well as for an event-shape based analysis as background rejection method. Tests at an X-ray generator revealed the energy threshold of an InGrid based X-ray detector to be well below the carbon Kα line at 277 eV. After the successful demonstration of the detectors key features, the detector was mounted at one of CAST's four detector stations behind an X-ray telescope in 2014. After several months of successful operation without any detector related interruptions, the InGrid based X-ray detector continues data taking at CAST in 2015. During operation at the experiment, background rates in the order of 10-5 keV-1 cm-2 s-1 have been achieved by application of a likelihood based method discriminating the non-photon background originating mostly from cosmic rays. For continued operation in 2016, an upgraded InGrid based detector is to be installed among other improvements including decoupling and sampling of the signal induced on the grid as well as a veto scintillator to further lower the observed background rates and improving sensitivity.

  11. High-Order Accurate Solutions to the Helmholtz Equation in the Presence of Boundary Singularities

    NASA Astrophysics Data System (ADS)

    Britt, Darrell Steven, Jr.

    Problems of time-harmonic wave propagation arise in important fields of study such as geological surveying, radar detection/evasion, and aircraft design. These often involve highfrequency waves, which demand high-order methods to mitigate the dispersion error. We propose a high-order method for computing solutions to the variable-coefficient inhomogeneous Helmholtz equation in two dimensions on domains bounded by piecewise smooth curves of arbitrary shape with a finite number of boundary singularities at known locations. We utilize compact finite difference (FD) schemes on regular structured grids to achieve highorder accuracy due to their efficiency and simplicity, as well as the capability to approximate variable-coefficient differential operators. In this work, a 4th-order compact FD scheme for the variable-coefficient Helmholtz equation on a Cartesian grid in 2D is derived and tested. The well known limitation of finite differences is that they lose accuracy when the boundary curve does not coincide with the discretization grid, which is a severe restriction on the geometry of the computational domain. Therefore, the algorithm presented in this work combines high-order FD schemes with the method of difference potentials (DP), which retains the efficiency of FD while allowing for boundary shapes that are not aligned with the grid without sacrificing the accuracy of the FD scheme. Additionally, the theory of DP allows for the universal treatment of the boundary conditions. One of the significant contributions of this work is the development of an implementation that accommodates general boundary conditions (BCs). In particular, Robin BCs with discontinuous coefficients are studied, for which we introduce a piecewise parameterization of the boundary curve. Problems with discontinuities in the boundary data itself are also studied. We observe that the design convergence rate suffers whenever the solution loses regularity due to the boundary conditions. This is because the FD scheme is only consistent for classical solutions of the PDE. For this reason, we implement the method of singularity subtraction as a means for restoring the design accuracy of the scheme in the presence of singularities at the boundary. While this method is well studied for low order methods and for problems in which singularities arise from the geometry (e.g., corners), we adapt it to our high-order scheme for curved boundaries via a conformal mapping and show that it can also be used to restore accuracy when the singularity arises from the BCs rather than the geometry. Altogether, the proposed methodology for 2D boundary value problems is computationally efficient, easily handles a wide class of boundary conditions and boundary shapes that are not aligned with the discretization grid, and requires little modification for solving new problems.

  12. Three-dimensional elliptic grid generation for an F-16

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.

    1988-01-01

    A case history depicting the effort to generate a computational grid for the simulation of transonic flow about an F-16 aircraft at realistic flight conditions is presented. The flow solver for which this grid is designed is a zonal one, using the Reynolds averaged Navier-Stokes equations near the surface of the aircraft, and the Euler equations in regions removed from the aircraft. A body conforming global grid, suitable for the Euler equation, is first generated using 3-D Poisson equations having inhomogeneous terms modeled after the 2-D GRAPE code. Regions of the global grid are then designated for zonal refinement as appropriate to accurately model the flow physics. Grid spacing suitable for solution of the Navier-Stokes equations is generated in the refinement zones by simple subdivision of the given coarse grid intervals. That grid generation project is described, with particular emphasis on the global coarse grid.

  13. Groundwater-quality data in the Cascade Range and Modoc Plateau study unit, 2010-Results from the California GAMA Program

    USGS Publications Warehouse

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the 39,000-square-kilometer Cascade Range and Modoc Plateau (CAMP) study unit was investigated by the U.S. Geological Survey (USGS) from July through October 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program’s Priority Basin Project (PBP). The GAMA PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The CAMP study unit is the thirty-second study unit to be sampled as part of the GAMA PBP. The GAMA CAMP study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system and to facilitate statistically consistent comparisons of untreated-groundwater quality throughout California. The primary aquifer system is defined as that part of the aquifer corresponding to the open or screened intervals of wells listed in the California Department of Public Health (CDPH) database for the CAMP study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from the quality of groundwater in the primary aquifer system; shallow groundwater may be more vulnerable to surficial contamination. In the CAMP study unit, groundwater samples were collected from 90 wells and springs in 6 study areas (Sacramento Valley Eastside, Honey Lake Valley, Cascade Range and Modoc Plateau Low Use Basins, Shasta Valley and Mount Shasta Volcanic Area, Quaternary Volcanic Areas, and Tertiary Volcanic Areas) in Butte, Lassen, Modoc, Plumas, Shasta, Siskiyou, and Tehama Counties. Wells and springs were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Groundwater samples were analyzed for field water-quality indicators, organic constituents, perchlorate, inorganic constituents, radioactive constituents, and microbial indicators. Naturally occurring isotopes and dissolved noble gases also were measured to provide a dataset that will be used to help interpret the sources and ages of the sampled groundwater in subsequent reports. In total, 221 constituents were investigated for this study. Three types of quality-control samples (blanks, replicates, and matrix spikes) were collected at approximately 10 percent of the wells in the CAMP study unit, and the results for these samples were used to evaluate the quality of the data for the groundwater samples. Blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection procedures was not a significant source of bias in the data for the groundwater samples. Replicate samples generally were within the limits of acceptable analytical reproducibility. Matrix-spike recoveries were within the acceptable range (70 to 130 percent) for approximately 90 percent of the compounds. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, untreated groundwater typically is treated, disinfected, and (or) blended with other waters to maintain water quality. Regulatory benchmarks apply to water that is served to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwater were compared with regulatory and non-regulatory health-based benchmarks established by the U.S. Environmental Protection Agency (USEPA) and CDPH, and to non-regulatory benchmarks established for aesthetic concerns by CDPH. Comparisons between data collected for this study and benchmarks for drinking water are for illustrative purposes only and are not indicative of compliance or non-compliance with those benchmarks. All organic constituents and most inorganic constituents that were detected in groundwater samples from the 90 grid wells in the CAMP study unit were detected at concentrations less than drinking-water benchmarks. Of the 148 organic constituents analyzed, 27 were detected in groundwater samples; concentrations of all detected constituents were less than regulatory and nonregulatory health-based benchmarks, and all were less than 1/10 of benchmark levels. One or more organic constituents were detected in 52 percent of the grid wells in the CAMP study unit: VOCs were detected in 30 percent, and pesticides and pesticide degradates were detected in 31 percent. Trace elements, major ions, nutrients, and radioactive constituents were sampled for at 90 grid wells in the CAMP study unit, and most detected concentrations were less than health-based benchmarks. Exceptions include three detections of arsenic greater than the USEPA maximum contaminant level (MCL-US) of 10 micrograms per liter (µg/L), two detections of boron greater than the CDPH notification level (NL-CA) of 1,000 µg/L, two detections of molybdenum greater than the USEPA lifetime health advisory level (HAL-US) of 40 µg/L, two detections of vanadium greater than the CDPH notification level (NL-CA) of 50 µg/L, one detection of nitrate, as nitrogen, greater than the MCL-US of 10 milligrams per liter (mg/L), two detections of uranium greater than the MCL-US of 30 µg/L and the MCL-CA of 20 picocuries per liter (pCi/L), one detection of radon-222 greater than the proposed MCL-US of 4,000 pCi/L, and two detections of gross alpha particle activity greater than the MCL-US of 15 pCi/L. Results for inorganic constituents with non-regulatory benchmarks set for aesthetic concerns showed that iron concentrations greater than the CDPH secondary maximum contaminant level (SMCL-CA) of 300 µg/L were detected in four grid wells. Manganese concentrations greater than the SMCL-CA of 50 µg/L were detected in nine grid wells. Chloride and TDS were detected at concentrations greater than the upper SMCL-CA benchmarks of 500 mg/L and 1,000 mg/L, respectively, in one grid well. Microbial indicators (total coliform and Escherichia coli [E. coli]) were detected in 11 percent of the 83 grid wells sampled for these analyses in the CAMP study unit. The presence of total coliform was detected in nine grid wells, and the presence of E. coli was detected in one of these same grid wells.

  14. SCIENTIFIC UNCERTAINTIES IN ATMOSPHERIC MERCURY MODELS III: BOUNDARY AND INITIAL CONDITIONS, MODEL GRID RESOLUTION, AND HG(II) REDUCTION MECHANISMS

    EPA Science Inventory

    In this study we investigate the CMAQ model response in terms of simulated mercury concentration and deposition to boundary/initial conditions (BC/IC), model grid resolution (12- versus 36-km), and two alternative Hg(II) reduction mechanisms. The model response to the change of g...

  15. Comments on numerical solution of boundary value problems of the Laplace equation and calculation of eigenvalues by the grid method

    NASA Technical Reports Server (NTRS)

    Lyusternik, L. A.

    1980-01-01

    The mathematics involved in numerically solving for the plane boundary value of the Laplace equation by the grid method is developed. The approximate solution of a boundary value problem for the domain of the Laplace equation by the grid method consists of finding u at the grid corner which satisfies the equation at the internal corners (u=Du) and certain boundary value conditions at the boundary corners.

  16. Estimates of Monthly Ground-Water Recharge to the Yakima River Basin Aquifer System, Washington, 1960-2001, for Current Land-Use and Land-Cover Conditions

    USGS Publications Warehouse

    Vaccaro, J.J.; Olsen, T.D.

    2007-01-01

    Unique ID grid with a unique value per Hydrologic Response Unit (HRU) per basin in reference to the estimated ground-water recharge for current conditions in the Yakima Basin Aquifer System, (USGS report SIR 2007-5007). Total 78,144 unique values. This grid made it easy to provide estimates of monthly ground-water recharge for water years 1960-2001in an electronic format for water managers, planners, and hydrologists, that could be related back to a spatially referenced grid by the unique ID.

  17. Landslides Monitoring on Salt Deposits Using Geophysical Methods, Case study - Slanic Prahova, Romania

    NASA Astrophysics Data System (ADS)

    Ovidiu, Avram; Rusu, Emil; Maftei, Raluca-Mihaela; Ulmeanu, Antonio; Scutelnicu, Ioan; Filipciuc, Constantina; Tudor, Elena

    2017-12-01

    Electrometry is most frequently applied geophysical method to examine dynamical phenomena related to the massive salt presence due to resistivity contrasts between salt, salt breccia and geological covering formations. On the vertical resistivity sections obtained with VES devices these three compartments are clearly differentiates by high resistivity for the massive salt, very low for salt breccia and variable for geological covering formations. When the land surface is inclined, shallow formations are moving gravitationally on the salt back, producing a landslide. Landslide monitoring involves repeated periodically measurements of geoelectrical profiles into a grid covering the slippery surface, in the same conditions (climate, electrodes position, instrument and measurement parameters). The purpose of monitoring landslides in Slanic Prahova area, was to detect the changes in resistivity distribution profiles to superior part of subsoil measured in 2014 and 2015. Measurement grid include several representative cross sections in susceptibility to landslides point of view. The results are graphically represented by changing the distribution of topography and resistivity differences between the two sets of geophysical measurements.

  18. A Testbed Environment for Buildings-to-Grid Cyber Resilience Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridhar, Siddharth; Ashok, Aditya; Mylrea, Michael E.

    The Smart Grid is characterized by the proliferation of advanced digital controllers at all levels of its operational hierarchy from generation to end consumption. Such controllers within modern residential and commercial buildings enable grid operators to exercise fine-grained control over energy consumption through several emerging Buildings-to-Grid (B2G) applications. Though this capability promises significant benefits in terms of operational economics and improved reliability, cybersecurity weaknesses in the supporting infrastructure could be exploited to cause a detrimental effect and this necessitates focused research efforts on two fronts. First, the understanding of how cyber attacks in the B2G space could impact grid reliabilitymore » and to what extent. Second, the development and validation of cyber-physical application-specific countermeasures that are complementary to traditional infrastructure cybersecurity mechanisms for enhanced cyber attack detection and mitigation. The PNNL B2G testbed is currently being developed to address these core research needs. Specifically, the B2G testbed combines high-fidelity buildings+grid simulators, industry-grade building automation and Supervisory Control and Data Acquisition (SCADA) systems in an integrated, realistic, and reconfigurable environment capable of supporting attack-impact-detection-mitigation experimentation. In this paper, we articulate the need for research testbeds to model various B2G applications broadly by looking at the end-to-end operational hierarchy of the Smart Grid. Finally, the paper not only describes the architecture of the B2G testbed in detail, but also addresses the broad spectrum of B2G resilience research it is capable of supporting based on the smart grid operational hierarchy identified earlier.« less

  19. Synchrophasor Sensor Networks for Grid Communication and Protection.

    PubMed

    Gharavi, Hamid; Hu, Bin

    2017-07-01

    This paper focuses primarily on leveraging synchronized current/voltage amplitudes and phase angle measurements to foster new categories of applications, such as improving the effectiveness of grid protection and minimizing outage duration for distributed grid systems. The motivation for such an application arises from the fact that with the support of communication, synchronized measurements from multiple sites in a grid network can greatly enhance the accuracy and timeliness of identifying the source of instabilities. The paper first provides an overview of synchrophasor networks and then presents techniques for power quality assessment, including fault detection and protection. To achieve this we present a new synchrophasor data partitioning scheme that is based on the formation of a joint space and time observation vector. Since communication is an integral part of synchrophasor networks, the newly adopted wireless standard for machine-to-machine (M2M) communication, known as IEEE 802.11ah, has been investigated. The paper also presents a novel implementation of a hardware in the loop testbed for real-time performance evaluation. The purpose is to illustrate the use of both hardware and software tools to verify the performance of synchrophasor networks under more realistic environments. The testbed is a combination of grid network modeling, and an Emulab-based communication network. The combined grid and communication network is then used to assess power quality for fault detection and location using the IEEE 39-bus and 390-bus systems.

  20. Synchrophasor Sensor Networks for Grid Communication and Protection

    PubMed Central

    Gharavi, Hamid

    2017-01-01

    This paper focuses primarily on leveraging synchronized current/voltage amplitudes and phase angle measurements to foster new categories of applications, such as improving the effectiveness of grid protection and minimizing outage duration for distributed grid systems. The motivation for such an application arises from the fact that with the support of communication, synchronized measurements from multiple sites in a grid network can greatly enhance the accuracy and timeliness of identifying the source of instabilities. The paper first provides an overview of synchrophasor networks and then presents techniques for power quality assessment, including fault detection and protection. To achieve this we present a new synchrophasor data partitioning scheme that is based on the formation of a joint space and time observation vector. Since communication is an integral part of synchrophasor networks, the newly adopted wireless standard for machine-to-machine (M2M) communication, known as IEEE 802.11ah, has been investigated. The paper also presents a novel implementation of a hardware in the loop testbed for real-time performance evaluation. The purpose is to illustrate the use of both hardware and software tools to verify the performance of synchrophasor networks under more realistic environments. The testbed is a combination of grid network modeling, and an Emulab-based communication network. The combined grid and communication network is then used to assess power quality for fault detection and location using the IEEE 39-bus and 390-bus systems. PMID:28890553

  1. White Light Schlieren Optics Using Bacteriorhodopsin as an Adaptive Image Grid

    NASA Technical Reports Server (NTRS)

    Peale, Robert; Ruffin, Boh; Donahue, Jeff; Barrett, Carolyn

    1996-01-01

    A Schlieren apparatus using a bacteriorhodopsin film as an adaptive image grid with white light illumination is demonstrated for the first time. The time dependent spectral properties of the film are characterized. Potential applications include a single-ended Schlieren system for leak detection.

  2. Patched-grid calculations with the Euler and Navier-Stokes equations: Theory and applications

    NASA Technical Reports Server (NTRS)

    Rai, M. M.

    1986-01-01

    A patched-grid approach is one in which the flow region of interest is divided into subregions which are then discretized independently using existing grid generator. The equations of motion are integrated in each subregion in conjunction with patch-boundary schemes which allow proper information transfer across interfaces that separate subregions. The patched-grid approach greatly simplifies the treatment of complex geometries and also the addition of grid points to selected regions of the flow. A conservative patch-boundary condition that can be used with explicit, implicit factored and implicit relaxation schemes is described. Several example calculations that demonstrate the capabilities of the patched-grid scheme are also included.

  3. Climate Signal Detection in Wine Quality Using Gridded vs. Station Data in North-East Hungary

    NASA Astrophysics Data System (ADS)

    Mika, Janos; Razsi, Andras; Gal, Lajos

    2017-04-01

    The grapevine is one of the oldest cultivated plants. Today's viticultural regions for quality wine production are located in relatively narrow geographical and therefore climatic niches. Our target area, the Matra Region in NE Hungary is fairly close to the edge of optimal wine production concerning its climate conditions. Fifty year (1961-2010) wine and quality (natural sugar content, in weight % of must) data are analysed and compared to parallel climate variables. Two sets of station-based monthly temperature, sunshine duration and precipitation data, taken from neighbouring stations, Eger-Kőlyuktető (1961-2010) and Kompolt (1976-2006) are used in 132 combinations, together with daily grid-point data provided by the CarpatClim Project (www.carpatclim-eu.org/pages/home). By now it is clear that (1) wine quality, is in significant negative correlation with the annual precipitation and in positive correlation with temperature and sunshine duration. (2) Applying a wide combination of monthly data we obtain even stronger correlations (higher significance according to t-tests) even from the station-based data, but it is difficult to select and optimum model from the many proper combinations differing in performance over the test sample just slightly. (3) The interpolated site-specific areal averages from the grid-point data provide even better results and stronger differences between the best models and the few other candidates. (4) Further improvement of statistical signal detection capacity of the above climate variables by using 5-day averages, point at the strong vulnerability of wine quality on climate anomalies of some key phenological phases of the investigated grapevine-mixes. Enhanced spatial and temporal resolution provides much better fit to the observed wine quality data. The study has been supported by the OTKA-113209 national project.

  4. GPS Spoofing Attack Characterization and Detection in Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, Rick S.; Pradhan, Parth; Nagananda, Kyatsandra

    The problem of global positioning system (GPS) spoofing attacks on smart grids endowed with phasor measurement units (PMUs) is addressed, taking into account the dynamical behavior of the states of the system. First, it is shown how GPS spoofing introduces a timing synchronization error in the phasor readings recorded by the PMUs and alters the measurement matrix of the dynamical model. Then, a generalized likelihood ratio-based hypotheses testing procedure is devised to detect changes in the measurement matrix when the system is subjected to a spoofing attack. Monte Carlo simulations are performed on the 9-bus, 3-machine test grid to demonstratemore » the implication of the spoofing attack on dynamic state estimation and to analyze the performance of the proposed hypotheses test.« less

  5. A Distributed Middleware Architecture for Attack-Resilient Communications in Smart Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Brian S; Wu, Yifu; Wei, Jin

    Distributed Energy Resources (DERs) are being increasingly accepted as an excellent complement to traditional energy sources in smart grids. As most of these generators are geographically dispersed, dedicated communications investments for every generator are capital cost prohibitive. Real-time distributed communications middleware, which supervises, organizes and schedules tremendous amounts of data traffic in smart grids with high penetrations of DERs, allows for the use of existing network infrastructure. In this paper, we propose a distributed attack-resilient middleware architecture that detects and mitigates the congestion attacks by exploiting the Quality of Experience (QoE) measures to complement the conventional Quality of Service (QoS)more » information to detect and mitigate the congestion attacks effectively. The simulation results illustrate the efficiency of our proposed communications middleware architecture.« less

  6. A Distributed Middleware Architecture for Attack-Resilient Communications in Smart Grids: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yifu; Wei, Jin; Hodge, Bri-Mathias

    Distributed energy resources (DERs) are being increasingly accepted as an excellent complement to traditional energy sources in smart grids. Because most of these generators are geographically dispersed, dedicated communications investments for every generator are capital-cost prohibitive. Real-time distributed communications middleware - which supervises, organizes, and schedules tremendous amounts of data traffic in smart grids with high penetrations of DERs - allows for the use of existing network infrastructure. In this paper, we propose a distributed attack-resilient middleware architecture that detects and mitigates the congestion attacks by exploiting the quality of experience measures to complement the conventional quality of service informationmore » to effectively detect and mitigate congestion attacks. The simulation results illustrate the efficiency of our proposed communications middleware architecture.« less

  7. The cosmic web in CosmoGrid void regions

    NASA Astrophysics Data System (ADS)

    Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon

    2016-10-01

    We study the formation and evolution of the cosmic web, using the high-resolution CosmoGrid ΛCDM simulation. In particular, we investigate the evolution of the large-scale structure around void halo groups, and compare this to observations of the VGS-31 galaxy group, which consists of three interacting galaxies inside a large void. The structure around such haloes shows a great deal of tenuous structure, with most of such systems being embedded in intra-void filaments and walls. We use the Nexus+} algorithm to detect walls and filaments in CosmoGrid, and find them to be present and detectable at every scale. The void regions embed tenuous walls, which in turn embed tenuous filaments. We hypothesize that the void galaxy group of VGS-31 formed in such an environment.

  8. Enhancing the cyber-security of smart grids with applications to synchrophasor data

    NASA Astrophysics Data System (ADS)

    Pal, Seemita

    In the power grids, Supervisory Control and Data Acquisition (SCADA) systems are used as part of the Energy Management System (EMS) for enabling grid monitoring, control and protection. In recent times, with the ongoing installation of thousands of Phasor Measurement Units (PMUs), system operators are becoming increasingly reliant on PMU-generated synchrophasor measurements for executing wide-area monitoring and real-time control. The availability of PMU data facilitates dynamic state estimation of the system, thus improving the efficiency and resiliency of the grid. Since the SCADA and PMU data are used to make critical control decisions including actuation of physical systems, the timely availability and integrity of this networked data is of paramount importance. Absence or wrong control actions can potentially lead to disruption of operations, monetary loss, damage to equipments or surroundings or even blackout. This has posed new challenges to information security especially in this age of ever-increasing cyber-attacks. In this thesis, potential cyber-attacks on smart grids are presented and effective and implementable schemes are proposed for detecting them. The focus is mainly on three kinds of cyber-attacks and their detection: (i) gray-hole attacks on synchrophasor systems, (ii) PMU data manipulation attacks and (iii) data integrity attacks on SCADA systems. In the case of gray-hole attacks, also known as packet-drop attacks, the adversary may arbitrarily drop PMU data packets as they traverse the network, resulting in unavailability of time-sensitive data for the various critical power system applications. The fundamental challenge is to distinguish packets dropped by the adversary from those that occur naturally due to network congestion.The proposed gray-hole attack detection technique is based on exploiting the inherent timing information in the GPS time-stamped PMU data packets and using the temporal trends of the latencies to classify the cause of packet-drops and finally detect attacks, if any. In the case of PMU data manipulation attacks, the attacker may modify the data in the PMU packets in order to bias the system states and influence the control center into taking wrong decisions. The proposed detection technique is based on evaluating the equivalent impedances of the transmission lines and classifying the observed anomalies to determine the presence of attack and its location. The scheme for detecting data integrity attacks on SCADA systems is based on utilizing synchrophasor measurements from available PMUs in the grid. The proposed method uses a difference measure, developed in this thesis, to determine the relative divergence and mis-correlation between the datasets. Based on the estimated difference measure, tampered and genuine data can be distinguished. The proposed detection mechanisms have demonstrated high accuracy in real-time detection of attacks of various magnitudes, simulated on real PMU data obtained from the NY grid. By performing alarm clustering, the occurrence of false alarms has been reduced to almost zero. The solutions are computationally inexpensive, low on cost, do not add any overhead, and do not require any feedback from the network.

  9. Electrolyzers Enhancing Flexibility in Electric Grids

    DOE PAGES

    Mohanpurkar, Manish; Luo, Yusheng; Terlip, Danny; ...

    2017-11-10

    This paper presents a real-time simulation with a hardware-in-the-loop (HIL)-based approach for verifying the performance of electrolyzer systems in providing grid support. Hydrogen refueling stations may use electrolyzer systems to generate hydrogen and are proposed to have the potential of becoming smarter loads that can proactively provide grid services. On the basis of experimental findings, electrolyzer systems with balance of plant are observed to have a high level of controllability and hence can add flexibility to the grid from the demand side. A generic front end controller (FEC) is proposed, which enables an optimal operation of the load on themore » basis of market and grid conditions. This controller has been simulated and tested in a real-time environment with electrolyzer hardware for a performance assessment. It can optimize the operation of electrolyzer systems on the basis of the information collected by a communication module. Real-time simulation tests are performed to verify the performance of the FEC-driven electrolyzers to provide grid support that enables flexibility, greater economic revenue, and grid support for hydrogen producers under dynamic conditions. In conclusion, the FEC proposed in this paper is tested with electrolyzers, however, it is proposed as a generic control topology that is applicable to any load.« less

  10. Detection of new-onset choroidal neovascularization.

    PubMed

    Do, Diana V

    2013-05-01

    To highlight the most common methods that are used to detect new-onset choroidal neovascularization (CNV) as a result of age-related macular degeneration (AMD). Numerous modalities are available to try to detect CNV. Amsler grid testing, preferential hyperacuity perimetry (PHP), optical coherence tomography (OCT), and fluorescein angiography are tools that may be used to detect CNV. The Age-Related Macular Degeneration: Detection of Onset of new Choroidal neovascularization Study (AMD DOC Study) evaluated the sensitivity of time domain OCT, relative to fluorescein angiography, in detecting new-onset neovascular AMD within a 2-year period. The sensitivity of each modality for detecting CNV was OCT 0.40 [(95% confidence interval (95% CI) (0.16-0.68), supervised Amsler grid 0.42 (95% CI 0.15-0.72), and PHP 0.50 (95% CI 0.23-0.77)]. Numerous modalities are available to try to detect CNV. The prospective AMD DOC Study demonstrated that fluorescein angiography still remains the best method to detect new-onset CNV.

  11. 21 CFR 886.1330 - Amsler grid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Amsler grid. 886.1330 Section 886.1330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES... the patient and intended to rapidly detect central and paracentral irregularities in the visual field...

  12. Efficient Fluid Dynamic Design Optimization Using Cartesian Grids

    NASA Technical Reports Server (NTRS)

    Dadone, A.; Grossman, B.; Sellers, Bill (Technical Monitor)

    2004-01-01

    This report is subdivided in three parts. The first one reviews a new approach to the computation of inviscid flows using Cartesian grid methods. The crux of the method is the curvature-corrected symmetry technique (CCST) developed by the present authors for body-fitted grids. The method introduces ghost cells near the boundaries whose values are developed from an assumed flow-field model in vicinity of the wall consisting of a vortex flow, which satisfies the normal momentum equation and the non-penetration condition. The CCST boundary condition was shown to be substantially more accurate than traditional boundary condition approaches. This improved boundary condition is adapted to a Cartesian mesh formulation, which we call the Ghost Body-Cell Method (GBCM). In this approach, all cell centers exterior to the body are computed with fluxes at the four surrounding cell edges. There is no need for special treatment corresponding to cut cells which complicate other Cartesian mesh methods.

  13. Vulnerability of the US western electric grid to hydro-climatological conditions: How bad can it get?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voisin, N.; Kintner-Meyer, M.; Skaggs, R.

    Recent studies have highlighted the potential impact of climate change on US electricity generation capacity by exploring the effect of changes in stream temperatures on available capacity of thermo-electric plants that rely on fresh-water cooling. However, little is known about the electric system impacts under extreme climate event such as drought. Vulnerability assessments are usually performed for a baseline water year or a specific drought, which do not provide insights into the full grid stress distribution across the diversity of climate events. In this paper we estimate the impacts of the water availability on the electricity generation and transmission inmore » the Western US grid for a range of historical water availability combinations. We softly couple an integrated water model, which includes climate, hydrology, routing, water resources management and socio-economic water demand models, into a grid model (production cost model) and simulate 30 years of historical hourly power flow conditions in the Western US grid. The experiment allows estimating the grid stress distribution as a function of inter-annual variability in regional water availability. Results indicate a clear correlation between grid vulnerability (as quantified in unmet energy demand and increased production cost) for the summer month of August and annual water availability. There is a 3% chance that at least 6% of the electricity demand cannot be met in August, and 21% chance of not meeting 0.5% of the load in the Western US grid. There is a 3% chance that at least 6% of the electricity demand cannot be met in August, and 21% chance of not meeting 0.1% or more of the load in the Western US grid. The regional variability in water availability contributes significantly to the reliability of the grid and could provide trade off opportunities in times of stress. This paper is the first to explore operational grid impacts imposed by droughts in the Western U.S. grid.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadi, Mohammad A. H.; Dasgupta, Dipankar; Ali, Mohammad Hassan

    The important backbone of the smart grid is the cyber/information infrastructure, which is primarily used to communicate with different grid components. A smart grid is a complex cyber physical system containing a numerous and variety number of sources, devices, controllers and loads. Therefore, the smart grid is vulnerable to grid related disturbances. For such dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and Opnet based co-simulated platform to carry out a cyber-intrusion in cyber network for modern power systems and the smart grid. The IEEE 30 bus power system model is used tomore » demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack. Different disturbance situations in the considered test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less

  15. Feasibility study on an integrated AEC-grid device for the optimization of image quality and exposure dose in mammography

    NASA Astrophysics Data System (ADS)

    Kim, Kyo-Tae; Yun, Ryang-Young; Han, Moo-Jae; Heo, Ye-Ji; Song, Yong-Keun; Heo, Sung-Wook; Oh, Kyeong-Min; Park, Sung-Kwang

    2017-10-01

    Currently, in the radiation diagnosis field, mammography is used for the early detection of breast cancer. In addition, studies are being conducted on a grid to produce high-quality images. Although the grid ratio of the grid, which affects the scattering removal rate, must be increased to improve image quality, it increases the total exposure dose. While the use of automatic exposure control is recommended to minimize this problem, existing mammography equipment, unlike general radiography equipment, is mounted on the back of a detector. Therefore, the device is greatly affected by the detector and supporting device, and it is difficult to control the exposure dose. Accordingly, in this research, an integrated AEC-grid device that simultaneously performs AEC and grid functions was used to minimize the unnecessary exposure dose while removing scattering, thereby realizing superior image quality.

  16. Seismic wavefield simulation in 2D elastic and viscoelastic tilted transversely isotropic media: comparisons between four different kinds of finite-difference grid schemes

    NASA Astrophysics Data System (ADS)

    Li, Zhong-sheng; Bai, Chao-ying; Sun, Yao-chong

    2013-08-01

    In this paper, we use the staggered grid, the auxiliary grid, the rotated staggered grid and the non-staggered grid finite-difference methods to simulate the wavefield propagation in 2D elastic tilted transversely isotropic (TTI) and viscoelastic TTI media, respectively. Under the stability conditions, we choose different spatial and temporal intervals to get wavefront snapshots and synthetic seismograms to compare the four algorithms in terms of computational accuracy, CPU time, phase shift, frequency dispersion and amplitude preservation. The numerical results show that: (1) the rotated staggered grid scheme has the least memory cost and the fastest running speed; (2) the non-staggered grid scheme has the highest computational accuracy and least phase shift; (3) the staggered grid has less frequency dispersion even when the spatial interval becomes larger.

  17. Comprehensive Smart Grid Planning in a Regulated Utility Environment

    NASA Astrophysics Data System (ADS)

    Turner, Matthew; Liao, Yuan; Du, Yan

    2015-06-01

    This paper presents the tools and exercises used during the Kentucky Smart Grid Roadmap Initiative in a collaborative electric grid planning process involving state regulators, public utilities, academic institutions, and private interest groups. The mandate of the initiative was to assess the existing condition of smart grid deployments in Kentucky, to enhance understanding of smart grid concepts by stakeholders, and to develop a roadmap for the deployment of smart grid technologies by the jurisdictional utilities of Kentucky. Through involvement of many important stakeholder groups, the resultant Smart Grid Deployment Roadmap proposes an aggressive yet achievable strategy and timetable designed to promote enhanced availability, security, efficiency, reliability, affordability, sustainability and safety of the electricity supply throughout the state while maintaining Kentucky's nationally competitive electricity rates. The models and methods developed for this exercise can be utilized as a systematic process for the planning of coordinated smart grid deployments.

  18. The Overgrid Interface for Computational Simulations on Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Computational simulations using overset grids typically involve multiple steps and a variety of software modules. A graphical interface called OVERGRID has been specially designed for such purposes. Data required and created by the different steps include geometry, grids, domain connectivity information and flow solver input parameters. The interface provides a unified environment for the visualization, processing, generation and diagnosis of such data. General modules are available for the manipulation of structured grids and unstructured surface triangulations. Modules more specific for the overset approach include surface curve generators, hyperbolic and algebraic surface grid generators, a hyperbolic volume grid generator, Cartesian box grid generators, and domain connectivity: pre-processing tools. An interface provides automatic selection and viewing of flow solver boundary conditions, and various other flow solver inputs. For problems involving multiple components in relative motion, a module is available to build the component/grid relationships and to prescribe and animate the dynamics of the different components.

  19. Real-Time Occupancy Change Analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The Real-Time Occupancy Change Analyzer (ROCA) produces an occupancy grid map of an environment around the robot, scans the environment to generate a current obstacle map relative to a current robot position, and converts the current obstacle map to a current occupancy grid map. Changes in the occupancy grid can be reported in real time to support a number of tracking capabilities. The benefit of ROCA is that rather than only providing a vector to the detected change, it provides the actual x,y position of the change.

  20. Detection of Ozone and Nitric Oxide in Decomposition Products of Air-Insulated Switchgear Using Ultraviolet Differential Optical Absorption Spectroscopy (UV-DOAS).

    PubMed

    Li, Yalong; Zhang, Xiaoxing; Li, Xin; Cui, Zhaolun; Xiao, Hai

    2018-01-01

    Air-insulated switchgear cabinets play a role in the protection and control of the modern power grid, and partial discharge (PD) switchgear is a long-term process in the non-normal operation of one of the situations; thus, condition monitoring of the switchgear is important. The air-insulated switchgear during PD enables the decomposition of air components, namely, O 3 and NO. A set of experimental platforms was designed on the basis of the principle of ultraviolet differential optical absorption spectroscopy (UV-DOAS) to detect O 3 and NO concentrations in air-insulated switchgear. Differential absorption algorithm and wavelet transform were used to extract effective absorption spectra; a linear relationship between O 3 and NO concentrations and absorption spectrum data were established. O 3 detection linearity was up to 0.9992 and the detection limit was at 3.76 ppm. NO detection linearity was up to 0.9990 and the detection limit was at 0.64 ppm. Results indicate that detection platform is suitable for detecting trace O 3 and NO gases produced by PD of the air-insulated switchgear.

  1. Thermal–mechanical stress analysis of pressurized water reactor pressure vessel with/without a preexisting crack under grid load following conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurin

    In this paper, we present thermal-mechanical stress analysis of a pressurized water reactor pressure vessel and its hot-leg and cold-leg nozzles. Results are presented from thermal and thermal-mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting crack in the reactor nozzle (axial crack in hot leg nozzle). From the model results it is found that the stress-strain states are significantly higher in case of presence of crack than without crack. In conclusion, the stress-strain state under grid load following condition are more realistic compared to the stress-strainmore » state estimated assuming simplified transients.« less

  2. Thermal–mechanical stress analysis of pressurized water reactor pressure vessel with/without a preexisting crack under grid load following conditions

    DOE PAGES

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurin; ...

    2016-10-26

    In this paper, we present thermal-mechanical stress analysis of a pressurized water reactor pressure vessel and its hot-leg and cold-leg nozzles. Results are presented from thermal and thermal-mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting crack in the reactor nozzle (axial crack in hot leg nozzle). From the model results it is found that the stress-strain states are significantly higher in case of presence of crack than without crack. In conclusion, the stress-strain state under grid load following condition are more realistic compared to the stress-strainmore » state estimated assuming simplified transients.« less

  3. Running GCM physics and dynamics on different grids: Algorithm and tests

    NASA Astrophysics Data System (ADS)

    Molod, A.

    2006-12-01

    The major drawback in the use of sigma coordinates in atmospheric GCMs, namely the error in the pressure gradient term near sloping terrain, leaves the use of eta coordinates an important alternative. A central disadvantage of an eta coordinate, the inability to retain fine resolution in the vertical as the surface rises above sea level, is addressed here. An `alternate grid' technique is presented which allows the tendencies of state variables due to the physical parameterizations to be computed on a vertical grid (the `physics grid') which retains fine resolution near the surface, while the remaining terms in the equations of motion are computed using an eta coordinate (the `dynamics grid') with coarser vertical resolution. As a simple test of the technique a set of perpetual equinox experiments using a simplified lower boundary condition with no land and no topography were performed. The results show that for both low and high resolution alternate grid experiments, much of the benefit of increased vertical resolution for the near surface meridional wind (and mass streamfield) can be realized by enhancing the vertical resolution of the `physics grid' in the manner described here. In addition, approximately half of the increase in zonal jet strength seen with increased vertical resolution can be realized using the `alternate grid' technique. A pair of full GCM experiments with realistic lower boundary conditions and topography were also performed. It is concluded that the use of the `alternate grid' approach offers a promising way forward to alleviate a central problem associated with the use of the eta coordinate in atmospheric GCMs.

  4. Western Grid Can Handle High Renewables in Challenging Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-11-01

    Fact sheet outlining the key findings of Phase 3 of the Western Wind and Solar Integration Study (WWSIS-3). NREL and GE find that with good system planning, sound engineering practices, and commercially available technologies, the Western grid can maintain reliability and stability during the crucial first minute after grid disturbances with high penetrations of wind and solar power.

  5. Machine Learning Methods for Attack Detection in the Smart Grid.

    PubMed

    Ozay, Mete; Esnaola, Inaki; Yarman Vural, Fatos Tunay; Kulkarni, Sanjeev R; Poor, H Vincent

    2016-08-01

    Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.

  6. Fuel Cell Backup Power System for Grid Service and Micro-Grid in Telecommunication Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Zhiwen; Eichman, Joshua D; Kurtz, Jennifer M

    This paper presents the feasibility and economics of using fuel cell backup power systems in telecommunication cell towers to provide grid services (e.g., ancillary services, demand response). The fuel cells are able to provide power for the cell tower during emergency conditions. This study evaluates the strategic integration of clean, efficient, and reliable fuel cell systems with the grid for improved economic benefits. The backup systems have potential as enhanced capability through information exchanges with the power grid to add value as grid services that depend on location and time. The economic analysis has been focused on the potential revenuemore » for distributed telecommunications fuel cell backup units to provide value-added power supply. This paper shows case studies on current fuel cell backup power locations and regional grid service programs. The grid service benefits and system configurations for different operation modes provide opportunities for expanding backup fuel cell applications responsive to grid needs.« less

  7. Groundwater-quality data in the Western San Joaquin Valley study unit, 2010 - Results from the California GAMA Program

    USGS Publications Warehouse

    Mathany, Timothy M.; Landon, Matthew K.; Shelton, Jennifer L.; Belitz, Kenneth

    2013-01-01

    Groundwater quality in the approximately 2,170-square-mile Western San Joaquin Valley (WSJV) study unit was investigated by the U.S. Geological Survey (USGS) from March to July 2010, as part of the California State Water Resources Control Board (SWRCB) Groundwater Ambient Monitoring and Assessment (GAMA) Program's Priority Basin Project (PBP). The GAMA-PBP was developed in response to the California Groundwater Quality Monitoring Act of 2001 and is being conducted in collaboration with the SWRCB and Lawrence Livermore National Laboratory (LLNL). The WSJV study unit was the twenty-ninth study unit to be sampled as part of the GAMA-PBP. The GAMA Western San Joaquin Valley study was designed to provide a spatially unbiased assessment of untreated-groundwater quality in the primary aquifer system, and to facilitate statistically consistent comparisons of untreated groundwater quality throughout California. The primary aquifer system is defined as parts of aquifers corresponding to the perforation intervals of wells listed in the California Department of Public Health (CDPH) database for the WSJV study unit. Groundwater quality in the primary aquifer system may differ from the quality in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. In the WSJV study unit, groundwater samples were collected from 58 wells in 2 study areas (Delta-Mendota subbasin and Westside subbasin) in Stanislaus, Merced, Madera, Fresno, and Kings Counties. Thirty-nine of the wells were selected by using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells), and 19 wells were selected to aid in the understanding of aquifer-system flow and related groundwater-quality issues (understanding wells). The groundwater samples were analyzed for organic constituents (volatile organic compounds [VOCs], low-level fumigants, and pesticides and pesticide degradates), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), and naturally occurring inorganic constituents (trace elements, nutrients, dissolved organic carbon [DOC], major and minor ions, silica, total dissolved solids [TDS], alkalinity, total arsenic and iron [unfiltered] and arsenic, chromium, and iron species [filtered]). Isotopic tracers (stable isotopes of hydrogen, oxygen, and boron in water, stable isotopes of nitrogen and oxygen in dissolved nitrate, stable isotopes of sulfur in dissolved sulfate, isotopic ratios of strontium in water, stable isotopes of carbon in dissolved inorganic carbon, activities of tritium, and carbon-14 abundance), dissolved standard gases (methane, carbon dioxide, nitrogen, oxygen, and argon), and dissolved noble gases (argon, helium-4, krypton, neon, and xenon) were measured to help identify sources and ages of sampled groundwater. In total, 245 constituents and 8 water-quality indicators were measured. Quality-control samples (blanks, replicates, or matrix spikes) were collected at 16 percent of the wells in the WSJV study unit, and the results for these samples were used to evaluate the quality of the data from the groundwater samples. Blanks rarely contained detectable concentrations of any constituent, suggesting that contamination from sample collection procedures was not a significant source of bias in the data for the groundwater samples. Replicate samples all were within acceptable limits of variability. Matrix-spike recoveries were within the acceptable range (70 to 130 percent) for approximately 87 percent of the compounds. This study did not evaluate the quality of water delivered to consumers. After withdrawal, groundwater typically is treated, disinfected, and (or) blended with other waters to maintain water quality. Regulatory benchmarks apply to water that is delivered to the consumer, not to untreated groundwater. However, to provide some context for the results, concentrations of constituents measured in the untreated groundwater were compared with regulatory and non-regulatory health-based benchmarks established by the U.S. Environmental Protection Agency (USEPA) and CDPH, and to non-regulatory benchmarks established for aesthetic concerns by CDPH. Comparisons between data collected for this study and benchmarks for drinking water are for illustrative purposes only and are not indicative of compliance or non-compliance with those benchmarks. Most inorganic constituents detected in groundwater samples from the 39 grid wells were detected at concentrations less than health-based benchmarks. Detections of organic and special-interest constituents from grid wells sampled in the WSJV study unit also were less than health-based benchmarks. In total, VOCs were detected in 12 of the 39 grid wells sampled (approximately 31 percent), pesticides and pesticide degradates were detected in 9 grid wells (approximately 23 percent), and perchlorate was detected in 15 grid wells (approximately 38 percent). Trace elements, major and minor ions, and nutrients were sampled for at 39 grid wells; most concentrations were less than health-based benchmarks. Exceptions include two detections of arsenic greater than the USEPA maximum contaminant level (MCL-US) of 10 micrograms per liter (μg/L), 20 detections of boron greater than the CDPH notification level (NL-CA) of 1,000 μg/L, 2 detections of molybdenum greater than the USEPA lifetime health advisory level (HAL-US) of 40 μg/L, 1 detection of selenium greater than the MCL-US of 50 μg/L, 2 detections of strontium greater than the HAL-US of 4,000 μg/L, and 3 detections of nitrate greater than the MCL-US of 10 μg/L. Results for inorganic constituents with non-health-based benchmarks (iron, manganese, chloride, sulfate, and TDS) showed that iron concentrations greater than the CDPH secondary maximum contaminant level (SMCL-CA) of 300 μg/L were detected in five grid wells. Manganese concentrations greater than the SMCL-CA of 50 μg/L were detected in 16 grid wells. Chloride concentrations greater than the recommended SMCL-CA benchmark of 250 milligrams per liter (mg/L) were detected in 14 grid wells, and concentrations in 5 of these wells also were greater than the upper SMCL-CA benchmark of 500 mg/L. Sulfate concentrations greater than the recommended SMCL-CA benchmark of 250 mg/L were measured in 21 grid wells, and concentrations in 13 of these wells also were greater than the SMCL-CA upper benchmark of 500 mg/L. TDS concentrations greater than the SMCL-CA recommended benchmark of 500 mg/L were measured in 36 grid wells, and concentrations in 20 of these wells also were greater than the SMCL-CA upper benchmark of 1,000 mg/L.

  8. Non-isolated high gain DC-DC converter for smart grid- A review

    NASA Astrophysics Data System (ADS)

    Divya Navamani, J.; Vijayakumar, K.; Lavanya, A.; Mano Raj, A. Jason

    2018-04-01

    Smart grids are becoming the most interesting and promising alternative for an electric grid system. Power conditioning units and control over the distribution of power is the essential feature for the smart grid system. In this paper, we reviewed several non-isolated high gain topologies derived from boost converter for providing required voltage to the grid tie inverter from renewable energy sources. Steady state analysis of all the topologies is analyzed to compare the performance of the topologies. Simulation is carried out in nL5 simulator and the results are compared and validated with the theoretical results. This paper is a guide to the researchers to choose the best topology for the smart grid application.

  9. Navier-Stokes simulation of rotor-body flowfield in hover using overset grids

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.; Ahmad, J. U.

    1993-01-01

    A free-wake Navier-Stokes numerical scheme and multiple Chimera overset grids have been utilized for calculating the quasi-steady hovering flowfield of a Boeing-360 rotor mounted on an axisymmetric whirl-tower. The entire geometry of this rotor-body configuration is gridded-up with eleven different overset grids. The composite grid has 1.3 million grid points for the entire flow domain. The numerical results, obtained using coarse grids and a rigid rotor assumption, show a thrust value that is within 5% of the experimental value at a flow condition of M(sub tip) = 0.63, Theta(sub c) = 8 deg, and Re = 2.5 x 10(exp 6). The numerical method thus demonstrates the feasibility of using a multi-block scheme for calculating the flowfields of complex configurations consisting of rotating and non-rotating components.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, F.; Banks, J. W.; Henshaw, W. D.

    We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in a implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems togethermore » with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode the- ory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized- Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and dif- fusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. Lastly, the CHAMP scheme is also developed for general curvilinear grids and CHT ex- amples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.« less

  11. Anomaly Detection Using Optimally-Placed μPMU Sensors in Distribution Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamei, Mahdi; Scaglione, Anna; Roberts, Ciaran

    IEEE As the distribution grid moves toward a tightly-monitored network, it is important to automate the analysis of the enormous amount of data produced by the sensors to increase the operators situational awareness about the system. Here, focusing on Micro-Phasor Measurement Unit (μPMU) data, we propose a hierarchical architecture for monitoring the grid and establish a set of analytics and sensor fusion primitives for the detection of abnormal behavior in the control perimeter. And due to the key role of the μPMU devices in our architecture, a source-constrained optimal μPMU placement is also described that finds the best location ofmore » the devices with respect to our rules. The effectiveness of the proposed methods are tested through the synthetic and real μPMU data.« less

  12. Rapid detection of Salmonella spp. in food by use of the ISO-GRID hydrophobic grid membrane filter.

    PubMed Central

    Entis, P; Brodsky, M H; Sharpe, A N; Jarvis, G A

    1982-01-01

    A rapid hydrophobic grid-membrane filter (HGMF) method was developed and compared with the Health Protection Branch cultural method for the detection of Salmonella spp. in 798 spiked samples and 265 naturally contaminated samples of food. With the HGMF method, Salmonella spp. were isolated from 618 of the spiked samples and 190 of the naturally contaminated samples. The conventional method recovered Salmonella spp. from 622 spiked samples and 204 unspiked samples. The isolation rates from Salmonella-positive samples for the two methods were not significantly different (94.6% overall for the HGMF method and 96.7% for the conventional approach), but the HGMF results were available in only 2 to 3 days after sample receipt compared with 3 to 4 days by the conventional method. Images PMID:7059168

  13. Anomaly Detection Using Optimally-Placed μPMU Sensors in Distribution Grids

    DOE PAGES

    Jamei, Mahdi; Scaglione, Anna; Roberts, Ciaran; ...

    2017-10-25

    IEEE As the distribution grid moves toward a tightly-monitored network, it is important to automate the analysis of the enormous amount of data produced by the sensors to increase the operators situational awareness about the system. Here, focusing on Micro-Phasor Measurement Unit (μPMU) data, we propose a hierarchical architecture for monitoring the grid and establish a set of analytics and sensor fusion primitives for the detection of abnormal behavior in the control perimeter. And due to the key role of the μPMU devices in our architecture, a source-constrained optimal μPMU placement is also described that finds the best location ofmore » the devices with respect to our rules. The effectiveness of the proposed methods are tested through the synthetic and real μPMU data.« less

  14. Method, memory media and apparatus for detection of grid disconnect

    DOEpatents

    Ye, Zhihong [Clifton Park, NY; Du, Pengwei [Troy, NY

    2008-09-23

    A phase shift procedure for detecting a disconnect of a power grid from a feeder that is connected to a load and a distributed generator. The phase shift procedure compares a current phase shift of the output voltage of the distributed generator with a predetermined threshold and if greater, a command is issued for a disconnect of the distributed generator from the feeder. To extend the range of detection, the phase shift procedure is used when a power mismatch between the distributed generator and the load exceeds a threshold and either or both of an under/over frequency procedure and an under/over voltage procedure is used when any power mismatch does not exceed the threshold.

  15. Development of a fountain detector for spectroscopy of secondary electrons in scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Agemura, Toshihide; Kimura, Takashi; Sekiguchi, Takashi

    2018-04-01

    The low-pass secondary electron (SE) detector, the so-called “fountain detector (FD)”, for scanning electron microscopy has high potential for application to the imaging of low-energy SEs. Low-energy SE imaging may be used for detecting the surface potential variations of a specimen. However, the detected SEs include a certain fraction of tertiary electrons (SE3s) because some of the high-energy backscattered electrons hit the grid to yield SE3s. We have overcome this difficulty by increasing the aperture ratio of the bias and ground grids and using the lock-in technique, in which the AC field with the DC offset was applied on the bias grid. The energy-filtered SE images of a 4H-SiC p-n junction show complex behavior according to the grid bias. These observations are clearly explained by the variations of Auger spectra across the p-n junction. The filtered SE images taken with the FD can be applied to observing the surface potential variation of specimens.

  16. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  17. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  18. Cyber attacks against state estimation in power systems: Vulnerability analysis and protection strategies

    NASA Astrophysics Data System (ADS)

    Liu, Xuan

    Power grid is one of the most critical infrastructures in a nation and could suffer a variety of cyber attacks. With the development of Smart Grid, false data injection attack has recently attracted wide research interest. This thesis proposes a false data attack model with incomplete network information and develops optimal attack strategies for attacking load measurements and the real-time topology of a power grid. The impacts of false data on the economic and reliable operations of power systems are quantitatively analyzed in this thesis. To mitigate the risk of cyber attacks, a distributed protection strategies are also developed. It has been shown that an attacker can design false data to avoid being detected by the control center if the network information of a power grid is known to the attacker. In practice, however, it is very hard or even impossible for an attacker to obtain all network information of a power grid. In this thesis, we propose a local load redistribution attacking model based on incomplete network information and show that an attacker only needs to obtain the network information of the local attacking region to inject false data into smart meters in the local region without being detected by the state estimator. A heuristic algorithm is developed to determine a feasible attacking region by obtaining reduced network information. This thesis investigates the impacts of false data on the operations of power systems. It has been shown that false data can be designed by an attacker to: 1) mask the real-time topology of a power grid; 2) overload a transmission line; 3) disturb the line outage detection based on PMU data. To mitigate the risk of cyber attacks, this thesis proposes a new protection strategy, which intends to mitigate the damage effects of false data injection attacks by protecting a small set of critical measurements. To further reduce the computation complexity, a mixed integer linear programming approach is also proposed to separate the power grid into several subnetworks, then distributed protection strategy is applied to each subnetwork.

  19. Demonstration Report: Handheld UXO Discriminator, SERDP No. MR-1667

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperikova, E.

    2010-09-01

    In 2003, the Defense Science Board observed: 'The problem is that instruments that can detect the buried UXOs also detect numerous scrap metal objects and other artifacts, which leads to an enormous amount of expensive digging. Typically 100 holes may be dug before a real UXO is unearthed! The Task Force assessment is that much of this wasteful digging can be eliminated by the use of more advanced technology instruments that exploit modern digital processing and advanced multi-mode sensors to achieve an improved level of discrimination of scrap from UXOs.' In keeping with these remarks and with prior funding (UX-1225,more » MM-0437, and MM-0838), the LBNL group has successfully designed and built the cart-mounted Berkeley UXO Discriminator (BUD) and demonstrated its performance at various test sites (cf. Gasperikova et al., 2007, 2008, and 2009). Because hand-held systems have the advantage of being lightweight, compact, portable, and deployable under most site conditions, they are particularly useful in areas of dense vegetation or challenging terrain. In heavily wooded areas or areas with steep or uneven terrain, hand-held sensors may be the only suitable device for UXO detection and discrimination because it can be carried through spaces that the operator could walk through or at least approach. Furthermore, it is desirable to find and characterize a metallic object without the need to accurately locate the sensors at multiple positions around the target. The ideal system would thus locate and characterize the target from a single position of the sensor and indicate to the operator where to flag the target for subsequent study. Based on these considerations, we designed and built a sensor package in a shape of a 14-in (0.35 m) cube. This hand-held prototype incorporates the key features of the cart-mounted system - (a) three orthogonal transmitters and ten pairs of receivers, and (b) difference or gradient measurements that significantly reduce the ambient and motion noise, and greatly enhance the sensitivity to the gradients of the target. The system characterizes the target from a single position. Results from a local test site were in a good agreement with theoretical performance calculations of such a device. This survey was designed to demonstrate performance of the system under realistic survey conditions at the Aberdeen Proving Ground (APG) in Aberdeen, MD. The survey was preformed in an area with known items ('Calibration Grid'), and in a seeded blind test area (the 'Blind Test Grid'). The ground truth for the surveys conducted on the Blind Test Grid was withheld from the testers. Only the graded test scores based on target detection and target classification were provided. For more information, see http://aec.army.mil/usaec/technology/uxo01c03.html.« less

  20. Numerical simulation of a hovering rotor using embedded grids

    NASA Technical Reports Server (NTRS)

    Duque, Earl-Peter N.; Srinivasan, Ganapathi R.

    1992-01-01

    The flow field for a rotor blade in hover was computed by numerically solving the compressible thin-layer Navier-Stokes equations on embedded grids. In this work, three embedded grids were used to discretize the flow field - one for the rotor blade and two to convect the rotor wake. The computations were performed at two hovering test conditions, for a two-bladed rectangular rotor of aspect ratio six. The results compare fairly with experiment and illustrates the use of embedded grids in solving helicopter type flow fields.

  1. Evaluation of a point-of-care glucose and β-hydroxybutyrate meter operated in various environmental conditions in prepartum and postpartum sheep.

    PubMed

    Hornig, Katlin J; Byers, Stacey R; Callan, Robert J; Holt, Timothy; Field, Megan; Han, Hyungchul

    2013-08-01

    To compare β-hydroxybutyrate (BHB) and glucose concentrations measured with a dual-purpose point-of-care (POC) meter designed for use in humans and a laboratory biochemical analyzer (LBA) to determine whether the POC meter would be reliable for on-farm measurement of blood glucose and BHB concentrations in sheep in various environmental conditions and nutritional states. 36 pregnant mixed-breed ewes involved in a maternal feed restriction study. Blood samples were collected from each sheep at multiple points throughout gestation and lactation to allow for tracking of gradually increasing metabolic hardship. Whole blood glucose and BHB concentrations were measured with the POC meter and compared with serum results obtained with an LBA. 464 samples were collected. Whole blood BHB concentrations measured with the POC meter compared well with LBA results, and error grid analysis showed the POC values were acceptable. Whole blood glucose concentrations measured with the POC meter had more variation, compared with LBA values, over the glucose ranges evaluated. Results of error grid analysis of POC-measured glucose concentrations were not acceptable, indicating errors likely to result in needless treatment with glucose or other supplemental energy sources in normoglycemic sheep. The POC meter was user-friendly and performed well across a wide range of conditions. The meter was adequate for detection of pregnancy toxemia in sheep via whole blood BHB concentration. Results should be interpreted with caution when the POC meter is used to measure blood glucose concentrations.

  2. Large Area Coverage of a TPC Endcap with GridPix Detectors

    NASA Astrophysics Data System (ADS)

    Kaminski, Jochen

    2018-02-01

    The Large Prototype TPC at DESY, Hamburg, was built by the LCTPC collaboration as a testbed for new readout technologies of Time Projection Chambers. Up to seven modules of about 400 cm2 each can be placed in the endcap. Three of these modules were equipped with a total of 160 GridPix detectors. This is a combination of a highly pixelated readout ASIC and a Micromegas built on top. GridPix detectors have a very high efficiency of detecting primary electrons, which leads to excellent spatial and energy resolutions. For the first time a large number of GridPix detectors has been operated and long segments of tracks have been recorded with excellent precision.

  3. Recent Results on Gridpix Detectors:. AN Integrated Micromegas Grid and a Micromegas Ageing Test

    NASA Astrophysics Data System (ADS)

    Chefdeville, M.; Aarts, A.; van der Graaf, H.; van der Putten, S.

    2006-04-01

    A new gas-filled detector combining a Micromegas with a CMOS pixel chip has been recently tested. A procedure to integrate the Micromegas grid onto silicon wafers (‘wafer post processing’) has been developed. We aim to eventually integrate the grid on top of wafers of CMOS pixel chips. The first part of this contribution describes an application in vertex detection (GOSSIP). Then tests of the first detector prototype of a grid integrated on a bare silicon wafer are shown. Finally an ageing test of a Micromegas chamber is presented. After verifying the chambers' proportionality at a very high dose rates, the device was irradiated until ageing became apparent.

  4. Grid Stability Awareness System (GSAS) Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feuerborn, Scott; Ma, Jian; Black, Clifton

    The project team developed a software suite named Grid Stability Awareness System (GSAS) for power system near real-time stability monitoring and analysis based on synchrophasor measurement. The software suite consists of five analytical tools: an oscillation monitoring tool, a voltage stability monitoring tool, a transient instability monitoring tool, an angle difference monitoring tool, and an event detection tool. These tools have been integrated into one framework to provide power grid operators with both real-time or near real-time stability status of a power grid and historical information about system stability status. These tools are being considered for real-time use in themore » operation environment.« less

  5. Ground-Water Quality Data in the Southeast San Joaquin Valley, 2005-2006 - Results from the California GAMA Program

    USGS Publications Warehouse

    Burton, Carmen A.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,800 square-mile Southeast San Joaquin Valley study unit (SESJ) was investigated from October 2005 through February 2006 as part of the Priority Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The SESJ study was designed to provide a spatially unbiased assessment of raw ground-water quality within SESJ, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 99 wells in Fresno, Tulare, and Kings Counties, 83 of which were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 16 of which were sampled to evaluate changes in water chemistry along ground-water flow paths or across alluvial fans (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine, and 1,2,3-trichloropropane), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected at approximately 10 percent of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control data resulted in censoring of less than 1 percent of the detections of constituents measured in ground-water samples. This study did not attempt to evaluate the quality of drinking water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain acceptable drinking-water quality. Regulatory thresholds apply to the treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with regulatory and other health-based thresholds established by the U.S. Environmental Protection Agency and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns by CDPH. Two VOCs were detected above health-based thresholds: 1,2-dibromo-3-chloropropane (DBCP), and benzene. DBCP was detected above the U.S. Environmental Protections Agency's maximum contaminant level (MCL-US) in three grid wells and five understanding wells. Benzene was detected above the CDPH's maximum contaminant level (MCL-CA) in one grid well. All pesticide detections were below health-based thresholds. Perchlorate was detected above its maximum contaminate level for California in one grid well. Nitrate was detected above the MCL-US in six samples from understanding wells, of which one was a public supply well. Two trace elements were detected above MCLs-US: arsenic and uranium. Arsenic was detected above the MCL-US in four grid wells and two understanding wells; uranium was detected above the MCL-US in one grid well and one understanding well. Gross alpha radiation was detected above MCLs-US in five samples; four of them understanding wells, and uranium isotope activity was greater than the MCL-US for one understanding well

  6. Land use change detection based on multi-date imagery from different satellite sensor systems

    NASA Technical Reports Server (NTRS)

    Stow, Douglas A.; Collins, Doretta; Mckinsey, David

    1990-01-01

    An empirical study is conducted to assess the accuracy of land use change detection using satellite image data acquired ten years apart by sensors with differing spatial resolutions. The primary goals of the investigation were to (1) compare standard change detection methods applied to image data of varying spatial resolution, (2) assess whether to transform the raster grid of the higher resolution image data to that of the lower resolution raster grid or vice versa in the registration process, (3) determine if Landsat/Thermatic Mapper or SPOT/High Resolution Visible multispectral data provide more accurate detection of land use changes when registered to historical Landsat/MSS data. It is concluded that image ratioing of multisensor, multidate satellite data produced higher change detection accuracies than did principal components analysis, and that it is useful as a land use change enhancement method.

  7. Summary of the Fourth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.; hide

    2010-01-01

    Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.

  8. Payload and General Support Computer (PGSC) Detailed Test Objective (DTO) number 795 postflight report: STS-41

    NASA Technical Reports Server (NTRS)

    Adolf, Jurine A.; Beberness, Benjamin J.; Holden, Kritina L.

    1991-01-01

    Since 1983, the Space Transportation System (STS) had routinely flown the GRiD 1139 (80286) laptop computer as a portable onboard computing resource. In the spring of 1988, the GRiD 1530, an 80386 based machine, was chosen to replace the GRiD 1139. Human factors ground evaluations and detailed test objectives (DTO) examined the usability of the available display types under different lighting conditions and various angle deviations. All proved unsuitable due to either flight qualification of usability problems. In 1990, an Electroluminescent (EL) display for the GRiD 1530 became flight qualified and another DTO was undertaken to examine this display on-orbit. Under conditions of indirect sunlight and low ambient light, the readability of the text and graphics was only limited by the observer's distance from the display. Although a problem of direct sunlight viewing still existed, there were no problems with large angular deviations nor dark adaptation. No further evaluations were deemed necessary. The GRiD 1530 with the EL display was accepted by the STS program as the new standard for the PGSC.

  9. Single block three-dimensional volume grids about complex aerodynamic vehicles

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.; Weilmuenster, K. James

    1993-01-01

    This paper presents an alternate approach for the generation of volumetric grids for supersonic and hypersonic flows about complex configurations. The method uses parametric two dimensional block face grid definition within the framework of GRIDGEN2D. The incorporation of face decomposition reduces complex surfaces to simple shapes. These simple shapes are combined to obtain the final face definition. The advantages of this method include the reduction of overall grid generation time through the use of vectorized computer code, the elimination of the need to generate matching block faces, and the implementation of simplified boundary conditions. A simple axisymmetric grid is used to illustrate this method. In addition, volume grids for two complex configurations, the Langley Lifting Body (HL-20) and the Space Shuttle Orbiter, are shown.

  10. Transonic Drag Prediction on a DLR-F6 Transport Configuration Using Unstructured Grid Solvers

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Frink, N. T.; Mavriplis, D. J.; Rausch, R. D.; Milholen, W. E.

    2004-01-01

    A second international AIAA Drag Prediction Workshop (DPW-II) was organized and held in Orlando Florida on June 21-22, 2003. The primary purpose was to inves- tigate the code-to-code uncertainty. address the sensitivity of the drag prediction to grid size and quantify the uncertainty in predicting nacelle/pylon drag increments at a transonic cruise condition. This paper presents an in-depth analysis of the DPW-II computational results from three state-of-the-art unstructured grid Navier-Stokes flow solvers exercised on similar families of tetrahedral grids. The flow solvers are USM3D - a tetrahedral cell-centered upwind solver. FUN3D - a tetrahedral node-centered upwind solver, and NSU3D - a general element node-centered central-differenced solver. For the wingbody, the total drag predicted for a constant-lift transonic cruise condition showed a decrease in code-to-code variation with grid refinement as expected. For the same flight condition, the wing/body/nacelle/pylon total drag and the nacelle/pylon drag increment predicted showed an increase in code-to-code variation with grid refinement. Although the range in total drag for the wingbody fine grids was only 5 counts, a code-to-code comparison of surface pressures and surface restricted streamlines indicated that the three solvers were not all converging to the same flow solutions- different shock locations and separation patterns were evident. Similarly, the wing/body/nacelle/pylon solutions did not appear to be converging to the same flow solutions. Overall, grid refinement did not consistently improve the correlation with experimental data for either the wingbody or the wing/body/nacelle pylon configuration. Although the absolute values of total drag predicted by two of the solvers for the medium and fine grids did not compare well with the experiment, the incremental drag predictions were within plus or minus 3 counts of the experimental data. The correlation with experimental incremental drag was not significantly changed by specifying transition. Although the sources of code-to-code variation in force and moment predictions for the three unstructured grid codes have not yet been identified, the current study reinforces the necessity of applying multiple codes to the same application to assess uncertainty.

  11. The footprint of atmospheric turbulence in power grid frequency measurements

    NASA Astrophysics Data System (ADS)

    Haehne, H.; Schottler, J.; Waechter, M.; Peinke, J.; Kamps, O.

    2018-02-01

    Fluctuating wind energy makes a stable grid operation challenging. Due to the direct contact with atmospheric turbulence, intermittent short-term variations in the wind speed are converted to power fluctuations that cause transient imbalances in the grid. We investigate the impact of wind energy feed-in on short-term fluctuations in the frequency of the public power grid, which we have measured in our local distribution grid. By conditioning on wind power production data, provided by the ENTSO-E transparency platform, we demonstrate that wind energy feed-in has a measurable effect on frequency increment statistics for short time scales (< 1 \\text{s}) that are below the activation time of frequency control. Our results are in accordance with previous numerical studies of self-organized synchronization in power grids under intermittent perturbation and give rise to new challenges for a stable operation of future power grids fed by a high share of renewable generation.

  12. Improved vegetation parameterization for hydrological model and assessment of land cover change impacts on flow regime of the Upper Bhima basin, India

    NASA Astrophysics Data System (ADS)

    Mohaideen, M. M. Diwan; Varija, K.

    2018-05-01

    This study investigates the potential and applicability of variable infiltration capacity (VIC) hydrological model to simulate different hydrological components of the Upper Bhima basin under two different Land Use Land Cover (LULC) (the year 2000 and 2010) conditions. The total drainage area of the basin was discretized into 1694 grids of about 5.5 km by 5.5 km: accordingly the model parameters were calibrated at each grid level. Vegetation parameters for the model were prepared using temporal profile of Leaf Area Index (LAI) from Moderate-Resolution Imaging Spectroradiometer and LULC. This practice provides a methodological framework for the improved vegetation parameterization along with region-specific condition for the model simulation. The calibrated and validated model was run using the two LULC conditions separately with the same observed meteorological forcing (1996-2001) and soil data. The change in LULC has resulted to an increase in the average annual evapotranspiration over the basin by 7.8%, while the average annual surface runoff and baseflow decreased by 18.86 and 5.83%, respectively. The variability in hydrological components and the spatial variation of each component attributed to LULC were assessed at the basin grid level. It was observed that 80% of the basin grids showed an increase in evapotranspiration (ET) (maximum of 292 mm). While the majority of the grids showed a decrease in surface runoff and baseflow, some of the grids showed an increase (i.e. 21 and 15% of total grids—surface runoff and baseflow, respectively).

  13. Numerical simulation of groundwater flow in strongly anisotropic aquifers using multiple-point flux approximation method

    NASA Astrophysics Data System (ADS)

    Lin, S. T.; Liou, T. S.

    2017-12-01

    Numerical simulation of groundwater flow in anisotropic aquifers usually suffers from the lack of accuracy of calculating groundwater flux across grid blocks. Conventional two-point flux approximation (TPFA) can only obtain the flux normal to the grid interface but completely neglects the one parallel to it. Furthermore, the hydraulic gradient in a grid block estimated from TPFA can only poorly represent the hydraulic condition near the intersection of grid blocks. These disadvantages are further exacerbated when the principal axes of hydraulic conductivity, global coordinate system, and grid boundary are not parallel to one another. In order to refine the estimation the in-grid hydraulic gradient, several multiple-point flux approximation (MPFA) methods have been developed for two-dimensional groundwater flow simulations. For example, the MPFA-O method uses the hydraulic head at the junction node as an auxiliary variable which is then eliminated using the head and flux continuity conditions. In this study, a three-dimensional MPFA method will be developed for numerical simulation of groundwater flow in three-dimensional and strongly anisotropic aquifers. This new MPFA method first discretizes the simulation domain into hexahedrons. Each hexahedron is further decomposed into a certain number of tetrahedrons. The 2D MPFA-O method is then extended to these tetrahedrons, using the unknown head at the intersection of hexahedrons as an auxiliary variable along with the head and flux continuity conditions to solve for the head at the center of each hexahedron. Numerical simulations using this new MPFA method have been successfully compared with those obtained from a modified version of TOUGH2.

  14. Lining seam elimination algorithm and surface crack detection in concrete tunnel lining

    NASA Astrophysics Data System (ADS)

    Qu, Zhong; Bai, Ling; An, Shi-Quan; Ju, Fang-Rong; Liu, Ling

    2016-11-01

    Due to the particularity of the surface of concrete tunnel lining and the diversity of detection environments such as uneven illumination, smudges, localized rock falls, water leakage, and the inherent seams of the lining structure, existing crack detection algorithms cannot detect real cracks accurately. This paper proposed an algorithm that combines lining seam elimination with the improved percolation detection algorithm based on grid cell analysis for surface crack detection in concrete tunnel lining. First, check the characteristics of pixels within the overlapping grid to remove the background noise and generate the percolation seed map (PSM). Second, cracks are detected based on the PSM by the accelerated percolation algorithm so that the fracture unit areas can be scanned and connected. Finally, the real surface cracks in concrete tunnel lining can be obtained by removing the lining seam and performing percolation denoising. Experimental results show that the proposed algorithm can accurately, quickly, and effectively detect the real surface cracks. Furthermore, it can fill the gap in the existing concrete tunnel lining surface crack detection by removing the lining seam.

  15. Long-term change of activity of very low-frequency earthquakes in southwest Japan

    NASA Astrophysics Data System (ADS)

    Baba, S.; Takeo, A.; Obara, K.; Kato, A.; Maeda, T.; Matsuzawa, T.

    2017-12-01

    On plate interface near seismogenic zone of megathrust earthquakes, various types of slow earthquakes were detected including non-volcanic tremors, slow slip events (SSEs) and very low-frequency earthquakes (VLFEs). VLFEs are classified into deep VLFEs, which occur in the downdip side of the seismogenic zone, and shallow VLFEs, occur in the updip side, i.e. several kilometers in depth in southwest Japan. As a member of slow earthquake family, VLFE activity is expected to be a proxy of inter-plate slipping because VLFEs have the same mechanisms as inter-plate slipping and are detected during Episodic tremor and slip (ETS). However, long-term change of the VLFE seismicity has not been well constrained compared to deep low-frequency tremor. We thus studied long-term changes in the activity of VLFEs in southwest Japan where ETS and long-term SSEs have been most intensive. We used continuous seismograms of F-net broadband seismometers operated by NIED from April 2004 to March 2017. After applying the band-pass filter with a frequency range of 0.02—0.05 Hz, we adopted the matched-filter technique in detecting VLFEs. We prepared templates by calculating synthetic waveforms for each hypocenter grid assuming typical focal mechanisms of VLFEs. The correlation coefficients between templates and continuous F-net seismograms were calculated at each grid every 1s in all components. The grid interval is 0.1 degree for both longitude and latitude. Each VLFE was detected as an event if the average of correlation coefficients exceeds the threshold. We defined the detection threshold as eight times as large as the median absolute deviation of the distribution. At grids in the Bungo channel, where long-term SSEs occurred frequently, the cumulative number of detected VLFEs increases rapidly in 2010 and 2014, which were modulated by stress loading from the long-term SSEs. At inland grids near the Bungo channel, the cumulative number increases steeply every half a year. This stepwise change accompanies with ETS. During long-term SSEs, the interval of the step is shorter and the number of VLFEs in each step is smaller than usual. The most remarkable point is that the rate of deep VLFEs has been low since later 2014 in this region. A likely explanation of the VLFE quiescence is a temporal change of inter-plate coupling in the Nankai subduction zone.

  16. High-resolution computer-aided moire

    NASA Astrophysics Data System (ADS)

    Sciammarella, Cesar A.; Bhat, Gopalakrishna K.

    1991-12-01

    This paper presents a high resolution computer assisted moire technique for the measurement of displacements and strains at the microscopic level. The detection of micro-displacements using a moire grid and the problem associated with the recovery of displacement field from the sampled values of the grid intensity are discussed. A two dimensional Fourier transform method for the extraction of displacements from the image of the moire grid is outlined. An example of application of the technique to the measurement of strains and stresses in the vicinity of the crack tip in a compact tension specimen is given.

  17. Computational investigations and grid refinement study of 3D transient flow in a cylindrical tank using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Mohd Sakri, F.; Mat Ali, M. S.; Sheikh Salim, S. A. Z.

    2016-10-01

    The study of physic fluid for a liquid draining inside a tank is easily accessible using numerical simulation. However, numerical simulation is expensive when the liquid draining involves the multi-phase problem. Since an accurate numerical simulation can be obtained if a proper method for error estimation is accomplished, this paper provides systematic assessment of error estimation due to grid convergence error using OpenFOAM. OpenFOAM is an open source CFD-toolbox and it is well-known among the researchers and institutions because of its free applications and ready to use. In this study, three types of grid resolution are used: coarse, medium and fine grids. Grid Convergence Index (GCI) is applied to estimate the error due to the grid sensitivity. A monotonic convergence condition is obtained in this study that shows the grid convergence error has been progressively reduced. The fine grid has the GCI value below 1%. The extrapolated value from Richardson Extrapolation is in the range of the GCI obtained.

  18. FUN3D and CFL3D Computations for the First High Lift Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Lee-Rausch, Elizabeth M.; Rumsey, Christopher L.

    2011-01-01

    Two Reynolds-averaged Navier-Stokes codes were used to compute flow over the NASA Trapezoidal Wing at high lift conditions for the 1st AIAA CFD High Lift Prediction Workshop, held in Chicago in June 2010. The unstructured-grid code FUN3D and the structured-grid code CFL3D were applied to several different grid systems. The effects of code, grid system, turbulence model, viscous term treatment, and brackets were studied. The SST model on this configuration predicted lower lift than the Spalart-Allmaras model at high angles of attack; the Spalart-Allmaras model agreed better with experiment. Neglecting viscous cross-derivative terms caused poorer prediction in the wing tip vortex region. Output-based grid adaptation was applied to the unstructured-grid solutions. The adapted grids better resolved wake structures and reduced flap flow separation, which was also observed in uniform grid refinement studies. Limitations of the adaptation method as well as areas for future improvement were identified.

  19. Research and design of smart grid monitoring control via terminal based on iOS system

    NASA Astrophysics Data System (ADS)

    Fu, Wei; Gong, Li; Chen, Heli; Pan, Guangji

    2017-06-01

    Aiming at a series of problems existing in current smart grid monitoring Control Terminal, such as high costs, poor portability, simple monitoring system, poor software extensions, low system reliability when transmitting information, single man-machine interface, poor security, etc., smart grid remote monitoring system based on the iOS system has been designed. The system interacts with smart grid server so that it can acquire grid data through WiFi/3G/4G networks, and monitor each grid line running status, as well as power plant equipment operating conditions. When it occurs an exception in the power plant, incident information can be sent to the user iOS terminal equipment timely, which will provide troubleshooting information to help the grid staff to make the right decisions in a timely manner, to avoid further accidents. Field tests have shown the system realizes the integrated grid monitoring functions, low maintenance cost, friendly interface, high security and reliability, and it possesses certain applicable value.

  20. QX MAN: Q and X file manipulation

    NASA Technical Reports Server (NTRS)

    Krein, Mark A.

    1992-01-01

    QX MAN is a grid and solution file manipulation program written primarily for the PARC code and the GRIDGEN family of grid generation codes. QX MAN combines many of the features frequently encountered in grid generation, grid refinement, the setting-up of initial conditions, and post processing. QX MAN allows the user to manipulate single block and multi-block grids (and their accompanying solution files) by splitting, concatenating, rotating, translating, re-scaling, and stripping or adding points. In addition, QX MAN can be used to generate an initial solution file for the PARC code. The code was written to provide several formats for input and output in order for it to be useful in a broad spectrum of applications.

  1. An Improved Compressive Sensing and Received Signal Strength-Based Target Localization Algorithm with Unknown Target Population for Wireless Local Area Networks.

    PubMed

    Yan, Jun; Yu, Kegen; Chen, Ruizhi; Chen, Liang

    2017-05-30

    In this paper a two-phase compressive sensing (CS) and received signal strength (RSS)-based target localization approach is proposed to improve position accuracy by dealing with the unknown target population and the effect of grid dimensions on position error. In the coarse localization phase, by formulating target localization as a sparse signal recovery problem, grids with recovery vector components greater than a threshold are chosen as the candidate target grids. In the fine localization phase, by partitioning each candidate grid, the target position in a grid is iteratively refined by using the minimum residual error rule and the least-squares technique. When all the candidate target grids are iteratively partitioned and the measurement matrix is updated, the recovery vector is re-estimated. Threshold-based detection is employed again to determine the target grids and hence the target population. As a consequence, both the target population and the position estimation accuracy can be significantly improved. Simulation results demonstrate that the proposed approach achieves the best accuracy among all the algorithms compared.

  2. Using High-Resolution Forward Model Simulations of Ideal Atmospheric Tracers to Assess the Spatial Information Content of Inverse CO2 Flux Estimates

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Nielsen, J. Eric

    2011-01-01

    Attribution of observed atmospheric carbon concentrations to emissions on the country, state or city level is often inferred using "inversion" techniques. Such computations are often performed using advanced mathematical techniques, such as synthesis inversion or four-dimensional variational analysis, that invoke tracing observed atmospheric concentrations backwards through a transport model to a source region. It is, to date, not well understood how well such techniques can represent fine spatial (and temporal) structure in the inverted flux fields. This question is addressed using forward-model computations with idealized tracers emitted at the surface in a large number of grid boxes over selected regions and examining how distinctly these emitted tracers can be detected downstream. Initial results show that tracers emitted in half-degree grid boxes over a large region of the Eastern USA cannot be distinguished from each other, even at short distances over the Atlantic Ocean, when they are emitted in grid boxes separated by less than five degrees of latitude - especially when only total-column observations are available. A large number of forward model simulations, with varying meteorological conditions, are used to assess how distinctly three types observations (total column, upper tropospheric column, and surface mixing ratio) can separate emissions from different sources. Inferences inverse modeling and source attribution will be drawn.

  3. Reducing Stator Current Harmonics for a Doubly-Fed Induction Generator Connected to a Distorted Grid

    DTIC Science & Technology

    2013-09-01

    electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...electric grid voltage harmonics, which is a potential obstacle for implementing stable wind -energy systems. Two existing rotor voltage controllers...speed of the DFIG can be adjusted to optimize turbine efficiency for given wind conditions. A common method for controlling the operating speed is

  4. Silicon ball grid array chip carrier

    DOEpatents

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  5. Drones in Automation - Secured Unmanned Aerial Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales Rodriguez, Marissa E.; Rooke, Sterling; Fuhr, Peter L.

    Factories, refineries, utilities (water/wastewater, electric) and related industrial sites are complex systems and structures with inspection and maintenance procedures required for optimal operation and regulatory compliance. As a specific example, consider just the bulk electric power system which is comprised of more than 200,000 miles of highvoltage transmission lines, thousands of generation plants and millions of digital controls. More than 1,800 entities own and operate portions of the grid system, with thousands more involved in the operation of distribution networks across North America. The interconnected and interdependent nature of the bulk power system requires a consistent and systematic application ofmore » risk mitigation across the entire grid system to be truly effective. Similar situations are found throughout automation where frequently an aging infrastructure is in place too. Consider, for example, the situation present in a refinery or chemical processing setting with the requirement for leak detection inspection of pipes, interconnects and systems stretching across the plant. The current practices and challenges relating just to this task - leak detection and repair (LDAR) – of detecting any fugitive emissions present and documenting all measurements thereby meeting air compliance regulations are typically “handled” by a small army of individuals with handheld or backpack-sized detectors who crawl through piping racks conducting measurements at each flange. Such work is performed in difficult conditions (temperature, humidity, physically challenging) with frequently a high level of employee turnover. Finaly, enter low cost sensors and mobile platforms – in other words unmanned aerial systems (UASs, or drones) with enhanced sensing capabilities.« less

  6. Drones in Automation - Secured Unmanned Aerial Systems

    DOE PAGES

    Morales Rodriguez, Marissa E.; Rooke, Sterling; Fuhr, Peter L.; ...

    2017-05-01

    Factories, refineries, utilities (water/wastewater, electric) and related industrial sites are complex systems and structures with inspection and maintenance procedures required for optimal operation and regulatory compliance. As a specific example, consider just the bulk electric power system which is comprised of more than 200,000 miles of highvoltage transmission lines, thousands of generation plants and millions of digital controls. More than 1,800 entities own and operate portions of the grid system, with thousands more involved in the operation of distribution networks across North America. The interconnected and interdependent nature of the bulk power system requires a consistent and systematic application ofmore » risk mitigation across the entire grid system to be truly effective. Similar situations are found throughout automation where frequently an aging infrastructure is in place too. Consider, for example, the situation present in a refinery or chemical processing setting with the requirement for leak detection inspection of pipes, interconnects and systems stretching across the plant. The current practices and challenges relating just to this task - leak detection and repair (LDAR) – of detecting any fugitive emissions present and documenting all measurements thereby meeting air compliance regulations are typically “handled” by a small army of individuals with handheld or backpack-sized detectors who crawl through piping racks conducting measurements at each flange. Such work is performed in difficult conditions (temperature, humidity, physically challenging) with frequently a high level of employee turnover. Finaly, enter low cost sensors and mobile platforms – in other words unmanned aerial systems (UASs, or drones) with enhanced sensing capabilities.« less

  7. Scaling of spectra in grid turbulence with a mean cross-stream temperature gradient

    NASA Astrophysics Data System (ADS)

    Bahri, Carla; Arwatz, Gilad; Mueller, Michael E.; George, William K.; Hultmark, Marcus

    2014-11-01

    Scaling of grid turbulence with a constant mean cross-stream temperature gradient is investigated using a combination of theoretical predictions, DNS, and experimental data. Conditions for self-similarity of the governing equations and the scalar spectrum are investigated, which reveals necessary conditions for self-similarity to exist. These conditions provide a theoretical framework for scaling of the temperature spectrum as well as the temperature flux spectrum. One necessary condition, predicted by the theory, is that the characteristic length scale describing the scalar spectrum must vary as √{ t} for a self-similar solution to exist. In order to investigate this, T-NSTAP sensors, specially designed for temperature measurements at high frequencies, were deployed in a heated passive grid turbulence setup together with conventional cold-wires, and complementary DNS calculations were performed to complement and complete the experimental data. These data are used to compare the behavior of different length scales and validate the theoretical predictions.

  8. Sensitivity of power system operations to projected changes in water availability due to climate change: the Western U.S. case study

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Macknick, J.; Fu, T.; O'Connell, M.; Zhou, T.; Brinkman, G.

    2017-12-01

    Water resources provide multiple critical services to the electrical grid through hydropower technologies, from generation to regulation of the electric grid (frequency, capacity reserve). Water resources can also represent vulnerabilities to the electric grid, as hydropower and thermo-electric facilities require water for operations. In the Western U.S., hydropower and thermo-electric plants that rely on fresh surface water represent 67% of the generating capacity. Prior studies have looked at the impact of change in water availability under future climate conditions on expected generating capacity in the Western U.S., but have not evaluated operational risks or changes resulting from climate. In this study, we systematically assess the impact of change in water availability and air temperatures on power operations, i.e. we take into account the different grid services that water resources can provide to the electric grid (generation, regulation) in the system-level context of inter-regional coordination through the electric transmission network. We leverage the Coupled Model Intercomparison Project Phase 5 (CMIP5) hydrology simulations under historical and future climate conditions, and force the large scale river routing- water management model MOSART-WM along with 2010-level sectoral water demands. Changes in monthly hydropower potential generation (including generation and reserves), as well as monthly generation capacity of thermo-electric plants are derived for each power plant in the Western U.S. electric grid. We then utilize the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions for the 2010 infrastructure under 100 years of historical and future (2050 horizon) hydroclimate conditions. We use economic metrics as well as operational metrics such as generation portfolio, emissions, and reserve margins to assess the changes in power system operations between historical and future normal and extreme water availability conditions. We provide insight on how this information can be used to support resource adequacy and grid expansion studies over the Western U.S. in the context of inter-annual variability and climate change.

  9. Extraction of thermal Green's function using diffuse fields: a passive approach applied to thermography

    NASA Astrophysics Data System (ADS)

    Capriotti, Margherita; Sternini, Simone; Lanza di Scalea, Francesco; Mariani, Stefano

    2016-04-01

    In the field of non-destructive evaluation, defect detection and visualization can be performed exploiting different techniques relying either on an active or a passive approach. In the following paper the passive technique is investigated due to its numerous advantages and its application to thermography is explored. In previous works, it has been shown that it is possible to reconstruct the Green's function between any pair of points of a sensing grid by using noise originated from diffuse fields in acoustic environments. The extraction of the Green's function can be achieved by cross-correlating these random recorded waves. Averaging, filtering and length of the measured signals play an important role in this process. This concept is here applied in an NDE perspective utilizing thermal fluctuations present on structural materials. Temperature variations interacting with thermal properties of the specimen allow for the characterization of the material and its health condition. The exploitation of the thermographic image resolution as a dense grid of sensors constitutes the basic idea underlying passive thermography. Particular attention will be placed on the creation of a proper diffuse thermal field, studying the number, placement and excitation signal of heat sources. Results from numerical simulations will be presented to assess the capabilities and performances of the passive thermal technique devoted to defect detection and imaging of structural components.

  10. Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant.

    PubMed

    Sánchez-Avila, Juan; Bonet, Jordi; Velasco, Gemma; Lacorte, Silvia

    2009-06-15

    Industrial and urban discharges release organic contaminants which might affect the quality of receiving waters if not properly eliminated in Wastewater Treatment Plants (WWTP). This study is aimed to evaluate the source, transport and fate of contaminants of industrial origin in a sewage grid discharging to a WWTP and finally to the sea. The sampling network covered an industrial and urban area and wastewaters, influents and effluents of a WWTP were analyzed using a newly developed multiresidual method to capture a wide range contaminants (phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs). Alkylphenols and phthalates followed by PAHs were the main compounds detected at levels between 0.01 to 698 microg l(-1) in the sewage pipelines. At the WWTP influent they were detected at concentrations up to 345 microg l(-1). The contaminant load was eliminated in a 64-92% during the primary and secondary treatment of the plant. However, alkylphenols, phthalates bisphenol A and traces of PAHs were discharged with the effluent, producing a total net input of 825 g d(-1) to the sea. The study of wastewaters herein proposed can be used to better predict the loads into WWTP to improve treatment conditions according to specific sewage inputs and to assess the risks associated with the continuous discharge of contaminants to receiving plants.

  11. Sensitivity Analysis of Repeat Track Estimation Techniques for Detection of Elevation Change in Polar Ice Sheets

    NASA Astrophysics Data System (ADS)

    Harpold, R. E.; Urban, T. J.; Schutz, B. E.

    2008-12-01

    Interest in elevation change detection in the polar regions has increased recently due to concern over the potential sea level rise from the melting of the polar ice caps. Repeat track analysis can be used to estimate elevation change rate by fitting elevation data to model parameters. Several aspects of this method have been tested to improve the recovery of the model parameters. Elevation data from ICESat over Antarctica and Greenland from 2003-2007 are used to test several grid sizes and types, such as grids based on latitude and longitude and grids centered on the ICESat reference groundtrack. Different sets of parameters are estimated, some of which include seasonal terms or alternate types of slopes (linear, quadratic, etc.). In addition, the effects of including crossovers and other solution constraints are evaluated. Simulated data are used to infer potential errors due to unmodeled parameters.

  12. Information security threats and an easy-to-implement attack detection framework for wireless sensor network-based smart grid applications

    NASA Astrophysics Data System (ADS)

    Tuna, G.; Örenbaş, H.; Daş, R.; Kogias, D.; Baykara, M.; K, K.

    2016-03-01

    Wireless Sensor Networks (WSNs) when combined with various energy harvesting solutions managing to prolong the overall lifetime of the system and enhanced capabilities of the communication protocols used by modern sensor nodes are efficiently used in are efficiently used in Smart Grid (SG), an evolutionary system for the modernization of existing power grids. However, wireless communication technology brings various types of security threats. In this study, firstly the use of WSNs for SG applications is presented. Second, the security related issues and challenges as well as the security threats are presented. In addition, proposed security mechanisms for WSN-based SG applications are discussed. Finally, an easy- to-implement and simple attack detection framework to prevent attacks directed to sink and gateway nodes with web interfaces is proposed and its efficiency is proved using a case study.

  13. GridPix detectors: Production and beam test results

    NASA Astrophysics Data System (ADS)

    Koppert, W. J. C.; van Bakel, N.; Bilevych, Y.; Colas, P.; Desch, K.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N. P.; Kaminski, J.; Schmitz, J.; Schön, R.; Zappon, F.

    2013-12-01

    The innovative GridPix detector is a Time Projection Chamber (TPC) that is read out with a Timepix-1 pixel chip. By using wafer post-processing techniques an aluminium grid is placed on top of the chip. When operated, the electric field between the grid and the chip is sufficient to create electron induced avalanches which are detected by the pixels. The time-to-digital converter (TDC) records the drift time enabling the reconstruction of high precision 3D track segments. Recently GridPixes were produced on full wafer scale, to meet the demand for more reliable and cheaper devices in large quantities. In a recent beam test the contribution of both diffusion and time walk to the spatial and angular resolutions of a GridPix detector with a 1.2 mm drift gap are studied in detail. In addition long term tests show that in a significant fraction of the chips the protection layer successfully quenches discharges, preventing harm to the chip.

  14. Probabilistic change mapping from airborne LiDAR for post-disaster damage assessment

    NASA Astrophysics Data System (ADS)

    Jalobeanu, A.; Runyon, S. C.; Kruse, F. A.

    2013-12-01

    When both pre- and post-event LiDAR point clouds are available, change detection can be performed to identify areas that were most affected by a disaster event, and to obtain a map of quantitative changes in terms of height differences. In the case of earthquakes in built-up areas for instance, first responders can use a LiDAR change map to help prioritize search and recovery efforts. The main challenge consists of producing reliable change maps, robust to collection conditions, free of processing artifacts (due for instance to triangulation or gridding), and taking into account the various sources of uncertainty. Indeed, datasets acquired within a few years interval are often of different point density (sometimes an order of magnitude higher for recent data), different acquisition geometries, and very likely suffer from georeferencing errors and geometric discrepancies. All these differences might not be important for producing maps from each dataset separately, but they are crucial when performing change detection. We have developed a novel technique for the estimation of uncertainty maps from the LiDAR point clouds, using Bayesian inference, treating all variables as random. The main principle is to grid all points on a common grid before attempting any comparison, as working directly with point clouds is cumbersome and time consuming. A non-parametric approach based on local linear regression was implemented, assuming a locally linear model for the surface. This enabled us to derive error bars on gridded elevations, and then elevation differences. In this way, a map of statistically significant changes could be computed - whereas a deterministic approach would not allow testing of the significance of differences between the two datasets. This approach allowed us to take into account not only the observation noise (due to ranging, position and attitude errors) but also the intrinsic roughness of the observed surfaces occurring when scanning vegetation. As only elevation differences above a predefined noise level are accounted for (according to a specified confidence interval related to the allowable false alarm rate) the change detection is robust to all these sources of noise. To first validate the approach, we built small-scale models and scanned them using a terrestrial laser scanner to establish 'ground truth'. Changes were manually applied to the models then new scans were performed and analyzed. Additionally, two airborne datasets of the Monterey Peninsula, California, were processed and analyzed. The first one was acquired during 2010 (with relatively low point density, 1-3 pts/m2), and the second one was acquired during 2012 (with up to 30 pts/m2). To perform the comparison, a new point cloud registration technique was developed and the data were registered to a common 1 m grid. The goal was to correct systematic shifts due to GPS and INS errors, and focus on the actual height differences regardless of the absolute planimetric accuracy of the datasets. Though no major disaster event occurred between the two acquisition dates, sparse changes were detected and interpreted mostly as construction and natural landscape evolution.

  15. The biometric-based module of smart grid system

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Ermoshkina, A.

    2015-10-01

    Within Smart Grid concept the flexible biometric-based module base on Principal Component Analysis (PCA) and selective Neural Network is developed. The formation of the selective Neural Network the biometric-based module uses the method which includes three main stages: preliminary processing of the image, face localization and face recognition. Experiments on the Yale face database show that (i) selective Neural Network exhibits promising classification capability for face detection, recognition problems; and (ii) the proposed biometric-based module achieves near real-time face detection, recognition speed and the competitive performance, as compared to some existing subspaces-based methods.

  16. Rate based failure detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brett Emery Trabun; Gamage, Thoshitha Thanushka; Bakken, David Edward

    This disclosure describes, in part, a system management component and failure detection component for use in a power grid data network to identify anomalies within the network and systematically adjust the quality of service of data published by publishers and subscribed to by subscribers within the network. In one implementation, subscribers may identify a desired data rate, a minimum acceptable data rate, desired latency, minimum acceptable latency and a priority for each subscription. The failure detection component may identify an anomaly within the network and a source of the anomaly. Based on the identified anomaly, data rates and or datamore » paths may be adjusted in real-time to ensure that the power grid data network does not become overloaded and/or fail.« less

  17. Occurrence and Spread of the Invasive Asian Bush Mosquito Aedes japonicus japonicus (Diptera: Culicidae) in West and North Germany since Detection in 2012 and 2013, Respectively.

    PubMed

    Kampen, Helge; Kuhlisch, Cornelius; Fröhlich, Andreas; Scheuch, Dorothee E; Walther, Doreen

    2016-01-01

    The invasive Asian bush mosquito Aedes japonicus japonicus was first recognised as established in Germany in 2008. In addition to the first known and quickly expanding population in the southwestern part of the country, three separate populations were discovered in West, North and southeastern Germany in 2012, 2013 and 2015, respectively, by means of the 'Mueckenatlas', a German instrument of passive mosquito surveillance. Since the first findings of mosquito specimens in West and North Germany, these regions were checked annually for continuing colonisation and spread of the species. Both affected areas were covered by a virtual 10x10km2 grid pattern in the cells of which cemeteries were screened for immature stages of the mosquito. The cells were considered populated as soon as larvae or pupae were detected, whereas they were classified as negative when no mosquito stages were found in the cemeteries of at least three different towns or villages. Presence was also recorded when Ae. j. japonicus adults were submitted to the 'Mueckenatlas' from the respective cell or when there was evidence of local occurrence in localities other than cemeteries. Based on this approach, a significant expansion of the populated area was documented in West Germany since the first detection of Ae. j. japonicus in 2012 (increase in positive grid cells by more than 400%), while the North German population appears not to be expanding so far (reduction of positive grid cells by ca. 30% since 2013). As Ae. j. japonicus finds suitable climatic and ecological conditions in Germany, the differential expansion of the two populations might be attributed to the West German population being older and thus more firmly established than the closely related but younger North German population that might still be in its founder phase. However, geographic spread of all German populations in the future is anticipated. Continuous surveillance is recommended, as Ae. j. japonicus is a competent vector of several pathogens in the laboratory.

  18. Optimizing "self-wicking" nanowire grids.

    PubMed

    Wei, Hui; Dandey, Venkata P; Zhang, Zhening; Raczkowski, Ashleigh; Rice, Willam J; Carragher, Bridget; Potter, Clinton S

    2018-05-01

    We have developed a self-blotting TEM grid for use with a novel instrument for vitrifying samples for cryo-electron microscopy (cryoEM). Nanowires are grown on the copper surface of the grid using a simple chemical reaction and the opposite smooth side is used to adhere to a holey sample substrate support, for example carbon or gold. When small volumes of sample are applied to the nanowire grids the wires effectively act as blotting paper to rapidly wick away the liquid, leaving behind a thin film. In this technical note, we present a detailed description of how we make these grids using a variety of substrates fenestrated with either lacey or regularly spaced holes. We explain how we characterize the quality of the grids and we describe their behavior under a variety of conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. A decision support system using combined-classifier for high-speed data stream in smart grid

    NASA Astrophysics Data System (ADS)

    Yang, Hang; Li, Peng; He, Zhian; Guo, Xiaobin; Fong, Simon; Chen, Huajun

    2016-11-01

    Large volume of high-speed streaming data is generated by big power grids continuously. In order to detect and avoid power grid failure, decision support systems (DSSs) are commonly adopted in power grid enterprises. Among all the decision-making algorithms, incremental decision tree is the most widely used one. In this paper, we propose a combined classifier that is a composite of a cache-based classifier (CBC) and a main tree classifier (MTC). We integrate this classifier into a stream processing engine on top of the DSS such that high-speed steaming data can be transformed into operational intelligence efficiently. Experimental results show that our proposed classifier can return more accurate answers than other existing ones.

  20. Evaluation of Far-Field Boundary Conditions for the Gust Response Problem

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Kreider, Kevin L.; Heminger, John A.

    2002-01-01

    This paper presents a detailed situ dy of four far-field boundary conditions used in solving the single airfoil gust response problem. The boundary conditions, examined are the partial Sommerfeld radiation condition with only radial derivatives, the full Sommerfeld radiation condition with both radial and tangential derivatives, the Bayliss-Turkel condition of order one, and the Hagstrom-Hariharan condition of order one. The main objectives of the study were to determine which far-field boundary condition was most accurate, which condition was least sensitive to changes in grid. and which condition was best overall in terms of both accuracy and efficiency. Through a systematic study of the flat plate gust response problem, it was determined that the Hagstrom-Hariharan condition was most accurate, the Bayliss-Turkel condition was least sensitive to changes in grid, and Bayliss-Turkel was best in terms of both accuracy and efficiency.

  1. Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions

    NASA Astrophysics Data System (ADS)

    Anchukaitis, Kevin J.; Wilson, Rob; Briffa, Keith R.; Büntgen, Ulf; Cook, Edward R.; D'Arrigo, Rosanne; Davi, Nicole; Esper, Jan; Frank, David; Gunnarson, Björn E.; Hegerl, Gabi; Helama, Samuli; Klesse, Stefan; Krusic, Paul J.; Linderholm, Hans W.; Myglan, Vladimir; Osborn, Timothy J.; Zhang, Peng; Rydval, Milos; Schneider, Lea; Schurer, Andrew; Wiles, Greg; Zorita, Eduardo

    2017-05-01

    Climate field reconstructions from networks of tree-ring proxy data can be used to characterize regional-scale climate changes, reveal spatial anomaly patterns associated with atmospheric circulation changes, radiative forcing, and large-scale modes of ocean-atmosphere variability, and provide spatiotemporal targets for climate model comparison and evaluation. Here we use a multiproxy network of tree-ring chronologies to reconstruct spatially resolved warm season (May-August) mean temperatures across the extratropical Northern Hemisphere (40-90°N) using Point-by-Point Regression (PPR). The resulting annual maps of temperature anomalies (750-1988 CE) reveal a consistent imprint of volcanism, with 96% of reconstructed grid points experiencing colder conditions following eruptions. Solar influences are detected at the bicentennial (de Vries) frequency, although at other time scales the influence of insolation variability is weak. Approximately 90% of reconstructed grid points show warmer temperatures during the Medieval Climate Anomaly when compared to the Little Ice Age, although the magnitude varies spatially across the hemisphere. Estimates of field reconstruction skill through time and over space can guide future temporal extension and spatial expansion of the proxy network.

  2. Fire Detections and Fire Radiative Power Intercomparison Using Multiple Sensor Products over a Predominantly Gas Flaring Region

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Wang, J.

    2014-12-01

    Gas flaring is a global environmental hazard severely impacting climate, economy and public health. The associated emissions are frequently unreported and have large uncertainties. Prior studies have established a direct relationship between radiative energy released from fires and the biomass burned, making fire radiative power (FRP), i.e., the rate of radiative energy release, an important proxy to characterize emissions. In this study fire properties from four different satellite products were obtained over a 10⁰ x 10⁰ gas flaring region in Russia for all days of May 2013. The target area is part of Russia's biggest gas flaring region, Khanty-Mansiysk autonomous okrug. The objective of the study is to investigate the consistency of fire detections, FRP retrievals and effects of gridding FRP data from the region on a uniform grid. The four products used were: MODIS Terra level2 thermal anomalies (MOD14), MODIS Aqua level2 thermal anomalies (MYD14), VIIRS Active fire product and a recent NOAA Nightfire product. 1 km nominal resolution FRP from MOD14 AND MYD14, subpixel radiant heat (RH) from NOAA Nightfire product and fire detections from all four products were recorded on a 0.25⁰ x 0.25⁰ grid on a daily basis. Results revealed the Nightfire product had maximum detections, almost six times the number of detections by other products, mainly because of the use of M10 (1.6 µm) band as their primary detection band. The M10 band is highly efficient in identifying radiant emissions from hot sources during night-time. The correlation (after omitting outliers) between gridded NOAA Nightfire RH and corresponding MOD14 FRP and MYD14 FRP gave a moderate regression value, with MODIS FRP being mostly higher than RH. As an extension to this work, a comprehensive study for a larger temporal domain also incorporating viewing geometries and cloud cover would advance our understanding of flare detections and associated FRP retrievals not just for the target region but also gas flaring regions globally.

  3. Grid-mapping Hellas Planitia, Mars - Insights into distribution, evolution and geomorphology of (Peri)-glacial, fluvial and lacustrine landforms in Mars' deepest basin

    NASA Astrophysics Data System (ADS)

    Voelker, M.; Hauber, E.; Schulzeck, F.; Jaumann, R.

    2017-10-01

    Traditional maps of Hellas Planitia, the most prominent impact basin on Mars, have focused on the delineation of continuous surface units. We applied the newly developed grid-mapping method in order to quantitatively analyze the distribution and geostatistics of selected (peri)-glacial, fluvial, and lacustrine landforms. The study area was subdivided in grid cells with a mesh size of 20 × 20 km, and more than 10,000 grids have been inspected manually in a GIS environment at a mapping scale of 1:30,000. Each grid has been checked for the presence or absence of a landform. Thus, we were able to statistically evaluate the geographical behavior of landforms with respect to elevation, slope inclination, aspect, and other parameters. We searched for 24 pre-selected landforms. However, only 15 of them had a sufficient abundance for scientific research. Whereas the latitude-dependent mantle is widespread in most of Hellas, it was found to be mostly missing in the northeastern part, likely a result of desiccating winds circulating clockwise within the basin. The location and morphologic expression of scalloped terrain also seems to be influenced by winds, as the local orientation of scalloped depressions appears to be aligned along the dominant wind direction, indicating that insolation is not the only factor controlling their formation. Hellas Planitia has been suggested as the site of a former sea. We also searched each grid for the presence of possible shorelines. Despite the small scale of our mapping, no clear evidence for coastal landforms has been detected. Our results reveal a distinctive asymmetry with respect to fluvial channels and Noachian light-toned sediments along the rim of the impact basin. While the northern rim shows a high density of both channels and sediments, the southern counterpart basically lacks channels and light-toned deposits. We suggest different climatic conditions for this imbalance, as the northern part of Hellas likely experienced higher temperatures throughout most of Mars' evolution, while the colder conditions at the southern rim may have prohibited aqueous processes, preventing the development of channels and related sediments. As Hellas contains the deepest areas of the planet's surface, and thus the highest air pressure, its climatic environment can exceed the triple point of water until today, making it a potential habitat. However, our results have shown that the basin floor displays only a very low density of landforms that may indicate liquid water and ice, and especially gullies and viscous-flow features are scarce. The high air pressure and relatively mild temperatures in Hellas decrease the relative atmospheric water content, resulting in a desiccated air and soil, and hence, may explain the lack of viscous-flow features and gullies. All these findings extended our knowledge not only of Hellas Planitia, but of the screened landforms themselves too. In conclusion, small-scale grid-mapping made it possible to recognize large-scale patterns and distributions in Hellas Planitia.

  4. Middle Pliocene vegetation: Reconstructions, paleoclimatic inferences, and boundary conditions for climate modeling

    USGS Publications Warehouse

    Thompson, R.S.; Fleming, R.F.

    1996-01-01

    The general characteristics of global vegetation during the middle Pliocene warm period can be reconstructed from fossil pollen and plant megafossil data. The largest differences between Pliocene vegetation and that of today occurred at high latitudes in both hemispheres, where warming was pronounced relative to today. In the Northern Hemisphere coniferous forests lived in the modern tundra and polar desert regions, whereas in the Southern Hemisphere southern beech apparently grew in coastal areas of Antarctica. Pliocene middle latitude vegetation differed less, although moister-than-modern conditions supported forest and woodland growth in some regions now covered by steppe or grassland. Pliocene tropical vegetation reflects essentially modern conditions in some regions and slightly cooler-than-or warmer-than- modern climates in other areas. Changes in topography induced by tectonics may be responsible for many of the climatic changes since the Pliocene in both middle and lower latitudes. However, the overall latitudinal progression of climatic conditions on land parallels that seen in the reconstruction of middle Pliocene sea-surface temperatures. Pliocene paleovegetational data was employed to construct a 2????2?? global grid of estimated mid-Pliocene vegetational cover for use as boundary conditions for numerical General Circulation Model simulations of middle Pliocene climates. Continental outlines and topography were first modified to represent the Pliocene landscape on the 2????2?? grid. A modern 1????1?? vegetation grid was simplified and mapped on this Pliocene grid, and then modified following general geographic trends evident in the Pliocene paleovegetation data set.

  5. Grid site availability evaluation and monitoring at CMS

    DOE PAGES

    Lyons, Gaston; Maciulaitis, Rokas; Bagliesi, Giuseppe; ...

    2017-10-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) uses distributed grid computing to store, process, and analyse the vast quantity of scientific data recorded every year. The computing resources are grouped into sites and organized in a tiered structure. Each site provides computing and storage to the CMS computing grid. Over a hundred sites worldwide contribute with resources from hundred to well over ten thousand computing cores and storage from tens of TBytes to tens of PBytes. In such a large computing setup scheduled and unscheduled outages occur continually and are not allowed to significantly impactmore » data handling, processing, and analysis. Unscheduled capacity and performance reductions need to be detected promptly and corrected. CMS developed a sophisticated site evaluation and monitoring system for Run 1 of the LHC based on tools of the Worldwide LHC Computing Grid. For Run 2 of the LHC the site evaluation and monitoring system is being overhauled to enable faster detection/reaction to failures and a more dynamic handling of computing resources. Furthermore, enhancements to better distinguish site from central service issues and to make evaluations more transparent and informative to site support staff are planned.« less

  6. Grid site availability evaluation and monitoring at CMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, Gaston; Maciulaitis, Rokas; Bagliesi, Giuseppe

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) uses distributed grid computing to store, process, and analyse the vast quantity of scientific data recorded every year. The computing resources are grouped into sites and organized in a tiered structure. Each site provides computing and storage to the CMS computing grid. Over a hundred sites worldwide contribute with resources from hundred to well over ten thousand computing cores and storage from tens of TBytes to tens of PBytes. In such a large computing setup scheduled and unscheduled outages occur continually and are not allowed to significantly impactmore » data handling, processing, and analysis. Unscheduled capacity and performance reductions need to be detected promptly and corrected. CMS developed a sophisticated site evaluation and monitoring system for Run 1 of the LHC based on tools of the Worldwide LHC Computing Grid. For Run 2 of the LHC the site evaluation and monitoring system is being overhauled to enable faster detection/reaction to failures and a more dynamic handling of computing resources. Furthermore, enhancements to better distinguish site from central service issues and to make evaluations more transparent and informative to site support staff are planned.« less

  7. Grid site availability evaluation and monitoring at CMS

    NASA Astrophysics Data System (ADS)

    Lyons, Gaston; Maciulaitis, Rokas; Bagliesi, Giuseppe; Lammel, Stephan; Sciabà, Andrea

    2017-10-01

    The Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) uses distributed grid computing to store, process, and analyse the vast quantity of scientific data recorded every year. The computing resources are grouped into sites and organized in a tiered structure. Each site provides computing and storage to the CMS computing grid. Over a hundred sites worldwide contribute with resources from hundred to well over ten thousand computing cores and storage from tens of TBytes to tens of PBytes. In such a large computing setup scheduled and unscheduled outages occur continually and are not allowed to significantly impact data handling, processing, and analysis. Unscheduled capacity and performance reductions need to be detected promptly and corrected. CMS developed a sophisticated site evaluation and monitoring system for Run 1 of the LHC based on tools of the Worldwide LHC Computing Grid. For Run 2 of the LHC the site evaluation and monitoring system is being overhauled to enable faster detection/reaction to failures and a more dynamic handling of computing resources. Enhancements to better distinguish site from central service issues and to make evaluations more transparent and informative to site support staff are planned.

  8. Liquid crystal-based glucose biosensor functionalized with mixed PAA and QP4VP brushes.

    PubMed

    Khan, Mashooq; Park, Soo-Young

    2015-06-15

    4-Cyano-4'-pentylbiphenyl (5CB) in a transmission electron microscopy (TEM) grid was developed for glucose detection by coating with a monolayer of mixed polymer brushes using poly(acrylicacid-b-4-cynobiphenyl-4'-oxyundecylacrylate) (PAA-b-LCP) and quaternized poly(4-vinylpyridine-b-4-cynobiphenyl-4'-oxyundecylacrylate) (QP4VP-b-LCP) (LCP stands for liquid crystal polymer) at the 5CB/aqueous interface. The resultant 5CB in TEM grid was functionalized with the PAA and QP4VP brushes, which were strongly anchored by the LCP block. The PAA brush rendered the 5CB/aqueous interface pH-responsive and the QP4VP brush immobilized glucose oxidase (GOx) through electrostatic interactions without the aid of coupling agents. The glucose was detected through a homeotropic-to-planar orientational transition of the 5CB observed through a polarized optical microscope (POM) under crossed polarizers. The optimum immobilization with a 0.78 µM GOx solution on the dual-brush-coated TEM grid enabled glucose detection at concentrations higher than 0.5 mM with response times shorter than 180 s. This TEM grid glucose sensor provided a linear response of birefringence of the 5CB to glucose concentrations ranging from 0.5 to 11 mM with a Michaelis-Menten constant (Km) of 1.67 mM. This new and sensitive glucose biosensor has the advantages of low production cost, simple enzyme immobilization, high enzyme sensitivity and stability, and easy detection with POM, and may be useful for prescreening the glucose level in the human body. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Discrete exterior calculus approach for discretizing Maxwell's equations on face-centered cubic grids for FDTD

    NASA Astrophysics Data System (ADS)

    Salmasi, Mahbod; Potter, Michael

    2018-07-01

    Maxwell's equations are discretized on a Face-Centered Cubic (FCC) lattice instead of a simple cubic as an alternative to the standard Yee method for improvements in numerical dispersion characteristics and grid isotropy of the method. Explicit update equations and numerical dispersion expressions, and the stability criteria are derived. Also, several tools available to the standard Yee method such as PEC/PMC boundary conditions, absorbing boundary conditions, and scattered field formulation are extended to this method as well. A comparison between the FCC and the Yee formulations is made, showing that the FCC method exhibits better dispersion compared to its Yee counterpart. Simulations are provided to demonstrate both the accuracy and grid isotropy improvement of the method.

  10. Automated airplane surface generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, R.E.; Cordero, Y.; Jones, W.

    1996-12-31

    An efficient methodology and software axe presented for defining a class of airplane configurations. A small set of engineering design parameters and grid control parameters govern the process. The general airplane configuration has wing, fuselage, vertical tall, horizontal tail, and canard components. Wing, canard, and tail surface grids axe manifested by solving a fourth-order partial differential equation subject to Dirichlet and Neumann boundary conditions. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage is described by an algebraic function with four design parameters. The computed surface grids are suitablemore » for a wide range of Computational Fluid Dynamics simulation and configuration optimizations. Both batch and interactive software are discussed for applying the methodology.« less

  11. Examining the occupancy–density relationship for a low-density carnivore

    USGS Publications Warehouse

    Linden, Daniel W.; Fuller, Angela K.; Royle, J. Andrew; Hare, Matthew P.

    2017-01-01

    The challenges associated with monitoring low-density carnivores across large landscapes have limited the ability to implement and evaluate conservation and management strategies for such species. Non-invasive sampling techniques and advanced statistical approaches have alleviated some of these challenges and can even allow for spatially explicit estimates of density, one of the most valuable wildlife monitoring tools.For some species, individual identification comes at no cost when unique attributes (e.g. pelage patterns) can be discerned with remote cameras, while other species require viable genetic material and expensive laboratory processing for individual assignment. Prohibitive costs may still force monitoring efforts to use species distribution or occupancy as a surrogate for density, which may not be appropriate under many conditions.Here, we used a large-scale monitoring study of fisher Pekania pennanti to evaluate the effectiveness of occupancy as an approximation to density, particularly for informing harvest management decisions. We combined remote cameras with baited hair snares during 2013–2015 to sample across a 70 096-km2 region of western New York, USA. We fit occupancy and Royle–Nichols models to species detection–non-detection data collected by cameras, and spatial capture–recapture (SCR) models to individual encounter data obtained by genotyped hair samples. Variation in the state variables within 15-km2 grid cells was modelled as a function of landscape attributes known to influence fisher distribution.We found a close relationship between grid cell estimates of fisher state variables from the models using detection–non-detection data and those from the SCR model, likely due to informative spatial covariates across a large landscape extent and a grid cell resolution that worked well with the movement ecology of the species. Fisher occupancy and density were both positively associated with the proportion of coniferous-mixed forest and negatively associated with road density. As a result, spatially explicit management recommendations for fisher were similar across models, though relative variation was dampened for the detection–non-detection data.Synthesis and applications. Our work provides empirical evidence that models using detection–non-detection data can make similar inferences regarding relative spatial variation of the focal population to models using more expensive individual encounters when the selected spatial grain approximates or is marginally smaller than home range size. When occupancy alone is chosen as a cost-effective state variable for monitoring, simulation and sensitivity analyses should be used to understand how inferences from detection–non-detection data will be affected by aspects of study design and species ecology.

  12. A stable and accurate partitioned algorithm for conjugate heat transfer

    NASA Astrophysics Data System (ADS)

    Meng, F.; Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.

    2017-09-01

    We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in an implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems together with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode theory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized-Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and diffusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. The CHAMP scheme is also developed for general curvilinear grids and CHT examples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.

  13. A stable and accurate partitioned algorithm for conjugate heat transfer

    DOE PAGES

    Meng, F.; Banks, J. W.; Henshaw, W. D.; ...

    2017-04-25

    We describe a new partitioned approach for solving conjugate heat transfer (CHT) problems where the governing temperature equations in different material domains are time-stepped in a implicit manner, but where the interface coupling is explicit. The new approach, called the CHAMP scheme (Conjugate Heat transfer Advanced Multi-domain Partitioned), is based on a discretization of the interface coupling conditions using a generalized Robin (mixed) condition. The weights in the Robin condition are determined from the optimization of a condition derived from a local stability analysis of the coupling scheme. The interface treatment combines ideas from optimized-Schwarz methods for domain-decomposition problems togethermore » with the interface jump conditions and additional compatibility jump conditions derived from the governing equations. For many problems (i.e. for a wide range of material properties, grid-spacings and time-steps) the CHAMP algorithm is stable and second-order accurate using no sub-time-step iterations (i.e. a single implicit solve of the temperature equation in each domain). In extreme cases (e.g. very fine grids with very large time-steps) it may be necessary to perform one or more sub-iterations. Each sub-iteration generally increases the range of stability substantially and thus one sub-iteration is likely sufficient for the vast majority of practical problems. The CHAMP algorithm is developed first for a model problem and analyzed using normal-mode the- ory. The theory provides a mechanism for choosing optimal parameters in the mixed interface condition. A comparison is made to the classical Dirichlet-Neumann (DN) method and, where applicable, to the optimized- Schwarz (OS) domain-decomposition method. For problems with different thermal conductivities and dif- fusivities, the CHAMP algorithm outperforms the DN scheme. For domain-decomposition problems with uniform conductivities and diffusivities, the CHAMP algorithm performs better than the typical OS scheme with one grid-cell overlap. Lastly, the CHAMP scheme is also developed for general curvilinear grids and CHT ex- amples are presented using composite overset grids that confirm the theory and demonstrate the effectiveness of the approach.« less

  14. Simulation of demand management and grid balancing with electric vehicles

    NASA Astrophysics Data System (ADS)

    Druitt, James; Früh, Wolf-Gerrit

    2012-10-01

    This study investigates the potential role of electric vehicles in an electricity network with a high contribution from variable generation such as wind power. Electric vehicles are modelled to provide demand management through flexible charging requirements and energy balancing for the network. Balancing applications include both demand balancing and vehicle-to-grid discharging. This study is configured to represent the UK grid with balancing requirements derived from wind generation calculated from weather station wind speeds on the supply side and National Grid data from on the demand side. The simulation models 1000 individual vehicle entities to represent the behaviour of larger numbers of vehicles. A stochastic trip generation profile is used to generate realistic journey characteristics, whilst a market pricing model allows charging and balancing decisions to be based on realistic market price conditions. The simulation has been tested with wind generation capacities representing up to 30% of UK consumption. Results show significant improvements to load following conditions with the introduction of electric vehicles, suggesting that they could substantially facilitate the uptake of intermittent renewable generation. Electric vehicle owners would benefit from flexible charging and selling tariffs, with the majority of revenue derived from vehicle-to-grid participation in balancing markets.

  15. Control system and method for a universal power conditioning system

    DOEpatents

    Lai, Jih-Sheng; Park, Sung Yeul; Chen, Chien-Liang

    2014-09-02

    A new current loop control system method is proposed for a single-phase grid-tie power conditioning system that can be used under a standalone or a grid-tie mode. This type of inverter utilizes an inductor-capacitor-inductor (LCL) filter as the interface in between inverter and the utility grid. The first set of inductor-capacitor (LC) can be used in the standalone mode, and the complete LCL can be used for the grid-tie mode. A new admittance compensation technique is proposed for the controller design to avoid low stability margin while maintaining sufficient gain at the fundamental frequency. The proposed current loop controller system and admittance compensation technique have been simulated and tested. Simulation results indicate that without the admittance path compensation, the current loop controller output duty cycle is largely offset by an undesired admittance path. At the initial simulation cycle, the power flow may be erratically fed back to the inverter causing catastrophic failure. With admittance path compensation, the output power shows a steady-state offset that matches the design value. Experimental results show that the inverter is capable of both a standalone and a grid-tie connection mode using the LCL filter configuration.

  16. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    PubMed

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  17. Turbulence generation through intense kinetic energy sources

    NASA Astrophysics Data System (ADS)

    Maqui, Agustin F.; Donzis, Diego A.

    2016-06-01

    Direct numerical simulations (DNS) are used to systematically study the development and establishment of turbulence when the flow is initialized with concentrated regions of intense kinetic energy. This resembles both active and passive grids which have been extensively used to generate and study turbulence in laboratories at different Reynolds numbers and with different characteristics, such as the degree of isotropy and homogeneity. A large DNS database was generated covering a wide range of initial conditions with a focus on perturbations with some directional preference, a condition found in active jet grids and passive grids passed through a contraction as well as a new type of active grid inspired by the experimental use of lasers to photo-excite the molecules that comprise the fluid. The DNS database is used to assert under what conditions the flow becomes turbulent and if so, the time required for this to occur. We identify a natural time scale of the problem which indicates the onset of turbulence and a single Reynolds number based exclusively on initial conditions which controls the evolution of the flow. It is found that a minimum Reynolds number is needed for the flow to evolve towards fully developed turbulence. An extensive analysis of single and two point statistics, velocity as well as spectral dynamics and anisotropy measures is presented to characterize the evolution of the flow towards realistic turbulence.

  18. Stride search: A general algorithm for storm detection in high resolution climate data

    DOE PAGES

    Bosler, Peter Andrew; Roesler, Erika Louise; Taylor, Mark A.; ...

    2015-09-08

    This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared. The commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. Stride Search is designed to work at all latitudes, while grid point searches may fail in polar regions. Results from the two algorithms are compared for the application of tropicalmore » cyclone detection, and shown to produce similar results for the same set of storm identification criteria. The time required for both algorithms to search the same data set is compared. Furthermore, Stride Search's ability to search extreme latitudes is demonstrated for the case of polar low detection.« less

  19. A Quadtree-gridding LBM with Immersed Boundary for Two-dimension Viscous Flows

    NASA Astrophysics Data System (ADS)

    Yao, Jieke; Feng, Wenliang; Chen, Bin; Zhou, Wei; Cao, Shikun

    2017-07-01

    An un-uniform quadtree grids lattice Boltzmann method (LBM) with immersed boundary is presented in this paper. In overlapping for different level grids, temporal and spatial interpolation are necessary to ensure the continuity of physical quantity. In order to take advantage of the equation for temporal and spatial step in the same level grids, equal interval interpolation, which is simple to apply to any refined boundary grids in the LBM, is adopted in temporal and spatial aspects to obtain second-order accuracy. The velocity correction, which can guarantee more preferably no-slip boundary condition than the direct forcing method and the momentum exchange method in the traditional immersed-boundary LBM, is used for solid boundary to make the best of Cartesian grid. In present quadtree-gridding immersed-boundary LBM, large eddy simulation (LES) is adopted to simulate the flows over obstacle in higher Reynolds number (Re). The incompressible viscous flows over circular cylinder are carried out, and a great agreement is obtained.

  20. Reservoir property grids improve with geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, J.

    1993-09-01

    Visualization software, reservoir simulators and many other E and P software applications need reservoir property grids as input. Using geostatistics, as compared to other gridding methods, to produce these grids leads to the best output from the software programs. For the purpose stated herein, geostatistics is simply two types of gridding methods. Mathematically, these methods are based on minimizing or duplicating certain statistical properties of the input data. One geostatical method, called kriging, is used when the highest possible point-by-point accuracy is desired. The other method, called conditional simulation, is used when one wants statistics and texture of the resultingmore » grid to be the same as for the input data. In the following discussion, each method is explained, compared to other gridding methods, and illustrated through example applications. Proper use of geostatistical data in flow simulations, use of geostatistical data for history matching, and situations where geostatistics has no significant advantage over other methods, also will be covered.« less

  1. Increasing the resilience and security of the United States' power infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happenny, Sean F.

    2015-08-01

    The United States' power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power infrastructure control and distribution paradigms by utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Understanding how these systems behave in real-worldmore » conditions will lead to new ways to make our power infrastructure more resilient and secure. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the aging networks protecting them are becoming easier to attack.« less

  2. Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations.

    PubMed

    Grossberg, Stephen; Pilly, Praveen K

    2014-02-05

    A neural model proposes how entorhinal grid cells and hippocampal place cells may develop as spatial categories in a hierarchy of self-organizing maps (SOMs). The model responds to realistic rat navigational trajectories by learning both grid cells with hexagonal grid firing fields of multiple spatial scales, and place cells with one or more firing fields, that match neurophysiological data about their development in juvenile rats. Both grid and place cells can develop by detecting, learning and remembering the most frequent and energetic co-occurrences of their inputs. The model's parsimonious properties include: similar ring attractor mechanisms process linear and angular path integration inputs that drive map learning; the same SOM mechanisms can learn grid cell and place cell receptive fields; and the learning of the dorsoventral organization of multiple spatial scale modules through medial entorhinal cortex to hippocampus (HC) may use mechanisms homologous to those for temporal learning through lateral entorhinal cortex to HC ('neural relativity'). The model clarifies how top-down HC-to-entorhinal attentional mechanisms may stabilize map learning, simulates how hippocampal inactivation may disrupt grid cells, and explains data about theta, beta and gamma oscillations. The article also compares the three main types of grid cell models in the light of recent data.

  3. Adaptive grid methods for RLV environment assessment and nozzle analysis

    NASA Technical Reports Server (NTRS)

    Thornburg, Hugh J.

    1996-01-01

    Rapid access to highly accurate data about complex configurations is needed for multi-disciplinary optimization and design. In order to efficiently meet these requirements a closer coupling between the analysis algorithms and the discretization process is needed. In some cases, such as free surface, temporally varying geometries, and fluid structure interaction, the need is unavoidable. In other cases the need is to rapidly generate and modify high quality grids. Techniques such as unstructured and/or solution-adaptive methods can be used to speed the grid generation process and to automatically cluster mesh points in regions of interest. Global features of the flow can be significantly affected by isolated regions of inadequately resolved flow. These regions may not exhibit high gradients and can be difficult to detect. Thus excessive resolution in certain regions does not necessarily increase the accuracy of the overall solution. Several approaches have been employed for both structured and unstructured grid adaption. The most widely used involve grid point redistribution, local grid point enrichment/derefinement or local modification of the actual flow solver. However, the success of any one of these methods ultimately depends on the feature detection algorithm used to determine solution domain regions which require a fine mesh for their accurate representation. Typically, weight functions are constructed to mimic the local truncation error and may require substantial user input. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. These weight functions can then be used to construct blending functions for algebraic redistribution, interpolation functions for unstructured grid generation, forcing functions to attract/repel points in an elliptic system, or to trigger local refinement, based upon application of an equidistribution principle. The popularity of solution-adaptive techniques is growing in tandem with unstructured methods. The difficultly of precisely controlling mesh densities and orientations with current unstructured grid generation systems has driven the use of solution-adaptive meshing. Use of derivatives of density or pressure are widely used for construction of such weight functions, and have been proven very successful for inviscid flows with shocks. However, less success has been realized for flowfields with viscous layers, vortices or shocks of disparate strength. It is difficult to maintain the appropriate mesh point spacing in the various regions which require a fine spacing for adequate resolution. Mesh points often migrate from important regions due to refinement of dominant features. An example of this is the well know tendency of adaptive methods to increase the resolution of shocks in the flowfield around airfoils, but in the incorrect location due to inadequate resolution of the stagnation region. This problem has been the motivation for this research.

  4. Continental-Scale Estimates of Runoff Using Future Climate ...

    EPA Pesticide Factsheets

    Recent runoff events have had serious repercussions to both natural ecosystems and human infrastructure. Understanding how shifts in storm event intensities are expected to change runoff responses are valuable for local, regional, and landscape planning. To address this challenge, relative changes in runoff using predicted future climate conditions were estimated over different biophysical areas for the CONterminous U.S. (CONUS). Runoff was estimated using the Curve Number (CN) developed by the USDA Soil Conservation Service (USDA, 1986). A seamless gridded dataset representing a CN for existing land use/land cover (LULC) across the CONUS was used along with two different storm event grids created specifically for this effort. The two storm event grids represent a 2- and a 100-year, 24-hour storm event under current climate conditions. The storm event grids were generated using a compilation of county-scale Texas USGS Intensity-Duration-Frequency (IDF) data (provided by William Asquith, USGS, Lubbock, Texas), and NOAA Atlas-2 and NOAA Atlas-14 gridded data sets. Future CN runoff was predicted using extreme storm events grids created using a method based on Kao and Ganguly (2011) where precipitation extremes reflect changes in saturated water vapor pressure of the atmosphere in response to temperature changes. The Clausius-Clapeyron relationship establishes that the total water vapor mass of fully saturated air increases with increasing temperature, leading to

  5. Semi-implicit integration factor methods on sparse grids for high-dimensional systems

    NASA Astrophysics Data System (ADS)

    Wang, Dongyong; Chen, Weitao; Nie, Qing

    2015-07-01

    Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.

  6. A survey of nested grid techniques and their potential for use within the MASS weather prediction model

    NASA Technical Reports Server (NTRS)

    Koch, Steven E.; Mcqueen, Jeffery T.

    1987-01-01

    A survey of various one- and two-way interactive nested grid techniques used in hydrostatic numerical weather prediction models is presented and the advantages and disadvantages of each method are discussed. The techniques for specifying the lateral boundary conditions for each nested grid scheme are described in detail. Averaging and interpolation techniques used when applying the coarse mesh grid (CMG) and fine mesh grid (FMG) interface conditions during two-way nesting are discussed separately. The survey shows that errors are commonly generated at the boundary between the CMG and FMG due to boundary formulation or specification discrepancies. Methods used to control this noise include application of smoothers, enhanced diffusion, or damping-type time integration schemes to model variables. The results from this survey provide the information needed to decide which one-way and two-way nested grid schemes merit future testing with the Mesoscale Atmospheric Simulation System (MASS) model. An analytically specified baroclinic wave will be used to conduct systematic tests of the chosen schemes since this will allow for objective determination of the interfacial noise in the kind of meteorological setting for which MASS is designed. Sample diagnostic plots from initial tests using the analytic wave are presented to illustrate how the model-generated noise is ascertained. These plots will be used to compare the accuracy of the various nesting schemes when incorporated into the MASS model.

  7. Enhanced Product Generation at NASA Data Centers Through Grid Technology

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Hinke, Thomas H.; Gavali, Shradha; Seufzer, William J.

    2003-01-01

    This paper describes how grid technology can support the ability of NASA data centers to provide customized data products. A combination of grid technology and commodity processors are proposed to provide the bandwidth necessary to perform customized processing of data, with customized data subsetting providing the initial example. This customized subsetting engine can be used to support a new type of subsetting, called phenomena-based subsetting, where data is subsetted based on its association with some phenomena, such as mesoscale convective systems or hurricanes. This concept is expanded to allow the phenomena to be detected in one type of data, with the subsetting requirements transmitted to the subsetting engine to subset a different type of data. The subsetting requirements are generated by a data mining system and transmitted to the subsetter in the form of an XML feature index that describes the spatial and temporal extent of the phenomena. For this work, a grid-based mining system called the Grid Miner is used to identify the phenomena and generate the feature index. This paper discusses the value of grid technology in facilitating the development of a high performance customized product processing and the coupling of a grid mining system to support phenomena-based subsetting.

  8. Electron gas grid semiconductor radiation detectors

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  9. Co-Simulation Platform For Characterizing Cyber Attacks in Cyber Physical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadi, Mohammad A. H.; Ali, Mohammad Hassan; Dasgupta, Dipankar

    Smart grid is a complex cyber physical system containing a numerous and variety of sources, devices, controllers and loads. Communication/Information infrastructure is the backbone of the smart grid system where different grid components are connected with each other through this structure. Therefore, the drawbacks of the information technology related issues are also becoming a part of the smart grid. Further, smart grid is also vulnerable to the grid related disturbances. For such a dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and OPNET based co-simulated test bed to carry out a cyber-intrusion inmore » a cyber-network for modern power systems and smart grid. The effect of the cyber intrusion on the physical power system is also presented. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack in the cyber network. Different disturbance situations in the proposed test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less

  10. Optically detected, single nanoparticle mass spectrometer with pre-filtered electrospray nanoparticle source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howder, Collin R.; Bell, David M.; Anderson, Scott L.

    2014-01-15

    An instrument designed for non-destructive mass analysis of single trapped nanoparticles is described. The heart of the instrument is a 3D quadrupole (Paul) trap constructed to give optical access to the trap center along ten directions, allowing passage of lasers for particle heating and detection, particle injection, collection of scattered or fluorescent photons for particle detection and mass analysis, and collection of particles on TEM grids for analysis, as needed. Nanoparticles are injected using an electrospray ionization (ESI) source, and conditions are described for spraying and trapping polymer particles, bare metal particles, and ligand stabilized particles with masses ranging frommore » 200 kDa to >3 GDa. Conditions appropriate to ESI and injection of different types of particles are described. The instrument is equipped with two ion guides separating the ESI source and nanoparticle trap. The first ion guide is mostly to allow desolvation and differential pumping before the particles enter the trap section of the instrument. The second is a linear quadrupole guide, which can be operated in mass selective or mass band-pass modes to limit transmission to species with mass-to-charge ratios in the range of interest. With a little experience, the design allows injection of single particles into the trap upon demand.« less

  11. Sub-micron Hard X-ray Fluorescence Imaging of Synthetic Elements

    PubMed Central

    Jensen, Mark P.; Aryal, Baikuntha P.; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E.

    2013-01-01

    Synchrotron-based X-ray fluorescence microscopy (SXFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurement such as μ-XANES (X-ray absorption near edge structure). We have used SXFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2 edge as well as lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps reveal that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions for an average 202 μm2 cell is 1.4 fg Pu/cell or 2.9 × 10−20 moles Pu/μm2, which is similar to the detection limit of K-edge SXFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission. PMID:22444530

  12. Online production validation in a HEP environment

    NASA Astrophysics Data System (ADS)

    Harenberg, T.; Kuhl, T.; Lang, N.; Mättig, P.; Sandhoff, M.; Schwanenberger, C.; Volkmer, F.

    2017-03-01

    In high energy physics (HEP) event simulations, petabytes of data are processed and stored requiring millions of CPU-years. This enormous demand for computing resources is handled by centers distributed worldwide, which form part of the LHC computing grid. The consumption of such an important amount of resources demands for an efficient production of simulation and for the early detection of potential errors. In this article we present a new monitoring framework for grid environments, which polls a measure of data quality during job execution. This online monitoring facilitates the early detection of configuration errors (specially in simulation parameters), and may thus contribute to significant savings in computing resources.

  13. Systematic detection of long-term slow slip events along Hyuga-nada to central Shikoku, Nankai subduction zone, using GNSS data

    NASA Astrophysics Data System (ADS)

    Takagi, R.; Obara, K.; Uchida, N.

    2017-12-01

    Understanding slow earthquake activity improves our knowledge of slip behavior in brittle-ductile transition zone and subduction process including megathrust earthquakes. In order to understand overall picture of slow slip activity, it is important to make a comprehensive catalog of slow slip events (SSEs). Although short-term SSEs have been detected by GNSS and tilt meter records systematically, analysis of long-term slow slip events relies on individual slip inversions. We develop an algorism to systematically detect long-term SSEs and estimate source parameters of the SSEs using GNSS data. The algorism is similar to GRiD-MT (Tsuruoka et al., 2009), which is grid-based automatic determination of moment tensor solution. Instead of moment tensor fitting to long period seismic records, we estimate parameters of a single rectangle fault to fit GNSS displacement time series. First, we make a two dimensional grid covering possible location of SSE. Second, we estimate best-fit parameters (length, width, slip, and rake) of the rectangle fault at each grid point by an iterative damped least square method. Depth, strike, and dip are fixed on the plate boundary. Ramp function with duration of 300 days is used for expressing time evolution of the fault slip. Third, a grid maximizing variance reduction is selected as a candidate of long-term SSE. We also search onset of ramp function based on the grid search. We applied the method to GNSS data in southwest Japan to detect long-term SSEs in Nankai subduction zone. With current selection criteria, we found 13 events with Mw6.2-6.9 in Hyuga-nada, Bungo channel, and central Shikoku from 1998 to 2015, which include unreported events. Key finding is along strike migrations of long-term SSEs from Hyuga-nada to Bungo channel and from Bungo channel to central Shikoku. In particular, three successive events migrating northward in Hyuga-nada preceded the 2003 Bungo channel SSE, and one event in central Shikoku followed the 2003 SSE in Bungo channel. The space-time dimensions of the possible along-strike migration are about 300km in length and 6 years in time. Systematic detection with assumptions of various durations in the time evolution of SSE may improve the picture of SSE activity and possible interaction with neighboring SSEs.

  14. Experimental Study of Two Phase Flow Behavior Past BWR Spacer Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratnayake, Ruwan K.; Hochreiter, L.E.; Ivanov, K.N.

    2002-07-01

    Performance of best estimate codes used in the nuclear industry can be significantly improved by reducing the empiricism embedded in their constitutive models. Spacer grids have been found to have an important impact on the maximum allowable Critical Heat Flux within the fuel assembly of a nuclear reactor core. Therefore, incorporation of suitable spacer grids models can improve the critical heat flux prediction capability of best estimate codes. Realistic modeling of entrainment behavior of spacer grids requires understanding the different mechanisms that are involved. Since visual information pertaining to the entrainment behavior of spacer grids cannot possibly be obtained frommore » operating nuclear reactors, experiments have to be designed and conducted for this specific purpose. Most of the spacer grid experiments available in literature have been designed in view of obtaining quantitative data for the purpose of developing or modifying empirical formulations for heat transfer, critical heat flux or pressure drop. Very few experiments have been designed to provide fundamental information which can be used to understand spacer grid effects and phenomena involved in two phase flow. Air-water experiments were conducted to obtain visual information on the two-phase flow behavior both upstream and downstream of Boiling Water Reactor (BWR) spacer grids. The test section was designed and constructed using prototypic dimensions such as the channel cross-section, rod diameter and other spacer grid configurations of a typical BWR fuel assembly. The test section models the flow behavior in two adjacent sub channels in the BWR core. A portion of a prototypic BWR spacer grid accounting for two adjacent channels was used with industrial mild steel rods for the purpose of representing the channel internals. Symmetry was preserved in this practice, so that the channel walls could effectively be considered as the channel boundaries. Thin films were established on the rod surfaces by injecting water through a set of perforations at the bottom ends of the rods, ensuring that the flow upstream of the bottom-most spacer grid is predominantly annular. The flow conditions were regulated such that they represent typical BWR operating conditions. Photographs taken during experiments show that the film entrainment increases significantly at the spacer grids, since the points of contact between the rods and the grids result in a peeling off of large portions of the liquid film from the rod surfaces. Decreasing the water flow resulted in eventual drying out, beginning at positions immediately upstream of the spacer grids. (authors)« less

  15. GRID BLACKOUT IN VACUUM TUBES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, K.D.

    1961-06-01

    A method which gives quantitative data is presented which allows for characterization of the grid blackout effect and is applicable to calculation of circuit degradation. Data are presented for several tube types which show developed bias and discharge time constants as a function of pulse input conditions. Blackout can seriously change the performance of any vacuum tube circuit which utilizes the tube in positive grid operation. The effects on CW oscillators and UHF mixers are discussed. An equivalent circuit which simulates some portions of the blackout phenomenon is presented and used to calculate effective capacitance and resistance associated with themore » grid surface. (auth)« less

  16. 3D GPR in forensics: Finding a clandestine grave in a mountainous environment.

    PubMed

    Novo, Alexandre; Lorenzo, Henrique; Rial, Fernando I; Solla, Mercedes

    2011-01-30

    In the present work we show a forensic case study carried out in a mountainous environment. Main objective was to locate a clandestine grave which is around 10-20 years old and contains human remains of one individual and a metallic tool, probably a pick. Survey design started with an experimental burial of a pick at the expected depth (1m) as well as the calculation of synthetic radargrams in order to know if the 250MHz antenna was suitable for its detection and to have a record of the reflection of the pick. Conclusions extracted from the experiments together with rough terrain conditions suggested the use of the 250MHz antenna which allowed a good compromise between target detection and dense grid acquisition of an extensive survey area. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. On Unified Mode in Grid Mounted Round Jets

    NASA Astrophysics Data System (ADS)

    Parimalanathan, Senthil Kumar; T, Sundararajan; v, Raghavan

    2015-11-01

    The turbulence evolution in a free round jet is strongly affected by its initial conditions. Since the transition to turbulence is moderated by instability modes, the initial conditions seem to play a major role in altering the dynamics of these modes. In the present investigation, grids of different configurations are placed at the jet nozzle exit and the flow field characterization is carried out using a bi-component hot-wire anemometer. The instability modes has been obtained by analyzing the velocity spectral data. Free jets are characterized by the presence of two instability modes, viz., the preferred mode and the shear mode. The preferred mode corresponds to the most amplified oscillations along the jet centerline, while the shear modes are due to the dynamic evolution of vortical structures in the jet shear layer. The presence of grid clearly alters the jet structure, and plays a major role in altering the shear layer mode in particular. In fact, it is observed that close to the nozzle exit, the presence of grids deviate the streamlines inwards around the edge due to the momentum difference between the jet central core and the boundary layer region near the wall. This result in a single unified mode, where there is no distinct preferred or shear mode. This phenomena is more dominant in case of the grids having higher blockage ratio with small grid opening. In the present study, investigation of the physics behind the evolution of unified mode and how the grids affect the overall turbulent flow field evolution has been reported. Experimental Fluid Mechanics.

  18. Numerical solution to the oblique derivative boundary value problem on non-uniform grids above the Earth topography

    NASA Astrophysics Data System (ADS)

    Medl'a, Matej; Mikula, Karol; Čunderlík, Róbert; Macák, Marek

    2018-01-01

    The paper presents a numerical solution of the oblique derivative boundary value problem on and above the Earth's topography using the finite volume method (FVM). It introduces a novel method for constructing non-uniform hexahedron 3D grids above the Earth's surface. It is based on an evolution of a surface, which approximates the Earth's topography, by mean curvature. To obtain optimal shapes of non-uniform 3D grid, the proposed evolution is accompanied by a tangential redistribution of grid nodes. Afterwards, the Laplace equation is discretized using FVM developed for such a non-uniform grid. The oblique derivative boundary condition is treated as a stationary advection equation, and we derive a new upwind type discretization suitable for non-uniform 3D grids. The discretization of the Laplace equation together with the discretization of the oblique derivative boundary condition leads to a linear system of equations. The solution of this system gives the disturbing potential in the whole computational domain including the Earth's surface. Numerical experiments aim to show properties and demonstrate efficiency of the developed FVM approach. The first experiments study an experimental order of convergence of the method. Then, a reconstruction of the harmonic function on the Earth's topography, which is generated from the EGM2008 or EIGEN-6C4 global geopotential model, is presented. The obtained FVM solutions show that refining of the computational grid leads to more precise results. The last experiment deals with local gravity field modelling in Slovakia using terrestrial gravity data. The GNSS-levelling test shows accuracy of the obtained local quasigeoid model.

  19. A far-field non-reflecting boundary condition for two-dimensional wake flows

    NASA Technical Reports Server (NTRS)

    Danowitz, Jeffrey S.; Abarbanel, Saul A.; Turkel, Eli

    1995-01-01

    Far-field boundary conditions for external flow problems have been developed based upon long-wave perturbations of linearized flow equations about a steady state far field solution. The boundary improves convergence to steady state in single-grid temporal integration schemes using both regular-time-stepping and local-time-stepping. The far-field boundary may be near the trailing edge of the body which significantly reduces the number of grid points, and therefore the computational time, in the numerical calculation. In addition the solution produced is smoother in the far-field than when using extrapolation conditions. The boundary condition maintains the convergence rate to steady state in schemes utilizing multigrid acceleration.

  20. Evidence for Feature and Location Learning in Human Visual Perceptual Learning

    ERIC Educational Resources Information Center

    Moreno-Fernández, María Manuela; Salleh, Nurizzati Mohd; Prados, Jose

    2015-01-01

    In Experiment 1, human participants were pre-exposed to two similar checkerboard grids (AX and X) in alternation, and to a third grid (BX) in a separate block of trials. In a subsequent test, the unique feature A was better detected than the feature B when they were presented in the same location during the pre-exposure and test phases. However,…

  1. Cyber-Physical System Security of a Power Grid: State-of-the-Art

    DOE PAGES

    Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing

    2016-07-14

    Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less

  2. Cyber-Physical System Security of a Power Grid: State-of-the-Art

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Chih -Che; Liu, Chen -Ching; Xie, Jing

    Here, as part of the smart grid development, more and more technologies are developed and deployed on the power grid to enhance the system reliability. A primary purpose of the smart grid is to significantly increase the capability of computer-based remote control and automation. As a result, the level of connectivity has become much higher, and cyber security also becomes a potential threat to the cyber-physical systems (CPSs). In this paper, a survey of the state-of-the-art is conducted on the cyber security of the power grid concerning issues of: the structure of CPSs in a smart grid; cyber vulnerability assessment;more » cyber protection systems; and testbeds of a CPS. At Washington State University (WSU), the Smart City Testbed (SCT) has been developed to provide a platform to test, analyze and validate defense mechanisms against potential cyber intrusions. A test case is provided in this paper to demonstrate how a testbed helps the study of cyber security and the anomaly detection system (ADS) for substations.« less

  3. Stability assessment of a multi-port power electronic interface for hybrid micro-grid applications

    NASA Astrophysics Data System (ADS)

    Shamsi, Pourya

    Migration to an industrial society increases the demand for electrical energy. Meanwhile, social causes for preserving the environment and reducing pollutions seek cleaner forms of energy sources. Therefore, there has been a growth in distributed generation from renewable sources in the past decade. Existing regulations and power system coordination does not allow for massive integration of distributed generation throughout the grid. Moreover, the current infrastructures are not designed for interfacing distributed and deregulated generation. In order to remedy this problem, a hybrid micro-grid based on nano-grids is introduced. This system consists of a reliable micro-grid structure that provides a smooth transition from the current distribution networks to smart micro-grid systems. Multi-port power electronic interfaces are introduced to manage the local generation, storage, and consumption. Afterwards, a model for this micro-grid is derived. Using this model, the stability of the system under a variety of source and load induced disturbances is studied. Moreover, pole-zero study of the micro-grid is performed under various loading conditions. An experimental setup of this micro-grid is developed, and the validity of the model in emulating the dynamic behavior of the system is verified. This study provides a theory for a novel hybrid micro-grid as well as models for stability assessment of the proposed micro-grid.

  4. Measurement of velocity distribution and turbulence in a special wind tunnel using a laser Doppler velocimeter

    NASA Astrophysics Data System (ADS)

    Mueller, J.; Petersen, J. C.; Pilz, E.; Wiegand, H.

    1981-06-01

    The flow behavior in a jet mixing visualization chamber for turbulent fuel spray mixing with air under compression, e.g., at top dead center in diesel engines, was investigated with a laser Doppler velocimeter. The measurements were performed in two cuts in the profile perpendicular to the flow direction. The range of flow conditions in the measuring chamber was tested. The measurements were conducted with and without turbulence grids and shear flow grids behind the inlet nozzle. Wire grids did not enhance the turbulence in the measuring chamber. One of the tested shear flow grids produced shear flow as expected. A turbulence grid whose design was based on experimental results, produced a turbulence degree of up to 30% over the whole measuring cross section.

  5. An Experimental Framework for Executing Applications in Dynamic Grid Environments

    NASA Technical Reports Server (NTRS)

    Huedo, Eduardo; Montero, Ruben S.; Llorente, Ignacio M.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The Grid opens up opportunities for resource-starved scientists and engineers to harness highly distributed computing resources. A number of Grid middleware projects are currently available to support the simultaneous exploitation of heterogeneous resources distributed in different administrative domains. However, efficient job submission and management continue being far from accessible to ordinary scientists and engineers due to the dynamic and complex nature of the Grid. This report describes a new Globus framework that allows an easier and more efficient execution of jobs in a 'submit and forget' fashion. Adaptation to dynamic Grid conditions is achieved by supporting automatic application migration following performance degradation, 'better' resource discovery, requirement change, owner decision or remote resource failure. The report also includes experimental results of the behavior of our framework on the TRGP testbed.

  6. Rapid construction of pinhole SPECT system matrices by distance-weighted Gaussian interpolation method combined with geometric parameter estimations

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Wei; Chen, Yi-Chun

    2014-02-01

    In pinhole SPECT applied to small-animal studies, it is essential to have an accurate imaging system matrix, called H matrix, for high-spatial-resolution image reconstructions. Generally, an H matrix can be obtained by various methods, such as measurements, simulations or some combinations of both methods. In this study, a distance-weighted Gaussian interpolation method combined with geometric parameter estimations (DW-GIMGPE) is proposed. It utilizes a simplified grid-scan experiment on selected voxels and parameterizes the measured point response functions (PRFs) into 2D Gaussians. The PRFs of missing voxels are interpolated by the relations between the Gaussian coefficients and the geometric parameters of the imaging system with distance-weighting factors. The weighting factors are related to the projected centroids of voxels on the detector plane. A full H matrix is constructed by combining the measured and interpolated PRFs of all voxels. The PRFs estimated by DW-GIMGPE showed similar profiles as the measured PRFs. OSEM reconstructed images of a hot-rod phantom and normal rat myocardium demonstrated the effectiveness of the proposed method. The detectability of a SKE/BKE task on a synthetic spherical test object verified that the constructed H matrix provided comparable detectability to that of the H matrix acquired by a full 3D grid-scan experiment. The reduction in the acquisition time of a full 1.0-mm grid H matrix was about 15.2 and 62.2 times with the simplified grid pattern on 2.0-mm and 4.0-mm grid, respectively. A finer-grid H matrix down to 0.5-mm spacing interpolated by the proposed method would shorten the acquisition time by 8 times, additionally.

  7. A general and Robust Ray-Casting-Based Algorithm for Triangulating Surfaces at the Nanoscale

    PubMed Central

    Decherchi, Sergio; Rocchia, Walter

    2013-01-01

    We present a general, robust, and efficient ray-casting-based approach to triangulating complex manifold surfaces arising in the nano-bioscience field. This feature is inserted in a more extended framework that: i) builds the molecular surface of nanometric systems according to several existing definitions, ii) can import external meshes, iii) performs accurate surface area estimation, iv) performs volume estimation, cavity detection, and conditional volume filling, and v) can color the points of a grid according to their locations with respect to the given surface. We implemented our methods in the publicly available NanoShaper software suite (www.electrostaticszone.eu). Robustness is achieved using the CGAL library and an ad hoc ray-casting technique. Our approach can deal with any manifold surface (including nonmolecular ones). Those explicitly treated here are the Connolly-Richards (SES), the Skin, and the Gaussian surfaces. Test results indicate that it is robust to rotation, scale, and atom displacement. This last aspect is evidenced by cavity detection of the highly symmetric structure of fullerene, which fails when attempted by MSMS and has problems in EDTSurf. In terms of timings, NanoShaper builds the Skin surface three times faster than the single threaded version in Lindow et al. on a 100,000 atoms protein and triangulates it at least ten times more rapidly than the Kruithof algorithm. NanoShaper was integrated with the DelPhi Poisson-Boltzmann equation solver. Its SES grid coloring outperformed the DelPhi counterpart. To test the viability of our method on large systems, we chose one of the biggest molecular structures in the Protein Data Bank, namely the 1VSZ entry, which corresponds to the human adenovirus (180,000 atoms after Hydrogen addition). We were able to triangulate the corresponding SES and Skin surfaces (6.2 and 7.0 million triangles, respectively, at a scale of 2 grids per Å) on a middle-range workstation. PMID:23577073

  8. Verification of the proteus two-dimensional Navier-Stokes code for flat plate and pipe flows

    NASA Technical Reports Server (NTRS)

    Conley, Julianne M.; Zeman, Patrick L.

    1991-01-01

    The Proteus Navier-Stokes Code is evaluated for 2-D/axisymmetric, viscous, incompressible, internal, and external flows. The particular cases to be discussed are laminar and turbulent flows over a flat plate, laminar and turbulent developing pipe flows, and turbulent pipe flow with swirl. Results are compared with exact solutions, empirical correlations, and experimental data. A detailed description of the code set-up, including boundary conditions, initial conditions, grid size, and grid packing is given for each case.

  9. Residential photovoltaic power conditioning technology for grid connected applications

    NASA Technical Reports Server (NTRS)

    Key, T. S.; Klein, J. W.

    1982-01-01

    Major advances in photovoltaic (PV) Power Conditioning (PC) with respect to performance and low-cost potential have been made. Solutions have been obtained to interface and control problems related to adapting available inverter designs to the grid-connected, residential photovoltaic experiments. A description is presented to contributing research and development activities. Attention is given to aspects of residential systems experience, conceptual design studies, questions of optimum topology development, and promising advanced designs for residential PV provided by development efforts of the private sector.

  10. Advanced electric propulsion research, 1991

    NASA Technical Reports Server (NTRS)

    Monheiser, Jeffery M.

    1992-01-01

    A simple model for the production of ions that impinge on and sputter erode the accelerator grid of an ion thruster is presented. Charge-exchange and electron-impact ion production processes are considered, but initial experimental results suggest the charge-exchange process dominates. Additional experimental results show the effects of changes in thruster operating conditions on the length of the region from which these ions are drawn upstream into the grid. Results which show erosion patterns and indicate molybdenum accelerator grids erode more rapidly than graphite ones are also presented.

  11. Determination and representation of electric charge distributions associated with adverse weather conditions

    NASA Technical Reports Server (NTRS)

    Rompala, John T.

    1992-01-01

    Algorithms are presented for determining the size and location of electric charges which model storm systems and lightning strikes. The analysis utilizes readings from a grid of ground level field mills and geometric constraints on parameters to arrive at a representative set of charges. This set is used to generate three dimensional graphical depictions of the set as well as contour maps of the ground level electrical environment over the grid. The composite, analytic and graphic package is demonstrated and evaluated using controlled input data and archived data from a storm system. The results demonstrate the packages utility as: an operational tool in appraising adverse weather conditions; a research tool in studies of topics such as storm structure, storm dynamics, and lightning; and a tool in designing and evaluating grid systems.

  12. Small vulnerable sets determine large network cascades in power grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.

    The understanding of cascading failures in complex systems has been hindered by the lack of realistic large-scale modeling and analysis that can account for variable system conditions. By using the North American power grid, we identified, quantified, and analyzed the set of network components that are vulnerable to cascading failures under any out of multiple conditions. We show that the vulnerable set consists of a small but topologically central portion of the network and that large cascades are disproportionately more likely to be triggered by initial failures close to this set. These results elucidate aspects of the origins and causesmore » of cascading failures relevant for grid design and operation and demonstrate vulnerability analysis methods that are applicable to a wider class of cascade-prone networks.« less

  13. Small vulnerable sets determine large network cascades in power grids

    DOE PAGES

    Yang, Yang; Nishikawa, Takashi; Motter, Adilson E.

    2017-11-17

    The understanding of cascading failures in complex systems has been hindered by the lack of realistic large-scale modeling and analysis that can account for variable system conditions. By using the North American power grid, we identified, quantified, and analyzed the set of network components that are vulnerable to cascading failures under any out of multiple conditions. We show that the vulnerable set consists of a small but topologically central portion of the network and that large cascades are disproportionately more likely to be triggered by initial failures close to this set. These results elucidate aspects of the origins and causesmore » of cascading failures relevant for grid design and operation and demonstrate vulnerability analysis methods that are applicable to a wider class of cascade-prone networks.« less

  14. Three-dimensional local grid refinement for block-centered finite-difference groundwater models using iteratively coupled shared nodes: A new method of interpolation and analysis of errors

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2004-01-01

    This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497-511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, "cage-shell" interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size - A coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.

  15. Deep Learning-Based Data Forgery Detection in Automatic Generation Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fengli; Li, Qinghua

    Automatic Generation Control (AGC) is a key control system in the power grid. It is used to calculate the Area Control Error (ACE) based on frequency and tie-line power flow between balancing areas, and then adjust power generation to maintain the power system frequency in an acceptable range. However, attackers might inject malicious frequency or tie-line power flow measurements to mislead AGC to do false generation correction which will harm the power grid operation. Such attacks are hard to be detected since they do not violate physical power system models. In this work, we propose algorithms based on Neural Networkmore » and Fourier Transform to detect data forgery attacks in AGC. Different from the few previous work that rely on accurate load prediction to detect data forgery, our solution only uses the ACE data already available in existing AGC systems. In particular, our solution learns the normal patterns of ACE time series and detects abnormal patterns caused by artificial attacks. Evaluations on the real ACE dataset show that our methods have high detection accuracy.« less

  16. Prevention 0f Unwanted Free-Declaration of Static Obstacles in Probability Occupancy Grids

    NASA Astrophysics Data System (ADS)

    Krause, Stefan; Scholz, M.; Hohmann, R.

    2017-10-01

    Obstacle detection and avoidance are major research fields in unmanned aviation. Map based obstacle detection approaches often use discrete world representations such as probabilistic grid maps to fuse incremental environment data from different views or sensors to build a comprehensive representation. The integration of continuous measurements into a discrete representation can result in rounding errors which, in turn, leads to differences between the artificial model and real environment. The cause of these deviations is a low spatial resolution of the world representation comparison to the used sensor data. Differences between artificial representations which are used for path planning or obstacle avoidance and the real world can lead to unexpected behavior up to collisions with unmapped obstacles. This paper presents three approaches to the treatment of errors that can occur during the integration of continuous laser measurement in the discrete probabilistic grid. Further, the quality of the error prevention and the processing performance are compared with real sensor data.

  17. A High Order Finite Difference Scheme with Sharp Shock Resolution for the Euler Equations

    NASA Technical Reports Server (NTRS)

    Gerritsen, Margot; Olsson, Pelle

    1996-01-01

    We derive a high-order finite difference scheme for the Euler equations that satisfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete energy estimate is based on a symmetrization of the Euler equations that preserves the homogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use of difference operators that satisfy a discrete analogue to the integration by parts procedure used in the continuous energy estimate. Around discontinuities or sharp gradients, refined grids are created on which the discrete equations are solved after adding a newly constructed artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure grid function. The wavelet theory provides easy to implement mathematical criteria to detect discontinuities, sharp gradients and spurious oscillations quickly and efficiently.

  18. A Solution Adaptive Technique Using Tetrahedral Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2000-01-01

    An adaptive unstructured grid refinement technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The method is based on a combination of surface mesh subdivision and local remeshing of the volume grid Simple functions of flow quantities are employed to detect dominant features of the flowfield The method is designed for modular coupling with various error/feature analyzers and flow solvers. Several steady-state, inviscid flow test cases are presented to demonstrate the applicability of the method for solving practical three-dimensional problems. In all cases, accurate solutions featuring complex, nonlinear flow phenomena such as shock waves and vortices have been generated automatically and efficiently.

  19. Metallic wire grid behavior and testing in a low pressure gaseous noble elements detector

    NASA Astrophysics Data System (ADS)

    Ji, W.

    2018-05-01

    High voltage performance has been a challenge for noble element detectors. One piece of this challenge is the emission of electrons from metal electrodes when applying high voltage. This has become a major concern for low-background detectors such as LUX-ZEPLIN (LZ). LZ is a liquid xenon Time Projection Chamber (TPC) searching for Weakly Interactive Massive Particles (WIMPs). In this work, we demonstrate a method to measure electron emission from metallic electrode grids via detection of proportional scintillation light. We find consistency with Fowler-Nordheim emission with a surface parameter β = 1988 after electro-polishing treatment of a stainless steel grid.

  20. Measurement of neutron dose equivalent outside and inside of the treatment vault of GRID therapy.

    PubMed

    Wang, Xudong; Charlton, Michael A; Esquivel, Carlos; Eng, Tony Y; Li, Ying; Papanikolaou, Nikos

    2013-09-01

    To evaluate the neutron and photon dose equivalent rates at the treatment vault entrance (Hn,D and HG), and to study the secondary radiation to the patient in GRID therapy. The radiation activation on the grid was studied. A Varian Clinac 23EX accelerator was working at 18 MV mode with a grid manufactured by .decimal, Inc. The Hn,D and HG were measured using an Andersson-Braun neutron REM meter, and a Geiger Müller counter. The radiation activation on the grid was measured after the irradiation with an ion chamber γ-ray survey meter. The secondary radiation dose equivalent to patient was evaluated by etched track detectors and OSL detectors on a RANDO(®) phantom. Within the measurement uncertainty, there is no significant difference between the Hn,D and HG with and without a grid. However, the neutron dose equivalent to the patient with the grid is, on average, 35.3% lower than that without the grid when using the same field size and the same amount of monitor unit. The photon dose equivalent to the patient with the grid is, on average, 44.9% lower. The measured average half-life of the radiation activation in the grid is 12.0 (± 0.9) min. The activation can be categorized into a fast decay component and a slow decay component with half-lives of 3.4 (± 1.6) min and 15.3 (± 4.0) min, respectively. There was no detectable radioactive contamination found on the surface of the grid through a wipe test. This work indicates that there is no significant change of the Hn,D and HG in GRID therapy, compared with a conventional external beam therapy. However, the neutron and scattered photon dose equivalent to the patient decrease dramatically with the grid and can be clinical irrelevant. Meanwhile, the users of a grid should be aware of the possible high dose to the radiation worker from the radiation activation on the surface of the grid. A delay in handling the grid after the beam delivery is suggested.

  1. Evaluation of several non-reflecting computational boundary conditions for duct acoustics

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Zorumski, William E.; Hodge, Steve L.

    1994-01-01

    Several non-reflecting computational boundary conditions that meet certain criteria and have potential applications to duct acoustics are evaluated for their effectiveness. The same interior solution scheme, grid, and order of approximation are used to evaluate each condition. Sparse matrix solution techniques are applied to solve the matrix equation resulting from the discretization. Modal series solutions for the sound attenuation in an infinite duct are used to evaluate the accuracy of each non-reflecting boundary conditions. The evaluations are performed for sound propagation in a softwall duct, for several sources, sound frequencies, and duct lengths. It is shown that a recently developed nonlocal boundary condition leads to sound attenuation predictions considerably more accurate for short ducts. This leads to a substantial reduction in the number of grid points when compared to other non-reflecting conditions.

  2. Propulsion Simulations with the Unstructured-Grid CFD Tool TetrUSS

    NASA Technical Reports Server (NTRS)

    Deere, Karen A.; Pandya, Mohagna J.

    2002-01-01

    A computational investigation has been completed to assess the capability of the NASA Tetrahedral Unstructured Software System (TetrUSS) for simulation of exhaust nozzle flows. Three configurations were chosen for this study: (1) a fluidic jet effects model, (2) an isolated nacelle with a supersonic cruise nozzle, and (3) a fluidic pitchthrust- vectoring nozzle. These configurations were chosen because existing data provided a means for measuring the ability of the TetrUSS flow solver USM3D for simulating complex nozzle flows. Fluidic jet effects model simulations were compared with structured-grid CFD (computational fluid dynamics) data at Mach numbers from 0.3 to 1.2 at nozzle pressure ratios up to 7.2. Simulations of an isolated nacelle with a supersonic cruise nozzle were compared with wind tunnel experimental data and structured-grid CFD data at Mach numbers of 0.9 and 1.2, with a nozzle pressure ratio of 5. Fluidic pitch-thrust-vectoring nozzle simulations were compared with static experimental data and structured-grid CFD data at static freestream conditions and nozzle pressure ratios from 3 to 10. A fluidic injection case was computed with the third configuration at a nozzle pressure ratio of 4.6 and a secondary pressure ratio of 0.7. Results indicate that USM3D with the S-A turbulence model provides accurate exhaust nozzle simulations at on-design conditions, but does not predict internal shock location at overexpanded conditions or pressure recovery along a boattail at transonic conditions.

  3. Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States

    NASA Astrophysics Data System (ADS)

    Peng, Dailiang; Zhang, Xiaoyang; Zhang, Bing; Liu, Liangyun; Liu, Xinjie; Huete, Alfredo R.; Huang, Wenjiang; Wang, Siyuan; Luo, Shezhou; Zhang, Xiao; Zhang, Helin

    2017-10-01

    Land surface phenology (LSP) has been widely retrieved from satellite data at multiple spatial resolutions, but the spatial scaling effects on LSP detection are poorly understood. In this study, we collected enhanced vegetation index (EVI, 250 m) from collection 6 MOD13Q1 product over the contiguous United States (CONUS) in 2007 and 2008, and generated a set of multiple spatial resolution EVI data by resampling 250 m to 2 × 250 m and 3 × 250 m, 4 × 250 m, …, 35 × 250 m. These EVI time series were then used to detect the start of spring season (SOS) at various spatial resolutions. Further the SOS variation across scales was examined at each coarse resolution grid (35 × 250 m ≈ 8 km, refer to as reference grid) and ecoregion. Finally, the SOS scaling effects were associated with landscape fragment, proportion of primary land cover type, and spatial variability of seasonal greenness variation within each reference grid. The results revealed the influences of satellite spatial resolutions on SOS retrievals and the related impact factors. Specifically, SOS significantly varied lineally or logarithmically across scales although the relationship could be either positive or negative. The overall SOS values averaged from spatial resolutions between 250 m and 35 × 250 m at large ecosystem regions were generally similar with a difference less than 5 days, while the SOS values within the reference grid could differ greatly in some local areas. Moreover, the standard deviation of SOS across scales in the reference grid was less than 5 days in more than 70% of area over the CONUS, which was smaller in northeastern than in southern and western regions. The SOS scaling effect was significantly associated with heterogeneity of vegetation properties characterized using land landscape fragment, proportion of primary land cover type, and spatial variability of seasonal greenness variation, but the latter was the most important impact factor.

  4. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid

    PubMed Central

    Byambasuren, Bat-erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar

    2016-01-01

    Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results. PMID:26907274

  5. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid.

    PubMed

    Byambasuren, Bat-Erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar

    2016-02-19

    Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.

  6. DESPIC: Detecting Early Signatures of Persuasion in Information Cascades

    DTIC Science & Technology

    2015-08-27

    over NoSQL Databases, Proceedings of the 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2014). 26-MAY-14, . : , P...over NoSQL Databases. Proceedings of the 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2014). Chicago, IL, USA...distributed NoSQL databases including HBase and Riak, we finalized the requirements of the optimal computational architecture to support our framework

  7. Generation Algorithm of Discrete Line in Multi-Dimensional Grids

    NASA Astrophysics Data System (ADS)

    Du, L.; Ben, J.; Li, Y.; Wang, R.

    2017-09-01

    Discrete Global Grids System (DGGS) is a kind of digital multi-resolution earth reference model, in terms of structure, it is conducive to the geographical spatial big data integration and mining. Vector is one of the important types of spatial data, only by discretization, can it be applied in grids system to make process and analysis. Based on the some constraint conditions, this paper put forward a strict definition of discrete lines, building a mathematic model of the discrete lines by base vectors combination method. Transforming mesh discrete lines issue in n-dimensional grids into the issue of optimal deviated path in n-minus-one dimension using hyperplane, which, therefore realizing dimension reduction process in the expression of mesh discrete lines. On this basis, we designed a simple and efficient algorithm for dimension reduction and generation of the discrete lines. The experimental results show that our algorithm not only can be applied in the two-dimensional rectangular grid, also can be applied in the two-dimensional hexagonal grid and the three-dimensional cubic grid. Meanwhile, when our algorithm is applied in two-dimensional rectangular grid, it can get a discrete line which is more similar to the line in the Euclidean space.

  8. Implementation of perfectly matched layers in an arbitrary geometrical boundary for elastic wave modelling

    NASA Astrophysics Data System (ADS)

    Gao, Hongwei; Zhang, Jianfeng

    2008-09-01

    The perfectly matched layer (PML) absorbing boundary condition is incorporated into an irregular-grid elastic-wave modelling scheme, thus resulting in an irregular-grid PML method. We develop the irregular-grid PML method using the local coordinate system based PML splitting equations and integral formulation of the PML equations. The irregular-grid PML method is implemented under a discretization of triangular grid cells, which has the ability to absorb incident waves in arbitrary directions. This allows the PML absorbing layer to be imposed along arbitrary geometrical boundaries. As a result, the computational domain can be constructed with smaller nodes, for instance, to represent the 2-D half-space by a semi-circle rather than a rectangle. By using a smooth artificial boundary, the irregular-grid PML method can also avoid the special treatments to the corners, which lead to complex computer implementations in the conventional PML method. We implement the irregular-grid PML method in both 2-D elastic isotropic and anisotropic media. The numerical simulations of a VTI lamb's problem, wave propagation in an isotropic elastic medium with curved surface and in a TTI medium demonstrate the good behaviour of the irregular-grid PML method.

  9. Using an object-based grid system to evaluate a newly developed EP approach to formulate SVMs as applied to the classification of organophosphate nerve agents

    NASA Astrophysics Data System (ADS)

    Land, Walker H., Jr.; Lewis, Michael; Sadik, Omowunmi; Wong, Lut; Wanekaya, Adam; Gonzalez, Richard J.; Balan, Arun

    2004-04-01

    This paper extends the classification approaches described in reference [1] in the following way: (1.) developing and evaluating a new method for evolving organophosphate nerve agent Support Vector Machine (SVM) classifiers using Evolutionary Programming, (2.) conducting research experiments using a larger database of organophosphate nerve agents, and (3.) upgrading the architecture to an object-based grid system for evaluating the classification of EP derived SVMs. Due to the increased threats of chemical and biological weapons of mass destruction (WMD) by international terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat biochemical warfare. This paper reports the integration of multi-array sensors with Support Vector Machines (SVMs) for the detection of organophosphates nerve agents using a grid computing system called Legion. Grid computing is the use of large collections of heterogeneous, distributed resources (including machines, databases, devices, and users) to support large-scale computations and wide-area data access. Finally, preliminary results using EP derived support vector machines designed to operate on distributed systems have provided accurate classification results. In addition, distributed training time architectures are 50 times faster when compared to standard iterative training time methods.

  10. Direct numerical simulation of particulate flows with an overset grid method

    NASA Astrophysics Data System (ADS)

    Koblitz, A. R.; Lovett, S.; Nikiforakis, N.; Henshaw, W. D.

    2017-08-01

    We evaluate an efficient overset grid method for two-dimensional and three-dimensional particulate flows for small numbers of particles at finite Reynolds number. The rigid particles are discretised using moving overset grids overlaid on a Cartesian background grid. This allows for strongly-enforced boundary conditions and local grid refinement at particle surfaces, thereby accurately capturing the viscous boundary layer at modest computational cost. The incompressible Navier-Stokes equations are solved with a fractional-step scheme which is second-order-accurate in space and time, while the fluid-solid coupling is achieved with a partitioned approach including multiple sub-iterations to increase stability for light, rigid bodies. Through a series of benchmark studies we demonstrate the accuracy and efficiency of this approach compared to other boundary conformal and static grid methods in the literature. In particular, we find that fully resolving boundary layers at particle surfaces is crucial to obtain accurate solutions to many common test cases. With our approach we are able to compute accurate solutions using as little as one third the number of grid points as uniform grid computations in the literature. A detailed convergence study shows a 13-fold decrease in CPU time over a uniform grid test case whilst maintaining comparable solution accuracy.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Thomas M.; Boudreau, Marie-Claude; Helsen, Lieve

    Recent advances in information and communications technology (ICT) have initiated development of a smart electrical grid and smart buildings. Buildings consume a large portion of the total electricity production worldwide, and to fully develop a smart grid they must be integrated with that grid. Buildings can now be 'prosumers' on the grid (both producers and consumers), and the continued growth of distributed renewable energy generation is raising new challenges in terms of grid stability over various time scales. Buildings can contribute to grid stability by managing their overall electrical demand in response to current conditions. Facility managers must balance demandmore » response requests by grid operators with energy needed to maintain smooth building operations. For example, maintaining thermal comfort within an occupied building requires energy and, thus an optimized solution balancing energy use with indoor environmental quality (adequate thermal comfort, lighting, etc.) is needed. Successful integration of buildings and their systems with the grid also requires interoperable data exchange. However, the adoption and integration of newer control and communication technologies into buildings can be problematic with older legacy HVAC and building control systems. Public policy and economic structures have not kept up with the technical developments that have given rise to the budding smart grid, and further developments are needed in both technical and non-technical areas.« less

  12. Border Collision of Three-Phase Voltage-Source Inverter System with Interacting Loads

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Liu, Bin; Li, Yining; Wong, Siu-Chung; Liu, Xiangdong; Huang, Yuehui

    As a commercial interface, three-phase voltage-source inverters (VSI) are commonly equipped for energy conversion to export DC power from most distributed generation (DG) to the AC utility. Not only do voltage-source converters take charge of converting the power to the loads but support the grid voltage at the point of common connection (PCC) as well, which is dependent on the condition of the grid-connected loads. This paper explores the border collision and its interacting mechanism among the VSI, resistive interacting loads and grids, which manifests as the alternating emergence of the inverting and rectifying operations, where the normal operation is terminated and a new one is assumed. Their mutual effect on the power quality under investigation will cause the circuital stability issue and further deteriorate the voltage regulation capability of VSI by dramatically raising the grid voltage harmonics. It is found in a design-oriented view that the border collision operation will be induced within the unsuitable parameter space with respect to transmission lines of AC grid, resistive loads and internal resistance of VSI. The physical phenomenon is also identified by the theoretical analysis. With numerical simulations for various circuit conditions, the corresponding bifurcation boundaries are collected, where the stability of the system is lost via border collision.

  13. Interfacing a small thermophotovoltaic generator to the grid

    NASA Astrophysics Data System (ADS)

    Durisch, W.; Grob, B.; Mayor, J.-C.; Panitz, J.-C.; Rosselet, A.

    1999-03-01

    A prototype thermophotovoltaic generator and grid-interfacing device have been developed to demonstrate the feasibility of grid-connected operation. For this purpose a conventional butane burner (rated power 1.35 kWth) was equipped with a ceramic composite emitter made of rare earth oxides. A water layer between emitter and photocells was used to protect the photocells against overheating. It absorbs the nonconvertible emitter radiation and is heated up thereby. The hot water so produced in larger units of this type could be used in a primary recirculation loop to transfer heat to a secondary domestic hot water system. For the photovoltaic generator, commercial grade silicon solar cells with 16% efficiency (under standard test conditions) were used. With the radiation of the emitter, a current of 4.6 A at a maximum power point voltage of 3.3 V was produced, corresponding to a DC output of 15 W and a thermal to DC power conversion efficiency of 1.1%. A specially developed high efficiency DC/DC converter and a modified, commercially available inverter were used to feed the generated power to the local grid. Under the experimental conditions in question the DC/DC-converter and the grid-inverter had efficiencies of 98 and 91%, respectively resulting in an overall interface efficiency of 89%. From modeling of the measured electrical characteristics of the photo cell generator under solar and emitter radiation, it is concluded that the photo current was about three times higher under the filtered emitter radiation. Under these conditions the electrical losses of the photocells were significantly higher than under sunlight.

  14. Exploration of exposure conditions with a novel wireless detector for bedside digital radiography

    NASA Astrophysics Data System (ADS)

    Bosmans, Hilde; Nens, Joris; Delzenne, Louis; Marshall, Nicholas; Pauwels, Herman; De Wever, Walter; Oyen, Raymond

    2012-03-01

    We propose, apply and validate an optimization scheme for a new wireless CsI based DR detector in combination with a regular mobile X-ray system for bedside imaging applications. Three different grids were tested in this combination. Signal-difference-to-noise was investigated in two ways, using a 1mm Cu piece in combination with different thicknesses of PMMA and by means of the CDRAD phantom using 10 images per condition and an automated evaluation method. A Figure of Merit (FOM), namely SDNR2/Imparted Energy, was calculated for a large range of exposure conditions, without and with grid in place. Misalignment of the grids was evaluated via the same FOMs. This optimization study was validated with comparative X-ray acquisitions performed on dead bodies. An experienced radiologist scored the quality of several specific aspects for all these exposures. Signal difference to noise ratios measured with the Cu method correlated well with the threshold contrasts from the CDRAD analysis (R2 > 0.9). The analysis showed optimal FOM with detector air kerma rates as typically used in clinical practice. Lower tube voltages provide higher FOM than the higher values but their practical use depends on the limitations of X-ray tubes, linked to patient motion artefacts. The use of high resolution grids should be encouraged, as the FOM increases with 47% at 75kV. These scores from the Visual grading study confirmed the results obtained with the FOM. The switch to (wireless) DR technology for bedside imaging could benefit from devices to improve grid positioning or any scatter reduction technique.

  15. Foundations for Protecting Renewable-Rich Distribution Systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Abraham; Brahma, Sukumar; Ranade, Satish

    High proliferation of Inverter Interfaced Distributed Energy Resources (IIDERs) into the electric distribution grid introduces new challenges to protection of such systems. This is because the existing protection systems are designed with two assumptions: 1) system is single-sourced, resulting in unidirectional fault current, and (2) fault currents are easily detectable due to much higher magnitudes compared to load currents. Due to the fact that most renewables interface with the grid though inverters, and inverters restrict their current output to levels close to the full load currents, both these assumptions are no longer valid - the system becomes multi-sourced, and overcurrent-basedmore » protection does not work. The primary scope of this study is to analyze the response of a grid-tied inverter to different faults in the grid, leading to new guidelines on protecting renewable-rich distribution systems.« less

  16. Lead-acid batteries in solar photovoltaic power systems for marine aids to navigation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trenchard, S.E.

    1981-10-01

    Since 1974, the U.S. Coast Guard has been testing lead-acid batteries in solar photovoltaic-powered systems for aids to navigation. Three types of lead-acid batteries, distinguished by the composition of their grid material, have been tested: lead-antimony grid, lead-calcium grid, and pure-lead grid. This report contains a comparison of the charging characteristics and the charge-discharge cycling behavior of each grid type. All types were remarkably similar qualitatively in their daily as well as annual cycling behavior but the significance of the quantitative differences offer distinctive tradeoffs. This report presents models for water usage, depth-of-discharge, and post-cycle capacity for various levels ofmore » voltage regulation. Based on the post-cycle capacity tests, the effect of grid strength, grid thickness, and operating conditions on life expectancy are presented. A final discussion presents the results of a field deployment of solar photovoltaic-powered aids to navigation in the Miami, Florida area. Potential solutions to the battery terminal corrosion and bird guano problems observed are discussed.« less

  17. Grid workflow job execution service 'Pilot'

    NASA Astrophysics Data System (ADS)

    Shamardin, Lev; Kryukov, Alexander; Demichev, Andrey; Ilyin, Vyacheslav

    2011-12-01

    'Pilot' is a grid job execution service for workflow jobs. The main goal for the service is to automate computations with multiple stages since they can be expressed as simple workflows. Each job is a directed acyclic graph of tasks and each task is an execution of something on a grid resource (or 'computing element'). Tasks may be submitted to any WS-GRAM (Globus Toolkit 4) service. The target resources for the tasks execution are selected by the Pilot service from the set of available resources which match the specific requirements from the task and/or job definition. Some simple conditional execution logic is also provided. The 'Pilot' service is built on the REST concepts and provides a simple API through authenticated HTTPS. This service is deployed and used in production in a Russian national grid project GridNNN.

  18. Energy solutions in rural Africa: mapping electrification costs of distributed solar and diesel generation versus grid extension

    NASA Astrophysics Data System (ADS)

    Szabó, S.; Bódis, K.; Huld, T.; Moner-Girona, M.

    2011-07-01

    Three rural electrification options are analysed showing the cost optimal conditions for a sustainable energy development applying renewable energy sources in Africa. A spatial electricity cost model has been designed to point out whether diesel generators, photovoltaic systems or extension of the grid are the least-cost option in off-grid areas. The resulting mapping application offers support to decide in which regions the communities could be electrified either within the grid or in an isolated mini-grid. Donor programs and National Rural Electrification Agencies (or equivalent governmental departments) could use this type of delineation for their program boundaries and then could use the local optimization tools adapted to the prevailing parameters. The views expressed in this paper are those of the authors and do not necessarily represent European Commission and UNEP policy.

  19. Organic light-emitting diodes using novel embedded al gird transparent electrodes

    NASA Astrophysics Data System (ADS)

    Peng, Cuiyun; Chen, Changbo; Guo, Kunping; Tian, Zhenghao; Zhu, Wenqing; Xu, Tao; Wei, Bin

    2017-03-01

    This work demonstrates a novel transparent electrode using embedded Al grids fabricated by a simple and cost-effective approach using photolithography and wet etching. The optical and electrical properties of Al grids versus grid geometry have been systematically investigated, it was found that Al grids exhibited a low sheet resistance of 70 Ω □-1 and a light transmission of 69% at 550 nm with advantages in terms of processing conditions and material cost as well as potential to large scale fabrication. Indium Tin Oxide-free green organic light-emitting diodes (OLED) based on Al grids transparent electrodes was demonstrated, yielding a power efficiency >15 lm W-1 and current efficiency >39 cd A-1 at a brightness of 2396 cd m-2. Furthermore, a reduced efficiency roll-off and higher brightness have been achieved compared with ITO-base device.

  20. Use of Fuzzy Logic Systems for Assessment of Primary Faults

    NASA Astrophysics Data System (ADS)

    Petrović, Ivica; Jozsa, Lajos; Baus, Zoran

    2015-09-01

    In electric power systems, grid elements are often subjected to very complex and demanding disturbances or dangerous operating conditions. Determining initial fault or cause of those states is a difficult task. When fault occurs, often it is an imperative to disconnect affected grid element from the grid. This paper contains an overview of possibilities for using fuzzy logic in an assessment of primary faults in the transmission grid. The tool for this task is SCADA system, which is based on information of currents, voltages, events of protection devices and status of circuit breakers in the grid. The function model described with the membership function and fuzzy logic systems will be presented in the paper. For input data, diagnostics system uses information of protection devices tripping, states of circuit breakers and measurements of currents and voltages before and after faults.

  1. Rapid Structured Volume Grid Smoothing and Adaption Technique

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2006-01-01

    A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reductions in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.

  2. Rapid Structured Volume Grid Smoothing and Adaption Technique

    NASA Technical Reports Server (NTRS)

    Alter, Stephen J.

    2004-01-01

    A rapid, structured volume grid smoothing and adaption technique, based on signal processing methods, was developed and applied to the Shuttle Orbiter at hypervelocity flight conditions in support of the Columbia Accident Investigation. Because of the fast pace of the investigation, computational aerothermodynamicists, applying hypersonic viscous flow solving computational fluid dynamic (CFD) codes, refined and enhanced a grid for an undamaged baseline vehicle to assess a variety of damage scenarios. Of the many methods available to modify a structured grid, most are time-consuming and require significant user interaction. By casting the grid data into different coordinate systems, specifically two computational coordinates with arclength as the third coordinate, signal processing methods are used for filtering the data [Taubin, CG v/29 1995]. Using a reverse transformation, the processed data are used to smooth the Cartesian coordinates of the structured grids. By coupling the signal processing method with existing grid operations within the Volume Grid Manipulator tool, problems related to grid smoothing are solved efficiently and with minimal user interaction. Examples of these smoothing operations are illustrated for reduction in grid stretching and volume grid adaptation. In each of these examples, other techniques existed at the time of the Columbia accident, but the incorporation of signal processing techniques reduced the time to perform the corrections by nearly 60%. This reduction in time to perform the corrections therefore enabled the assessment of approximately twice the number of damage scenarios than previously possible during the allocated investigation time.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvagnini, Elena; Bosmans, Hilde; Marshall, Nicholas W.

    Purpose: The aim of this paper was to illustrate the value of the new metric effective detective quantum efficiency (eDQE) in relation to more established measures in the optimization process of two digital mammography systems. The following metrics were included for comparison against eDQE: detective quantum efficiency (DQE) of the detector, signal difference to noise ratio (SdNR), and detectability index (d′) calculated using a standard nonprewhitened observer with eye filter.Methods: The two systems investigated were the Siemens MAMMOMAT Inspiration and the Hologic Selenia Dimensions. The presampling modulation transfer function (MTF) required for the eDQE was measured using two geometries: amore » geometry containing scattered radiation and a low scatter geometry. The eDQE, SdNR, and d′ were measured for poly(methyl methacrylate) (PMMA) thicknesses of 20, 40, 60, and 70 mm, with and without the antiscatter grid and for a selection of clinically relevant target/filter (T/F) combinations. Figures of merit (FOMs) were then formed from SdNR and d′ using the mean glandular dose as the factor to express detriment. Detector DQE was measured at energies covering the range of typical clinically used spectra.Results: The MTF measured in the presence of scattered radiation showed a large drop at low spatial frequency compared to the low scatter method and led to a corresponding reduction in eDQE. The eDQE for the Siemens system at 1 mm{sup −1} ranged between 0.15 and 0.27, depending on T/F and grid setting. For the Hologic system, eDQE at 1 mm{sup −1} varied from 0.15 to 0.32, again depending on T/F and grid setting. The eDQE results for both systems showed that the grid increased the system efficiency for PMMA thicknesses of 40 mm and above but showed only small sensitivity to T/F setting. While results of the SdNR and d′ based FOMs confirmed the eDQE grid position results, they were also more specific in terms of T/F selection. For the Siemens system at 20 mm PMMA, the FOMs indicated Mo/Mo (grid out) as optimal while W/Rh (grid in) was the optimal configuration at 40, 60, and 70 mm PMMA. For the Hologic, the FOMs pointed to W/Rh (grid in) at 20 and 40 mm of PMMA while W/Ag (grid in) gave the highest FOM at 60 and 70 mm PMMA. Finally, DQE at 1 mm{sup −1} averaged for the four beam qualities studied was 0.44 ± 0.02 and 0.55 ± 0.03 for the Siemens and Hologic detectors, respectively, indicating only a small influence of energy on detector DQE.Conclusions: Both the DQE and eDQE data showed only a small sensitivity to T/F setting for these two systems. The eDQE showed clear preferences in terms of scatter reduction, being highest for the grid-in geometry for PMMA thicknesses of 40 mm and above. The SdNR and d′ based figures of merit, which contain additional weighting for contrast and dose, pointed to specific T/F settings for both systems.« less

  4. Controllable Grid Interface for Testing Ancillary Service Controls and Fault Performance of Utility-Scale Wind Power Generation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, Vahan; Koralewicz, Przemyslaw; Wallen, Robb

    The rapid expansion of wind power has led many transmission system operators to demand modern wind power plants to comply with strict interconnection requirements. Such requirements involve various aspects of wind power plant operation, including fault ride-through and power quality performance as well as the provision of ancillary services to enhance grid reliability. During recent years, the National Renewable Energy Laboratory (NREL) of the U.S. Department of Energy has developed a new, groundbreaking testing apparatus and methodology to test and demonstrate many existing and future advanced controls for wind generation (and other renewable generation technologies) on the multimegawatt scale andmore » medium-voltage levels. This paper describes the capabilities and control features of NREL's 7-MVA power electronic grid simulator (also called a controllable grid interface, or CGI) that enables testing many active and reactive power control features of modern wind turbine generators -- including inertial response, primary and secondary frequency responses, and voltage regulation -- under a controlled, medium-voltage grid environment. In particular, this paper focuses on the specifics of testing the balanced and unbalanced fault ride-through characteristics of wind turbine generators under simulated strong and weak medium-voltage grid conditions. In addition, this paper provides insights on the power hardware-in-the-loop feature implemented in the CGI to emulate (in real time) the conditions that might exist in various types of electric power systems under normal operations and/or contingency scenarios. Using actual test examples and simulation results, this paper describes the value of CGI as an ultimate modeling validation tool for all types of 'grid-friendly' controls by wind generation.« less

  5. MODFLOW–LGR—Documentation of ghost node local grid refinement (LGR2) for multiple areas and the boundary flow and head (BFH2) package

    USGS Publications Warehouse

    Mehl, Steffen W.; Hill, Mary C.

    2013-01-01

    This report documents the addition of ghost node Local Grid Refinement (LGR2) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference groundwater flow model. LGR2 provides the capability to simulate groundwater flow using multiple block-shaped higher-resolution local grids (a child model) within a coarser-grid parent model. LGR2 accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the grid-refinement interface boundary. LGR2 can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems. Traditional one-way coupled telescopic mesh refinement methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled ghost-node method of LGR2 provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR2, evaluates accuracy and performance for two-and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH2) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR2.

  6. Level-Set Methodology on Adaptive Octree Grids

    NASA Astrophysics Data System (ADS)

    Gibou, Frederic; Guittet, Arthur; Mirzadeh, Mohammad; Theillard, Maxime

    2017-11-01

    Numerical simulations of interfacial problems in fluids require a methodology capable of tracking surfaces that can undergo changes in topology and capable to imposing jump boundary conditions in a sharp manner. In this talk, we will discuss recent advances in the level-set framework, in particular one that is based on adaptive grids.

  7. Best chirplet chain: Near-optimal detection of gravitational wave chirps

    NASA Astrophysics Data System (ADS)

    Chassande-Mottin, Éric; Pai, Archana

    2006-02-01

    The list of putative sources of gravitational waves possibly detected by the ongoing worldwide network of large scale interferometers has been continuously growing in the last years. For some of them, the detection is made difficult by the lack of a complete information about the expected signal. We concentrate on the case where the expected gravitational wave (GW) is a quasiperiodic frequency modulated signal i.e., a chirp. In this article, we address the question of detecting an a priori unknown GW chirp. We introduce a general chirp model and claim that it includes all physically realistic GW chirps. We produce a finite grid of template waveforms which samples the resulting set of possible chirps. If we follow the classical approach (used for the detection of inspiralling binary chirps, for instance), we would build a bank of quadrature matched filters comparing the data to each of the templates of this grid. The detection would then be achieved by thresholding the output, the maximum giving the individual which best fits the data. In the present case, this exhaustive search is not tractable because of the very large number of templates in the grid. We show that the exhaustive search can be reformulated (using approximations) as a pattern search in the time-frequency plane. This motivates an approximate but feasible alternative solution which is clearly linked to the optimal one. The time-frequency representation and pattern search algorithm are fully determined by the reformulation. This contrasts with the other time-frequency based methods presented in the literature for the same problem, where these choices are justified by “ad hoc” arguments. In particular, the time-frequency representation has to be unitary. Finally, we assess the performance, robustness and computational cost of the proposed method with several benchmarks using simulated data.

  8. Multiscale Approach to Small River Plumes off California

    NASA Astrophysics Data System (ADS)

    Basdurak, N. B.; Largier, J. L.; Nidzieko, N.

    2012-12-01

    While larger scale plumes have received significant attention, the dynamics of plumes associated with small rivers typical of California are little studied. Since small streams are not dominated by a momentum flux, their plumes are more susceptible to conditions in the coastal ocean such as wind and waves. In order to correctly model water transport at smaller scales, there is a need to capture larger scale processes. To do this, one-way nested grids with varying grid resolution (1 km and 10 m for the parent and the child grid respectively) were constructed. CENCOOS (Central and Northern California Ocean Observing System) model results were used as boundary conditions to the parent grid. Semi-idealized model results for Santa Rosa Creek, California are presented from an implementation of the Regional Ocean Modeling System (ROMS v3.0), a three-dimensional, free-surface, terrain-following numerical model. In these preliminary results, the interaction between tides, winds, and buoyancy forcing in plume dynamics is explored for scenarios including different strengths of freshwater flow with different modes (steady and pulsed). Seasonal changes in transport dynamics and dispersion patterns are analyzed.

  9. Mercury ion thruster research, 1978

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1978-01-01

    The effects of 8 cm thruster main and neutralizer cathode operating conditions on cathode orifice plate temperatures were studied. The effects of cathode operating conditions on insert temperature profiles and keeper voltages are presented for three different types of inserts. The bulk of the emission current is generally observed to come from the downstream end of the insert rather than from the cathode orifice plate. Results of a test in which the screen grid plasma sheath of a thruster was probed as the beam current was varied are shown. Grid performance obtained with a grid machined from glass ceramic is discussed. The effects of copper and nitrogen impurities on the sputtering rates of thruster materials are measured experimentally and a model describing the rate of nitrogen chemisorption on materials in either the beam or the discharge chamber is presented. The results of optimization of a radial field thruster design are presented. Performance of this device is shown to be comparable to that of a divergent field thruster and efficient operation with the screen grid biased to floating potential, where its susceptibility to sputter erosion damage is reduced, is demonstrated.

  10. Incompressible flow simulations on regularized moving meshfree grids

    NASA Astrophysics Data System (ADS)

    Vasyliv, Yaroslav; Alexeev, Alexander

    2017-11-01

    A moving grid meshfree solver for incompressible flows is presented. To solve for the flow field, a semi-implicit approximate projection method is directly discretized on meshfree grids using General Finite Differences (GFD) with sharp interface stencil modifications. To maintain a regular grid, an explicit shift is used to relax compressed pseudosprings connecting a star node to its cloud of neighbors. The following test cases are used for validation: the Taylor-Green vortex decay, the analytic and modified lid-driven cavities, and an oscillating cylinder enclosed in a container for a range of Reynolds number values. We demonstrate that 1) the grid regularization does not impede the second order spatial convergence rate, 2) the Courant condition can be used for time marching but the projection splitting error reduces the convergence rate to first order, and 3) moving boundaries and arbitrary grid distortions can readily be handled. Financial support provided by the National Science Foundation (NSF) Graduate Research Fellowship, Grant No. DGE-1148903.

  11. Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system

    NASA Astrophysics Data System (ADS)

    Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian

    2017-08-01

    The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.

  12. Designing efficient surveys: spatial arrangement of sample points for detection of invasive species

    Treesearch

    Ludek Berec; John M. Kean; Rebecca Epanchin-Niell; Andrew M. Liebhold; Robert G. Haight

    2015-01-01

    Effective surveillance is critical to managing biological invasions via early detection and eradication. The efficiency of surveillance systems may be affected by the spatial arrangement of sample locations. We investigate how the spatial arrangement of sample points, ranging from random to fixed grid arrangements, affects the probability of detecting a target...

  13. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.

    PubMed

    Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.

  14. Indicator of reliability of power grids and networks for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Shaptsev, V. A.

    2017-10-01

    The energy supply of the mining enterprises includes power networks in particular. Environmental monitoring relies on the data network between the observers and the facilitators. Weather and conditions of their work change over time randomly. Temperature, humidity, wind strength and other stochastic processes are interconnecting in different segments of the power grid. The article presents analytical expressions for the probability of failure of the power grid as a whole or its particular segment. These expressions can contain one or more parameters of the operating conditions, simulated by Monte Carlo. In some cases, one can get the ultimate mathematical formula for calculation on the computer. In conclusion, the expression, including the probability characteristic function of one random parameter, for example, wind, temperature or humidity, is given. The parameters of this characteristic function can be given by retrospective or special observations (measurements).

  15. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results

    PubMed Central

    Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  16. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    ScienceCinema

    Felker, Fort

    2018-06-06

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  17. Detection of a gravitropism phenotype in glutamate receptor-like 3.3 mutants of Arabidopsis thaliana using machine vision and computation.

    PubMed

    Miller, Nathan D; Durham Brooks, Tessa L; Assadi, Amir H; Spalding, Edgar P

    2010-10-01

    Gene disruption frequently produces no phenotype in the model plant Arabidopsis thaliana, complicating studies of gene function. Functional redundancy between gene family members is one common explanation but inadequate detection methods could also be responsible. Here, newly developed methods for automated capture and processing of time series of images, followed by computational analysis employing modified linear discriminant analysis (LDA) and wavelet-based differentiation, were employed in a study of mutants lacking the Glutamate Receptor-Like 3.3 gene. Root gravitropism was selected as the process to study with high spatiotemporal resolution because the ligand-gated Ca(2+)-permeable channel encoded by GLR3.3 may contribute to the ion fluxes associated with gravity signal transduction in roots. Time series of root tip angles were collected from wild type and two different glr3.3 mutants across a grid of seed-size and seedling-age conditions previously found to be important to gravitropism. Statistical tests of average responses detected no significant difference between populations, but LDA separated both mutant alleles from the wild type. After projecting the data onto LDA solution vectors, glr3.3 mutants displayed greater population variance than the wild type in all four conditions. In three conditions the projection means also differed significantly between mutant and wild type. Wavelet analysis of the raw response curves showed that the LDA-detected phenotypes related to an early deceleration and subsequent slower-bending phase in glr3.3 mutants. These statistically significant, heritable, computation-based phenotypes generated insight into functions of GLR3.3 in gravitropism. The methods could be generally applicable to the study of phenotypes and therefore gene function.

  18. Detection of a Gravitropism Phenotype in glutamate receptor-like 3.3 Mutants of Arabidopsis thaliana Using Machine Vision and Computation

    PubMed Central

    Miller, Nathan D.; Durham Brooks, Tessa L.; Assadi, Amir H.; Spalding, Edgar P.

    2010-01-01

    Gene disruption frequently produces no phenotype in the model plant Arabidopsis thaliana, complicating studies of gene function. Functional redundancy between gene family members is one common explanation but inadequate detection methods could also be responsible. Here, newly developed methods for automated capture and processing of time series of images, followed by computational analysis employing modified linear discriminant analysis (LDA) and wavelet-based differentiation, were employed in a study of mutants lacking the Glutamate Receptor-Like 3.3 gene. Root gravitropism was selected as the process to study with high spatiotemporal resolution because the ligand-gated Ca2+-permeable channel encoded by GLR3.3 may contribute to the ion fluxes associated with gravity signal transduction in roots. Time series of root tip angles were collected from wild type and two different glr3.3 mutants across a grid of seed-size and seedling-age conditions previously found to be important to gravitropism. Statistical tests of average responses detected no significant difference between populations, but LDA separated both mutant alleles from the wild type. After projecting the data onto LDA solution vectors, glr3.3 mutants displayed greater population variance than the wild type in all four conditions. In three conditions the projection means also differed significantly between mutant and wild type. Wavelet analysis of the raw response curves showed that the LDA-detected phenotypes related to an early deceleration and subsequent slower-bending phase in glr3.3 mutants. These statistically significant, heritable, computation-based phenotypes generated insight into functions of GLR3.3 in gravitropism. The methods could be generally applicable to the study of phenotypes and therefore gene function. PMID:20647506

  19. Towards resiliency with micro-grids: Portfolio optimization and investment under uncertainty

    NASA Astrophysics Data System (ADS)

    Gharieh, Kaveh

    Energy security and sustained supply of power are critical for community welfare and economic growth. In the face of the increased frequency and intensity of extreme weather conditions which can result in power grid outage, the value of micro-grids to improve the communities' power reliability and resiliency is becoming more important. Micro-grids capability to operate in islanded mode in stressed-out conditions, dramatically decreases the economic loss of critical infrastructure in power shortage occasions. More wide-spread participation of micro-grids in the wholesale energy market in near future, makes the development of new investment models necessary. However, market and price risks in short term and long term along with risk factors' impacts shall be taken into consideration in development of new investment models. This work proposes a set of models and tools to address different problems associated with micro-grid assets including optimal portfolio selection, investment and financing in both community and a sample critical infrastructure (i.e. wastewater treatment plant) levels. The models account for short-term operational volatilities and long-term market uncertainties. A number of analytical methodologies and financial concepts have been adopted to develop the aforementioned models as follows. (1) Capital budgeting planning and portfolio optimization models with Monte Carlo stochastic scenario generation are applied to derive the optimal investment decision for a portfolio of micro-grid assets considering risk factors and multiple sources of uncertainties. (2) Real Option theory, Monte Carlo simulation and stochastic optimization techniques are applied to obtain optimal modularized investment decisions for hydrogen tri-generation systems in wastewater treatment facilities, considering multiple sources of uncertainty. (3) Public Private Partnership (PPP) financing concept coupled with investment horizon approach are applied to estimate public and private parties' revenue shares from a community-level micro-grid project over the course of assets' lifetime considering their optimal operation under uncertainty.

  20. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-02-01

    Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilitiesmore » of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.« less

  1. A facile and cost-effective TEM grid approach to design gold nano-structured substrates for high throughput plasmonic sensitive detection of biomolecules.

    PubMed

    Jia, Kun; Bijeon, Jean Louis; Adam, Pierre Michel; Ionescu, Rodica Elena

    2013-02-21

    A commercial TEM grid was used as a mask for the creation of extremely well-organized gold micro-/nano-structures on a glass substrate via a high temperature annealing process at 500 °C. The structured substrate was (bio)functionalized and used for the high throughput LSPR immunosensing of different concentrations of a model protein named bovine serum albumin.

  2. Enhancement of surface definition and gridding in the EAGLE code

    NASA Technical Reports Server (NTRS)

    Thompson, Joe F.

    1991-01-01

    Algorithms for smoothing of curves and surfaces for the EAGLE grid generation program are presented. The method uses an existing automated technique which detects undesirable geometric characteristics by using a local fairness criterion. The geometry entity is then smoothed by repeated removal and insertion of spline knots in the vicinity of the geometric irregularity. The smoothing algorithm is formulated for use with curves in Beta spline form and tensor product B-spline surfaces.

  3. Camouflage Traffic: Minimizing Message Delay for Smart Grid Applications Under Jamming

    DTIC Science & Technology

    2015-01-16

    Conf. Wireless Netw. Security, 2011, pp. 47–52. [26] M. Strasser, B. Danev, and S. Capkun, “Detection of reactive jam- ming in sensor networks,” ACM...Evaluation of two anti-islanding schemes for a radial distribution system equipped with self-excited induction generator wind turbines ,” IEEE Trans...technologies. To facilitate efficient information exchange, wireless networks have been proposed to be widely used in the smart grid. However, the jamming

  4. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications.

    PubMed

    Han, Lingyi; Peng, Yuexing; Wang, Peng; Li, Yonghui

    2016-09-22

    The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave) frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE) with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC) and estimation of signal parameters via rotation invariant technique (ESPRIT) cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE) algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS) method called improved turbo compressed channel sensing (ITCCS). It iteratively updates the soft information between the linear minimum mean square error (LMMSE) estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle detection resolution greatly.

  5. Geometrically Flexible and Efficient Flow Analysis of High Speed Vehicles Via Domain Decomposition, Part 1: Unstructured-Grid Solver for High Speed Flows

    NASA Technical Reports Server (NTRS)

    White, Jeffery A.; Baurle, Robert A.; Passe, Bradley J.; Spiegel, Seth C.; Nishikawa, Hiroaki

    2017-01-01

    The ability to solve the equations governing the hypersonic turbulent flow of a real gas on unstructured grids using a spatially-elliptic, 2nd-order accurate, cell-centered, finite-volume method has been recently implemented in the VULCAN-CFD code. This paper describes the key numerical methods and techniques that were found to be required to robustly obtain accurate solutions to hypersonic flows on non-hex-dominant unstructured grids. The methods and techniques described include: an augmented stencil, weighted linear least squares, cell-average gradient method, a robust multidimensional cell-average gradient-limiter process that is consistent with the augmented stencil of the cell-average gradient method and a cell-face gradient method that contains a cell skewness sensitive damping term derived using hyperbolic diffusion based concepts. A data-parallel matrix-based symmetric Gauss-Seidel point-implicit scheme, used to solve the governing equations, is described and shown to be more robust and efficient than a matrix-free alternative. In addition, a y+ adaptive turbulent wall boundary condition methodology is presented. This boundary condition methodology is deigned to automatically switch between a solve-to-the-wall and a wall-matching-function boundary condition based on the local y+ of the 1st cell center off the wall. The aforementioned methods and techniques are then applied to a series of hypersonic and supersonic turbulent flat plate unit tests to examine the efficiency, robustness and convergence behavior of the implicit scheme and to determine the ability of the solve-to-the-wall and y+ adaptive turbulent wall boundary conditions to reproduce the turbulent law-of-the-wall. Finally, the thermally perfect, chemically frozen, Mach 7.8 turbulent flow of air through a scramjet flow-path is computed and compared with experimental data to demonstrate the robustness, accuracy and convergence behavior of the unstructured-grid solver for a realistic 3-D geometry on a non-hex-dominant grid.

  6. Design of an Internal Model Control strategy for single-phase grid-connected PWM inverters and its performance analysis with a non-linear local load and weak grid.

    PubMed

    Chaves, Eric N; Coelho, Ernane A A; Carvalho, Henrique T M; Freitas, Luiz C G; Júnior, João B V; Freitas, Luiz C

    2016-09-01

    This paper presents the design of a controller based on Internal Model Control (IMC) applied to a grid-connected single-phase PWM inverter. The mathematical modeling of the inverter and the LCL output filter, used to project the 1-DOF IMC controller, is presented and the decoupling of grid voltage by a Feedforward strategy is analyzed. A Proportional - Resonant Controller (P+Res) was used for the control of the same plant in the running of experimental results, thus moving towards the discussion of differences regarding IMC and P+Res performances, which arrived at the evaluation of the proposed control strategy. The results are presented for typical conditions, for weak-grid and for non-linear local load, in order to verify the behavior of the controller against such situations. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. An Efficient Algorithm for Mapping Imaging Data to 3D Unstructured Grids in Computational Biomechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einstein, Daniel R.; Kuprat, Andrew P.; Jiao, Xiangmin

    2013-01-01

    Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: 1) the mapping of MRI diffusion tensor data to an unstuctured ventricular grid; 2) the mappingmore » of serial cyro-section histology data to an unstructured mouse brain grid; and 3) the mapping of CT-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case.« less

  8. Mitigation of Power Quality Problems in Grid-Interactive Distributed Generation System

    NASA Astrophysics Data System (ADS)

    Bhende, C. N.; Kalam, A.; Malla, S. G.

    2016-04-01

    Having an inter-tie between low/medium voltage grid and distributed generation (DG), both exposes to power quality (PQ) problems created by each other. This paper addresses various PQ problems arise due to integration of DG with grid. The major PQ problems are due to unbalanced and non-linear load connected at DG, unbalanced voltage variations on transmission line and unbalanced grid voltages which severely affect the performance of the system. To mitigate the above mentioned PQ problems, a novel integrated control of distribution static shunt compensator (DSTATCOM) is presented in this paper. DSTATCOM control helps in reducing the unbalance factor of PCC voltage. It also eliminates harmonics from line currents and makes them balanced. Moreover, DSTATCOM supplies the reactive power required by the load locally and hence, grid need not to supply the reactive power. To show the efficacy of the proposed controller, several operating conditions are considered and verified through simulation using MATLAB/SIMULINK.

  9. Simulating incompressible flow on moving meshfree grids using General Finite Differences (GFD)

    NASA Astrophysics Data System (ADS)

    Vasyliv, Yaroslav; Alexeev, Alexander

    2016-11-01

    We simulate incompressible flow around an oscillating cylinder at different Reynolds numbers using General Finite Differences (GFD) on a meshfree grid. We evolve the meshfree grid by treating each grid node as a particle. To compute velocities and accelerations, we consider the particles at a particular instance as Eulerian observation points. The incompressible Navier-Stokes equations are directly discretized using GFD with boundary conditions enforced using a sharp interface treatment. Cloud sizes are set such that the local approximations use only 16 neighbors. To enforce incompressibility, we apply a semi-implicit approximate projection method. To prevent overlapping particles and formation of voids in the grid, we propose a particle regularization scheme based on a local minimization principle. We validate the GFD results for an oscillating cylinder against the lattice Boltzmann method and find good agreement. Financial support provided by National Science Foundation (NSF) Graduate Research Fellowship, Grant No. DGE-1148903.

  10. Research on the comparison of extension mechanism of cellular automaton based on hexagon grid and rectangular grid

    NASA Astrophysics Data System (ADS)

    Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie

    2009-10-01

    Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of concept for hexagonal which has great dominance.

  11. Spatially Fractionated Radiation Induces Cytotoxicity and Changes in Gene Expression in Bystander and Radiation Adjacent Murine Carcinoma Cells

    PubMed Central

    Asur, Rajalakshmi S.; Sharma, Sunil; Chang, Ching-Wei; Penagaricano, Jose; Kommuru, Indira M.; Moros, Eduardo G.; Corry, Peter M.; Griffin, Robert J.

    2012-01-01

    Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied. The occurrence of GRID-induced bystander gene expression changes in significant numbers of DNA damage and cellular stress response signaling genes, providing molecular evidence for possible mechanisms of bystander cell killing. PMID:22559204

  12. Evaluation of myocardial defect detection between parallel-hole and fan-beam SPECT using the Hotelling trace

    NASA Astrophysics Data System (ADS)

    Wollenweber, S. D.; Tsui, B. M. W.; Lalush, D. S.; Frey, E. C.; Gullberg, G. T.

    1998-08-01

    The objective of this study was to implement the Hotelling trace (HT) to evaluate the potential increase in defect detection in myocardial SPECT using high-resolution fan-beam (HRF) versus parallel-hole (HRP) collimation and compare results to a previously reported human observer study (G.K. Gregoriou et al., ibid., vol. 42, p. 1267-75, 1995). Projection data from the 3D MCAT torso phantom were simulated including the effects of attenuation, collimator-detector response blurring and scatter. Poisson noise fluctuations were then simulated. The HRP and HRF collimators had the same spatial resolution at 20 cm. The total counts in the projection data sets were proportional to the detection efficiencies of the collimators and on the order of that found in clinical Tc-99m studies. In six left-ventricular defect locations, the HT found for HRF was superior to that for HRP collimation. For HRF collimation, the HT was calculated for reconstructed images using 64/spl times/64, 128/spl times/128 and 192/spl times/192 grid sizes. The results demonstrate substantial improvement in myocardial defect detection when the grid size was increased from 64/spl times/64 to 128/spl times/128 and slight improvement from 128/spl times/128 to 192/spl times/192. Also, the performance of the Hotelling observer in terms of the HT at the different grid sizes correlates at better than 0.95 to that found in human observers in a previously reported observer experiment and ROC study.

  13. Real time flaw detection and characterization in tube through partial least squares and SVR: Application to eddy current testing

    NASA Astrophysics Data System (ADS)

    Ahmed, Shamim; Miorelli, Roberto; Calmon, Pierre; Anselmi, Nicola; Salucci, Marco

    2018-04-01

    This paper describes Learning-By-Examples (LBE) technique for performing quasi real time flaw localization and characterization within a conductive tube based on Eddy Current Testing (ECT) signals. Within the framework of LBE, the combination of full-factorial (i.e., GRID) sampling and Partial Least Squares (PLS) feature extraction (i.e., GRID-PLS) techniques are applied for generating a suitable training set in offine phase. Support Vector Regression (SVR) is utilized for model development and inversion during offine and online phases, respectively. The performance and robustness of the proposed GIRD-PLS/SVR strategy on noisy test set is evaluated and compared with standard GRID/SVR approach.

  14. Ant colony clustering with fitness perception and pheromone diffusion for community detection in complex networks

    NASA Astrophysics Data System (ADS)

    Ji, Junzhong; Song, Xiangjing; Liu, Chunnian; Zhang, Xiuzhen

    2013-08-01

    Community structure detection in complex networks has been intensively investigated in recent years. In this paper, we propose an adaptive approach based on ant colony clustering to discover communities in a complex network. The focus of the method is the clustering process of an ant colony in a virtual grid, where each ant represents a node in the complex network. During the ant colony search, the method uses a new fitness function to percept local environment and employs a pheromone diffusion model as a global information feedback mechanism to realize information exchange among ants. A significant advantage of our method is that the locations in the grid environment and the connections of the complex network structure are simultaneously taken into account in ants moving. Experimental results on computer-generated and real-world networks show the capability of our method to successfully detect community structures.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosler, Peter Andrew; Roesler, Erika Louise; Taylor, Mark A.

    This article discusses the problem of identifying extreme climate events such as intense storms within large climate data sets. The basic storm detection algorithm is reviewed, which splits the problem into two parts: a spatial search followed by a temporal correlation problem. Two specific implementations of the spatial search algorithm are compared. The commonly used grid point search algorithm is reviewed, and a new algorithm called Stride Search is introduced. Stride Search is designed to work at all latitudes, while grid point searches may fail in polar regions. Results from the two algorithms are compared for the application of tropicalmore » cyclone detection, and shown to produce similar results for the same set of storm identification criteria. The time required for both algorithms to search the same data set is compared. Furthermore, Stride Search's ability to search extreme latitudes is demonstrated for the case of polar low detection.« less

  16. A novel image-based BRDF measurement system and its application to human skin

    NASA Astrophysics Data System (ADS)

    Bintz, Jeffrey R.; Mendenhall, Michael J.; Marciniak, Michael A.; Butler, Samuel D.; Lloyd, James Tommy

    2016-09-01

    Human skin detection is an important first step in search and rescue (SAR) scenarios. Previous research performed human skin detection through an application specific camera system that ex- ploits the spectral properties of human skin at two visible and two near-infrared (NIR) wavelengths. The current theory assumes human skin is diffuse; however, it is observed that human skin exhibits specular and diffuse reflectance properties. This paper presents a novel image-based bidirectional reflectance distribution function (BRDF) measurement system, and applies it to the collection of human skin BRDF. The system uses a grid projecting laser and a novel signal processing chain to extract the surface normal from each grid location. Human skin BRDF measurements are shown for a variety of melanin content and hair coverage at the four spectral channels needed for human skin detection. The NIR results represent a novel contribution to the existing body of human skin BRDF measurements.

  17. Evaluation of Low-Gravity Smoke Particulate for Spacecraft Fire Detection

    NASA Technical Reports Server (NTRS)

    Urban, David; Ruff, Gary A.; Mulholland George; Meyer, Marit; Yuan, Zeng guang; Cleary, Thomas; Yang, Jiann; Greenberg, Paul; Bryg, Victoria

    2013-01-01

    Tests were conducted on the International Space Station to evaluate the smoke particulate size from materials and conditions that are typical of those expected in spacecraft fires. Five different materials representative of those found in spacecraft (Teflon, Kapton, cotton, silicone rubber and Pyrell) were heated to temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow. The air flow past the sample during the heating period ranged from quiescent to 8 cm/s. The effective transport time to the measurement instruments was varied from 11 to 800 seconds to simulate different smoke transport conditions in spacecraft. The resultant aerosol was evaluated by three instruments which measured different moments of the particle size distribution. These moment diagnostics were used to determine the particle number concentration (zeroth moment), the diameter concentration (first moment), and the mass concentration (third moment). These statistics were combined to determine the diameter of average mass and the count mean diameter and by assuming a log-normal distribution, the geometric mean diameter and the geometric standard deviations were also calculated. Smoke particle samples were collected on TEM grids using a thermal precipitator for post flight analysis. The TEM grids were analyzed to determine the particle morphology and shape parameters. The different materials produced particles with significantly different morphologies. Overall the majority of the average smoke particle sizes were found to be in the 200 to 400 nanometer range with the quiescent cases and the cases with increased transport time typically producing with substantially larger particles. The results varied between materials but the smoke particles produced in low gravity were typically twice the size of particles produced in normal gravity. These results can be used to establish design requirements for future spacecraft smoke detectors.

  18. Views of the self and others at different ages: utility of repertory grid technique in detecting the positivity effect in aging.

    PubMed

    Williams, Ben D; Harter, Stephanie Lewis

    2010-01-01

    Socioemotional selectivity theory (Carstensen, 1995) posits a "positivity effect" in older adults, describing an increasing tendency to attend to, process, interpret, and remember events and others in life in a positive fashion as one ages. Drawing on personal construct theory, Viney (1993) observes increasing integration of constructions of self with others across the lifespan. The current study extends assessment of the positivity effect, integrating it with personal construct theory, by use of Repertory Grid (RepGrid) analysis. Consistent with the positivity effect, older adults (ages 54-86) described others more positively on RepGrid measures in comparison to younger adults (ages 18-25). Older adults also described the self as more similar to others and tended to describe the self more positively. The age groups did not differ in measures of psychological distress or well being with the exception of older adults describing more autonomy.

  19. Transonic Drag Prediction Using an Unstructured Multigrid Solver

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Levy, David W.

    2001-01-01

    This paper summarizes the results obtained with the NSU-3D unstructured multigrid solver for the AIAA Drag Prediction Workshop held in Anaheim, CA, June 2001. The test case for the workshop consists of a wing-body configuration at transonic flow conditions. Flow analyses for a complete test matrix of lift coefficient values and Mach numbers at a constant Reynolds number are performed, thus producing a set of drag polars and drag rise curves which are compared with experimental data. Results were obtained independently by both authors using an identical baseline grid and different refined grids. Most cases were run in parallel on commodity cluster-type machines while the largest cases were run on an SGI Origin machine using 128 processors. The objective of this paper is to study the accuracy of the subject unstructured grid solver for predicting drag in the transonic cruise regime, to assess the efficiency of the method in terms of convergence, cpu time, and memory, and to determine the effects of grid resolution on this predictive ability and its computational efficiency. A good predictive ability is demonstrated over a wide range of conditions, although accuracy was found to degrade for cases at higher Mach numbers and lift values where increasing amounts of flow separation occur. The ability to rapidly compute large numbers of cases at varying flow conditions using an unstructured solver on inexpensive clusters of commodity computers is also demonstrated.

  20. Interdisciplinary challenges in the study of power grid resilience and stability and their relation to extreme weather events

    NASA Astrophysics Data System (ADS)

    Heitzig, J.; Fujiwara, N.; Aihara, K.; Kurths, J.

    2014-10-01

    This topical issue collects contributions to the interdisciplinary study of power grid stability in face of increasing volatility of energy production and consumption due to increasing renewable energy infeed and changing climatic conditions. The individual papers focus on different aspects of this field and bring together modern achievements from various disciplines, in particular complex systems science, nonlinear data analysis, control theory, electrical engineering, and climatology. Main topics considered here are prediction and volatility of renewable infeed, modelling and theoretical analysis of power grid topology, dynamics and stability, relationships between stability and complex network topology, and improvements via topological changes or control. Impacts for the design of smart power grids are discussed in detail.

  1. Impingement-Current-Erosion Characteristics of Accelerator Grids on Two-Grid Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Barker, Timothy

    1996-01-01

    Accelerator grid sputter erosion resulting from charge-exchange-ion impingement is considered to be a primary cause of failure for electrostatic ion thrusters. An experimental method was developed and implemented to measure erosion characteristics of ion-thruster accel-grids for two-grid systems as a function of beam current, accel-grid potential, and facility background pressure. Intricate accelerator grid erosion patterns, that are typically produced in a short time (a few hours), are shown. Accelerator grid volumetric and depth-erosion rates are calculated from these erosion patterns and reported for each of the parameters investigated. A simple theoretical volumetric erosion model yields results that are compared to experimental findings. Results from the model and experiments agree to within 10%, thereby verifying the testing technique. In general, the local distribution of erosion is concentrated in pits between three adjacent holes and trenches that join pits. The shapes of the pits and trenches are shown to be dependent upon operating conditions. Increases in beam current and the accel-grid voltage magnitude lead to deeper pits and trenches. Competing effects cause complex changes in depth-erosion rates as background pressure is increased. Shape factors that describe pits and trenches (i.e. ratio of the average erosion width to the maximum possible width) are also affected in relatively complex ways by changes in beam current, ac tel-grid voltage magnitude, and background pressure. In all cases, however, gross volumetric erosion rates agree with theoretical predictions.

  2. Patients' views on the use of an Option Grid for knee osteoarthritis in physiotherapy clinical encounters: An interview study.

    PubMed

    Kinsey, Katharine; Firth, Jill; Elwyn, Glyn; Edwards, Adrian; Brain, Katherine; Marrin, Katy; Nye, Alan; Wood, Fiona

    2017-12-01

    Patient decision support tools have been developed as a means of providing accurate and accessible information in order for patients to make informed decisions about their care. Option Grids ™ are a type of decision support tool specifically designed to be used during clinical encounters. To explore patients' views of the Option Grid encounter tool used in clinical consultations with physiotherapists, in comparison with usual care, within a patient population who are likely to be disadvantaged by age and low health literacy. Semi-structured interviews with 72 patients (36 who had been given an Option Grid in their consultation and 36 who had not). Thematic analysis explored patients' understanding of treatment options, perceptions of involvement, and readability and utility of the Option Grid. Interviews suggested that the Option Grid facilitated more detailed discussion about the risks and benefits of a wider range of treatment options for osteoarthritis of the knee. Participants indicated that the Option Grid was clear and aided their understanding of a structured progression of the options as their condition advanced, although it was not clear whether the Option Grid facilitated greater engagement in shared decision making. The Option Grid for osteoarthritis of the knee was well received by patient participants who reported that it helped them to understand their options, and made the notion of choice explicit. Use of Option Grids should be considered within routine consultations. © 2017 The Authors Health Expectations Published by John Wiley & Sons Ltd.

  3. Development of a reference Phasor Measurement Unit (PMU) for the monitoring and control of grid stability and quality

    NASA Astrophysics Data System (ADS)

    Ndilimabaka, Hervé; Blanc, Isabelle

    2014-08-01

    This paper discusses the details of the development of a Phasor Measurement Unit regarding the requirements of the IEEE C37.118-2005 synchrophasor standard relative to steady-state conditions on grid monitoring and control. This phasor measurement unit is intended to be used for field tests sooner.

  4. The Managerial Grid; Key Orientations for Achieving Production through People.

    ERIC Educational Resources Information Center

    Blake, Robert R; Mouton, Jane S.

    The Managerial Grid arranges a concern for production on the horizontal axis and a concern for people on the vertical axis of a coordinate system: 1,1 shows minimum concern for production and people; 9,1 shows major production emphasis and minimum human considerations; 1,9 shows maximum concern for friendly working conditions and minimum…

  5. Images of the Retailing Environment: An Example of the Use of the Repertory Grid Methodology

    ERIC Educational Resources Information Center

    Hudson, Ray

    1974-01-01

    A necessary condition for studying cognitive images of environments is an appropriate method to define and measure these. Using a sample of students in Bristol, the Repertory Grid method was used to measure images of the retailing environment. The empirical results are discussed and possible future research is outlined. (BT)

  6. Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow

    NASA Astrophysics Data System (ADS)

    Henshaw, William D.; Schwendeman, Donald W.

    2006-08-01

    We consider the solution of the reactive and non-reactive Euler equations on two-dimensional domains that evolve in time. The domains are discretized using moving overlapping grids. In a typical grid construction, boundary-fitted grids are used to represent moving boundaries, and these grids overlap with stationary background Cartesian grids. Block-structured adaptive mesh refinement (AMR) is used to resolve fine-scale features in the flow such as shocks and detonations. Refinement grids are added to base-level grids according to an estimate of the error, and these refinement grids move with their corresponding base-level grids. The numerical approximation of the governing equations takes place in the parameter space of each component grid which is defined by a mapping from (fixed) parameter space to (moving) physical space. The mapped equations are solved numerically using a second-order extension of Godunov's method. The stiff source term in the reactive case is handled using a Runge-Kutta error-control scheme. We consider cases when the boundaries move according to a prescribed function of time and when the boundaries of embedded bodies move according to the surface stress exerted by the fluid. In the latter case, the Newton-Euler equations describe the motion of the center of mass of the each body and the rotation about it, and these equations are integrated numerically using a second-order predictor-corrector scheme. Numerical boundary conditions at slip walls are described, and numerical results are presented for both reactive and non-reactive flows that demonstrate the use and accuracy of the numerical approach.

  7. Submicron hard X-ray fluorescence imaging of synthetic elements.

    PubMed

    Jensen, Mark P; Aryal, Baikuntha P; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E

    2012-04-13

    Synchrotron-based X-ray fluorescence microscopy (XFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurements such as μ-XANES (X-ray absorption near edge structure). We have used XFM to image and simultaneously quantify the transuranic element plutonium at the L(3) or L(2)-edge as well as Th and lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope (242)Pu. Elemental maps demonstrate that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions with an incident X-ray energy of 18 keV for an average 202 μm(2) cell is 1.4 fg Pu or 2.9×10(-20) moles Pu μm(-2), which is similar to the detection limit of K-edge XFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its L(α) X-ray emission. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Drought and Heat Wave Impacts on Electricity Grid Reliability in Illinois

    NASA Astrophysics Data System (ADS)

    Stillwell, A. S.; Lubega, W. N.

    2016-12-01

    A large proportion of thermal power plants in the United States use cooling systems that discharge large volumes of heated water into rivers and cooling ponds. To minimize thermal pollution from these discharges, restrictions are placed on temperatures at the edge of defined mixing zones in the receiving waters. However, during extended hydrological droughts and heat waves, power plants are often granted thermal variances permitting them to exceed these temperature restrictions. These thermal variances are often deemed necessary for maintaining electricity reliability, particularly as heat waves cause increased electricity demand. Current practice, however, lacks tools for the development of grid-scale operational policies specifying generator output levels that ensure reliable electricity supply while minimizing thermal variances. Such policies must take into consideration characteristics of individual power plants, topology and characteristics of the electricity grid, and locations of power plants within the river basin. In this work, we develop a methodology for the development of these operational policies that captures necessary factors. We develop optimal rules for different hydrological and meteorological conditions, serving as rule curves for thermal power plants. The rules are conditioned on leading modes of the ambient hydrological and meteorological conditions at the different power plant locations, as the locations are geographically close and hydrologically connected. Heat dissipation in the rivers and cooling ponds is modeled using the equilibrium temperature concept. Optimal rules are determined through a Monte Carlo sampling optimization framework. The methodology is applied to a case study of eight power plants in Illinois that were granted thermal variances in the summer of 2012, with a representative electricity grid model used in place of the actual electricity grid.

  9. Mixing in 3D Sparse Multi-Scale Grid Generated Turbulence

    NASA Astrophysics Data System (ADS)

    Usama, Syed; Kopec, Jacek; Tellez, Jackson; Kwiatkowski, Kamil; Redondo, Jose; Malik, Nadeem

    2017-04-01

    Flat 2D fractal grids are known to alter turbulence characteristics downstream of the grid as compared to the regular grids with the same blockage ratio and the same mass inflow rates [1]. This has excited interest in the turbulence community for possible exploitation for enhanced mixing and related applications. Recently, a new 3D multi-scale grid design has been proposed [2] such that each generation of length scale of turbulence grid elements is held in its own frame, the overall effect is a 3D co-planar arrangement of grid elements. This produces a 'sparse' grid system whereby each generation of grid elements produces a turbulent wake pattern that interacts with the other wake patterns downstream. A critical motivation here is that the effective blockage ratio in the 3D Sparse Grid Turbulence (3DSGT) design is significantly lower than in the flat 2D counterpart - typically the blockage ratio could be reduced from say 20% in 2D down to 4% in the 3DSGT. If this idea can be realized in practice, it could potentially greatly enhance the efficiency of turbulent mixing and transfer processes clearly having many possible applications. Work has begun on the 3DSGT experimentally using Surface Flow Image Velocimetry (SFIV) [3] at the European facility in the Max Planck Institute for Dynamics and Self-Organization located in Gottingen, Germany and also at the Technical University of Catalonia (UPC) in Spain, and numerically using Direct Numerical Simulation (DNS) at King Fahd University of Petroleum & Minerals (KFUPM) in Saudi Arabia and in University of Warsaw in Poland. DNS is the most useful method to compare the experimental results with, and we are studying different types of codes such as Imcompact3d, and OpenFoam. Many variables will eventually be investigated for optimal mixing conditions. For example, the number of scale generations, the spacing between frames, the size ratio of grid elements, inflow conditions, etc. We will report upon the first set of findings from the 3DSGT by the time of the conference. {Acknowledgements}: This work has been supported partly by the EuHIT grant, 'Turbulence Generated by Sparse 3D Multi-Scale Grid (M3SG)', 2017. {References} [1] S. Laizet, J. C. Vassilicos. DNS of Fractal-Generated Turbulence. Flow Turbulence Combust 87:673705, (2011). [2] N. A. Malik. Sparse 3D Multi-Scale Grid Turbulence Generator. USPTO Application no. 14/710,531, Patent Pending, (2015). [3] J. Tellez, M. Gomez, B. Russo, J.M. Redondo. Surface Flow Image Velocimetry (SFIV) for hydraulics applications. 18th Int. Symposium on the Application of Laser Imaging Techniques in Fluid Mechanics, Lisbon, Portugal (2016).

  10. Distributed Fault Detection Based on Credibility and Cooperation for WSNs in Smart Grids.

    PubMed

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong

    2017-04-28

    Due to the increasingly important role in monitoring and data collection that sensors play, accurate and timely fault detection is a key issue for wireless sensor networks (WSNs) in smart grids. This paper presents a novel distributed fault detection mechanism for WSNs based on credibility and cooperation. Firstly, a reasonable credibility model of a sensor is established to identify any suspicious status of the sensor according to its own temporal data correlation. Based on the credibility model, the suspicious sensor is then chosen to launch fault diagnosis requests. Secondly, the sending time of fault diagnosis request is discussed to avoid the transmission overhead brought about by unnecessary diagnosis requests and improve the efficiency of fault detection based on neighbor cooperation. The diagnosis reply of a neighbor sensor is analyzed according to its own status. Finally, to further improve the accuracy of fault detection, the diagnosis results of neighbors are divided into several classifications to judge the fault status of the sensors which launch the fault diagnosis requests. Simulation results show that this novel mechanism can achieve high fault detection ratio with a small number of fault diagnoses and low data congestion probability.

  11. Distributed Fault Detection Based on Credibility and Cooperation for WSNs in Smart Grids

    PubMed Central

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong

    2017-01-01

    Due to the increasingly important role in monitoring and data collection that sensors play, accurate and timely fault detection is a key issue for wireless sensor networks (WSNs) in smart grids. This paper presents a novel distributed fault detection mechanism for WSNs based on credibility and cooperation. Firstly, a reasonable credibility model of a sensor is established to identify any suspicious status of the sensor according to its own temporal data correlation. Based on the credibility model, the suspicious sensor is then chosen to launch fault diagnosis requests. Secondly, the sending time of fault diagnosis request is discussed to avoid the transmission overhead brought about by unnecessary diagnosis requests and improve the efficiency of fault detection based on neighbor cooperation. The diagnosis reply of a neighbor sensor is analyzed according to its own status. Finally, to further improve the accuracy of fault detection, the diagnosis results of neighbors are divided into several classifications to judge the fault status of the sensors which launch the fault diagnosis requests. Simulation results show that this novel mechanism can achieve high fault detection ratio with a small number of fault diagnoses and low data congestion probability. PMID:28452925

  12. SU-E-J-81: Beveled Needle Tip Detection Error in Ultrasound-Guided Prostate Brachytherapy.

    PubMed

    Leu, S; Ruiz, B; Podder, T

    2012-06-01

    To quantify the needle tip detection errors in ultrasound images due to bevel-tip orientation in relation to the location on template grid. Transrectal ultrasound (TRUS) system (BK Medical) with physical template grid and 18-gauge bevel-tip (20-deg beveled angle) brachytherapy needle (Bard Medical, Covington, GA) were used. The TRUS was set at 6.5MHz in water phantom at 40°C and measurements were taken with 50% and 100% TRUS gains. Needles were oriented with bevel-tip facing up (0-degree) and inserted through template grid-holes. Reference needle depths were measured when needle tip image intensity was bright enough for potentially consistent readings. High-resolution digital vernier caliper was used to measure needle depth. Needle bevel-tip orientation was then changed to bevel down (by rotating 180-degree) and needle depth was adjusted by retracting so that the needle-tip image intensity appeared similar to when the needle bevel-tip was at 0-degree orientation. Clinically relevant locations were considered for needle placement on the template grids (1st row to 9th row, and 'a-f' columns). For 50% TRUS gain, bevel tip detection errors/differences were 0.69±0.30mm (1st row) to 3.23±0.22mm (9th row) and 0.78±0.71mm (1st row) to 4.14±0.56mm (9th row) in columns 'a' and 'D', respectively. The corresponding errors for 100% TRUS gain were 0.57±0.25mm to 5.24±0.36mm and 0.84±0.30mm to 4.2±0.20mm in columns 'a' and 'D', respectively. These errors/differences varied linearly for grid-hole locations on the rows and columns in between, smaller to large depending on distance from the TRUS probe. Observed no effect of gains (50% vs. 100%) along 'D' column, which was directly above the TRUS probe. Experiment results revealed that the beveled needle tip orientation could significantly impact the detection accuracy of the needle tips, based on which the seeds might be delivered. These errors may lead to considerable dosimetric deviations in prostate brachytherapy seed implantation. © 2012 American Association of Physicists in Medicine.

  13. Rupture Dynamics Simulation for Non-Planar fault by a Curved Grid Finite Difference Method

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zhu, G.; Chen, X.

    2011-12-01

    We first implement the non-staggered finite difference method to solve the dynamic rupture problem, with split-node, for non-planar fault. Split-node method for dynamic simulation has been used widely, because of that it's more precise to represent the fault plane than other methods, for example, thick fault, stress glut and so on. The finite difference method is also a popular numeric method to solve kinematic and dynamic problem in seismology. However, previous works focus most of theirs eyes on the staggered-grid method, because of its simplicity and computational efficiency. However this method has its own disadvantage comparing to non-staggered finite difference method at some fact for example describing the boundary condition, especially the irregular boundary, or non-planar fault. Zhang and Chen (2006) proposed the MacCormack high order non-staggered finite difference method based on curved grids to precisely solve irregular boundary problem. Based upon on this non-staggered grid method, we make success of simulating the spontaneous rupture problem. The fault plane is a kind of boundary condition, which could be irregular of course. So it's convinced that we could simulate rupture process in the case of any kind of bending fault plane. We will prove this method is valid in the case of Cartesian coordinate first. In the case of bending fault, the curvilinear grids will be used.

  14. Recent Developments in Grid Generation and Force Integration Technology for Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; VanDalsem, William R. (Technical Monitor)

    1994-01-01

    Recent developments in algorithms and software tools for generating overset grids for complex configurations are described. These include the overset surface grid generation code SURGRD and version 2.0 of the hyperbolic volume grid generation code HYPGEN. The SURGRD code is in beta test mode where the new features include the capability to march over a collection of panel networks, a variety of ways to control the side boundaries and the marching step sizes and distance, a more robust projection scheme and an interpolation option. New features in version 2.0 of HYPGEN include a wider range of boundary condition types. The code also allows the user to specify different marching step sizes and distance for each point on the surface grid. A scheme that takes into account of the overlapped zones on the body surface for the purpose of forces and moments computation is also briefly described, The process involves the following two software modules: MIXSUR - a composite grid generation module to produce a collection of quadrilaterals and triangles on which pressure and viscous stresses are to be integrated, and OVERINT - a forces and moments integration module.

  15. Improved fault ride through capability of DFIG based wind turbines using synchronous reference frame control based dynamic voltage restorer.

    PubMed

    Rini Ann Jerin, A; Kaliannan, Palanisamy; Subramaniam, Umashankar

    2017-09-01

    Fault ride through (FRT) capability in wind turbines to maintain the grid stability during faults has become mandatory with the increasing grid penetration of wind energy. Doubly fed induction generator based wind turbine (DFIG-WT) is the most popularly utilized type of generator but highly susceptible to the voltage disturbances in grid. Dynamic voltage restorer (DVR) based external FRT capability improvement is considered. Since DVR is capable of providing fast voltage sag mitigation during faults and can maintain the nominal operating conditions for DFIG-WT. The effectiveness of the DVR using Synchronous reference frame (SRF) control is investigated for FRT capability in DFIG-WT during both balanced and unbalanced fault conditions. The operation of DVR is confirmed using time-domain simulation in MATLAB/Simulink using 1.5MW DFIG-WT. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  16. A procedure for automating CFD simulations of an inlet-bleed problem

    NASA Technical Reports Server (NTRS)

    Chyu, Wei J.; Rimlinger, Mark J.; Shih, Tom I.-P.

    1995-01-01

    A procedure was developed to improve the turn-around time for computational fluid dynamics (CFD) simulations of an inlet-bleed problem involving oblique shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through one or more circular holes. This procedure is embodied in a preprocessor called AUTOMAT. With AUTOMAT, once data for the geometry and flow conditions have been specified (either interactively or via a namelist), it will automatically generate all input files needed to perform a three-dimensional Navier-Stokes simulation of the prescribed inlet-bleed problem by using the PEGASUS and OVERFLOW codes. The input files automatically generated by AUTOMAT include those for the grid system and those for the initial and boundary conditions. The grid systems automatically generated by AUTOMAT are multi-block structured grids of the overlapping type. Results obtained by using AUTOMAT are presented to illustrate its capability.

  17. Aspects of detection and tracking of ground targets from an airborne EO/IR sensor

    NASA Astrophysics Data System (ADS)

    Balaji, Bhashyam; Sithiravel, Rajiv; Daya, Zahir; Kirubarajan, Thiagalingam

    2015-05-01

    An airborne EO/IR (electro-optical/infrared) camera system comprises of a suite of sensors, such as a narrow and wide field of view (FOV) EO and mid-wave IR sensors. EO/IR camera systems are regularly employed on military and search and rescue aircrafts. The EO/IR system can be used to detect and identify objects rapidly in daylight and at night, often with superior performance in challenging conditions such as fog. There exist several algorithms for detecting potential targets in the bearing elevation grid. The nonlinear filtering problem is one of estimation of the kinematic parameters from bearing and elevation measurements from a moving platform. In this paper, we developed a complete model for the state of a target as detected by an airborne EO/IR system and simulated a typical scenario with single target with 1 or 2 airborne sensors. We have demonstrated the ability to track the target with `high precision' and noted the improvement from using two sensors on a single platform or on separate platforms. The performance of the Extended Kalman filter (EKF) is investigated on simulated data. Image/video data collected from an IR sensor on an airborne platform are processed using an image tracking by detection algorithm.

  18. Sample Introduction Using the Hildebrand Grid Nebulizer for Plasma Spectrometry

    DTIC Science & Technology

    1988-01-01

    linear dynamic ranges, precision, and peak width were de- termined for elements in methanol and acetonitrile solutions. , (1)> The grid nebulizer was...FIA) with ICP-OES detection were evaluated. Detec- tion limits, linear dynamic ranges, precision, and peak width were de- termined for elements in...Concentration vs. Log Peak Area for Mn, 59 Cd, Zn, Au, Ni in Methanol (CMSC) 3-28 Log Concentration vs. Log Peak Area for Mn, 60 Cd, Au, Ni in

  19. The Challenges of Defense Support of Civil Authorities and Homeland Defense in the Cyber Domain

    DTIC Science & Technology

    2013-05-20

    Information Grid ( GIG ) against a cyber attack has taken the forefront in national level discussions. The U.S. homeland’s assumed sanctuary against...other U.S. government agencies and key operators within the private sector to detect, deter, prevent, and thwart exploitation of CIKR and the GIG ...CIKR) and the Global Information Grid ( GIG ) against a cyber attack has taken the forefront in national level discussions. The U.S. homeland’s

  20. Data Fusion Analysis for Range Test Validation System

    DTIC Science & Technology

    2010-07-14

    simulants were released during the RTVS ’08 test series: triethyl phosphate (TEP), methyl salicylate (MeS), and acetic acid (AA). A total of 29 release...the combination of a grid of point sensors at ground level and a standoff FTIR system monitoring above ground areas proved effective in detecting the...presence of simulants over the test grid. A Dempster-Shafer approach for data fusion was selected as the most effective strategy for RTVS data fusion

  1. Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction

    NASA Astrophysics Data System (ADS)

    Woodrow, Kathryn; Lindsay, John B.; Berg, Aaron A.

    2016-09-01

    Although digital elevation models (DEMs) prove useful for a number of hydrological applications, they are often the end result of numerous processing steps that each contains uncertainty. These uncertainties have the potential to greatly influence DEM quality and to further propagate to DEM-derived attributes including derived surface and near-surface drainage patterns. This research examines the impacts of DEM grid resolution, elevation source data, and conditioning techniques on the spatial and statistical distribution of field-scale hydrological attributes for a 12,000 ha watershed of an agricultural area within southwestern Ontario, Canada. Three conditioning techniques, including depression filling (DF), depression breaching (DB), and stream burning (SB), were examined. The catchments draining to each boundary of 7933 agricultural fields were delineated using the surface drainage patterns modeled from LiDAR data, interpolated to a 1 m, 5 m, and 10 m resolution DEMs, and from a 10 m resolution photogrammetric DEM. The results showed that variation in DEM grid resolution resulted in significant differences in the spatial and statistical distributions of contributing areas and the distributions of downslope flowpath length. Degrading the grid resolution of the LiDAR data from 1 m to 10 m resulted in a disagreement in mapped contributing areas of between 29.4% and 37.3% of the study area, depending on the DEM conditioning technique. The disagreements among the field-scale contributing areas mapped from the 10 m LiDAR DEM and photogrammetric DEM were large, with nearly half of the study area draining to alternate field boundaries. Differences in derived contributing areas and flowpaths among various conditioning techniques increased substantially at finer grid resolutions, with the largest disagreement among mapped contributing areas occurring between the 1 m resolution DB DEM and the SB DEM (37% disagreement) and the DB-DF comparison (36.5% disagreement in mapped areas). These results demonstrate that the decision to use one DEM conditioning technique over another, and the constraints of available DEM data resolution and source, can greatly impact the modeled surface drainage patterns at the scale of individual fields. This work has significance for applications that attempt to optimize best-management practices (BMPs) for reducing soil erosion and runoff contamination within agricultural watersheds.

  2. Making MUSIC: A multiple sampling ionization chamber

    NASA Astrophysics Data System (ADS)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  3. Characterization of electrical appliances in transient state

    NASA Astrophysics Data System (ADS)

    Wójcik, Augustyn; Winiecki, Wiesław

    2017-08-01

    The article contains the study about electrical appliance characterization on the basis of power grid signals. To represent devices, parameters of current and voltage signals recorded during transient states are used. In this paper only transients occurring as a result of switching on devices are considered. The way of data acquisition performed in specialized measurement setup developed for electricity load monitoring is described. The paper presents the method of transients detection and the method of appliance parameters calculation. Using the set of acquired measurement data and appropriate software the set of parameters for several household appliances operating in different operating conditions was processed. Usefulness of appliances characterization in Non-Intrusive Appliance Load Monitoring System (NIALMS) with the use of proposed method is discussed focusing on obtained results.

  4. A pseudospectral Legendre method for hyperbolic equations with an improved stability condition

    NASA Technical Reports Server (NTRS)

    Tal-Ezer, Hillel

    1986-01-01

    A new pseudospectral method is introduced for solving hyperbolic partial differential equations. This method uses different grid points than previously used pseudospectral methods: in fact the grid points are related to the zeroes of the Legendre polynomials. The main advantage of this method is that the allowable time step is proportional to the inverse of the number of grid points 1/N rather than to 1/n(2) (as in the case of other pseudospectral methods applied to mixed initial boundary value problems). A highly accurate time discretization suitable for these spectral methods is discussed.

  5. A pseudospectral Legendre method for hyperbolic equations with an improved stability condition

    NASA Technical Reports Server (NTRS)

    Tal-Ezer, H.

    1984-01-01

    A new pseudospectral method is introduced for solving hyperbolic partial differential equations. This method uses different grid points than previously used pseudospectral methods: in fact the grid are related to the zeroes of the Legendre polynomials. The main advantage of this method is that the allowable time step is proportional to the inverse of the number of grid points 1/N rather than to 1/n(2) (as in the case of other pseudospectral methods applied to mixed initial boundary value problems). A highly accurate time discretization suitable for these spectral methods is discussed.

  6. Application of a Scalable, Parallel, Unstructured-Grid-Based Navier-Stokes Solver

    NASA Technical Reports Server (NTRS)

    Parikh, Paresh

    2001-01-01

    A parallel version of an unstructured-grid based Navier-Stokes solver, USM3Dns, previously developed for efficient operation on a variety of parallel computers, has been enhanced to incorporate upgrades made to the serial version. The resultant parallel code has been extensively tested on a variety of problems of aerospace interest and on two sets of parallel computers to understand and document its characteristics. An innovative grid renumbering construct and use of non-blocking communication are shown to produce superlinear computing performance. Preliminary results from parallelization of a recently introduced "porous surface" boundary condition are also presented.

  7. Unstructured Euler flow solutions using hexahedral cell refinement

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.

    1991-01-01

    An attempt is made to extend grid refinement into three dimensions by using unstructured hexahedral grids. The flow solver is developed using the TIGER (topologically Independent Grid, Euler Refinement) as the starting point. The program uses an unstructured hexahedral mesh and a modified version of the Jameson four-stage, finite-volume Runge-Kutta algorithm for integration of the Euler equations. The unstructured mesh allows for local refinement appropriate for each freestream condition, thereby concentrating mesh cells in the regions of greatest interest. This increases the computational efficiency because the refinement is not required to extend throughout the entire flow field.

  8. Quasi-optical grids with thin rectangular patch/aperture elements

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao

    1993-01-01

    Theoretical analysis is presented for an efficient and accurate performance evaluation of quasi-optical grids comprised of thin rectangular patch/aperture elements with/without a dielectric substrate/superstrate. The convergence rate of this efficient technique is improved by an order of magnitude with the approximate edge conditions incorporated in the basis functions of the integral equation solution. Also presented are the interesting applications of this efficient analytical technique to the design and performance evaluation of the coupling grids and beam splitters in the optical systems as well as thermal protection sunshields used in the communication systems of satellites and spacecrafts.

  9. A design approach for improving the performance of single-grid planar retarding potential analyzers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, R. L.; Earle, G. D.

    2011-01-15

    Planar retarding potential analyzers (RPAs) have a long flight history and have been included on numerous spaceflight missions including Dynamics Explorer, the Defense Meteorological Satellite Program, and the Communications/Navigation Outage Forecast System. RPAs allow for simultaneous measurement of plasma composition, density, temperature, and the component of the velocity vector normal to the aperture plane. Internal conductive grids are used to approximate ideal potential planes within the instrument, but these grids introduce perturbations to the potential map inside the RPA and cause errors in the measurement of the parameters listed above. A numerical technique is presented herein for minimizing these gridmore » errors for a specific mission by varying the depth and spacing of the grid wires. The example mission selected concentrates on plasma dynamics near the sunset terminator in the equatorial region. The international reference ionosphere model is used to discern the average conditions expected for this mission, and a numerical model of the grid-particle interaction is used to choose a grid design that will best fulfill the mission goals.« less

  10. New Boundary Constraints for Elliptic Systems used in Grid Generation Problems

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    This paper discusses new boundary constraints for elliptic partial differential equations as used in grid generation problems in generalized curvilinear coordinate systems. These constraints, based on the principle of local conservation of thermal energy in the vicinity of the boundaries, are derived using the Green's Theorem. They uniquely determine the so called decay parameters in the source terms of these elliptic systems. These constraints' are designed for boundary clustered grids where large gradients in physical quantities need to be resolved adequately. It is observed that the present formulation also works satisfactorily for mild clustering. Therefore, a closure for the decay parameter specification for elliptic grid generation problems has been provided resulting in a fully automated elliptic grid generation technique. Thus, there is no need for a parametric study of these decay parameters since the new constraints fix them uniquely. It is also shown that for Neumann type boundary conditions, these boundary constraints uniquely determine the solution to the internal elliptic problem thus eliminating the non-uniqueness of the solution of an internal Neumann boundary value grid generation problem.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unneberg, L.

    The main features of the 16 core grids (top guides) designed by ABB ATOM AB are briefly described and the evolution of the design is discussed. One important characteristic of the first nine grids is the existence of bolts securing guide bars to the core grid plates. These bolts are made of precipitation hardened or solution annealed stainless steel. During operation, bolts in all none grids have cracked. The failure analyses indicate that intergranular stress corrosion cracking (IGSCC), possibly accelerated by crevice conditions and/or irradiation, was the cause of failure. Fast neutron fluences approaching or exceeding the levels considered asmore » critical for irradiation assisted stress corrosion cracking (IASCC) will be reached in a few cases only. Temporary measures were taken immediately after the discovery of the cracking. For five of the nine reactors affected, it was decided to replace the complete grids. Two of these replacements have been successfully carried out to date. IASCC as a potential future problem is discussed and it is pointed out that, during their life times, the ABB ATOM core grids will be exposed to sufficiently high fast neutron fluences to cause some concern.« less

  12. Distributed condition monitoring techniques of optical fiber composite power cable in smart grid

    NASA Astrophysics Data System (ADS)

    Sun, Zhihui; Liu, Yuan; Wang, Chang; Liu, Tongyu

    2011-11-01

    Optical fiber composite power cable such as optical phase conductor (OPPC) is significant for the development of smart grid. This paper discusses the distributed cable condition monitoring techniques of the OPPC, which adopts embedded single-mode fiber as the sensing medium. By applying optical time domain reflection and laser Raman scattering, high-resolution spatial positioning and high-precision distributed temperature measurement is executed. And the OPPC cable condition parameters including temperature and its location, current carrying capacity, and location of fracture and loss can be monitored online. OPPC cable distributed condition monitoring experimental system is set up, and the main parts including pulsed fiber laser, weak Raman signal reception, high speed acquisition and cumulative average processing, temperature demodulation and current carrying capacity analysis are introduced. The distributed cable condition monitoring techniques of the OPPC is significant for power transmission management and security.

  13. A general multiblock Euler code for propulsion integration. Volume 1: Theory document

    NASA Technical Reports Server (NTRS)

    Chen, H. C.; Su, T. Y.; Kao, T. J.

    1991-01-01

    A general multiblock Euler solver was developed for the analysis of flow fields over geometrically complex configurations either in free air or in a wind tunnel. In this approach, the external space around a complex configuration was divided into a number of topologically simple blocks, so that surface-fitted grids and an efficient flow solution algorithm could be easily applied in each block. The computational grid in each block is generated using a combination of algebraic and elliptic methods. A grid generation/flow solver interface program was developed to facilitate the establishment of block-to-block relations and the boundary conditions for each block. The flow solver utilizes a finite volume formulation and an explicit time stepping scheme to solve the Euler equations. A multiblock version of the multigrid method was developed to accelerate the convergence of the calculations. The generality of the method was demonstrated through the analysis of two complex configurations at various flow conditions. Results were compared to available test data. Two accompanying volumes, user manuals for the preparation of multi-block grids (vol. 2) and for the Euler flow solver (vol. 3), provide information on input data format and program execution.

  14. The island dynamics model on parallel quadtree grids

    NASA Astrophysics Data System (ADS)

    Mistani, Pouria; Guittet, Arthur; Bochkov, Daniil; Schneider, Joshua; Margetis, Dionisios; Ratsch, Christian; Gibou, Frederic

    2018-05-01

    We introduce an approach for simulating epitaxial growth by use of an island dynamics model on a forest of quadtree grids, and in a parallel environment. To this end, we use a parallel framework introduced in the context of the level-set method. This framework utilizes: discretizations that achieve a second-order accurate level-set method on non-graded adaptive Cartesian grids for solving the associated free boundary value problem for surface diffusion; and an established library for the partitioning of the grid. We consider the cases with: irreversible aggregation, which amounts to applying Dirichlet boundary conditions at the island boundary; and an asymmetric (Ehrlich-Schwoebel) energy barrier for attachment/detachment of atoms at the island boundary, which entails the use of a Robin boundary condition. We provide the scaling analyses performed on the Stampede supercomputer and numerical examples that illustrate the capability of our methodology to efficiently simulate different aspects of epitaxial growth. The combination of adaptivity and parallelism in our approach enables simulations that are several orders of magnitude faster than those reported in the recent literature and, thus, provides a viable framework for the systematic study of mound formation on crystal surfaces.

  15. Comparison of Cartesian grid configurations for application of the finite-difference time-domain method to electromagnetic scattering by dielectric particles.

    PubMed

    Yang, Ping; Kattawar, George W; Liou, Kuo-Nan; Lu, Jun Q

    2004-08-10

    Two grid configurations can be employed to implement the finite-difference time-domain (FDTD) technique in a Cartesian system. One configuration defines the electric and magnetic field components at the cell edges and cell-face centers, respectively, whereas the other reverses these definitions. These two grid configurations differ in terms of implication on the electromagnetic boundary conditions if the scatterer in the FDTD computation is a dielectric particle. The permittivity has an abrupt transition at the cell interface if the dielectric properties of two adjacent cells are not identical. Similarly, the discontinuity of permittivity is also observed at the edges of neighboring cells that are different in terms of their dielectric constants. We present two FDTD schemes for light scattering by dielectric particles to overcome the above-mentioned discontinuity on the basis of the electromagnetic boundary conditions for the two Cartesian grid configurations. We also present an empirical approach to accelerate the convergence of the discrete Fourier transform to obtain the field values in the frequency domain. As a new application of the FDTD method, we investigate the scattering properties of multibranched bullet-rosette ice crystals at both visible and thermal infrared wavelengths.

  16. Optimal Design of Grid-Stiffened Composite Panels Using Global and Local Buckling Analysis

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Knight, Norman F., Jr.

    1996-01-01

    A design strategy for optimal design of composite grid-stiffened panels subjected to global and local buckling constraints is developed using a discrete optimizer. An improved smeared stiffener theory is used for the global buckling analysis. Local buckling of skin segments is assessed using a Rayleigh-Ritz method that accounts for material anisotropy and transverse shear flexibility. The local buckling of stiffener segments is also assessed. Design variables are the axial and transverse stiffener spacing, stiffener height and thickness, skin laminate, and stiffening configuration. The design optimization process is adapted to identify the lightest-weight stiffening configuration and pattern for grid stiffened composite panels given the overall panel dimensions, design in-plane loads, material properties, and boundary conditions of the grid-stiffened panel.

  17. The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taft, Jeffrey D.; Becker-Dippmann, Angela S.

    2015-08-01

    This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system formore » purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.« less

  18. An approach to the parametric design of ion thrusters

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.; Beattie, John R.; Hyman, Jay, Jr.

    1988-01-01

    A methodology that can be used to determine which of several physical constraints can limit ion thruster power and thrust, under various design and operating conditions, is presented. The methodology is exercised to demonstrate typical limitations imposed by grid system span-to-gap ratio, intragrid electric field, discharge chamber power per unit beam area, screen grid lifetime, and accelerator grid lifetime constraints. Limitations on power and thrust for a thruster defined by typical discharge chamber and grid system parameters when it is operated at maximum thrust-to-power are discussed. It is pointed out that other operational objectives such as optimization of payload fraction or mission duration can be substituted for the thrust-to-power objective and that the methodology can be used as a tool for mission analysis.

  19. Long overlooked historical information on Agent Orange and TCDD following massive applications of 2,4,5-T-containing herbicides, Eglin Air Force Base, Florida.

    PubMed

    Young, Alvin L; Newton, Michael

    2004-01-01

    From 1961-1971, The Air Development Test Center, Eglin Air Force Base (AFB), Florida, developed, tested, and calibrated the aerial spray systems used in support of Operation RANCH HAND and the US Army Chemical Corps in Vietnam. Twenty major test and evaluation projects of aerial spray equipment were conducted on four fully instrumented test grids, each uniquely arrayed to match the needs of fixed-wing, helicopter, or jet aircraft. Each of the grids was established within the boundary of Test Area 52A of the Eglin Reservation. The tests, conducted under climatic and environmental conditions similar to those in Vietnam, included the use of the military herbicides (Agents) Orange, Purple, White, and Blue. Approximately 75,000 kg of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 76,000 kg of 2,4-dichlorophenoxyacetic acid (2,4-D) were aerially disseminated on an area of less than 3 km2 during the period 1962-1970. Data from the analysis of archived samples suggested that an estimated 3.1 kg of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), present as a contaminant, were aerially released in the test area. Because most of the vegetation had been removed before establishing the test site in 1961, there was an opportunity to follow ground-based residues independent of canopy interception, and the resulting high solar exposure of initial residues. Studies of the soils, fauna, flora, and aquatic ecosystems of the test grids and associated perimeters of Test Area C-52A (an area totally more than 8 km2) were initiated in 1969 and concluded in 1984. Data from soil samples collected from 1974 through 1984 suggested that less than one percent of the TCDD that was present in soil when sampling began persisted through the ten-year period of sampling. More than 340 species of organisms were observed and identified within the test area. More than 300 biological samples were analyzed for TCDD and detectable residues were found in 16 of 45 species examined. Examination of the ecological niches of the species containing TCDD residues suggested each was in close contact with contaminated soil. Indepth field studies, including anatomical, histological and ultrastructural examinations, spanning more than 50 generations of the Beachmouse, Peromyscus polionotus, demonstrated that continual exposure to soil concentrations of 0.1 to 1.5 parts-per-billion (ng/g) of TCDD, had minimal effects upon the health and reproduction of this species. Since Agent Orange with its associated TCDD contaminant was aerially disseminated on the test grids, Test Area C-52A provided a 'field laboratory' for what may have happened in Vietnam, had there been no intercepting forest cover. However, in Vietnam a 'typical' mission would have disseminated 14.8 kg of 2,4,5-T/ha, most of which was intercepted by the forest canopy, versus the 876 kg 2,4,5-T/ha on the test grid at Eglin. Moreover, each hectare on the Eglin test grid received at least 1,300 times more TCDD than a hectare sprayed with Agent Orange in Vietnam. The disappearance or persistence of TCDD is dependent upon how it enters the ecosystem. Spray equipment test and evaluations missions at Eglin were generally scheduled and conducted with environmental conditions that were optimal for spray operations. This suggests that conditions favorable for dissemination of herbicide were the same conditions favorable for photodegradation of TCDD. It was likely that 99 percent of the TCDD never persisted beyond the day of application. No long-term adverse ecological effects were documented in these studies despite the massive quantities of herbicides and TCDD that were applied to the site. Reviews by the US Environmental Protection Agency and the National Academy of Sciences' Institute of Medicine did not address the fate of Agent Orange and TCDD as described in these studies from Eglin AFB, Florida.

  20. Metrics for Assessment of Smart Grid Data Integrity Attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annarita Giani; Miles McQueen; Russell Bent

    2012-07-01

    There is an emerging consensus that the nation’s electricity grid is vulnerable to cyber attacks. This vulnerability arises from the increasing reliance on using remote measurements, transmitting them over legacy data networks to system operators who make critical decisions based on available data. Data integrity attacks are a class of cyber attacks that involve a compromise of information that is processed by the grid operator. This information can include meter readings of injected power at remote generators, power flows on transmission lines, and relay states. These data integrity attacks have consequences only when the system operator responds to compromised datamore » by redispatching generation under normal or contingency protocols. These consequences include (a) financial losses from sub-optimal economic dispatch to service loads, (b) robustness/resiliency losses from placing the grid at operating points that are at greater risk from contingencies, and (c) systemic losses resulting from cascading failures induced by poor operational choices. This paper is focused on understanding the connections between grid operational procedures and cyber attacks. We first offer two examples to illustrate how data integrity attacks can cause economic and physical damage by misleading operators into taking inappropriate decisions. We then focus on unobservable data integrity attacks involving power meter data. These are coordinated attacks where the compromised data are consistent with the physics of power flow, and are therefore passed by any bad data detection algorithm. We develop metrics to assess the economic impact of these attacks under re-dispatch decisions using optimal power flow methods. These metrics can be use to prioritize the adoption of appropriate countermeasures including PMU placement, encryption, hardware upgrades, and advance attack detection algorithms.« less

  1. Evaluation of Grid Modification Methods for On- and Off-Track Sonic Boom Analysis

    NASA Technical Reports Server (NTRS)

    Nayani, Sudheer N.; Campbell, Richard L.

    2013-01-01

    Grid modification methods have been under development at NASA to enable better predictions of low boom pressure signatures from supersonic aircraft. As part of this effort, two new codes, Stretched and Sheared Grid - Modified (SSG) and Boom Grid (BG), have been developed in the past year. The CFD results from these codes have been compared with ones from the earlier grid modification codes Stretched and Sheared Grid (SSGRID) and Mach Cone Aligned Prism (MCAP) and also with the available experimental results. NASA's unstructured grid suite of software TetrUSS and the automatic sourcing code AUTOSRC were used for base grid generation and flow solutions. The BG method has been evaluated on three wind tunnel models. Pressure signatures have been obtained up to two body lengths below a Gulfstream aircraft wind tunnel model. Good agreement with the wind tunnel results have been obtained for both on-track and off-track (up to 53 degrees) cases. On-track pressure signatures up to ten body lengths below a Straight Line Segmented Leading Edge (SLSLE) wind tunnel model have been extracted. Good agreement with the wind tunnel results have been obtained. Pressure signatures have been obtained at 1.5 body lengths below a Lockheed Martin aircraft wind tunnel model. Good agreement with the wind tunnel results have been obtained for both on-track and off-track (up to 40 degrees) cases. Grid sensitivity studies have been carried out to investigate any grid size related issues. Methods have been evaluated for fully turbulent, mixed laminar/turbulent and fully laminar flow conditions.

  2. A Cosmic Dust Sensor Based on an Array of Grid Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Bugiel, S.; Strack, H.; Srama, R.

    2014-04-01

    We described a low mass and high sensitivity cosmic dust trajectory sensor using a array of grid segments[1]. the sensor determines the particle velocity vector and the particle mass. An impact target is used for the detection of the impact plasma of high speed particles like interplanetary dust grains or high speed ejecta. Slower particles are measured by three planes of grid electrodes using charge induction. In contrast to conventional Dust Trajectory Sensor based on wire electrodes, grid electrodes a robust and sensitive design with a trajectory resolution of a few degree. Coulomb simulation and laboratory tests were performed in order to verify the instrument design. The signal shapes are used to derive the particle plane intersection points and to derive the exact particle trajectory. The accuracy of the instrument for the incident angle depends on the particle charge, the position of the intersection point and the signal-to-noise of the charge sensitive amplifier (CSA). There are some advantages of this grid-electrodes based design with respect to conventional trajectory sensor using individual wire electrodes: the grid segment electrodes show higher amplitudes (close to 100%induced charge) and the overall number of measurement channels can be reduced. This allows a compact instrument with low power and mass requirements.

  3. Secure smart grid communications and information integration based on digital watermarking in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Yan, Xin; Zhang, Ling; Wu, Yang; Luo, Youlong; Zhang, Xiaoxing

    2017-02-01

    As more and more wireless sensor nodes and networks are employed to acquire and transmit the state information of power equipment in smart grid, we are in urgent need of some viable security solutions to ensure secure smart grid communications. Conventional information security solutions, such as encryption/decryption, digital signature and so forth, are not applicable to wireless sensor networks in smart grid any longer, where bulk messages need to be exchanged continuously. The reason is that these cryptographic solutions will account for a large portion of the extremely limited resources on sensor nodes. In this article, a security solution based on digital watermarking is adopted to achieve the secure communications for wireless sensor networks in smart grid by data and entity authentications at a low cost of operation. Our solution consists of a secure framework of digital watermarking, and two digital watermarking algorithms based on alternating electric current and time window, respectively. Both watermarking algorithms are composed of watermark generation, embedding and detection. The simulation experiments are provided to verify the correctness and practicability of our watermarking algorithms. Additionally, a new cloud-based architecture for the information integration of smart grid is proposed on the basis of our security solutions.

  4. Filter method without boundary-value condition for simultaneous calculation of eigenfunction and eigenvalue of a stationary Schrödinger equation on a grid.

    PubMed

    Nurhuda, M; Rouf, A

    2017-09-01

    The paper presents a method for simultaneous computation of eigenfunction and eigenvalue of the stationary Schrödinger equation on a grid, without imposing boundary-value condition. The method is based on the filter operator, which selects the eigenfunction from wave packet at the rate comparable to δ function. The efficacy and reliability of the method are demonstrated by comparing the simulation results with analytical or numerical solutions obtained by using other methods for various boundary-value conditions. It is found that the method is robust, accurate, and reliable. Further prospect of filter method for simulation of the Schrödinger equation in higher-dimensional space will also be highlighted.

  5. The Amsterdam quintuplet nuclear microprobe

    NASA Astrophysics Data System (ADS)

    van den Putte, M. J. J.; van den Brand, J. F. J.; Jamieson, D. N.; Rout, B.; Szymanski, R.

    2003-09-01

    A new nuclear microprobe comprising of a quintuplet lens system is being constructed at the Ion Beam Facility of the "Vrije Universiteit" Amsterdam in collaboration with the Microanalytical Research Centre of the University of Melbourne. An overview of the Amsterdam set-up will be presented. Detailed characterisation of the individual lenses was performed with the grid shadow method using a 2000 mesh Cu grid mounted at a relative angle of 0.5° to the vertical lens line focus. The lenses were found to have very low parasitic aberrations equal or below the minimum detectable limit for the method, which was approximately 0.1% for the sextupole component and 0.2% for the octupole component. We present experimental and theoretical grid shadow patterns, showing results for all five lenses.

  6. Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services

    NASA Astrophysics Data System (ADS)

    Wang, Dai; Coignard, Jonathan; Zeng, Teng; Zhang, Cong; Saxena, Samveg

    2016-11-01

    The risk of accelerated electric vehicle battery degradation is commonly cited as a concern inhibiting the implementation of vehicle-to-grid (V2G) technology. However, little quantitative evidence exists in prior literature to refute or substantiate these concerns for different grid services that vehicles may offer. In this paper, a methodology is proposed to quantify electric vehicle (EV) battery degradation from driving only vs. driving and several vehicle-grid services, based on a semi-empirical lithium-ion battery capacity fade model. A detailed EV battery pack thermal model and EV powertrain model are utilized to capture the time-varying battery temperature and working parameters including current, internal resistance and state-of-charge (SOC), while an EV is driving and offering various grid services. We use the proposed method to simulate the battery degradation impacts from multiple vehicle-grid services including peak load shaving, frequency regulation and net load shaping. The degradation impact of these grid services is compared against baseline cases for driving and uncontrolled charging only, for several different cases of vehicle itineraries, driving distances, and climate conditions. Over the lifetime of a vehicle, our results show that battery wear is indeed increased when vehicles offer V2G grid services. However, the increased wear from V2G is inconsequential compared with naturally occurring battery wear (i.e. from driving and calendar ageing) when V2G services are offered only on days of the greatest grid need (20 days/year in our study). In the case of frequency regulation and peak load shaving V2G grid services offered 2 hours each day, battery wear remains minimal even if this grid service is offered every day over the vehicle lifetime. Our results suggest that an attractive tradeoff exists where vehicles can offer grid services on the highest value days for the grid with minimal impact on vehicle battery life.

  7. Modeling the distribution of illicit oily discharges detected by aerial surveillance in western Canadian marine waters.

    PubMed

    Serra-Sogas, Norma; O'Hara, Patrick D; Canessa, Rosaline

    2014-10-15

    Oily discharges from vessel operations have been documented in Canada's Pacific region by the National Aerial Surveillance Program (NASP) since the early 1990s. We explored a number of regression methods to explain the distribution and counts per grid cell of oily discharges detected from 1998 to 2007 using independent predictor variables, while trying to address the large number of zeros present in the data. Best-fit models indicate that discharges are generally concentrated close to shore typically in association with small harbours, and with major commercial and tourist centers. Oily discharges were also concentrated in Barkley Sound and at the entrance of Juan de Fuca Strait. The identification of important factors associated with discharge patterns, and predicting discharge rates in areas with surveillance effort can be used to inform future surveillance. Model output can also be used as inputs for risk models for existing conditions and as baseline for future scenarios. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  8. On the uncertainties associated with using gridded rainfall data as a proxy for observed

    NASA Astrophysics Data System (ADS)

    Tozer, C. R.; Kiem, A. S.; Verdon-Kidd, D. C.

    2012-05-01

    Gridded rainfall datasets are used in many hydrological and climatological studies, in Australia and elsewhere, including for hydroclimatic forecasting, climate attribution studies and climate model performance assessments. The attraction of the spatial coverage provided by gridded data is clear, particularly in Australia where the spatial and temporal resolution of the rainfall gauge network is sparse. However, the question that must be asked is whether it is suitable to use gridded data as a proxy for observed point data, given that gridded data is inherently "smoothed" and may not necessarily capture the temporal and spatial variability of Australian rainfall which leads to hydroclimatic extremes (i.e. droughts, floods). This study investigates this question through a statistical analysis of three monthly gridded Australian rainfall datasets - the Bureau of Meteorology (BOM) dataset, the Australian Water Availability Project (AWAP) and the SILO dataset. The results of the monthly, seasonal and annual comparisons show that not only are the three gridded datasets different relative to each other, there are also marked differences between the gridded rainfall data and the rainfall observed at gauges within the corresponding grids - particularly for extremely wet or extremely dry conditions. Also important is that the differences observed appear to be non-systematic. To demonstrate the hydrological implications of using gridded data as a proxy for gauged data, a rainfall-runoff model is applied to one catchment in South Australia initially using gauged data as the source of rainfall input and then gridded rainfall data. The results indicate a markedly different runoff response associated with each of the different sources of rainfall data. It should be noted that this study does not seek to identify which gridded dataset is the "best" for Australia, as each gridded data source has its pros and cons, as does gauged data. Rather, the intention is to quantify differences between various gridded data sources and how they compare with gauged data so that these differences can be considered and accounted for in studies that utilise these gridded datasets. Ultimately, if key decisions are going to be based on the outputs of models that use gridded data, an estimate (or at least an understanding) of the uncertainties relating to the assumptions made in the development of gridded data and how that gridded data compares with reality should be made.

  9. Specificity and Transfer in Learning How to Follow Navigation Instructions

    NASA Technical Reports Server (NTRS)

    Healy, Alice F.; Schneider, Vivian L.; Barshi, Immanuel

    2012-01-01

    We report a series of experiments that use a navigation task in which instructions for navigating in a space displayed as grids on a computer screen are given to subjects who then attempt to follow them by mouse clicking on the grids. The navigation task was broken down into component dimensions (e.g., presentation mode of the instructions, length of the instructions, characteristics of the display, size of the grids, response type). For each task dimension, one condition was used at training and the same or another condition was used at test. Each task dimension was examined in terms of two measures. One measure provided an index of transfer (i.e., better performance at test than at training when test and training involved different conditions), and the other provided an index of specificity (i.e., better performance at test when training and test conditions were the same than when training and test conditions were different). By and large, these two indices were complementary, so there was evidence of either transfer or specificity but not both. For one dimension transfer but no specificity was evident, and for another dimension specificity but no transfer was evident. For the remaining dimensions, however, there was asymmetrical transfer, with transfer evident for some conditions and specificity evident for others. The findings are interpreted within the procedural reinstatement framework. They have practical implications concerning how to optimize training and how much fidelity to the testing situation is necessary when training.

  10. Early detection of glaucoma by means of a novel 3D computer‐automated visual field test

    PubMed Central

    Nazemi, Paul P; Fink, Wolfgang; Sadun, Alfredo A; Francis, Brian; Minckler, Donald

    2007-01-01

    Purpose A recently devised 3D computer‐automated threshold Amsler grid test was used to identify early and distinctive defects in people with suspected glaucoma. Further, the location, shape and depth of these field defects were characterised. Finally, the visual fields were compared with those obtained by standard automated perimetry. Patients and methods Glaucoma suspects were defined as those having elevated intraocular pressure (>21 mm Hg) or cup‐to‐disc ratio of >0.5. 33 patients and 66 eyes with risk factors for glaucoma were examined. 15 patients and 23 eyes with no risk factors were tested as controls. The recently developed 3D computer‐automated threshold Amsler grid test was used. The test exhibits a grid on a computer screen at a preselected greyscale and angular resolution, and allows patients to trace those areas on the grid that are missing in their visual field using a touch screen. The 5‐minute test required that the patients repeatedly outline scotomas on a touch screen with varied displays of contrast while maintaining their gaze on a central fixation marker. A 3D depiction of the visual field defects was then obtained that was further characterised by the location, shape and depth of the scotomas. The exam was repeated three times per eye. The results were compared to Humphrey visual field tests (ie, achromatic standard or SITA standard 30‐2 or 24‐2). Results In this pilot study 79% of the eyes tested in the glaucoma‐suspect group repeatedly demonstrated visual field loss with the 3D perimetry. The 3D depictions of visual field loss associated with these risk factors were all characteristic of or compatible with glaucoma. 71% of the eyes demonstrated arcuate defects or a nasal step. Constricted visual fields were shown in 29% of the eyes. No visual field changes were detected in the control group. Conclusions The 3D computer‐automated threshold Amsler grid test may demonstrate visual field abnormalities characteristic of glaucoma in glaucoma suspects with normal achromatic Humphrey visual field testing. This test may be used as a screening tool for the early detection of glaucoma. PMID:17504855

  11. Covariance analysis of the airborne laser ranging system

    NASA Technical Reports Server (NTRS)

    Englar, T. S., Jr.; Hammond, C. L.; Gibbs, B. P.

    1981-01-01

    The requirements and limitations of employing an airborne laser ranging system for detecting crustal shifts of the Earth within centimeters over a region of approximately 200 by 400 km are presented. The system consists of an aircraft which flies over a grid of ground deployed retroreflectors, making six passes over the grid at two different altitudes. The retroreflector baseline errors are assumed to result from measurement noise, a priori errors on the aircraft and retroreflector positions, tropospheric refraction, and sensor biases.

  12. Can fractal objects operate as efficient inline mixers?

    NASA Astrophysics Data System (ADS)

    Laizet, Sylvain; Vassilicos, John; Turbulence, Mixing; Flow Control Group Team

    2011-11-01

    Recently, Hurst & Vassilicos, PoF 2007, Seoud & Vassilicos, PoF 2007, Mazellier & Vassilicos, PoF, 2010 used different multiscale grids to generate turbulence in a wind tunnel and have shown that complex multiscale boundary/initial conditions can drastically influence the behaviour of a turbulent flow, but that the detailled specific nature of the multiscale geometry matters too. Multiscale (fractal) objects can be designed to be immersed in any fluid flow where there is a need to control and design the turbulence generated by the object. Different types of multiscale objects can be designed as different types of energy-efficient mixers with varying degrees of high turbulent intensities, small pressure drop and downstream distance from the grid where the turbulence is most vigorous. Here, we present a 3D DNS study of the stirring and mixing of a passive scalar by turbulence generated with either a fractal square grid or a regular grid in the presence of a mean scalar gradient. The results show that: (1) there is a linear increase for the passive scalar variance for both grids, (2) the passive scalar variance is ten times bigger for the fractal grid, (3) the passive scalar flux is constant after the production region for both grids, (4) the passive scalar flux is enhanced by an order of magnitude for the fractal grid. We acknowledge support from EPSRC, UK.

  13. Computation at a coordinate singularity

    NASA Astrophysics Data System (ADS)

    Prusa, Joseph M.

    2018-05-01

    Coordinate singularities are sometimes encountered in computational problems. An important example involves global atmospheric models used for climate and weather prediction. Classical spherical coordinates can be used to parameterize the manifold - that is, generate a grid for the computational spherical shell domain. This particular parameterization offers significant benefits such as orthogonality and exact representation of curvature and connection (Christoffel) coefficients. But it also exhibits two polar singularities and at or near these points typical continuity/integral constraints on dependent fields and their derivatives are generally inadequate and lead to poor model performance and erroneous results. Other parameterizations have been developed that eliminate polar singularities, but problems of weaker singularities and enhanced grid noise compared to spherical coordinates (away from the poles) persist. In this study reparameterization invariance of geometric objects (scalars, vectors and the forms generated by their covariant derivatives) is utilized to generate asymptotic forms for dependent fields of interest valid in the neighborhood of a pole. The central concept is that such objects cannot be altered by the metric structure of a parameterization. The new boundary conditions enforce symmetries that are required for transformations of geometric objects. They are implemented in an implicit polar filter of a structured grid, nonhydrostatic global atmospheric model that is simulating idealized Held-Suarez flows. A series of test simulations using different configurations of the asymptotic boundary conditions are made, along with control simulations that use the default model numerics with no absorber, at three different grid sizes. Typically the test simulations are ∼ 20% faster in wall clock time than the control-resulting from a decrease in noise at the poles in all cases. In the control simulations adverse numerical effects from the polar singularity are observed to increase with grid resolution. In contrast, test simulations demonstrate robust polar behavior independent of grid resolution.

  14. MODFLOW-2005, the U.S. Geological Survey modular ground-water model - documentation of shared node local grid refinement (LGR) and the boundary flow and head (BFH) package

    USGS Publications Warehouse

    Mehl, Steffen W.; Hill, Mary C.

    2006-01-01

    This report documents the addition of shared node Local Grid Refinement (LGR) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference ground-water flow model. LGR provides the capability to simulate ground-water flow using one block-shaped higher-resolution local grid (a child model) within a coarser-grid parent model. LGR accomplishes this by iteratively coupling two separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundary. LGR can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined ground-water systems. Traditional one-way coupled telescopic mesh refinement (TMR) methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled shared-node method of LGR provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR, evaluates LGR accuracy and performance for two- and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR.

  15. A model for the effect of submerged aquatic vegetation on turbulence induced by an oscillating grid

    NASA Astrophysics Data System (ADS)

    Pujol, Dolors; Colomer, Jordi; Serra, Teresa; Casamitjana, Xavier

    2012-12-01

    The aim of this study is to model, under controlled laboratory conditions, the effect of submerged aquatic vegetation (SAV) on turbulence generated in a water column by an oscillating grid turbulence (OGT). Velocity profiles have been measured by an acoustic Doppler velocimeter (MicroADV). Experimental conditions are analysed in two canopy models (rigid and semi-rigid), using nine plant-to-plant distances (ppd), three stem diameters (d), four types of natural SAV (Cladium mariscus, Potamogeton nodosus, Myriophyllum verticillatum and Ruppia maritima) and two oscillation grid frequencies (f). To quantify this response, we have developed a non-dimensional model, with a specific turbulent kinetic energy (TKE), f, stroke (s), d, ppd, distance from the virtual origin to the measurement (zm) and space between grid bars (M). The experimental data show that, at zm/zc < 1 the turbulent kinetic energy decays with zm, according to the well-known power law, zm-2, and does not depend on the vegetation characteristics. In contrast, at zm/zc > 1, TKE decreases faster with zm and scales to the model variables according to TKE/(f·s)∝(·(. Therefore, at zm/zc > 1 the TKE is affected by the geometric characteristics of the plants (both diameter and plant-to-plant distance), an effect called sheltering. Results from semi-rigid canopies and natural SAV are found to scale with the non-dimensional model proposed for rigid canopies. We also discuss the practical implications for field conditions (wind and natural SAV).

  16. Ground Boundary Conditions for Thermal Convection Over Horizontal Surfaces at High Rayleigh Numbers

    NASA Astrophysics Data System (ADS)

    Hanjalić, K.; Hrebtov, M.

    2016-07-01

    We present "wall functions" for treating the ground boundary conditions in the computation of thermal convection over horizontal surfaces at high Rayleigh numbers using coarse numerical grids. The functions are formulated for an algebraic-flux model closed by transport equations for the turbulence kinetic energy, its dissipation rate and scalar variance, but could also be applied to other turbulence models. The three-equation algebraic-flux model, solved in a T-RANS mode ("Transient" Reynolds-averaged Navier-Stokes, based on triple decomposition), was shown earlier to reproduce well a number of generic buoyancy-driven flows over heated surfaces, albeit by integrating equations up to the wall. Here we show that by using a set of wall functions satisfactory results are found for the ensemble-averaged properties even on a very coarse computational grid. This is illustrated by the computations of the time evolution of a penetrative mixed layer and Rayleigh-Bénard (open-ended, 4:4:1 domain) convection, using 10 × 10 × 100 and 10 × 10 × 20 grids, compared also with finer grids (e.g. 60 × 60 × 100), as well as with one-dimensional treatment using 1 × 1 × 100 and 1 × 1 × 20 nodes. The approach is deemed functional for simulations of a convective boundary layer and mesoscale atmospheric flows, and pollutant transport over realistic complex hilly terrain with heat islands, urban and natural canopies, for diurnal cycles, or subjected to other time and space variations in ground conditions and stratification.

  17. A process for providing positive primary control power by wind turbines

    NASA Astrophysics Data System (ADS)

    Marschner, V.; Michael, J.; Liersch, J.

    2014-12-01

    Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.

  18. Regional Climate Simulation with a Variable Resolution Stretched Grid GCM: The Regional Down-Scaling Effects

    NASA Technical Reports Server (NTRS)

    Fox-Rabinovitz, Michael S.; Takacs, Lawrence L.; Suarez, Max; Sawyer, William; Govindaraju, Ravi C.

    1999-01-01

    The results obtained with the variable resolution stretched grid (SG) GEOS GCM (Goddard Earth Observing System General Circulation Models) are discussed, with the emphasis on the regional down-scaling effects and their dependence on the stretched grid design and parameters. A variable resolution SG-GCM and SG-DAS using a global stretched grid with fine resolution over an area of interest, is a viable new approach to REGIONAL and subregional CLIMATE studies and applications. The stretched grid approach is an ideal tool for representing regional to global scale interactions. It is an alternative to the widely used nested grid approach introduced a decade ago as a pioneering step in regional climate modeling. The GEOS SG-GCM is used for simulations of the anomalous U.S. climate events of 1988 drought and 1993 flood, with enhanced regional resolution. The height low level jet, precipitation and other diagnostic patterns are successfully simulated and show the efficient down-scaling over the area of interest the U.S. An imitation of the nested grid approach is performed using the developed SG-DAS (Data Assimilation System) that incorporates the SG-GCM. The SG-DAS is run with withholding data over the area of interest. The design immitates the nested grid framework with boundary conditions provided from analyses. No boundary condition buffer is needed for the case due to the global domain of integration used for the SG-GCM and SG-DAS. The experiments based on the newly developed versions of the GEOS SG-GCM and SG-DAS, with finer 0.5 degree (and higher) regional resolution, are briefly discussed. The major aspects of parallelization of the SG-GCM code are outlined. The KEY OBJECTIVES of the study are: 1) obtaining an efficient DOWN-SCALING over the area of interest with fine and very fine resolution; 2) providing CONSISTENT interactions between regional and global scales including the consistent representation of regional ENERGY and WATER BALANCES; 3) providing a high computational efficiency for future SG-GCM and SG-DAS versions using PARALLEL codes.

  19. Hyperspherical Sparse Approximation Techniques for High-Dimensional Discontinuity Detection

    DOE PAGES

    Zhang, Guannan; Webster, Clayton G.; Gunzburger, Max; ...

    2016-08-04

    This work proposes a hyperspherical sparse approximation framework for detecting jump discontinuities in functions in high-dimensional spaces. The need for a novel approach results from the theoretical and computational inefficiencies of well-known approaches, such as adaptive sparse grids, for discontinuity detection. Our approach constructs the hyperspherical coordinate representation of the discontinuity surface of a function. Then sparse approximations of the transformed function are built in the hyperspherical coordinate system, with values at each point estimated by solving a one-dimensional discontinuity detection problem. Due to the smoothness of the hypersurface, the new technique can identify jump discontinuities with significantly reduced computationalmore » cost, compared to existing methods. Several approaches are used to approximate the transformed discontinuity surface in the hyperspherical system, including adaptive sparse grid and radial basis function interpolation, discrete least squares projection, and compressed sensing approximation. Moreover, hierarchical acceleration techniques are also incorporated to further reduce the overall complexity. In conclusion, rigorous complexity analyses of the new methods are provided, as are several numerical examples that illustrate the effectiveness of our approach.« less

  20. Detecting vapour bubbles in simulations of metastable water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal, E-mail: christoph.dellago@univie.ac.at, E-mail: cvaleriani@quim.ucm.es

    2014-11-14

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguishmore » between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.« less

  1. Towards a Low-Cost Remote Memory Attestation for the Smart Grid

    PubMed Central

    Yang, Xinyu; He, Xiaofei; Yu, Wei; Lin, Jie; Li, Rui; Yang, Qingyu; Song, Houbing

    2015-01-01

    In the smart grid, measurement devices may be compromised by adversaries, and their operations could be disrupted by attacks. A number of schemes to efficiently and accurately detect these compromised devices remotely have been proposed. Nonetheless, most of the existing schemes detecting compromised devices depend on the incremental response time in the attestation process, which are sensitive to data transmission delay and lead to high computation and network overhead. To address the issue, in this paper, we propose a low-cost remote memory attestation scheme (LRMA), which can efficiently and accurately detect compromised smart meters considering real-time network delay and achieve low computation and network overhead. In LRMA, the impact of real-time network delay on detecting compromised nodes can be eliminated via investigating the time differences reported from relay nodes. Furthermore, the attestation frequency in LRMA is dynamically adjusted with the compromised probability of each node, and then, the total number of attestations could be reduced while low computation and network overhead can be achieved. Through a combination of extensive theoretical analysis and evaluations, our data demonstrate that our proposed scheme can achieve better detection capacity and lower computation and network overhead in comparison to existing schemes. PMID:26307998

  2. Towards a Low-Cost Remote Memory Attestation for the Smart Grid.

    PubMed

    Yang, Xinyu; He, Xiaofei; Yu, Wei; Lin, Jie; Li, Rui; Yang, Qingyu; Song, Houbing

    2015-08-21

    In the smart grid, measurement devices may be compromised by adversaries, and their operations could be disrupted by attacks. A number of schemes to efficiently and accurately detect these compromised devices remotely have been proposed. Nonetheless, most of the existing schemes detecting compromised devices depend on the incremental response time in the attestation process, which are sensitive to data transmission delay and lead to high computation and network overhead. To address the issue, in this paper, we propose a low-cost remote memory attestation scheme (LRMA), which can efficiently and accurately detect compromised smart meters considering real-time network delay and achieve low computation and network overhead. In LRMA, the impact of real-time network delay on detecting compromised nodes can be eliminated via investigating the time differences reported from relay nodes. Furthermore, the attestation frequency in LRMA is dynamically adjusted with the compromised probability of each node, and then, the total number of attestations could be reduced while low computation and network overhead can be achieved. Through a combination of extensive theoretical analysis and evaluations, our data demonstrate that our proposed scheme can achieve better detection capacity and lower computation and network overhead in comparison to existing schemes.

  3. Hall-Effect Based Semi-Fast AC On-Board Charging Equipment for Electric Vehicles

    PubMed Central

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented. PMID:22163697

  4. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.

    PubMed

    Milanés-Montero, María Isabel; Gallardo-Lozano, Javier; Romero-Cadaval, Enrique; González-Romera, Eva

    2011-01-01

    The expected increase in the penetration of electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) will produce unbalanced conditions, reactive power consumption and current harmonics drawn by the battery charging equipment, causing a great impact on the power quality of the future smart grid. A single-phase semi-fast electric vehicle battery charger is proposed in this paper. This ac on-board charging equipment can operate in grid-to-vehicle (G2V) mode, and also in vehicle-to-grid (V2G) mode, transferring the battery energy to the grid when the vehicle is parked. The charger is controlled with a Perfect Harmonic Cancellation (PHC) strategy, contributing to improve the grid power quality, since the current demanded or injected has no harmonic content and a high power factor. Hall-effect current and voltage transducers have been used in the sensor stage to carry out this control strategy. Experimental results with a laboratory prototype are presented.

  5. Effect of stiffness characteristics on the response of composite grid-stiffened structures

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Rehfield, Lawrence W.

    1991-01-01

    A study of the effect of stiffness discontinuities and structural parameters on the response of continuous-filament grid-stiffened flat panels is presented. The buckling load degradation due to manufacturing-introduced stiffener discontinuities associated with a filament cut-and-add approach at the stiffener intersections is investigated. The degradation of buckling resistance in isogrid flat panels subjected to uni-axial compression and combined axial compression and shear loading conditions and induced damage is quantified using FEM. The combined loading case is the most critical one. Nonsolid stiffener cross sections, such as a foam-filled blade or hat with a 0-deg dominant cap, result in grid-stiffened structures that are structurally very efficient for wing and fuselage applications. The results of a study of the ability of grid-stiffened structural concepts to enhance the effective Poisson's ratio of a panel are presented. Grid-stiffened concepts create a highly effective Poisson's ratio, which can produce large camber deformations for certain elastic tailoring applications.

  6. Definition of NASTRAN sets by use of parametric geometry

    NASA Technical Reports Server (NTRS)

    Baughn, Terry V.; Tiv, Mehran

    1989-01-01

    Many finite element preprocessors describe finite element model geometry with points, lines, surfaces and volumes. One method for describing these basic geometric entities is by use of parametric cubics which are useful for representing complex shapes. The lines, surfaces and volumes may be discretized for follow on finite element analysis. The ability to limit or selectively recover results from the finite element model is extremely important to the analyst. Equally important is the ability to easily apply boundary conditions. Although graphical preprocessors have made these tasks easier, model complexity may not lend itself to easily identify a group of grid points desired for data recovery or application of constraints. A methodology is presented which makes use of the assignment of grid point locations in parametric coordinates. The parametric coordinates provide a convenient ordering of the grid point locations and a method for retrieving the grid point ID's from the parent geometry. The selected grid points may then be used for the generation of the appropriate set and constraint cards.

  7. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-06-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  8. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  9. Towards Smart Grid Dynamic Ratings

    NASA Astrophysics Data System (ADS)

    Cheema, Jamal; Clark, Adrian; Kilimnik, Justin; Pavlovski, Chris; Redman, David; Vu, Maria

    2011-08-01

    The energy distribution industry is giving greater attention to smart grid solutions as a means for increasing the capabilities, efficiency and reliability of the electrical power network. The smart grid makes use of intelligent monitoring and control devices throughout the distribution network to report on electrical properties such as voltage, current and power, as well as raising network alarms and events. A further aspect of the smart grid embodies the dynamic rating of electrical assets of the network. This fundamentally involves a rating of the load current capacity of electrical assets including feeders, transformers and switches. The mainstream approach to rate assets is to apply the vendor plate rating, which often under utilizes assets, or in some cases over utilizes when environmental conditions reduce the effective rated capacity, potentially reducing lifetime. Using active intelligence we have developed a rating system that rates assets in real time based upon several events. This allows for a far more efficient and reliable electrical grid that is able to extend further the life and reliability of the electrical network. In this paper we describe our architecture, the observations made during development and live deployment of the solution into operation. We also illustrate how this solution blends with the smart grid by proposing a dynamic rating system for the smart grid.

  10. A framework for WRF to WRF-IBM grid nesting to enable multiscale simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersema, David John; Lundquist, Katherine A.; Chow, Fotini Katapodes

    With advances in computational power, mesoscale models, such as the Weather Research and Forecasting (WRF) model, are often pushed to higher resolutions. As the model’s horizontal resolution is refined, the maximum resolved terrain slope will increase. Because WRF uses a terrain-following coordinate, this increase in resolved terrain slopes introduces additional grid skewness. At high resolutions and over complex terrain, this grid skewness can introduce large numerical errors that require methods, such as the immersed boundary method, to keep the model accurate and stable. Our implementation of the immersed boundary method in the WRF model, WRF-IBM, has proven effective at microscalemore » simulations over complex terrain. WRF-IBM uses a non-conforming grid that extends beneath the model’s terrain. Boundary conditions at the immersed boundary, the terrain, are enforced by introducing a body force term to the governing equations at points directly beneath the immersed boundary. Nesting between a WRF parent grid and a WRF-IBM child grid requires a new framework for initialization and forcing of the child WRF-IBM grid. This framework will enable concurrent multi-scale simulations within the WRF model, improving the accuracy of high-resolution simulations and enabling simulations across a wide range of scales.« less

  11. The Impact of Back-Sputtered Carbon on the Accelerator Grid Wear Rates of the NEXT and NSTAR Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2013-01-01

    A study was conducted to quantify the impact of back-sputtered carbon on the downstream accelerator grid erosion rates of the NEXT (NASA's Evolutionary Xenon Thruster) Long Duration Test (LDT1). A similar analysis that was conducted for the NSTAR (NASA's Solar Electric Propulsion Technology Applications Readiness Program) Life Demonstration Test (LDT2) was used as a foundation for the analysis developed herein. A new carbon surface coverage model was developed that accounted for multiple carbon adlayers before complete surface coverage is achieved. The resulting model requires knowledge of more model inputs, so they were conservatively estimated using the results of past thin film sputtering studies and particle reflection predictions. In addition, accelerator current densities across the grid were rigorously determined using an ion optics code to determine accelerator current distributions and an algorithm to determine beam current densities along a grid using downstream measurements. The improved analysis was applied to the NSTAR test results for evaluation. The improved analysis demonstrated that the impact of back-sputtered carbon on pit and groove wear rate for the NSTAR LDT2 was negligible throughout most of eroded grid radius. The improved analysis also predicted the accelerator current density for transition from net erosion to net deposition considerably more accurately than the original analysis. The improved analysis was used to estimate the impact of back-sputtered carbon on the accelerator grid pit and groove wear rate of the NEXT Long Duration Test (LDT1). Unlike the NSTAR analysis, the NEXT analysis was more challenging because the thruster was operated for extended durations at various operating conditions and was unavailable for measurements because the test is ongoing. As a result, the NEXT LDT1 estimates presented herein are considered preliminary until the results of future posttest analyses are incorporated. The worst-case impact of carbon back-sputtering was determined to be the full power operating condition, but the maximum impact of back-sputtered carbon was only a four percent reduction in wear rate. As a result, back-sputtered carbon is estimated to have an insignificant impact on the first failure mode of the NEXT LDT at all operating conditions.

  12. GEM-AC, a stratospheric-tropospheric global and regional model for air quality and climate change: evaluation of gas phase properties

    NASA Astrophysics Data System (ADS)

    Kaminski, J. W.; Semeniuk, K.; McConnell, J. C.; Lupu, A.; Mamun, A.

    2012-12-01

    The Global Environmental Multiscale model for Air Quality and climate change (GEM-AC) is a global general circulation model based on the GEM model developed by the Meteorological Service of Canada for operational weather forecasting. It can be run with a global uniform (GU) grid or a global variable (GV) grid where the core has uniform grid spacing and the exterior grid expands. With a GV grid high resolution regional runs can be accomplished without a concern for boundary conditions. The work described here uses GEM version 3.3.2. The gas-phase chemistry consists in detailed reactions of Ox, NOx, HOx, CO, CH4, NMVOCs, halocarbons, ClOx and BrO. We have recently added elements of the Global Modal-aerosol eXtension (GMXe) scheme to address aerosol microphysics and gas-aerosol partitioning. The evaluation of the MESSY GMXe aerosol scheme is addressed in another poster. The Canadian aerosol module (CAM) is also available. Tracers are advected using the semi-Lagrangian scheme native to GEM. The vertical transport includes parameterized subgrid scale turbulence and large scale convection. Dry deposition is implemented as a flux boundary condition in the vertical diffusion equation. For climate runs the GHGs CO2, CH4, N2O, CFCs in the radiation scheme are adjusted to the scenario considered. In GV regional mode at high resolutions a lake model, FLAKE is also included. Wet removal comprises both in-cloud and below-cloud scavenging. With the gas phase chemistry the model has been run for a series of ten year time slices on a 3°×3° global grid with 77 hybrid levels from the surface to 0.15 hPa. The tropospheric and stratospheric gas phase results are compared with satellite measurements including, ACE, MIPAS, MOPITT, and OSIRIS. Current evaluations of the ozone field and other stratospheric fields are encouraging and tropospheric lifetimes for CH4 and CH3CCl3 are in reasonable accord with tropospheric models. We will present results for current and future climate conditions forced by SST for 2050.

  13. Change Detection of Mobile LIDAR Data Using Cloud Computing

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Boehm, Jan; Alis, Christian

    2016-06-01

    Change detection has long been a challenging problem although a lot of research has been conducted in different fields such as remote sensing and photogrammetry, computer vision, and robotics. In this paper, we blend voxel grid and Apache Spark together to propose an efficient method to address the problem in the context of big data. Voxel grid is a regular geometry representation consisting of the voxels with the same size, which fairly suites parallel computation. Apache Spark is a popular distributed parallel computing platform which allows fault tolerance and memory cache. These features can significantly enhance the performance of Apache Spark and results in an efficient and robust implementation. In our experiments, both synthetic and real point cloud data are employed to demonstrate the quality of our method.

  14. Initial Thrust Measurements of Marshall's Ion-ioN Thruster

    NASA Technical Reports Server (NTRS)

    Caruso, Natalie R. S.; Scogin, Tyler; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.

    2015-01-01

    Electronegative ion thrusters are a variation of traditional gridded ion thruster technology differentiated by the production and acceleration of both positive and negative ions. Benefits of electronegative ion thrusters include the elimination of lifetime-limiting cathodes from the thruster architecture and the ability to generate appreciable thrust from both charge species. While much progress has been made in the development of electronegative ion thruster technology, direct thrust measurements are required to unambiguously demonstrate the efficacy of the concept and support continued development. In the present work, direct thrust measurements of the thrust produced by the MINT (Marshall's Ion-ioN Thruster) are performed using an inverted-pendulum thrust stand in the High-Power Electric Propulsion Laboratory's Vacuum Test Facility-1 at the Georgia Institute of Technology with operating pressures ranging from 4.8 x 10(exp -5) and 5.7 x 10(exp -5) torr. Thrust is recorded while operating with a propellant volumetric mixture ratio of 5:1 argon to nitrogen with total volumetric flow rates of 6, 12, and 24 sccm (0.17, 0.34, and 0.68 mg/s). Plasma is generated using a helical antenna at 13.56 MHz and radio frequency (RF) power levels of 150 and 350 W. The acceleration grid assembly is operated using both sinusoidal and square waveform biases of +/-350 V at frequencies of 4, 10, 25, 125, and 225 kHz. Thrust is recorded for two separate thruster configurations: with and without the magnetic filter. No thrust is discernable during thruster operation without the magnetic filter for any volumetric flow rate, RF forward Power level, or acceleration grid biasing scheme. For the full thruster configuration, with the magnetic filter installed, a brief burst of thrust of approximately 3.75 mN +/- 3 mN of error is observed at the start of grid operation for a volumetric flow rate of 24 sccm at 350 W RF power using a sinusoidal waveform grid bias at 125 kHz and +/- 350 V. Similar bursts in thrust are observed using a square waveform grid bias at 10 kHz and +/- 350 V for volumetric flow rates of 6, 10, and 12 sccm at 150, 350, and 350 W respectively. The only operating condition that exhibits repeated thrust spikes throughout thruster operation is the 24 sccm condition with a 5:1 mixture ratio at 150 W RF power using the 10 kHz square waveform acceleration grid bias. Thrust spikes for this condition measure 3 mN with an error of +/- 2.5 mN. There are no operating conditions tested that show continuous thrust production.

  15. Solar-blind deep-UV band-pass filter (250 - 350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography.

    PubMed

    Li, Wen-Di; Chou, Stephen Y

    2010-01-18

    We designed, fabricated and demonstrated a solar-blind deep-UV pass filter, that has a measured optical performance of a 27% transmission peak at 290 nm, a pass-band width of 100 nm (from 250 to 350 nm), and a 20dB rejection ratio between deep-UV wavelength and visible wavelength. The filter consists of an aluminum nano-grid, which was made by coating 20 nm Al on a SiO(2) square grid with 190 nm pitch, 30 nm linewidth and 250 nm depth. The performances agree with a rigorous coupled wave analysis. The wavelength for the peak transmission and the pass-bandwidth can be tuned through adjusting the metal nano-grid dimensions. The filter was fabricated by nanoimprint lithography, hence is large area and low cost. Combining with Si photodetectors, the filter offers simple yet effective and low cost solar-blind deep-UV detection at either a single device or large-area complex integrated imaging array level.

  16. Influence of grid resolution, parcel size and drag models on bubbling fluidized bed simulation

    DOE PAGES

    Lu, Liqiang; Konan, Arthur; Benyahia, Sofiane

    2017-06-02

    Here in this paper, a bubbling fluidized bed is simulated with different numerical parameters, such as grid resolution and parcel size. We examined also the effect of using two homogeneous drag correlations and a heterogeneous drag based on the energy minimization method. A fast and reliable bubble detection algorithm was developed based on the connected component labeling. The radial and axial solids volume fraction profiles are compared with experiment data and previous simulation results. These results show a significant influence of drag models on bubble size and voidage distributions and a much less dependence on numerical parameters. With a heterogeneousmore » drag model that accounts for sub-scale structures, the void fraction in the bubbling fluidized bed can be well captured with coarse grid and large computation parcels. Refining the CFD grid and reducing the parcel size can improve the simulation results but with a large increase in computation cost.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agalgaonkar, Yashodhan P.; Hammerstrom, Donald J.

    The Pacific Northwest Smart Grid Demonstration (PNWSGD) was a smart grid technology performance evaluation project that included multiple U.S. states and cooperation from multiple electric utilities in the northwest region. One of the local objectives for the project was to achieve improved distribution system reliability. Toward this end, some PNWSGD utilities automated their distribution systems, including the application of fault detection, isolation, and restoration and advanced metering infrastructure. In light of this investment, a major challenge was to establish a correlation between implementation of these smart grid technologies and actual improvements of distribution system reliability. This paper proposes using Welch’smore » t-test to objectively determine and quantify whether distribution system reliability is improving over time. The proposed methodology is generic, and it can be implemented by any utility after calculation of the standard reliability indices. The effectiveness of the proposed hypothesis testing approach is demonstrated through comprehensive practical results. It is believed that wider adoption of the proposed approach can help utilities to evaluate a realistic long-term performance of smart grid technologies.« less

  18. Drag Prediction for the DLR-F6 Wing/Body and DPW Wing using CFL3D and OVERFLOW Overset Mesh

    NASA Technical Reports Server (NTRS)

    Sclanfani, Anthony J.; Vassberg, John C.; Harrison, Neal A.; DeHaan, Mark A.; Rumsey, Christopher L.; Rivers, S. Melissa; Morrison, Joseph H.

    2007-01-01

    A series of overset grids was generated in response to the 3rd AIAA CFD Drag Prediction Workshop (DPW-III) which preceded the 25th Applied Aerodynamics Conference in June 2006. DPW-III focused on accurate drag prediction for wing/body and wing-alone configurations. The grid series built for each configuration consists of a coarse, medium, fine, and extra-fine mesh. The medium mesh is first constructed using the current state of best practices for overset grid generation. The medium mesh is then coarsened and enhanced by applying a factor of 1.5 to each (I,J,K) dimension. The resulting set of parametrically equivalent grids increase in size by a factor of roughly 3.5 from one level to the next denser level. CFD simulations were performed on the overset grids using two different RANS flow solvers: CFL3D and OVERFLOW. The results were post-processed using Richardson extrapolation to approximate grid converged values of lift, drag, pitching moment, and angle-of-attack at the design condition. This technique appears to work well if the solution does not contain large regions of separated flow (similar to that seen n the DLR-F6 results) and appropriate grid densities are selected. The extra-fine grid data helped to establish asymptotic grid convergence for both the OVERFLOW FX2B wing/body results and the OVERFLOW DPW-W1/W2 wing-alone results. More CFL3D data is needed to establish grid convergence trends. The medium grid was utilized beyond the grid convergence study by running each configuration at several angles-of-attack so drag polars and lift/pitching moment curves could be evaluated. The alpha sweep results are used to compare data across configurations as well as across flow solvers. With the exception of the wing/body drag polar, the two codes compare well qualitatively showing consistent incremental trends and similar wing pressure comparisons.

  19. Pathloss Calculation Using the Transmission Line Matrix and Finite Difference Time Domain Methods With Coarse Grids

    DOE PAGES

    Nutaro, James; Kuruganti, Teja

    2017-02-24

    Numerical simulations of the wave equation that are intended to provide accurate time domain solutions require a computational mesh with grid points separated by a distance less than the wavelength of the source term and initial data. However, calculations of radio signal pathloss generally do not require accurate time domain solutions. This paper describes an approach for calculating pathloss by using the finite difference time domain and transmission line matrix models of wave propagation on a grid with points separated by distances much greater than the signal wavelength. The calculated pathloss can be kept close to the true value formore » freespace propagation with an appropriate selection of initial conditions. This method can also simulate diffraction with an error governed by the ratio of the signal wavelength to the grid spacing.« less

  20. Time-Dependent Erosion of Ion Optics

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E.; Anderson, John R.; Katz, Ira; Goebel, Dan M.

    2008-01-01

    The accurate prediction of thruster life requires time-dependent erosion estimates for the ion optics assembly. Such information is critical to end-of-life mechanisms such as electron backstreaming. CEX2D was recently modified to handle time-dependent erosion, double ions, and multiple throttle conditions in a single run. The modified code is called "CEX2D-t". Comparisons of CEX2D-t results with LDT and ELT post-tests results show good agreement for both screen and accel grid erosion including important erosion features such as chamfering of the downstream end of the accel grid and reduced rate of accel grid aperture enlargement with time.

  1. Validation of satellite daily rainfall estimates in complex terrain of Bali Island, Indonesia

    NASA Astrophysics Data System (ADS)

    Rahmawati, Novi; Lubczynski, Maciek W.

    2017-11-01

    Satellite rainfall products have different performances in different geographic regions under different physical and climatological conditions. In this study, the objective was to select the most reliable and accurate satellite rainfall products for specific, environmental conditions of Bali Island. The performances of four spatio-temporal satellite rainfall products, i.e., CMORPH25, CMORPH8, TRMM, and PERSIANN, were evaluated at the island, zonation (applying elevation and climatology as constraints), and pixel scales, using (i) descriptive statistics and (ii) categorical statistics, including bias decomposition. The results showed that all the satellite products had low accuracy because of spatial scale effect, daily resolution and the island complexity. That accuracy was relatively lower in (i) dry seasons and dry climatic zones than in wet seasons and wet climatic zones; (ii) pixels jointly covered by sea and mountainous land than in pixels covered by land or by sea only; and (iii) topographically diverse than uniform terrains. CMORPH25, CMORPH8, and TRMM underestimated and PERSIANN overestimated rainfall when comparing them to gauged rain. The CMORPH25 had relatively the best performance and the PERSIANN had the worst performance in the Bali Island. The CMORPH25 had the lowest statistical errors, the lowest miss, and the highest hit rainfall events; it also had the lowest miss rainfall bias and was relatively the most accurate in detecting, frequent in Bali, ≤ 20 mm day-1 rain events. Lastly, the CMORPH25 coarse grid better represented rainfall events from coastal to inlands areas than other satellite products, including finer grid CMORPH8.

  2. Study of the key factors affecting the triple grid lifetime of the LIPS-300 ion thruster

    NASA Astrophysics Data System (ADS)

    Mingming, SUN; Liang, WANG; Juntai, YANG; Xiaodong, WEN; Yongjie, HUANG; Meng, WANG

    2018-04-01

    In order to ascertain the key factors affecting the lifetime of the triple grids in the LIPS-300 ion thruster, the thermal deformation, upstream ion density and component lifetime of the grids are simulated with finite element analysis, fluid simulation and charged-particle tracing simulation methods on the basis of a 1500 h short lifetime test. The key factor affecting the lifetime of the triple grids in the LIPS-300 ion thruster is obtained and analyzed through the test results. The results show that ion sputtering erosion of the grids in 5 kW operation mode is greater than in the case of 3 kW. In 5 kW mode, the decelerator grid shows the most serious corrosion, the accelerator grid shows moderate corrosion, and the screen grid shows the least amount of corrosion. With the serious corrosion of the grids in 5 kW operation mode, the intercept current of the acceleration and deceleration grids increases substantially. Meanwhile, the cold gap between the accelerator grid and the screen grid decreases from 1 mm to 0.7 mm, while the cold gap between the accelerator grid and the decelerator grid increases from 1 mm to 1.25 mm after 1500 h of thruster operation. At equilibrium temperature with 5 kW power, the finite element method (FEM) simulation results show that the hot gap between the screen grid and the accelerator grid reduces to 0.2 mm. Accordingly, the hot gap between the accelerator grid and the decelerator grid increases to 1.5 mm. According to the fluid method, the plasma density simulated in most regions of the discharge chamber is 1 × 1018‑8 × 1018 m‑3. The upstream plasma density of the screen grid is in the range 6 × 1017‑6 × 1018 m‑3 and displays a parabolic characteristic. The charged particle tracing simulation method results show that the ion beam current without the thermal deformation of triple grids has optimal perveance status. The ion sputtering rates of the accelerator grid hole and the decelerator hole are 5.5 × 10‑14 kg s‑1 and 4.28 × 10‑14 kg s‑1, respectively, while after the thermal deformation of the triple grids, the ion beam current has over-perveance status. The ion sputtering rates of the accelerator grid hole and the decelerator hole are 1.41 × 10‑13 kg s‑1 and 4.1 × 10‑13 kg s‑1, respectively. The anode current is a key factor for the triple grid lifetime in situations where the structural strength of the grids does not change with temperature variation. The average sputtering rates of the accelerator grid and the decelerator grid, which were measured during the 1500 h lifetime test in 5 kW operating conditions, are 2.2 × 10‑13 kg s‑1 and 7.3 × 10‑13 kg s‑1, respectively. These results are in accordance with the simulation, and the error comes mainly from the calculation distribution of the upstream plasma density of the grids.

  3. Efficient grid-based techniques for density functional theory

    NASA Astrophysics Data System (ADS)

    Rodriguez-Hernandez, Juan Ignacio

    Understanding the chemical and physical properties of molecules and materials at a fundamental level often requires quantum-mechanical models for these substance's electronic structure. This type of many body quantum mechanics calculation is computationally demanding, hindering its application to substances with more than a few hundreds atoms. The supreme goal of many researches in quantum chemistry---and the topic of this dissertation---is to develop more efficient computational algorithms for electronic structure calculations. In particular, this dissertation develops two new numerical integration techniques for computing molecular and atomic properties within conventional Kohn-Sham-Density Functional Theory (KS-DFT) of molecular electronic structure. The first of these grid-based techniques is based on the transformed sparse grid construction. In this construction, a sparse grid is generated in the unit cube and then mapped to real space according to the pro-molecular density using the conditional distribution transformation. The transformed sparse grid was implemented in program deMon2k, where it is used as the numerical integrator for the exchange-correlation energy and potential in the KS-DFT procedure. We tested our grid by computing ground state energies, equilibrium geometries, and atomization energies. The accuracy on these test calculations shows that our grid is more efficient than some previous integration methods: our grids use fewer points to obtain the same accuracy. The transformed sparse grids were also tested for integrating, interpolating and differentiating in different dimensions (n = 1,2,3,6). The second technique is a grid-based method for computing atomic properties within QTAIM. It was also implemented in deMon2k. The performance of the method was tested by computing QTAIM atomic energies, charges, dipole moments, and quadrupole moments. For medium accuracy, our method is the fastest one we know of.

  4. Summary of Data from the Fifth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Levy, David W.; Laflin, Kelly R.; Tinoco, Edward N.; Vassberg, John C.; Mani, Mori; Rider, Ben; Rumsey, Chris; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; hide

    2013-01-01

    Results from the Fifth AIAA CFD Drag Prediction Workshop (DPW-V) are presented. As with past workshops, numerical calculations are performed using industry-relevant geometry, methodology, and test cases. This workshop focused on force/moment predictions for the NASA Common Research Model wing-body configuration, including a grid refinement study and an optional buffet study. The grid refinement study used a common grid sequence derived from a multiblock topology structured grid. Six levels of refinement were created resulting in grids ranging from 0.64x10(exp 6) to 138x10(exp 6) hexahedra - a much larger range than is typically seen. The grids were then transformed into structured overset and hexahedral, prismatic, tetrahedral, and hybrid unstructured formats all using the same basic cloud of points. This unique collection of grids was designed to isolate the effects of grid type and solution algorithm by using identical point distributions. This study showed reduced scatter and standard deviation from previous workshops. The second test case studied buffet onset at M=0.85 using the Medium grid (5.1x106 nodes) from the above described sequence. The prescribed alpha sweep used finely spaced intervals through the zone where wing separation was expected to begin. Some solutions exhibited a large side of body separation bubble that was not observed in the wind tunnel results. An optional third case used three sets of geometry, grids, and conditions from the Turbulence Model Resource website prepared by the Turbulence Model Benchmarking Working Group. These simple cases were intended to help identify potential differences in turbulence model implementation. Although a few outliers and issues affecting consistency were identified, the majority of participants produced consistent results.

  5. Nested large-eddy simulations of nighttime shear-instability waves and transient warming in a steep valley

    NASA Astrophysics Data System (ADS)

    Zhou, Bowen; Chow, Fotini

    2012-11-01

    This numerical study investigates the nighttime flow dynamics in a steep valley. The Owens Valley in California is highly complex, and represents a challenging terrain for large-eddy simulations (LES). To ensure a faithful representation of the nighttime atmospheric boundary layer (ABL), realistic external boundary conditions are provided through grid nesting. The model obtains initial and lateral boundary conditions from reanalysis data, and bottom boundary conditions from a land-surface model. We demonstrate the ability to extend a mesoscale model to LES resolutions through a systematic grid-nesting framework, achieving accurate simulations of the stable ABL over complex terrain. Nighttime cold-air flow was channeled through a gap on the valley sidewall. The resulting katabatic current induced a cross-valley flow. Directional shear against the down-valley flow in the lower layers of the valley led to breaking Kelvin-Helmholtz waves at the interface, which is captured only on the LES grid. Later that night, the flow transitioned from down-slope to down-valley near the western sidewall, leading to a transient warming episode. Simulation results are verified against field observations and reveal good spatial and temporal precision. Supported by NSF grant ATM-0645784.

  6. The impact of water use fees on dispatching and water requirements for water-cooled power plants in Texas.

    PubMed

    Sanders, Kelly T; Blackhurst, Michael F; King, Carey W; Webber, Michael E

    2014-06-17

    We utilize a unit commitment and dispatch model to estimate how water use fees on power generators would affect dispatching and water requirements by the power sector in the Electric Reliability Council of Texas' (ERCOT) electric grid. Fees ranging from 10 to 1000 USD per acre-foot were separately applied to water withdrawals and consumption. Fees were chosen to be comparable in cost to a range of water supply projects proposed in the Texas Water Development Board's State Water Plan to meet demand through 2050. We found that these fees can reduce water withdrawals and consumption for cooling thermoelectric power plants in ERCOT by as much as 75% and 23%, respectively. To achieve these water savings, wholesale electricity generation costs might increase as much as 120% based on 2011 fuel costs and generation characteristics. We estimate that water saved through these fees is not as cost-effective as conventional long-term water supply projects. However, the electric grid offers short-term flexibility that conventional water supply projects do not. Furthermore, this manuscript discusses conditions under which the grid could be effective at "supplying" water, particularly during emergency drought conditions, by changing its operational conditions.

  7. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    NASA Astrophysics Data System (ADS)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  8. Spatio-temporal Outlier Detection in Precipitation Data

    NASA Astrophysics Data System (ADS)

    Wu, Elizabeth; Liu, Wei; Chawla, Sanjay

    The detection of outliers from spatio-temporal data is an important task due to the increasing amount of spatio-temporal data available and the need to understand and interpret it. Due to the limitations of current data mining techniques, new techniques to handle this data need to be developed. We propose a spatio-temporal outlier detection algorithm called Outstretch, which discovers the outlier movement patterns of the top-k spatial outliers over several time periods. The top-k spatial outliers are found using the Exact-Grid Top- k and Approx-Grid Top- k algorithms, which are an extension of algorithms developed by Agarwal et al. [1]. Since they use the Kulldorff spatial scan statistic, they are capable of discovering all outliers, unaffected by neighbouring regions that may contain missing values. After generating the outlier sequences, we show one way they can be interpreted, by comparing them to the phases of the El Niño Southern Oscilliation (ENSO) weather phenomenon to provide a meaningful analysis of the results.

  9. Detection of faults in rotating machinery using periodic time-frequency sparsity

    NASA Astrophysics Data System (ADS)

    Ding, Yin; He, Wangpeng; Chen, Binqiang; Zi, Yanyang; Selesnick, Ivan W.

    2016-11-01

    This paper addresses the problem of extracting periodic oscillatory features in vibration signals for detecting faults in rotating machinery. To extract the feature, we propose an approach in the short-time Fourier transform (STFT) domain where the periodic oscillatory feature manifests itself as a relatively sparse grid. To estimate the sparse grid, we formulate an optimization problem using customized binary weights in the regularizer, where the weights are formulated to promote periodicity. In order to solve the proposed optimization problem, we develop an algorithm called augmented Lagrangian majorization-minimization algorithm, which combines the split augmented Lagrangian shrinkage algorithm (SALSA) with majorization-minimization (MM), and is guaranteed to converge for both convex and non-convex formulation. As examples, the proposed approach is applied to simulated data, and used as a tool for diagnosing faults in bearings and gearboxes for real data, and compared to some state-of-the-art methods. The results show that the proposed approach can effectively detect and extract the periodical oscillatory features.

  10. Real-time Recovery Efficiencies and Performance of the Palomar Transient Factory’s Transient Discovery Pipeline

    NASA Astrophysics Data System (ADS)

    Frohmaier, C.; Sullivan, M.; Nugent, P. E.; Goldstein, D. A.; DeRose, J.

    2017-05-01

    We present the transient source detection efficiencies of the Palomar Transient Factory (PTF), parameterizing the number of transients that PTF found versus the number of similar transients that occurred over the same period in the survey search area but were missed. PTF was an optical sky survey carried out with the Palomar 48 inch telescope over 2009-2012, observing more than 8000 square degrees of sky with cadences of between one and five days, locating around 50,000 non-moving transient sources, and spectroscopically confirming around 1900 supernovae. We assess the effectiveness with which PTF detected transient sources, by inserting ≃ 7 million artificial point sources into real PTF data. We then study the efficiency with which the PTF real-time pipeline recovered these sources as a function of the source magnitude, host galaxy surface brightness, and various observing conditions (using proxies for seeing, sky brightness, and transparency). The product of this study is a multi-dimensional recovery efficiency grid appropriate for the range of observing conditions that PTF experienced and that can then be used for studies of the rates, environments, and luminosity functions of different transient types using detailed Monte Carlo simulations. We illustrate the technique using the observationally well-understood class of type Ia supernovae.

  11. The Use of the Time Average Visibility for Analyzing HERA-19 Commissioning Data: Effects of Non-Redundancy

    NASA Astrophysics Data System (ADS)

    Benefo, Roshan; Gallardo, Samavarti; Aguirre, James; La Plante, Paul; HERA Collaboration

    2018-01-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio telescope situated in South Africa designed to observe the universe from redshifts 13 through 6, in order to detect the emission of the 21 cm line from the hydrogen spin-flip transition. We perform 21 cm cosmology due to its relation with reionization; by detecting this emission line, we can identify the timing of reionization, and understand more about the nature of the universe during the birth of the first stars and galaxies. With that, we can understand the heating conditions of the initial universe, providing us a larger picture of the conditions that created the large-scale structure of the universe we observe today. The HERA array currently consists of 19 antennas, spaced in a hexagonal grid pattern. We consider a robust observable, the time-averaged visibility (TAV), which is in principle sensitive to variations in the beam pattern between antenna elements and is easier to measure than the beam pattern itself. We use this TAV to explore the non-redundancy of baselines in the HERA array due either to cross-coupling between antennas (probed by antenna location in the array) or non-uniformity in their manufacture. The TAV may provide a simple way of verifying improvements in antenna element redundancy.

  12. Enhancing Deep-Water Low-Resolution Gridded Bathymetry Using Single Image Super-Resolution

    NASA Astrophysics Data System (ADS)

    Elmore, P. A.; Nock, K.; Bonanno, D.; Smith, L.; Ferrini, V. L.; Petry, F. E.

    2017-12-01

    We present research to employ single-image super-resolution (SISR) algorithms to enhance knowledge of the seafloor using the 1-minute GEBCO 2014 grid when 100m grids from high-resolution sonar systems are available for training. Our numerical upscaling experiments of x15 upscaling of the GEBCO grid along three areas of the Eastern Pacific Ocean along mid-ocean ridge systems where we have these 100m gridded bathymetry data sets, which we accept as ground-truth. We show that four SISR algorithms can enhance this low-resolution knowledge of bathymetry versus bicubic or Spline-In-Tension algorithms through upscaling under these conditions: 1) rough topography is present in both training and testing areas and 2) the range of depths and features in the training area contains the range of depths in the enhancement area. We quantitatively judged successful SISR enhancement versus bicubic interpolation when Student's hypothesis testing show significant improvement of the root-mean squared error (RMSE) between upscaled bathymetry and 100m gridded ground-truth bathymetry at p < 0.05. In addition, we found evidence that random forest based SISR methods may provide more robust enhancements versus non-forest based SISR algorithms.

  13. Locally refined block-centred finite-difference groundwater models: Evaluation of parameter sensitivity and the consequences for inverse modelling

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2002-01-01

    Models with local grid refinement, as often required in groundwater models, pose special problems for model calibration. This work investigates the calculation of sensitivities and the performance of regression methods using two existing and one new method of grid refinement. The existing local grid refinement methods considered are: (a) a variably spaced grid in which the grid spacing becomes smaller near the area of interest and larger where such detail is not needed, and (b) telescopic mesh refinement (TMR), which uses the hydraulic heads or fluxes of a regional model to provide the boundary conditions for a locally refined model. The new method has a feedback between the regional and local grids using shared nodes, and thereby, unlike the TMR methods, balances heads and fluxes at the interfacing boundary. Results for sensitivities are compared for the three methods and the effect of the accuracy of sensitivity calculations are evaluated by comparing inverse modelling results. For the cases tested, results indicate that the inaccuracies of the sensitivities calculated using the TMR approach can cause the inverse model to converge to an incorrect solution.

  14. Locally refined block-centered finite-difference groundwater models: Evaluation of parameter sensitivity and the consequences for inverse modelling and predictions

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2002-01-01

    Models with local grid refinement, as often required in groundwater models, pose special problems for model calibration. This work investigates the calculation of sensitivities and performance of regression methods using two existing and one new method of grid refinement. The existing local grid refinement methods considered are (1) a variably spaced grid in which the grid spacing becomes smaller near the area of interest and larger where such detail is not needed and (2) telescopic mesh refinement (TMR), which uses the hydraulic heads or fluxes of a regional model to provide the boundary conditions for a locally refined model. The new method has a feedback between the regional and local grids using shared nodes, and thereby, unlike the TMR methods, balances heads and fluxes at the interfacing boundary. Results for sensitivities are compared for the three methods and the effect of the accuracy of sensitivity calculations are evaluated by comparing inverse modelling results. For the cases tested, results indicate that the inaccuracies of the sensitivities calculated using the TMR approach can cause the inverse model to converge to an incorrect solution.

  15. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1986-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  16. Applying Turbulence Models to Hydroturbine Flows: A Sensitivity Analysis Using the GAMM Francis Turbine

    NASA Astrophysics Data System (ADS)

    Lewis, Bryan; Cimbala, John; Wouden, Alex

    2011-11-01

    Turbulence models are generally developed to study common academic geometries, such as flat plates and channels. Creating quality computational grids for such geometries is trivial, and allows stringent requirements to be met for boundary layer grid refinement. However, engineering applications, such as flow through hydroturbines, require the analysis of complex, highly curved geometries. To produce body-fitted grids for such geometries, the mesh quality requirements must be relaxed. Relaxing these requirements, along with the complexity of rotating flows, forces turbulence models to be employed beyond their developed scope. This study explores the solution sensitivity to boundary layer grid quality for various turbulence models and boundary conditions currently implemented in OpenFOAM. The following models are resented: k-omega, k-omega SST, k-epsilon, realizable k-epsilon, and RNG k-epsilon. Standard wall functions, adaptive wall functions, and sub-grid integration are compared using various grid refinements. The chosen geometry is the GAMM Francis Turbine because experimental data and comparison computational results are available for this turbine. This research was supported by a grant from the DoE and a National Defense Science and Engineering Graduate Fellowship.

  17. Sensitivity Analysis and Optimization of Aerodynamic Configurations with Blend Surfaces

    NASA Technical Reports Server (NTRS)

    Thomas, A. M.; Tiwari, S. N.

    1997-01-01

    A novel (geometrical) parametrization procedure using solutions to a suitably chosen fourth order partial differential equation is used to define a class of airplane configurations. Inclusive in this definition are surface grids, volume grids, and grid sensitivity. The general airplane configuration has wing, fuselage, vertical tail and horizontal tail. The design variables are incorporated into the boundary conditions, and the solution is expressed as a Fourier series. The fuselage has circular cross section, and the radius is an algebraic function of four design parameters and an independent computational variable. Volume grids are obtained through an application of the Control Point Form method. A graphic interface software is developed which dynamically changes the surface of the airplane configuration with the change in input design variable. The software is made user friendly and is targeted towards the initial conceptual development of any aerodynamic configurations. Grid sensitivity with respect to surface design parameters and aerodynamic sensitivity coefficients based on potential flow is obtained using an Automatic Differentiation precompiler software tool ADIFOR. Aerodynamic shape optimization of the complete aircraft with twenty four design variables is performed. Unstructured and structured volume grids and Euler solutions are obtained with standard software to demonstrate the feasibility of the new surface definition.

  18. An analysis of finite-difference and finite-volume formulations of conservation laws

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1989-01-01

    Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.

  19. Computing an operating parameter of a unified power flow controller

    DOEpatents

    Wilson, David G.; Robinett, III, Rush D.

    2017-12-26

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  20. Fourier Collocation Approach With Mesh Refinement Method for Simulating Transit-Time Ultrasonic Flowmeters Under Multiphase Flow Conditions.

    PubMed

    Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny

    2018-02-01

    A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.

  1. Computing an operating parameter of a unified power flow controller

    DOEpatents

    Wilson, David G; Robinett, III, Rush D

    2015-01-06

    A Unified Power Flow Controller described herein comprises a sensor that outputs at least one sensed condition, a processor that receives the at least one sensed condition, a memory that comprises control logic that is executable by the processor; and power electronics that comprise power storage, wherein the processor causes the power electronics to selectively cause the power storage to act as one of a power generator or a load based at least in part upon the at least one sensed condition output by the sensor and the control logic, and wherein at least one operating parameter of the power electronics is designed to facilitate maximal transmittal of electrical power generated at a variable power generation system to a grid system while meeting power constraints set forth by the electrical power grid.

  2. Installed F/A-18 inlet flow calculations at 30 degrees angle-of-attack: A comparative study

    NASA Technical Reports Server (NTRS)

    Smith, C. Frederic; Podleski, Steve D.

    1994-01-01

    NASA Lewis is currently engaged in a research effort as a team member of the High Alpha Technology Program (HATP) within NASA. This program utilizes a specially equipped F/A-18, the High Alpha Research Vehicle (HARV), in an ambitious effort to improve the maneuverability of high-performance military aircraft at low subsonic speed, high angle of attack conditions. The overall objective of the Lewis effort is to develop inlet technology that will ensure efficient airflow delivery to the engine during these maneuvers. One part of the Lewis approach utilizes computational fluid dynamics codes to predict the installed performance of inlets for these highly maneuverable aircraft. Full Navier-Stokes (FNS) calculations on the installed F/A-18 inlet at 30 degrees angle of attack, 0 degrees yaw, and a freestream Mach number of 0.2 have been obtained in this study using an algebraic turbulence model with two grids (original and revised). Results obtained with the original grid were used to determine where further grid refinements and additional geometry were needed. In order to account properly for the external effects, the forebody, leading edge extension (LEX), ramp, and wing were included with inlet geometry. In the original grid, the diverter, LEX slot, and leading edge flap were not included due to insufficient geometry definition, but were included in a revised grid. In addition, a thin-layer Navier-Stokes (TLNS) code is used with the revised grid and the numerical results are compared to those obtained with the FNS code. The TLNS code was used to evaluate the effects on the solution using a code with more recent CFD developments such as upwinding with TVD schemes versus central differencing with artificial dissipation. The calculations are compared to a limited amount of available experimental data. The predicted forebody/fuselage surface static pressures compared well with data of all solutions. The predicted trajectory of the vortex generated under the LEX was different for each solution. These discrepancies are attributed to differences in the grid resolution and turbulence modeling. All solutions predict that this vortex is ingested by the inlet. The predicted inlet total pressure recoveries are lower than data and the distortions are higher than data. The results obtained with the revised grid were significantly improved from the original grid results. The original grid results indicated the ingested vortex migrated to the engine face and caused additional distortions to those already present due to secondary flow development. The revised grid results indicate that the ingested vortex is dissipated along the inlet duct inboard wall. The TLNS results indicate the flow at the engine face was much more distorted than the FNS results and is attributed to the pole boundary condition introducing numerical distortions into the flow field.

  3. A comprehensive model for x-ray projection imaging system efficiency and image quality characterization in the presence of scattered radiation

    NASA Astrophysics Data System (ADS)

    Monnin, P.; Verdun, F. R.; Bosmans, H.; Rodríguez Pérez, S.; Marshall, N. W.

    2017-07-01

    This work proposes a method for assessing the detective quantum efficiency (DQE) of radiographic imaging systems that include both the x-ray detector and the antiscatter device. Cascaded linear analysis of the antiscatter device efficiency (DQEASD) with the x-ray detector DQE is used to develop a metric of system efficiency (DQEsys); the new metric is then related to the existing system efficiency parameters of effective DQE (eDQE) and generalized DQE (gDQE). The effect of scatter on signal transfer was modelled through its point spread function (PSF), leading to an x-ray beam transfer function (BTF) that multiplies with the classical presampling modulation transfer function (MTF) to give the system MTF. Expressions are then derived for the influence of scattered radiation on signal-difference to noise ratio (SDNR) and contrast-detail (c-d) detectability. The DQEsys metric was tested using two digital mammography systems, for eight x-ray beams (four with and four without scatter), matched in terms of effective energy. The model was validated through measurements of contrast, SDNR and MTF for poly(methyl)methacrylate thicknesses covering the range of scatter fractions expected in mammography. The metric also successfully predicted changes in c-d detectability for different scatter conditions. Scatter fractions for the four beams with scatter were established with the beam stop method using an extrapolation function derived from the scatter PSF, and validated through Monte Carlo (MC) simulations. Low-frequency drop of the MTF from scatter was compared to both theory and MC calculations. DQEsys successfully quantified the influence of the grid on SDNR and accurately gave the break-even object thickness at which system efficiency was improved by the grid. The DQEsys metric is proposed as an extension of current detector characterization methods to include a performance evaluation in the presence of scattered radiation, with an antiscatter device in place.

  4. Multiple damage identification on a wind turbine blade using a structural neural system

    NASA Astrophysics Data System (ADS)

    Kirikera, Goutham R.; Schulz, Mark J.; Sundaresan, Mannur J.

    2007-04-01

    A large number of sensors are required to perform real-time structural health monitoring (SHM) to detect acoustic emissions (AE) produced by damage growth on large complicated structures. This requires a large number of high sampling rate data acquisition channels to analyze high frequency signals. To overcome the cost and complexity of having such a large data acquisition system, a structural neural system (SNS) was developed. The SNS reduces the required number of data acquisition channels and predicts the location of damage within a sensor grid. The sensor grid uses interconnected sensor nodes to form continuous sensors. The combination of continuous sensors and the biomimetic parallel processing of the SNS tremendously reduce the complexity of SHM. A wave simulation algorithm (WSA) was developed to understand the flexural wave propagation in composite structures and to utilize the code for developing the SNS. Simulation of AE responses in a plate and comparison with experimental results are shown in the paper. The SNS was recently tested by a team of researchers from University of Cincinnati and North Carolina A&T State University during a quasi-static proof test of a 9 meter long wind turbine blade at the National Renewable Energy Laboratory (NREL) test facility in Golden, Colorado. Twelve piezoelectric sensor nodes were used to form four continuous sensors to monitor the condition of the blade during the test. The four continuous sensors are used as inputs to the SNS. There are only two analog output channels of the SNS, and these signals are digitized and analyzed in a computer to detect damage. In the test of the wind turbine blade, multiple damages were identified and later verified by sectioning of the blade. The results of damage identification using the SNS during this proof test will be shown in this paper. Overall, the SNS is very sensitive and can detect damage on complex structures with ribs, joints, and different materials, and the system relatively inexpensive and simple to implement on large structures.

  5. A novel method for the extraction of local gravity wave parameters from gridded three-dimensional data: description, validation, and application

    NASA Astrophysics Data System (ADS)

    Schoon, Lena; Zülicke, Christoph

    2018-05-01

    For the local diagnosis of wave properties, we develop, validate, and apply a novel method which is based on the Hilbert transform. It is called Unified Wave Diagnostics (UWaDi). It provides the wave amplitude and three-dimensional wave number at any grid point for gridded three-dimensional data. UWaDi is validated for a synthetic test case comprising two different wave packets. In comparison with other methods, the performance of UWaDi is very good with respect to wave properties and their location. For a first practical application of UWaDi, a minor sudden stratospheric warming on 30 January 2016 is chosen. Specifying the diagnostics for hydrostatic inertia-gravity waves in analyses from the European Centre for Medium-Range Weather Forecasts, we detect the local occurrence of gravity waves throughout the middle atmosphere. The local wave characteristics are discussed in terms of vertical propagation using the diagnosed local amplitudes and wave numbers. We also note some hints on local inertia-gravity wave generation by the stratospheric jet from the detection of shallow slow waves in the vicinity of its exit region.

  6. Micro-electro-fluidic grids for nematodes: a lens-less, image-sensor-less approach for on-chip tracking of nematode locomotion.

    PubMed

    Liu, Peng; Martin, Richard J; Dong, Liang

    2013-02-21

    This paper reports on the development of a lens-less and image-sensor-less micro-electro-fluidic (MEF) approach for real-time monitoring of the locomotion of microscopic nematodes. The technology showed promise for overcoming the constraint of the limited field of view of conventional optical microscopy, with relatively low cost, good spatial resolution, and high portability. The core of the device was microelectrode grids formed by orthogonally arranging two identical arrays of microelectrode lines. The two microelectrode arrays were spaced by a microfluidic chamber containing a liquid medium of interest. As a nematode (e.g., Caenorhabditis elegans) moved inside the chamber, the invasion of part of its body into some intersection regions between the microelectrodes caused changes in the electrical resistance of these intersection regions. The worm's presence at, or absence from, a detection unit was determined by a comparison between the measured resistance variation of this unit and a pre-defined threshold resistance variation. An electronic readout circuit was designed to address all the detection units and read out their individual electrical resistances. By this means, it was possible to obtain the electrical resistance profile of the whole MEF grid, and thus, the physical pattern of the swimming nematode. We studied the influence of a worm's body on the resistance of an addressed unit. We also investigated how the full-frame scanning and readout rates of the electronic circuit and the dimensions of a detection unit posed an impact on the spatial resolution of the reconstructed images of the nematode. Other important issues, such as the manufacturing-induced initial non-uniformity of the grids and the electrotaxic behaviour of nematodes, were also studied. A drug resistance screening experiment was conducted by using the grids with a good resolution of 30 × 30 μm(2). The phenotypic differences in the locomotion behaviours (e.g., moving speed and oscillation frequency extracted from the reconstructed images with the help of software) between the wild-type (N2) and mutant (lev-8) C. elegans worms in response to different doses of the anthelmintic drug, levamisole, were investigated. The locomotive parameters obtained by the MEF grids agreed well with those obtained by optical microscopy. Therefore, this technology will benefit whole-animal assays by providing a structurally simple, potentially cost-effective device capable of tracking the movement and phenotypes of important nematodes in various microenvironments.

  7. Numerical pricing of options using high-order compact finite difference schemes

    NASA Astrophysics Data System (ADS)

    Tangman, D. Y.; Gopaul, A.; Bhuruth, M.

    2008-09-01

    We consider high-order compact (HOC) schemes for quasilinear parabolic partial differential equations to discretise the Black-Scholes PDE for the numerical pricing of European and American options. We show that for the heat equation with smooth initial conditions, the HOC schemes attain clear fourth-order convergence but fail if non-smooth payoff conditions are used. To restore the fourth-order convergence, we use a grid stretching that concentrates grid nodes at the strike price for European options. For an American option, an efficient procedure is also described to compute the option price, Greeks and the optimal exercise curve. Comparisons with a fourth-order non-compact scheme are also done. However, fourth-order convergence is not experienced with this strategy. To improve the convergence rate for American options, we discuss the use of a front-fixing transformation with the HOC scheme. We also show that the HOC scheme with grid stretching along the asset price dimension gives accurate numerical solutions for European options under stochastic volatility.

  8. Numerical method for predicting flow characteristics and performance of nonaxisymmetric nozzles, theory

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.

    1979-01-01

    The theoretical foundation and formulation of a numerical method for predicting the viscous flowfield in and about isolated three dimensional nozzles of geometrically complex configuration are presented. High Reynolds number turbulent flows are of primary interest for any combination of subsonic, transonic, and supersonic flow conditions inside or outside the nozzle. An alternating-direction implicit (ADI) numerical technique is employed to integrate the unsteady Navier-Stokes equations until an asymptotic steady-state solution is reached. Boundary conditions are computed with an implicit technique compatible with the ADI technique employed at interior points of the flow region. The equations are formulated and solved in a boundary-conforming curvilinear coordinate system. The curvilinear coordinate system and computational grid is generated numerically as the solution to an elliptic boundary value problem. A method is developed that automatically adjusts the elliptic system so that the interior grid spacing is controlled directly by the a priori selection of the grid spacing on the boundaries of the flow region.

  9. A new lead alloy for automotive batteries operating under high-temperature conditions

    NASA Astrophysics Data System (ADS)

    Albert, L.; Goguelin, A.; Jullian, E.

    The operating conditions of automotive and some industrial batteries are involving increasingly higher temperatures and heavier duty cycles. These place stress on the positive-grid materials which are presently not sufficiently resistant to corrosion and to creep. Conventional lead-calcium-tin-aluminium alloys can usually be optimized by a proper choice of calcium and tin contents for each specific manufacturing technology. With the new requirements of customers and the typical behaviour of these conventional alloys, however, there is no more room for improvement without searching for additional alloying elements. The work reported here shows how the doping of conventional lead-calcium-tin-aluminium alloys with barium improves mechanical properties (tensile strength and creep resistance) and increases corrosion resistance at temperatures between 50 and 75°C. Grid materials prepared by two manufacturing technologies (gravity cast; continuous cast followed by expansion) are investigated. Both the mechanical properties and the corrosion behaviour of the resulting grids are evaluated.

  10. Analysis and comparison of oxygen consumption of HepG2 cells in a monolayer and three-dimensional high density cell culture by use of a matrigrid®.

    PubMed

    Weise, Frank; Fernekorn, Uta; Hampl, Jörg; Klett, Maren; Schober, Andreas

    2013-09-01

    By the use of a MatriGrid® we have established a three-dimensional high density cell culture. The MatriGrid® is a culture medium permeable, polymeric scaffold with 187 microcavities. In these cavities (300 μm diameter and 207 μm deep) the cells can growth three-dimensionally. For these experiments we measured the oxygen consumption of HepG2 cell cultures in order to optimize cultivation conditions. We measured and compared the oxygen consumption, growth rate and vitality under three different cultivation conditions: monolayer, three-dimensional static and three-dimensional actively perfused. The results show that the cells in a three-dimensional cell culture consume less oxygen as in a monolayer cell culture and that the actively perfused three-dimensional cell culture in the MatriGrid® has a similar growth rate and vitality as the monolayer culture. Copyright © 2013 Wiley Periodicals, Inc.

  11. Effects on image quality of a 2D antiscatter grid in x-ray digital breast tomosynthesis: Initial experience using the dual modality (x-ray and molecular) breast tomosynthesis scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Tushita, E-mail: tp3rn@virginia.edu; Peppard, Heather; Williams, Mark B.

    2016-04-15

    Purpose: Radiation scattered from the breast in digital breast tomosynthesis (DBT) causes image degradation, including loss of contrast between cancerous and background tissue. Unlike in 2-dimensional (2D) mammography, an antiscatter grid cannot readily be used in DBT because changing alignment between the tube and detector during the scan would result in unacceptable loss of primary radiation. However, in the dual modality breast tomosynthesis (DMT) scanner, which combines DBT and molecular breast tomosynthesis, the tube and detector rotate around a common axis, thereby maintaining a fixed tube-detector alignment. This C-arm geometry raises the possibility of using a 2D (cellular) focused antiscattermore » grid. The purpose of this study is to assess change in image quality when using an antiscatter grid in the DBT portion of a DMT scan under conditions of fixed radiation dose. Methods: Two 2D focused prototype grids with 80 cm focal length were tested, one stack-laminated from copper (Cu) and one cast from a tungsten-polymer (W-poly). They were reciprocated using a motion scheme designed to maximize transmission of primary x-ray photons. Grid-in and grid-out scatter-to-primary ratios (SPRs) were measured for rectangular blocks of material simulating 30%, 50%, and 70% glandular tissue compositions. For assessment of changes in image quality through the addition of a grid, the Computerized Imaging Reference Systems, Inc., phantom Model 011A containing a set of 1 cm thick blocks simulating a range of glandular/adipose ratios from 0/100 to 100/0 was used. To simulate 6.5 and 8.5 cm thick compressed breasts, 1 cm thick slices of PMMA were added to the Model 011A phantom. DBT images were obtained with and without the grid, with exposure parameters fixed for a given compressed thickness. Signal-difference-to-noise ratios (SDNRs), contrast, and voxel value-based attenuation coefficients (μ) were measured for all blocks from reconstructed phantom images. Results: For 4, 6, and 8 cm tissue-equivalent block phantom thicknesses, the inclusion of the W-poly grid reduced the SPR by factors of 5, 6, and 5.8, respectively. For the same thicknesses, the copper grid reduced the SPR by factors of 3.9, 4.5, and 4.9. For the 011A phantom, the W-poly grid raised the SDNR of the 70/30 block from 0.8, −0.32, and −0.72 to 0.9, 0.76, and 0.062 for the 4.5, 6.5, and 8.5 cm phantoms, respectively. It raised the SDNR of the 100/0 block from 3.78, 1.95, and 1.0 to 3.79, 3.67, and 3.25 for the 4.5, 6.5, and 8.5 cm phantoms, respectively. Inclusion of the W-poly grid improved the accuracy of image-based μ values for all block compositions. However, smearing of attenuation across slices due to limited angular sampling decreases the sensitivity of voxel values to changing composition compared to theoretical μ values. Conclusions: Under conditions of fixed radiation dose to the breast, use of a 2D focused grid increased contrast, SDNR, and accuracy of estimated attenuation for mass-simulating block compositions in all phantom thicknesses tested, with the degree of improvement depending upon material composition. A 2D antiscatter grid can be usefully incorporated in DBT systems that employ fully isocentric tube-detector rotation.« less

  12. Glaucoma Diagnostic Capability of Global and Regional Measurements of Isolated Ganglion Cell Layer and Inner Plexiform Layer.

    PubMed

    Chien, Jason L; Ghassibi, Mark P; Patthanathamrongkasem, Thipnapa; Abumasmah, Ramiz; Rosman, Michael S; Skaat, Alon; Tello, Celso; Liebmann, Jeffrey M; Ritch, Robert; Park, Sung Chul

    2017-03-01

    To compare glaucoma diagnostic capability of global/regional macular layer parameters in different-sized grids. Serial horizontal spectral-domain optical coherence tomography scans of macula were obtained. Automated macular grids with diameters of 3, 3.45, and 6 mm were used. For each grid, 10 parameters (total volume; average thicknesses in 9 regions) were obtained for 5 layers: macular retinal nerve fiber layer (mRNFL), ganglion cell layer (GCL), inner plexiform layer (IPL), ganglion cell-inner plexiform layer (GCIPL; GCL+IPL), and ganglion cell complex (GCC; mRNFL+GCL+IPL). Sixty-nine normal eyes (69 subjects) and 87 glaucomatous eyes (87 patients) were included. For the total volume parameter, the area under the receiver operating characteristic curves (AUCs) in 6-mm grid were larger than the AUCs in 3- and 3.45-mm grids for GCL, GCC, GCIPL, and mRNFL (all P<0.020). For the average thickness parameters, the best AUC in 6-mm grid (T2 region for GCL, IPL, and GCIPL; I2 region for mRNFL and GCC) was greater than the best AUC in 3-mm grid for GCL, GCC, and mRNFL (P<0.045). The AUC of GCL volume (0.920) was similar to those of GCC (0.920) and GCIPL (0.909) volume. The AUC of GCL T2 region thickness (0.942) was similar to those of GCC I2 region (0.942) and GCIPL T2 region (0.934) thickness. Isolated macular GCL appears to be as good as GCC and GCIPL in glaucoma diagnosis, while IPL does not. Larger macular grids may be better at detecting glaucoma. Each layer has a characteristic region with the best glaucoma diagnostic capability.

  13. Non-Pilot Protection of the HVDC Grid

    NASA Astrophysics Data System (ADS)

    Badrkhani Ajaei, Firouz

    This thesis develops a non-pilot protection system for the next generation power transmission system, the High-Voltage Direct Current (HVDC) grid. The HVDC grid protection system is required to be (i) adequately fast to prevent damages and/or converter blocking and (ii) reliable to minimize the impacts of faults. This study is mainly focused on the Modular Multilevel Converter (MMC) -based HVDC grid since the MMC is considered as the building block of the future HVDC systems. The studies reported in this thesis include (i) developing an enhanced equivalent model of the MMC to enable accurate representation of its DC-side fault response, (ii) developing a realistic HVDC-AC test system that includes a five-terminal MMC-based HVDC grid embedded in a large interconnected AC network, (iii) investigating the transient response of the developed test system to AC-side and DC-side disturbances in order to determine the HVDC grid protection requirements, (iv) investigating the fault surge propagation in the HVDC grid to determine the impacts of the DC-side fault location on the measured signals at each relay location, (v) designing a protection algorithm that detects and locates DC-side faults reliably and sufficiently fast to prevent relay malfunction and unnecessary blocking of the converters, and (vi) performing hardware-in-the-loop tests on the designed relay to verify its potential to be implemented in hardware. The results of the off-line time domain transients studies in the PSCAD software platform and the real-time hardware-in-the-loop tests using an enhanced version of the RTDS platform indicate that the developed HVDC grid relay meets all technical requirements including speed, dependability, security, selectivity, and robustness. Moreover, the developed protection algorithm does not impose considerable computational burden on the hardware.

  14. The development of a control system for a small high speed steam microturbine generator system

    NASA Astrophysics Data System (ADS)

    Alford, A.; Nichol, P.; Saunders, M.; Frisby, B.

    2015-08-01

    Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This machine was packaged with the necessary control valves and systems to allow connection of the machine to the grid. Traditional machines vary the speed of the generator to match the grid frequency. This was not possible due to the high speed of this machine. The characteristics of the rotating unit had to be understood to allow a control that allowed export of energy at the right frequency to the grid under the widest possible range of steam conditions. A further goal of the control system was to maximise the efficiency of generation under all conditions. A further complication was to provide adequate protection for the rotating unit in the event of the loss of connection to the grid. The system to meet these challenges is outlined with the solutions employed and tested for this application.

  15. Calculating Soil Wetness, Evapotranspiration and Carbon Cycle Processes Over Large Grid Areas Using a New Scaling Technique

    NASA Technical Reports Server (NTRS)

    Sellers, Piers

    2012-01-01

    Soil wetness typically shows great spatial variability over the length scales of general circulation model (GCM) grid areas (approx 100 km ), and the functions relating evapotranspiration and photosynthetic rate to local-scale (approx 1 m) soil wetness are highly non-linear. Soil respiration is also highly dependent on very small-scale variations in soil wetness. We therefore expect significant inaccuracies whenever we insert a single grid area-average soil wetness value into a function to calculate any of these rates for the grid area. For the particular case of evapotranspiration., this method - use of a grid-averaged soil wetness value - can also provoke severe oscillations in the evapotranspiration rate and soil wetness under some conditions. A method is presented whereby the probability distribution timction(pdf) for soil wetness within a grid area is represented by binning. and numerical integration of the binned pdf is performed to provide a spatially-integrated wetness stress term for the whole grid area, which then permits calculation of grid area fluxes in a single operation. The method is very accurate when 10 or more bins are used, can deal realistically with spatially variable precipitation, conserves moisture exactly and allows for precise modification of the soil wetness pdf after every time step. The method could also be applied to other ecological problems where small-scale processes must be area-integrated, or upscaled, to estimate fluxes over large areas, for example in treatments of the terrestrial carbon budget or trace gas generation.

  16. Summary of the Third AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Brodersen, Olaf P.; Eisfeld, Bernhard; Wahls, Richard A.; Morrison, Joseph H.; Zickuhr, Tom; Laflin, Kelly R.; Mavriplis, DImitri J.

    2007-01-01

    The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-al;one configurations of that are representative of transonic transport aircraft. The baseline DLR-F6 wing-body geometry, previously utilized in DPW-II, is also augmented with a side-body fairing to help reduce the complexity of the flow physics in the wing-body juncture region. In addition, two new wing-alone geometries have been developed for the DPW-II. Numerical calculations are performed using industry-relevant test cases that include lift-specific and fixed-alpha flight conditions, as well as full drag polars. Drag, lift, and pitching moment predictions from previous Reynolds-Averaged Navier-Stokes computational fluid Dynamics Methods are presented, focused on fully-turbulent flows. Solutions are performed on structured, unstructured, and hybrid grid systems. The structured grid sets include point-matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, and prismatic elements. Effort was made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body families are comprised of a coarse, medium, and fine grid, while the wing-alone families also include an extra-fine mesh. These mesh sequences are utilized to help determine how the provided flow solutions fair with respect to asymptotic grid convergence, and are used to estimate an absolute drag of each configuration.

  17. An open source software for fast grid-based data-mining in spatial epidemiology (FGBASE).

    PubMed

    Baker, David M; Valleron, Alain-Jacques

    2014-10-30

    Examining whether disease cases are clustered in space is an important part of epidemiological research. Another important part of spatial epidemiology is testing whether patients suffering from a disease are more, or less, exposed to environmental factors of interest than adequately defined controls. Both approaches involve determining the number of cases and controls (or population at risk) in specific zones. For cluster searches, this often must be done for millions of different zones. Doing this by calculating distances can lead to very lengthy computations. In this work we discuss the computational advantages of geographical grid-based methods, and introduce an open source software (FGBASE) which we have created for this purpose. Geographical grids based on the Lambert Azimuthal Equal Area projection are well suited for spatial epidemiology because they preserve area: each cell of the grid has the same area. We describe how data is projected onto such a grid, as well as grid-based algorithms for spatial epidemiological data-mining. The software program (FGBASE), that we have developed, implements these grid-based methods. The grid based algorithms perform extremely fast. This is particularly the case for cluster searches. When applied to a cohort of French Type 1 Diabetes (T1D) patients, as an example, the grid based algorithms detected potential clusters in a few seconds on a modern laptop. This compares very favorably to an equivalent cluster search using distance calculations instead of a grid, which took over 4 hours on the same computer. In the case study we discovered 4 potential clusters of T1D cases near the cities of Le Havre, Dunkerque, Toulouse and Nantes. One example of environmental analysis with our software was to study whether a significant association could be found between distance to vineyards with heavy pesticide. None was found. In both examples, the software facilitates the rapid testing of hypotheses. Grid-based algorithms for mining spatial epidemiological data provide advantages in terms of computational complexity thus improving the speed of computations. We believe that these methods and this software tool (FGBASE) will lower the computational barriers to entry for those performing epidemiological research.

  18. Home vision tests

    MedlinePlus

    ... testing. AMSLER GRID TEST This test helps detect macular degeneration . This is a disease that causes blurred vision, ... exam. People who are at risk of developing macular degeneration may be told by their ophthalmologist to perform ...

  19. Towards a realistic 3D simulation of the extraction region in ITER NBI relevant ion source

    NASA Astrophysics Data System (ADS)

    Mochalskyy, S.; Wünderlich, D.; Fantz, U.; Franzen, P.; Minea, T.

    2015-03-01

    The development of negative ion (NI) sources for ITER is strongly accompanied by modelling activities. The ONIX code addresses the physics of formation and extraction of negative hydrogen ions at caesiated sources as well as the amount of co-extracted electrons. In order to be closer to the experimental conditions the code has been improved. It includes now the bias potential applied to first grid (plasma grid) of the extraction system, and the presence of Cs+ ions in the plasma. The simulation results show that such aspects play an important role for the formation of an ion-ion plasma in the boundary region by reducing the depth of the negative potential well in vicinity to the plasma grid that limits the extraction of the NIs produced at the Cs covered plasma grid surface. The influence of the initial temperature of the surface produced NI and its emission rate on the NI density in the bulk plasma that in turn affects the beam formation region was analysed. The formation of the plasma meniscus, the boundary between the plasma and the beam, was investigated for the extraction potentials of 5 and 10 kV. At the smaller extraction potential the meniscus moves closer to the plasma grid but as in the case of 10 kV the deepest meniscus bend point is still outside of the aperture. Finally, a plasma containing the same amount of NI and electrons (nH- =ne =1017 m-3) , representing good source conditioning, was simulated. It is shown that at such conditions the extracted NI current can reach values of ˜32 mA cm-2 using ITER-relevant extraction potential of 10 kV and ˜19 mA cm-2 at 5 kV. These results are in good agreement with experimental measurements performed at the small scale ITER prototype source at the test facility BATMAN.

  20. Influence of high-resolution surface databases on the modeling of local atmospheric circulation systems

    NASA Astrophysics Data System (ADS)

    Paiva, L. M. S.; Bodstein, G. C. R.; Pimentel, L. C. G.

    2013-12-01

    Large-eddy simulations are performed using the Advanced Regional Prediction System (ARPS) code at horizontal grid resolutions as fine as 300 m to assess the influence of detailed and updated surface databases on the modeling of local atmospheric circulation systems of urban areas with complex terrain. Applications to air pollution and wind energy are sought. These databases are comprised of 3 arc-sec topographic data from the Shuttle Radar Topography Mission, 10 arc-sec vegetation type data from the European Space Agency (ESA) GlobCover Project, and 30 arc-sec Leaf Area Index and Fraction of Absorbed Photosynthetically Active Radiation data from the ESA GlobCarbon Project. Simulations are carried out for the Metropolitan Area of Rio de Janeiro using six one-way nested-grid domains that allow the choice of distinct parametric models and vertical resolutions associated to each grid. ARPS is initialized using the Global Forecasting System with 0.5°-resolution data from the National Center of Environmental Prediction, which is also used every 3 h as lateral boundary condition. Topographic shading is turned on and two soil layers with depths of 0.01 and 1.0 m are used to compute the soil temperature and moisture budgets in all runs. Results for two simulated runs covering the period from 6 to 7 September 2007 are compared to surface and upper-air observational data to explore the dependence of the simulations on initial and boundary conditions, topographic and land-use databases and grid resolution. Our comparisons show overall good agreement between simulated and observed data and also indicate that the low resolution of the 30 arc-sec soil database from United States Geological Survey, the soil moisture and skin temperature initial conditions assimilated from the GFS analyses and the synoptic forcing on the lateral boundaries of the finer grids may affect an adequate spatial description of the meteorological variables.

Top